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Abstract. We construct two classes of algebraic code families which are efficiently list
decodable with small output list size from a fraction 1−R−ε of adversarial errors where
R is the rate of the code, for any desired positive constant ε. The alphabet size depends
only on ε and is nearly-optimal.

The first class of codes are obtained by folding algebraic-geometric codes using au-
tomorphisms of the underlying function field. The second class of codes are obtained
by restricting evaluation points of an algebraic-geometric code to rational points from a
subfield. In both cases, we develop a linear-algebraic approach to perform list decoding,
which pins down the candidate messages to a subspace with a nice “periodic” structure.

To prune this subspace and obtain a good bound on the list-size, we pick subcodes of
these codes by pre-coding into certain subspace-evasive sets which are guaranteed to have
small intersection with the sort of periodic subspaces that arise in our list decoding. We
develop two approaches for constructing such subspace-evasive sets. The first is a Monte
Carlo construction of hierearchical subspace-evasive (h.s.e) sets which leads to excellent
list-size but is not explicit. The second approach exploits a further ultra-periodicity of our
subspaces and uses a novel construct called subspace designs, which were subsequently
constructed explicitly and also found further applications in pseudorandomness.

To get a family of codes over a fixed alphabet size, we instantiate our approach with
algebraic-geometric codes based on the Garcia-Stichtenoth tower of function fields. Com-
bining this with pruning via h.s.e sets yields codes list-decodable up to a 1−R− ε error
fraction with list size bounded by O(1/ε), matching the existential bound for random

codes up to constant factors. Further, the alphabet size can be made exp(Õ(1/ε2)) which
is not much worse than the lower bound of exp(Ω(1/ε)). The parameters we achieve are
thus quite close to the existential bounds in all three aspects—error-correction radius,
alphabet size, and list-size— simultaneously. This construction is, however, Monte Carlo
and the claimed list decoding property only holds with high probability. Once the code is
(efficiently) sampled, the encoding/decoding algorithms are deterministic with a running
time Oε(N

c) for an absolute constant c, where N is the code’s block length.
Using subspace designs instead for the pruning, our approach yields a deterministic

construction of an algebraic code family of rate R with efficient list decoding from 1−R−ε
fraction of errors over an alphabet of constant size exp(Õ(1/ε2)). The list size bound is
upper bounded by a very slowly growing function of the block length N ; in particular, it
is at most O(log(r) N) (the r’th iterated logarithm) for any fixed integer r. The explicit
construction avoids the shortcoming of the Monte Carlo sampling at the expense of a
worse list size.

Extended abstracts announcing these results were presented at the 2012 and 2013 ACM Symposia
on Theory of Computing (STOC) [18, 19]. This is a merged and significantly revised version of these
conference papers, that accounts for the explicit subspace designs that were constructed in [11] subsequent
to [19], makes some simplifications and improvements in the construction of h.s.e sets in Section 9
compared to [18], and reorganizes the material and flow substantially.
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1. Introduction

An error-correcting code C of block length N over a finite alphabet Σ maps a setM
of messages into codewords in ΣN . The rate of the code C, denoted R, equals 1

N log|Σ| |M|.
In this work, we will be interested in codes for adversarial noise, where the channel can
arbitrarily corrupt any subset of up to τN symbols of the codeword. The goal will be to
correct such errors and recover the original message/codeword efficiently. It is easy to see
that information-theoretically, we need to receive at least RN symbols correctly in order
to recover the message (since |M| = |Σ|RN ), so we must have τ 6 1−R.

Perhaps surprisingly, in a model called list decoding, recovery up to this information-
theoretic limit becomes possible. Let us say that a code C ⊆ ΣN is (τ, `)-list decodable
if for every received word y ∈ ΣN , there are at most ` codewords c ∈ C such that y
and c differ in at most τN positions. Such a code allows, in principle, the correction
of a fraction τ of errors, outputting at most ` candidate codewords one of which is the
originally transmitted codeword.

The probabilistic method shows that a random code of rate R over an alphabet of
size exp(O(1/ε)) is with high probability (1−R− ε,O(1/ε))-list decodable [4]. However,
it is not known how to construct or even randomly sample such a code for which the
associated algorithmic task of list decoding (i.e., given y ∈ ΣN , find the list of codewords
within fractional radius 1−R−ε) can be performed efficiently. This work takes a big step
in that direction, giving a randomized construction of such efficiently list-decodable codes
over a slightly worse alphabet size of exp(Õ(1/ε2)). We note that the alphabet size needs
to be at least exp(Ω(1/ε)) in order to list decode from a fraction 1−R− ε of errors, 1 so
this is close to optimal. For the list-size needed as a function of ε for decoding a 1−R− ε
fraction of errors, the best lower bound is only Ω(log(1/ε)) [12], but as mentioned above,
even random coding arguments only achieve a list-size of O(1/ε), which our construction
matches up to constant factors. We also give a fully deterministic construction with a
list-size that is very slowly growing as a function of the block length.

We now review some of the key results on algebraic list decoding leading up to this
work. A more technical comparison with related work appears in Section 1.1. The work of
Sudan [31] used bivariate polynomial interpolation to give the first efficient list decoding
algorithm for Reed-Solomon codes, which for rates R below 1/3 corrected a fraction of
errors exceeding the (1 − R)/2 bound achievable by unique decoding. Guruswami and
Sudan [15] introduced multiplicities in the interpolation step and gave an efficient list

decoding algorithm that could correct an error-fraction 1 −
√
R. The multiplicities also

offered an avenue to incorporate “soft” information about varying reliability of different
symbols, which was developed by Koetter and Vardy [21] to give an influential algebraic

soft-decision decoder for Reed-Solomon codes. The 1 −
√
R bound remained the largest

known efficiently list-decodable error-fraction for any value of rate R till Parvaresh and
Vardy [26] gave a variant of Reed-Solomon codes list-decodable up to error fraction 1 −
O(R log(1/R)) which beats the 1−

√
R bound for low-rates.

Building on the Parvaresh-Vardy work together with further new algebraic ideas,
Guruswami and Rudra [13] gave the first construction of codes that achieved the optimal
trade-off between rate and list-decoding radius, i.e., enabled list decoding up to a fraction
1−R− ε of worst-case errors with rate R. They showed that a variant of Reed-Solomon

1 The best trade-off between rate R and list decoding radius τ is the Gilbert-Varshamov bound, i.e.,
R 6 1 − Hq(τ), where Hq(τ) is the q-ary entropy function x logq(q − 1) − x logq x − (1 − x) logq(1 − x).

The function 1−Hq(τ) is equal to 1− τ − ε if the alphabet size is at least exp(Ω(1/ε)).
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(RS) codes called folded RS codes admit such a list decoder. For a decoding radius of
1 − R − ε, the code was based on bundling together disjoint windows of m = Θ(1/ε2)
consecutive symbols of the RS codeword into a single symbol over a larger alphabet. As

a result, the alphabet size of the construction was NΩ(1/ε2). It was also shown in [13]
that ideas based on code concatenation and expander codes can be used to bring down
the alphabet size to exp(Õ(1/ε4)) which is independent of the block length. However, the
resulting codes lose some important and powerful features such as list recovery and soft
decoding of the folded RS codes. Also, the decoding time complexity as well as proven
bound on worst-case output list size for folded RS codes were NΩ(1/ε).2

Our main final result statement is the following, offering two constructions, one ran-
domized and one deterministic, of variants of algebraic-geometric (AG) codes that are
list-decodable with optimal rate. These appear as Theorems 11.4 and 11.8 in the final
section of the paper.

Theorem 1.1 (Main). For any R ∈ (0, 1) and positive constant ε ∈ (0, 1), there is

(i) a Monte Carlo construction of a family of codes of rate at least R over an alphabet
size exp(O(log(1/ε)/ε2)) that are encodable and (1−R−ε,O(1/(Rε))-list decodable
in Oε(N

c) time3, where N is the block length of the code and c is an absolute
positive constant.

(ii) a deterministic construction of a family of codes of rate at least R over an alphabet
size exp(O(log2(1/ε)/ε2)) that are encodable and (1 − R − ε, L(N))-list decodable

in Oε(N
c) time, for a list size that satisfies L(N) = o(log(r)N) (the r’th iterated

logarithm) for any fixed integer r.

The first part of Theorem 1.1 is achieved through folded algebraic-geometric codes.
To fold algebraic-geometric codes, we first find suitable automorphisms of the ground
function field. The list of possible candidate messages output by the list decoder has
exponential size, but is contained in a well structured subspace. To prune down the list
size, we only encode messages that belong to so-called hierarchical subspace-evasive sets,
which are chosen to have small intersection with the structured subspaces arising in the
decoding. To make use of subspace-evasive sets efficiently, we have to: (i) give an efficient
pseudorandom construction of these sets; and (ii) encode the messages to subspace-evasive
sets efficiently. We refer to Section 2 for details.

The second part of Theorem 1.1 is obtained through usual algebraic-geometric codes
with evaluation points over subfields. As in the first part, the list of possible candi-
date messages belongs to a subspace that is well structured, specifically with a property
we called ultra-periodicity (Definition 3). The approach based on hierarchical subspace-
evasive sets in the first part leads to excellent list size; however, we only know randomized
constructions of hierarchical subspace-evasive sets. To obtain a deterministic list decod-
ing, we prune down the list of possible solutions through subspace designs (see Section 2
for details).

We note that our Monte Carlo construction gives codes that are quite close to the
existential bounds in three aspects simultaneously — the trade-off between error fraction
1 − R − ε and rate R, the list-size as a function of ε, and the alphabet size of the code
family (again as a function of ε). Even though these codes are not fully explicit, they are
“functionally explicit” in the sense that once the code is (efficiently) sampled, with high

2The list size for decoding folded RS codes was shown to be bounded by a constant depending only on
ε in subsequent work [23].

3We use the Oε(·) notation to hide constant factors that depend on ε.
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probability the polynomial time encoding and decoding algorithms deliver the claimed
error-correction guarantees for all allowed error pattern. The explicit construction avoids
this shortcoming at the expense of a slightly worse list size.

1.1. Prior and related work. Let us recap a bit more formally the construction of
folded RS codes from [13]. One begins with the Reed-Solomon encoding of a polyno-
mial f ∈ Fq[X] of degree < k consisting of the evaluation of f on a subset of field
elements ordered as 1, γ, . . . , γN−1 for some primitive element γ ∈ Fq and N < q. For
an integer “folding” parameter m > 1 that divides N , the folded RS codeword is de-
fined over alphabet Fmq and consists of n/m blocks, with the j’th block consisting of the

m-tuple (f(γ(j−1)m), f(γ(j−1)m+1), . . . , f(γjm−1)). The algorithm in [13] for list decod-

ing these codes was based on the algebraic identity f(γX) = f(X)
q

in the residue field
Fq[X]/(Xq−1−γ) where f denotes the residue f mod (Xq−1 − γ). This identity is used to
solve for f from an equation of the form Q(X, f(X), f(γX), . . . , f(γs−1X)) = 0 for some
low-degree nonzero multivariate polynomial Q. The high degree q > n of this identity,
coupled with s ≈ 1/ε, led to the large bounds on list-size and decoding complexity in [13].

One possible approach to reduce q (as a function of the code length) in this con-
struction would be to work with algebraic-geometric codes based on function fields K over
Fq with more rational points. However, an automorphism σ of K that can play the role
of the automorphism f(X) 7→ f(γX) of Fq(X) is only known (or even possible) for very
special function fields. This approach was used in [9] to construct list-decodable codes
based on cyclotomic function fields using as σ certain Frobenius automorphisms. These
codes improved the alphabet size to polylogarithmic in N , but the bound on list-size and
decoding complexity remained NΩ(1/ε).

Subsequently, a linear-algebraic approach to list decoding folded RS codes was dis-
covered in [32, 10]. Here, in the interpolation stage, which is common to all list decoding
algorithms for algebraic codes [31, 15, 26, 13], one finds a linear multivariate polynomial
Q(X,Y1, . . . , Ys) whose total degree in the Yi’s is 1. The simple but key observation driv-
ing the linear-algebraic approach is that the equation Q(X, f(X), . . . , f(γs−1X)) = 0 now
becomes a linear system in the coefficients of f . Further, it is shown that the solution
space has dimension less than s, which again gives a list-size upper bound of qs−1. Finally,
since the list of candidate messages fall in an affine space, it was noted in [10] that one
can bring down the list size by carefully “pre-coding” the message polynomials so that
their k coefficients belong to a “subspace-evasive set” (which has small intersection with
every s-dimensional subspace of Fkq ). This idea was used in [16] to give a randomized con-
struction of (1−R− ε,O(1/ε))-list decodable codes of rate R. However, the alphabet size

and runtime of the decoding algorithm both remained NΩ(1/ε). Similar results were also
shown in [16, 22] for univariate multiplicity codes, where the encoding of a polynomial f
consists of the evaluations of f and its first m− 1 derivatives at distinct field elements.

Concurrently with the conference version of part of this work reported in [18], Dvir
and Lovett [3] gave an elegant construction of explicit subspace evasive sets based on
certain algebraic varieties. Furthermore, Ben-Aroya and Shinkar [1] improved the result
of [3] slightly by using an elementary construction. Their results yield an explicit version

of the codes from [10], albeit with a worse list size bound of (1/ε)O(1/ε). This work and
[3, 1] are incomparable in terms of results. The big advantage of [3, 1] is the deterministic
construction of the code. The benefits in our work are: (i) both constructions in the
present paper give codes over an alphabet size that is a constant independent of N ,

whereas in [3] the NΩ(1/ε2) alphabet size of folded RS codes is inherited; (ii) our first
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Monte Carlo construction ensures list-decodability with a list-size of O(1/ε) that is much
better and in fact matches the full random construction up to constant factors,4 and (iii)
our second construction gives a deterministic algorithm as well with almost constant list
size (and constant alphabet size). Another important feature is that both our work and
[3, 1] achieve a decoding complexity of Oε(N

c) with exponent independent of ε.

Our paper presents two class of codes: folded algebraic-geometric codes and usual
algebraic-geometric codes with evaluation points over subfields. For both the classes of
codes, we can apply hierarchical subspace-evasive sets as well as subspace design to prune
down the list size by taking certain subcodes. This is because of the “periodic” structure of
the subspace in which the candidate messages are pinned down by the linear-algebraic list
decoder is similar in both cases. Thus, we can obtain both randomized and deterministic
algorithms from each of the two classes of codes. In total, we have four combinations
of constructions. To illustrate both algebraic approaches, we decide to focus on two
combinations, i.e., (i) folded algebraic-geometric codes with hierarchical subspace-evasive
sets; and (ii) usual algebraic-geometric codes with evaluation points over subfields with
subspace designs. These are listed in Figure 1. We note that the other two combinations
are also possible, as the pruning of the subspace of solutions is “black-box” with respect
to its periodic structure.

In the table presented in Figure 1, we list previous results and those in this paper.
The major improvement of this work is to bring down the alphabet size to constant, while
at the same time ensuring small list size and low decoding complexity where the exponent
of the polynomial run time does not depend on ε. Our folded algebraic-geometric subcodes
achieve a list size matching the fully random constructions up to constant factors, together
with alphabet size not much worse than the lower bound exp(Ω(1/ε)). On the last line,
our algebraic-geometric subcodes give a deterministic list decoding with almost constant
list size and optimal decoding radius.

1.2. Subsequent works and open questions. The challenge of decoding up to radius
approaching the optimal bound (1−R) with rate R along with good list and alphabet size
is, for the most part, solved by our work. There are still some goals that have not been met.
One is to get a fully deterministic construction with constant list-size and alphabet size
(as a function of ε), and construction/decoding complexity Oε(N

c). This has been almost
achieved by Kopparty, Ron-Zewi, Saraf, and Wootters [23]. They prove that the list-size
for list-decoding folded Reed-Solomon codes is itself, without any pruning by subspace
evasive sets, bounded by a constant. They then combine it with several other tools from
algebraic coding theory and pseudorandomness to construct codes of rate R list-decodable
up to a (1 − R − ε) error fraction with constant list and alphabet size (depending only
on ε) and decoding complexity Oε(N

c) (in fact the exponent c can be made arbitrarily
close to 1). An exciting recent result by Guo and Ron-Zewi [8] achieves both constant
list-size and alphabet within our framework, via improved subspace evasive sets for the
ultra-periodic subspaces output by the list decoder.

Another challenge is to construct a (1−R−ε, L)-list decodable code of rate R (for list
size L bounded by a polynomial in the block length), over an alphabet of size exp(O(1/ε)),
which is the asymptotically optimal size. All known constructions over a constant-sized
alphabet known so far have alphabet size at least exp(Ω(1/ε2)). Finally, the various
algebraic and expander-based techiques that have led to progress on list decoding only

4As mentioned above, the bound in [3] is (1/ε)O(1/ε) and it seems very difficult to get a sub-exponential
dependence on 1/ε with the algebraic approach relying on Bezout’s theorem to construct subspace-evasive
sets.
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Code Construction Alphabet size List size Decoding time Reference

Folded RS/derivative Explicit NO(1/ε2) NO(1/ε) NO(1/ε) [13, 16]

Folded RS subcode Randomized NO(1/ε2) O(1/ε) NO(1/ε) [16]

Folded RS subcode Explicit NO(1/ε2) (1/ε)O(1/ε) NO(1)21/εO(1)
[3]

Folded cyclotomic Explicit∗ (logN)O(1/ε2) NO(1/ε2) NO(1/ε2) [9]

Folded AG subcode Randomized exp(Õ(1/ε2)) O(1/ε) NO(1)21/εO(1)
Thm. 1.1(i)

AG subcode Explicit exp(Õ(1/ε2)) 222(log∗ N)2

NO(1)(1/ε)O(1) Thm. 1.1(ii)

Figure 1. N in the above table stands for the length of codes. Parameters of

various constructions of codes that enable list decoding (1 − R − ε) fraction of

errors, with rate R. The last two lines are from this work. “Explicit” means

the code can be constructed in deterministic polynomial time (the ∗ for folded

cyclotomic is because of requirement of an irreducible polynomial of high degree,

which can be sampled and then checked (for a ”Las Vegas” construction)). The

rows with first column in boldface are not dominated by other constructions. The

last line gives the first deterministic construction of algebraic codes for efficient

optimal rate list decoding over constant-sized alphabets.

work over large alphabets. The challenge of efficient optimal rate list decoding over say
the binary alphabet, even for the simpler model of erasures, remains wide open. The
best known constructions are obtained via concatenation, and are list-decodable up to the
so-called Blokh-Zyablov bound [14].

1.3. Organization. The paper is organized as follows. In Section 2, we describe the
detailed techniques of our paper including algebraic approaches and pseudorandomness.
Following the section on techniques, in Section 3 we introduce periodic and ultra-periodic
subspaces, give definitions and basic properties. In Section 4, we recall some basic results
on function fields and algebraic-geometric codes. To illustrate our ideas in an algebraically
simpler (and perhaps more practical) setting, in Section 6 we give a construction based
on a tower of Hermitian field extensions [27]. This is capable of giving a similar result
to our best ones based on the Garcia-Stichtenoth tower, albeit with alphabet size and
list-size upper bound polylogarithmic in the code length. In Section 9 we first introduce
hierarchical subspace-evasive sets, then show that random sets are hierarchical subspace-
evasive with high probability. We also present a pseudorandom construction of hierarchical
subspace-evasive sets, which also allow for efficient encoding and efficient computation of
intersection with periodic subspaces.

Folded algebraic-geometric codes from the Garcia-Stichtenoth tower are studied in
Section 8. The list size, decoding radius and decoding algorithm via local expansion are
also discussed in this section. Section 11 is devoted to the discussion of pruning down the
list size for folded codes from both the Hermitian and the Garcia-Stichtenoth towers using
hierarchical subspace-evasive sets. The second class of our codes, namely usual algebraic-
geometric codes with evaluation points over subfields is presented in Section 7. In this
section, we first discuss list decoding for the simpler Reed-Solomon case, and then gener-
alize it to list decoding of arbitrary algebraic geometric codes and finally instantiate the
approach with the codes from the Garcia-Stichtenoth tower. In Section 10, we introduce
subspace designs and cascaded subspace designs, and discuss parameters of random and
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explicit constructions of those. In the last section, the explicit construction of subcodes
of RS and AG subcodes based on subspace designs is presented.

2. Our techniques

We describe some of the main new ingredients that go into our work. We need both
new algebraic insights and constructions, as well as ideas in pseudorandomness relating
to (variants of) subspace-evasive sets. We describe these in turn below.

