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Abstract

We generalize the celebrated isoperimetric inequality of Khot, Minzer, and Safra (SICOMP 2018) for
Boolean functions to the case of real-valued functions f : {0, 1}d → R. Our main tool in the proof of
the generalized inequality is a new Boolean decomposition that represents every real-valued function f
over an arbitrary partially ordered domain as a collection of Boolean functions over the same domain,
roughly capturing the distance of f to monotonicity and the structure of violations of f to monotonicity.

We apply our generalized isoperimetric inequality to improve algorithms for testing monotonicity and
approximating the distance to monotonicity for real-valued functions. Our tester for monotonicity has
query complexity Õ(min(r

√
d, d)), where r is the size of the image of the input function. (The best

previously known tester, by Chakrabarty and Seshadhri (STOC 2013), makes O(d) queries.) Our tester
is nonadaptive and has 1-sided error. We show a matching lower bound for nonadaptive, 1-sided error
testers for monotonicity. We also show that the distance to monotonicity of real-valued functions that
are α-far from monotone can be approximated nonadaptively within a factor of O(

√
d log d) with query

complexity polynomial in 1/α and the dimension d. This query complexity is known to be nearly optimal
for nonadaptive algorithms even for the special case of Boolean functions. (The best previously known
distance approximation algorithm for real-valued functions, by Fattal and Ron (TALG 2010) achieves
O(d log r)-approximation.)

1 Introduction

We investigate the structure of real-valued functions over the domain {0, 1}d, the d-dimensional hyper-
cube. Our main contribution is a generalization of a powerful tool from the analysis of Boolean functions,
specifically, isoperimetric inequalities1, to the case of real-valued functions. Isoperimetric inequalities for
the undirected hypercube were studied by Margulis [Mar74] and Talagrand [Tal93]. Chakrabarty and Se-
shadhri [CS16] had a remarkable insight to develop a directed analogue of the Margulis inequality. This
beautiful line of work culminated in the directed analogue of the Talagrand inequality proved by Khot,
Minzer, and Safra [KMS18]. We refer to this as the KMS inequality. As Khot, Minzer, and Safra explain in
their celebrated work, the Margulis-type inequalities follow from the Talagrand-type inequalities and, more
generally, the directed analogue of the Talagrand inequality implies all the other inequalities we mentioned.
We generalize all these inequalities to the case of real-valued functions.
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1We discuss isoperimetric inequalities that study the size of the “boundary” between the points on which the function takes

value 0 and the points on which it takes value 1. The boundary size is defined in terms of the edges of the d-dimensional
hypercube with vertices labeled by the values of the function. The edges of the hypercube might be directed or undirected,
depending on the type of the inequality.
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For the directed case, we prove a generalization of the KMS inequality for functions f : {0, 1}d → R. To
generalize the undirected isoperimetric inequalities, we give a property testing interpretation of the Talagrand
inequality. With this interpretation, the inequality easily generalizes to the case of real-valued functions.

Our proofs of the new isoperimetric inequalities reduce the general case to the Boolean case. Our main
tool for generalizing the KMS inequality is a new Boolean decomposition theorem that represents every
real-valued function f over an arbitrary partially ordered domain as a collection of Boolean functions over
the same domain, roughly capturing the distance of f to monotonicity and the structure of violations of f
to monotonicity.

We apply our generalized isoperimetric inequality to improve algorithms for testing monotonicity and
approximating the distance to monotonicity for real-valued functions. Our algorithm for testing monotonicity
is nonadaptive and has 1-sided error. An algorithm is nonadaptive if its input queries do not depend on
answers to previous queries. A property testing algorithm has 1-sided error if it always accepts all inputs with
the property it is testing. We show that our algorithm for testing monotonicity is optimal among nonadaptive,
1-sided error testers. Our distance approximation algorithm is nonadaptive. Its query complexity is known
to be nearly optimal for nonadaptive algorithms, even for the special case of Boolean functions.

1.1 Isoperimetric Inequalities for Real-Valued Functions

We view the domain of functions f : {0, 1}d → R as a hypercube. For the directed isoperimetric inequalities,
the edges of the hypercube are ordered pairs (x, y), where x, y ∈ {0, 1}d and there is a unique2 i ∈ [d] such
that xi = 0, yi = 1, and xj = yj for all coordinates j ∈ [d]/{i}. This defines a natural partial order on the
domain: x � y if xi ≤ yi for all coordinates i ∈ [d] or, equivalently, if there is a directed path from x to y
in the hypercube. A function f : {0, 1}d → R is monotone if f(x) ≤ f(y) whenever x � y. The distance to
monotonicity of a function f : {0, 1}d → R, denoted ε(f), is the minimum of Prx∈{0,1}d [f(x) 6= g(x)] over all

monotone functions g : {0, 1}d → R. An edge (x, y) is violated by f if f(x) > f(y). Let S−f be the set of

violated edges. For x ∈ {0, 1}d, let I−f (x) be the number of outgoing violated edges incident on x, specifically,

I−f (x) =
∣∣∣{y : (x, y) ∈ S−f

}∣∣∣ .
Our main result is the following isoperimetric inequality.

