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Abstract

Computational pseudorandomness studies the extent to which a random variable Z looks like the
uniform distribution according to a class of tests F. Computational entropy generalizes computa-
tional pseudorandomness by studying the extent which a random variable looks like a high entropy
distribution. There are different formal definitions of computational entropy with different advan-
tages for different applications. Because of this, it is of interest to understand when these definitions
are equivalent.

We consider three notions of computational entropy which are known to be equivalent when the
test class F is closed under taking majorities. This equivalence constitutes (essentially) the so-called
dense model theorem of Green and Tao (and later made explicit by Tao-Zeigler, Reingold et al., and
Gowers). The dense model theorem plays a key role in Green and Tao’s proof that the primes contain
arbitrarily long arithmetic progressions and has since been connected to a surprisingly wide range
of topics in mathematics and computer science, including cryptography, computational complexity,
combinatorics and machine learning. We show that, in different situations where F is not closed
under majority, this equivalence fails. This in turn provides examples where the dense model theorem
is false.

1 Introduction

Computational pseudorandomness is a central topic in theoretical computer science. In this scenario, one
has a class F of boolean functions f : {0,1}™ — {0, 1} (which we’ll refer to as tests) and random variable
Z over {0,1}". We say that Z is e-pseudorandom with respect to F) if maxse 7 |[E[f(Z)] — E[f(U)]| < ¢
where U is the uniform distribution over {0,1}" and € > 0 is small. In this case, we think of Z as
‘behaving like the uniform distribution’ according to tests in F. In general, say that two random variables
X, Y e-indistinguishable by F if max e r [E[f(X)] —E[f(Y)]| (and so e-pseudorandom distributions are
exactly those which are e-indistinguishable from U). Constructing explicit Z’s which behave like the
uniform distribution according to different test classes is among the central goals of complexity theory,
with sufficiently strong constructions leading to, for example, derandomization of BPP. One way in
which the theory of pseudo-randomness is rich is that there are multiple equivalent formulations of
pseudo-randomness, such as Yao’s next bit test ([51]).

The various notions of pseudo-entropy and pseudo-density generalize pseudo-randomness to formalize
how much randomness a distribution looks like it has as far as this class of tests can perceive. Many of
these notions were first introduced as stepping stones towards pseudo-randomness, giving properties of
sub-routines within constructions of pseudo-random generators. However, measuring seeming random-
ness quantitatively is important in many other contexts, so these notions have found wider application.
For example, in mathematical subjects such as combinatorics and number theory, there is a general
phenomenon of “structure vs. randomness”, where a deterministically defined object such as a graph or
set of integers can be decomposed into a structured part and a random part. Pseudo-entropy quantifies
how much randomness the “random part” has. Notions of pseudo-density were used in this context by
Green, Tao, and Ziegler [18, 48] to show that the primes contain arbitrarily long arithmetic progressions.
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We can also use pseudo-entropy notions to characterize the amount of seeming randomness remains n
a cryptographic key after it has been compromised with a side-channel attack. A data set used in a
machine learning algorithm might not have much randomness in itself, and might not be completely
random looking, but is hopefully representative of the much larger set of inputs that the results of the
algorithm will be applied to, so we can use notions of pseudo-entropy to say when such algorithms will
generalize. There are many possible definitions of this intuitive idea, and as with pseudo-randomness,
the power of pseudo-entropy is that many of these notions have been related or proven equivalent.

In particular, the dense model theorem provides such a basic equivalence. Here, the intuitive concept
we are trying to capture is the density (or relative min-entropy) of the target distribution within a larger
distribution, what fraction of the larger distribution is within the target. We say that Z is d-dense if
Elp(z)] = 27>, p(x) > 6 where p: {0,1}" — [0, 1] is density function defining Z (in the sense that
Pr[Z = z] = u(2)/(2"E[u(z)])). One application of indistinguishability from a dense distribution is as a
stepping stone to pseudorandomness: if Z is indistinguishable from a distribution M with density ¢ within
the uniform distribution, then applying a randomness extractor with min-entropy rate n —log(1/6) to Z
is a pseudorandom distribution. A more sophisticated application comes from additive number theory. It
is not hard to show that a random subset of [N] = {1,2,..., N} (including each element with probability
1/2, say) contains many arithmetic progressions (which are sets of the form {a,a+b,a + 2b,a+ 3b,...}).
Szemerédi [15] showed that, in fact, sufficiently dense subsets of the integers also contain such arithmetic
progressions: specifically, that for any k&, the size of the largest subsets of [N] which doesn’t contain an
arithmetic progression grows like o(IV).

So we would like some technology to reason about random variables Z which ‘behave like dense
distributions’. It turns out, however, that formalizing what it means for Z to ‘behave like a dense
distribution’ is subtle. Here are three perfectly legitimate candidates:

Candidate 1: Z behaves like a d-dense distribution if it behaves like something that’s J-dense. Formally,
this means that Z is e-indistinguishable from some J-dense distribution. In this case, we say that
Z has a d-dense e-model.

Candidate 2: Z behaves d-dense if it’s §-dense inside of something that behaves like the uniform dis-
tribution. Formally this means there’s an e-pseudorandom distribution X in which Z is J-dense.
In this case, we say that Z is d-dense in an e-pseudorandom set.

Candidate 3: Z behaves d-dense if it appears to be the case that conditioning on Z increases the size
of any set by at most (roughly) a 1/d-factor. This is an operational definition: conditioning on a
(truly) dense set increases the set by at most a 1/d-fraction, so we should expect the same behavior
from things that behave like a dense set. Formally, this means that dE[f(Z)] < E[f(U)] + ¢ for
any f in our test class F. In this case, we say that Z has (g, 0)-pseudodensity.

Precisely which definition you pick will depend on what you know about Z and in what sense you
would like it to behave like a d-dense distribution. Indeed, each of these definitions have appeared in
different applications ([25], [18], [13], respectively), so there are scenarios where each of these types of
behavior is desired. In general, the first candidate is the strongest (and, arguably, the most natural), but
it is sometimes hard to establish that a distribution has the property. The following claim gives some

simple relationships between the definitions:
Claim 1.1. For any F, the following hold:
1. If Z has a d-dense e-model, then Z is §-dense in a e-pseudorandom set.
2. If Z is d-dense in an e-pseudorandom set, then Z has (€,0)-pseudodensity.

Proof sketch. 1. Let M be the 6-dense e-model for Z. Note that U = M + (1 — §)M. So U’ =
0Z + (1 — 0)M is e-pseudorandom and Z is d-dense within it.

2. Suppose Z is d-dense in Z’ which e-pseudorandom for F. Then for any f € F, 0E[f(Z)] <
E[f(Z")] <E[f(U] +e.
|

The marvelous quality of these three candidates in particular is that, for many natural F, all of them
are equivalent, and so establishing even (€', §)-pseudodensity is enough to guarantee the existence of a
d-dense e-model.



