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Abstract

We present an explicit and efficient algebraic construction of capacity-achieving list decodable codes
with both constant alphabet and constant list sizes. More specifically, for any R ∈ (0, 1) and ε > 0,
we give an algebraic construction of an infinite family of error-correcting codes of rate R, over an
alphabet of size (1/ε)O(1/ε2), that can be list decoded from a (1 − R − ε)-fraction of errors with list
size at most exp(poly(1/ε)). Moreover, the codes can be encoded in time poly(1/ε, n), the output
list is contained in a linear subspace of dimension at most poly(1/ε), and a basis for this subspace
can be found in time poly(1/ε, n). Thus, both encoding and list decoding can be performed in fully
polynomial-time poly(1/ε, n), except for pruning the subspace and outputting the final list which takes
time exp(poly(1/ε))·poly(n). In contrast, prior explicit and efficient constructions of capacity-achieving
list decodable codes either required a much higher complexity in terms of 1/ε (and were additionally
much less structured), or had super-constant alphabet or list sizes.

Our codes are quite natural and structured. Specifically, we use algebraic-geometric (AG) codes with
evaluation points restricted to a subfield, and with the message space restricted to a (carefully chosen)
linear subspace. Our main observation is that the output list of AG codes with subfield evaluation points
is contained in an affine shift of the image of a block-triangular-Toeplitz (BTT) matrix, and that the list
size can potentially be reduced to a constant by restricting the message space to a BTT evasive subspace,
which is a large subspace that intersects the image of any BTT matrix in a constant number of points.
We further show how to explicitly construct such BTT evasive subspaces, based on the explicit subspace
designs of Guruswami and Kopparty (Combinatorica, 2016), and composition.

1 Introduction

An error-correcting code is a map C : Σk → Σn, which encodes a k-symbol message over an alphabet Σ
into an n-symbol codeword over Σ. One main parameter of interest of an error-correcting code is the rate
R = k/n, which measures the amount of redundancy in the encoding. Naturally, it is desirable that the
rate R is as large as possible to minimize the overhead in encoding. Another important parameter is the
(relative) distance δ, defined as the smallest (relative) Hamming distance1 dist(C(x), C(y)) between the
encodings of any pair of distinct messages x, y ∈ Σk. The importance of the distance parameter arises from
the following observation: if we are given w ∈ Σn such that dist(w,C(x)) < δ

2 for some message x ∈ Σk,
then this x is uniquely determined. Thus, a large distance allows one to unambiguously retrieve the original

∗Research supported in part by ISF grant 735/20.
1The (relative) Hamming distance dist(z, w) between a pair of strings z, w ∈ Σn is the fraction of coordinates on which z and

w differ.
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message in the presence of some error or corruption. Other desirable properties of an error-correcting code
are that its alphabet size would be small (ideally, a constant, independent of the codeword length), and that
it admits efficient (poly(n)-time) encoding and decoding algorithms.

Clearly, there is a qualitative trade-off between the above parameters: the largest the distance δ is, the
smallest the rate R must be. Quantitatively, the Singleton bound states that any code must satisfy that
δ ≤ 1 − R. This bound is precisely matched by the classical family of Reed-Solomon (RS) codes [RS60].
Given a finite field Fq, and n distinct elements α1, α2, . . . , αn ∈ Fq, the Reed-Solomon code RSq(n, k)
with evaluation points α1, . . . , αn maps a message (f0, f1, . . . fk−1) ∈ Fkq , viewed as the coefficients of a
polynomial f =

∑k−1
i=0 fiX

i ∈ Fq[X]<k, to the evaluation table (f(α1), . . . , f(αn)) ∈ Fnq .
A disadvantage ofRS codes is that by definition, their alphabet size qmust be at least the codeword length

n. To match the Singelton bound over a constant-size alphabet, independent of the codeword length n, one
can resort to algebraic-geometric (AG) codes that achieve a distance of δ = 1−R− ε over a constant-size
alphabet (depending on ε) [Sti09]. Moreover, both RS and AG codes can be efficiently encoded and decoded
up to half their minimum distance [Pet60, BW87, JLJ+89].

List decoding. In list decoding, the fraction of errors α is large enough so that unique recovery of
the message x is impossible (that is, α > δ

2 ). Instead, the goal is, given a received word w, to return
a short list L with the guarantee that x ∈ L for any message x with dist(w,C(x)) ≤ α. Besides
being a fundamental concept in coding theory, list decoding has found diverse applications in theoretical
computer science, for example in cryptography [GL89], learning theory [KM93], average-to-worst-case
reductions [CPS99, GRS00], hardness amplification [BFNW93, STV01, Tre03], and pseudo-randomness
[TZ04, GUV09, DKSS13, TU12, GRX18].

The list-decoding capacity theorem states that the maximal fraction of errors for which list decoding with
non-trivial list sizes is possible is α ≤ 1−R. Moreover, it is not hard to show that a random code of rate R
and alphabet-size exp(1/ε) is with high probability list decodable from a (1−R− ε)-fraction of errors with
list size as small as O(1/ε). So in principle, by allowing a small (constant-size) list, one can correct twice
as many errors than in the unique decoding setting! However, matching these bounds with an explicit and
efficient construction (ideally, encodable and list decodable in fully polynomial-time2 poly(1/ε, n)) turned
out to be more challenging than in the unique decoding setting.

Capacity-achieving list decodable codes. The celebrated work of Guruswami and Sudan [Sud97, GS99]
showed that RS codes can be efficiently list decoded beyond half their minimum distance (up to the so-called
Johnson bound), which gave the first family of error-correcting codes that are efficiently list decodable beyond
the unique decoding radius. Only a decade later, the seminal work of Guruswami and Rudra [GR08] showed
that folded Reed-Solomon (FRS) codes – a remarkably simple variant of RS codes – can be efficiently
list decoded up to list-decoding capacity. FRS codes are obtained from RS codes (with the evaluation
points ordered according to their power in the multiplicative group of the field) by dividing the codewords
coordinates in the latter code into consecutive blocks of length m = Θ(1/ε2), and then viewing each such
block of coordinates as a single symbol over a larger alphabet.

Once more, a disadvantage of FRS codes is their large alphabet – on the order of nΘ(1/ε2) – which is
even larger than that of the corresponding RS codes. Moreover, the list size obtained by the algorithm of
Guruswami and Rudra was also a very large polynomial on the order of nΘ(1/ε), and this also dictated a
similar running time for the list decoding algorithm. Starting with the breakthrough result of Guruswami

2Note that in the list decoding setting, at least Ω(n/ε) time is required to output the list. Moreover, the alphabet size must be at
least exp(Ω(1/ε)), and so the bit-length of the input is at least Ω(n/ε).
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and Rudra [GR08], there has been a long line of work attempting to construct explicit and efficient capacity-
achieving list decodable codes with smaller alphabet and list sizes. Next, we briefly describe the main results
of this line of work, and we refer the reader to Table 1 below for a summary of parameters.

Reducing list size. Towards reducing the list size, Guruswami and Wang [GW13] devised a new “linear-
algebraic” list decoding algorithm forFRS codes, with the surprising property that the output list is contained
in a low-dimensional subspace of constant dimension O(1/ε). In the same work, Guruswami and Wang
further observed that, utilizing this property, one can potentially reduce the list size to a constant by restricting
the message space of FRS codes to a subspace evasive set, which is a large set that intersects any constant
dimensional subspace in a constant number of points. Guruswami and Wang showed that such objects exist
probabilistically, and raised the question of searching for an explicit construction.

The above program was subsequently carried out by Dvir and Lovet [DL12], who gave an algebraic
construction of subspace evasive sets with the required properties. Combined with the linear-algebraic list
decoding algorithm of [GW13], this resulted in a subcode of FRS codes that can be efficiently encoded (in
time poly(1/ε, n)), and efficiently list decoded up to capacity with constant list size L = (1/ε)O(1/ε) (in
time poly(L, n)). Lastly, Kopparty, Ron-Zewi, Saraf, and Wootters [KRSW18] have recently shown that in
fact any linear3 code of constant distance δ that is list decodable from a (δ− ε)-fraction of errors with output
list of constant dimension d has constant list sizes (depending on d, δ, and ε). This shows that, perhaps
surprisingly, FRS codes themselves have constant list size (in fact the same list size of L = (1/ε)O(1/ε)),
without the need to pass to a subcode (list decoding can be performed probabilistically in time poly(L, n)).

Reducing alphabet size. Similarly to the unique decoding setting, one can reduce the alphabet size to a
constant (depending on ε) by considering suitable versions of “folded” AG codes [Gur09, GX12, GX14,
GX15]. However, in this setting, the dimension of the output list was too large to apply the above subspace
evasive machinery and obtain small list sizes. To overcome this, Guruswami and Xing [GX13] came-up with
an alternative approach for constructing capacity-achieving list decodable codes that is based on restricting
the evaluation points of “plain” (unfolded) versions of RS or AG codes to a subfield.4

Specifically, Guruswami and Xing first observed that while RS codes are generally not list decodable
up to capacity with non-trivial list sizes [BKR10], for the special case of RS codes with evaluation points
restricted to a subfield, it is possible to obtain slightly non-trivial list sizes, and furthermore, the lists satisfy a
certain periodic structure. In more detail, consider the RS code RSq,m(n, k), defined over a large extension
field Fqm , with evaluation points coming from a small subfield Fq, for m = Θ(1/ε2). Guruswami and
Xing showed that in this setting, there exists an Fq-linear subspace V̂ ⊆ Fqm of constant dimension O(1/ε)
so that any message (f0, f1, . . . fk−1) ∈ Fkqm in the output list satisfies that once the first i coefficients
f0, f1, . . . , fi−1 ∈ Fqm are fixed, the next coefficient fi belongs to an affine shift of V̂ .

Note that, indeed, the above structure does not a priori guarantee a small list size. In fact, the only bound
on the list size that is implied by the above structure is qO(k/ε) = qO(εmk), which is only slightly smaller than
the number of possible messages which is qkm. However, Guruswami and Xing noticed that, interestingly,
the above periodic structure can lead to a list of constant dimension (which also leads in turn to constant list
sizes using the machinery of [DL12] or [KRSW18] described above) when the message space is restricted
to a subspace design, and once more, suggested to construct such objects explicitly. In a follow-up work
[GK16], Guruswami and Kopparty explicitly constructed such objects, and combined with the approach of

3A code C : Σk → Σn is linear if Σ = Fq for some finite field Fq , and the map C : Fkq → Fnq is linear.
4Guruswami and Xing first came-up with a similar approach in the folded setting [GX12], and only later observed in [GX13]

that it also applies to unfolded versions. For simplicity, we only discuss the latter more basic approach.

3



Guruswami and Xing, this had the surprising consequence that a subcode of “plain” RS codes (with subfield
evaluation points) is list decodable up to capacity, with constant list sizes (see Table 1 for exact parameters).

Guruswami and Xing further observed that a similar periodic structure occurs in the AG code setting.
However, over constant-size fields, it is impossible to construct subspace designs that lead to constant list
sizes.5 Nevertheless, Guruswami and Xing showed that one can iteratively compose together subspace
designs of exponentially increasing lengths to obtain extremely slowly growing list sizes (depending on
log∗ n) over constant-size alphabets (see more discussion in Section 2 below). This led in turn to capacity-
achieving list decodable codes with constant alphabet size (1/ε)O(1/ε2), extremely slowly growing list size
exp(poly(1/ε)) · exp exp exp(log∗ n), and efficient encoding and list decoding algorithms (running in time
poly(1/ε, n) and poly(L, n), respectively).

Finally, we mention that in [KRSW18], a different approach was given for obtaining both constant
list and constant alphabet sizes, based on multi-level concatenation of FRS codes, and expander-based
amplification. However, the resulting code is arguably more complicated and less natural and structured than
the aforementioned algebraic constructions, and moreover, has a much higher complexity in terms of 1/ε.
Specifically, the list size was quadruply-exponential in poly(1/ε), which also dictated a similar running time
for list decoding,6, and the encoding time was also pretty large exp(poly(1/ε)) · poly(n) due to the need to
brute-force search for the inner codes.

1.1 Our results

A main question left open by the above line of work is whether one can come up with constructions of
capacity-achieving list decodable codes with both constant alphabet and constant list sizes, and admitting
fully polynomial-time poly(1/ε, n) encoding and list-decoding. Our main result (almost) answers this
question in the affirmative.

Theorem 1.1. For any R ∈ (0, 1) and ε > 0, there is an infinite family of error-correcting codes of rate
at least R over an alphabet of size (1/ε)O(1/ε2) that can be encoded in time poly(1/ε, n), and can be list
decoded from a (1−R− ε)-fraction of errors with list size at most L = exp(poly(1/ε)) in time poly(L, n).
Moreover, the codes, defined over an alphabet Fqm , are Fq-linear, the output list is contained in an Fq-linear
subspace of dimension at most poly(1/ε), and a basis for this subspace can be found in time poly(1/ε, n).

Note that our codes achieve list-decoding capacity with both constant alphabet and constant list sizes, and
both encoding and list decoding can be performed in fully polynomial-time poly(1/ε, n), except for pruning
the subspace and outputting the final list which takes time exp(poly(1/ε)) · poly(n). Our codes are quite
natural and structured, specifically, we use AG codes with evaluation points restricted to a subfield, and with
the message space restricted to a (carefully chosen) Fq-linear subspace. It is our hope that this relatively
natural and simple structure will prove useful in future applications.

A barrier to improving the general running time of list-decoding to poly(1/ε, n) is the exponential
dependency of the list size on 1/ε since, at the very least, such amount of time is required to output the whole
list. However, currently the smallest known list size for explicit capacity-achieving list decodable codes is

5In [GX12], Guruswami and Xing suggested alternatively using hierarchical subspace evasive sets and showed that utilizing
the above periodic structure, these could potentially lead to constant list sizes over constant-size alphabets. However, it is currently
unknown how to explicitly construct such objects.

6The reason for the large list size is that the construction roughly uses four levels of encodings, two of these via FRS codes,
and two other via random linear codes, and for both codes, the best-known list size is exponential in 1/ε. It may be possible to
reduce the list size by replacing the random linear codes with other codes of smaller list size and succinct representation, e.g., the
pseudo-linear codes of [GI01]. However, the list size would still be at least doubly-exponential in 1/ε.
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(1/ε)O(1/ε), achieved by FRS codes [KRSW18]. We leave it as an interesting open problem to search for
explicit capacity-achieving list decodable codes (even over large super-constant alphabet) with optimal list
size O(1/ε), or even poly(1/ε). We further mention that the alphabet size we obtain, on the other hand, is
not much worse than the lower bound of exp(Ω(1/ε)), and is generally the smallest known alphabet size for
explicit capacity-achieving list decodable codes [GX12, GX13, GX14, GX15].