Theorem 1.1 (Isoperimetric Inequality). There exists a constant C > 0, such that for all functions
f : {0, 1}d → R,

E
x∼{0,1}d

[√
I−f (x)

]
≥ C · ε(f). (1)

Theorem 1.1 is a generalization of the celebrated inequality of Khot, Minzer, and Safra [KMS18], that
was subsequently strengthened by Pallavoor et al. [PRW20], who proved (1) for the special case of Boolean
functions f : {0, 1}d → {0, 1}. We show that the same inequality holds for real-valued functions without any
dependence on the size of the image of the function. In addition, the constant C is only a factor of 2 smaller
than the constant in the inequality of Pallavoor et al.

Applications to monotonicity testing and distance approximation rely on a stronger, “robust” version of
Theorem 1.1. The robust version considers an arbitrary 2-coloring col : S−f → {red,blue} of the violated
edges. The color of an edge is used to specify whether the edge is counted towards the lower or the upper
endpoint. Let I−f,red(x) be the number of outgoing red violated edges incident on x, and I−f,blue(x) be the
number of incoming blue violated edges incident on x, specifically,

I−f,red(x) =
∣∣∣{y : (x, y) ∈ S−f , col(x, y) = red

}∣∣∣ ;
I−f,blue(y) =

∣∣∣{x : (x, y) ∈ S−f , col(x, y) = blue
}∣∣∣ .

2Given a positive integer ` ∈ Z+, we let [`] denote the set {1, 2, . . . , `}.
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Our next theorem is a generalization of the robust isoperimetric inequality for Boolean functions established
by Khot, Minzer, and Safra and strengthened by Pallavoor et al. As before, the constant C is only a factor
of 2 smaller for the real-valued case than for the Boolean case.

Theorem 1.2 (Robust Isoperimetric Inequality). There exists a constant C > 0, such that for all functions
f : {0, 1}d → R and colorings col : S−f → {red,blue},

E
x∼{0,1}d

[√
I−f,red(x)

]
+ E

y∼{0,1}d

[√
I−f,blue(y)

]
≥ C · ε(f).

Note that Theorem 1.2 implies Theorem 1.1 by considering the coloring where all violated edges are red.
Therefore, we only present a proof of Theorem 1.2.

Boolean decomposition. Our main technical contribution is the Boolean decomposition (Theorem 1.3).
It allows us to prove Theorem 1.2 by reducing the general case of real-valued functions to the special case of
Boolean functions. Theorem 1.3 states that every non-monotone function f can be decomposed into Boolean
functions f1, f2, . . . , fk that collectively preserve the distance to monotonicity of f and violate a subset of
the edges violated by f . Crucially, they violate edges in disjoint subgraphs of the hypercube.

Our Boolean decomposition works for functions over any partially ordered domain. We represent such a
domain by a directed acyclic graph (DAG). For a DAG G, we denote its vertex set by V (G) and its edge set
by E(G). A DAG G determines a natural partial order on its vertex set: for all x, y ∈ V (G), we have x � y
if and only if G contains a path from x to y. A function f : V (G)→ R is monotone if f(x) ≤ f(y) whenever
x � y. An edge (x, y) of G is violated by f if f(x) > f(y). The definitions of ε(f), the distance of f to
monotone, and S−f , the set of violated edges, are the same as for the special case of the hypercube.

Theorem 1.3 (Boolean Decomposition). Suppose G is a DAG and f : V (G)→ R is a non-monotone function
over the vertices of G. Then, for some k ≥ 1, there exist Boolean functions f1, . . . , fk : V (G) → {0, 1} and
disjoint (induced) subgraphs H1, . . . ,Hk of G for which the following hold:

1. 2
∑k
i=1 ε(fi) ≥ ε(f).

2. S−fi ⊆ S
−
f ∩ E(Hi) for all i ∈ [k].

We derive Theorem 1.2 from Theorem 1.3 in Section 2 and prove Theorem 1.3 in Section 3.
A natural first attempt to proving Theorem 1.1 is to try reducing to the special case of Boolean functions

(the KMS inequality) via a thresholding argument. Given f : {0, 1}d → R and t ∈ R, define ht : {0, 1}d →
{0, 1} to be ht(x) = 1 iff f(x) > t. Clearly, this can only reduce the left-hand side of (1) since the
influential edges of ht are a subset of the influential edges of f . Thus, if there exists some t ∈ R such that
ε(ht) = Ω(ε(f)), then applying the KMS inequality to ht would show that the inequality also holds for
f . In fact, as we show in Section 7, this technique easily allows us to reduce the undirected inequality for
the real-valued case to the Boolean case, without any significant additional ideas. However, in the directed
setting, a simple argument shows that there exists f for which ε(ht) ≤ ε(f)/r for all t ∈ R, where r is
the size of the image of f . Thus, additional ideas are required to prove Theorem 1.1 by a reduction to the
KMS inequality. The highly structured decomposition of Theorem 1.3 gives a collection of disjoint subgraphs
H1, . . . ,Hk of the directed hypercube where, in each Hi, an independent “variable thresholding rule” can be
applied, yielding the Boolean function fi. The “threshold” for each vertex x in Hi depends on the values of
the function at a particular set of vertices reachable from x.