This equivalence holds for F which are closed under majority, meaning for any k (which we can
think of as &k = O(1) for now), if fi,..., fr € F then MAJ,(f1,..., fx) € F, where MAJ : {0,1}" —
{0,1} is 1 if at least half of its input bits are 1. In fact, it holds for more general F if we allow
the distinguishing parameter (¢’ in (¢/,0)-pseudodensity) to be exponentially small (as in the original
formulation, which we’ll dicuss later on). In this case, the subtelty in defining what it means to behave
like a dense set vanishes. These equivalences constitute (essentially) what is known as the dense model
theorem, originating in the work of Green-Tao [18] and Tao-Zeigler [48], and independently in Barak et
al. [8] (though in different guises). This result has been fruitfully applied in many seemingly unrelated
areas of mathematics and computer science: additive number theory [18, 48] where F encodes additive
information about subsets of {1, ..., N} (or possibly a more general group), graph theory [49, 38] where
F encodes cuts in a fixed graph, circuit complexity [49], Fourier analysis [29], machine learning [29]
and leakage-resilient cryptography [14]. The ubiquity of the dense model theorem motivates a simple
question: are there natural scenarios in which the dense model theorem is false?

We show that the answer to this question is yes. In particular, we show that for either implication
from Claim 1.1 there is a class F and a random variable Z so that converse fails to hold. From the
computational entropy perspective, we show that the three computational entropies we’ve discussed are
inequivalent for certain test classes F. Necessarily (with ¢’ not exponentially small) these classes are not
closed under majority and so we will need to look ‘below’ majority in order to find our counterexamples.

1.1 The dense model theorem

We turn to discuss the dense model theorem in some more detail to better contextualize our work.
Restricting our attention to random variable over {0,1}", the dense model theorem states the following:

Theorem 1.1 (Dense model theorem). Let F be a class of tests f : {0,1}" — {0,1} and Z a random
variable over {0,1}" with (6, §)-pseudodensity with respect to MAJ o F for k = O(log(1/68)/e?). Then
Z has a d-dense e-model with respect to F.

We will generally also consider a parameter &', which in this case is €6, the additive error in pseudo-
density. To get an intuition for what this is saying, let’s conisder a setting where it’s false but for trivial
reasons. As a simple example given in [52], pick a set Z some set as a (1 — &) fraction of another set
S of size 62™. Then Z doesn’t have a d-dense e-model (i.e. S) with respect to Z’s indicator function,
which we’ll call f. On the other hand, the distribution W obtained by sampling Z with probability §
and sampling from S’s complement with probability 1 — § is at most ed-distinguishable from S for any
function, since ¢ is simply the measure of the difference between S and Z. In particular Z is d-dense
in the ed-pseudorandom W (which implies, via Claim 1.1, that it is (4, )-pseudodense). This means
that the Theorem 1.1 is tight for the dependence on &’ = &4, in that it becomes false for (¢d). In many
instances, we think of ¢ = 1/poly(n), § constant (or perhaps with mild dependences on n) and &’ = Je.

Originally, the dense model theorem was proved with a different (and stronger) assumption; namely,
that Z is dense in a pseudorandom set. Green and Tao, in proving that the primes contain arbitrarily
long arithmetic progressions, used it to the following effect: if Z are the prime numbers up to n, then its
density is known to behave like ©(1/logn). On the other hand, Szemerédi [45] showed that sufficiently
dense subsets of Z contain arbitrarily long arithmetic progressions. The best bounds for Szemerédi ’s
theorem require density w(1/loglogn)), which is much larger than the primes (see [16] and the recent
[9] for more on the rich history on this and related problems). Not all is lost, however: the only property
of dense sets that we’re interested in is that they contain arithemtic progressions. So Green and Tao
construct a class F of tests which can ‘detect’ arithmetic progressions and under which the primes are
dense inside of a F’-pseudorandom set (more on F' later). By applying the dense model theorem, we
conclude that the primes ‘look like’ a dense set (themselves having long arithemtic progressions) with
respect to the class F. As F detects arithmetic progressions, it must be the case that the primes possess
them. Of course, many details need to be filled in, but we hope this example shows the reader the ‘spirit’
of the dense model theorem.

A primary source of interest in the dense model theorem is in the connections it shares with seemingly
unrelated branches of mathematics and computer science. The original application was in additive
number theory, but it was independently discovered and proved in the context of cryptography ([8, 14]).
RTTV [38] and Gowers [17] observed proofs of the dense model theorem which use linear programming
duality, which is in turn related to Nisan’s proof of the hardcore lemma from circuit complexity [28]. In
fact, Impagliazzo [29] shows in unpublished work that optimal-density versions of the hardcore lemma due
to Holenstein [26] actually émply the dense model theorem. Klivans and Servedio [32] famously observed



the relationship betweeen the hardcore lemma and boosting, a fundamental technique for aggregating
weak learners in machine learning [15]. Together with the result of Impagliazzo, this connection means
that dense model theorems can be proved by a particular type of boosting algorithm. A boosting
argument for the existence of dense models also gives us constructive versions of the dense model theorem,
which are needed for algorithmic applications. Zhang [52] (without using Impagliazzo’s reduction from
the dense model theorem to the hardcore lemma) used the boosting algorithm of [7] directly to prove
the dense model theorem with optimal query complexity (k).

In addition to its connections to complexity, machine learning, additive number theory and cryp-
tography, the dense model theorem (and ideas which developed from the dense model theorem, chiefly
the approximation theorem of [49]), have been used to understand the weak graph regularity lemma
of Frieze and Kannan [29], notions of computational differential privacy [36] and even generalization in
generative adversarial networks (GANSs) [5]. We now turn to discussing the complexity-theoretic aspects
of the dense model theorem, specifically regarding our question of whether the MAJy from the statement
is optimal.

As alluded to earlier, Green and Tao actually worked in a setting where F' doesn’t 'need to com-
pute majorities but where €0 (that is, the distinguishing parameter in the pseudodensity assump-
tion in the statement of Theorem 1.1) needs to be replaced by some & = exp(—poly(1/e,1/6)) (with
k = poly(1/6,1/e) experiencing a small increase). We state this result, as proved in Tao and Zeigler [48]
and stated this way in RTTV [38], for comparison. For a test class F, let [[, F be the set of tests of the
form Hie[k] fi for f; € F.

Theorem 1.2 (Computationally simple dense-model theorem, strong assumption). Let F be a class of
tests f: {0,1}™ — [0,1] and Z a random variable over {0,1}™ which is 0-dense in a set €' -pseudorandom
for [1, F with k = poly(1/6,1/¢) and &' = exp(—1/6,1/e). Then Z has a §-dense e-model with respect
to F.

RTTV [38] observe that this proof can be adapted to work for & have polynomial dependence on ¢, ¢
by restricting to the case of boolean-valued tests. Doing so, however, makes F' much more complicated
(essentially requiring circuits of size exponential in k). In Theorem 1.1, we can obtain the best of both
worlds: &’ has polynomial dependence on &,0 and the complexity blow-up is rather small. However,
in this more picturesque circumstance, we need to be able to compute majorities. Is such a tradeoff
necessary? Our results suggest that the answer is yes. Theorem 1.6 (stated in the following section)
tells us that if the dense model theorem is true for F, then there’s a small, constant-depth circuit with
F-oracle gates approximating majority on O(1/e?) bits.