2.1. Algebraic ideas. It is shown in [15] that one can list decode the usual algebraic-
geometric codes up to the Johnson bound. On the other hand, one has not found list
decoding algorithms of the usual algebraic-geometric codes beyond the Johnson bound.
Thus, to list decode the algebraic-geometric codes beyond the Johnson bound, it is natural
to consider some variants of usual algebraic-geometric codes as one does for Reed-Solomon
codes [13]. In this work, we present two new variants of algebraic-geometric codes–folded
algebraic geometric codes and usual algebraic geometric codes with evaluation points over
subfields. We describe these in turn.

2.1.1. Folding AG codes. The first approach is to use suitable automorphisms of function
fields to fold the code. This approach was used for Reed-Solomon codes in [13] and for
cyclotomic function field in [9], though this was done using the original approach in [13]
where the messages to be list decoded were pinned down to the roots of a higher degree
polynomial over a large residue field. As mentioned earlier, effecting this “non-linear”
approach in [13, 9] with automorphisms of more general function fields seems intricate at
best. In this work we employ the linear-algebraic list decoding method of [16]. However,
the correct generalization of the linear-algebraic list decoding approach to the function
field case is also not obvious. One of the main algebraic insights in this work is noting
that a possible way to generalize the linear-algebraic approach to codes based on algebraic
function fields is to rely on the local power series expansion of functions from the message
space at a suitable rational point. (The case for Reed-Solomon codes being the expansion
around 0, which is a finite polynomial form.)

Working with a suitable automorphism which has a “diagonal” action on the local
expansion lets us extend the linear-algebraic decoding method to AG codes (here by a
“diagonal” action, we mean that this action gives rise to equations on coefficients of
a polynomial that are diagonal). Implementing this for specific AG codes requires an
explicit specification of a basis for an associated message (Riemann-Roch) space, and the
efficient computation of the local expansion of the basis elements at a special rational point
on the curve. We show how to do this for two towers of function fields: the Hermitian
tower [27] and the asymptotically optimal Garcia-Stichtenoth tower [6, 7]. The former
tower is quite simple to handle — it has an easily written down explicit basis, and we
show how to compute the local expansion of functions around the point with all zero
coordinates. However, the Hermitian tower does not have bounded ratio of the genus
to number of rational points, and so does not give constant alphabet codes (we can get
codes over an alphabet size that is polylogarithmic in the block length though). Explicit
basis for Riemann-Roch spaces of the Garcia-Stichtenoth tower were constructed in [28].
Regarding local expansions, one major difference is that we work with local expansion of
functions at the point at infinity, which is fully “ramified” in the tower. For both these
towers, we find and work with a nice automorphism that acts diagonally on the local
expansion, and use it for folding the codes and decoding them by solving a linear system.



AG CODES & NEAR-OPTIMAL LIST DECODING 9

2.1.2. Restricting evaluation points to a subfield. The second approach is to work with
“normal” algebraic-geometric codes, based on evaluating functions from a Riemann-Roch
space at some rational places, except we use a constant field extension of the function
field for the function space, but restrict to evaluating at rational places over the original
base field. Let us give a brief idea why restricting evaluation points to a subfield enables
correcting more errors. The idea behind list decoding results for folded RS (or derivative)
codes in [13, 16] is that the encoding of a message polynomial f ∈ FQ[X] includes the
values of f and closely related polynomials at the evaluation points. Given a string not
too far from the encoding of f , one can use this property together with the “interpolation
method” to find an algebraic condition that f (and its closely related polynomials) must

satisfy, eg. A0(X)+A1(X)f(X)+A2(X)f q(X)+· · ·+As(X)f q
s−1

(X) ≡ 0 (mod xq−1−γ)
in the case of folded Reed-Solomon codes [13] (here γ is a primitive element of Fq, and
the A0, A1, . . . , As are low-degree polynomials found by the decoder). The solutions f(X)
to this equation form an affine space, which can be efficiently found (and later pruned for
list size reduction when we pre-code messages into a subspace-evasive set).

For Reed-Solomon codes as in Definition 6, the encoding only includes the values of f
at α1, α2, . . . , αn. But since αi ∈ Fq, we have f(αi)

q = fσ(αi) where fσ is the polynomial
obtained by the action of the Frobenius automorphism that maps y 7→ yq on f (formally,

fσ(X) =
∑k−1

j=0 f
q
jX

j if f(X) =
∑k−1

j=0 fjX
j). Thus the decoder can “manufacture” the

values of fσ (and similarly fσ
2
, fσ

3
, etc.) at the αi. Applying the above approach then

enables finding a relation A0(X)+A1(X)f(X)+A2(X)fσ(X)+ · · ·+As(X)fσ
s−1

(X) = 0,
which is again an Fq-linear condition on f that can be used to solve for f . We remark
here that this approach can also be applied effectively to linearized polynomials, and can
be used to construct variants of Gabidulin codes that are list-decodable up to the optimal
1−R fraction of errors (where R is the rate) in the rank metric [17].

To extend this idea to algebraic-geometric codes, we work with constant extensions
Fqm · F of algebraic function fields F/Fq. The messages belong to a Riemann-Roch space
over Fqm , but they are encoded via their evaluations at Fq-rational points. For decoding,
we recover the message function f in terms of the coefficients of its local expansion at
some rational point P . (The Reed-Solomon setting is a special case when F = Fq(X),
and P is 0, i.e., the zero of X.) To get the best trade-offs, we use AG codes based on
a tower of function fields due to Garcia and Stichtenoth [6, 7] which achieve the optimal
trade-off between the number of Fq-rational points and the genus. For this case, we recover
messages in terms of their local expansion around the point at infinity P∞ which is also
used to define the Riemann-Roch space of messages. So we treat this setting separately
(Section 8.3), after describing the framework for general AG codes first.

2.2. Pseudorandomness. The above algebraic ideas enable us to pin down the messages
into a structured subspace of dimension linear in the message length. The specific structure
of the subspace is a certain “periodicity” — there is a subspace W ⊂ Fmq such that once
f0, f1, . . . , fi−1 (the first i coefficients of the message polynomial) are fixed, fi belongs to a
coset of W . We now describe our ideas to prune this list, by restricting (or “pre-coding”)
the message polynomials to belong to carefully constructed pseudorandom subsets that
have small intersection with any periodic subspace.

2.2.1. Hierarchical subspace-evasive sets. The first approach follows along the lines of [16]
and we only encode messages in a subspace-evasive set which has small intersection with
low-dimensional subspaces. Implementing this in our case, however, leads to several prob-
lems. First, since the subspace we like to avoid intersecting much has large dimension,
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the list size bound will be linear in the code length and not a constant like in our final
result (by “a constant”, we mean that the list size is independent of the code length and
dependent on ε). More severely, we cannot go over the elements of this subspace to prune
the list as that would take exponential time. To solve the latter problem, we observe that
the subspace has a special “periodic” structure, and exploit this to show the existence of
large “hierarchically subspace evasive” (h.s.e) subsets which have small intersection with
the projection of the subspace on certain prefixes. Isolating the periodic property of the
subspaces, and formulating the right notion of evasiveness w.r.t to such subspaces, is an
important aspect of this work.

We also give a construction of good h.s.e sets using limited wise independent sample
spaces, in a manner enabling the efficient iterative computation of the final list of inter-
secting elements. Further our construction allows for efficient indexing into the h.s.e set
which leads to an efficient encoding algorithm for our code). As a further ingredient, we
note that the number of possible subspaces that arise in the decoding is much smaller
than the total number of possibilities. Using this together with an added trick in the h.s.e
set construction, we are able to reduce the list size to a constant.

2.2.2. Subspace designs. The approach based on h.s.e sets leads to excellent list size; how-
ever, we only know randomized constructions of h.s.e sets with the required properties.
Our second approach to prune the subspace of possible solutions is based on subspace
designs and leads to deterministic subcode constructions. More precisely speaking, the
coefficients f0, f1, . . . , fk−1 of the message polynomial (which belong to the extension field
Fqm) are pinned down by the linear-algebraic list decoder to a periodic subspace with the
property that there is an Fq-subspace W ⊂ Fqm such that once f0, f1, . . . , fi−1 are fixed, fi
belongs to a coset of W . Our idea then is to restrict fi to belong to a subspace Hi where
H1, H2, . . . ,Hk are a collection of subspaces in Fmq such that for any s-dimensional sub-
space W ⊂ Fmq , only a small number of them have non-trivial intersection with W . More

precisely, we require that
∑k

i=1 dim(W ∩Hi) is small. We call such a collection {Hi}ki=1 as
a subspace design in Fmq . We feel that the concept of subspace designs is interesting in its
own right, and view the introduction of this notion in Section 10 as a key contribution in
this work. Indeed, subsequent work by Forbes and Guruswami [5] highlighted the central
role played by subspace designs in “linear-algebraic pseudorandomness” and in particular
how they lead to rank condensers and dimension expanders.

A simple probabilistic argument shows that, with high probability, any qΩ(εm) sub-
spaces of dimension (1− ε)m that are randomly chosen have small total intersection with
every s-dimensional W . This construction can also be derandomized, though the con-
struction complexity of the resulting codes becomes quasi-polynomial with this approach
for the parameter choices needed in the construction.

Fortunately, in a follow-on to [19], Guruswami and Kopparty gave explicit construc-
tions of subspace designs with parameters nearly matching the random constructions [11].
One can pre-code with this subspace design to get explicit list-decodable sub-codes of
Reed-Solomon codes whose evaluation points are in a subfield (Section 11.2.1). However,
this construction inherits the large field size of Reed-Solomon codes.

For explicit subcodes of algebraic-geometric codes using subspace designs we need
additional ideas. The dimension k in the case of AG codes is much larger than the
alphabet size qm (in fact that is the whole point of generalizing to AG codes). So we
cannot have a subspace design in Fmq with k subspaces. We therefore use several “layers”
of subspace designs in a cascaded fashion (Section 10.4) — the first one in Fmq , the next
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one in Fm1
q for m1 � q

√
m, the third one in Fm2

q for m2 � q
√
m1 and so on. Since the mi’s

increase exponentially, we only need about log∗ k levels of subspace designs. Each level
incurs about a factor 1/ε increase in the dimension of the “periodic subspace” (W when
we begin) at the corresponding scale. With a careful technical argument and choice of
parameters, we are able to obtain the bounds of Theorem 1.1(ii).

3. Periodic subspaces

In this section we formalize a certain “periodic” property of affine subspaces that will
arise in our list decoding application.

We begin with some notation. For a vector y = (y1, y2, . . . , ym)T ∈ Fmq and positive

integers t1 6 t2 6 m, we denote by proj[t1,t2](y) ∈ Ft2−t1+1
q its projection onto coordinates

t1 through t2, i.e., proj[t1,t2](y) = (yt1 , yt1+1, . . . , yt2)T . When t1 = 1, we use projt(y) to

denote proj[1,t](y). By default, we treat vectors as column vectors. These notions are

extended to subsets of strings in the obvious way: proj[t1,t2](S) = {proj[t1,t2](x) | x ∈ S}.
For an affine space H, its underlying subspace is the subspace S such that H is a

coset of S.

Definition 1 (Periodic (affine) subspaces). For positive integers r, b,∆ with r < ∆ and
κ := b∆, an affine subspace H ⊂ Fκq is said to be (r,∆, b)-periodic if there exists a matrix

B ∈ F∆×∆
q whose kernel ker(B) has dimension at most r, and vectors a` ∈ F∆

q and

matrices A` ∈ F∆×(`−1)∆
q for 1 6 ` 6 b, such that every x ∈ H satisfies the following

equations for ` = 1, 2, . . . , b:

(1) a` +A` · proj(`−1)∆(x) +B · proj[(`−1)∆+1,`∆](x) = 0 .

In other words, the projections of the subspace onto blocks of contiguous ∆ symbols, con-
ditioned on any prefix, always belong to an affine shift of the subspace W := ker(B) of
dimension at most r.

For dimensions κ not necessarily divisible by ∆, we say that an affine subspace H ⊆
Fκq is (r,∆)-periodic if there is exists a (r,∆, b)-periodic subspace H ′ ⊆ Fb∆q for b = d κ∆e
such that H = proj[1,κ](H

′).

We will call W the recurring subspace of the periodic subspace H.

Definition 2 (Representing periodic affine subspaces). The matrices Ai and vectors ai,
i = 1, 2, . . . , b, and the matrix B, or equivalently the system of equations (1), can be
used to specify the (r,∆, b)-periodic subspace H, and this is the representation of periodic
subspaces that will naturally arise in our list decoders.

The motivation for the above definition will be clear when we present our linear-
algebraic list decoders, which will pin down the messages that must be output within an
(s − 1,m, k)-periodic (affine) subspace. (Here qm will be the alphabet size of the code,
k its dimension, and s will be a parameter of the algorithm that governs how close the
decoding performance approaches the Singleton bound.)

The following properties of periodic affine spaces follow directly from the definition.

Claim 3.1. Let H be an (r,∆, b)-periodic affine subspace. Then for each j = 1, 2, . . . , b,

(1) the projection of H to the first j blocks of ∆ coordinates, projj∆(H) = {projj∆(x) |
x ∈ H}, has dimension at most jr. (In particular H has dimension at most br.)
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(2) for each a ∈ F(j−1)∆
q , there are at most qr extensions y ∈ projj∆(H) such that

proj(j−1)∆(y) = a.

Ultra-periodic subspaces. For our result on pre-coding algebraic-geometric codes with
subspace designs, we will exploit an even stronger property that holds for the subspaces
output by the linear-algebraic list decoder. We formalize this notion below.

Definition 3 (Ultra-periodic subspace). For positive integers r, b,∆ with r < ∆, an
affine subspace H of Fκq for κ = b∆ is said to be (r,∆, b)-ultra periodic if there exist

vectors a` ∈ F∆
q and matrices B` ∈ F∆×∆

q with dim(ker(B`)) 6 r for ` = 1, 2, . . . , b, such
that every x ∈ H satisfies the following equations for ` = 1, 2, . . . , b:

(2) a` +
∑̀
i=1

B`−i+1 · proj(i−1)∆+1,i∆(x) = 0 .

In other words, the space H is defined by equations that have a lower-triangular “Toeplitz”
block-diagonal structure, with the blocks on the diagonal being B1, the blocks on the next
lower diagonal being B2, the next diagonal having B3, and so on.

For ambient dimensions κ not necessarily divisible by ∆, we say that an affine sub-
space H ⊆ Fκq is (r,∆)-ultra periodic if there is exists a (r,∆, b)-ultra periodic subspace

H ′ ⊆ Fb∆q for b = d κ∆e such that H = proj[1,κ](H
′).

We have the below observation that follows from the definition of ultra-periodicity.

Observation 3.2. If a subspace H of Fκq is (r,∆)-ultra periodic, then for every integer
`, 1 6 ` 6 κ

∆ , H is (`r, `∆)-periodic.

Thus ultra-periodicity captures the fact that the subspace is periodic not only for
blocks of size ∆, but also for block sizes that are multiples of ∆. Thus the subspace
looks periodic in multiple “scales” simultaneously. As with periodic subspaces, an ultra-
periodic subspace is defined by equations of the form (2), and this is how we will specify
the subspace.

4. Preliminaries on function fields and algebraic-geometric codes

For convenience of the reader, we start with some background on global function fields
over finite fields. The reader may refer to [30, 25] for detailed background on function
fields and algebraic-geometric codes.

4.1. General background on function fields. For a prime power q, let Fq be the
finite field of q elements. An algebraic function field over Fq in one variable is a field
extension F ⊃ Fq such that F is a finite algebraic extension of Fq(x) for some x ∈ F that
is transcendental over Fq. The field Fq is called the full constant field of F if the algebraic
closure of Fq in F is Fq itself. Such a function field is also called a global function field.
From now on, we always denote by F/Fq a function field F with the full constant field Fq.

4.1.1. Valuations, Places, and Divisors. A discrete valuation of F/Fq is a map from F
to Z ∪ {+∞} satisfying certain properties (see [30, Definition 1.19]). Then each discrete
valuation ν from F/Fq to Z ∪ {+∞} defines a valuation ring O = {f ∈ F : ν(f) > 0}
that is a local ring [30, Theorem 1.1.13]. The maximal ideal P of O is given by P = {f ∈
F : ν(f) > 0} and it is called a place. We denote the valuation ν and the local ring O
corresponding to P by νP and OP , respectively. The residue class field OP /P , denoted by
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FP , is a finite extension of Fq. The extension degree [FP : Fq] is called degree of P , denoted
by deg(P ). A place of degree one is called a rational place. For a nonzero function z ∈ F ,
the principal divisor of z is defined to be div(z) =

∑
P∈PF νP (z)P . The zero and pole divi-

sors of z are defined to be div(z)0 =
∑

νP (z)>0 νP (z)P and div(z)∞ = −
∑

νP (z)<0 νP (z)P ,

respectively. Then we have deg(div(z)) = 0, i.e, deg(div(z)0) = deg(div(z)∞). For two
functions f, g ∈ F and a place P , we have νP (f + g) > min{νP (f), νP (g)} and the equal-
ity holds if νp(f) 6= νP (g) (note that νP (0) = +∞). This implies that f + g 6= 0 if
νP (f) 6= νP (g).

If F is the rational function field Fq(x), then every discrete valuation of F/Fq is
given by either ν∞ or νp(x) for an irreducible polynomial p(x), where ν∞ is defined by

ν∞(f/g) = deg(g) − deg(f) and νp(x)(f/g) = a − b with p(x)a||f and p(x)b||g for two
nonzero polynomials f, g ∈ Fq[x]. It is straightforward to verify that the degrees of places
corresponding to ν∞ and νp(x) are 1 and deg(p(x)), respectively.

Let PF denote the set of places of F . The divisor group, denoted by Div(F ), is the
free abelian group generated by all places in PF . An element G =

∑
P∈PF nPP of Div(F )

is called a divisor of F , where nP = 0 for almost all P ∈ PF . We denote np by νP (G).
The support, denoted by Supp(G), of G is the set {P ∈ PF : nP 6= 0}. Thus, Supp(G) of
a divisor G is always a finite subset of PF .

4.1.2. Constant field extension. One of our code constructions will be based on evaluations
of functions at rational points over a subfield. For this purpose, we will work with constant
field extensions over Fqm of a function field over a base field Fq. We describe these now.

Let F/Fq be a function field. Fix an algebraic closure F̄ of F . Then F̄ contains the
algebraic closure F̄q = ∪∞i=1Fqi as well. Hence, for m > 1, F̄ contains the extension field

Fqm of Fq. The composite field Fm := Fqm · F is defined to be the smallest subfield of F̄
that contains both F and Fqm . Then we have the following facts (see [30, Propositions
3.6.1 and 3.6.3]):

(i) the full constant field of Fm is Fqm ;

(ii) each subset of F that is linearly independent over Fq remains so over Fm;

(iii) [Fm : Fqm(x)] = [F : Fq(x)] for any x ∈ F \ Fq;
(iv) a place P of F of degree d splits into gcd(m, d) places of Fm of degree d/ gcd(m, d)

(in the case of rational function fields, this means that an irreducible polynomial
over Fq of degree d is factorized into product of gcd(m, d) irreducible polynomials
over Fqm of degree d/ gcd(m, d));

(v) genus of Fm is equal to genus of F .

A divisor G =
∑

P∈PF nPP of F can be viewed as the divisor
∑

P∈PF
∑

P ′|P nPP
′ of Fm.

We still denote this divisor of Fm by G. By (iv) of the above facts, a rational place P of F
continues to be a rational place P ′ of Fm. The valuation ring of P ′s is the tensor product
of OP with Fqm , i.e, OP ′ = OP ⊗Fq Fqm . If there is no confusion, we still denote P ′ by P .

4.1.3. Riemann-Roch spaces. For a divisor G of F/Fq, we define the Riemann-Roch space
associated with G by

L(G) := {f ∈ F ∗ : div(f) +G > 0} ∪ {0},

where F ∗ denotes the set of nonzero elements of F . Then L(G) is a finite dimensional
space over Fq and its dimension `(G) is determined by the Riemann-Roch theorem which
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gives

`(G) = deg(G) + 1− g + `(W −G),

where g is the genus of F and W is a canonical divisor of degree 2g − 2. Therefore, we
always have that `(G) > deg(G) + 1 − g and the equality holds if deg(G) > 2g − 1 [30,
Theorems 1.5.15 and 1.5.17].

Consider the finite extension Fqm over Fq and the constant extension Fm := Fqm · F
over F . As a divisor G of F can be viewed as a divisor of Fm, we can consider the
Riemann-Roch space in Fm given by

Lm(G) := {f ∈ F ∗m : div(f) +G > 0} ∪ {0}.