The Boolean decomposition is quite powerful: in addition to enabling us to prove the new isoperimetric
inequality, it can be used to easily derive a lower bound on the number of edges violated by a real-valued
function directly from the bound for the Boolean case, without relying on Theorem 1.2. This bound is used
to analyze the edge tester for monotonicity whose significance is described in Section 1.2. The early works
on monotonicity testing [GGL+00, DGL+99, Ras99] have shown that |S−f | ≥ ε(f) · 2d for every Boolean

function f on the domain {0, 1}d. In other words, the number of edges violated by f is at least the number
of points on which the value of the function has to change to make it monotone. This bound was generalized
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to the case of real-valued functions by [DGL+99, Ras99] who showed that |S−f | ≥ (ε(f)/dlog re) · 2d for

every real-valued function f on the domain {0, 1}d and with image size r. (The size of the image of f is the
number of distinct values it takes.) Chakrabarty and Seshadhri [CS13] improved this bound by a factor of
Θ(log r), thus removing the dependence on the size of the image of the function. Our Boolean decomposition
of a real-valued function f in terms of Boolean functions f1, . . . , fk, given by Theorem 1.3, yields this result
of [CS13] as an immediate corollary of the special case for Boolean functions:

|S−f | ≥
k∑
i=1

|S−fi | ≥
k∑
i=1

ε(fi) · 2d ≥ ε(f) · 2d−1,

where the inequalities follow by first applying Item 2 of Theorem 1.3, then applying the bound for the Boolean
case, and, finally, applying Item 1 of Theorem 1.3.

Undirected isoperimetric inequality for real-valued functions. The original isoperimetric inequality
of Talagrand [Tal93] treats the domain {0, 1}d as an undirected hypercube. An undirected edge {x, y} is
influential if f(x) 6= f(y). Let If (x) be the number of influential edges {x, y} incident on x ∈ {0, 1}d for
which f(x) > f(y). This definition ensures that each influential edge is counted towards If (x) for exactly
one vertex x. The variance var(f) of a Boolean function is defined as p0(1− p0), where p0 is the probability
that f(x) = 0 for a uniformly random point x in the domain. Talagrand [Tal93] proved the following.

Theorem 1.4 (Talagrand Inequality [Tal93]). For all functions f : {0, 1}d → {0, 1},

E
x∼{0,1}d

[√
If (x)

]
≥
√

2 var(f). (2)

Before generalizing Theorem 1.4 to real-valued functions, we reinterpret it using a property testing notion.
Observe that the natural definition of the variance of a real-valued function results in a quantity that depends
on specific values of the function, whereas whether an edge is influential depends only on whether the values
on its endpoints are different and not on the specific values themselves. So, variance is not a suitable notion
for generalizing this inequality. We replace the variance of f with the distance of f to constant, denoted
dist(f, const), i.e., the minimum of Prx∼{0,1}d [f(x) 6= g(x)] over all constant functions g : {0, 1}d → R. For
a Boolean function f , the distance to constant is min{p0, (1− p0)} and, therefore, the left-hand side of (2) is
at least dist(f, const)/

√
2. Next, we state our generalization of Talagrand’s inequality, proved in Section 7.

Theorem 1.5 (Undirected Isoperimetric Inequality). For all functions f : {0, 1}d → R,

E
x∼{0,1}d

[√
If (x)

]
≥ dist(f, const)

2
√

2
.

We do not discuss Margulis-type isoperimetric inequalities here, but note that their natural generalizations
to the real range follow from our Talagrand-type inequalities (for the same reasons as for the special case of
Boolean functions, as discussed in [KMS18]).

1.2 Applications of the New Isoperimetric Inequality for Real-Valued Functions

We apply our generalized isoperimetric inequality (Theorem 1.2) to improve algorithms for testing mono-
tonicity and approximating the distance to monotonicity for real-valued functions.