Finally, we note that using the machinery of [HRW20, KRR+21] (specifically, taking a high-order tensor
product of the codes given by Theorem 1.1, combined with an expander-based amplification), it is possible to
bring down the dependency on n in the running time of both encoding and list-decoding to nearly-linear, say
n1.01. However, similarly to the multi-level construction of [KRSW18] mentioned above, the resulting codes
become more complicated and less natural and structured, and also have a much higher complexity in terms
of 1/ε. Obtaining a truly-linear dependency on n in the running time of either encoding or list-decoding
for capacity-achieving list decodable codes seems to require, as in the unique decoding setting, completely
different non-algebraic techniques.

Table 1 below summarizes the above discussion. In the next section, we shall give an overview of our
techniques.

2 Techniques

The starting point for our construction is the aforementioned work of Guruswami of Xing [GX13]. As
described above, in this work it was observed that the output list of RS or AG codes with subfield evaluation
points satisfy a special periodic structure. Namely, there exists an Fq-linear subspace V̂ ⊆ Fqm of constant
dimension r = O(1/ε) so that any message (f0, f1, . . . fk−1) ∈ Fkqm in the output list satisfies that given the
first i coefficients f0, f1, . . . , fi−1 ∈ Fqm , the next coefficient fi belongs to an affine shift of V̂ . Moreover, it
was shown that one can exploit this structure and reduce the output list size by restricting the message space
to a subspace design.

An (r, s)-subspace design overFqm of cardinality k is a collection of k Fq-linear subspacesH1, . . . ,Hk ⊆
Fqm so that

∑k
i=1 dim(V̂ ∩Hi) ≤ s for any Fq-linear subspace V̂ ⊆ Fqm of dimension at most r. It follows

by definition that, assuming the above periodic structure, when restricting each coefficient fi to the subspace
Hi, the resulting output list has dimension at most

∑k
i=1 dim(V̂ ∩ Hi) ≤ s. It can be shown, using the

probabilistic method, that there exists an (r, s)-subspace design H1, . . . ,Hk over Fqm with k = qΩ(εm) and
s = O(r/ε), where each subspace Hi has co-dimension at most εm in Fqm . In [GK16], Guruswami and
Kopparty gave an explicit construction of a subspace design with similar parameters.

Theorem 2.1 (Explicit subspace design, [GK16], Theorem 6). There exists an absolute constant c > 1,
so that for every ε > 0, positive integers k,m, r with r < εm

4 , and a prime power q satisfying qm ≥
max

{
kc·r/ε,

(
2r
ε

)2r/ε}, there exists an (r, s)-subspace design H1, . . . ,Hk over Fqm for s = 2r2

ε , where
each Hi has co-dimension at most εm in Fqm . Moreover, bases for H1, . . . ,Hk can be found in time
poly(q, k,m).

Thus, by restricting the message coefficients in RS codes with subfield evaluation points to the subspace
design given by the above theorem, one can reduce the dimension of the output list to O(1/ε3) (and by
[KRSW18], this in fact implies that the list is of constant size). Note however that the above theorem could
not be applied to AG codes, as it requires the number of subspaces k to be smaller than qm, whereas for
AG codes the number of message coordinates k (which grows to infinity) is much larger than qm (which is
constant in the AG setting).
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Code Alphabet size |Σ| List size L Notes
Random codes 2O(1/ε) O(1/ε) Non-constructive
FRS codes [GR08, GW13] nO(1/ε2) nO(1/ε)

Previous codes [KRSW18] nO(1/ε2)
(

1
ε

)O(1/ε) Randomized
list-decoding

Previous codes + subspace
evasive set [DL12] nO(1/ε2)

(
1
ε

)O(1/ε)

Multi-level concatenation of
previous codes + expander
amplification [KRSW18]

2poly(1/ε) 222
2poly(1/ε) Encoding time

2poly(1/ε) · poly(n)

RS codes with subsfield eval-
uation points + subspace de-
sign [GX13, GK16]

nO(1/ε2) nO(1/ε3)

Previous codes [KRSW18] nO(1/ε2)
(

1
ε

)O(1/ε4) Randomized
list-decoding

Previous codes + subspace
evasive set [DL12] nO(1/ε2)

(
1
ε

)O(1/ε3)

AG codes with subfield eval-
uation points + subspace de-
sign [GX13, GK16]

(
1
ε

)O(1/ε2)
2poly(1/ε) · 222

O(log∗ n)

Tensor product of previous
codes + expander amplifica-
tion [HRW20, KRR+21]

2poly(1/ε) 222
2
poly(1/ε)

· 222
2O(log∗ n)

Encoding time
2poly(1/ε) · n1.01,
list-decoding time
poly(L) · n1.01

This work: AG codes with
subfield evaluation points +
BTT evasive subspace

(
1
ε

)O(1/ε2)
2poly(1/ε)

Basis for subspace
containing list can
be found in time
poly(1/ε, n)

Table 1: Capacity-achieving list decodable codes C : Σk → Σn of rate R that are list decodable from a
(1−R−ε)-fraction of errors with list sizeL. All codes can be deterministically encoded in time poly(1/ε, n)
and deterministically list decoded in time poly(L, n) unless otherwise noted.

6



To overcome this, Guruswami and Xing suggested the following iterative construction. Suppose that the
message space has the periodic structure described above, and that k � qm. Then Guruswami and Xing
suggested to first divide the k coordinates into k

k1
blocks of k1 coordinates each, where k1 ≈ qm, and restrict

each such block separately to an identical (r, s)-subspace design over Fqm of cardinality k1 that is guaranteed
by the above Theorem 2.1. The main observation is that, when viewing each block of length k1 as a single
coordinate, the resulting subspace also has a periodic structure, however, with exponentially larger alphabet
size qmk1 .

Thus, one can once more divide the resulting k
k1

coordinates into k
k1k2

blocks of length k2 each, where
now k2 ≈ qmk1 , and restrict to an identical subspace design on each block separately. Continuing this way,
and noting that the alphabet size increases exponentially in each iteration, after≈ log∗ k iterations, we arrive
at alphabet size k, which is sufficiently large for restricting to a single subspace design. Since the dimension
squares on each invocation of Theorem 2.1, the final dimension is doubly-exponential in log∗ k, and the
resulting output list size is triply-exponential log∗ k.

Our main observation that allows us to obtain both constant alphabet and constant list sizes is that AG (or
RS) codes with subfield evaluation points satisfy yet an even more refined structure, namely, the output list
is contained in an affine shift of the image of a block-triangular-Toeplitz (BTT) matrix. We further observe
that this structure can potentially lead to constant list sizes over a constant-size alphabet if the message space
is restricted to an appropriate pseudo-random object that we call a BTT evasive subspace. In what follows
we elaborate on these two ingredients.

2.1 Block-triangular-Toeplitz matrix

We start by formally defining the notion of a block-triangular-Toeplitz matrix (see Figure 1 below for an
illustration).

Definition 2.2 (Block-triangular-Toeplitz (BTT) matrix). A (k,m, r)-block-triangular-Toeplitz (BTT) ma-
trix over Fq is a (km)× (kr) matrixM over Fq so thatM = (Mi,j)i,j∈[k], as a (k × k)-block matrix with
m× r blocksMi,j , satisfies the following conditions:

1. M is block-lower-triangular, i.e.,Mi,j = 0 for i, j ∈ [k] with i < j.

2. M is block-Toeplitz, i.e.,Mi,j = Mi′,j′ for i, j, i′, j′ ∈ [k] with i− j = i′ − j′.

3. M has maximal rank. By the two conditions above, this is equivalent to the statement thatM1,1 has
rank min{r,m}.

We say thatM is (k,m, r)-periodic if only blocks on the main diagonal are required to be identical, i.e., the
second condition above is weakened toMi,i = Mi′,i′ for all i, i′ ∈ [k].

We say that V ⊆ Fkmq is a (k,m, r)-BTT subspace if V = Image(M) for some (k,m, r)-BTT matrix
M (whereM is viewed as a linear map from Fkrq to Fkmq , and Image(M) denotes its image). Similarly, we
say that V ⊆ Fkmq is a (k,m, r)-periodic subspace if V = Image(M) for some (k,m, r)-periodic matrix
M . Note that in this terminology, the periodic structure described above corresponds to the special case of
a (k,m, r)-periodic subspace, where V̂ = Image(M1). Our first main observation is that the output list of
AG (or RS) codes with subfield evaluation points is in fact contained in an affine shift of a (k,m, r)-BTT
subspace for r = O(1/ε) (under a suitable linear map).
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
M1 0 0 · · · 0
M2 M1 0 · · · 0
M3 M2 M1 · · · 0
...

...
... . . . ...

Mk Mk−1 Mk−2 · · · M1


Figure 1: A (k,m, r)-BTT matrix, where eachMi is anm× r matrix andM1 has maximal rank.

Theorem 2.3 (Output list contained in a BTT subspace). There exists an absolute constant c > 1 so that
the following holds for any R ∈ (0, 1), ε > 0, q ≥ 1/εc that is an even power of a prime, and m ≥ 1/ε2.
There is an infinite family of error-correcting codes {Cn}n, where Cn satisfies the following properties:

1. Cn : Fkqm → Fnqm is a linear code of rate at least R that can be encoded in time poly(log q,m, n).

2. There exists an injective Fq-linear map φ : Fkqm → Fk̂qm , where k̂ ≤ n, so that Cn can be list decoded
from a (1 − R − ε)-fraction of errors, pinning down the images of the candidate messages under φ
(viewed as length k̂m vectors over Fq) to an affine shift of a (k̂,m, εm)-BTT subspace V over Fq.
Moreover, the map φ, a basis for V , and the affine shift can be computed in time poly(log q,m, n).

We prove the above theorem in Section 6 using AG codes with subfield evaluation points. As a warm-up,
we first prove, in Section 4, that this theorem holds in the more basic setting of RS codes with subfield
evaluation points. In the RS setting, the linear-algebraic approach of [GX13] gives a functional equation of
the form

A0(X) +A1(X)f(X) +A2(X)fσ(X) + · · ·+As(X)fσ
s−1

(X) = 0

that any low-degree polynomial f that has large agreement with a received word y must satisfy, where σ
denotes the Frobenius automorphismmapping f =

∑k−1
j=0 fjX

j to f =
∑k−1

j=0 f
q
jX

j , and the coefficients of
A0, . . . , As depend on the received word y.

We observe that the above functional equation quite naturally gives a (k,m, (1− ε)m)-BTT matrix, so
that the solution set is contained in an affine shift of the kernel of this matrix.7 We then show that the kernel
of a (k,m, r)-BTT matrix is in fact a (k,m,m− r)-BTT subspace (i.e., the image of a (k,m,m− r)-BTT
matrix), which gives the claimed (k,m, εm)-BTT subspace containing the list (in this setting, φ is just the
identity map). We further show that a similar reasoning can be applied in the AG code setting.

2.2 BTT evasive subspace

We say that a subspace W ⊆ Fkmq is a (k,m, r, s)-BTT evasive subspace if dim(V ∩W ) ≤ s for every
(k,m, r)-BTT subspace V ⊆ Fkmq . Similarly, we say that a subspace W ⊆ Fkmq is a (k,m, r, s)-periodic
evasive subspace if dim(V ∩ W ) ≤ s for every (k,m, r)-periodic subspace V ⊆ Fkmq . Note that any
(r, s)-subspace design over Fqm of cardinality k is a (k,m, r, s)-periodic evasive subspace (see Corollary
3.1). We first observe, using the probabilistic method, that there exists a (k,m, r, s)-BTT evasive subspace

7The fact that the solution set is contained in an affine shift of the kernel of aBTTmatrix was also commented (but not exploited)
in [GX20, Definition 3]. Here we provide a formal proof for this fact, show that the solution set can be equivalently defined as the
image of a BTT matrix, and show that this property can be exploited to obtain improved list sizes.
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W ⊆ Fkmq of co-dimension at most εkm and s = O (r/ε). Notably, the lemma holds for any field size q and
block lengthm!

Lemma 2.4. For every ε > 0, positive integers k,m, r with r < εm
2 , and a prime power q, there exists a

(k,m, r, s)-BTT evasive subspaceW ⊆ Fkmq of co-dimension at most εkm for s = 2r
ε .

Moreover, we are able to explicitly construct BTT evasive subspaces with similar parameters over a field
of considerably smaller size than the one required in Theorem 2.1.

Theorem 2.5 (Explicit BTT evasive subspace). There exists an absolute constant c > 1, so that for every
ε > 0, positive integers k,m, r with r < εm

24 , and a prime power q satisfying that q ≥ mc, there exists a
(k,m, r, s)-BTT evasive subspaceW ⊆ Fkmq of co-dimension at most εkm for s = poly(r/ε). Moreover,
a basis forW can be found in time poly(q, k,m).

We prove the above theorem in Section 3. To this end, we first observe that the iterative construction of
[GX13], described above, implicitly gives the following composition lemma for periodic evasive subspaces.
In what follows, for a subspaceW ⊆ Fnq , and a positive integer k, letW k ⊆ Fknq be the subspace containing
all vectors (w1, . . . , wk) ∈ Fknq where wi ∈ W for all 1 ≤ i ≤ k. For a pair of subspaces W ⊆ Fnq and
W ′ ⊆ Fknq , we letW ◦W ′ := W k ∩W ′.
Lemma 2.6 (Implicit in [GX13]). Suppose thatW is an “inner” (k,m, r, s)-periodic evasive subspace over
Fq, andW ′ is an “outer” (k′, km, s, s′)-periodic evasive subspace over Fq. ThenW ◦W ′ = W k ∩W ′ is a
(k′k,m, r, s′)-periodic evasive subspace over Fq.

Roughly speaking, the above lemma gives away to combine together an “inner” periodic evasive subspace
W with a short block lengthm (but a relatively small number of blocks k) with an “outer” periodic evasive
subspace W ′ with a large number of blocks k′ (but a long block length m′), to obtain a periodic evasive
subspace W ◦W ′ of both short block length m and large number of blocks ≈ k′ (see Figure 2 below for
an illustration). Applying this lemma iteratively for log∗ k times, using the explicit subspace design given
by Theorem 2.1 (which is in particular a periodic evasive subspace), gives the main result of [GX13] which
reduces the list size of AG codes with subfield evaluation points to triply-exponential in log∗ n.