Then it is clear that Lm(G) contains L(G) and Lm(G) is a finite dimensional vector
space over Fqm . Furthermore, Lm(G) is the tensor product of L(G) with Fqm (see [29,
Proposition 5.8 of Chapter II]). This implies that

dimFqm (Lm(G)) = dimFq(L(G))

and an Fq-basis of L(G) is also an Fqm-basis of Lm(G).

4.1.4. Automorphisms. The automorphisms of the function field F that fix Fq are denoted
by Aut(F/Fq). For an automorphism φ ∈ Aut(F/Fq) and and a function f ∈ F , we denote

by fφ the action of φ on f . For a place P , define a map νPφ from F to Z ∪ {+∞} given

by f 7→ νP (fφ
−1

). Then one can show that νPφ indeed satisfies the properties given in
[30, Definition 1.19] and hence it is a discrete valuation. The valuation ring OPφ of νPφ is
given by

{h ∈ F : νPφ(h) > 0} = {h ∈ F : νP (hφ
−1

) > 0} h=f
φ

= {fφ ∈ F : νP (f) > 0} = {fφ : f ∈ OP }.

and the maximal ideal of this valuation ring is {φ(x) : x ∈ P}. Therefore, this maximal
ideal is a place of F , denoted by P φ. Moreover, φ induces an Fq-isomorphism between the

residue fields FP and FPφ . Hence, we have deg(P ) = deg(P φ).

For a function f and a rational place P ∈ PF with νP (f) > 0, we denote by f(P ) the
residue class of f in the residue class field FP at P . If νP (f) > 0 and νPφ(f) > 0, then

one has that νP (fφ
−1

) > 0. Furthermore, there is an Fq-isomorphism between OP and

OPφ given by f 7→ fφ. This induces the identity map between FP = Fq and FPφ = Fq.
Hence, f(P ) = fφ(P φ). Replacing f by fφ

−1
gives f(P φ) = fφ

−1
(P ).

For a divisor G =
∑

P∈PF mPP we denote by Gφ the divisor
∑

P∈PF mPP
φ. There-

fore, we have

φ(L(G)) := {fφ : f ∈ L(G)} = L(Gφ).

Assume that E/Fq is a subfield of F and φ is an automorphism of Aut(F/E). Then for a

divisor G of F that is invariant under φ, we have φ(L(G)) = L(G).

Next we consider the constant extension Fm = Fqm · F . Let σ be the Frobenius
automorphism Fqm/Fq, i.e., σ(α) = αq for any α ∈ Fqm . Then σ can be extended to an
automorphism of Aut(Fm/F ) given by σ(f) = f for any f ∈ F and σ(α) = αq for any
α ∈ Fqm . If P is a rational place of F , then P remains to be a rational place P ′ of Fm
and hence σ(OP ′) = σ(OP ⊗Fq Fqm) = OP ⊗Fq Fqm = OP ′ . Thus, we have (P ′)σ = P ′.
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4.2. Algebraic-geometric codes. Let P = {P1, P2, . . . , PN} be a set of N distinct ratio-
nal places of a function field F/Fq of genus g. Let G be a divisor of F with Supp(G)∩P = ∅.
Then the algebraic-geometric code defined by

(3) C(P, G) := {(f(P1), f(P2), . . . , f(PN )) : f ∈ L(G)}
is an Fq-linear code of length N . Furthermore, the dimension of C(P, G) is equal to `(G)
if N > deg(G).

The (generalized) Reed-Solomon codes can be realized under the above framework of
algebraic-geometric codes. More precisely speaking, the Reed-Solomon codes are algebraic-
geometric codes based on rational function fields. Let us give the detail on construction
of the Reed-Solomon codes under the framework of algebraic-geometric codes.

Let F = Fq(x) be a rational function field. Let α1, α2, . . . , αn be n distinct elements
of Fq. Denote by Pi the unique zero of x−αi for 1 6 i 6 n and put P = {P1, P2, . . . , Pn}.
Let P∞ be the unique pole of x. Put G = (k−1)P∞. Then the Riemann-Roch space L(G)
is the Fq-space consisting of polynomials of degree less than k. By definition, we have

C(P, G) = {(f(P1), f(P2), . . . , f(PN )) : f ∈ L(G)}
= {(f(α1), f(α2), . . . , f(αN )) : f ∈ Fq[x], deg(f) 6 k − 1}.

The codes considered in this paper are variations of the above algebraic-geometric
codes, namely, folded algebraic-geometric codes and algebraic-geometric codes with eval-
uation points in a subfield.

A folded algebraic-geometric code is a code with each coordinate being a column

vector (f(P ), f(P σ), . . . , f(P σ
m−1

))T ∈ Fmq for a function f ∈ L(G), a rational place P and
an automorphism σ ∈ Aut(F/Fq), where T stands for transpose. This is a generalization of
folded Reed-Solomon codes introduced in [13]. The main reason why a folded algebraic-
geometric code is used is that once a position is transmitted correctly, then one gets

m correct components (f(P ), f(P σ), . . . , f(P σ
m−1

)). Consequently, more interpolation
equations are increased and list decoding radius is enlarged (see Lemma 6.2, for instance).

Similar to folded algebraic-geometric codes, introducing algebraic-geometric codes
with evaluation points in a subfield is for purpose of increasing list decoding radius as
well. We choose N rational places P1, P2, . . . , PN of a function field F/Fq and let σ be the
Frobenius automorphism of Fqm/Fq. Then one has P σi = Pi for all 1 6 i 6 N . Thus, once
we have a correct position f(Pi) for some function f ∈ Lm(G), we get correct information

for other m−1 elements f(Pi)
σj = fσ

j
(Pi) for i = 1, 2, . . . ,m−1. As a result, list decoding

radius is enlarged (see Lemma 7.7, for instance).

4.3. Background on Hermitian tower. In what follows, let r be a prime power and
let q = r2. We denote by Fq the finite field with q elements. The Hermitian function tower
that we are going to use for our code construction was discussed in [27]. The reader may
refer to [27] for the detailed background on the Hermitian function tower. The Hermitian
tower is defined by the following recursive equations

(4) xri+1 + xi+1 = xr+1
i , i = 1, 2, . . . , e− 1.

Put Fe = Fq(x1, x2, . . . , xe) for e > 2. We will assume that r > 2e.

4.3.1. Rational places. The function field Fe has re+1 + 1 rational places. One of these
is the “point at infinity” which is the unique pole P∞ of x1 (and is fully ramified). The
other re+1 come from the rational places lying over the unique zero Pα of x1 − α for
each α ∈ Fq. Note that for every α ∈ Fq, Pα splits completely in Fe, i.e., there are re−1
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rational places lying over Pα. Intuitively, one can think of the rational places of Fe (besides
P∞) as being given by e-tuples (α1, α2, . . . , αe) ∈ Feq that satisfy αri+1 + αi+1 = αr+1

i for
i = 1, 2, . . . , e − 1. For each value of α ∈ Fq, there are precisely r solutions to β ∈ Fq
satisfying βr + β = αr+1, so the number of such e-tuples is re+1 (q = r2 choices for α1,
and then r choices for each successive αi, 2 6 i 6 e).

4.3.2. Riemann-Roch spaces. For an integer l, we consider the Riemann-Roch space de-
fined by

L(lP∞) := {h ∈ Fe \ {0} : νP∞(h) > −l} ∪ {0}.
By the Riemann-Roch theorem, its dimension `(lP∞) is at least l−ge+1 and furthermore,

`(lP∞) = l − ge + 1 if l > 2ge − 1 ,

where ge is the genus of the function field Fe given by (6) below.

A basis over Fq of L(lP∞) can be explicitly constructed as follows

(5)

{
xj11 · · ·x

je
e : (j1, . . . , je) ∈ Ze>0,

e∑
i=1

jir
e−i(r + 1)i−1 6 l

}
.

We stress that evaluating elements of L(lP∞) at the rational places of Fe (other than
P∞) is easy: we simply have to evaluate a linear combination of the monomials allowed
in (5) at the tuples (α1, α2, . . . , αe) ∈ Feq mentioned above. In other words, it is just

evaluating an e-variate polynomial at a specific subset of re+1 points of Feq, and can be
accomplished in polynomial time.

4.3.3. Genus. The genus ge of the function field Fe is given by
(6)

ge =
1

2

(
e−1∑
i=1

re
(

1 +
1

r

)i−1

− (r + 1)e−1 + 1

)
6
re

2

e∑
i=1

(
e

i

)
1

ri−1
6
ere

2

e∑
i=1

(e
r

)i−1
6 ere

where the last step used r > 2e.

4.3.4. A useful automorphism. Let γ be a primitive element of Fq. Then for i > 1, one

has γr(r+1)i = γ(r2+r)(r+1)i−1
= γ(1+r)(r+1)i−1

= γ(r+1)i . Consider the automorphism
σ ∈ Aut(Fe/Fq) defined by

σ : xi 7→ γ(r+1)i−1
xi for i = 1, 2, . . . , e.

Indeed, σ defines an automorphism σ ∈ Aut(Fe/Fq) since after action of σ the equation

(4) becomes (γ(r+1)ixi+1)r + γ(r+1)ixi+1 = (γ(r+1)i−1
xi)

r+1, i.e., xri+1 + xi+1 = xr+1
i by

cancelling γ(r+1)i in both the sides. The order of σ is q − 1 and furthermore, we have the
following facts:

(i) Let P0 be the unique common zero of x1, x2, . . . , xe (this corresponds to the e-tuple
(0, 0, . . . , 0)), and P∞ the unique pole of x1. The automorphism σ keeps P0 and
P∞ unchanged, i.e., P σ0 = P0 and P∞

σ = P∞,
(ii) Let P be the set of all the rational places which are neither P∞ nor zeros of x1. Then
|P| = (q − 1)re−1. Moreover, σ divides P into re−1 orbits and each orbit has q − 1
places. For an integer m with 1 6 m 6 q − 1, we can label Nm distinct elements

P1, P
σ
1 , . . . , P

σm−1

1 , . . . , PN , P
σ
N , . . . , P

σm−1

N in P, as long as N 6 re−1
⌊
q−1
m

⌋
.
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4.4. Background on Garcia-Stichtenoth tower. Again let r be a prime power and let
q = r2. We denote by Fq the finite field with q elements. The Garcia-Stichtenoth towers
that we are going to use for our code construction were discussed in [6, 7]. The reader
may refer to [6, 7] for the detailed background on the Garcia-Stichtenoth function tower.
There are two optimal Garcia-Stichtenoth towers that are equivalent. For simplicity, we
introduce the tower defined by the following recursive equations [7]

(7) xri+1 + xi+1 =
xri

xr−1
i + 1

, i = 1, 2, . . . , e− 1.

Put Ke = Fq(x1, x2, . . . , xe) for e > 2.

4.4.1. Rational places. The function field Ke has at least re−1(r2 − r) + 1 rational places.
One of these is the “point at infinity” which is the unique pole P∞ of x1 (and is fully
ramified). The other re−1(r2 − r) come from the rational places lying over the unique
zero of x1 − α for each α ∈ Fq with αr + α 6= 0. Note that for every α ∈ Fq with
αr + α 6= 0, the unique zero of x1 − α splits completely in Ke, i.e., there are re−1 rational
places lying over the zero of x1 − α. Let P be the set of all the rational places lying over
the zero of x1 − α for all α ∈ Fq with αr + α 6= 0. Then, intuitively, one can think of
the re−1(r2 − r) rational places in P as being given by e-tuples (α1, α2, . . . , αe) ∈ Feq that

satisfy αri+1 + αi+1 =
αri

αr−1
i +1

for i = 1, 2, . . . , e − 1 and αr1 + α1 6= 0. For each value of

α ∈ Fq, there are precisely r solutions to β ∈ Fq satisfying βr+β = αr

αr−1+1
, so the number

of such e-tuples is re−1(r2−r) (r2−r choices for α1, and then r choices for each successive
αi, 2 6 i 6 e).

4.4.2. Riemann-Roch spaces. As shown in [28], every function of Ke with a pole only at
P∞ has an expression of the form

(8) xa1

(e−2)r+1∑
i1=0

r−1∑
i2=0

· · ·
r−1∑
ie=0

cih1
xi11 x

i2
2 · · ·xiee

π2 . . . πe−1

 ,

where a > 0, ci ∈ Fq, and for 1 6 j < e, hj = xr−1
j + 1 and πj = h1h2 . . . hj . Moreover,

Shum et al. [28] present an algorithm running in time polynomial in l that outputs a basis
of over Fq of L(lP∞) explicitly in the above form.

We stress that evaluating elements of L(lP∞) at the rational places of P is easy: we
simply have to evaluate a linear combination of the monomials allowed in (8) at the tuples
(α1, α2, . . . , αe) ∈ P (note that hi(P ), πj(P ) ∈ F∗q for every P ∈ P). In other words, it is

just evaluating an e-variate polynomial at a specific subset of re−1(r2 − r) points of Feq,
and can be accomplished in polynomial time.

4.4.3. Genus. The genus ge of the function field Ke is given by

ge =

{
(re/2 − 1)2 if e is even

(r(e−1)/2 − 1)(r(e+1)/2 − 1) if e is odd.

Thus the genus ge is at most re. (Compare this with the ere bound for the Hermitian tower;
this smaller genus is what allows to pick e as large as we want in the Garcia-Stichtenoth
tower, while keeping the field size q fixed.)
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4.4.4. A useful automorphism. Let γ be a primitive element of Fq and consider the auto-
morphism σ ∈ Aut(Ke/Fq) defined by

σ : xi 7→ γr+1xi for i = 1, 2, . . . , e.

Indeed, σ defines an automorphism σ ∈ Aut(Ke/Fq) since after action of σ the equation

(7) becomes (γr+1xi+1)r+γr+1xi+1 = (γr+1xi)
r

(γr+1xi)r−1+1
, i.e, xri+1+xi+1 =

xri
xr−1
i +1

by cancelling

γr+1 on both the sides (note the fact that γ(r+1)r = γr+1 and γr
2−1 = 1). The order of σ

is r − 1 and furthermore, we have the following facts:

(i) σ keeps P∞ unchanged, i.e., P∞
σ = P∞;

(ii) Let P be the set of all the rational places lying over x1 − α for all α ∈ Fq with
αr + α 6= 0. Then |P| = (r − 1)re. Moreover, σ divides P into re orbits and each
orbit has r − 1 places. For an integer m with 1 6 m 6 r − 1, we can label Nm
distinct elements

P1, P
σ
1 , . . . , P

σm−1

1 , . . . , PN , P
σ
N , . . . , P

σm−1

N

in P, as long as N 6 re
⌊
r−1
m

⌋
.

5. Local expansions and encoding

Similar to the Laurent series expansion of a complex function f(z) in the neighbor-
hood of a complex number, one can write functions in a function field as a power series
(with finitely many negative powers) around a place P , called the local expansion around
P . Local expansions play an important role in the encoding and decoding of the codes we
construct, and we discuss them separately in this section.

5.1. Local expansion at a place. Let F/Fq be a function field and let P be a rational
place. An element t of F is called a local parameter at P if νp(t) = 1 (such a local parameter
always exists) — intuitively this is a function which has a simple zero at P , similar to how
(z − 1) has a simple zero at 1. For a nonzero function f ∈ F with νP (f) > v, we have

νP

(
f
tv

)
> 0. Put fv =

(
f
tv

)
(P ), i.e., fv is the value of the function f/tv at P . Note that

the function f/tv − fv satisfies νP

(
f
tv − fv

)
> 1, hence we know that νP

(
f−fvtv
tv+1

)
> 0.

Put fv+1 =
(
f−avtv
tv+1

)
(P ). Then νP (f − fvtv − fv+1t

v+1) > v + 2.

Assume that we have obtained a sequence {fr}mr=v (m > v) of elements of Fq such

that νP (f −
∑k

r=v frt
r) > k + 1 for all v 6 k 6 m. Put fm+1 =

(
f−

∑m
r=v frt

r

tm+1

)
(P ). Then

νP (f −
∑m+1

r=v frt
r) > m + 2. In this way we continue our construction of fr. Then we

obtain an infinite sequence {fr}∞r=v of elements of Fq such that νP (f −
∑m

r=v frt
r) > m+1

for all m > v. We summarize the above construction in the formal expansion

(9) f =

∞∑
r=v

frt
r,

which is called the local expansion of f at P .

It is clear that the local expansion of a function depends on the choice of the local
parameter t. Note that if a power series

∑∞
i=v ait

i satisfies νP (f −
∑m

i=v ait
i) > m+ 1 for

all m > v, then it is a local expansion of f . The above procedure shows that finding a local
expansion at a rational place is very efficient as long as the computation of evaluations of
functions at this place is easy.
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If f belongs to a Riemann-Roch space L(G) with deg(G) = d. Denote νP (G) by v,
then the first d + 1 coefficients av, av+1, . . . , av+d in (9) determines the function f . To
see this, assume that g is a function of L(G) with the first d + 1 coefficients in its local
expansion equal to those of f . Then we have f − g ∈ L(G − (d + 1)P ) which is the zero
vector space. This implies that f = g.

5.2. Encodings using local expansion. An algebraic-geometric code as defined in (3)
encodes messages which belong to a Riemann-Roch space L(G). The most common in-
stantiation, which suffices for most purposes, is to take G = lP∞ for some rational place
P∞ (though of as the place at infinity). For such spaces, one can compute bases for
the Riemann-Roch spaces explicitly in many cases, including the Hermitian and Garcia-
Stichtenoth towers as mentioned in Sections 4.3 and 4.4. For k linearly independent
functions g1, g2, . . . , gk in L(lP∞), one can interpret a message vector (a1, . . . , ak) ∈ Fkq as

the function f =
∑k

i=1 aigi ∈ L(lP∞) and then encode it.

For our decoding, we will actually recover the message f ∈ L(lP∞) in terms of the
coefficients of its local expansion around a rational place P

(10) f = x−ν(f0 + f1x+ f2x
2 + · · · )

where x is a local parameter at P . The place P may or may not equal P∞ — when
we instantiate the algorithm of this section for the Hermitian tower, we will use a place
different than P∞ for P , whereas for the Garcia-Stichtenoth tower, we will use P = P∞.
The description of the algorithm and its analysis in this section will be general and cover
both cases. Let νP (P∞) = ν with ν = 0 if P∞ 6= P and ν = l if P = P∞. Realizing that one
must work in this power series representation is one of the key insights in this work behind
the extension of the linear-algebraic folded Reed-Solomon list decoding algorithm [16] to
the algebraic-geometric setting.

Given this, we will find it convenient to let the message vector consist of (f0, f1, . . . , fk−1)
∈ Fk (k being the dimension of the code), which we will then map to a function f in
an appropriate Riemann-Roch space. Here we denote the field by F, to capture both
F = Fq and F = Fqm when we work with constant field extensions Fm and seek functions
f ∈ Lm(lP∞). Likewise, we use the common notation LF(lP∞) to denote L(lP∞) when
F = Fq, and Lm(lP∞) when F = Fqm .

If we seek a k-dimensional message space, it is natural to let the message functions
belong to L((k+g−1)P∞) which has dimension exactly k by the Riemann-Roch theorem
(when k is at least the genus g, which will always hold for our codes). However, we desire
to index the messages of the code instead by the first k coefficients (f0, f1, . . . , fk−1) of the
local expansion of the function f at P . Therefore we require that for every (f0, f1, . . . , fk−1)
there is a f ∈ LF(lP∞) whose local expansion at P has the fi’s as the first k coefficients.
We can ensure by taking a slightly larger value of l, namely l = k + 2g − 1 as we argue
below. Since the genus will be much smaller than the code length, we can afford the
resulting small loss in distance and list-decoding radius.

We will recover the message in terms of the coefficients of its local expansion at P .

Restricting message functions using local expansions. In order to prune the sub-
space of possible solutions, we will pick a subcode that corresponds to restricting the
coefficients to a carefully constructed subset of all possibilities. This requires us to in-
dex message functions in terms of the local expansion coefficients. However, not all
(k + 2g − 1) tuples over F arise in the local expansion of functions in the k-dimensional
subspace LF((k + 2g− 1)P∞). Below we show that we can find a k-dimensional subspace
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of LF((k + 2g − 1)P∞) such that their top k local expansion coefficients give rise to all
k-tuples over F.

Lemma 5.1. There exist a set of functions {g1, g2, . . . , gk} in LF((k + 2g − 1)P∞) such
that the k × k matrix A formed by taking the ith row of A to be the first k coefficients in
the local expansion (9) for gi at P is non-singular.