Monotonicity testing. Monotonicity of functions, first studied in the context of property testing by
Goldreich et al. [GGL+00], is one of the most widely investigated properties in this model [EKK+00, DGL+99,
Ras99, LR01, FLN+02, AC06, Fis04, HK08, BRW05, PRR06, ACCL07, BGJ+12, BCSM12, BBM12, CS13,
CS14, CS16, BRY14, CDJS17, CDST15, BB16, CWX17, PRV18, BCS18, KMS18, CS19, BCS20]. A function
is ε-far from monotone if its distance to monotonicity is at least ε; otherwise, it is ε-close to monotone. An
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ε-tester for monotonicity is a randomized algorithm that, given a parameter ε ∈ (0, 1) and oracle access to a
function f , accepts with probability at least 2/3 if f is monotone and rejects with probability at least 2/3 if
f is ε-far from monotone. Prior to our work, the best monotonicity tester for real-valued functions was the
edge tester. The edge tester, introduced by [GGL+00], queries the values of f on the endpoints of uniformly
random edges of the hypercube and rejects if it finds a violated edge. As we discussed in Section 1.1, a series
of works [GGL+00, DGL+99, Ras99, CS13] proved lower bounds on |S−f |, the number of violated edges,
resulting in the tight analysis of the edge tester for both Boolean and real-valued functions: O(d/ε) queries are
sufficient (and also necessary, e.g., for f(x) = 1−x1, the anti-dictator function). For many years, it remained
open whether an o(d)-query tester for monotonicity existed, until a sequence of breakthroughs [CS16, CST14,

KMS18] designed testers for Boolean functions with query complexity Õ(d7/8), Õ(d5/6), and finally Õ(
√
d).

Prior to our work, the same question remained open for functions with image size, r, greater than 2.
We show that when r is small compared to d, monotonicity can be tested with o(d) queries. (Note that

r ≤ 2d.)

Theorem 1.6. There exists a nonadaptive, 1-sided error ε-tester for monotonicity of f : {0, 1}d → R that

makes Õ
(

min
(
r
√
d

ε2 ,
d
ε

))
queries and works for all functions f with image size r.

The proof of Theorem 1.6 (in Section 4) heavily relies on the generalized isoperimetric inequality of
Theorem 1.2. We extend several other combinatorial properties of Boolean functions to real-valued functions.
In particular, the persistence of a vertex x ∈ {0, 1}d is a key combinatorial concept in the analysis. A vertex
x ∈ {0, 1}d is τ -persistent if, with high probability, a random walk that starts at x and takes τ steps in the
d-dimensional directed hypercube ends at a vertex y for which f(y) ≤ f(x). As we show, the upper bound
on the number of vertices which are not τ -persistent grows linearly with the distance τ and the image size r.
For the tester analysis, one needs to carefully choose the distance parameter τ for which many vertices are
τ -persistent. In particular, this value of τ also depends on the image size r, resulting in the linear dependence
on r in the query complexity of the tester.

Our lower bound for testing monotonicity. We show that our monotonicity tester is optimal among
nonadaptive, 1-sided error testers.

Theorem 1.7. There exists a constant ε > 0, such that for all d, r ∈ N, every nonadaptive, 1-sided error
ε-tester for monotonicity of functions f : {0, 1}d → [r] requires Ω(min(r

√
d, d)) queries.

We prove Theorem 1.7 (in Section 6) by generalizing a construction of Fischer et al. [FLN+02] that showed
that nonadaptive, 1-sided error monotonicity testers of Boolean functions must make Ω(

√
d) queries. Blais

et al. [BBM12] demonstrated that every tester for monotonicity over the d-dimensional hypercube domain
requires Ω(min(d, r2)) queries. Our lower bound is stronger when r ∈ [2,

√
d], although it applies only to

nonadaptive, 1-sided error algorithms.

Approximating the distance to monotonicity. Motivated by the desire to handle noisy inputs, Parnas
et al. [PRR06] generalized the property testing model to tolerant testing. There is a direct connection between
tolerant testing of a property and approximating the distance to the property with additive and multiplicative
error in the sense that these problems can be reduced to each other with the right setting of parameters
and have the same query complexity up to logarithmic factors (see, e.g., [PRR06, Claim 2] and [PRW20,
Theorem A.1]). One clean way to state distance approximation guarantees is to replace the additive error α
with the promise that the input function is α-far from the property, as specified in the following definition.
A randomized c-approximation algorithm for the distance to monotonicity, where c > 1, is given a parameter
α ∈ (0, 1) and oracle access to a function f : {0, 1}d → R that is α-far from monotone. It outputs an estimate
ε̂ that, with probability at least 2/3, satisfies ε(f) ≤ ε̂ ≤ c · ε(f).

Fattal and Ron [FR10] studied the problem of approximating the distance to monotonicity for real-
valued functions over the hypergrid domain [n]d. For the special case of the hypercube domain, they give
an O(d log r)-approximation algorithm for functions with image size r that makes poly(d, 1/α) queries. The-
orem 1.2 allows us to improve on their result, by showing that the algorithm of Pallavoor et al. [PRW20]

5



for approximating the distance to monotonicity of Boolean functions also works for real-valued functions,
without any loss in the approximation guarantee.

Theorem 1.8. There exists a nonadaptive O(
√
d log d)-approximation algorithm for the distance to mono-

tonicity that, given a parameter α ∈ (0, 1) and oracle access to a function f : {0, 1}d → R that is α-far from
monotone, makes poly(d, 1/α) queries.