. . .

. . .

. . .

x ∈W

x ∈W ′

x ∈W ◦W ′

k blocks

k′ blocks

k′k blocks

m

km

m

Figure 2: Illustration of the first two parameters in composition.

We further observe that essentially the same composition lemma holds when replacing the inner periodic
evasive subspace with a BTT evasive subspace, in which case the resulting composed subspace is a BTT
evasive subspace as well.
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Lemma2.7. Suppose thatW is an “inner” (k,m, r, s)-BTT evasive subspace overFq, andW ′ is an “outer”
(k′, km, s, s′)-periodic evasive subspace overFq. ThenW ◦W ′ = W k′∩W ′ is a (k′k,m, r, s′)-BTT evasive
subspace over Fq.

To prove Theorem 2.5, we first apply the above composition lemma with the inner subspace being the
non-explicit (k1,m, r, s1)-BTT evasive subspace, given by Lemma 2.4, for k1 ≈ log log k (which can be
found efficiently via brute-force search in this setting of parameters), and the outer subspace being the explicit
(k2, k1m, s1, s2)-periodic evasive subspace, given by Theorem 2.1, for k2 = log k ≈ exp(k1). Then we
apply the above composition lemma once more with the inner subspace being the resulting (k2k1,m, r, s2)-
BTT evasive subspace, and the outer subspace being yet another explicit (k3, k1k2m, s2, s3)-periodic evasive
subspace, given by Theorem 2.1, for k3 ≈ k ≈ exp(k2). As we apply the composition step only twice, this
results in a (k,m, r, s3)-BTT evasive subspace for s3 = poly(r/ε). A careful choice of parameters gives
the explicit BTT evasive subspace claimed in Theorem 2.5.

Finally, we note that the above composition method is reminiscent of the classical technique of code
concatenation [For66]. Roughly speaking, code concatenation is a technique for reducing the alphabet size
of a code, where one starts with a long outer code over a large alphabet, and then reduces the alphabet size
by encoding each large alphabet symbol with a short inner code over a smaller alphabet. Curiously, the
parameters obtained by concatenation are very similar to those obtained by the above Composition Lemma
2.7, when viewing k as the codeword length and qm as the alphabet size of the code.

In particular, a well-known method for constructing asymptotically good codes (i.e., codes with constant
rate and distance) over small alphabets (e.g., the binary alphabet) is to first concatenate an inner asymptotically
good code over a small alphabet of length k1 ≈ log log k (which can be found via brute-force search) with
an outer RS code of alphabet size ≈ exp(k1) and length k2 ≈ log k ≈ exp(k1), and then concatenate
the resulting code with another outer RS code of alphabet size ≈ k ≈ exp(k2) and length ≈ k. Our
construction of BTT evasive subspaces uses the same two-level construction, with the explicit subspace
design of Theorem 2.1 playing the role of the RS code over a large alphabet, and the non-explicit BTT
evasive subspace of Lemma 2.4 playing the role of the non-explicit asymptotically good code over a small
alphabet. However, despite the technical resemblance, we could not find any formal connection between
code concatenation and the above composition method for evasive subspaces. We further note that a similar
two-step composition approach was also used in other settings in theoretical computer science such as the
original proof of the PCP theorem [ALM+98].

2.3 Proof of Main Theorem 1.1

Our main Theorem 1.1 follows as an immediate corollary of the above Theorems 2.3 and 2.5.

Proof of Theorem 1.1. Let ε′ = ε
26 and R′ = R+ 25ε′. Letm = 1/(ε′)2, and let q = poly(1/ε) be an even

power of a prime so that q ≥ mc, where c > 1 is a sufficiently large constant for which both Theorems 2.3
and 2.5 hold. Let {Cn}n be the infinite family of codes, guaranteed by Theorem 2.3, with the following
properties for each Cn:

1. Cn : Fkqm → Fnqm is a linear code of rate at least R′ that can be encoded in time poly(1/ε, n).

2. There exists an injective linear map φ : Fkqm → Fk̂qm , where k̂ ≤ n, so that Cn can be list decoded
from a (1 − R′ − ε′)-fraction of errors, pinning down the images of the candidate messages under φ
(viewed as length k̂m vectors over Fq) to an affine shift of a (k̂,m, ε′m)-BTT subspace V over Fq.
Moreover, the map φ, a basis for V , and the affine shift can be computed in time poly(1/ε, n).
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Fix a code Cn as above, and let ε′′ = 25ε′. By Theorem 2.5, there exists a (k̂,m, ε′m, s)-BTT evasive
subspace W ⊆ Fk̂mq of co-dimension at most ε′′k̂m for s = poly(1/ε), and a basis for W can be found in
time poly(1/ε, n). Let C ′n be the code obtained from Cn by restricting the message space to φ−1(W ). We
claim that C ′n satisfies Theorem 1.1.

Note first that C ′n is an Fq-linear code of rate at least R′ − ε′′k̂/n ≥ R′ − ε′′ = R, and alphabet size
qm = (1/ε)O(1/ε2), that can be encoded in time poly(1/ε, n). Moreover, as 1 − R′ − ε′ = 1 − R − ε, the
code Cn can be list decoded from a (1−R− ε)-fraction of errors, pinning down the images of the candidate
messages under φ (viewed as length k̂m vectors over Fq) to an affine shift u of a (k̂,m, ε′m)-BTT subspace
V over Fq. This means that the candidate messages of the code Cn are contained in φ−1(u + V ).

As C ′n is obtained from Cn by restricting the message space to φ−1(W ), the candidate messages of C ′n
are contained in

φ−1(u + V ) ∩ φ−1(W ) = φ−1((u + V ) ∩W ),

which is an affine shift of φ−1(V ∩W ) (or empty). We can find a basis B for φ−1(V ∩W ) and a vector
u′ ∈ φ−1((u + V ) ∩W ) (if such exists) in time poly(1/ε, n) given the received word. Then the list of
candidate messages of C ′n is contained in the subspace spanned by B and u′ over Fq, whose dimension is
bounded by dim(V ∩W ) + 1 ≤ s + 1 = poly(1/ε), and a basis for this subspace can be found in time
poly(1/ε, n). Consequently, the output list size is exp(poly(1/ε)) and the entire list can be output in time
exp(poly(1/ε)) · poly(n), as claimed.

Open problems. We end this section with a couple of intriguing open problems.

1. Is it possible to explicitly construct capacity-achieving list decodable codes with list size poly(1/ε)
(even over a large super-constant alphabet)? As mentioned above, the smallest known list size for
explicit capacity-achieving list decodable codes is (1/ε)O(1/ε), achieved by FRS codes [KRSW18],
while potentially the list size could be as small as O(1/ε), as is the case for random codes. Such a
construction could also potentially lead to fully polynomial-time poly(1/ε, n) list-decoding algorithms.

2. Is it possible to obtain capacity-achieving list decodable codes with truly linear-time encoding or list
decoding algorithms? As in the unique decoding setting, this seems to require completely different
techniques, e.g., graph-based constructions [MRR+20, RWZ20].

3. A question that is still widely open is to explicitly construct capacity-achieving list decodable codes over
small fixed-size alphabets, e.g., the binary alphabet. Over a q-ary alphabet, the list-decoding capacity
is known to be h−1

q (1−R), where hq(x) = x logq(q− 1) +x logq(1/x) + (1−x) logq(1/(1−x)) is
the q-ary entropy function. Once more, this question seems to require completely different techniques
such as graph-based constructions [Ta-17, GQST20].

4. Can our methods be used to construct other pseudo-random objects? In particular, an intriguing
question is whether these techniques could be used to construct lossless dimension expanders over
constant-size fields, whose state-of-the-art constructions [GRX18] are based on the list-decoding
machinery of [GX13].

Organization. In Section 3 we present our explicit construction of BTT evasive subspaces (Theorem 2.5).
In Section 4 we first show, as a warm-up, that the output list of RS codes with subfield evaluation points is
contained in an affine shift of a BTT subspace. Then in Section 6, after providing the required AG code
preliminaries in Section 5, we show how to extend the analysis to AG codes with subfield evaluation points
(Theorem 2.3).
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3 Explicit BTT evasive subspace

In this section, we prove Theorem 2.5, which is restated below.

Theorem 2.5 (Explicit BTT evasive subspace). There exists an absolute constant c > 1, so that for every
ε > 0, positive integers k,m, r with r < εm

24 , and a prime power q satisfying that q ≥ mc, there exists a
(k,m, r, s)-BTT evasive subspaceW ⊆ Fkmq of co-dimension at most εkm for s = poly(r/ε). Moreover,
a basis forW can be found in time poly(q, k,m).

The first ingredient in our proof is Lemma 2.4, restated below, which shows the existence of a (non-
explicit) (k,m, r, s)-BTT evasive subspace W ⊆ Fkmq of co-dimension at most εkm and s = O (r/ε).
Notably, the lemma holds for any field size q and block lengthm.

Lemma 2.4. For every ε > 0, positive integers k,m, r with r < εm
2 , and a prime power q, there exists a

(k,m, r, s)-BTT evasive subspaceW ⊆ Fkmq of co-dimension at most εkm for s = 2r
ε .

Proof. Let W ⊆ Fkmq be a random linear subspace of co-dimension εkm. Fix a (k,m, r)-BTT subspace
V ⊆ Fkmq . We first bound the probability that dim(V ∩W ) ≥ s. Fix a subspace V ∗ ⊆ V of dimension s.
SinceW is a random subspace of co-dimension εkm, the probability that V ∗ is contained inW is at most∏s−1
i=0

q(1−ε)km−qi
qkm−qi ≤ q−εkms. As the number of s-dimensional subspaces V ∗ ⊆ V is at most qkrs, by a union

bound, we have thatW contains some s-dimensional subspace V ∗ ⊆ V with probability at most q(r−εm)ks.
So dim(V ∩W ) ≥ s with probability at most q(r−εm)ks.

Next, we observe that the number of (k,m, r)-BTT subspaces is at most qrkm, as each such subspace is
determined by the first r columns of a (k,m, r)-BTT matrix. Consequently, by a union bound, we get that
dim(V ∩W ) ≥ s for some (k,m, r)-BTT subspace V , with probability at most qrkm+(r−εm)ks. This latter
probability is smaller than 1 since

rkm+ (r − εm)ks = rkm+ (r − εm) · 2kr

ε
= rk

(
2r

ε
−m

)
< 0,

where the first equality is by our choice of s = 2r/ε, and the last inequality is by our choice of r < εm
2 . We

conclude that there exists a (k,m, r, 2r
ε )-BTT evasive subspaceW of co-dimension at most εkm.

Remark 1. We further note that to find a BTT evasive subspace as above, one can enumerate over all
subspacesW ⊆ Fkmq of co-dimension at most εkm, and over all (k,m, r)-BTT subspaces V , and compute
the dimension of their intersection, which takes time qO((km)2).

Our second ingredient is Theorem 2.1 from [GK16], restated below, which gives an explicit construction
of an (r, s)-subspace design over Fqm of cardinality k, where each subspace has co-dimension at most εm
and s = O

(
r2

ε

)
, as long as qm is sufficiently larger than k.

Theorem 2.1 (Explicit subspace design, [GK16], Theorem 6). There exists an absolute constant c > 1,
so that for every ε > 0, positive integers k,m, r with r < εm

4 , and a prime power q satisfying qm ≥
max

{
kc·r/ε,

(
2r
ε

)2r/ε}, there exists an (r, s)-subspace design H1, . . . ,Hk over Fqm for s = 2r2

ε , where
each Hi has co-dimension at most εm in Fqm . Moreover, bases for H1, . . . ,Hk can be found in time
poly(q, k,m).

For completeness, we sketch the proof of the above theorem in Appendix A. Note that the above theorem
in particular gives an explicit periodic evasive subspace with the same parameters.
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Corollary 3.1 (Explicit periodic evasive subspace). There exists an absolute constant c > 1, so that for every
ε > 0, positive integers k,m, r with r < εm

4 , and a prime power q satisfying qm ≥ max
{
kc·r/ε,

(
2r
ε

)2r/ε},
there exists a (k,m, r, s)-periodic evasive subspace W ⊆ Fkmq of co-dimension at most εkm for s = 2r2

ε .
Moreover, a basis forW can be found in time poly(q, k,m).

Proof. LetH1, H2, . . . ,Hk be the (r, s)-subspace design over Fqm guaranteed by Theorem 2.1 for the same
choice of parameters, and letW = H1×H2× · · · ×Hk. Then by Theorem 2.1, we clearly have that a basis
forW is a subspace of Fkmq of co-dimension at most εkm, and thatW can be found in time poly(q, k,m).
It remains to show thatW is a (k,m, r, s)-periodic evasive subspace. LetM be a (k,m, r)-periodic matrix,
and let V = Image(M), we would like to show that dim(V ∩W ) ≤ s.

By definition, M is a block-lower-triangular matrix with k copies of an m × r matrix M̂ on the main
diagonal, and M̂ has full column rank r. Let V̂ = Image(M̂), which is a subspace of Fmq of dimension r.
For i ∈ [k], choose anm×m matrix Ri such that Hi = ker(Ri), and let R ∈ Fkm×kmq be a (k × k)-block
diagonal matrix with blocksR1, R2, . . . , Rk on the main diagonal. Note thatW = ker(R), and furthermore,
RM ∈ Fkm×krq is a (k × k)-block-lower-triangular matrix with blocks R1M̂,R2M̂, . . . , RkM̂ on the main
diagonal.

So we have

dim(V ∩W ) = dim(V ∩ ker(R))

= dim(ker(RM)) ≤
k∑
i=1

dim(ker(RiM̂))

=

k∑
i=1

dim(V̂ ∩ ker(Ri)) =

k∑
i=1

dim(V̂ ∩Hi) ≤ s,

where the last inequality follows since H1, . . . ,Hk is an (r, s)-subspace design.

Our last ingredient is Lemma 2.7, restated below, which gives a composition lemma for BTT evasive
subspaces.

Lemma2.7. Suppose thatW is an “inner” (k,m, r, s)-BTT evasive subspace overFq, andW ′ is an “outer”
(k′, km, s, s′)-periodic evasive subspace overFq. ThenW ◦W ′ = W k′∩W ′ is a (k′k,m, r, s′)-BTT evasive
subspace over Fq.