Proof. Let {ψ1, ψ2, . . . , ψg} be a basis of LF((k + 2g − 1)P∞ − kP ). Extend this basis to
a basis {ψ1, ψ2, . . . , ψg, g1, g2, . . . , gk} of LF((k+ 2g− 1)P∞). We claim that the functions
{g1, g2, . . . , gk} are our desired functions.

Suppose that the matrix A is obtained from expansion of functions gi and it is

singular. This implies that there exists elements {λi}ki=1 such that the function
∑k

i=1 λigi
has local expansion

∑∞
i=k aiT

i at P for some ai ∈ F. Therefore, the function
∑k

i=1 λigi
belongs to the space LF((k + 2g − 1)P∞ − kP ), i.e.,

∑k
i=1 λigi is a linear combination of

ψ1, ψ2, . . . , ψg. This forces that all λi are equal to 0 since {ψ1, . . . , ψg, g1, g2, . . . , gk} is
linearly independent. This completes the proof. �

With the above lemma in place, we now describe our AG code in a manner convenient
for pruning the possible local expansion coefficients.

Encoding. Assume that we have found a set of functions {g1, g2, . . . , gk} of LF((k+ 2g−
1)P∞) as in Lemma 5.1. After elementary row operations on the matrix A defined in
Lemma 5.1, we may assume that A is the k × k identity matrix, i.e., we assume that, for
1 6 i 6 k, the function gi has local expansion T i−1 +

∑∞
j=k λijT

j for some λij ∈ F. Now

we encode each message (a1, a2, . . . , ak) ∈ Fk to the codeword (f(P1), f(P2), . . . , f(PN )),

where f =
∑k

i=1 aigi.

Now define the map φP : Fk → LF((k + 2g− 1)P∞) by sending (a1, a2, . . . , ak) ∈ Fk
to
∑k

i=1 aigi. We record the above fact for easy reference below.

Claim 5.2. The map φP : Fk → LF((k + 2g − 1)P∞) is Fq-linear and injective. Fur-
thermore, we can compute a representation of this linear transformation using poly(N, g)
operations over Fq, and the map itself can be evaluated using poly(N, g) operations over
Fq provided that local expansion of the basis elements of L((k + 2g − 1)P∞) at P can be
computed using poly(N, g) operations over Fq.

6. Folded algebraic-geometric codes and their list decoding

In this section, we will describe a variation of algebraic-geometric codes, namely,
folded algebraic-geometric codes and their list decoding. For convenience, we will focus
on one-point algebraic-geometric codes though this is not in any way a necessary restriction
for our approach.

6.1. Folded algebraic-geometric codes. Let F/Fq be a function field. To construct our
folded codes, we assume that there exists a global function field F with the full constant
field Fq having the following property:

(i) There exists an automorphism σ in Aut(F/Fq) of order at least m;

(ii) F has mN distinct rational places P1, P
σ
1 , . . . , P

σm−1

1 , P2, P
σ
2 , . . . , P

σm−1

2 , . . . ,

PN , P
σ
N , . . . , P

σm−1

N ;
(iii) F has a rational place P∞ such that P∞ is fixed under σ, i.e., P∞

σ = P∞; and

P σ
j

i 6= P∞ for all 1 6 i 6 N and 0 6 j 6 m− 1.
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A folded algebraic geometric code can be defined as follows.

Definition 4 (Folded AG codes). The folded code from F with parameters N, l, q,m,
denoted by F(N, l, q,m), encodes a message function f ∈ L(lP∞) as

(11) π : f 7→




f(P1)
f(P σ1 )

...

f(P σ
m−1

1 )

 ,


f(P2)
f(P σ2 )

...

f(P σ
m−1

2 )

 , . . . ,


f(PN )
f(P σN )

...

f(P σ
m−1

N )


 ∈ (Fmq )N .

We will abuse notation and for clarity refer to the encoding map π also as F(N, l, q,m).

Note that the folded code F(N, l, q,m) has the alphabet Fmq and it is Fq-linear. Fur-
thermore, F(N, l, q,m) has the following parameters.

Lemma 6.1. If l < mN , then the above code F(N, l, q,m) is an Fq-linear code with

alphabet size qm, rate at least l−g+1
Nm , and minimum distance at least N − l

m , where g is
the genus of F .

Proof. It is clear that the map π in (11) is Fq-linear and the kernel of π is

L
(
lP∞ −

N∑
i=1

m−1∑
j=0

P σ
j

i

)
which is {0} under the condition that l < mN . Thus, π is injective. Hence, the rate

is at least l−g+1
Nm by the Riemann-Roch theorem. To see the minimum distance, let f

be a nonzero function in L(lP∞) and assume that I is the support of π(f). Then the

Hamming weight wtH(π(f)) of π(f) is |I| and f ∈ L
(
lP∞ −

∑
i 6∈I
∑m−1

j=0 P σ
j

i

)
. Thus,

0 6 deg
(
lP∞ −

∑
i 6∈I
∑m−1

j=0 P σ
j

i

)
= l−m(N − |I|), i.e., wtH(π(f)) = |I| > N − l

m . This

completes the proof. �

6.2. Encoding of code using local expansions. For our decoding, we will actually
recover the message f ∈ L(lP∞) in terms of the coefficients of its power series expansion
around a rational place P

(12) f = x−ν(f0 + f1x+ f2x
2 + · · · )

where x is a local parameter at P . The place P may or may not equal P∞ – when
we instantiate the algorithm of this section for the Hermitian tower, we will use a place
different than P∞ for P , whereas for the Garcia-Stichtenoth tower, we will use P = P∞.
The reason for different choice of P is that we need an explicit and simple local parameter
at P such that this local parameter still has an explicit and simple form after action of
automorphism. The description of the algorithm and its analysis in this section will be
general and cover both cases by letting νP (P∞) = ν with ν = 0 if P∞ 6= P and ν = l if
P = P∞. Realizing that one must work in this power series representation is one of the
key insights in this work behind the extension of the linear-algebraic folded Reed-Solomon
list decoding algorithm [16] to the algebraic-geometric setting.

As already mentioned in Section 5, one can injectively map the top k coefficients
of the above local expansion (12) into functions in L(lP∞) for l = k + 2g − 1. We will
now redefine a version of the folded algebraic-geometric code that maps Fkq to (Fmq )N by

composing the folded encoding (11) from the original Definition 4 with the map φP : Fkq →
L((k + 2g− 1)P∞) promised in Claim 5.2.
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Definition 5 (Folded algebraic-geometric code using local expansion). The folded algebraic-

geometric code F̃(N, k, q,m) maps

f = (f0, f1, . . . , fk−1) ∈ Fkq 7→ F(N, k + 2g− 1, q,m)(φP (f)) ∈ (Fmq )N ,

where F(. . . ) is the folded AG code from Definition 4.

The rate of the above code equals k/(Nm) and its distance is at least N − (k+ 2g−1)/m.

6.3. List decoding folded algebraic-geometric codes. We now present a list decoding
algorithm for the above codes. The algorithm follows the linear-algebraic list decoding
algorithm for folded Reed-Solomon codes.

Suppose a codeword (11) encoded from f ∈ L((k + 2g− 1)P∞) was transmitted and
received as

(13) y =


y1,1 y2,1 yN,1

y1,2 y2,2
...

. . .

y1,m · · · yN,m

 ,

where some columns are erroneous. Let s > 1 be an integer parameter associated with
the decoder.

Lemma 6.2. Given a received word as in (13), we can find a nonzero linear polynomial
in F [Y1, Y2, . . . , Ys] of the form

(14) Q(Y1, Y2, . . . , Ys) = A0 +A1Y1 +A2Y2 + · · ·+AsYs

satisfying

(15) Q(yi,j+1, yi,j+2, · · · , yi,j+s) = A0(P σ
j

i ) +A1(P σ
j

i )yi,j+1 + · · ·+As(P
σj

i )yi,j+s = 0

for i = 1, 2, . . . , N and j = 0, 1, . . . ,m−s. The coefficients Ai of Q satisfy Ai ∈ L(κP∞)
for i = 1, 2, . . . , s and A0 ∈ L((κ+ (k+ 2g− 1))P∞) for a “degree” parameter κ chosen as

(16) κ =

⌈
N(m− s+ 1)− (k + 2g− 1) + (s+ 1)(g− 1) + 1

s+ 1

⌉
.

Proof. Let u and v be dimensions of L(κP∞) and L((κ+(k+2g−1))P∞), respectively. Let
{x1, . . . , xu} be an Fq-basis of L(κP∞) and extend it to an Fq-basis {x1, . . . , xv} of L((d+
k+2g−1)P∞). Then Ai is an Fq-linear combination of {x1, . . . , xu} for i = 1, 2, . . . , s and
A0 is an Fq-linear combination of {x1, . . . , xv}. Determining the functions Ai is equivalent
to determining the coefficients in the combinations of Ai. Thus, there are in total su+ v
degrees of freedoms to determine A0, A1, . . . , As. By the Riemann-Roch theorem, the
number of degrees of freedoms is at least s(κ− g+ (k+ 2g− 1)) + (κ+ k+ 2g− 1)− g+ 1.

On the other hand, there are in total N(m − s + 1) equations in (15). Thus, there
must be one nonzero solution by the condition (16), i.e., Q(Y1, Y2, . . . , Ys) is a nonzero
polynomial. �

Lemma 6.3. If f is a function in L(lP∞) whose encoding (11) agrees with the received
word y in at least t columns with

t >
κ+ l

m− s+ 1
,

then Q(f, fσ
−1
, . . . , fσ

−(s−1)
) is the zero function, i.e.,

(17) A0 +A1f +A2f
σ−1

+ · · ·+Asf
σ−(s−1)

= 0.
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Proof. Since P∞ = P∞
σ, we have fσ

i ∈ L(lP∞) for all i ∈ Z. Thus, it is clear that

Q(f, fσ
−1
, . . . , fσ

−(s−1)
) is a function in L((κ+ l)P∞).

Let us assume that I ⊆ {1, 2, . . . , N} is the index set such that the ith columns
of y and π(f) agree if and only if i ∈ I. Then we have |I| > t. For every i ∈ I and
0 6 j 6 m− s, we have by (15)

0 = A0(P σ
j

i ) +A1(P σ
j

i )yi,j+1 +A2(P σ
j

i )yi,j+2 + · · ·+As(P
σj

i )yi,j+s

= A0(P σ
j

i ) +A1(P σ
j

i )f(P σ
j

i ) +A2(P σ
j

i )f(P σ
j+1

i )) + · · ·+As(P
σj

i )f(P σ
j+s−1

i )

= A0(P σ
j

i ) +A1(P σ
j

i )f(P σ
j

i ) +A2(P σ
j

i )fσ
−1

(P σ
j

i ) + · · ·+As(P
σj

i )fσ
−s+1

(P σ
j

i )

=
(
A0 +A1f +A2f

σ−1
+ · · ·+Asf

σ−s+1
)

(P σ
j

i ),

i.e., P σ
j

i is a zero of Q(f, fσ, . . . , fσ
s−1

). Hence, Q(f, fσ
−1
, . . . , fσ

−(s−1)
) is a function in

L
(

(κ+ l)P∞ −
∑

i∈I
∑m−s

j=0 P σ
j

i

)
. Our desired result follows from the fact that

deg
(

(κ+ l)P∞ −
∑

i∈I
∑m−s

j=0 P σ
j

i

)
< 0. �

By Lemma 6.3, we know that all candidate functions f in our list must satisfy
equation (17). In other words, we have to study the solution set of equation (17).
The method used in [13] for decoding the Reed-Solomon codes is to construct an irre-

ducible polynomial h(x) of degree q − 1 such that every polynomial f satisfies fσ
−1 ≡ f q

mod h. Then the solution set of (11) is the same as the solution set of the equation

A0 + A1f + A2f
q + · · · + Asf

qs−1 ≡ 0 mod h since deg(f) < q − 1 = deg(h). Thus,
there are at most qs−1 solutions for equation (11). This method does not work for folded
algebraic-geometric codes. To upper bound list size of a folded algebraic-geometric code,
we require an automorphisms of Aut(F/Fq) with order proportional to the genus g of F .
However, it was proved in [24] that the order of an automorphisms of Aut(F/Fq) is upper
bounded O(g/ log g).

In this paper, we will analyze the solutions of the equation (11) by considering local
expansions at a certain point. This local expansion method guarantees a structured list
of exponential size. Through precoding by using the structure in the list, we will be able
to obtain an explicit construction of subcodes of these codes with polynomial time list
decoding.

Solving the functional equation for f . Recall that our goal is to recover the top k
coefficients (f0, f1, . . . , fk−1) of the local expansion f = x−ν

∑∞
j=0 fjx

j at P , based on the

functional equation (17) that f satisfies.

We now prove that (f0, f1, . . . , fk−1) for f satisfying Equation (17) belong to a peri-
odic subspace (in the sense of Definition 1) of not too large dimension.

Lemma 6.4. Let P and P∞ be two rational places of F (P and P∞ can be the same) and
let f ∈ L((k + 2g − 1)P∞). Assume that σ ∈ Aut(F/Fq) is an automorphism satisfying
P∞

σ = P∞. Let x ∈ F be a local parameter at P satisfying xσ = x
ξ for an element ξ ∈ F∗q

of order p. Put ν = k + 2g− 1 if P = P∞ and 0 otherwise.

Then the set of solutions (f0, f1, . . . , fk−1) ∈ Fkq such that f = x−ν(f0 + f1x+ f2x
2 +

· · · ) ∈ L((k + 2g− 1)P∞) obeys the equation

(18) A0 +A1f +A2f
σ−1

+ · · ·+Asf
σ−(s−1)

= 0,

when the Ai’s obey the pole order restrictions of Lemma 6.2 and at least one Ai is nonzero,
is an (s− 1, p)-ultra periodic subspace of Fkq .
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Further, there are at most qNm+s+1 possible choices of this subspace over varying
choices of the Ai’s.

Proof. Let u = min{νP (Ai) : i = 1, 2, . . . , s}. Then we have νP (A0) = νP (−
∑s

i=1Aif
−σi−1

) >
min{νP (Aif

−σi−1
)) : i = 1, 2, . . . , s} > min{νP (Ai) − ν : i = 1, 2, . . . , s} = u − ν. Each

Ai has a local expansion at P :

Ai = xu
∞∑
j=0

ai,jx
j

for i = 1, . . . , s, and A0 = xu−ν
∑∞

j=0 a0,jx
j which can be efficiently computed from the

basis representation of the Ai’s. From the definition of u, one knows that the polynomial

B0(X) := a1,0 + a2,0X + · · ·+ as,0X
s−1

is nonzero. Assume that at P , the function f has a local expansion x−ν
∑∞

j=0 fjx
j . Then

fσ
−i

has a local expansion at P as follows

fσ
−i

= ξ−iνx−ν
∞∑
j=0

ξijfjx
j .

By direct inspection, we see that for every d > 0, the coefficient of xd+u−ν in the local

expansion of A0 +A1f +A2f
σ−1

+ · · ·+Asf
σ−(s−1)

equals

(19) 0 = B0(ξd−ν)fd +
d∑
j=1

Bj(ξ
d−j−µ)fd−j + a0,d,

where similarly to B0(X), the degree (s− 1) polynomials Bj(X), j > 1, are defined as

Bj(X) = a1,j + a2,jX + · · ·+ as,jX
s−1.

Hence, fd is uniquely determined by f0, . . . , fd−1 as long as B0(ξd−ν) 6= 0.

Let S := {0 6 i 6 p − 1 : B0(ξi) = 0}. Then it is clear that |S| 6 s − 1 since the
order of ξ is p so the powers ξi are distinct for 0 6 i 6 p − 1, and B0(X) has degree at
most s − 1. Thus, B0(ξd−ν) 6= 0 if and only if d − ν mod p /∈ S; and in this case fd is a
fixed affine linear combination of fj for 0 6 j < d.

Let W be the solution space (z0, z1, . . . , zp−1) ∈ Fpq of the equation system

(20) B0(ξd−µ)zd +

d∑
j=1

Bj(ξ
d−µ−j)zj = 0 for d = 0, 1, . . . , p− 1 .

The above argument shows that W is a subspace of Fpq of dimension at most s− 1.

We now claim that the solutions to (19) for 0 6 d < k form an (s − 1, p)-periodic
subspace of Fkq with W ⊂ Fpq as the recurring subspace. This is immediate by inspecting
the system of equations (19) satisfied by the fi’s and the system (20) defining the subspace
W . Indeed, once the values of fi, 0 6 i < p(j − 1) are fixed, the possible choices for the
j’th block of p coordinates, fp(j−1), · · · , fpj−1, lie in an affine shift of W . Further, this
shift is an explicit affine combination of the fi’s for 0 6 i < p(j − 1) (i.e., the previous
j − 1 blocks).

A closer inspection of (19) reveals that the subspace is in fact (s−1, p)-ultra periodic,
and are defined by a system of equations with the periodic structure of (2) of Definition 3.

Finally, we record the bound on the number of different possible solution spaces (this
will be useful when we prune these via h.s.e sets later). By the choice of κ in (17), the total
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number of possible (A0, A1, . . . , As) and hence the number of possible functional equations

(17), is at most qN(m−s+1)+s+1 6 qNm+s+1. Therefore, the number of possible candidate
solution spaces is also at most qNm+s+1. �

Combining Lemmas 6.2 and 6.3 together with some simple calculations leads to the
following statement concerning list decoding folded algebraic-geometric codes. We will
later instantiate this with Hermitian and Garcia-Stichtenoth towers, and also combine
with appropriate hierarchical subspace evasive sets to prune the periodic subspace of
solutions into a small list size.

Theorem 6.5. Consider the folded algebraic-geometric code from Definition 5 based on a
function field F/Fq and automorphism σ. Let P (possibly equal to P∞) be a rational place
for which xσ = x/ξ for some local parameter x ∈ F at P and ξ of order p > m in F∗q.
Assume that local expansions of functions in L((k + 2g− 1)P∞) at P can be computed in
polynomial time.

Then one can find a representation (1) of an (s, p)-periodic subspace of Fkq containing
all candidate messages (f0, f1, . . . , fk−1) in polynomial time, when the fraction of errors
τ = 1− t/N satisfies

(21) τ 6
s

s+ 1
− s

s+ 1

k

N(m− s+ 1)
− 3m

m− s+ 1

g

mN
.

7. List decoding algebraic-geometric codes with subfield evaluation points

In this section, we will present a linear-algebraic list decoding algorithm for algebraic-
geometric (AG) codes based on evaluations of functions at rational points over a subfield.

The strategy in this section is similar to that of folded algebraic-geometric codes. For
a folded algebraic-geometric code, once a coordinate is received correctly, then we have cor-

rect information on f(Pi), f(P σi ) = fσ
−1

(Pi), . . . , f(P σ
m−1

i ) = fσ
−m+1

(Pi). For algebraic-
geometric codes in this section, we has a similar property. Namely, once we receive a

coordinate correctly, then we have correct information on f(Pi), f
σ(Pi), . . . , f

σm−1
(Pi),

where σ is the Frobenius automorphism of an extension field.

For simplicity, to illustrate the ideas in a self-contained way in the setting of univariate
polynomials, we begin with the case of Reed-Solomon codes in Section 7.1 . We then extend
it to a general framework for decoding (one-point) algebraic-geometric codes based on
constant field extensions in Section 7.2. Later on in the paper, we will instantiate the
general framework to codes based on the Garcia-Stichtenoth tower discussed in 4.4.

7.1. Decoding Reed-Solomon codes. Our list decoding algorithm will apply to Reed-
Solomon codes with evaluation points in a subfield, defined below.

Definition 6. [Reed-Solomon code with evaluations in a subfield] Let Fq be a finite field
with q elements, and m a positive integer. Let n, k be positive integers satisfying 1 6 k <
n 6 q. The Reed-Solomon code RS(q,m)[n, k] is a code over alphabet Fqm that encodes a
polynomial f ∈ Fqm [X] of degree at most k − 1 as

f(X) 7→ (f(α1), f(α2), · · · , f(αn))

where α1, α2, . . . , αn are an arbitrary sequence of n distinct elements of Fq.