Pallavoor et al. prove that this approximation ratio is nearly optimal for nonadaptive algorithms, even
for the special case of Boolean functions. We also note that, by the connection between tolerant testing
and erasure-resilient testing observed by Dixit et al. [DRTV18], our Theorem 1.8 implies the existence of an
erasure-resilient ε-tester for monotonicity of functions f : {0, 1}d → R that can handle up to Θ(ε/

√
d log d)

erasures with query complexity poly(d, 1/ε). The tester of Dixit et al. could handle only O(ε/d) erasures.
We prove Theorem 1.8 in Section 5.

1.3 Other Prior Work on Monotonicity Testing and Open Questions

The query complexity of monotonicity testing of Boolean functions over the hypercube has been resolved for
nonadaptive testers by Chen et al. [CDST15, CWX17] who proved a lower bound of Ω̃(

√
d). For adaptive

testers, the best lower bound known to date is Ω̃(d1/3), also shown by [CWX17]. It is an open question
whether adaptive algorithms can do better than nonadaptive ones for functions over the hypercube domain,
both in the case of Boolean functions and, more generally, for functions with small image size. As we
mentioned before, there is a lower bound of Ω(d) for functions with image size Ω(

√
d) [BBM12].

Monotonicity testing has also been studied for functions on other types of domains, including general
partially ordered domains [FLN+02], with particular attention to the hypergrid domain [n]d. (It has also been
investigated in the context where the distance to monotonicity is the normalized Lp distance instead of the
Hamming distance, but we focus our attention here on the Hamming distance.) When d = 1, monotonicity
testing on the hypergrid [n] is equivalent to testing sortedness of n-element arrays. This problem was
introduced by Ergun et al. [EKK+00]. Its query complexity has been completely pinned down in terms of

n and ε by [EKK+00, Fis04, CS14, Bel18]: it is Θ( log(εn)
ε ). Pallavoor et al. [PRV18, Pal20] considered the

setting when the tester is given an additional parameter r, the number of distinct elements in the array,
and obtained an O((log r)/ε)-query algorithm. There are also lower bounds for this setting: Ω(log r) for
nonadaptive algorithms by [BRY14] and Ω( log r

log log r ) for all testers for the case when r = n1/3 by [Bel18].

For general d, Black et al. [BCS18, BCS20] gave an Õ(d5/6)-query tester for Boolean functions f : [n]d →
{0, 1}. For real-valued functions, Chakrabarti and Seshadhri [CS13, CS14] proved basically matching upper
and lower bounds of O((d log n)/ε) and Ω((d log n− log ε−1)/ε). However, their lower bound only applies for
functions with a large image. Pallavoor et al. [PRV18] gave an O(dε · log d

ε · log r)-query tester, where r, the

size of the image, is given to the tester as a parameter. It remains open whether there is an O(
√
d)-query

tester for Boolean functions on the hypergrid domain and, in particular, whether the isoperimetric inequality
of [KMS18] can be extended to hypergrids. Note that since the Boolean Decomposition (Theorem 1.3) holds
for all partially ordered domains, an isoperimetric inequality for Boolean functions on hypergrids would also
generalize to real-valued functions.

2 Directed Talagrand Inequality for Real-Valued Functions

In this section, we use our Boolean decomposition Theorem 1.3 to prove Theorem 1.2, which easily implies the
non-robust version (Theorem 1.1) as we point out in the introduction. Let f : {0, 1}d → R be a non-monotone
function over the d-dimensional hypercube and let col : S−f → {red,blue} be an arbitrary 2-coloring of S−f .

Given x ∈ {0, 1}d and a subgraph H of the d-dimensional hypercube, we define the quantities

I−f,red,H(x) =
∣∣∣{y : (x, y) ∈ S−f ∩ E(H), col(x, y) = red

}∣∣∣ ;
I−f,blue,H(y) =

∣∣∣{x : (x, y) ∈ S−f ∩ E(H), col(x, y) = blue
}∣∣∣ .
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Let f1, . . . , fk : {0, 1}d → {0, 1} be the Boolean functions and H1, . . . ,Hk be the disjoint subgraphs of the
d-dimensional hypercube that are guaranteed by Theorem 1.3. Let C ′ denote the constant from the robust
Boolean isoperimetric inequality (Theorem 2.7 of [PRW20]) that is hidden by Ω. We have

E
x∼{0,1}d

[√
I−f,red(x)

]
+ E

y∼{0,1}d

[√
I−f,blue(y)

]
≥ E

x

[√
I−
f,red,

⋃k
i=1Hi

(x)
]

+ E
y

[√
I−
f,blue,

⋃k
i=1Hi

(y)
]

(3)

=

k∑
i=1

(
E
x

[√
I−f,red,Hi

(x)
]

+ E
y

[√
I−f,blue,Hi

(y)
])

(4)

≥
k∑
i=1

(
E
x

[√
I−fi,red,Hi

(x)
]

+ E
y

[√
I−fi,blue,Hi

(y)
])

(5)

=

k∑
i=1

(
E
x

[√
I−fi,red(x)

]
+ E

y

[√
I−fi,blue(y)

])
(6)

≥
k∑
i=1

C ′ · ε(fi) (7)

≥ C ′ · ε(f)

2
. (8)

The inequality (3) holds simply because
⋃k
i=1Hi is a subgraph of the d-dimensional hypercube, while the

equality (4) holds because the Hi’s are disjoint. The inequality (5) holds since S−fi ⊆ S
−
f and the equality

(6) holds since S−fi ⊆ E(Hi) (these are both by item 2 of Theorem 1.3). Finally, (7) is due to Theorem 2.7
of [PRW20] and (8) is due to item 1 of Theorem 1.3.