Another important aspect of the dense model theorem is how the different assumptions are related.
As mentioned, the original assumption was that Z is d-dense in an e-pseudorandom set, but the proof
can be extended to the case where Z is (e, §)-pseudodense. Claim 1.1 showed that the former assumption
implies that latter assumption. When the dense model theorem is true, the latter also implies the former:
simply apply the dense model theorem to Z which is (g, d)-dense to obtain a -dense e-model. Then, by
the first part of Claim 1.1, we’re done.

First, we give examples of situations where these two notions are distinct. For example, we show in
Theorem 1.4 and Theorem 1.5 that they are inequivalent when F is constant-depth polynomial size
circuits or when F is a low-degree polynomial over a finite field. Note that a separation between
pseudodensity and being dense in a pseudorandom set also implies a separation between pseudodensity
and having a dense model, as being dense in a pseudorandom set is a necessary condition for having a
dense model.

Second, we show that the dense model theorem is false even when we make the stronger assumption
that the starting distribution Z is dense in a pseudorandom set. Specifically, in Theorem 1.3 we can
show that some distributions Z are dense in a pseudorandom set but fail to have a dense model when F
consists of constant-depth, polynomial size circuits.

Having contextualized our work some, we now turn to describe our contributions in more detail.

1.2 Contributions

We separate the previously described notions of computational entropy, giving examples where the dense
model theorem is false. We are able to prove different separations when F is constant-depth unbounded
fan-in circuits, low-degree polynomials over a finite field, and, in one case, any test class F which cannot
efficiently approximate majority (in some sense made explicit later on). The only known separation prior



was between pseudodensity and having a dense model for bounded-width read-once branching programs,
due to Barak et al. [3].

Let C(S,d) denote the class of unbounded fan-in, size S, depth d circuits. We are generally thinking
of § = poly(n) and d = O(1), which corresponds to the complexity class AC’. Theorem 1.3 shows that
Z being d-dense in an e-pseudorandom set need not imply that Z has a d-dense e-model when the test
class is C(S, d):

Theorem 1.3. Let e, > 0 be arbitrary, § > £'/8 and

sggmp<o(¢g.‘”%fV®>”“”>_

€ log(1/e")

Then for F = C(S,d), there is a random variable D over {0,1}" with n = O(log(1/6)/€?) so that D is
d-dense in an &'-pseudorandom set but does not have a d-dense e-model. In particular, the dense model
theorem is false in this setting.

Recall that the dense model theorem is false when &' = (&d), which makes the restriction § > ¢’/8
extremely mild. A common regime is € = 1/poly(n), § = O(1) and ¢’ = de = O(¢), in which case this
gives us (essentially) a lower bound of weakly exponential in 1/1/z ~ 1/v/¢’.

Let N, denote the product distribution of n Bernoulli random variables with success probability
1/2 — a. Recall that density in a pseudorandom set readily implies pseudodensity, and one can use the
dense model theorem to show the converse. We show that (e, §)-pseudodensity need not imply d-density
in an e-pseudorandom set when the test class is C(.S, d):

Theorem 1.4. Fize,e’,6 >0,d e N, and

Vo log(1/8) \1/(d-1)
s<en(o(2 )" ")

Then N\/E/T over {0,1}" with n = O(1/e) is (¢/,9)-pseudodense and yet N\/e/fé is not 6-dense inside of

any e-pseudorandom set.

The dependence &' means that we can take & exponentially smaller than & and still obtain a sepa-
ration. This case corresponds to F being ‘very’ fooled by N, but still not being d-dense in a ‘mildly’
pseudorandom set. This result draws on a recent line of work in the pseudorandomness literature —
often referred to as ‘the coin problem’ and studied in, e.g., [42, 12, 1, 46] — which concerns the ability of
a test class F unable to compute majority has in distinguising N, and U. We will discuss this connection
in more detail during the proof overviews.

We prove a similar separation for degree-d Fp-polynomials (on n variables), which generalizes (and
uses techniques from) a recent result of Srinivasan [44] in the case where § = 1. In this case, we think
of a distribution Z as being (¢’, §)-pseudodense for degree-d Fp-polynomials when 6 Pr[P(Z) # 0] — &’ >
Pr[P(U) # 0] for any degree-d polynomial P € F,[X1, ..., X,,] (noting that we are only evaluating P over

{0,13).

Theorem 1.5. Fiz a finite field F with characteristic p = O(1) , e,&/ > 0 and let ¢ > & > 0 where
¢~ 1/200 is an absolute constant. Suppose that

d < 0(/8/2)

Then when F is the n-variate degree-d polynomials over F with n = 1/e, and o = O(\/e/d), Ng is
(e, 9)-pseudodense but is not §-dense inside of an e-pseudorandom set.

This implies lower bounds for constant-depth circuits with MOD,, gates by the classical lower bounds
of Razborov [37] and Smolensky [43]. Perhaps more interestingly, this holds even over non-prime fields.
Also notably, there is no dependence on &’ < €6, so we can take it to be arbitrarily small.

We also prove a more general separation between pseudodensity and density in a pseudorandom set.
This result, drawing from the work of [42], provides a more specific characterization of the sense in which
dense model theorems are ‘required’ to compute majority.



Theorem 1.6. Lete,d > 0. Suppose F is a test class of boolean functions f :{0,1}" — {0,1} with the
following property: there is no AC® F-oracle circuit of size poly(n - 53%) computing majority on O(4/d/¢)
bits.

Then N\/‘% is (€0, 0)-pseudodense and yet does not have a §-dense e-model. In particular, when the

hypotheses are met, the dense model theorem is false.

Informally, this says that any F which can refute the pseudodensity of N, is only ‘a constant-depth
circuit away’ from computing majority.

1.3 Related work

Computational entropy Computational entropy was studied systematically in [8] and is relevant to
various problems in complexity and cryptography such as leakage-resilience [14], constructions of PRGs
from one-way functions [25, 21, 20]. and derandomization [13].

There are a number of definitions of computational entropy which we don’t consider in this work.
For example, Yao pseudoentropy [51] (see also [8]), corresponding to random variables which are ‘com-
pressible’ by a class of tests F, in the sense that F can encode and decode the random variable by
encoding into a small number of bits. Yao pseudoentropy was recently used in time-efficient hardness-
to-randomness tradeoffs [13], where (randomness-efficient) samplers for pseudodense distributions were
used with an appropriate extractor to construct a pseudorandom distribution. Another example is in-
accessible entropy of Haitner et al. [21], corresponding to the entropy of a message at some round in a
two-player protocol conditioned on the prior messages and the randomness of the players, which is used
in efficient constructions of statistically hiding commitment schemes from one-way functions [20].

Separating notions of computational entropy has been studied before in [8], who prove a separation
of pseudodensity and having a dense model for bounded-width read-once branching programs. Sepa-
rating notions of conditional computational entropy was studied in [27], showing separations between
conditional variants of Yao pseudoentropy and having a dense model.