Proof. Let V be a (k′k,m, r)-BTT subspace. Our goal is to show that dim(V ∩ (W k′ ∩W ′)) ≤ s′. Since
W ′ is a (k′, km, s, s′)-periodic evasive subspace, it suffices to show that V ′ := V ∩W k′ is contained in a
(k′, km, s)-periodic subspace U , and consequently

dim(V ∩ (W k′ ∩W ′)) = dim((V ∩W k′) ∩W ′) ≤ dim(U ∩W ′) ≤ s′.

Since V is a (k′k,m, r)-BTT subspace, there exists a (k′k,m, r)-BTT matrixM whose image equals
V . As a k′ × k′ block matrix, M has k′ copies of a (km) × (kr) block M̂ on its main diagonal. Next
observe that M̂ itself is a (k,m, r)-BTT matrix, and so if we let V̂ := Image(M̂), then V̂ is a (k,m, r)-
BTT subspace. Recalling our assumption that W is a (k,m, r, s)-BTT evasive subspace, this implies in
turn that dim(V̂ ∩ W ) ≤ s. Let H ⊆ Fkmq be a subspace of dimension s containing V̂ ∩ W , and let
{b(1), . . . , b(s)} ⊆ Fkmq be a basis for H .
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Next, we introduce a bit of notation. We write a vector x ∈ Fk′kmq as x = (x1, x2, . . . , xk′) where
xi ∈ Fkmq , and for i = 1, . . . , k′, we let πi(x) = xi. For a subspaceX ⊆ Fk′kmq , and i = 0, 1, . . . , k′, we let

Xi = {(x1, x2, . . . , xk′) ∈ X | x1 = x2 = · · · = xi = 0} .

In particular, we have X0 = X and Xk = {0}.

Claim 3.2. For all i = 1, . . . , k′, there exist vectors b(i,1), . . . , b(i,s) ∈ Fk′kmq satisfying the following
conditions:

1. For all j = 1, . . . , s, it holds that (b(i,j))1 = · · · = (b(i,j))i−1 = 0 and (b(i,j))i = b(j).

2. (V ∩W k′)i−1 ⊆ (V ∩W k′)i + span{b(i,1), . . . , b(i,s)}.

Proof. Fix i ∈ [k′], and let H ′ = πi((V ∩W k′)i−1). Note that

H ′ ⊆ πi(Vi−1) ∩ πi((W k′)i−1) = V̂ ∩W ⊆ H.

Let t = dimH ′. Fix a basis {v(1), . . . , v(t)} for H ′ and extend it to a basis {v(1), . . . , v(s)} for H . For
j = 1, . . . , t, choose u(j) ∈ (V ∩W k′)i−1 such that (u(j))i = v(j), which is possible since v(j) ∈ H ′ =
πi((V ∩W k′)i−1). For j = t+ 1, . . . , s, choose u(j) ∈ Fk′kmq with (u(j))1 = · · · = (u(j))i−1 = 0 such that
(u(j))i = v(j). Then we have

(V ∩W k′)i−1 = (V ∩W k′)i + span{u(1), . . . , u(t)} ⊆ (V ∩W k′)i + span{u(1), . . . , u(s)}. (1)

As {b(1), . . . , b(s)} and {v(1), . . . , v(s)} are both bases ofH , there exists a unique invertible s× smatrix
A = (aj,`)j,`∈[s] over Fq such that b(j) =

∑s
`=1 aj,`v

(`) for j ∈ [s]. For j ∈ [s], let b(i,j) =
∑s

`=1 aj,`u
(`),

and note that (b(i,j))1 = · · · = (b(i,j))i−1 = 0 and

(b(i,j))i =
s∑
`=1

aj,`(u
(`))i =

s∑
`=1

aj,`v
(`) = b(j).

So the first condition of the claim is satisfied. As A is invertible, we have span{b(i,1), . . . , b(i,s)} =
span{u(1), . . . , u(s)}. Combining this with (1) proves the second condition.

Now recall that our goal is to exhibit a (k′, km, s)-periodic matrix M̃ so that V ∩W k′ ⊆ Image(M̃). We
construct M̃ as follows. For i = 1, . . . , k′, letMi be a (k′km)×smatrix whose columns are b(i,1), . . . , b(i,s).
Let

M̃ =
(
M1 M2 · · · Mk′

)
.

By the first condition of Claim 3.2, we have that M̃ is a (k′, km, s)-periodic matrix. By the second condition
of Claim 3.2, we further have that (V ∩W k′)i−1 ⊆ (V ∩W k′)i + Image(Mi) for all i = 1, . . . k′, and so
V ∩W k′ = (V ∩W k′)0 ⊆ Image(M̃), as claimed. This completes the proof of the lemma.

Next, we prove Theorem 2.5 based on the ingredients above.

Proof of Theorem 2.5. Our goal is to construct a (k,m, r, s)-BTT evasive subspaceW of co-dimension at
most εkm for s = poly(r/ε). We shall constructW by applying two composition steps. In the first step, we
shall compose an inner BTT evasive subspaceW1, given by Lemma 2.4, which can be found via brute-force
search, with an outer explicit periodic evasive subspaceW2, given by Corollary 3.1, to obtain a BTT evasive
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subspaceW1 ◦W2. In the second step, we shall compose the resulting BTT evasive subspaceW1 ◦W2 with
yet another outer explicit periodic evasive subspace W3, given by Corollary 3.1, to obtain our final BTT
evasive subspace W := (W1 ◦W2) ◦W3. One technical issue is that the desired number of blocks k may
not be a multiple of the number of blocks of the inner subspace. This is solved by first constructing a BTT
evasive subspaceW ′ in a slightly larger ambient space Fk′mq ⊇ Fkmq and then lettingW = W ′∩Fkmq (where
Fkmq is identified with a subspace of Fk′mq via the map (x1, . . . , xkm) 7→ (0, . . . , 0, x1, . . . , xkm)).

In the following, assume c > 1 is a large enough constant. Let ε′ = ε/6. By assumption, we have
r < εm/24 = ε′m/4 and q ≥ mc.

BTT evasive subspace W1: Let W1 be a (k1,m, r, s1)-BTT evasive subspace of co-dimension at most
ε′k1m for k1 = c2m3 · d log log k

log q e and s1 = 2r2

ε′ ≥
2r
ε′ . Note that such a subspace exists by Lemma 2.4.

We further claim that a basis for W1 can be found in time poly(q, k,m). To see this, first note that if
m log q ≤ (c2 log log k + c2)c+1, then by Remark 1, a basis forW1 can be found in time

qO((k1·m)2) = 2O(k21m
2 log q) ≤ exp(poly(log log k)) ≤ poly(k). (2)

On the other hand, ifm log q > (c2 log log k+ c2)c+1, then eitherm > c2 log log k+ c2 or q > log q >
(c2 log log k + c2)c. In either case, we have q ≥ (c2 log log k + c2)c since q ≥ mc. This implies

q ≥ q1/4m(3/4)c >

(
c2m3 ·

⌈
log log k

log q

⌉)c/4
= k

c/4
1 .

Therefore,

qm ≥ max{kcm/41 ,mm} ≥ max

{
k
c·r/ε′
1 ,

(
2r

ε′

)2r/ε′
}

(3)

where we use the facts r < ε′m/4 and q ≥ mc ≥ m. Consequently, by Corollary 3.1, there exists
a (k1,m, r,

2r2

ε′ )-periodic evasive subspace W1 of co-dimension at most ε′k1m, which is in particular
a BTT evasive subspace with the same parameters. Moreover, a basis for W1 can be found in time
poly(q, k1,m) = poly(q, k,m).

Periodic evasive subspaceW2: LetW2 be a (k2, k1m, s1, s2)-periodic evasive subspace of co-dimension
at most ε′k2k1m for k2 = dlog ke and s2 =

2s21
ε′ = 8r4

(ε′)3 . Note that such a subspace exists by Corollary 3.1 as

s1 =
2r2

ε′
<
c2ε′m2

4
≤ ε′k1m

4
,

qk1m ≥ dlog kec2m2
> dlog ke2c(r/ε′)2 = k

c·s1/ε′
2 , (4)

and

qk1m ≥
(
m2

4

)m2/4

>

(
4r2

(ε′)2

)4r2/(ε′)2

=

(
2s1

ε′

)2s1/ε′

where the inequalities hold by the choice of k1 = c2m3 · d log log k
log q e and the assumptions r < ε′m

4 and q ≥ mc.
Moreover, a basis forW2 can be found in time poly(q, k2, k1m) = poly(q, k,m).
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BTT evasive subspaceW1 ◦W2: By Lemma 2.7, we have thatW1 ◦W2 = W k2
1 ∩W2 is a (k1k2,m, r, s2)-

BTT evasive subspace for s2 = 8r4

(ε′)3 . Note furthermore thatW1 ◦W2 has co-dimension at most 2ε′k1k2m,
and a basis forW1 ◦W2 can be found in time poly(q, k,m).

Periodic evasive subspaceW3: LetW2 be a (k3, k1k2m, s2, s3)-periodic evasive subspace of co-dimension
at most ε′k1k2k3m for k3 = d k

k1k2
e and s3 =

2s22
ε′ = 128r8

(ε′)7 . Note that such a subspace exists by Corollary 3.1
as

s2 =
8r4

(ε′)3
<
c2ε′m4

4
≤ ε′k1k2m

4
,

qk1k2m ≥ kc2m4
> k8c(r/ε′)4 ≥ kc·s2/ε

′

3 ,

and

qk1k2m ≥
(
m4

16

)m4/16

>

(
16r4

(ε′)4

)16r4/(ε′)4

=

(
2s2

ε′

)2s2/ε′

where the inequalities hold once more by the choice of k1 = c2m3 · d log log k
log q e and k2 = dlog ke together with

the assumptions r < ε′m/4 and q ≥ mc. Moreover, a basis forW3 can be found in timepoly(q, k3, k1k2m) =
poly(q, k,m).

BTT evasive subspace W ′ = (W1 ◦W2) ◦W3: By Lemma 2.7, we have that W ′ := (W1 ◦W2) ◦W3

is a (k1k2k3,m, r, s3)-BTT evasive subspace for s3 = 128r8

ε7
= poly(r/ε). Note furthermore that W ′ has

co-dimension at most 3ε′k1k2k3m, and a basis forW ′ can be found in time poly(q, k,m).

BTT evasive subspaceW : If k is a multiple of k1k2, then k1k2k3 = k and we may chooseW = W ′ as
the desired BTT evasive subspace. Next, we explain how to extend it to arbitrary k.

1. First assume k ≥ k1k2 so that k′ := k1k2k3 = k1k2d k
k1k2
e satisfies k′ ≤ 2k. Then W ′ ⊆ Fk′mq is

a (k′,m, r, s3)-BTT evasive subspace of co-dimension at most 3ε′k′m ≤ 6ε′km = εkm. Identify
Fkmq with a subspace of Fk′mq via the map (x1, . . . , xkm) 7→ (0, . . . , 0, x1, . . . , xkm). We let W :=

W ′ ∩ Fkmq , whose co-dimension in Fkmq is at most εkm since the co-dimension of W ′ in Fk′mq is at
most εkm.
Consider any (k,m, r)-BTT subspace V ⊆ Fkmq . Note that there exists a (k′,m, r)-BTT subspace
V ′ ⊆ Fk′mq such that V = V ′ ∩ Fkmq . As W ′ is a (k′,m, r, s3)-BTT evasive subspace, we have
dim(V ′ ∩W ′) ≤ s3, which implies dim(V ∩W ) ≤ s3. SoW ⊆ Fkmq is a (k,m, r, s)-BTT evasive
subspace of co-dimension at most εkm for s = s3 = poly(r/ε).

2. Now assume k1 ≤ k < k1k2. Let k′2 := d kk1 e ≤ k2 so that k′2k1 ≤ 2k. By replacing k2 with
k′2 in the construction of W2, we may construct a (k′2, k1m, s1, s2)-periodic evasive subspace W ′2 of
co-dimension at most ε′k′2k1m. This is because replacing k2 by k′2 ≤ k2 preserves (4). ComposingW ′2
withW1 gives a (k1k

′
2,m, r, s2)-BTT evasive subspaceW1 ◦W ′2 ⊆ Fk1k

′
2m

q of co-dimension at most
2ε′k′2k1m ≤ 4ε′km ≤ εkm. Similarly to the previous case, restricting to the subspace Fkmq yields the
desired (k,m, r, s)-BTT evasive subspaceW of co-dimension at most εkm for s = s2 = poly(r/ε).

3. Finally, assume k < k1. By replacing k1 with k in the construction ofW1, wemay construct the desired
(k,m, r, s)-BTT evasive subspaceW of co-dimension at most ε′km ≤ εkm for s = s1 = poly(r/ε).
This is because replacing k1 by k < k1 preserves (2) and (3).
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4 Reed–Solomon codes with subfield evaluation points

We first show, as a warm-up, that RS codes with evaluation points over a subfield are list decodable up to
capacity with the output list contained in an affine shift of a BTT subspace. Later, in Section 6, we shall
show how the analysis can be extended to AG codes over constant-size alphabets, thus proving Theorem 2.3.
We start with the formal definition of RS codes with subfield evaluation points.

Definition 4.1 (RS codes with subfield evaluation points). Let n, k,m ∈ N+ be such that k ≤ n, and let
q ≥ n be a prime power. The Reed–Solomon code RSq,m(n, k) over Fqm with evaluation points in Fq maps
a polynomial f ∈ Fqm [X] of degree at most k − 1 (viewed as a length k vector of coefficients over Fqm) to
the codeword Cf := (f(α1), f(α2), . . . , f(αn)) ∈ (Fqm)n, where α1, α2, . . . , αn are n distinct elements in
Fq.

Note that RSq,m(n, k) is a linear code over the alphabet Fqm with codeword length n, rate k/n, and
minimum distance n− k+ 1. In this section, we show that this code is also list decodable up to its minimum
distance with the output list being contained in an affine shift of a BTT subspace.

Theorem 4.2. Let ε > 0, let n, k,m ∈ N+ be such that k ≤ n and m ≥ 1/ε2, and let q ≥ n be a prime
power. Then RSq,m(n, k) can be list decoded from up to (1− ε)(n− k) errors, pinning down the candidate
messages (viewed as length km vectors of coefficients over Fq) to an affine shift of a (k,m, εm)-BTT
subspace V over Fq. Moreover, a basis for V and the affine shift can be found in time poly(log q,m, n).