3 Boolean Decomposition: Proof of Theorem 1.3

In this section, we prove the Boolean Decomposition Theorem 1.3. Our results consider any partially ordered
domain, which we represent by a DAG G. The transitive closure of G, denoted TC(G), is the graph (V (G), E),
where E = {(x, y) : x ≺ y}. The violation graph of f is the graph (V (G), E′), where E′ is the set of edges in
E violated by f .

In Section 3.1, we define the key notion of sweeping graphs and identify some of their important properties.
In Section 3.2, we prove a general lemma that shows how to use a matching M in TC(G) to find disjoint
sweeping graphs in G satisfying a “matching rearrangement” property. The techniques in Section 3.1 and
Section 3.2 are inspired by the techniques of [BCS18] used to analyze Boolean functions on the hypergrid
domain, [n]d. In Section 3.3, we apply our matching decomposition lemma to a carefully chosen matching
to obtain the subgraphs H1, . . . ,Hk. Finally, in Section 3.4, we define the Boolean functions f1, . . . , fk and
complete the proof of Theorem 1.3.

3.1 Sweeping Graphs and Their Properties

Definition 3.1 ((S, T )-Sweeping Graphs). Given a DAG G and s, t ∈ V (G), define H(s, t) to be the subgraph
of G formed by the union of all directed paths in G from s to t. Given two disjoint subsets S, T ⊆ V (G),
define the (S, T )-sweeping graph, denoted H(S, T ), to be the union of directed paths in G that start from
some s ∈ S and end at some t ∈ T . That is,

H(S, T ) =
⋃

(s,t)∈S×T

H(s, t).

Note that if s � t then H(s, t) = ∅.
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We now prove three properties of sweeping graphs which we use in Section 3.4 to analyze our functions
f1, . . . , fk. Given disjoint sets S, T ⊆ V (G) and z ∈ V (H(S, T )), define the sets

S(z) = {s ∈ S : s � z} and T (z) = {t ∈ T : z � t}.

Claim 3.2 (Properties of Sweeping Graphs). Let G be a DAG and S, T ⊆ V (G) be disjoint sets.

1. (Property of Nodes in a Sweeping Graph): If z ∈ V (H(S, T )) then S(z) 6= ∅ and T (z) 6= ∅.

2. (Property of Nodes Outside of a Sweeping Graph): If z ∈ V (G) \ V (H(S, T )) then at most one of the
following is true: (a) ∃y ∈ V (H(S, T )) such that z ≺ y, (b) ∃x ∈ V (H(S, T )) such that x ≺ z.

3. (Sweeping Graphs are Induced): If x, y ∈ V (H(S, T )) and (x, y) ∈ E(G) then (x, y) ∈ E(H(S, T )).

Proof. Property 1 holds by definition of the sweeping graph H(S, T ). If z ∈ V (H(S, T )), then, by definition
of H(S, T ), there exist s ∈ S and t ∈ T for which z belongs to some directed path from s to t. That is,
z ∈ V (H(s, t)). Thus s ∈ S(z) and t ∈ T (z), and property 1 holds.

We now prove property 2. Suppose, for the sake of contradiction, that there exist x, y, z ∈ V (G) for which
x, y ∈ V (H(S, T )), z /∈ V (H(S, T )), and x ≺ z ≺ y. By property 1, there exist some s ∈ S(x) and some
t ∈ T (y). Then s � x ≺ z ≺ y � t and, consequently, z belongs to some directed path from s to t. Thus
z ∈ V (H(s, t)), and so z ∈ V (H(S, T )). This is a contradiction.

We now prove property 3. Suppose x, y ∈ V (H(S, T )) and (x, y) ∈ E(G). By property 1, there exist s ∈ S
and t ∈ T for which s � x and y � t. Since (x, y) ∈ E(G), we have x ≺ y and so s � x ≺ y � t. Thus, the
edge (x, y) belongs to a directed path from s to t. That is, (x, y) ∈ E(H(s, t)) and so (x, y) ∈ E(H(S, T )). �

3.2 Matching Decomposition Lemma for DAGs

In this section, we prove the following matching decomposition lemma. Recall that TC(G) = (V (G), E)
denotes the transitive closure of the DAG G, where E = {(x, y) : x ≺ y}. Consider a matching M in TC(G).
We represent M : S → T as a bijection between two disjoint sets S, T ⊆ V (G) of the same size for which
s ≺M(s) for all s ∈ S. For a set S′ ⊆ S, define M(S′) = {M(s) : s ∈ S′}. Note that for convenience we will
sometimes abuse notation and represent M as the set of pairs, {(s,M(s)) : s ∈ S}, instead of as a bijection.