As mentioned in [27], citing [49] and personal communication with Impagliazzo, another question of
interest is whether Yao pseudoentropy (corresponding to efficient encoding/decoding algorithms) implies
having dense model. It is not hard to see that small Yao pseudoentropy implies small pseudodensity,
with some mild restrictions on F. It would be interesting to see if the techniques from this paper can be
used to understand Yao pseudoentropy in more detail. We leave this to future work.

Complexity of dense model theorems and hardness amplification Prior work on the complexity
of dense model theorems has included a tight lower bound on the query complexity [52] and a lower bound
on the advice complexity [50]. As far as we are aware, this is the first work to consider the computational
complexity of dense model theorems.

There has also been prior work on the computational complexity of hardness amplification, estab-
lishing that various known strategies for hardness amplification require the computation of majority
[34, 42, 19, 41]. Tt is known that a particular type of hardness amplification given by the hardcore lemma
implies the dense model theorem [29].

Our results are stronger in the following sense: previous work [34, 42, 19] shows that black-box
hardness amplification proofs require majority. This means that if you amplify the hardness of f in some
black-box way, then this can be used to compute majority. In our case, we simply show (in different
settings) that the dense model theorem is false, regardless of how we tried to prove it. By the connection
between the hardcore lemma and the dense model theorem, our results also provide scenarios where
the hardcore lemma is false. As far as we are aware, these are the first such scenarios recorded in the
literature.

1.4 Technical overview

We discuss two general themes that appear consistently in the proofs and then discuss each of the main
theorems in some more detail.

1.4.1 Dense distributions have mostly unbiased bits

A commonly-used observation in theoretical computer science is that most bit positions of a J-dense
random variable over {0,1}" have bias O(y/log(1/d)/n) (see, for example, the introduction of [35]).
Relevant to our purposes, it provides a necessary condition for having a d-dense e-model with respect



to any class F containing the projections z — z;. Z has a d-dense e-model, then most bits of Z have
bias € + O(4/log(1/6)/n). In particular, if all of the bits of Z have large bias, then it can’t have a dense
model.

This is used directly in the proof of Theorem 1.3. In this case, we construct a distribution Z which
is 6-dense in a set which is e-pseudorandom for ACY but where the each bit is noticeably biased away
from 1/2.

In order to prove separations between pseudodensity and being dense in a pseudorandom set — as in
Theorem 1.4, Theorem 1.5 and Theorem 1.6 — we need to consider the bias of larger subsets of variables.
Considering just two bits is sufficient to prove mild concentration bounds on the weight of pseudorandom
strings. This implies that the tails of dense subsets of pseudorandom sets should not be too heavy.

1.4.2 Biased coin distribution

The biased coin distribution, N, over {0,1}" is the product of n Bernoulli random variables with success
probability 1/2 — a. N, has recently garnered significant interest in the pseudorandomness literature
(see [2, 12, 46, 10, 1]). Shaltiel and Viola [12] showed that if f is a test which e-distinguishes N, from U,
then there is a small, constant-depth circuit C' with f-oracle gates which computes majority on O(1/¢)
bits. A similar, but qualitatively different, connection due to Limaye et al [33] — extended to any choice
of £ > 0 by Srinivasan [44] — shows that any F,-polynomial with advantage 1 — 2¢ in distinguishing N,
from U must have degree Q(log(1/¢)/a). We extend some of these pseudorandomness results regarding
N, to pseudodensity results.

First, we extend the observation of Shaltiel and Viola to apply to tests f for which E[f(Z)] >
SE[f(U)] + & (which corresponds to pseudorandomness when § = 1). This gives us unconditional pseu-
dodensity for test classes F which can’t be used in small, constant-depth oracle circuits approximating
majority. We also extend the observation of [33] to show lower bounds on the F,-degree for any function
f which refutes the pseudodensity of Ny,.

In Lemma 4.1, we show that N, exhibits (e, d)-pseudodensity for e = (p - O(log S)?~1)* and 6§ =
e~k/P This can be seen as a generalization of Tal’s result, building on [12, 1, 42] that N, is 3« -
O(log S)4~'-pseudorandom for C(S, d).

Tal uses a Fourier analytic proof which becomes very simple given tail bounds on the Fourier spectrum
of AC” (the latter being the main contribution of [46]). More generally, any F enjoying sufficiently strong
tail bounds on the Fourier spectrum (in the ¢; norm) cannot distinguish between N, and uniform. It
turns out, as proved by Tal and recorded in Agarwal [2], that if F is closed under restrictions than
even bounding the first level of the Fourier spectrum works. The proof of Lemma 4.1 based specifically
on the switching lemma for constant-depth circuits. While switching lemmas can be used to show
Fourier concentration, it would be intersting to find a proof which only uses the assumption of Fourier
concentration (or some Fourier-analytic assumption).

1.4.3 Theorem 1.3

Our goal is to construct a random variable D which is dense inside of an AC’-pseudorandom set but
where each bit is biased away from 0. In this case, D would be distinguishable from any dense set, since
the average bit of a dense set is roughly unbiased. Doing so requires two steps.

The first step is constructing an appropriate distribution Z that fools ACY circuits. For this we adopt
a general strategy of Ajtai and Wigderson [3] (and applied in many contexts in pseudorandomness since;
see, e.g., [40]): to fool a circuit C, we start by producing a random restriction to simpify C to a short
decision tree (via the switching lemma), and then we fool the decision tree on the remaining bits using a
k-wise independent distribution S. If we wanted Z to have small support size, we would need some way
of producing random restrictions with a small amount randomness (which is precisely the approach of
Ajtai-Wigderson and later work). Fortunately, we only care about the existence of Z and are therefore
content to use the ‘non-derandomized’ switching lemma.

The second step is finding a dense subset D of S with biased bits. We do this by constructing S so
that each bit has bias roughly /log(1/d)/K, where k < K < n is a parameter. This is achieved by
randomly bucketing the indices into K buckets and assigning each bucket a random bit, which reduces
the dimension of the problem from n to K. This means we can pick a é-dense event in {0,1}* with
extremal bias — met (up to constants) by the function accepting all strings with weight less than
K/2 — K+/log(1/§) — in order to find a dense subset of S with large bias. The bucketing construction
introduces some error when a small set I C [n] hits to distinct elements in some buckets.



1.4.4 Theorem 1.4

We will show Ny, has (4, ¢’)-pseudodensity for AC° for § = ¢/ = O(1), @ = 1/polylog(n). The idea is that
N, can be sampled by first sampling a random restriction which leaves a p fraction of the bits unset
(and is unbiased on the restricted bits) and then setting the remaining bits with bias a/p. Applying
the switching lemma, we conclude that E[f(Ng)] = E[f'(N,/,)] where f’ is a short decision tree (which
doesn’t not depend on all of its inputs). A simple calculation reveals that acceptance probability of f’
can increase by at a most a factor (1 + a/p)? < e*¥/? when passing from the uniform distribution to
N, /p- By incorporating the error from the switching lemma (i.e. the advantage lost by conditioning on
the switching lemma succeeding), we get (4, €)-pseudodensity.

To prove the separation, we use the fact that the Hamming weight of a random variable fooling
C(S,d) is concentrated around its expectation. This means in particular that if N, were §-dense in a
pseudorandom distribution, then the tails of N, couldn’t be too heavy and therefore a couldn’t be too
large.