The above theorem is a consequence of the following lemma.

Lemma 4.3. Let n, k,m ∈ N+ be such that k ≤ n, and let q ≥ n be a prime power. Let s ∈ [m] and
t, d ∈ N+ be parameters, satisfying that

(s+ 1)(d+ 1) + k − 1 > n (5)

and
t > d+ k − 1. (6)

Then RSq,m(n, k) can be list decoded from agreement at least t, pinning down the candidate messages
(viewed as length km vectors of coefficients over Fq) to an affine shift of a (k,m, s− 1)-BTT subspace V
over Fq. Moreover, a basis for V and the affine shift can be found in time poly(log q,m, n).

Before we prove the above lemma, we show how it implies Theorem 4.2.

Proof of Theorem 4.2. Let s = 1
ε + 1, let d = n−k+2

s+1 − 1 so that (5) is satisfied, and let t = d + k so that
(6) is satisfied. Then with this setting of parameters, RSq,m(n, k) can be list decoded from agreement t, or
equivalently, from up to

n− t = n− d− k = n− k + 1− n− k + 2

s+ 1
≥ n− k − n− k

s− 1
= (1− ε)(n− k).

errors. Moreover, by choice ofm ≥ 1/ε2, we have that V is a (k,m, s− 1)-BTT subspace for s− 1 = 1
ε ≤

εm.
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The rest of this section is devoted to the proof of Lemma 4.3. To prove this lemma, we follow the
linear-algebraic approach of [GX13]. Suppose that y = (y1, y2, . . . , yn) ∈ (Fqm)n is a received word. Our
goal is to show that all polynomials f ∈ Fqm [X]<k that have large agreement with y are contained in an
affine shift of a BTT subspace. To this end, following [GX13], we first show in Section 4.1 the existence
of a nonzero polynomial Q (depending on the received word y) that gives a functional equation that any
polynomial f that has large agreement with y must satisfy. Then we show in Section 4.2 that this functional
equation induces a special structure on the solution set, specifically, the solution set is contained in an affine
shift of the kernel of a BTT matrix. Finally, in Section 4.3 we show that the kernel of a BTT matrix is a
BTT subspace, which implies that the solution set is contained in an affine shift of a BTT subspace. We
further show that the polynomial Q, a basis for the BTT subspace V , and the affine shift could be found
efficiently.

4.1 The polynomial Q

In what follows, let σ ∈ Gal(Fqm/Fq) be the Frobenius automorphism a 7→ aq of Fqm over Fq. It extends
to an automorphism of Fqm [X] over Fq by acting on the coefficients, which we also denote by σ by a slight
abuse of notation. For f ∈ Fqm [X], denote by fσ the element σ(f).

Suppose that y = (y1, y2, . . . , yn) ∈ (Fqm)n is a received word. We let Q be a nonzero multivariate
polynomial in (Fqm [X])[Y1, Y2, . . . , Ys] of the form

Q = A0 +A1Y1 +A2Y2 + · · ·+AsYs,

where A0, A1, . . . , As ∈ Fqm [X], deg(A0) ≤ d + k − 1, and deg(Ai) ≤ d for i = 1, 2, . . . , s. We also
require the polynomials Ai to satisfy the constraint

A0(αi) +A1(αi)yi +A2(αi)y
σ
i + · · ·+As(αi)y

σs−1

i = 0 (7)

for all i = 1, . . . , n, where α1, . . . , αn are the evaluation points.
We first claim that such a nonzero polynomialQ exists and can be computed efficiently. To see this, think

of the coefficients of the polynomialsAi as unknowns. This gives d+k+ s(d+ 1) = (s+ 1)(d+ 1) +k−1
unknowns in total, while (7) gives n homogeneous linear constraints over Fqm . By (5), the number of
unknowns is greater than the number of linear constraints which guarantees the existence of a nonzero
solution Q. Moreover, we can find Q in time poly(log q,m, n) by solving the system of linear equations
represented by (7).

Next, we show that Q gives a functional equation that any f that has sufficiently large agreement with
the received word y needs to satisfy.

Claim 4.4. Let f ∈ Fqm [X]<k. Suppose that y agrees with the codeword Cf = (f(α1), f(α2), . . . , f(αn))
in at least t coordinates. Then f satisfies the functional equation

Q(f, fσ, . . . , fσ
s−1

) = A0 +A1f +A2f
σ + · · ·+Asf

σs−1
= 0. (8)

Proof. Define
Q∗ = A0 +A1f +A2f

σ + · · ·+Asf
σs−1 ∈ Fqm [X].

We want to prove that Q∗ = 0. As deg(f) ≤ k − 1, deg(A0) ≤ d + k − 1, and deg(Ai) ≤ d for
i = 1, 2, . . . , s, we know that deg(Q∗) ≤ d+ k − 1.
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Suppose that y agrees with Cf in the i-th symbol for some i ∈ [n], i.e., yi = f(αi). By (7), we have

0 = A0(αi) +A1(αi)yi +A2(αi)y
σ
i + · · ·+As(αi)y

σs−1

i

= A0(αi) +A1(αi)f(αi) +A2(αi)(f(αi))
σ + · · ·+As(αi)(f(αi))

σs−1

= A0(αi) +A1(αi)f(αi) +A2(αi)f
σ(αi) + · · ·+As(αi)f

σs−1
(αi)

= (A0 +A1f +A2f
σ + · · ·+Asf

σs−1
)(αi)

= Q∗(αi).

The third equality uses the fact that (f(αi))
σ = fσ(ασi ) = fσ(αi), which holds since αi ∈ Fq is fixed by σ.

As y and Cf agree in at least t symbols, the above argument shows that Q∗ has at least t zeros. On the
other hand, the degree of Q∗ is at most d+ k − 1, which is less than t by (6). This implies Q∗ = 0.

4.2 The BTT subspace V

Next, we show that the functional equation (8), given by Claim 4.4 above, implies that the list of candidate
messages is contained in an affine shift of the kernel of aBTT subspace. We start by expanding the functional
equation (8) in terms of the coefficients of the polynomial f and A0, A1, . . . , As.

As f ∈ Fqm [X]<k, we may write

f =
k−1∑
j=0

fjX
j

where the coefficients fi are in Fqm . Also write

A` =

d+k−1∑
i=0

a`,iX
i, ` = 0, 1, . . . , s,

where the coefficients a`,i are in Fqm and a`,i = 0 for ` ∈ [s] and i > d. Choose the largest integer u ≥ 0
such that Xu divides A` for ` = 0, 1, . . . , s. By replacing Q with Q/Xu, we may assume that u = 0. So
a`,0 6= 0 for some ` ∈ {0, 1, . . . , s}. By (8), we actually have a`,0 6= 0 for some ` ∈ [s].

With the notations above, (8) becomes

0 =

d+k−1∑
i=0

a0,iX
i +

s∑
`=1

(
d∑
i=0

a`,iX
i

)k−1∑
j=0

fσ
`−1

j Xj


=

d+k−1∑
i=0

a0,i +

s∑
`=1

i∑
j=0

a`,i−jf
σ`−1

j

Xi,

where we let fi = 0 for i ≥ k. So we obtain the equations
i∑

j=0

s∑
`=1

a`,i−jf
σ`−1

j = −a0,i, i = 0, 1, . . . , k − 1. (9)

Next, we show that the solution set of all f = (f0, f1, . . . , fk−1) satisfying (9) is contained in an affine
shift of the kernel of a BTT matrix. In what follows, fix an arbitrary Fq-linear bijection φ : Fqm → Fmq .
For an element a ∈ Fqm , let ā := φ(a) ∈ Fmq , and for a vector f = (f0, f1, . . . , fk−1) ∈ (Fqm)k, let
f̄ := (f̄0, f̄1, . . . , f̄k−1) ∈ Fmkq .
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Claim 4.5. Let S be the set of all vectors f = (f0, f1, . . . , fk−1) ∈ (Fqm)k satisfying that

i∑
j=0

s∑
`=1

a`,i−jf
σ`−1

j = 0, i = 0, 1, . . . , k − 1, (10)

where a`,i−j ∈ Fqm , and a`,0 6= 0 for some ` ∈ [s]. Let S̄ := {f̄ | f ∈ S} ⊆ Fmkq . Then S̄ ⊆ ker(M) for
a (k, r,m)-BTT matrix M over Fq with m − s + 1 ≤ r ≤ m. Moreover, M can be constructed in time
poly(log q,m, n).

Proof. First note that both the multiplication map mb : Fqm → Fqm , given by a 7→ b · a for a, b ∈ Fqm ,
and the Frobenius automorphism σ : Fqm → Fqm , given by a 7→ aq for a ∈ Fqm , are Fq-linear operations
over Fqm . Consequently, for all i = 0, 1, . . . , k − 1, there exists an m × m matrix Mi over Fq so that∑s

`=1 a`,i · bσ
`−1

= Mi · b̄ for every b ∈ Fqm . In this notation, we can rewrite (10) asM · f̄ = 0, where

M =


M0 0 0 · · · 0
M1 M0 0 · · · 0
M2 M1 M0 · · · 0
...

...
... . . . ...

Mk−1 Mk−2 Mk−3 · · · M0

 .

Then we have thatM is a block lower-triangular Toeplitz matrix with blocks of sizem×m. To obtain a
BTT matrix, we need to further ensure that all matricesM0 have full rank. For this, we let r := rank(M0),
and choose a subset B of r linearly independent rows of M0. Then in the matrix M , we only keep the
rows whose projection on the blockM0 belongs to B. This clearly gives a (k, r,m)-BTT matrixM so that
S̄ ⊆ ker(M). Moreover,M can clearly be constructed in time poly(log q,m, n). To conclude the proof of
the claim, it remains to show that r = rank(M0) ≥ m− s+ 1.

To see that rank(M0) ≥ m − s + 1, we show that dim(ker(M0)) ≤ s − 1. Recall thatM0 represents
the Fq-linear map b 7→

∑s
`=1 a`,0 · bσ

`−1 for b ∈ Fqm . Recalling our assumption that a`,0 6= 0 for some
` ∈ [s], we know that B(x) :=

∑s
`=1 a`,0 · xσ

`−1 is a nonzero polynomial of degree at most qs−1 over Fqm ,
and consequently, it has at most qs−1 zeros in Fqm . Since the map B(x) is Fq-linear, we conclude that the
kernel is an Fq-linear subspace of dimension at most s− 1, and so dim(ker(M0)) ≤ s− 1.

By (9) and Claim 4.5 above, we have that all polynomials f = (f0, f1, . . . , fk−1) that agree with y on at
least t points are contained in an affine shift of the kernel of a (k, r,m)-BTTmatrix overFq for r ≥ m−s+1.
In the next section, we prove that the kernel of a (k, r,m)-BTT matrix is a (k,m,m − r)-BTT subspace.
Finally, noting that in our settingm− r ≤ s− 1, and that a basis for the kernel ofM , as well as the desired
affine shift (which is any valid solution to (9)), can be found in time poly(log q,m, n), concludes the proof
of Lemma 4.3.

4.3 The kernel of a BTT matrix is a BTT subspace

In this section, we prove the following lemma.

Lemma 4.6. Suppose that M is a (k, r,m)-BTT matrix over Fq, where r ≤ m. Then ker(M) is a
(k,m,m− r)-BTT subspace over Fq.
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To prove the above lemma, let V := ker(M), where

M =


M1 0 0 · · · 0
M2 M1 0 · · · 0
M3 M2 M1 · · · 0
...

...
... . . . ...

Mk Mk−1 Mk−2 · · · M1


is a (k, r,m)-BTT matrix. Our goal is to show that V is a (k,m,m − r)-BTT subspace, and for this we
need to exhibit a (k,m,m− r)-BTT matrix M̃ so that V = Image(M̃).

We start by introducing some notation. We write a vector v ∈ Fkmq as v = (v1, v2, . . . , vk) where
vi ∈ Fmq . For i = 0, 1, . . . , k, we let

Vi = {(v1, v2, . . . , vk) ∈ V | v1 = v2 = · · · = vi = 0} .

In particular, we have V0 = V and Vk = {0}. Finally, define σ : Fkmq → Fkmq by

σ(v1, v2, . . . , vk) = (0, v1, v2, . . . , vk−1).

Claim 4.7. For all i = 1, . . . , k, σ(Vi−1) ⊆ Vi ⊆ Vi−1.

Proof. The right-hand containment clearly holds by the definition of Vi. To see that the left-hand containment
holds, let v = (v1, . . . , vk) ∈ Vi−1, and let u = σ(v) = (0, v1, . . . , vk−1). Our goal is to show that u ∈ Vi.
First note that since v ∈ Vi−1, we have that v1 = · · · = vi−1 = 0, and so u = (u1, . . . , uk) satisfies that
u1 = · · · = ui = 0. Thus to show that u ∈ Vi, it remains to show that u ∈ V , or equivalently thatM ·u = 0.

To this end, note that by the structure ofM ,

M · u =


M1 0 0 · · · 0
M2 M1 0 · · · 0
M3 M2 M1 · · · 0
...

...
... . . . ...

Mk Mk−1 Mk−2 · · · M1

 ·


0
v1
...

vk−1

 =


M1 0 · · · 0
M2 M1 · · · 0
...

... . . . ...
Mk−1 Mk−2 · · · M1

 ·
 v1

...
vk−1

 = 0,

where the last equality follows since v ∈ V , and so

M · v =


M1 0 0 · · · 0
M2 M1 0 · · · 0
M3 M2 M1 · · · 0
...

...
... . . . ...

Mk Mk−1 Mk−2 · · · M1

 ·
v1

...
vk

 = 0.

We also note the following claim which follows by counting the number of linearly-independent con-
straints defining Vi.

Claim 4.8. For all i = 0, 1, . . . , k, dim(Vi) = (k−i)(m−r). In particular, dim(Vi−1) = dim(Vi)+(m−r)
for all i = 1, . . . , k.
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The above two claims imply the following.

Claim 4.9. The following holds for all i = 1, . . . , k − 1. Suppose that b(1), . . . , b(m−r) are m − r linearly
independent vectors in Fkmq so that

Vi−1 = Vi + span{b(1), . . . , b(m−r)}. (11)

Then
Vi = Vi+1 + span

{
σ(b(1)), . . . , σ(b(m−r))

}
. (12)

Proof. First note that by our assumption (11), we have that b(1), . . . , b(m−r) are contained in Vi−1. By Claim
4.7, this implies in turn that σ(b(1)), . . . , σ(b(m−r)) ∈ Vi and Vi+1 ⊆ Vi, and consequently we have that the
right-hand side of (12) is contained in the left-hand side.