Lemma 3.3 (Matching Decomposition Lemma for DAGs). For every DAG G and every matching M : S → T
in TC(G), there exist partitions (Si : i ∈ [k]) of S and (Ti : i ∈ [k]) of T , where M(Si) = Ti for all i ∈ [k],
and the following hold.

1. (Sweeping Graph Disjointness): V (H(Si, Ti)) ∩ V (H(Sj , Tj)) = ∅ for all i 6= j, where i, j ∈ [k].
2. (Matching Rearrangement Property): For all i ∈ [k] and (x, y) ∈ Si × Ti, if x ≺ y then there exists a

matching M̂ : Si → Ti in TC(G) for which (x, y) ∈ M̂ .

Proof. In Algorithm 1, we show how to construct partitions (Si : i ∈ [k]) for S and (Ti : i ∈ [k]) for T from
a matching M in TC(G). Algorithm 1 uses the following notion of conflicting pairs.

Definition 3.4 (Conflicting Pairs). Given a DAG G and four disjoint sets X,Y,X ′, Y ′ ⊂ V (G), we say that
the two pairs (X,Y ) and (X ′, Y ′) conflict if V (H(X,Y )) ∩ V (H(X ′, Y ′)) 6= ∅.

The following observation is apparent and by design of Algorithm 1.

Observation 3.5 (Loop Invariants of Algorithm 1). For all s ∈ {0, 1, . . . , s∗}, (a) M(X) = Y for all
(X,Y ) ∈ Qs, (b) (X : (X, ·) ∈ Qs) is a partition of S, and (c) (Y : (·, Y ) ∈ Qs) is a partition of T .

Given a matching M : S → T in TC(G), we run Algorithm 1 to obtain the set Qs∗ . See Fig. 1 for an
illustration. Define k = |Qs∗ | and let {(Si, Ti) : i ∈ [k]} be the set of pairs in Qs∗ . By Observation 3.5,
(Si : i ∈ [k]) is a partition of S, (Ti : i ∈ [k]) is a partition of T , and M(Si) = Ti for all i ∈ [k]. Item 1 of
Lemma 3.3 holds since Algorithm 1 terminates at step s only when all pairs in Qs are non-conflicting (recall
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Algorithm 1 Algorithm for constructing conflict-free pairs from a matching M

Input: A DAG G and a matching M : S → T in TC(G).

1: Q0 ← {({x}, {y}) : (x, y) ∈M} . Initialize pairs using M

2: for s ≥ 0 do

3: if two pairs (X,Y ) 6= (X ′, Y ′) ∈ Qs conflict then

4: Qs+1 ← (Qs \ {(X,Y ), (X ′, Y ′)}) ∪ {(X ∪X ′, Y ∪ Y ′)} . Merge conflicting pairs

5: else

6: s∗ ← s and return Qs∗ . Terminate when there are no conflicts

Figure 1: An illustration for Algorithm 1 with input matching M = {(a, x), (b, y), (c, z)}. We initialize
Q0 = {({a}, {x}), ({b}, {y}), ({c}, {z})}. The pairs ({a}, {x}) and ({b}, {y}) conflict, so we merge them to
obtain a new and final collection Q1 = {({a, b}, {x, y}), ({c}, {z})}.

Definition 3.4). Thus, to prove Lemma 3.3 it only remains to prove item 2. To do so, we prove the following
Claim 3.6, that easily implies item 2. Note that while we only require Claim 3.6 to hold for the special case
of s = s∗, using an inductive argument on s allows us to give a proof for all s ∈ {0, 1, . . . , s∗}.

Claim 3.6 (Rematching Claim). For all s ∈ {0, 1, . . . , s∗}, pairs (X,Y ) ∈ Qs, and (x, y) ∈ X × Y , there

exists a matching M̂ : X \ {x} → Y \ {y} in TC(G).

Proof. The proof is by induction on s. For the base case, if s = 0, then, by inspection of Algorithm 1, for
(X,Y ) ∈ Q0, we must have X = {x} and Y = {y}. Thus, setting M̂ = ∅ trivially proves the claim.