Note that while the message polynomial has coefficients from Fqm , the encoding only
contains its evaluations at points in the subfield Fq. The above code has rate k/n, and
minimum distance (n− k + 1).
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We now present a list decoding algorithm for the above Reed-Solomon codes. Suppose
the codeword (f(α1), f(α2), · · · , f(αn)) is received as (y1, y2, . . . , yn) ∈ Fnqm with at most
e = τn errors (i.e., yi 6= f(αi) for at most e values of i ∈ {1, 2, . . . , n}). The goal is to
recover the list of all polynomials of degree less than k whose encoding is within Hamming
distance e from y. As is common in algebraic list decoders, the algorithm will have two
steps: (i) interpolation to find an algebraic equation the message polynomials must satisfy,
and (ii) solving the equation for the candidate message polynomials.

Interpolation step. Let 1 6 s 6 m be an integer parameter of the algorithm. Choose
the “degree parameter” D to be

(22) D =

⌊
n− k + 1

s+ 1

⌋
.

Definition 7 (Space of interpolation polynomials). Let P be the space of polynomials
Q ∈ Fqm [X,Y1, Y2, . . . , Ys] of the form

(23) Q(X,Y1, Y2, . . . , Ys) = A0(X) +A1(X)Y1 +A2(X)Y2 + · · ·+As(X)Ys ,

with each Ai ∈ Fqm [X] and deg(A0) 6 D + k − 1 and deg(Ai) 6 D for i = 1, 2, . . . , s.

The lemma below follows because for our choice of D, the number of degrees of
freedom for polynomials in P exceeds the number n of interpolation conditions (24). We
include the easy proof for completeness.

Lemma 7.1. There exists a nonzero polynomial Q ∈ P such that

(24) Q(αi, yi, y
q
i , y

q2

i , · · · , y
qs−1

i ) = 0 for i = 1, 2, . . . , n .

Further such a Q can be found using O(n3) operations over Fqm.

Proof. Note that P is an Fqm-vector space of dimension

(D + k) + s(D + 1) = (D + 1)(s+ 1) + k − 1 > n,

where the last inequality follows from our choice (22). The interpolation conditions re-
quired in the lemma impose n homogeneous linear conditions on Q. Since this is smaller
than the dimension of P, there must exist a nonzero Q ∈ P that meets the interpolation
conditions

Q(αi, yi, y
q
i , y

q2

i , · · · , y
qs−1

i ) = 0 for i = 1, 2, . . . , n .

Finding such a Q amounts to solving a homogeneous linear system over Fqm with n
constraints and at most dim(P) 6 n + s + 2 unknowns, which can be done in O(n3)
time. �

Lemma 7.3 below shows that any polynomial Q given by Lemma 7.1 yields an al-
gebraic condition that the message functions f we are interested in list decoding must
satisfy.

Definition 8 (Frobenius action on polynomials). For a polynomial f ∈ Fqm [X] with

f(X) = f0 + f1X + · · · + fk−1X
k−1, define the polynomial fσ ∈ Fqm [X] as fσ(X) =

f q0 + f q1X + · · ·+ f qk−1X
k−1.

For i > 2, we define fσ
i

recursively as (fσ
i−1

)σ.

The following simple fact is key to our analysis.

Fact 7.2. If α ∈ Fq, then f(α)q
j

= (fσ
j
)(α) for all j = 1, 2, . . . .
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Lemma 7.3. Suppose Q ∈ P satisfies the interpolation conditions (24). Suppose f ∈
Fqm [X] of degree less than k satisfies f(αi) 6= yi for at most e values of i ∈ {1, 2, . . . , n}
with e 6 s

s+1(n− k). Then Q(X, f(X), fσ(X), fσ
2
(X), · · · , fσs−1

(X)) = 0.

Proof. Define the polynomial Φ ∈ Fqm [X] by Φ(X) := Q(X, f(X), fσ(X), fσ
2
(X), · · · ,

fσ
s−1

(X)). By the construction of Q and the fact that deg(f) 6 k− 1, we have deg(Φ) 6
D + k − 1 6 n−k+1

s+1 + k − 1 = n
s+1 + s

s+1(k − 1).

Suppose yi = f(αi). By Fact 7.2, we have yqi = f(αi)
q = (fσ)(αi), and similarly

yq
j

i = (fσ
j
)(αi) for j = 2, 3, . . . . Thus for each i such that f(αi) = yi, we have

Φ(αi) = Q(αi, f(αi), f
σ(αi), · · · , fσ

s−1
(αi)) = Q(αi, yi, y

q
i , · · · , y

qs−1

i ) = 0 .

Thus Φ has at least n − e > n
s+1 + s

s+1k zeroes. Since this exceeds the upper bound on
the degree of Φ, Φ must be the zero polynomial. �

Finding candidate solutions. The previous two lemmas imply that the polynomials
f whose encodings differ from (y1, · · · , yn) in at most s

s+1(n − k) positions can be found

amongst the solutions of the functional equation A0 + A1f + A2f
σ + · · · + Asf

σs−1
= 0.

We now prove that these solutions form a well-structured affine space over Fq.

Lemma 7.4. For integers 1 6 s 6 m, the set of solutions f =
∑k−1

i=0 fiX
i ∈ Fqm [X] to

the equation

(25) A0(X) +A1(X)f(X) +A2(X)fσ(X) + · · ·+As(X)fσ
s−1

(X) = 0

when at least one of {A0, A1, . . . , As} is nonzero is an affine subspace over Fq of dimension
at most (s− 1)k. Further, fixing an Fq-basis of Fqm and viewing each fi as an element of

Fmq , the solutions are an (s − 1,m, k)-periodic subspace of Fmkq . A representation of this
periodic subspace (in the form (1) from Definition 2) can be computed in poly(k,m, log q)
time.

Proof. If f, g are two solutions to (25), then so is αf+βg for any α, β ∈ Fq with α+β = 1.
So the solutions to (25) form an affine Fq-subspace. We now proceed to analyze the
structure of the subspace.

First, by factoring out a common powers ofX that divide all ofA0(X), A1(X), . . . , As(X),
we can assume that at least one Ai∗(X) for some i∗ ∈ {0, 1, . . . , s} is not divisible by X,
and has nonzero constant term. Further, if A1(X), . . . , As(X) are all divisible by X, then
so is A0(X), so we can take i∗ > 0.

Let us denote Ai(X) = ai,0 + ai,1X + ai,2X
2 + · · · for i = 0, 1, 2, . . . , s. For l =

0, 1, 2, . . . , D, define the linearized polynomial

(26) Bl(X) = a1,lX + a2,lX
q + a3,lX

q2
+ · · ·+ as,lX

qs−1
.

We know that ai∗,0 6= 0, and therefore B0 6= 0. This implies that the solutions β ∈ Fqm to
B0(β) = 0 is a Fq-subspace, say W , of Fqm of dimension at most s− 1.

Fix an i ∈ {0, 1, . . . , k−1}. Expanding the equation (25) and equating the coefficient
of Xi to be 0, we get

(27) a0,i +Bi(f0) +Bi−1(f1) + · · ·+B1(fi−1) +B0(fi) = 0 .

Therefore, for each i = 0, 1, . . . , k−1, fi must belong to a coset of the subspaceW+θi where
θi is an affine combination of f0, f1, . . . , fi−1. It follows that the solutions (f0, f1, . . . , fk−1)
to 25 viewed as a vector in Fmkq (w.r.t any fixed Fq-basis of Fqm) belongs to an form an
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(s− 1,m, k)-periodic subspace. The equations (10) give the desired representation of this
periodic subspace. �

Combining Lemmas 7.3 and 7.4, we see that one can find an affine space of dimension
(s − 1)k that contains the coefficients of all polynomials whose encodings differ from the
input (y1, . . . , yn) in at most a fraction s

s+1(1 − R) of the positions. Note the dimension

of the message space of the Reed-Solomon code RS(q,m)[n, k] over Fq is km. The above
lemma pins down the candidate polynomials to a space of dimension (s−1)k. For s� m,
this is a lot smaller. In particular, it implies one can list decode in time sub-linear in the
code size (the proof follows by taking s = d1/εe and m > s

γ ).

Corollary 7.5. For every R ∈ (0, 1), and ε, γ > 0, there is a positive integer m such that

for all large enough prime powers q, the Reed-Solomon code C = RS(q,m)[q,Rq] can be list
decoded from a fraction (1−R− ε) of errors in |C|γ time, outputting a list of size at most
|C|γ.

Since the dimension of the subspace guaranteed by Lemma 7.4 grows linearly in k, we
cannot afford to list this subspace as the decoder’s output for polynomial time decoding.
However, using the periodic structure of the subspace, one can prune it by using a “pre-
code” that only allows polynomials with coefficients in subspace designs or h.s.e sets as
we will see in later sections.

7.2. Decoding algebraic-geometric codes. We now generalize the Reed-Solomon al-
gorithm from the previous subsection to algebraic-geometric codes. The description in this
section will be for a general abstract AG code. So we will focus on the algebraic ideas,
and not mention complexity estimates. Later, we will focus on a specific AG code based
on Garcia-Stichtenoth function fields, which will require a small change to the setup, and
where we will also mention computational aspects. We refer to Subsection 5.2 for encoding
and will focus on a decoding algorithm.

7.2.1. AG codes with evaluation points in a subfield. Let F/Fq be a function field of genus
g. Let P∞, P1, P2, . . . , PN be N + 1 distinct Fq-rational places. Let σ ∈ Gal(Fqm/Fq) be
the Frobenius automorphism, i.e, ασ = αq for all α ∈ Fqm . Then we can extend σ to
an automorphism in Gal(Fm/F ), where Fm is the constant extension Fqm · F . Note that
P σ = P for any place of F .

Consider the Goppa geometric code defined by

(28) C(m; l) := {(f(P1), f(P2), . . . , f(PN )) : f ∈ Lm(lP∞)} .

We have the following well-known result on the parameters of the above algebraic-
geometric codes.

Lemma 7.6. The above code C(m; l) is an Fqm-linear code over Fqm, rate at least l−g+1
N ,

and minimum distance at least N − l.

7.2.2. Encoding of code using local expansions. As with the case of folded AG codes, the
decoding algorithm will recover the message function f via the coefficients of its local
expansion at some place P . Therefore, we will identify the message symbols with local
expansion coefficiently of the function f and encode into a subcode of C(m; l).

Definition 9 (Subfield algebraic-geometric code using local expansion). The folded algebraic-

geometric code C̃(m; k) maps

f = (f0, f1, . . . , fk−1) ∈ Fkqm 7→ (φP (f)(P1), φP (f)(P2), . . . , φP (f)(PN )) ∈ FNqm ,
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where φP (·) is the map converting a local expansion into an associated function guaranteed
by Claim 5.2.

7.2.3. A list decoding algorithm. We now present a list decoding algorithm for the above
codes. The algorithm follows the linear-algebraic list decoding algorithm for RS codes. It
is quite similar to that of folded algebraic-geometric codes. Suppose a codeword encoding
f ∈ Lm((k + 2g− 1)P∞) is transmitted and received as y = (y1, y2, . . . , yN ).

Given such a received word, we will interpolate a nonzero linear polynomial over Fm

(29) Q(Y1, Y2, . . . , Ys) = A0 +A1Y1 +A2Y2 + · · ·+AsYs

where Ai ∈ Lm(DP∞) for i = 1, 2, . . . , s and A0 ∈ Lm((D + k + 2g − 1)P∞) with the
degree parameter D chosen to be

(30) D =

⌊
N − k + (s− 1)g + 1

s+ 1

⌋
.

If we fix a basis of Lm(DP∞) and extend it to a basis of Lm((D + k + 2g − 1)P∞), then
the number of freedoms of A0 is at least D+ k+ g and the number of freedoms of Ai is at
least D− g + 1 for i > 1. Thus, the total number of freedoms in the polynomial Q equals

(31) s(D − g + 1) +D + k + g = (s+ 1)(D + 1)− (s− 1)g− 1 + k > N.

for the above choice (30) of D. The interpolation requirements on Q ∈ Fm[Y1, . . . , Ys] are
the following:

(32) Q(yi, y
σ
i , . . . , y

σs−1

i ) = A0(Pi) +A1(Pi)yi +A2(Pi)y
σ
i + · · ·+As(Pi)y

σs−1

i = 0

for i = 1, 2, . . . , N . Thus, we have a total of N equations to satisfy. Since this number
is less than the number of freedoms in Q, we can conclude that a nonzero linear function
Q ∈ Fm[Y1, . . . , Ys] of the form (29) satisfying the interpolation conditions (32) can be
found by solving a homogeneous linear system over Fqm with at most N constraints and
at least s(D − g + 1) +D + k + g variables.

The following lemma gives the algebraic condition that the message functions f ∈
Lm((k + 2g− 1)P∞) we are interested in list decoding must satisfy.

Lemma 7.7. If f is a function in Lm((k + 2g − 1)P∞) whose encoding agrees with the
received word y in at least t positions with t > D + k + 2g− 1, then

(33) Q(f, fσ, . . . , fσ
s−1

) = A0 +A1f +A2f
σ + · · ·+Asf

σs−1
= 0.

Proof. The proof proceeds by comparing the number of zeros of the function Q(f, fσ,

. . . , fσ
s−1

) = A0 +A1f +A2f
σ + · · ·+Asf

σs−1
with D+k+2g−1. Note that Q(f, fσ, . . . ,

fσ
s−1

) is a function in Lm((D + k + 2g− 1)P∞). If position i of the encoding of f agrees
with y, then

0 = A0(Pi) +A1(Pi)yi +A2(Pi)y
σ
i + · · ·+As(Pi)y

σs−1

i

= A0(Pi) +A1(Pi)f(Pi) +A2(Pi)(f(Pi))
σ + · · ·+As(Pi)(f(Pi))

σs−1

= A0(Pi) +A1(Pi)f(Pi) +A2(Pi)f
σ(Pi) + · · ·+As(Pi)f

σs−1
(Pi)

= (A0 +A1f +A2f
σ + · · ·+Asf

σs−1
)(Pi)

i.e., Pi is a zero of Q(f, fσ, . . . , fσ
s−1

). Thus, there are at least t zeros for all the agreeing

positions. Hence, Q(f, fσ, . . . , fσ
s−1

) must be the zero function when t > D+k+2g−1. �
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Lemma 7.8. Let P be a rational place of F with a local parameter x ∈ F (P may or may
not be the same as P∞). The set of solutions f ∈ Lm((k + 2g− 1)P∞) to the equation

A0 +A1f +A2f
σ + · · ·+Asf

σs−1
= 0

when at least one Ai is nonzero has size at most q(s−1)(k+2g−1). Further, the possible first
k coefficients (f0, f1, . . . , fk−1) of f ’s local expansion at P belong to an (s − 1,m)-ultra
periodic affine subspace of Fmkq .

Proof. The argument is very similar to Lemma 6.4. Define ν = k + 2g − 1 if P = P∞
and 0 otherwise. Let u = min{νP (Ai) : i = 1, 2, . . . , s}. Then we have νP (A0) =

νP (−
∑s

i=1Aif
−σi−1

) > min{νP (Aif
−σi−1

)) : i = 1, 2, . . . , s} > min{νP (Ai) − ν : i =
1, 2, . . . , s} = u− ν. Each Ai has a local expansion at P :

Ai = xu
∞∑
j=0

ai,jx
j

for i = 1, . . . , s and A0 has a local expansion A0 = xu−ν
∑∞

j=0 a0,jx
j .

Assume that at P , the function f has a local expansion (9). Then fσ
i

has a local
expansion at P as follows

fσ
i

= x−ν
∞∑
j=0

f q
i

j x
j .

For l = 0, 1, . . . , define the linearized polynomial

Bl(X) := a1,lX + a2,lX
q + · · ·+ as,lX

qs−1

From the definition of u, one knows that B0(X) is nonzero. For d > 0, equating the

coefficient of xd+u−ν in A0 +A1f +A2f
σ + · · ·+Asf

σs−1
to equal 0 gives us the condition

(34) a0,d +Bd(f0) +Bd−1(f1) + · · ·+B0(fd) = 0 .

Let W = {α ∈ Fqm : B0(α) = 0}. Then W is an Fq-subspace of Fqm of dimension at
most s − 1, since B0 is a nonzero linearized polynomial of q-degree at most s − 1. As
in Lemma 7.4, for each fixed f0, f1, . . . , fd−1, the coefficient fd must belong to a coset
of the subspace W . This implies that the coefficients (f0, f1, . . . , fk+2g−1) belong to an

(s − 1,m, k + 2g − 1)-periodic subspace of Fm(k+2g−1)
q . In particular, there are at most

q(s−1)(k+2g−1) solutions f ∈ Lm((k + 2g− 1)P∞) to (32).

The equation (34) also shows that each group of ι successive coefficients fd−ι+1,
fd−ι+2, · · · , fd belong to cosets of the same underlying ι(s − 1) dimensional subspace
of Fmιq . This implies that (f0, f1, . . . , fk) in fact belong to an (s − 1,m)-ultra periodic

subspace.5 �

Decoding. Recall that the first k coefficients of the local expansion of f ∈ Lm(lP∞)

around P is precisely the message that was encoded in the code C̃(m; k) of Definition 9.

Therefore, combining Lemmas 7.7 and 7.8, and recalling the choice of D in (30), we
can conclude the following result about list-decodability of our code construction.

5This ultra-periodicity was also true for the Reed-Solomon case in Lemma 7.4, but we did not state it
there as we will not make use of this extra property for picking a subcode in the case of Reed-Solomon
codes.
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Theorem 7.9. For the code C̃(m; k), we can find an (s− 1,m)-ultra periodic subspace of
Fmkq that includes all messages whose encoding differs from a received word y ∈ FNqm in at
most

s

s+ 1
(N − k)− 3s+ 1

s+ 1
g

positions.

8. Instantiating with Hermitian and Garcia-Sticthenoth towers

In Sections 6 and 7, we discussed list decoding of folded algebraic-geometric codes and
algebraic-geometric codes with subfield evaluation points. In this section, we instantiate
the codes and list decoding algorithms described in Sections 6 and 7 with two important
and explicit towers, i.e., the Hermitian and Garcia-Sticthenoth towers.

8.1. Folded Hermitian codes. In this subsection, let us instantiate the list decoding
algorithm of folded algebraic geometric codes from general algebraic function fields with
the Hermtian tower. We refer to Subsection 4.3 for detailed background on the Hermitian
tower. Let r be a prime power and let q = r2. We denote by Fq the finite field with q
elements. Let Fe = Fq(x1, x2, . . . , xe) be the Hermitian tower defined by (4). Let γ be a
primitive element of Fq. Consider the automorphism σ ∈ Aut(Fe/Fq) defined by

σ : xi 7→ γ(r+1)i−1
xi for i = 1, 2, . . . , e.

For an integer m with 1 6 m 6 q − 1, let P∞ and P
σj
i for i = 1, 2, . . . , N and j =

0, 1, . . .m− 1 be the same as defined in Subsection 4.3.

Definition 10 (Folded codes from the Hermitian tower). Assume that m, l,N are positive

integers satisfying 1 6 m 6 q − 1 and l/m 6 N 6 re−1
⌊
q−1
m

⌋
. The folded code from

Fe with parameters N, l, q, e,m, denoted by FHe(N, l, q,m), encodes a message function
f ∈ L(lP∞) a folded codeword given in (11).

When e = 1, the folded code FH1(N, l, q,m) is in fact a folded Reed-Solomon code
introduced in [13].

Lemma 8.1. The above code FHe(N, l, q,m) is an Fq-linear code over alphabet size qm,

rate at least l−ge+1
Nm , and minimum distance at least N − l

m .

Proof. It is clear that the map (11) is an Fq-linear map. The dimension over Fq of the
message space L(lP∞) is at least l−ge+1 by the Riemann-Roch theorem, which gives the
claimed lower bound on rate. For the distance property, observe that if the i-th column
is zero, then f has m zeros. This implies that the encoding of a nonzero function f can
have at most l/m zero columns since f ∈ L(lP∞). �

Let P0 be the common zero of x1, x2, . . . , xe. For our decoding, we will actually
recover the message f ∈ L(lP∞) in terms of the coefficients of its power series expansion
around P0

(35) f = f0 + f1x+ f2x
2 + · · ·

where x := x1 is the local parameter at P0 (which means that x1 has exactly one zero at
P0, i.e., νP0(x1) = 1).

With this in mind, we now define the encoding into the above folded Hermitian code
using the map φP0 from Claim 5.2.
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Definition 11 (Folded Hermitian code using local expansion). The folded Hermitian code

F̃He(N, k, q,m) maps

f = (f0, f1, . . . , fk−1) ∈ Fkq to FHe(N, k + 2ge − 1, q,m)(φP0(f)) ∈ (Fmq )N .

Given the local expansions of a basis of L(lP∞) at P0, computing the map φP0 to
convert from local expansion to some representative function in L(lP∞) can be done in
polynomial time by simply solving a system of linear equations. We now turn to the task
of computing the local expansion at P0 of a basis for L(lP∞).