To see the containment in the other direction, recall that by Claim 4.8, dim(Vi)−dim(Vi+1) = m−r, and
so it suffices to show that there is no non-trivial linear combination of σ(b(1)), . . . , σ(b(m−r)) that belongs
to Vi+1. Suppose in contradiction that there exists a non-trivial linear combination a := α1 · σ(b(1)) + · · ·+
αm−r · σ(b(m−r)) ∈ Vi+1. By the definition of Vi+1, this implies in turn that ai+1 = 0. But in this case, the
non-trivial linear combination a′ := α1 · b(1) + · · ·+ αm−r · b(m−r) satisfies that a′i = 0. Consequently, we
have that a′ ∈ Vi, contradicting our assumption (11).

Now we prove Lemma 4.6 using the above claim.

Proof of Lemma 4.6. Recall that our goal is to exhibit a (k,m,m − r)-BTT matrix M̃ so that V =
Image(M̃). We construct M̃ as follows. Since dim(V0) = dim(V1) + (m− r), there exist m− r linearly
independent vectors b(1), . . . , b(m−r) ∈ Fkmq so that V0 = V1 + span{b(1), . . . , b(m−r)}. For i = 1, . . . , k,
letMi be a (km)× (m− r) matrix whose columns are σ(i−1)(b(1)), . . . , σ(i−1)(b(m−r)). Let

M̃ =
(
M1 M2 · · · Mk

)
.

Then we clearly have that M̃ is a (k,m,m− r)-BTT matrix. Moreover, by Claim 4.9 we further have that
Vi−1 = Vi + Image(Mi) for all i = 1, . . . k, and so V = V0 = Image(M̃). This concludes the proof of
Lemma 4.6.

5 Preliminaries on function fields and algebraic-geometric codes

We first give preliminaries and notations about function fields and algebraic-geometric codes. The reader
may refer to, e.g., [Sti09] for detailed background.

Function fields. Let Fq be a finite field. An extension field F of Fq is called a function field in one
variable or simply a function field over Fq if F is a finite extension of Fq(x) for some element x ∈ F that is
transcendental over Fq. The field of constants of F is the algebraic closure of Fq in F .

In the rest of this section, let F be a function field over Fq such that its field of constants is Fq, i.e, the
algebraic closure of Fq in F is Fq itself.
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Discrete valuations and places. A (normalized) discrete valuation of F is a map v : F → Z ∪ {+∞}
with the following properties:

• v(a) = +∞ iff a = 0.

• v(ab) = v(a) + v(b) for a, b ∈ F .

• v(a+ b) ≥ min{v(a), v(b)} for a, b ∈ F .

• v(F×) = Z.

For a discrete valuation v of F , we associate a pair P = (Ov,mv) whereOv is the ring {a ∈ F : v(a) ≥
0} and mv is the ideal {a ∈ Ov : v(a) > 0} of Ov. Call P a place of F .8 Denote by P(F ) the set of all
places of F , i.e.,

P(F ) := {(Ov,mv) : v is a discrete valuation of F}.

We may recover the discrete valuation v from a place P = (O,m) as follows. Let v(0) = +∞. For
0 6= a ∈ O, v(a) is the largest k ∈ N such that a ∈ mk, where we let m0 = O. For a ∈ F× \ O, let
v(a) = −v(a−1). This gives a one-to-one correspondence between the set P(F ) of all places of F and the
set of all discrete valuations of F . For a place P ∈ P(F ), denote by vP the discrete valuation corresponding
to P .

Intuitively, vP (f) indicates the order of zeros or poles of a function f ∈ F at the place P : If vP (f) ≥ 0,
then vP (f) is the order of zeros of f ∈ F at P . Otherwise −vP (f) is the order of poles of f at P .

It can be shown that for a place P = (O,m) of F , the quotient ring κP := O/m is a finite field extension
of Fq, called the residue class field or residue field of P . If [κP : Fq] = 1, we say the place P is Fq-rational
or simply rational. In this case, we identify Fq with κP via the field isomorphism Fq → κP sending a ∈ Fq
to a+ m.

For f ∈ O and a rational place P of F , define

f(P ) := f + m ∈ κP

which we view as an element of Fq by identifying Fq with κP as above.

Local power series and Laurent series expansion. Let P = (O,m) be a rational place of F . An element
u ∈ O is called a uniformizing parameter or uniformizer of P if vP (u) = 1, or equivalently, u generates the
ideal m.

Fix u ∈ O to be a uniformizer of P . We may write any f ∈ O as a power series in u over Fq

f = c0 + c1u+ c2u
2 + · · ·

where the coefficients ci ∈ Fq may be found as follows: Let f0 = f . For i = 0, 1, 2, . . . , let ci = fi(P ) and
let fi+1 = (fi − ci)/u ∈ O.

A Laurent series is a generalization of a power series, where we allow finitely many terms of negative
degree. Generalizing the above representation by power series, we may write any element of F as a
Laurent series in u over Fq. Namely, for f ∈ F×, let e = vP (f) and f∗ = f/ue ∈ O. Suppose
f∗ = c0 + c1u+ c2u

2 + · · · . Then

f = uef∗ = c0u
e + c1u

e+1 + c2u
e+2 + · · · .

8It is common in the literature to define a place to be just the idealmv associated with a discrete valuation v instead of (Ov,mv)
(see, e.g., [Sti09]). This is equivalent to our definition since Ov is determined by mv via Ov = {a ∈ F× : a−1 6∈ mv} ∪ {0}.
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Thus, for a rational place P = (O,m) and a uniformizer u of P , we have a local expansion of every
element of O or F as a power series or a Laurent series in u over Fq, respectively.

Divisors. A divisor of F is a formal sum
∑

P nPP of finitely many places P ∈ P(F ), where nP ∈ Z.
The set of all divisors of F forms an abelian group Div(F ), called the divisor group of F .

The degree of a divisor D =
∑

P nPP is deg(D) :=
∑

P nP [κP : Fq]. The support of D, denoted
by Supp(D), is the set of places P for which nP 6= 0. If nP ≥ 0 for all P ∈ Supp(D), we write D ≥ 0
and call D an effective divisor. Note that D ≥ 0 implies deg(D) ≥ 0. Let Div0(F ) := {D ∈ Div(F ) :
deg(D) = 0}, which is a subgroup of Div(F ).

Let f ∈ F×. It can be shown that vP (f) = 0 holds for all but finitely many places P ∈ P(F ). So
div(f) :=

∑
P∈P(F ) vP (f)P is a well-defined divisor. Divisors of the form div(f) are called principal

divisors of F . The degree of a principal divisor is always zero, i.e., div(f) ∈ Div0(F ) for f ∈ F×.

Riemann–Roch spaces. For a divisor D of F , the Riemann–Roch space associated with D is

L(D) := {f ∈ F× : div(f) +D ≥ 0} ∪ {0}

which is a finite-dimensional vector space over Fq. Let `(D) := dimFq L(D).
By definition, for D =

∑
P nPP , the condition div(f) + D ≥ 0 is equivalent to vP (f) ≥ −nP for

P ∈ P(F ). So L(D) is the space of functions in F whose prescribed zeros and allowed poles are specified
by D: At a place P , if nP < 0, then any f ∈ L(D) must have a zero of order at least −nP at P . On the
other hand, if nP ≥ 0, then f ∈ L(D) is allowed to have a pole of order at most nP at P .

Note that if L(D) contains a nonzero element f , then div(f) +D ≥ 0, which implies

deg(D) = deg(div(f)) + deg(D) = deg(div(f) +D) ≥ 0.

So for any divisor D with deg(D) < 0, we have L(D) = {0} and `(D) = 0.

The Riemann–Roch theorem. The Riemann–Roch theorem states that

`(D)− `(K −D) = deg(D)− g + 1

holds for any divisor D of F , where K is a certain divisor of F called a canonical divisor, and g is a
nonnegative integer depending only on F called the genus of F .

In fact, we only need the following corollary of the Riemann–Roch theorem.

Theorem 5.1 (Riemann’s inequality). `(D) ≥ deg(D)− g + 1.

Algebraic-geometric codes. Let D be a divisor of F and let S = {P1, P2, . . . , Pn} be a set of n distinct
rational places of F such that Supp(D) ∩ S = ∅. Define the algebraic-geometric (AG) code

C(S,D) := {(f(P1), f(P2), . . . , f(Pn)) : f ∈ L(D)} ⊆ Fnq , (13)

which is an Fq-linear code of block length n.
Let DS =

∑
P∈S P ∈ Div(F ). We have the following theorem.

Theorem 5.2 ([Sti09, Theorem 2.2.2]). The dimension ofC(S,D) is `(D)−`(D−DS), which equals `(D)
if deg(D) < deg(DS) = n. The minimum distance of C(S,D) is at least n− deg(D).
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5.1 Constant field extensions of function fields

Let Fqm/Fq be a finite field extension of degreem ∈ N+. Denote by F (m) the compositum FFqm of F and
Fqm . Then F (m) is a function field over Fqm . Recall that we assume the field of constants of F is Fq. This
implies that the field of constants of F (m) is Fqm [Sti09, Proposition 3.6.1].

Places and divisors of F (m). Let P = (O,m) be a rational place of F and vP the corresponding discrete
valuation of F . It can be shown that there exists a unique discrete valuation v′P of F (m) that extends vP .
We denote the corresponding place of F (m) by P (m) = (O(m),m(m)), which is an Fqm-rational place. As
v′P extends vP , we have O ⊆ O(m) and m ⊆ m(m). So f(P (m)) = f(P ) for any f ∈ O ⊆ O(m). And a
uniformizer u ∈ m of P is also a uniformizer of P (m).

Let D =
∑

P nPP be a divisor of F such that every P ∈ Supp(D) is rational. Then we define

D(m) :=
∑

P∈Supp(D)

nPP
(m),

which is a divisor of F (m). The Riemann-Roch space L(D(m)) and its dimension `(D(m)) are defined as
before, except that the base field is changed to Fqm . That is,

L(D(m)) = {f ∈ (F (m))× : div(f) +D(m) ≥ 0} ∪ {0}

and `(D(m)) = dimFqm L(D(m)).
The following lemma is a special case of [Sti09, Theorem 3.6.3 (d)].

Lemma 5.3. Let D be as above. If f1, . . . , fk ∈ F form a basis of L(D) over Fq, then they form a basis of
L(D(m)) over Fqm . In particular, `(D(m)) = `(D).

Remark 2. We only need the definition ofD(m) for the special case that every P ∈ Supp(D) is rational, but
it can also be defined for a general divisor D. See [Sti09, Definition 3.1.8] for the general definition, where
it is called the conorm of D and denoted by ConF (m)/F (D).

We also note that P (m) and D(m) above are simply denoted by P and D respectively in [GX13] by a
slight abuse of notation.

The Frobenius automorphism. Let σ be the Frobenius automorphism a 7→ aq of Fqm over Fq. As Fq
is the field of constants of F , we have F ∩ Fqm = Fq. This implies that Gal(F (m)/F ) is isomorphic
to Gal(Fqm/Fq) via the restriction map τ 7→ τ |Fqm (see [Lan02, Theorem 1.12]). So σ ∈ Gal(Fqm/Fq)
uniquely extends to an automorphism of F (m) that fixes F , which we also call σ by an abuse of notation.

As σ is an automorphism of F (m), it permutes the places of F (m). Let P be any rational place of F . As
σ fixes F , it also fixes P . So σ also fixes P (m).

5.2 The Garcia–Stichtenoth tower

We need the following tower of function fields introduced by Garcia and Stichtenoth in [GS96].

Definition 5.4 (Garcia–Stichtenoth tower [GS96]). Let r > 1 be a prime power and q = r2. For i = 1, 2, . . . ,
let Ki = Fq(x1, x2, . . . , xi), where x1 is transcendental over Fq and xi satisfies the following recursive
equation for i > 1.

xri + xi =
xri−1

xr−1
i−1 + 1

.
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The Garcia–Stichtenoth tower over Fq is the infinite tower of function fieldsK1 ⊆ K2 ⊆ · · · .

For each e ∈ N+, we have [Ke : K1] = re−1 and the field of constants ofKe is Fq.

Rational places. Let e ∈ N+. The field Ke has at least re(r − 1) + 1 rational places. One of them
is the place P∞ “at the infinity,” which is totally ramified over K1 and is the unique pole of x1, i.e.,
vP∞(x1) = −[Ke : K1] = −re−1. More generally, we have vP∞(xi) = −re−i for i ∈ [e]. In particular,
vP∞(xe) = −1 and hence x−1

e is a uniformizer of P∞.
In addition, define Se to be the set of all tuples α = (α1, α2, . . . , αe) ∈ Feq such that αr1 + α1 6= 0 and

αri + αi =
αri−1

αr−1
i−1 +1

for i = 2, 3, . . . , e. For each α ∈ Se, there exists a corresponding rational place Pα of
Ke. It is the unique rational place P satisfying vP (xi) ≥ 0 and xi(P ) = αi for i = 1, 2, . . . , e.

There are precisely re(r − 1) elements in Se, corresponding to re(r − 1) rational places Pα ofKe.

Genus. For e ∈ N+, the genus g(Ke) ofKe is given by

g(Ke) =

{
(re/2 − 1)2 e is even,
(r(e−1)/2 − 1)(r(e+1)/2 − 1) e is odd.

In particular, we have g(Ke) ≤ re.

Explicitness. To construct AG codes using the Garcia–Stichtenoth tower, we need to construct bases for
Riemann–Roch spaces of Ke. An efficient algorithm of computing such bases was given in [SAK+01] for
one-point divisors kP∞.

Theorem 5.5 ([SAK+01]). For k ∈ N and e ∈ N+, a basis B of the Riemann–Roch space L(kP∞) of Ke

over Fq = Fr2 can be found in time poly(k, re). Moreover, given α ∈ Se and f ∈ L(kP∞) (represented in
the basis B), the evaluation f(Pα) can also be found in time poly(k, re).

In addition, it was shown in [GX12] that the Laurent series expansion of f ∈ L(kP∞) at the place P∞
in the uniformizer x−1

e can be computed efficiently.

Lemma 5.6 ([GX12]). Given f ∈ L(kP∞) and N ∈ N+, the first N coefficients c0, c1, . . . , cN−1 ∈ Fq of
the Laurent series expansion

f = c0T
−k + c1T

−k+1 + c2T
−k+2 + · · ·

at the place P∞ in the uniformizer T = x−1
e can be found in time poly(k, re, N).