1.4.5 Theorem 1.5 and Theorem 1.6

Theorem 1.5 and Theorem 1.6 draw from related work of Srinivasan [44] and Shaltiel-Viola [42] respec-
tively.

With € > 0 and F an arbitrary class of tests f : {0,1}" — {£1}, suppose that f € F witnesses that
N. fails to have (¢/, d)-pseudo-density in the sense that

E[f(U)] < E[f(Ng)] =~

[44] and [42] both make use of the following simple observation. Given two strings u,v € {0,1}™
with wt(u) = (1/2 — &)m and wt(v) = m/2, a uniformly random index i € [m] has u; distributed as a
(1/2 — g)-biased coin and v; as an unbiased coin. In our case, applying f to sufficiently many random
samples from u or v ‘distinguishes’ the two of them, but in a weaker sense.

In the case of Theorem 1.6, we can amplify acceptance probabilities by increasing the size of the
circuit by a factor 1/ed, after which we can apply [42] saying that constant-error distinguishers between
N, and U can be used to compute majority.

For Theorem 1.5, we apply a beautiful recent result of Srinivasan [44] showing that any m-variate
polynomial (over a finite field) which vanishes on most points on the slice 1/2 — a and doesn’t vanish on
most points on the slice 1/2 must have high degree Q(am). One way of interpreting this result is that
low-degree polynomials can’t approximately solve certain ‘promise’ versions of majority.

In this latter case, we need to open up the error reduction procedure we use for Theorem 1.6 and show
how to approximate it using low-degree polynomials. This will ultimately be achieved by approximating
OR with a probabilistic polynomial, as in [37, 43].

2 Technical tools

We write [n] = {1,...,n} and use boldface to denote random variables. Let C(S,d) be the set of size S,
depth-d unbounded fan-in circuits. For a boolean function f : {0,1}" — {0,1}, let DT(f) denote the
depth of the shortest decision tree computing f.

2.1 Biased coins

As before, let N, denote the random variable corresponding to the product of n independent coins with
bias (1/2 — «). That is,
Pr[N, = z] = (1/2 — a)wt(Z)(l/Q + a)n—wt(z)

where wt(z) denotes the Hamming weight of z.

For a random variable Z over {0,1}" and ¢ € [n], let bias;(Z) = |Pr[Z, = 1] — Pr[Z; = 0]|/2. Let
B = {z — z; : i € [n]} be the set of monotone projections. A random variable Z = (Zq,...,Z,) is
e-pseudorandom with respect to B precisely when each marginal Z; has the property that bias,(Z) =
|Pr[Z; = 1] — 1/2| < ¢ for each i € [n]. In particular,

Claim 2.1. For any € > 0, N, is e-pseudorandom with respect to B.



2.2 Information theory

The (Shannon) entropy of a random variable is defined as

H(Z)=- Y pz(z)logpz(x),
z€{0,1}m

where pz is the probability density function corresponding to Z. The Shannon entropy of random vector
is sub-additive, in that H(Z) < >_,c(,) Zi- When Z € {0,1} and Pr[Z = 1] = p, we use h(p) = H(Z) =
—(plogp+ (1 — p)log(1l — p)) to denote the binary entropy function.

The min-entropy is defined as

Ho(Z) = — xe%iff}n log pz(z)

If Z is §-dense inside of U, then its min-entropy is n —log(1/4) and for any random variable Z, H(Z) <
H(Z).

By this latter inequality and subadditivity, the average entropy of Z’s bits is at least 1 —log(1/)/n.
Appealing to a quadratic approximation of binary entropy, we learn that the bias must be at most
\/log(1/8)/n. This result has been referred to as Chang’s inequality and the Level-1 inequality, having
been observed in different forms and with different proofs in, for example, [47, 11, 22, 31]. Because it is
so simple, we provide a proof here:

Claim 2.2. If Z is §-dense in U, then E;[bias;(Z)] < y/log(1/8)/n

Proof. As §-density is equivalent to n — log(1/d) min-entropy,

n—log(1/0) = Hw(Z) < H(Z) < Y H(Z:),

i€[n]

by subadditivity of entropy. The entropy of Z;’s bits, therefore, is at least 1 — log(1/d)/n on average.
Taking the Taylor series, we can approximate the binary entropy function h(p) around 1/2 by a quadratic
function as h(1/2+¢) < 1 — (2/In2)e?. Comparing this bound with the average, we get

1 —1log(1/6) <1—(2/In2)e?,

meaning € < /(In2/2) - (log(1/0)/n) < \/log(1/8)/n. |

2.3 Random variables lacking computational entropy

It follows directly from Claim 2.2 that if bias;(Z;) exceeds € 4+ y/log(1/6)/n for every i, then Z does not
have a d-dense e-model with respect to the projections B.
Lemma 2.1. Let Z be a random variable with bias;(Z) <

for every i € [n]. Then for any 6 >0 and v > e+ W, Z does not have a d-dense e-model with
respect to B.

This is used for the separation in Theorem 1.3. We would also like a necessary condition for being
dense in a pseudorandom set. Towards this end, we note that pseudorandom distributions for even very
simple test classes have mild concentration properties.

Claim 2.3. Suppose F can compute x; ®x; for every i, j € [n] and let Z over {0,1}" be e-pseudorandom
for F. Then

Pr

1 €
zi:Zi S n/2—om] S 4a2n + @
Proof. We work over {£1} instead of {0,1} to make calculations easier. We can compute the second

moment as
E[() 7))’ =Y E[Z}]|+ > E[ZZ;] < n+en’.
7 % i#£]



Applying Markov’s inequality to (3, Z;)?, we see that

|ZZi|22an ZZ 20m2]<E ZZ /(2an)?
i

We use 2an because it maps back to n/2 — an in {0,1}. Then the conclusion follows from our second
moment calculation and converting back to {0, 1}. [ |

Pr

The tails of a dense subset can’t be too much larger than the original distribution, by definition of
density. This gives us a test for being dense in a pseudorandom set, which we specialize to Ny,.

Lemma 2.2. Let €,6 > 0 be arbitrary. Suppose F can compute x; & x; for any i,j € [n] and o >
V1/(88) - (1/n+¢€). Then N, is not 6-dense in any set which is e-pseudorandom for F.

Proof. Under N, the volume of the threshold 1[},Z; < n/2 — an] is 1/2. Taking Claim 2.3 in the
contrapositive, we reach the desired conclusion when
1 + 5
45 4602n ' 4602
o > —(1 /n+e)

1/2 >

2.4 Random restrictions and the switching lemma

A restriction over [n] is a function p : [n] — {0,1,*}. Indices in p~!(*) can be thought of as unset and
each other index as set. For another restriction z so that p=1(x) C 271({0,1}), let po 2z € {0,1}" be

defined by
z;if i € —L(x ,
(po2) = { P ()
pi otherwise.

Define the restricted function f|, : {0, 13271 - £0,1} over p’s unset indices by

flo(z) = f(po2).