Lemma 8.2. For any n, one can compute the first n terms of the local expansion of the
basis elements (35) at P0 using poly(n) operations over Fq.

Proof. By the structure of the basis functions in (5), it is sufficient to find an algorithm of
efficiently finding local expansions of xi at P0 for every i = 1, 2, . . . , e. We can inductively
find the local expansions of xi at P0 as follows.

For i = 1, x1 is the local parameter x of P0, so x is the local expansion of x1 at P0.

Now assume that we know the local expansion of xi =
∑∞

j=1 ci,jx
j at P0 for some

ci,j ∈ Fq. Then we have

∞∑
j=1

cri+1,jx
jr +

∞∑
j=1

ci+1,jx
j = xri+1 + xi+1 = xr+1

i =

 ∞∑
j=1

cri,jx
jr

 ∞∑
j=1

ci,jx
j

 .

Note that r is a power of the characteristic and hence r can be pushed into infinite sums.
By comparing the coefficients of xj in the above identity, we can easily solve ci+1,j ’s from
ci,j ’s. More specifically, the coefficient of xj at the left of the identity is{

ci+1,j if r 6 |j
ci+1,j + cri+1,j/r if r|j.

Thus, all ci+1,j ’s can be easily solved recursively. �

By instantiating Theorem 6.5 with our code F̃He(N, k, q,m), we obtain the following
result.

Theorem 8.3. One can find a representation of an (s, q − 1)-periodic subspace6 of Fkq
containing all candidate messages f = (f0, f1, . . . , fk−1) in polynomial time, when the

fraction of errors τ = 1− t/N in its encoding by F̃He(N, k, q,m) satisfies

(36) τ 6
s

s+ 1
− s

s+ 1

k

N(m− s+ 1)
− 3m

m− s+ 1

ge
mN

.

8.2. Folded codes from the Garcia-Stichtenoth tower. Compared with the Hermit-
ian tower of function fields, the Garcia-Stichtenoth tower of function fields yields folded
codes with better parameters due to the fact that the Garcia-Stichtenoth tower is an op-
timal one in the sense that the ratio of number of rational places against genus achieves
the maximal possible value. The construction of folded codes from the Garcia-Stichtenoth
tower is almost identical to the one from the Hermitian tower except for one major dif-
ference: the redefined code from the Garcia-Stichtenoth tower is constructed in terms of
the local expansion at point P∞, while in the Hermitian case local expansion at P0 is
considered. For convenience of the reader, we give a parallel description of folded codes

6In fact, this subspace will be (s, q − 1)-ultra periodic.
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from the Garcia-Stichtenoth tower, while only sketching the identical parts. We refer to
Subsection 4.4 for background on the Garcia-Stichtenoth tower.

Let r be a prime power and let q = r2. We denote by Fq the finite field with q
elements. Let Ke = Fq(x1, x2, . . . , xe) be the Garcia-Stichtenoth tower defined by (7). Let
γ be a primitive element of Fq and consider the automorphism σ ∈ Aut(Ke/Fq) defined
by

σ : xi 7→ γr+1xi for i = 1, 2, . . . , e.

For an integer m with 1 6 m 6 q − 1, let P∞ and P
σj
i for i = 1, 2, . . . , N and j =

0, 1, . . .m− 1 be the same as defined in Subsection 4.4.

The folded codes from the Garcia-Stichtenoth tower are defined similarly to the Her-
mitian case.

Definition 12 (Folded codes from the Garcia-Stichtenoth tower). Assume that m, k,N
are positive integers satisfying 1 6 m 6 r − 1 and l/m < N 6 re

⌊
r−1
m

⌋
. The folded

code from Ke with parameters N, l, q, e,m, denoted by FGSe(N, l, q,m), encodes a message
function f ∈ L(lP∞) a folded codeword given in (11).

Then we have a similar result on parameters of FGSe(N, l, q,m).

Lemma 8.4. The above code FGSe(N, l, q,m) is an Fq-linear code over alphabet size qm,

rate at least l−ge+1
Nm , and minimum distance at least N − l

m .

Similar to the the Hermitian case, we need to redefine the code in terms of local ex-
pansion at a point. In the Hermitian case, we use coefficients of its power series expansion
around P0 which has a simple local parameter x1. However, for the Garcia-Stichtenoth
tower we do not have such a nice point P0. Fortunately, we can use point P∞ to achieve
our mission, i.e., P∞ has a simple local parameter 1

xe
.

Definition 13 (Folded Garcia-Stichtenoth code using local expansion). The folded Garcia-

Stichtenoth code (FGS code for short) F̃GSe(N, k, q,m) maps

f = (f0, f1, . . . , fk−1) ∈ Fkq to FGSe(N, k + 2ge − 1, q,m)(φP∞(f)) ∈ (Fmq )N .

The rate of the above code equals k/(Nm) and its distance is at least N − (k+ 2ge−
1)/m.

As in the Hermitian case, we now turn to the task of computing the local expansion
around P∞ of a basis for L(lP∞), which then suffices to compute the map φP∞ efficiently.
The local expansion of f ∈ L(lP∞) around P∞ is of the form

(37) f = T−l(f0 + f1T + f2T
2 + · · · )

where T := 1
xe

is the local parameter at P∞ (the function xe has exactly one pole at P∞).

Lemma 8.5. For any n, one can compute the first n terms of the local expansion (37) of
a basis of L(lP∞) at P∞ using poly(n) operations over Fq.

Proof. First let h be a nonzero function in Fq(x1, x2, . . . , xe) with νP∞(h) = v ∈ Z. Assume
that the local expansion h = T v

∑∞
j=0 ajT

j is known. To find the local expansion 1
h =

T−v
∑∞

j=0 cjT
j . Consider the identity

1 =

 ∞∑
j=0

cjT
j

 ∞∑
j=0

ajT
j

 .
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Then by comparing the coefficients of T i in the above identity, one has c0 = a−1
0 and

ci = −a−1
0 (ci−1a1 + · · ·+ c0ai) can be easily computed recursively for all i > 1.

Thus, by the structure of the basis functions in (8), it is sufficient to find an algorithm
efficiently finding local expansions of xi at P∞ for every i = 1, 2, . . . , e. We can inductively
find the local expansions of xi at P∞ as follows. We note that νP∞(xi) = −re−i for
i = 1, 2, . . . , e.

For i = e, xe has the local expansion 1
T at P∞.

Now assume that we know the local expansion of xi. Then we can easily compute the
local expansion of xri +xi and hence the local expansion of 1/(xri +xi). Let us assume that

1/(xri + xi) has local expansion 1/(xri + xi) = T r
e−i+1 ∑∞

j=0 αjT
j at P∞ for some αi ∈ Fq.

Assume that 1/xi−1 has the local expansion 1/xi−1 = T r
e−i+1 ∑∞

j=0 βjT
j . To find βj , we

consider the identity

T r
e−i+1

∞∑
j=0

βjT
j + T r

e−i+2
∞∑
j=0

βrjT
rj =

1

xi−1
+

(
1

xi−1

)r
=

1

xri + xi
= T r

e−i+1
∞∑
j=0

αjT
j .

By comparing the coefficients of T j+r
e−i+1

in the above identity, we have that β0 = α0

and βj can be easily computed recursively by the following formula for all i > 1.

βj =

{
αj if r 6 |j
αj − βrj/r−1 if r|j.

Therefore, the local expansion of xi−1 at P∞ can be easily computed. �

Similar to the Hermitian case, by instantiating Theorem 6.5 with our code F̃GSe(N, k, q,m),
we obtain the following result.

Theorem 8.6. One can find a representation of the (s, r − 1)-ultra periodic subspace
containing all candidate messages (f0, f1, . . . , fk−1) in polynomial time, when the fraction

of errors τ = 1− t/N in its encoding by F̃GSe(N, k, q,m) satisfies

(38) τ 6
s

s+ 1

(
1− k

N(m− s+ 1)

)
− 3m

m− s+ 1

re

mN
.

8.3. Subfield evaluation codes from the Garcia-Stichtenoth tower. Let r be a
prime power and let q = r2. For e > 2, let Ke be the function field Fq(x1, x2, . . . , xe) given
by Garcia-Stichtenoth tower (7), with genus ge 6 re.

Put F = Ke and Fm = Fqm · Ke. Let P1, P2, . . . , PN be the rational points of F
besides the place P∞; we have N > re(r − 1). Let k be the desired dimension of the
code (where 1 6 k < N − 2ge) and let l = k + 2ge − 1. We will now instantiate the code
C(m; l) defined in (28) with the Garcia-Stichtenoth function field Fm and P1, P2, . . . , PN
as evaluation points. (We hide the dependence on e and N in the specification of the code
C(m; l) as implicit.)

Let us call the resulting code CGS(m; l). As in the previous sections, we will en-

code into subcode C̃GS(m; k) using as message vector the first k coefficients of the local
expansion around P∞. The Garcia-Stichtenoth code with subfield evaluation using local

expansion, C̃GS(m; k) is defined from CGS(m; l) as in Definition 9.

BY virtue of Theorem 7.9, we can now conclude the following:

Corollary 8.7. The code CGS(m; k+2ge−1) can be list decoded from up to s
s+1(N −k)−

3s+1
s+1 ge errors, pinning down the messages to an (s− 1,m)-ultra periodic subspace of Fmkq .
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We conclude the section by incorporating the trade-off between ge and N , and stating
the rate vs. list decoding radius trade-off offered by these codes, in a form convenient for
improvements to the list size using subspace evasive sets and subspace designs (see Section
10). The claim about the number of possible solution subspaces follows since the subspace
is determined by A0, A1, . . . , As, and for our choice of parameter D, there are at most
qO(mN) choices of those.

Theorem 8.8. Let q be the even power of a prime. Let 1 6 s 6 m be integers, and let
R ∈ (0, 1). Then for infinitely many N (all integers of the form qe/2(

√
q − 1)), there is

a deterministic polynomial time construction of an Fqm-linear code GS(q,m)[N, k] of block
length N and dimension k = R ·N that can be list decoded in poly(N,m, log q) time from

s

s+ 1
(N − k)− 3N

√
q − 1

errors, pinning down the messages to one of qO(mN) possible (s − 1,m)-ultra periodic
Fq-affine subspaces of Fmkq .

9. Hierarchical subspace-evasive sets

Let us first recall the notion of “ordinary” subspace-evasive sets from [10].

Definition 14. A subset S ⊂ Fkq is said to be (d, `)-subspace-evasive if for all d-dimensional

affine subspaces H of Fkq , we have |S ∩H| 6 `.

We next define the notion of evasiveness w.r.t a collection of subspaces instead of all
subspaces of a particular dimension.

Definition 15. Let F be a family of (affine) subspaces of Fkq , each of dimension at most

d. A subset S ⊂ Fkq is said to be (F , d, `)-evasive if for all H ∈ F , we have |S ∩H| 6 `.

The key to pruning the list to a small size is the notion of a hierarchical subspace-
evasive set, which is defined as a subset of Fkq with the property that some of its prefixes
are subspace-evasive with respect to (s,∆, b)-periodic subspaces. We will show how the
special subspace-evasive sets help towards pruning the list in our list decoding context in
Section 9.3.

Definition 16. Let F be a family of (s,∆, b)-periodic subspaces of Fkq with k = b∆. A

subset S ⊂ Fkq is said to be (F , s,∆, b, L)-h.s.e (for hierarchically subspace evasive for block
size ∆) if for every affine subspace H ∈ F , the following bound holds for j = 1, 2, . . . , b:

|projj∆(S) ∩ projj∆(H)| 6 L .

Remark 1. For h.s.e based pruning, a property weaker than (s,∆)-periodicity of H suffices.

Namely, it is enough if for each prefix a ∈ Fj∆q , the extensions of a in H form an affine
space of dimension s (it is not necessary that this be a coset of the same subspace of F∆

q

for every j). However, we stick with the periodicity assumption since it is available to us
in the subspaces output by the list decoder, and is also necessary for the subspace design
based pruning of the next section.

9.1. Random sets are subspace evasive. Our goal is to give a randomized construction
of large h.s.e sets that works with high probability, with the further properties that one
can index into elements of this set efficiently (necessary for efficient encoding), and one
can check membership in the set efficiently (which is important for efficient decoding).
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An easy probabilistic argument, see [10], shows that a random subset of Fkq of size

about q(1−ζ)k is (d,O(d/ζ))-subspace evasive with high probability. As a warmup, let us
work out the similar proof for the case when we have only to avoid a not too large family
F of all possible d-dimensional affine subspaces. The advantage is that the guarantee on
the intersection size is now O(1/ζ) and independent of the dimension d of the subspaces
one is trying to evade.

Lemma 9.1. Let ζ ∈ (0, 1) and k be a large enough positive integer. Let F be a family
of affine subspaces of Fkq , each of dimension at most d 6 ζk/2, with |F| 6 qck for some
positive constant c.

Let S be a random subset of Fkq chosen by including each x ∈ Fkq in S with probability

q−ζk. Then with probability at least 1− q−ck, S satisfies both the following conditions: (i)

|S| > q(1−2ζ)k, and (ii) S is (F , d, 4c/ζ)-evasive.

Proof. The first part follows by noting that the expected size of S equals q(1−ζ)k and a
standard Chernoff bound calculation. For the second part, fix an affine subspace H ⊆ F
of dimension at most d, and a subset T ⊆ H of size t, for some parameter t to be
specified shortly. The probability that S ⊇ T equals q−ζkt. By a union bound over the at
most qck choices for the affine subspace H ∈ F , and the at most qdt choices of t-element
subsets T of H, we get that the probability that S is not (F , d, t)-evasive is at most

qck+dt · q−ζkt 6 qckq−ζkt/2 since d 6 ζk/2. Choosing t = d4c/ζe, this quantity is bounded
from above by q−ck. �

9.2. Pseudorandom construction of large h.s.e subsets. We next turn to the pseu-
dorandom construction of large h.s.e subsets. Suppose, for some fixed subset F of (s,∆, b)-
periodic subspaces of Fkq with k = b∆, we are interested in an (F , s,∆, b, L)-h.s.e subset

of Fkq of size ≈ q(1−ζ)k for a constant ζ, 1/∆ < ζ < 1/3. (Bwlow, we will ignore floors and
ceilings in the description to avoid notational clutter; those are easy to accommodate and
do not affect any of the claims.)

Denote ∆′ = (1− ζ)∆, b′ = (1− ζ)b, and k′ = b′∆ = (1− ζ)k.

The random part of the construction will consist of mutually independent, random
univariate polynomials P1, P2, . . . , Pb′ and Q, where Pj ∈ Fqj∆′ [T ] for 1 6 j 6 b′ and

Q ∈ Fqk′ [T ] are random polynomials of degree λ.7 The degree parameter will be chosen

to be λ = Θ(k).8

The key fact we will use about random polynomials is the following, which follows
by virtue of the λ-wise independence of the values of a random degree λ polynomial.

Fact 9.2. Let P ∈ K[T ] be a polynomial of degree λ whose coefficients are picked uniformly
and independently at random from the field K. For a fixed subset T ⊆ K with |T | 6 λ, the
values {P (α)}α∈T are independent random values in K.

We remark that this property of low-degree polynomials was also the basis of the
pseudorandom construction of subspace evasive sets in [16]. However, since we require the
h.s.e property, and need to exploit the periodicity of the subspaces we are trying to evade

7We will assume that representations of the necessary extension fields Fi∆
′

q are all available. For this
purpose, we only need irreducible polynomials over Fq of appropriate degrees, which can be constructed
by picking random polynomials and checking them for irreducibility. Our final construction is anyway
randomized, so the randomized nature of this step does not affect the results.

8The degree of Q can in fact be just O(1/ζ), but for uniformity we fix the degree of all polynomials to
be the same.
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(which can have large dimension), the construction here is more complicated, and needs
to use several polynomials Pj ’s evaluated in a nested fashion, and one further polynomial
Q to further bring down the list size to a constant (this final use of Q is similar in spirit
to the construction in [16]). We remark that the construction presented here is a bit
simpler and cleaner than the one in the conference version [18], and comes with efficient
encoding automatically by construction. In contrast, the construction in [18] required
some additional work in order to allow for efficient encoding.

In what follows we assume that, for j = 1, 2, . . . , b′, some fixed bases of the fields
Fqj∆′ have been chosen, giving us some canonical Fq-linear injective maps

ρj : Fj∆
′

q → Fqj∆′ .

Also, for j = 1, 2, . . . , b′, let
ξj : Fqj∆′ → Fζ∆q

be some arbitrary Fq-linear surjective map (thus ξj just outputs the first ζ∆ coordinates of

the representation of elements of Fqj∆′ as vectors in Fj∆
′

q w.r.t some fixed basis). Finally,

let ρ : Fk′q → Fqk′ be some fixed Fq-linear injective map, and ξ : Fqk′ → Fζkq be an arbitrary

Fq-linear surjective map.

We are now ready to describe our construction of h.s.e set based on the random
polynomials P1, P2, . . . , Pb′ , Q.

Definition 17 (h.s.e set construction). Given the polynomials Pj ∈ Fqj∆′ [T ] for i =

1, 2, . . . , b′ and Q ∈ Fqk′ [T ], define the subset Γ(P1, P2, . . . , Pb;Q) by{
(y1, z1, y2, z2, . . . , yb′ , zb′ ;w) ∈ Fkq for j = 1, 2, . . . , b′ : yj ∈ F∆′

q ,

zj = ξj(Pj(ρj(y1 ◦ y2 ◦ · · · ◦ yj))) ∈ Fζ∆q ; and

w = ξ(Q(ρ(y1, z1, . . . , yb′ , zb′))) ∈ Fζkq
}
.

By construction, once suitable representations of the extension fields are available
by pre-processing and the choice of P1, . . . , Pb′ , Q is made, we can efficiently compute

a bijective encoding map HSE : F(1−ζ)2k
q → Γ(P1, P2, . . . , Pb;Q). Indeed, we can view

the input y ∈ Fb′∆′q as (y1, y2, . . . , yb′) with yj ∈ F∆′
q and then compute the zj ’s and w

efficiently using poly(k) operations over Fq (recall that the degree of the polynomials is
λ = Θ(k)).

We now move on to the main claim about the h.s.e property of our construction.

Theorem 9.3. Let c be a positive constant. Let ζ ∈ (0, 1/3) and s be a positive integer
satisfying s < ζ∆/10. Let F be a subset of at most qck (s,∆, b)-periodic subspaces of Fkq
for k = b∆ that is much bigger than 1/ζ. Suppose that the parameters satisfy the condition

qζ∆ > (2q2ck)10/9. Then with probability 1−q−Ω(k) over the choice of random polynomials
{Pi}16i6b and Q each of degree λ = dcke, the set Γ(P1, P2, . . . , Pb;Q) from Definition 17
is

(F , s,∆, b, L)-h.s.e and (F , sb, `)-evasive

for L = d2cke and ` = d4c/ζe (note that (i) L � ` as k � 1/ζ; and (ii) Q trims down
the intersection size from L to `).

Proof. Note that the first k′ = (1−ζ)k symbols of vectors in Γ(P1, . . . , Pb′ ;Q) only depend
on the Pj ’s. We will first prove that with high probability over the choice of the Pj ’s the
following holds (call such a choice of Pj ’s as good):
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For every H ∈ F , |projk′(H) ∩ projk′(Γ)| < L, where we denote Γ as
shorthand for Γ(P1, . . . , Pb′ ;Q).

Then, conditioned on a good choice of Pj ’s, we will prove that with high probability over
the choice of the random polynomial Q, |H ∩ Γ| < `. Together, these steps will imply
that the set Γ(P1, P2, . . . , Pb′ ;Q) is (F , sb, `)-evasive. (Note that every subspace in F has
dimension at most sb by Claim 3.1.) We will return to the (F , s,∆, b, L)-h.s.e property at
the end of the proof.