6 Algebraic-geometric codes with subfield evaluation points

In this section, we present the proof of Theorem 2.3, which is restated below.

Theorem 2.3 (Output list contained in a BTT subspace). There exists an absolute constant c > 1 so that
the following holds for any R ∈ (0, 1), ε > 0, q ≥ 1/εc that is an even power of a prime, and m ≥ 1/ε2.
There is an infinite family of error-correcting codes {Cn}n, where Cn satisfies the following properties:

1. Cn : Fkqm → Fnqm is a linear code of rate at least R that can be encoded in time poly(log q,m, n).

26



2. There exists an injective Fq-linear map φ : Fkqm → Fk̂qm , where k̂ ≤ n, so that Cn can be list decoded
from a (1 − R − ε)-fraction of errors, pinning down the images of the candidate messages under φ
(viewed as length k̂m vectors over Fq) to an affine shift of a (k̂,m, εm)-BTT subspace V over Fq.
Moreover, the map φ, a basis for V , and the affine shift can be computed in time poly(log q,m, n).

It is based on AG codes with subfield evaluation points and closely follows [GX13]. Specifically, we use
the Garcia–Stichtenoth tower of function fields discussed in Subsection 5.2. We note that this framework
is generic and can be adapted to work for other families of function fields as well. For more details, see
Remark 3 at the end of this section.

Our construction is given below as Definition 6.1. It uses the constant field extensionK(m)
e ofKe, where

Ke is the eth field in the Garcia–Stichtenoth tower over Fq = Fr2 . Recall that Ke has a rational place P∞
and re(r − 1) rational places Pα for α ∈ Se. And for each rational place P of Ke, there is a corresponding
Fqm-rational place P (m) ofK(m)

e .

Definition 6.1 (AG codes with subfield evaluation points from the Garcia–Stichtenoth tower). Let r > 1 be
a prime power and q = r2. Let n, k,m, e ∈ N+ be such that k ≤ n and n ≤ re(r − 1). Let α1, . . . , αn ∈
Se ⊆ Feq be distinct and let Pi = P

(m)
αi for i ∈ [n]. The code GSq,m,e(n, k) over Fqm with evaluation

points P1, . . . , Pn maps f ∈ L((k−1)P
(m)
∞ ) ⊆ K(m)

e to the codewordCf := (f(P1), f(P2), . . . , f(Pn)) ∈
(Fqm)n.

Explicitness. By Theorem 5.5, a basisB of L((k−1)P∞) over Fq can be computed in time poly(k, re) =
poly(re). Suppose B = {β1, β2, . . . , βb}, where b = `((k − 1)P∞). By Lemma 5.3, B is also a basis of
L((k − 1)P

(m)
∞ ) over Fqm . So we may write f ∈ L((k − 1)P

(m)
∞ ) uniquely as a linear combination of βi

over Fqm :

f =
b∑
i=1

ciβi, where ci ∈ Fqm . (14)

We represent f by the coefficients c1, . . . , cb in the basis B. Note

f(P (m)) =

(
b∑
i=1

ciβi

)
(P (m)) =

b∑
i=1

ciβi(P )

for any rational placeP ofKe. So by Theorem 5.5, the encodingmap Enc : L((k−1)P
(m)
∞ )→ (Fqm)n send-

ing f to Cf = (f(P1), f(P2), . . . , f(Pn)) can be computed in time poly(k, re, n,m log q) = poly(re,m).

Rate and minimum distance. Denote by g the genus of Ke. The following theorem bounds the rate and
the minimum distance of the code GSq,m,e(n, k).

Theorem 6.2. GSq,m,e(n, k) is a linear code over the alphabet Fqm with block length n. Its rate is at least
(k − g)/n and its minimum distance is at least n− k + 1.

Proof. Let S = {P1, . . . , Pn} andD = (k−1)P
(m)
∞ . Then GSq,m,e(n, k) is simply the linear codeC(S,D)

defined in (13) with the base field replaced by Fqm . By Theorem 5.2, its dimension is `((k−1)P
(m)
∞ ) and its

minimum distance is at least n− deg((k− 1)P
(m)
∞ ) = n− k+ 1. By Lemma 5.3 and Riemann’s inequality

(Theorem 5.1), we have `((k − 1)P
(m)
∞ ) = `((k − 1)P∞) ≥ k − g. So the rate of GSq,m,e(n, k) is at least

(k − g)/n.
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The embedding φ. To list-decode the code GSq,m,e(n, k), we need an embedding (i.e., injective linear
map)

φ : L((k − 1)P (m)
∞ )→ Fkqm .

It is defined to be the Fqm-linear map that outputs the first k coefficients of the Laurent series expansion at
the place P (m)

∞ in the uniformizer T := x−1
e . That is, if the Laurent series expansion of f ∈ L((k− 1)P

(m)
∞ )

at P (m)
∞ in T is

f = f0T
−(k−1) + f1T

−(k−1)+1 + f2T
−(k−1)+2 + · · · ,

with the coefficients fi ∈ Fqm , then φ(f) = (f0, f1, . . . , fk−1).
The kernel of φ is L(−P (m)

∞ ) = {0}. So φ is indeed an embedding. Representing a function f ∈
L((k − 1)P

(m)
∞ ) in the form (14), we can compute φ(f) from f in time poly(re,m) by Lemma 5.6.

List decoding. Next, we show that for properly chosen parameters, the code GSq,m,e(n, k) is list decodable
up to the relative distance 1−R− ε and that the image of the output list under the embedding φ is contained
in an affine shift of a low-dimensional BTT subspace.

Theorem 6.3. Let ε > 0 and R ∈ (0, 1 − ε). Let e ∈ N+ be a growing parameter. Let r ≥ 4/ε + 1
be a prime power and q = r2. Choose n,m, k ∈ N+ such that m ≥ 4/ε2, 4re/ε ≤ n ≤ (r − 1)re and
k = dRn + ree ≤ n. Then GSq,m,e(n, k) has rate at least R. And it can be list decoded from up to a
(1 − R − ε)-fraction of errors with a list of candidate messages whose images under φ (viewed as length
km vectors over Fq) are contained in an affine shift of a (k,m, εm)-BTT subspace V over Fq. Moreover, a
basis for V and the affine shift can be found in time poly(n,m) given the received word.

The above theorem is a consequence of the following lemma.

Lemma 6.4. Let n, k,m, e, r, q ∈ N+ and GSq,m,e(n, k) be as in Definition 6.1. Let s ∈ [m] and t, d ∈ N+

be parameters, satisfying that
(s+ 1)(d− g + 1) + k − 1 > n (15)

and
t > d+ k − 1 (16)

where g is the genus of Ke. Then GSq,m,e(n, k) can be list decoded from agreement at least t with a list of
candidate messages whose images under φ (viewed as length km vectors over Fq) are contained in an affine
shift of a (k,m, s− 1)-BTT subspace V over Fq. Moreover, a basis for V and the affine shift can be found
in time poly(re,m).

Before we prove the above lemma, we show how it implies Theorem 6.3.

Proof of Theorem 6.3. We know g ≤ re. So the rate ofGSq,m,e(n, k) is at least (k−g)/n ≥ (k−re)/n ≥ R
by Theorem 6.2.

Let ε′ = ε/4. By assumption, we have re/n ≤ ε′. Let s = 1
ε′ + 1, let d = n−k+2

s+1 + g − 1 so that (15)
is satisfied, and let t = d + k so that (16) is satisfied. Then with this setting of parameters, we know from
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Lemma 6.4 that GSq,m,e(n, k) can be list decoded from agreement t, or equivalently, from up to

n− t = n− d− k = n− k + 1− g − n− k + 2

s+ 1
≥
(

1− 1

s+ 1

)
(n− k + 1)− g − 1

s+ 1

≥ (1− ε′)(n−Rn− re)− re − ε′

≥ (1−R− 4ε′)n

= (1−R− ε)n

errors. Moreover, as m ≥ 4/ε2 = 1/(ε · ε′), we have that V is a (k,m, s − 1)-BTT subspace for
s−1 = 1

ε′ ≤ εm. And a basis for V as well as the affine shift can be found in time poly(re,m) = poly(n,m)
by Lemma 6.4.

Theorem 2.3 follows easily from Theorem 6.3.

Proof of Theorem 2.3. Fix a prime power r = O(1/ε) such that r ≥ 4/ε+ 1. Let q = r2 andm = d4/ε2e.
Choose the family of codes to be

{GSq,m,e(n, k) : e ∈ N+, 4re/ε ≤ n ≤ (r − 1)re, k = dRn+ ree}.

Then Theorem 2.3 follows from Theorem 6.3.

So it remains to prove Lemma 6.4. We prove this lemma in the next two subsections.

6.1 The polynomial Q

In what follows, let σ be the Frobenius automorphism a 7→ aq of Fqm over Fq. It uniquely extends to an
automorphism of K(m)

e that fixes Ke, which we also call σ by an abuse of notation. The automorphism σ

fixes P (m) for any rational place P ofKe. For f ∈ K(m)
e , denote by fσ the element σ(f).

Suppose that y = (y1, y2, . . . , yn) ∈ (Fqm)n is a received word. We let Q be a nonzero multivariate
polynomial inK(m)

e [Y1, Y2, . . . , Ys] of the form

Q = A0 +A1Y1 +A2Y2 + · · ·+AsYs

where A0, A1, . . . , As ∈ K(m)
e , A0 ∈ L((d + k − 1)P

(m)
∞ ), and Ai ∈ L(dP

(m)
∞ ) for i = 1, 2, . . . , s. We

also require the coefficients Ai to satisfy the constraint

A0(Pi) +A1(Pi)yi +A2(Pi)y
σ
i + · · ·+As(Pi)y

σs−1

i = 0 (17)

for all i = 1, . . . , n, where P1, . . . , Pn are the evaluation points.
We first claim that such a nonzero polynomial Q exists and can be computed efficiently. To see this,

write A0 as a vector over Fqm with `((d+ k − 1)P
(m)
∞ ) coordinates, and write Ai as a vector over Fqm with

`(dP
(m)
∞ ) coordinates for i = 1, . . . , n. Think of the coordinates of these vectors as unknowns. This gives

`((d+ k − 1)P (m)
∞ ) + s · `(dP (m)

∞ ) ≥ (d+ k − 1)− g + 1 + s(d− g + 1)

= (s+ 1)(d− g + 1) + (k − 1)

unknowns in total, where the first inequality above follows from Riemann’s inequality (Theorem 5.1). On the
other hand, (17) gives n homogeneous linear constraints in these unknowns over Fqm . By (15), the number
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of unknowns is greater than the number of linear constraints which guarantees the existence of a nonzero
solution Q. Moreover, we can find Q in time poly(re,m) by constructing and then solving the system of
linear equations represented by (17). (Note d is polynomial in re since d < t by (16) and the agreement t is
bounded by n ≤ (r − 1)re.)

Next, we show that Q gives a functional equation that any f that has sufficiently large agreement with
the received word y needs to satisfy.

Claim 6.5. Let f ∈ L((k−1)P
(m)
∞ ). Suppose y agrees with the codewordCf = (f(P1), f(P2), . . . , f(Pn))

in at least t coordinates. Then f satisfies the functional equation

Q(f, fσ, . . . , fσ
s−1

) = A0 +A1f +A2f
σ + · · ·+Asf

σs−1
= 0. (18)

Proof. Define
Q∗ = A0 +A1f +A2f

σ + · · ·+Asf
σs−1 ∈ K(m)

e .

We want to prove that Q∗ = 0. As f ∈ L((k − 1)P
(m)
∞ ), A0 ∈ L((d + k − 1)P

(m)
∞ ), Ai ∈ L(dP

(m)
∞ ) for

i = 1, 2, . . . , s, and σ fixes P (m)
∞ , we know Q∗ ∈ L((d+ k − 1)P

(m)
∞ ).

Suppose that y agrees with Cf in the i-th symbol for some i ∈ [n], i.e., yi = f(Pi). By (17), we have

0 = A0(Pi) +A1(Pi)yi +A2(Pi)y
σ
i + · · ·+As(Pi)y

σs−1

i

= A0(Pi) +A1(Pi)f(Pi) +A2(Pi)(f(Pi))
σ + · · ·+As(Pi)(f(Pi))

σs−1

= A0(Pi) +A1(Pi)f(Pi) +A2(Pi)f
σ(Pi) + · · ·+As(Pi)f

σs−1
(Pi)

= (A0 +A1f +A2f
σ + · · ·+Asf

σs−1
)(Pi)

= Q∗(Pi).

The third equality uses the fact that (f(Pi))
σ = fσ(Pi), which holds since Pi = P

(m)
αi is fixed by σ.

As y and Cf agree in at least t symbols, the above argument shows that there exist i1, . . . , it ∈ [n] such
that Q∗ vanishes at Pi1 , . . . , Pit . Let D =

∑t
j=1 Pij . Then Q∗ ∈ L((d + k − 1)P

(m)
∞ −D). On the other

hand, the degree of the divisor (d+ k − 1)P
(m)
∞ −D is d+ k − 1− t, which is less than zero by (16). So

L((d+ k − 1)P
(m)
∞ −D) = {0}. This implies Q∗ = 0.

6.2 The BTT subspace V

Next, we show that the functional equation (18), given by Claim 6.5 above, implies that the image of the
list of candidate messages under the embedding φ is contained in an affine shift of a low-dimensional BTT
subspace. We start by expanding the functional equation (18) in terms of the coefficients of the polynomials
f and A0, A1, . . . , As.