Let R, be the distribution on restrictions over [n] obtained by setting p(i) = * independently with
probability p, and then setting each bit not assigned to * a random bit. The switching lemma we use is
due to Rossman [39], building on a long line of work [3, 23, 24, 30]:

Theorem 2.1 (Rossman [39]). Suppose f € C(S,d). Then
Pr (DT(f],) > K] < (p- Olog 5)*~ )"
p~1iip

By considering a random restriction p ~ R, over [n] and a random variable Z over {0,1}", the
definition of a restricted function implies that

E[f(poZ)] = E[f],(Z)].

We make crucial use of two simple corollaries of the switching lemma, which allow us to reason about
distinguishability for AC® circuits in terms of distinguishability for short decision trees.

Lemma 2.3. Suppose f € C(S,d). Then there is a distribution over depth k decision trees so that
[Elf(p o Z)] - Elhp(Z)]] < (p- O(log §)* 1)

Proof. Let g, denote the optimal decision tree for f|,. Let E denote the event that g, has depth at
most k and Pr[E] =1 —¢. Let h, be the distribution over depth at most k decision trees obtained by
sampling g, conditioned on E. Then

Elf(po Z)] = E[f|,(Z)]
= (1 - q)E[gp(Z)|E] + qE[gp(Z)| - E]
= (1 = @)E[hp(Z)] + qE[gp(Z)|-E]
= E[hp(Z)] — q(E[hp(Z)] — E[gp(Z)|-E]).
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The right-hand term is bounded in absolute value by ¢ because f is Boolean. By Theorem 2.1, ¢ <
(p- O(log S)4—1)k. [ |

Lemma 2.4. Suppose f € C(S,d). Then there’s a depth k decision tree h so that
[E[f(U)] —E[f(po Z)]| < [E[f'(U)] - E[f(Z)]| + (p- O(log §)*~1)*
Proof. Lemma 2.3 gives us the following upper bound.
[E[f(U)] - E[f(poZ)]| < |(E[hp(U)] + q) — (E[hp(Z)] £ )| (Lemma 2.3)
< |E[hp(U)] — E[hp(Z)]| + 2¢ (triangle inequality)

We can continue to upper bound the right-hand term by
— E[h,(Z)]|] (triangle inequality)

where the last line holds for some h in the support of h, by averaging. ]

3 Proof of Theorem 1.3

We start by reducing the problem of constructing a pseudorandom Z for AC° to constructing a pseudo-
random Z for small-depth decision trees. This can be immediately achieved by applying Lemma 2.4.

Claim 3.1. Let p € [0,1] be arbitrary and suppose Z is a random variable over {0,1}™ which is e-
pseudorandom for depth-k decision trees. Then for p ~ R, poZ is €' -pseudorandom for C(S,d) for

¢ =e+(p-O(log S)4—1)k

The next lemma constructs a pseudorandom distribution for depth-k decision trees with each bit
having significant bias.

Lemma 3.1. For any k € N,§ > 0 and K > 1/20, there is a k-wise independent random variable S over
{0,1}"™ and a 0-dense subset D of S with the property that

1. D is §-dense in S.

2. For all i € [n], bias;(D) = Q(y/log(1/6)/8K)

3. S is k? /K -pseudorandom for depth-k decision trees.

We will use the following standard lower bound on the lower tail of a binomial distribution:

Claim 3.2 ([6]). For 0 < a <1 and let Z,...,Zk be independent unbiased coins ({0,1}-valued). Then
any v with 1/2 — v =r/K for some positive integer r satisfies

9—K(1-h(1/2-7))

< Pr 7. <K/2— K
oY < > / v

i€[K]

Proof of Lemma 3.1. We sample S in two stages. First, randomly partition [n] into K parts Aq,...,Ax
for K > k2. Second, assign to each A; a uniformly random bit b,.

Let D be S conditioned on b = (by, ..., bg) having weight less than K/2 — /K log(1/4)/8. Since the
b;’s are unbiased random bits, we can apply Claim 3.2 to lower bound D’s density: for any ~,

27Kh(1/27’y)

Pr|Y b <qK| >
V2K

i€[k]

11



This is at least § when

1—h(1/2—=7) >1og(1/0)/K —log(2K) /2K
>log(1/9)/K —log(2K) /2K

with the upper bound in the last line following from h(1/2 —v) > 1 — 442, Hence, if the set of strings
with weight at most K/2—~K is d-dense, we have v > 1/log(1/5)/K —log(2K)/2K. log(2K)/2K is at
most log(1/6)/2K when 2K < 1/4, in which case v > 1/log(1/6)/8K. In particular, this lower bounds
the bias of D’s bits.

To see why it’s k?/K-pseudorandom for depth-k decision trees, consider a depth-k decision tree T.
Over U, we can imagine evaluting 7' ‘on-line’ as follows: whenever T queries the ith bit, determine
the value of z; by flipping an unbiased coin. Over S, we can imagine evaluating T similarly, where we
determine the bucket A; that ¢ lives in and the value b; of that bucket.

By conditioning S on not placing two distinct indices 4, j in the same bucket — call this conditioned
random variable S’ — then T doesn’t have any distinguish advantage over S’; as all of the bits it queries
are independent and uniform. By a union bound, S places two distinct indices in the same bucket with
probability at most k?/K. T’s distinguishing advantage is therefore at most k%/K. |

In principle, we could have used other pseudorandom distributions for decision trees such as the
g-almost k-wise independent distributions from [4]. The construction here is used to obtain better
dependence on the parameters of interest. We will also need a claim to expresses the bias of the bits in
p o Z. The proof can be found in the appendix.

Claim 3.3. Fiz p € [0,1] and a random variable Z. Let E be an event which is independent from p (in
that the conditional distribution of p is identical to the unconditioned distribution). Then

Prl(po Z); = 1|E] = pPr{Z; = 1|E] + (1 p),2
Theorem 1.3, which we restate here, is obtained by an appropriate setting of parameters.

Theorem 1.3. Let €, > 0 be arbitrary, § > ¢'/8 and

$ < exp (O(\@ /Iog(1/5) /log(l/(S))l/(dl)>.

e log(1/e’)

Then for F = C(S,d), there is a random variable D over {0,1}™ with n = O(log(1/68)/e%) so that D is
d-dense in an €' -pseudorandom set but does not have a §-dense e-model. In particular, the dense model
theorem s false in this setting.

Proof. Let n = log(1/8)/e%, k = log(2/¢') and K = (2k?)/e’. We also need K > 1/26 by the restriction in
Lemma 3.1, which explaines the restriction 83k% > ¢’, simplified by using 85 > &’ (a stronger restriction)
instead. Let S and D be the random variables from Lemma 3.1. By Claim 3.3, the bias of po S (where
p ~ R,) is py/log(1/6)/8K. By Claim 3.1 and Lemma 3.1, po S is & = k?/K + (pO(log S)¢~1)*
pseudorandom. We can also ensure that po S does not have a §-dense e-model when p/log(1/§)/8K >
log(1/0)/n, by Lemma 2.1.

By substituting, p > 21/K/n = 2./(ke)2/e’ - log(1/5). In comparison, ¢’ > k?/K + (pO(log S)4~1)*.