Let us first establish the second step. Fix a good choice of P1, . . . , Pb′ , and suppose
we pick Q randomly. Fix a subspace H ∈ F . Since |projk′(H)∩projk′(Γ)| < L (recall that
projk′(Γ) only depends on the Pj ’s and thus is already determined), the number of elements

of H that could possibly belong to Γ (after the choice of Q) is at most L · qs(b−b′) = Lqζsb;

indeed for each prefix belonging to projk′(Γ)∩projk′(H), there are most qs(b−b
′) extensions

that can fall in H since H is (s,∆, b)-periodic. Further, the probability over the choice of
Q that any such fixed extension belongs to Γ is at most q−ζk, and any ` of these events are
independent. (Note that for a fixed prefix, there can be at most one extension that falls in
Γ, so for ` different strings to fall in Γ, their prefixes must be distinct and are mapped to
independent locations by the random polynomial Γ.) Therefore, the probability over the
choice of Q that |H ∩ Γ| > ` is at most (Lqζsb)`q−ζk`. By a union bound over all H ∈ F ,
we conclude that |H ∩ Γ| < ` for every H ∈ F simultaneously, except with probability at
most

qckL`qζ(s−∆)b` 6 qck(ck)`q−ζ∆b`/2 6 qckq−ζk`/4

where in the first inequality we used s 6 ∆/2 and in the next one ck 6 qζk/4 both of which
hold comfortably. For ` > 4c/ζ, the above probability upper bound is at most q−ck.

We now turn to the first step, on the Pj ’s being good with high probability. Fix some
H ∈ F ; we will prove by induction on j that

(39) |projj∆(H) ∩ projj∆(Γ)| < L

w.h.p over the choice of P1, P2, . . . , Pj , for 1 6 j 6 b′ (note that projj∆(Γ) only depends
on P1, . . . , Pj , so this event is well defined). For the base case j = 1, |proj∆(H)| 6 qs

as H is (s,∆, b)-periodic, and the probability that some L of these qs elements belong to
proj∆(Γ) is at most qsL times the probability that L distinct elements in Fq∆′ are mapped

to specific values in Fζ∆q by ξ1 ◦ P1, which is at most
(
q−ζ∆

)L
. So the overall probability

that |proj∆(H) ∩ proj∆(Γ)| > L is at most q(s−ζ∆)L.

Now let j > 2 and assume |proj(j−1)∆(H) ∩ proj(j−1)∆(Γ)| < L. By the (s,∆, b)-

periodicity of H, for each of the (less than L) prefixes in proj(j−1)∆(H) ∩ proj(j−1)∆(Γ),

there are at most qs extensions that fall in projj∆(H). Similarly to the argument used
for second step above, the probability that some L of these belong to projj∆(Γ) is at

most (Lqs)L · q−ζ∆L. Thus, the probability that |projj∆(H) ∩ projj∆(Γ)| > L is at most(
L · q(s−ζ∆)

)L
.

Combining these arguments, we conclude that the probability over the choice of the
Pj ’s that |projb′∆(H) ∩ projb′∆(Γ)| > L is at most

b′(L · q(s−ζ∆))L 6 (2ckq−0.9ζ∆)L 6 q−2L

where the last step used the assumption that qζ∆ > (2q2ck)10/9.

Finally, since there are at most qck subspaces H ∈ F , by a union bound we have
that for all H ∈ F simultaneously, |projk′(H) ∩ projk′(Γ)| < L with probability at least
1− qckq−L > 1− q−ck over the choice of P1, . . . , Pb′ .
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To finish the proof, we need to verify the (F , s,∆, b, L)-h.s.e property. That is, we
need to prove that w.h.p, |projj∆(H)∩projj∆(Γ)| 6 L for every H ∈ F and j = 1, 2, . . . , b.
By (39), this holds for j = 1, 2, . . . , b′. By construction, the last ζk symbols of any vector
in Γ is a function of the first (1− ζ)k = b′∆ symbols, so |projj∆(H)∩ projj∆(Γ)| 6 L also
holds for b′ < j 6 b. �

9.3. Efficient computation of intersection with h.s.e. subsets. The key aspect
which makes h.s.e subsets useful in our context to prune the affine space of candidate
messages, and indeed motivated the exact specifics of the definition and aspects of its
construction, is the following claim which shows that intersection of a (s,∆, b)-periodic
subspace with our h.s.e set can be found efficiently.

Lemma 9.4. (h.s.e.-intersection) There is an algorithm running in time poly(k, qζ∆)
that provides the following guarantee. Given as input the polynomials P1, . . . , Pb′ and
Q underlying the construction of an (F , s,∆, b, L)-h.s.e and (F , sb, `)-evasive set Γ =
Γ(P1, . . . , Pb′ ;Q) and an (s,∆, b)-periodic subspace H ⊆ Fkq belonging to F , the algorithm
computes the at most ` elements of H ∩ Γ.

Proof. The proof essentially follows from the observations made in the proof of Theo-
rem 9.3. First note that |H∩ Γ(P1, . . . , Pb′ ;Q)| 6 ` just follows from the (F , sb, `)-evasiveness
of Γ. To compute H ∩Γ, the algorithm iteratively computes the intersections projj∆(H)∩
projj∆(Γ) for 1 6 j 6 b′. As Γ is (F , s,∆, b, L)-h.s.e, this intersection has size at most
L. To compute projj∆(H) ∩ projj∆(Γ), the algorithm runs over the at most qs possible
extensions of each element of proj(j−1)∆(H)∩proj(j−1)∆(Γ) that can belong to projj∆(H)

(due to the (s,∆, b)-periodicity of H), and checks which ones also belong to projj∆(Γ).

The complexity amounts to qO(s) evaluations of degree O(k) polynomials, and thus takes

qO(ζ∆)poly(k) time. To compute H ∩ Γ from projb′∆(H) ∩ projb′∆(Γ), we recall the ear-
lier observation that the construction of Γ implies that there is a unique extension of an
element in projb′∆(Γ) that belongs to Γ. �

We conclude this section by recording in convenient form all necessary properties
of our h.s.e set construction, which follow from Theorem 9.3 and Lemma 9.4. (We can

remove the restriction that k is a multiple of ∆ by constructing a subspace in Fk#

q for

k# = ∆d k∆e and dropping the last k# − k coordinates, so we remove that restriction in
the final statement below on h.s.e sets.)

Theorem 9.5. Let c be a constant. Let ζ ∈ (0, 1), and ∆, s, k be positive integers satisfying

s < ζ∆/10 and k 6 qζ∆/2. Let F be a family of at most qck (s,∆)-periodic subspaces
of Fkq . Then there is poly(k, log q) time randomized construction of an injective map

HSE : F(1−ζ)2k
q → Fkq such that:

(1) Given x ∈ F(1−ζ)2k
q , HSE(x) can be computed using poly(k) operations over Fq.

(2) With probability at least 1 − q−Ω(k) over the construction of HSE, the following

holds: for every H ∈ F , the set {x ∈ F(1−ζ)2k
q | HSE(x) ∈ H} has size at most

O(c/ζ), and further can be computed in poly(k, qζ∆) time.

10. Subspace designs

The linear-algebraic list decoder discussed in the previous sections pins down the
coefficients of the message to a periodic subspace. We already saw, in Section 9, an
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approach using h.s.e. sets to prune the periodic subspace to a small list. In this section,
we will develop an alternate approach based a special collection of subspaces, which we
call a subspace design, for pruning the periodic subspaces. Further, we will extend the
construction to a “cascaded” variant that enables more effective pruning of ultra-periodic
subspaces. The advantage of using subspace designs is they can be explicitly constructed,
a feature which is (currently) lacking for h.s.e sets.

We begin with the definition of the central object of study in this section, subspace
designs, introduced in the conference version [19].9

Definition 18 (Subspace design). Let Λ be a positive integer, and q a prime power. For
positive integers r < Λ and d, an (r, d)-subspace design in FΛ

q is a collection H of subspaces

of FΛ
q such that for every r-dimensional subspace W ⊂ FΛ

q , we have

(40)
∑
H∈H

dim(W ∩H) 6 d .

The cardinality of a subspace design H is the number of subspaces in its collection, i.e.,
|H|. If all subspaces in H have the same dimension t, then we refer to t as the dimension
of the subspace design H.

Note that the condition (40) in particular implies for every r-dimensional subspace W , at
most d of the subspaces in an (r, d)-subspace design non-trivially intersect it. This weaker
property was subsequently called a “weak subspace design” in [11] which gave explicit
constructions of subspace designs following our original definition in [19]. For our list
decoding application, the stronger property (40) is required. Note though that the weak
subspace design property implies the stronger (40) with the r.h.s upper bound d replaced
by dr.

10.1. Subspace designs to prune periodic subspaces. The usefulness of subspace
designs defined above, in the context of pruning periodic subspaces, is captured by the
following key lemma.

Lemma 10.1 (Periodic subspaces intersected with a subspace design). Suppose H1, H2,
. . . , Hb are subspaces in an (r, d)-subspace design in FΛ

q , and T is an (r,Λ, b)-periodic affine

subspace of FΛb
q with recurring subspace S ⊆ FΛ

q . Then the set

T = {(f1, f2, . . . , fb) ∈ T | fj ∈ Hj for j = 1, 2, . . . , b}

is an affine subspace of FΛb
q of dimension at most d. Also, the underlying subspace of T

is contained in S def
= Sb ∩ (H1 ×H2 × · · · ×Hb).

Proof. It is clear that T is an affine subspace, since its elements are restricted by the set
of linear constraints defining T and the Hj ’s. Also, the difference of two elements in T
is contained in both the subspaces Sb and (H1 ×H2 × · · · ×Hb), which implies that the
underlying subspace of T is contained in S.

We will prove the bound on dimension by proving that |T | 6 qd. To prove this, we
will imagine the elements of T as the leaves of a tree of depth b, with the nodes at level j
representing the possible projections of T onto the first j blocks. The root of this tree has
as children the elements of the affine space proj[1,Λ](T )∩H1. Let W be the subspace of FΛ

q

9While we were not aware of it when we coined this term to refer to our subspace collections, subspace
designs were used to denote the q-analogs of combinatorial designs [2]. We apologize for unknowlingly
repeating this nomenclature in our (very different) context.
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of dimension at most r associated with the periodic subspace T (in the sense of Definition
1). Note that the underlying subspace of the affine space proj[1,Λ](T )∩H1 is contained in
the subspace W ∩H1.

Continuing this argument, the children of an element a ∈ FjΛq at level j will be a
followed by the possible extensions of a to the (j + 1)’th block, given by

{proj[j∆+1,(j+1)∆](x) | x ∈ T and projj∆(x) = a} ∩Hj+1 .

The periodic property of T and the fact that Hj+1 is a subspace implies that the possible
extensions of a are given by a coset of a subspace of W ∩Hj+1. Thus the nodes at level

j have degree at most qdim(W∩Hj+1) for j = 0, 1, . . . , b − 1. Since the Hj ’s belong to an

(r, d)-subspace design we have
∑b

j=1 dim(W ∩Hj) 6 d. Therefore, the tree has at most

qd leaves, which is also an upper bound on |T |. �

10.2. Existence and probabilistic construction of subspace designs. We now turn
to the construction of subspace designs of large size and dimension. We first analyze the
performance of a random collection of subspaces.

Lemma 10.2. Let η > 0 and q be a prime power. Let r,Λ be integers Λ > 8/η and
r 6 ηΛ/2. Consider a collection H of subspaces of FΛ

q obtained by picking, independently

at random, qηΛ/8 subspaces of FΛ
q of dimension (1 − η)Λ each. Then, with probability at

least 1− q−Λr, H is an (r, 8r/η)-subspace design.

Proof. Let ` = 8r/η, and let M = qηΛ/8 denote the number of randomly chosen sub-
spaces.10 Let H1, H2, . . . ,HM be the subspaces in the collection H. Fix a subspace W
of FΛ

q of dimension r. Fix a tuple of non-negative integers (a1, a2, . . . , aM ) summing up
to `. For each j ∈ {1, 2, . . . ,M}, the probability that dim(W ∩ Hj) > aj is at most
qrajq−ηΛaj . Since the choice of the different Hj ’s are independent, the probability that

dim(W ∩Hj) > aj for every j is at most q(r−ηΛ)` 6 q−ηΛ`/2 (the last step uses r 6 ηΛ/2).

A union bound over the at most qΛr subspaces W ⊂ FΛ
q of dimension r, and the at

most
(
`+M
`

)
6 (M+`)` 6M2` choices of the tuples (a1, a2, . . . , aM ), we get the probability

that H is not an (r, `)-subspace design is at most

qΛr · q−ηΛ`/2 · (qηΛ/8)2` = qΛr · q−ηΛ`/4 6 q−Λr

where the last step uses ` > 8r/η. �

Note that given a collection H of subspaces, one can deterministically check if it is
an (r, d)-subspace design in FΛ

q in qO(Λr)|H| time by doing a brute-force check of all r-

dimensional subspacesW of FΛ
q , and for each computing

∑
H∈H dim(W∩H) using |H|ΛO(1)

operations over Fq. Thus the above lemma gives a qO(Λr) time Las Vegas construction of
an (r, d)-subspace design with many subspaces each of large dimension (1− η)m.

Lemma 10.3. For parameters η, r,Λ as in Lemma 10.2, for any b 6 qηΛ/8, one can
compute an (r, 8r/η)-subspace design in FΛ

q of dimension (1 − η)Λ and cardinality b in

qO(Λr) Las Vegas time.

As noted in the conference version [19] of this paper, the construction can be deran-
domized using the method of conditional expectations to successively find good subspaces
Hi to add to the subspace design. However, as each step involves searching over all

10For simplicity, we ignore the floor and ceil signs in defining integers; these can be easily incorporated.
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(1−η)Λ-dimensional subspaces of FΛ
q , the construction time would be qO(Λ2) even for con-

structing subspace designs with few subspaces. For our application to reducing the list size
for long algebraic-geometric codes (either folded or with rational points in a subfield), we
will need subspace designs for ambient dimension Λ growing at least logarithmically in the

code length. The qO(Λ2) complexity will thus lead to a quasi-polynomial code construction
time, as claimed in the conference version [19]. In fact, even the Las Vegas construction

time of qO(Λr) will be super-polynomial for the parameters used in the construction.

10.3. Explicit subspace design constructions. The question of explicit (polynomial
time) constructions of subspace designs naturally arose following [19] and was addressed
in the follow-up work by Guruswami and Kopparty [11], who proved the following.

Theorem 10.4 (Explicit subspace designs [11]). For every η > 0, integers r,Λ with

r 6 ηΛ/4, and prime powers q satisfying qηΛ/(2r) > 2r/η, for any b 6 qηΛ/(4r), there exists
an explicit (r, r2/η)-subspace design of cardinality b and dimension (1 − η)Λ, that can be
constructed deterministically in time poly(b, q) time. In the case when q > Λ, one can
explicitly construct an (r, 2r/η)-subspace design with the same parameters.

We note a couple of senses in which the parameters offered by the explicit construc-
tion are weaker than those guaranteed by the probabilistic construction. First, the total
intersection dimension (40) is r2/η rather than O(r/η) (except when q is large). This
is because, for small fields, their construction yields only a weak subspace design, incur-
ring a factor r loss when passing to a subspace design. Second, the number of subspaces
in the design is smaller, roughly qΩ(ηΛ/r) instead of qΩ(ηΛ). Finally, there is a modest
restriction the field size q, and we need to pick r,Λ suitably to allow for fixed q. Fortu-
nately, all these restrictions can be accommodated for our application. We remark that a
recent construction of subspace designs based on cyclotomic function fields [20] gives an
(r,O(r logq Λ/η))-subspace design over an arbitrary field Fq; for our application, however,

the r2/η bound is more useful as r � Λ, and we cannot afford the dependence on Λ in
the bound.

Let us now record a construction of a subspace that has large dimension and yet has
low-dimensional intersection with every periodic subspace. The construction is based on
the above subspace designs. This form will be convenient for later use in Section 11.2.1
for pre-coding Reed-Solomon codes with evaluation points in a subfield.

Theorem 10.5. Let η ∈ (0, 1) and q be a prime power, and r,Λ, b be integers such that
r 6 ηΛ/4 and b < q. Then, one can construct a subspace V of FbΛq of dimension at

least (1 − η)bΛ in deterministic qO(Λ) time such that for every (r,Λ, b)-periodic subspace
T ⊂ FbΛq , V ∩ T is an Fq-affine subspace of dimension at most 2r/η.

Proof. We will take V = H1 ×H2 × · · ·Hb where the Hi’s belong to a (r, 2r/η)-subspace
design in F∆

q of cardinality b and dimension at least (1−η)Λ as guaranteed by Theorem 10.4
when q > Λ. er Clearly dim(V ) > (1−η)bΛ since each Hi has dimension at least (1−η)Λ.
The claim now follows using Lemma 10.1. �

10.4. Cascaded subspace designs. In preparation for our results about algebraic-geometric
codes, whose block length � qm is much larger than the possible size of subspace designs
in Fmq , we now formalize a notion that combines several “levels” of subspace designs. The
definition might seem somewhat technical, but it has a natural use in our application to
list-size reduction for AG codes. Note that there is no “consistency” requirement between
subspace designs at different levels other than the lengths and cardinalities matching.
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Definition 19 (Subspace designs of increasing length). Let l be a positive integer. For
positive integers r0 6 r1 6 · · · 6 rl and m0 6 m1 6 · · · 6 ml such that mι−1|mι for
1 6 ι 6 l, an (r0, r1, . . . , rl)-cascaded subspace design with length-vector (m0,m1, . . . ,ml)
and dimension vector (d0, d1, . . . , dl−1) is a collection of l subspace designs, specifically an
(rι−1, rι)-subspace design in Fqmι−1 of cardinality mι/mι−1 and dimension dι−1 for each
ι = 1, 2, . . . , l.

Note that the l = 1 case of the above definition corresponds to an (r0, r1)-subspace
design in Fm0

q of dimension d0 and cardinality m1/m0. In Lemma 10.1, we used the
subspace H1×H2× · · · ×Hb based on a subspace design consisting of the Hi’s to prune a
periodic subspace. Generalizing this, we now define a subspace associated with a cascaded
subspace design based on the subspace designs comprising it.

Definition 20 (Canonical subspace). Let M be a cascaded subspace design with length-
vector (m0,m1, . . . ,ml) such that the ι’th subspace design in M has subspaces

H
(ι)
1 , H

(ι)
2 , · · · , H(ι)

mι/mι−1
⊂ Fmι−1

q , for 1 6 ι 6 l .

The canonical subspace associated with such a cascaded subspace design, denoted U(M),
is a subspace of Fmlq defined as follows:

A vector x ∈ Fmlq belongs to U(M) if and only if for every ι ∈ {1, 2, . . . , l},
each of the mι-sized blocks of x given proj[jmι+1,(j+1)mι](x) for 0 6 j <

ml/mι) belongs H
(ι)
1 ×H

(ι)
2 × · · · ×H

(ι)
mι/mι−1

.

In other words, we apply the construction of Lemma 10.1 for (disjoint) intervals of
length mι at each level ι ∈ {1, 2, . . . , l}.
The following simple fact, which follows by counting number of linear constraints imposed,
gives a lower bound on the dimension of a canonical subspace.

Observation 10.6. For a cascaded subspace designM as above, if the ι’th subspace design
has dimension at least (1 − ξι−1)mι−1 for 1 6 ι 6 l, then the dimension of the canonical

subspace U(M) is at least
(

1− (ξ0 + ξ1 + · · ·+ ξl−1)
)
ml.

The following is the crucial claim about pruning ultra-periodic subspaces using (the
canonical subspace of) a cascaded subspace design. It generalizes Lemma 10.1 which
corresponds to the l = 1 case.

Lemma 10.7. Suppose M is a (r0, r1, . . . , rl)-cascaded subspace design with length-vector
(m0,m1, . . . ,ml). Let T be a (r0,m0)-ultra periodic affine subspace of Fmlq . Then the
dimension of the affine space T ∩ U(M) is at most rl.

Proof. The idea will be to apply Lemma 10.1 inductively, for increasing periods m0,m1,
. . . ,ml−1. Since T is (r0,m0)-ultra periodic, it is (r0,m0)-periodic and ((m1/m0)r0,m1)-
periodic. Using this together with Lemma 10.1, it follows that

T ∩ {x ∈ Fmlq | proj[jm1+1,(j+1)m1](x) ∈ H(1)
1 ×H(1)

2 × · · · ×H(1)
m1/m0

for 0 6 j < ml/m1}

is an affine subspace that is (r1,m1)-periodic. Continuing this argument, the affine sub-

space of T formed by restricting each mι-block to belong to H
(ι)
1 ×H

(ι)
2 × · · · ×H

(ι)
mι/mι−1

for 1 6 ι 6 j is (rj ,mj)-periodic. For j = l, we get the intersection T ∩ U(M) ⊂ Fmlq
will be (rl,ml)-periodic, which simply means that it is an rl-dimensional affine subspace
of Fmlq . �
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We conclude this section by constructing a canonical subspace that has low-dimensional
intersection with ultra-periodic subspaces based on the explicit subspace designs of Theo-
rem 10.4. This statement will be used in Section 11.2.2 for pre-coding algebraic-geometric
codes based on the Garcia-Stichtenoth tower.