Suppose that f ∈ L((k − 1)P
(m)
∞ ) agrees with y in at least t coordinates. Consider the Laurent series

expansion of f at P (m)
∞ in the uniformizer T = x−1

e :

f =
∞∑
i=0

fiT
−(k−1)+i

where the coefficients fi are in Fqm . As T ∈ Ke is fixed by σ, we have fσj =
∑∞

i=0 f
σj
i T−(k−1)+i for any

integer j. By definition, φ(f) = (f0, f1, . . . , fk−1).
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Similarly, expand A0 ∈ L((d+ k − 1)P
(m)
∞ ) and A1, . . . , As ∈ L(dP

(m)
∞ ) as Laurent series at P (m)

∞ in
the uniformizer T :

A0 =
∞∑
i=0

a0,iT
−(d+k−1)+i and A` =

∞∑
i=0

a`,iT
−d+i, ` = 1, . . . , s (19)

where the coefficients a`,i are in Fqm for ` = 0, 1, . . . , s and i ∈ N. Choose the largest integer u ≥ 0 such
that there exists `0 ∈ {0, 1, . . . , s} satisfying a`0,u 6= 0. By (18), we may assume `0 ∈ [s]. (Otherwise,
we have a0,u 6= 0 and a1,u = · · · = as,u = 0. Then the LHS of (18), which we denote by Q∗, satisfies
v
P

(m)
∞

(Q∗) = −(d − k + 1) + u < +∞, contradicting (18).) Then we have 0 6= A`0 ∈ L((d − u)P
(m)
∞ ),

which implies u ≤ d.
Let â`,i = a`,i+u for ` = 0, 1, . . . , s and i ∈ N. So â`0,0 = a`0,u 6= 0. We may rewrite (19) as

A0 =
∞∑
i=0

â0,iT
−(d+k−1)+u+i and A` =

∞∑
i=0

â`,iT
−d+u+i, ` = 1, . . . , s.

With the notations above, (18) becomes

0 =
∞∑
i=0

â0,iT
−(d+k−1)+u+i +

s∑
`=1

( ∞∑
i=0

â`,iT
−d+u+i

)( ∞∑
i=0

fσ
`−1

i T−(k−1)+i

)

=

∞∑
i=0

â0,i +

s∑
`=1

i∑
j=0

â`,i−jf
σ`−1

j

T−(d+k−1)+u+i.

So we obtain the equations

i∑
j=0

s∑
`=1

â`,i−jf
σ`−1

j = −â0,i, i = 0, 1, . . . , k − 1 (20)

where â`,0 6= 0 for some ` ∈ [s].
By Claim 4.5, the solution set of all φ(f) = (f0, f1, . . . , fk−1) satisfying (20) is contained in an affine

shift of the kernel of a (k, r,m)-BTT matrixM over Fq for some r ≥ m− s+ 1, andM can be constructed
in time poly(log q,m, n) given the coefficients â`,i. By Lemma 4.6, the kernel ofM is a (k,m,m− r)-BTT
subspace. It is a subspace of a (k,m, s− 1)-BTT subspace sincem− r ≤ s− 1.

To compute â`,i for ` = 0, 1, . . . , s and i = 0, 1, . . . , k − 1, we first find Q in time poly(re,m),
which determines A0, A1, . . . , As. Then we compute the coefficients â`,i = a`,i+u of the Laurent series of
A0, A1, . . . , As in time poly(re,m).

Finally, noting that a basis for the kernel of M , as well as the desired affine shift (which is any valid
solution to (20)), can be found in time poly(re,m), concludes the proof of Lemma 6.4.

Remarks. We conclude this section with some remarks:
Remark 3. For ease of presentation, we only present the construction from the Garcia–Stichtenoth tower,
but this framework is generic and also works for other families of function fields, e.g., the Hermitian tower
considered in [She93, GX12]. Besides bounds for the genus and the number of evaluation points, we need
the function fields to be explicit in the sense that there should be efficient algorithms for the following
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subroutines: computing a basis of the Riemann–Roch space L(D) used in the code, evaluating a function
f ∈ L(D) at any evaluation point, and computing the Laurent series expansion of f ∈ L(D) at a fixed
rational place P in a uniformizer that is fixed by the Frobenius automorphism.

In particular, if we replaceKe by the rational function field Fq(X), choose the divisorD to be (k−1)P∞
where P∞ denotes the unique pole of X , and choose the rational place P for Laurent series expansions to
be the unique zero ofX , then we recover the Reed–Solomon codes with subfield evaluation points that have
been discussed in Section 4.
Remark 4. We have defined two Fqm-linear maps, the encoding map Enc : L((k − 1)P

(m)
∞ )→ Fnqm and the

embedding φ : L((k − 1)P
(m)
∞ ) → Fkqm that outputs the first k coefficients of the Laurent series expansion

at P (m)
∞ in x−1

e . See Figure 3. Both of these two maps are efficiently computable.

L((k − 1)P
(m)
∞ ) Fnqm

Fkqm
φ

Enc

Figure 3: The linear maps Enc and φ.

As explained in the proof of Theorem 1.1, the final code is defined to be Enc(φ−1(W )) for some BTT
evasive subspaceW ⊆ Fkqm . That is, we restrict the message space to φ−1(W ).

We note that [GX13] used a different idea: In [GX13], the map φ was defined on the Riemann-
Roch space L(k′P

(m)
∞ ) with k′ = k − 1 + 2g ≥ k − 1. This choice of larger k′ guarantees that the

map φ : L(k′P
(m)
∞ ) → Fkqm is surjective (instead of being injective). Then [GX13] chose a subspace

V ⊆ L(k′P
(m)
∞ ) such that the restriction of φ to V is an isomorphism between V and Fkqm . In this way, Fkqm

may be identified with the message space V . This space V was further replaced by an evasive subspace in
[GX13] to reduce the list size.

This way of restricting the message space in [GX13] may be used to replace ours. Nevertheless, we feel
that ourmethod is somewhat simpler. In particular, we only needRiemann’s inequality `(D) ≥ deg(D)−g+1
in the analysis, while [GX13] uses the fact that `(D) = deg(D)− g + 1 when deg(D) ≥ 2g − 1, which is
derived from the full Riemann–Roch theorem.

Acknowledgement. We thank Venkatesan Guruswami for bringing our attention to [GX20].
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A The Guruswami–Kopparty explicit subspace design

In this section, for completeness, we review the proof of Theorem 2.1, restated below, that gives an explicit
construction of a subspace design.
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Theorem 2.1 (Explicit subspace design, [GK16], Theorem 6). There exists an absolute constant c > 1,
so that for every ε > 0, positive integers k,m, r with r < εm

4 , and a prime power q satisfying qm ≥
max

{
kc·r/ε,

(
2r
ε

)2r/ε}, there exists an (r, s)-subspace design H1, . . . ,Hk over Fqm for s = 2r2

ε , where
each Hi has co-dimension at most εm in Fqm . Moreover, bases for H1, . . . ,Hk can be found in time
poly(q, k,m).

First, we recall the definition of a subspace design.

Definition A.1 (subspace design). An (r, s)-subspace design over Fqm of cardinality k is a collection of k
Fq-linear subspaces H1, H2, . . . ,Hk ⊆ Fqm so that

∑k
i=1 dim(V̂ ∩ Hi) ≤ s for any Fq-linear subspace

V̂ ⊆ Fqm of dimension at most r.

Next, we sketch the construction of subspace designs in [GK16]. Let r, t,m, q, d ∈ N+ be such that q is
a prime power and r ≤ t ≤ m < q. Let γ be a generator of the multiplicative group F×q . For α ∈ Fqd , define

Sα = {αqjγi : 0 ≤ j < d, 0 ≤ i < t}.

Lemma A.2. There exists a set F ⊆ Fqd of cardinality at least
qd−1
4dt that satisfies the following conditions:

1. Fq(α) = Fqd for α ∈ F .

2. Sα ∩ Sβ = ∅ for distinct α, β ∈ F .

3. |Sα| = dt for α ∈ F .

Moreover, F can be computed in time polynomial in qd.

Let V = {f(X) ∈ Fq[X] : deg(f) < m} ∼= Fqm . For α ∈ Fqd , define

Hα := {P (X) ∈ V : P (α · γi) = 0 for j = 0, 1, . . . , t− 1}

which is a subspace of V . As shown in [GK16], Theorem 2.1 follows as a consequence of the following
theorem.

Theorem A.3 ([GK16]). Let F be as in Lemma A.2. Then the collection (Hα)α∈F is an (r, s)-subspace
design in V ∼= Fqm for s = (m−1)r

d(t−r+1) , such that every subspace Hα has co-dimension at most dt.

Note that Theorem A.3 requires the field size q to be greater thanm while Theorem 2.1 does not, so the
latter does not directly follow from the former. The idea in [GK16] is first using Theorem A.3 to construct
a subspace design in Fm′Q over an extension field FQ, where m′ = m/[FQ : Fq] and Q > m′. (Assume m
is a multiple of [FQ : Fq] for simplicity.) Then [GK16] showed that, by identifying Fm′Q with Fmq , this also
yields a subspace design in Fmq with somewhat worse parameters, thereby proving Theorem 2.1. We refer
the reader to [GK16] for details.
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A.1 Proof of Lemma A.2

In [GK16], the set F ⊆ Fqd is chosen in the following way: For simplicity, assume d is a prime. For
α, β ∈ F×

qd
, write α ∼ β if β = αq

i · δ for some 0 ≤ i < d and δ ∈ F×q . Then ∼ is an equivalence relation
on F×

qd
. For each equivalence class O ⊆ F×

qd
, choose a representative α0 ∈ O. For α ∈ O, add α to F if and

only if α = α0γ
it for some integer i satisfying 0 ≤ i < b(q − 1)/tc.

However, we note that this construction of F does not always satisfy the conditions in Lemma A.2 when
d > 1. For example, suppose d is a prime and q − 1 is divisible by d, so that F×q contains all the dth roots
of unity. In this case, Fqd is a Kummer extension Fq(α) over Fq where αd = u for some u ∈ F×q \ (F×q )d.
Then we have that αq−1 is a d-th root of unity as (αq−1)d = (αd)q−1 = uq−1 = 1. By assumption that F×q
contains all dth roots of unity, this implies in turn that αq−1 ∈ F×q .

Let α0 = αq
i · δ be the representative that we chose for the equivalence class of α, where 0 < i < d and

δ ∈ F×q . Then we claim that αq−1
0 ∈ F×q as αq−1

0 = (αq−1)q
i · δq−1 = αq−1 ∈ F×q . Consequently, we have

that αq0 = α0γ
it+j for some integers i and j with 0 ≤ i < d(q−1)/te and 0 ≤ j < t. If 0 < i < b(q−1)/tc,

then α0 and α0γ
it are distinct and both added to F . This violates the second condition in Lemma A.2 since

we have αq0 ∈ Sα0 and αq0 = α0γ
it+j ∈ Sα0γit , which implies Sα0 ∩ Sα0γit 6= ∅. Similarly, if i = 0, then

the third condition |Sα| = dt does not hold.
One way of fixing this problem is ignoring those elements α ∈ F×

qd
satisfying αqi−1 ∈ F×q for some

0 < i < d. The next lemma gives an upper bound for the number of those elements.

Lemma A.4. Let B = {α ∈ F×
qd

: αq
i−1 ∈ F×q for some 0 < i < d}. Then |B| ≤ (qd − 1)/2.9

Proof. If d = 1, then |B| = 0 ≤ (qd − 1)/2 . So assume d ≥ 2. Consider α ∈ B. We have αqi−1 = δ for
some 0 < i < d and δ ∈ F×q . Note αq

d−i−1 = (1/δ)q
d−i

= 1/δ. So by replacing (i, δ) with (d− i, 1/δ) if
necessary, we may assume i ≤ d/2.

For any α′ ∈ F×
qd

satisfying (α′)q
i−1 = δ, we have (α′/α)q

i
= α′/α and hence α′/α ∈ F×

qi
. So the

number of α′ ∈ F×
qd

satisfying (α′)q
i−1 = δ is at most qi − 1. Therefore, for fixed δ ∈ F×q , the number of

α ∈ F×
qd

for which there exists an integer 0 < i ≤ d/2 satisfying αqi−1 = δ is bounded by

N :=

bd/2c∑
i=1

(qi − 1) = (qbd/2c+1 − q)/(q − 1)− bd/2c.

There are q − 1 choices of δ ∈ F×q . So we have

|B| ≤ (q − 1)N = qbd/2c+1 − q − bd/2c(q − 1).

When d ≥ 3, we have qbd/2c+1 ≤ qd−1 ≤ qd/2 and hence |B| ≤ (qd − 1)/2, as desired.
Now assume d = 2. We need a more careful analysis in this case. Note that if δ ∈ F×q can be written as

αq−1 then δq+1 = α(q−1)(q+1) = αq
2−1 = 1, i.e., δ is a (q + 1)th root of unity. The number of such δ ∈ F×q

equals gcd(q + 1, q − 1) = gcd(q + 1, 2). So we have

|B| ≤ gcd(q + 1, 2)N = gcd(q + 1, 2) · (q − 1). (21)

It is easy to see that the RHS of (21) is at most (q2 − 1)/2. So |B| ≤ (q2 − 1)/2 = (qd − 1)/2.

9This bound is attained when q = 3 and d = 2 but not tight in general. We have made no attempt to optimize the bound.
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We now give a complete proof of Lemma A.2.

Proof of Lemma A.2. Let B be as in Lemma A.4. For α, β ∈ F×
qd
, write α ∼ β if β ∈ αqiF×q for some

0 ≤ i < d. Then∼ is an equivalence relation on F×
qd
. Note that if α ∼ β and α ∈ B, then β ∈ B. So F×

qd
\B

is a disjoint union of equivalence classes under the relation∼. Moreover, the definition of B implies that for
every α ∈ F×

qd
\ B, the equivalence class Oα = {αqjγi : 0 ≤ j < d, 0 ≤ i < q − 1} of α has cardinality

exactly d(q − 1). So the number of equivalence classes contained in F×
qd
\B is q

d−1−|B|
d(q−1) ≥

qd−1
2d(q−1) , where

we use the bound |B| ≤ (qd − 1)/2 given by Lemma A.4.
Construct F as follows: For each equivalence class O ⊆ F×

qd
\ B, fix a representative α0 ∈ O, and add

α0γ
it to F for i = 0, 1, . . . , b(q − 1)/tc − 1. We have

|F| ≥ qd − 1

2d(q − 1)
·
⌊
q − 1

t

⌋
≥ qd − 1

2d(q − 1)
· q − 1

2t
=
qd − 1

4dt
.

Clearly, F can be computed in time polynomial in |Fqd | = qd.
We have Sα ∩ Sβ = ∅ for distinct α, β ∈ F and |Sα| = dt for α ∈ F . This follows from the fact that

every equivalence classO = {αq
j

0 γ
i : 0 ≤ j < d, 0 ≤ i < q−1} ⊆ F×

qd
\B has cardinality exactly d(q−1),

i.e., the d(q − 1) elements αq
j

0 γ
i are distinct.

Finally, we also have Fq(α) = Fqd for α ∈ F . This follows from the fact that αqi−1 6= 1 for α ∈ F×
qd
\B

and 0 < i < d, which holds by the definition of B.
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