Recalling that k?/K = ¢'/2, we get that

£'/2 > (2¢/K/nO(log S)4~1)k
L@/ 2 Ofog 5)*
\/105 1/(5 ) ng . (6//2)1/k > O(lOgS)dil.
log1/§ Ve -1
. . NSV > O(log S)* 1.

The claim follows by solving for S. |
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4 Proof of Theorem 1.4

Theorem 1.4 follows by combining Lemma 2.2 and the following lemma:
Lemma 4.1. N, has (¢, 8)-pseudodensity for C(S,d) for e = (p- O(log S)*1)* and § = e=**/»,

Of note, the only additive error depends on the error from the switching lemma. Compare this with
the claim that N, is (3a - O(log S)?!)-pseudorandom (and therefore has the same pseudodensity for
d =1) for C(S,d), due to Tal [16].

To prove the lemma, we need a few claims.

Claim 4.1. Suppose f € C(S,d). Then there is a depth-k decision tree h with the property that:
E[f(Na)] < E[A(Ngyp)] + (p- O(log $)4~1)*

Proof. Take Z = N, in Lemma 2.3, so we have po N, ,, = N, and

a/p a/p
E[f(Na)] < E[hp(Nayp)] + (p- O(log §)4~H)F
Averaging over p yields the fixed decision tree. |

Second, we can upper bound the extent to which the acceptance probability of a short decision tree
increases when passing from the uniform distribution U to the biased distribution N

Claim 4.2. Suppose f :{0,1}" — {—1,1} is a depth-k decision tree. Then
E[f(N,)] < (1+)" - E[f(U)] <™ -E[f(U)]

The proof amounts to a calculation, which we include in the appendix. We're now in a position to
prove the lemma.

Proof of Lemma /.1. Directly applying Claim 4.1, we get
E[f(No)] < E[f'(Nap)] + (p- Olog §)71)*

Applying Claim 4.2 to E[f'(N,,)], we get

Putting these together finishes the proof. |
We can now prove Theorem 1.4, restated here:

Theorem 1.4. Fize, ', >0,d €N, and

V6 log(1/8) \1/(d=1)
s<en(o(2 )" ")

Then N\/s/ié over {0,1}™ with n = O(1/e) is (¢/,9)-pseudodense and yet N\/ETS is not 0-dense inside of
any e-pseudorandom set.
Proof of Theorem 1.4. Let n = 1/(7¢), k = log(1/¢’) and a = 4/e/6. These choices satisfy a >

\/ 75(1/n + €), meaning Ny, is not d-dense in any e-pseudorandom set for C(S,d), by Lemma 2.2.

By Lemma 4.1, N, has (¢, §)-pseudodensity for § = e=**/? and ¢’ = (p- O(log S)?~1)k.
The constraint on the density implies

_ ellog(1/<)
log(1/)
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Plugging this value of p into the expression for ', we get
&' = (p- O(log S)~1)"
()'*/p = O(log 5)*~
ey iosare)  YOL80/0) 00 gran

Velog(1/)
Note that (5’)1/1083(1/8/) = 9~ log(1/¢)/1os(1/¢") — 1/2. Solving for S gives the claimed bound. |

5 Proofs of Theorem 1.5 and Theorem 1.6

In this section, we prove Theorem 1.5 and Theorem 1.6. We include them in the same section due to
their similarity and start with Theorem 1.5 which is more involved. Indeed, Theorem 1.6 will follow
directly from a result of Shaltiel and Viola [42] after an appropriate error reduction procedure.

5.1 Proof of Theorem 1.5

As in Theorem 1.4, we will prove unconditional pseudodensity for N, and compare it with the lower
bound for « given by Lemma 2.2.

Let Sp,, , denote the (random variable uniform over the) set of n-bit strings of weight exactly n/2—F.
We convert a function which refutes the pseudodensity of N, into a (random) function which distinguishes
between the two ‘slices’ of the hypercube of weight m/2 — am and m/2, which extend similar ideas from
[42, 33, 44].

Lemma 5.1. Let f : {0,1}" — {0,1} be a function for which SE[f(N,)] — ¢ > E[f(U)] and let
q =E[f(Ny)]. Then for any positive integer ¢, there is a random function F : {0,1}"™ — {0,1} so that

Pr[F(Spmam) = O] < el
Pr[F(Sp,, ) = 1] < {qd.
Moreover, F is the OR of £ copies of f (on random inputs).

Proof. Fix an input z € {0,1}™. For i € [{], let I, denote the random length n sequence over [m]
obtained by sampling n indices ji, ..., j, € [m] independently, uniformly at random (with replacement).
The random function is defined as
F(z) = \/ f(a)

i€[(]
We can evaluate F’s acceptance probability on Sp,,, ., and Sp,, , as follows:

1. Suppose z € Sp,;, 4m- Then each z1, is distributed as N, on n bits, meaning the 21,’s constitute
¢ independent samples from N,. By definition, f accepts with probability ¢ over N, and so the
probability that f doesn’t accept in ¢ independent runs is (1 — ¢)¥ < e=*4,

2. Suppose z € Sp,, ;,/0- Then 21, € {0,1} is a uniformly random string, meaning we have ¢
independent samples from U. For each sample, f outputs 1 independently with probability ¢’ =
E[f(U)], so that this occurs once in ¢ attempts happens with probability at most ¢¢’. Since
q' < g6 — e < ¢, we can bound this by £qd.

Lemma 5.2. Fiz ¢',§ > 0 and § < ¢ for some absolute constant ¢ ~ 1/200 Let F be a field of positive
characteristic p = O(1) and let F be the set of all polynomials P € F[ X1, ..., X,] with degree at most d.
Then if N, has (€', 0)-pseudodensity with respect to F, d = O(1/a).

Note that there is no dependence on ¢’. This is a relic of the field size p > 0, which allows us to
approximate large fan-in ORs with polynomials whose degree does not depend on the fan-in but only
the quality of approximation.

We will proceed in the contrapositive; if N, isn’t pseudodense, we will use the witness to construct
a polynomial which we can prove degree lower bounds on directly. By ensuring that the degrees are
related by a constant factor, we get the lower bound. The proof uses the following approximation of the
OR function as a low-degree polynomial over F when F has positive characteristic (in characteristic zero,
there is dependence on the fan-in of the OR, which we want to avoid).
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Claim 5.1 ([37]). For any n and any finite field F with characteristic p > 0, there is a distribution R
on degree d polynomials so that for all z € {0,1}"

Pr[R(z) = OR(z)] > 1 -+~
where d < plog(1/v). Moreover, R is supported on polynomials R with R(z) € {0,1} for every z € {0,1}"
We also use a special case of the robust Hegédus lemma, discovered recently by Srinivasan [44].

Lemma 5.3 (Robust Hegédus lemma (special case), [44]). Let F be a finite field. Let 2-™/190 < X\ < ¢
where ¢ < 1 is a (small) absolute constant. Let o*m be an integer so that 2-20"m > X\ Then if
P :F" = T is a degree d polynomial for which:

1. Pr[P(SPy.am) #0] <A

2. Pr[P(Sp,,) =0] <1-— e=o'm/2
Then d = Q(am).

Now we can prove the main lemma.