Theorem 10.8. Let q > 4 be a prime power. Let η ∈ (0, 1) and integers Λ, r > 2 satisfy
Λ > crη−1 log(r/η) for a large enough (absolute) constant c > 0. For all large enough
multiples κ of Λ, we can construct a subspace U of Fκq of dimension at least (1 − η)κ
such that for every (r,Λ)-ultra periodic affine subspace T ⊂ Fκq , the dimension of the

affine subspace U ∩ T is at most (r/η)2O(log∗ κ)
. The subspace U can be constructed in

deterministically in poly(κ, q) time.

Proof. We will take U to the canonical subspace U(M) of an appropriate cascaded sub-
space design M. To this end, given our work so far, the main remaining task is to pick
the parameters of M carefully. Let ηι = η

4·2ι for ι = 0, 1, 2, . . . .

Let m0 = Λ, m1 = m0 · b(r/η)c/4c, and for ι > 0, mι+1 = mι · qd
√
mιe. Let r0 = r,

and for ι > 0, rι+1 = dr2
ι /ηιe. For this choice of parameters, one can verify that (i)

rι 6 ηιmι/4, and (ii) qηιmι/(4rι) > mι+1/mι for all ι > 0. Indeed, to verify the first
condition by induction, one only needs to check that mι+1 > m2

ι , which is true for ι = 0
for a large enough choice of c, and for ι > 1, mι+1 in fact grows exponentially in

√
mι. For

the second condition, for ι = 0 it follows from our assumption that Λ > crη−1 log(r/η).
For ι > 1, it is implied by rι/ηι �

√
mι/4, which is true for ι = 1 for large enough c,

and for ι > 1 by induction since rι/ηι grows quadratically in each step, whereas mι grows
exponentially.

We can therefore conclude by Theorem 10.4 that we can construct a (rι, rι+1)-
subspace design of cardinality mι+1/mι in Fmιq of dimension (1− ηι)mι.

Pick l to the smallest integer so that ml−1 > (logq κ)2. Since m0 = Λ > 2 and

mι+1 > q
√
mι for 1 6 ι < l, it is easy to see that that l 6 O(log∗ κ) Redefine ml−1

to equal m′l−1 which is the smallest multiple of ml−2 that is at least (logq κ)2. Since

ml−2 < (logq κ)2, we have (logq κ)2 6 m′l−1 < 2(logq κ)2. We also redefine ml to equal the
largest multiple m′l of m′l−1 that is at most κ. This implies κ − m′l < m′l−1. Note that

m′l−1 6 ml−2q
d√ml−2e and m′l 6 q

√
m′l−1 . For notational simplicity, let us re-denote m′l−1

and m′l by ml−1 and ml.

Thus for these parameters, we can construct an (r0, r1, . . . , rl)-cascaded subspace de-
signMl with length-vector (m0,m1, . . . ,ml) and dimension-vector (d0, d1, . . . , dl−1) where
dι > (1− η/2ι+2)mι.

The construction time for subspace designs guaranteed by Theorem 10.4 implies that
Ml can be constructed in poly(ml, q) time. We define the desired subspace U ⊂ Fκq as

U(Ml) × 0κ−ml , i.e., U consists of the vectors in the canonical subspace U(Ml) ⊂ Fmlq
padded with κ−ml zeroes at the end. By Observation 10.6, the dimension of U is at least(

1−
l−1∑
ι=0

η

4 · 2ι

)
ml > (1− η/2)ml > (1− η/2)(κ−ml−1)

> (1− η/2)κ− 2(logq κ)2 > (1− η)κ

for large enough κ. This proves that the subspace U has dimension at least (1− η)κ, and
can be constructed deterministically in poly(q, κ) time.
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It remains to prove the claimed intersection property with ultra-periodic subspaces.
Let T be an arbitrary (r,Λ)-ultra periodic affine subspace of Fκq . By Lemma 10.7,
projml(T ) ∩ U(M) is an affine subspace of Fmlq of dimension at most rl. Clearly, the
same dimension bound also holds for T ∩ U since the last κ−ml coordinates for vectors
in U are set to 0. The proof is complete by noting that for our choice of parameters,

rl 6 (2r/η)2l and l 6 O(log∗ κ). �

11. Pre-coding AG codes using h.s.e sets and subspace designs

In this final section, we combine the algebraic list decoding results (for folded AG
codes and AG codes with subfield evaluation points) with subspace evasive sets (h.s.e sets
and subspace designs) to deduce our main results on optimal rate list-decodable codes
(Theorem 1.1). The idea is to pre-code the messages of the algebraic codes to belong to
the subspace evasive sets, so that only a small number of candidates fall in the periodic
(or ultrae-periodic) subspaces that arise in algebraic decoding and further they can be
enumerated efficiently.

We stress that for our final code constructions either h.s.e sets or subspace designs can
be used in combination with either the folded variant or the subspace evaluation variant.
For concreteness though, below we focus on the following two combinations:

(1) folded codes with h.s.e sets, and
(2) subspace evaluation codes with subspace designs.

We note that the use of h.s.e sets leads to smaller final list size but their construction is
randomized. Subspace designs lead to slightly larger list size (which in particular grows,
albeit very slowly, with the block length) but the advantage is that they can be explicitly
constructed.

11.1. Pruning with h.s.e sets. We begin with pruning via h.s.e sets, applied to the
folded Hermitian and folded Garcia-Stichtenoth codes from Sections 8.1 and 8.2 respec-
tively. In particular, the combination of folded Garcia-Stichtenoth codes with h.s.e sets
will give us our final main Monte Carlo code construction (part (i) of Theorem 1.1). We
start with the folded Hermitian case as a warmup.

11.1.1. Combining folded Hermitian codes and h.s.e sets. Instead of encoding arbitrary
f ∈ Fkq by the folded Hermitian code (Definition 11), we can restrict the messages f to
belong to the range of our h.s.e set, so that the affine space of solutions guaranteed by
Lemma 7.4 can be efficiently pruned to a small list. The formal claim is below.

Theorem 11.1. Let e > 2 be an integer, r > 2e be a large enough prime power, q = r2,
and ζ ∈ (1/q, 1). Let k 6 qζq/2 be a positive integer. Let s,m be positive integers satisfying
1 6 s 6 m 6 q−1 and s < ζq/12. Finally let N be an integer satisfying k+2ere 6 Nm 6
(q − 1)re.

Consider the code C1 with encoding E1 : F(1−ζ)2k
q → (Fmq )N defined as

E1(x) = F̃He(N, k, q,m)(HSE(x)) ,

for a random map HSE : F(1−ζ)2k
q → Fkq as constructed in Theorem 9.5 for a period size

∆ = q − 1 and b = d k
q−1e.

Then, the code C1 code has rate R = (1−ζ)2k/(Nm), can be encoded in poly(Nmqζq)
time, and with high probability over the choice of HSE, it is (τ, `)-list decodable in time
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poly(Nmqζq) for ` 6 O(1/(Rζ)) and

τ =
s

s+ 1

(
1− k

N(m− s+ 1)

)
− 3m

m− s+ 1

ere

mN
.

Proof. The claim about the rate is clear, and the encoding time follows from the time to
compute HSE recorded in Theorem 9.5.

By (6), the genus ge 6 ere, and so the condition on N,m meets the requirement for
the construction of the folded Hermitian tower based code in Definition 10, and the claimed
value of the error fraction τ satisfies (36). By Lemma 6.4, we know that the candidate
messages found by the decoder lie in one of at most q2Nm possible (s, q − 1)-periodic
subspaces of Fkq .

One can check that the conditions of Theorem 9.5 are met for our choice of ζ, s, q, k,∆.
Appealing to Theorem 9.5 with the choice c = 2Nm/k = O(1/R), we conclude that, with
high probability over the choice of HSE, there is a decoding algorithm running in time
poly(Nmqζq) to list decode C1 from a fraction τ of errors, outputting at most O(1/(Rζ))
messages in the worst-case. �

Choosing parameters. Let ε > 0 be a small positive constant, and a family of codes of
length N (assumed large enough) and rate R ∈ (0, 1) is sought. Pick n to be a growing
parameter.

By picking s = Θ(1/ε), m = Θ(1/ε2), r = blog nc, e = d logn
log logne, ζ = (log n log logn)−1,

N = b (r2−1)re

m c, and k proportional to Nm in Theorem 11.1, we can conclude the following.

Corollary 11.2. For any R ∈ (0, 1) and positive constant ε ∈ (0, 1), there is a random-

izedconstruction of a family of codes of rate at least R over an alphabet size (logN)O(1/ε2)

that are encodable and (1 − R − ε,O(R−1 logN log logN))-list decodable in poly(N, 1/ε)
time, where N is the block length of the code.

Our promised main result (Theorem 1.1) achieves better parameters than the above,

namely an alphabet size of exp(Õ(1/ε2)) and list-size of O(1/(Rε)). This is based on the
Garcia-Stichtenoth tower and is described next.

11.1.2. Combining folded Garcia-Stichtenoth codes and h.s.e sets. Similarly to Section
11.1.1, we now show how to pre-code the messages of the FGS code with a h.s.e subset.
Here we will work with a base field Fq whose size is fixed and independent of the code
dimension k, which will lead both to constant alphabet size and constant list size. To
accommodate the requirement that k 6 qO(ζ∆), we work with a larger “period” size for
the h.s.e sets to evade. Recall Observation 3.2 which implies that if H is an (s,∆, b)-ultra
periodic subspace of Fkq for k = b∆, then H is also (su,∆u, b/u)-periodic for every integer
u > 1 with u|b. Thus we can scale up the period size using the ultra-periodicity of the
subspace guaranteed by the decoder of Theorem 8.6. Following Remark 1, we actually
only need a weaker property to prune via h.s.e sets which can also be ensured without
ultra-periodicity. But since we have the stronger property available, we make use of it (this
is also for sake of uniformity with the pruning based on subspace designs of Section 11.2
which can also be applied to the FGS code).

As in the Hermitian case, instead of encoding arbitrary f ∈ Fkq by the folded Garcia-
Stichtenoth code, we will restrict the messages f to belong to the range of our h.s.e set.
This will ensure that the affine space of solutions can be efficiently pruned to a small list.
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Theorem 11.3. Let r be a prime power, q = r2, and e > 2 be an integer, and ζ ∈ (0, 1).

Let ∆ 6 k be a multiple of (r−1), say ∆ = u(r−1) for a positive integer u. Let k 6 qζ∆/2

be a positive integer.

Let s,m be positive integers satisfying 1 6 s 6 m 6 r − 1 and s < ζr/12. Finally let
N be an integer satisfying k + 2re 6 Nm 6 (r − 1)re.

Consider the code C2 with encoding E2 : F(1−ζ)2k
q → (Fmq )N defined as

E2(x) = F̃GSe(N, k, q,m)(HSE(x)) ,

for a random map HSE : F(1−ζ)2k
q → Fkq as constructed in Theorem 9.5 for a period

size ∆ and b = d k∆e.
The code C2 has rate R = (1 − ζ)2k/(Nm), can be encoded in poly(Nmqζ∆) time,

and w.h.p over the choice of HSE, it is (τ, `)-list decodable in time poly(Nmqζ∆) for
` 6 O(1/(Rζ)) and

(41) τ =
s

s+ 1

(
1− k

N(m− s+ 1)

)
− 3m

m− s+ 1

re

mN
.

Proof. The proof is very similar to that of Theorem 11.1. The claim about the rate is clear,
and the encoding time follows from the time to compute HSE recorded in Theorem 9.5.

The genus ge is now upper bounded by re, and so the condition on N,m meets the
requirement for the construction of the folded the Garcia-Stichtenoth tower based code in
Definition 12, and the claimed value of the error fraction τ satisfies (38). By Lemma 6.4,
we know that the candidate messages found by the decoder lie in one of at most q2Nm

possible (s, r − 1, d k
r−1e)-periodic subspaces.11 Now by Observation ??, each of these

subspaces is also (su,∆, d k∆e)-periodic. One can check that the conditions of Theorem 9.5
are met for our choice of ζ, s, q, k,∆ and taking su to play the role of s (since s < ζr/12,
we have su < ζ∆/10).

Appealing to Theorem 9.5 with the choice c = 2Nm/k = O(1/R), we conclude that
there is a decoding algorithm running in time poly(Nmqζ∆) to list decode C2 from a
fraction τ of errors, outputting at most O(1/(Rζ)) messages in the worst-case. �

Choosing parameters. Finally, all that is left to be done is to pick parameters to show how
the above can lead to optimal rate list-decodable codes over a constant-sized alphabet
which further achieve very good list-size.

Let ε > 0 be a small positive constant, and a family of codes of length N (assumed
large enough) and rate R ∈ (0, 1) is sought. Pick n to be a growing parameter.

Let us pick s = Θ(1/ε), m = Θ(1/ε2), ζ = ε/12, r = Θ(1/ε), q = r2, and e = d logn
log r e,

N = b (r−1)re

m c, and k = RNm(1 + ε). This ensures that (i) there are at least n = Nm
rational places and so we get a code of length at least n/m = N , (ii) the rate of the code
C2 is at least R, and (iii) the error fraction (41) is at least 1−R− ε.

The remaining part is to pick a multiple ∆ of (r− 1) so that the k 6 qζ∆/2 condition

is met. This can be achieved by choosing u = d logn
log(1/ε)e and ∆ = (r − 1)u. With these

11Technically, it will belong to projk(W ) of such a periodic subspace W , but we may pretend that
there are (r − 1)dk/(r − 1)e − k extra dummy coordinates which we decode. Or we can just assume for
convenience that r − 1 divides k.
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choices, we can conclude the following, which is our main randomized code construction
promised in part (i) of Theorem 1.1.

Theorem 11.4 (Main; Corollary to Theorem 11.3 with above choice of parameters). For
any R ∈ (0, 1) and positive constant ε ∈ (0, 1), there is a Monte Carlo construction of
a family of codes of rate at least R over an alphabet size exp(O(log(1/ε)/ε2)) that are
encodable and (1−R− ε,O(1/(Rε))-list decodable in poly(N) time, where N is the block
length of the code.

It may be instructive to recap why the Hermitian tower could not give a result like
the above one. In the Hermitian case, the ratio ge/n of the genus to the number of rational
places was about e/r = e/

√
q, and thus we needed q > e2. Since the period ∆ was about

q, the running time of the decoder was bigger than qΩ(ζq), whereas the length of the code
was at most qO(

√
q). This dictated the choice of q ≈ log2 n, and then to keep the running

time polynomial, we had to take ζ ≈ (log n log log n)−1.

11.2. Pruning using subspace designs. We now combine our the constructions of
Reed-Solomon and Garcia-Stichtenoth codes with evaluation points in a subfield (from
Section 7.1 and Section 8.3 respectively) with a pre-coding step that restricts the message
coefficients to (respectively) the subspaces constructed in Theorem 10.5 (using subspace
designs) and Theorem 10.8 (using cascaded subspace designs). These subcodes will then
be list decodable with smaller list-size in polynomial time.

In particular, the combination of Garcia-Stichtenoth codes with cascaded subspace
design will give us our final main deterministic code construction (part (ii) of Theorem 1.1).

11.2.1. Subcodes of Reed-Solomon codes. We begin with the case of Reed-Solomon codes as
considered in Section 7.1. For a finite field Fq, constant ε > 0, integers n, k,m, s satisfying

1 6 k < n 6 q and 1 6 s 6 εm/12, we will define subcodes of RS(q,m)[n, k]. Below for
a polynomial f ∈ Fqm [X] with k coefficients f0, f1, . . . , fk−1, we denote by f0, f1, . . . , fk−1
the representation of these coefficients as vectors in Fmq by fixing some Fq-basis of Fqm .

Define the subcode R̂S of RS(q,m)[n, k] consisting of the encodings of f ∈ Fqm [X] such

that (f0, f1, . . . , fk−1) ∈ V for a subspace V ⊆ Fmkq guaranteed by Theorem 10.5, when
applied with the parameter choices

Λ = m; b = k; r = s− 1; η = ε .

Note that R̂S is an Fq-linear code over the alphabet Fqm of rate (1− ε)k/n, and it can be

constructed in deterministic qO(m2) time, or Las Vegas qO(ms) time.12

Theorem 11.5. Given an input string y ∈ Fnqm, a basis of an affine subspace of dimension

at most O(s/ε) that includes all codewords of the above subcode R̂S that lie within Hamming
distance s

s+1(n− k) from y can be found in deterministic poly(n, log q,m) time.

Proof. By Lemma 7.4, we can compute the (s− 1,m, k)-periodic subspace T of messages
whose Reed-Solomon encodings can be within Hamming distance s

s+1(n − k) from y.
By Theorem 10.5, the intersection T ∩ V is is an affine subspace over Fq of dimension
d = O(s/ε). Since both steps involve only basic linear algebra, they can be accomplished
using poly(n,m) operations over Fq. �

12It can also be constructed in Monte Carlo (q/ε)O(1) time by randomly picking subspaces for the
subspace design used to construct V in Theorem 10.5.
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By picking s = Θ(1/ε) and m = Θ(1/ε2) in the above construction, we can conclude
the following.

Corollary 11.6. For every R ∈ (0, 1) and ε > 0, and all large enough integers n < q
with q a prime power, one can construct a rate R Fq-linear subcode of a Reed-Solomon

code of length n over Fqm, such that the code can be (i) encoded in (n/ε)O(1) time and

(ii) list decoded from a fraction (1 − ε)(1 − R) of errors in (n/ε)O(1) time, outputting a
subspace over Fq of dimension O(1/ε2) including all close-by codewords. The code can be
constructed deterministically in poly(q) time.

We note that the above list decoding guarantee is in fact weaker than what is achieved
for folded Reed-Solomon codes in [16], where the codewords were pinned down to a dimen-
sion O(1/ε) subspace. We can improve the list size above to poly(1/ε) using pseudorandom

subspace-evasive sets as in [16], or to exp(ε−O(1)) using the explicit subspace-evasive sets
from [3]. The main point of the above result is not the parameters but that an explicit
subcode of RS codes has optimal list decoding radius with polynomial complexity.

11.2.2. Subcodes of Garcia-Stichtenoth codes. We now pre-code the codes constructed in
Section 8.3. For a finite field Fq, constant ε > 0, and integers s,m satisfying 1 6 s 6
O(εm/ log(1/ε)) and m > Ω(1/ε2), we will define subcodes of GS(q,m)[N, k] guaranteed
by Theorem 8.8. Note that messages space of this code can be identified with Fmkq .

Define the subcode ĜS of GS(q,m)[N, k] consisting of the encodings of a subspace
U ⊆ Fmkq guaranteed by Theorem 10.8, when applied with the parameter choices

(42) η = ε; r = s− 1; Λ = m; κ = km .

Note that ĜS is an Fq-linear code over the alphabet Fqm of rate (1− ε)k/N . Also, it can
be constructed in poly(k,m, q) time by virtue of the construction complexity of U .

Lemma 11.7. Given an input string y ∈ FNqm, a basis of an affine subspace of dimension
at most

(s/ε)2O(log∗(km)

that includes all codewords of the above subcode within Hamming distance s
s+1(N − k) −

3N/(
√
q − 1) from y can be found in deterministic poly(n, log q,m) time.

Proof. By Theorem 8.8, we can compute the (s− 1,m)-ultra periodic subspace T of mes-
sages whose encodings are within Hamming distance s

s+1(N − k)− 3N/(
√
q − 1) from y.

By Theorem 10.8, for the above choice of parameters (42), the intersection T ∩ U is an

affine subspace over Fq of dimension (s/ε)2O(log∗(km)
. Since both steps involve only basic

linear algebra, they can be accomplished using poly(N,m) operations over Fq. �

By taking q = Θ(1/ε2), and choosing s = Θ(1/ε) and m = Θ(ε−2 log(1/ε)) in the
above lemma, we conclude our main result (stated informally as part (ii) of Theorem 1.1)
concerning the explicit construction of codes list decodable up to the Singleton bound over
fixed alphabets and very slowly growing list-size.

Theorem 11.8 (Main deterministic code construction). For every R ∈ (0, 1) and ε > 0,
there is a deterministic polynomial time constructible family of error-correcting codes of
rate R over an alphabet of size exp(O(ε−2 log2(1/ε))) that can be list decoded in poly-
nomial time from a fraction (1 − R − ε) of errors, outputting a list of size at most

exp1/ε

(
exp1/ε(exp(O(log∗N)))

)
, where N is block length of the code.
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