Proof of Lemma 5.2. Let P :F" — F be a degree d polynomial. We can assume P takes boolean values
over {0, 1}" by replacing P with PP~ (p being F’s characteristic). This increases the degree to less than
pd. Assume towards a contradiction that P can certify that N, is not (¢’,§)-pseudodense, in the sense
that 6 Pr[P(N,) # 0] — &’ > Pr[P(U) # 0].

Let ¢ = Pr[P(N,)]. Applying Lemma 5.1 to P (noting that P is boolean on {0,1}"™) with £ specified
later, we obtain a random polynomial F of the form V; P(21,). For a fixed z € {0,1}", let X(2) = (21,)ic[q
For + to be determined later, let R be the random polynomial from Claim 5.1 and we remark that R
can be made to output boolean values on boolean inputs. Then for any z € {0,1}™, F(z) = OR(X(z))
so F(z) = R(X(z)) with probability 1 — . In sum, R(X(+)) has the property that:

Pr[R(X(SPy.am)) = 0] < e +7;
Pr[R(X(SP,,0)) = 1

Moreover, R(X(+)) is a random polynomial over F of degree at most dp?log(1/7), with the p? coming
from possibly replacing P with PP~1,

We now apply Lemma 5.3 to R(X(+)). Let ¢ denote the constant from the statement of the lemma.
Let m =In(1/c)/2a%, A =e "+ v < ¢, v=c¢/2 and £ = In(2/c)/q < (In(2/c)d) /e’ where the inequality
is because ¢ > ¢’/ follows from dqg — ¢’ > 0. With this setting of parameters, note that, in regards to
the hypotheses of Lemma 5.3, we have 2-"/100 < )\ < 2-20°m — ¢

By calculating, R(X(-))’s classifies Sp,, , incorrectly with probability e = ¢/2 and classifies
SPum am incorrectly with probability £gé < In(2/c)d, which we can bound away from 1 by choosing
0 to be a sufficiently small constant.

Therefore, by Lemma 5.3, the degree of some polynomial in the support of R(X(+)) is Q(1/«). Since
~ and p (F’s characteristic) are constants, the same conclusion therefore holds of P. ]

We can now prove Theorem 1.5, restated here:

Theorem 1.5. Fiz a finite field F with characteristic p = O(1) , e,¢/ > 0 and let ¢ > & > 0 where
¢ = 1/200 is an absolute constant. Suppose that

d<O(\/d/¢)

Then when F is the n-variate degree-d polynomials over F with n = 1/e, and o = O(\/e/d), Ng is
(e, 6)-pseudodense but is not 6-dense inside of an e-pseudorandom set.

Proof of Theorem 1.5. If N, is (¢’,§)-pseudodense with respect to degree-d polynomials over F, then
d = O(1/a). On the other hand, taking o > /1/85(1/n + ) implies that N, is not J-dense in an e-
pseudorandom set. Therefore, if we take n = 1/e then picking o > /2¢/86 will give us a separation. W
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5.2 Proof of Theorem 1.6

In what is becoming tradition, we will show an unconditional pseudodensity result, from which Theo-
rem 1.6 will follow by Lemma 2.2.

Lemma 5.4. Let € > 0 and 1/4 > § > 0 be arbitrary. Suppose F is a test class of boolean functions
f:{0,1}" — {0,1} with the following property: there is no AC® F-oracle circuit of size poly(n/ag)
which computes MAJ on O(1/a) input bits. Then N, is (€4, d)-pseudodense.

This will follow from the result of from Shaltiel and Viola:

Theorem 5.1 ([42]). Let f: {0,1}™ — {0,1} be a function that distinguishes between U and Ny, with
constant distinguishing probability. Then there is an AC°-circuit of size poly(n/a) using f-oracle gates
which computes magjority on O(1/a) bits.

Proof of Lemma 5./. Suppose N, is not (ed, §)-pseudodense for F as in the statement of the theorem
and let f witness this fact with ¢ = E[f(Ng)].

Let
F(2) = \/ f(p,(2))
jel
where each p; is a random permutation of [n]. When z ~ N, p,(z) is distributed as N, and likewise
for U. Hence F rejects samples from N, with probability (1 — ¢)¢ < e~ which is constant when
£=1/q < §/e’" =1/¢, this latter property following because g —¢&’ > 0. Additionally, F accepts samples
from U with probability £qd, which is at most § for our choice of £. Averaging, some function in F’s
support distinguishes N, and U with constant advantage. Applying Theorem 5.1 yields a small AC®
circuit computing majority, which is a contradiction. |

Theorem 1.6. Let €, > 0. Suppose F is a test class of boolean functions f : {0,1}™ — {0,1} with the
following property: there is no AC® F-oracle circuit of size poly(n- 5\3//32) computing magjority on O(\/d/e)
bits.

Then N\/E%

hypotheses are met, the dense model theorem is false.

is (€0, 0)-pseudodense and yet does not have a d-dense e-model. In particular, when the

The proof is the same as Theorem 1.5, so we omit the details.
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A Omitted proofs

A.1 Proof of Claim 3.3

Claim 3.3. Fiz p € [0,1] and a random variable Z. Let E be an event which is independent from p (in
that the conditional distribution of p is identical to the unconditioned distribution). Then

Pr[(poZ); =1|E] =pPr[Z;, = 1|E] + (1 — p)/2
Proof. Let R; be the event that i € p~!(x).

Pr[(po Z); = 1|E] = Pr[R;] Pr[Z; = 1|R;, E] + Pr[-R;] Pr[p, = 1|-R;, E]
=pPr[Z;|E]+ (1 -p)/2

where we used independence of Z; from R, and the independence of p, = 1 from E to obtain the final
line. |

A.2 Proof of Claim 4.2
Claim 4.2. Suppose f:{0,1}"™ — {—1,1} is a depth-k decision tree. Then
E[f(N,)] < (1 +7)"-E[f(U)] < " -E[f(U)]

Proof. We proceed by induction. When k& = 0, f is constant and so the claim holds trivially. Suppose
f(z) = (1 = 2)g(z) + z;h(z) where g, h have depth-k decision trees which don’t depend on z;. Note that
E[f(U)] = (E[g(U)] + E[h(U)])/2 and assume that E[g(U)]/2 > E[f(U)]. For z ~ N,

E[f(2)] = E[(1 = z1)g(2)] + E[z:h(2)]
= (1 - E[z])E[g(2)] + E[z]E[h(2)] (independence)
< (1/2—¢e)(1 +e)*E[g(U)] + (1/2 + &) (1 + £)"E[h(U)] (induction)
= (1+¢)*[(Elg(U)] + E[A(V)))/2 - eE[g(UV)] + <E[h(U)]]
= (1+¢)"[E[f(U)] - ¢E[g(U)] + £(2E[f U] — E[g(U)))]
= (1+¢)"[E[f(U)] + £(2E[fU] — E[g(U)])]
< (1 + O [ELF(U)] + <E{fU] (assuming E[g)/2 < E[]
= (1+¢)**"-E[f(U)]
The argument for E[h]/2 < E[f] is the same. |
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