Now let s > 0. Fix some (X,Y ) ∈ Qs and (x, y) ∈ X × Y . Let (X1, Y1), (X2, Y2) ∈ Qs−1 be the pairs
of sets in Qs−1 for which x ∈ X1 and y ∈ Y2. First, if (X1, Y1) = (X2, Y2), then by induction there exists

a matching M̂ ′ : X1 \ {x} → Y1 \ {y} in TC(G). Note that by definition of Algorithm 1, we must have

X1 ⊆ X and Y1 ⊆ Y . Then the required matching is M̂ = M̂ ′ ∪M |X\X1
where M |(·) denotes the restriction

of the original matching M to the set (·). Suppose (X1, Y1) 6= (X2, Y2). This is the interesting case, and
we give an accompanying illustration in Fig. 2. By definition of Algorithm 1, it must be that (X1, Y1) and
(X2, Y2) conflict (recall Definition 3.4) and were merged to form X = X1 ∪ X2 and Y = Y1 ∪ Y2. Thus,
there exists some vertex z ∈ V (H(X1, Y1)) ∩ V (H(X2, Y2)) and x1 ∈ X1, y1 ∈ Y1, x2 ∈ X2, y2 ∈ Y2 for which
x1 � z � y1 and x2 � z � y2.

We now invoke the inductive hypothesis to get matchings M̂1 : X1 \{x} → Y1 \{y1} and M̂2 : X2 \{x2} →
Y2 \ {y} in TC(G). Observe that x2 � z � y1 and thus we can match x2 and y1. The required matching in

TC(G) is M̂ = M̂1 ∪ M̂2 ∪ {(x2, y1)}. �

We conclude the proof of Lemma 3.3 by showing that Claim 3.6 implies item 2. We are given (Si, Ti) ∈ Qs∗
for some i ∈ [k] and (x, y) ∈ Si×Ti where x ≺ y. By Claim 3.6 there exists a matching M̂ ′ : Si\{x} → Ti\{y}
in TC(G). We then set M̂ = M̂ ′ ∪ {(x, y)}. Since x ≺ y, the final matching M̂ : Si → Ti is a matching in
TC(G) which contains the pair (x, y). �
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Figure 2: An illustration for the case of (X1, Y1) 6= (X2, Y2) in the proof of Claim 3.6. The solid lines

represent directed paths. The dotted line represents the pair (x2, y1) added to obtain the final matching M̂ .

The only vertices of X ∪ Y not participating in M̂ are x and y.

3.3 Specifying a Matching to Construct the Subgraphs H1, . . . ,Hk

In this section, we apply Lemma 3.3 to a carefully chosen matching M in order to construct our disjoint
subgraphs H1, . . . ,Hk.

Definition 3.7 (Max-weight, Min-cardinality Matching). A matching M in TC(G) is a max-weight, min-
cardinality matching if M maximizes

∑
(x,y)∈M (f(x)− f(y)) and among such matchings minimizes |M |.

Henceforth, let M denote a max-weight, min-cardinality matching. Let S and T denote the set of lower
and upper endpoints, respectively, of M . We use the following well-known fact on matchings in the violation
graph.

Fact 3.8 (Corollary 2 [FLN+02]). For a DAG G and function f : V (G) → R, the distance to monotonicity
ε(f) is equal to the size of the minimum vertex cover of the violation graph of f divided by |V (G)|.
Fact 3.9. M is a matching in the violation graph of f that is also maximal. That is, (a) f(x) > f(y) for
all (x, y) ∈M and (b) |M | ≥ (ε(f) · |V (G)|)/2.

Proof. First, for the sake of contradiction, suppose f(x) ≤ f(y) for some pair (x, y) ∈ M . Then we can
set M = M \ {(x, y)}, which can only increase

∑
(x,y)∈M (f(x) − f(y)) and will decrease |M | by 1. This

contradicts the definition of M . Thus, f(x) > f(y) for all (x, y) ∈M and so M is a matching in the violation
graph of f . Second, since M maximizes

∑
(x,y)∈M (f(x)− f(y)), it must also be a maximal matching in the

violation graph of f . Thus, (b) follows from Fact 3.8 and the fact that the size of any maximal matching is
at least half the size of the minimum vertex cover. �

We now apply Lemma 3.3 to M , obtaining the partitions (Si : i ∈ [k]) and (Ti : i ∈ [k]) for S and T ,
respectively, for which M(Si) = Ti for all i ∈ [k]. For each i ∈ [k], let Hi = H(Si, Ti). We use the collection
of sweeping graphs H1, . . . ,Hk to prove Theorem 1.3. Note that these subgraphs are all vertex disjoint by
item 1 of Lemma 3.3. We use item 2 of Lemma 3.3 to prove the following lemma regarding the (Si, Ti) pairs.
The proof crucially relies on the fact that M is a max-weight, min-cardinality matching.

Lemma 3.10 (Property of the Pairs (Si, Ti)). For all i ∈ [k] and (x, y) ∈ Si×Ti, if x ≺ y then f(x) > f(y).

Proof. Suppose there exists i ∈ [k], x ∈ Si, and y ∈ Ti for which x ≺ y and f(x) ≤ f(y). By item 2 of

Lemma 3.3 there exists a matching M̂ : S → T in TC(G) for which (x, y) ∈ M̂ . In particular, since M and

M̂ have identical sets of lower and upper endpoints,∑
(s,t)∈M̂

(f(s)− f(t)) =
∑

(s,t)∈M

(f(s)− f(t)) and |M̂ | = |M |.
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Now set M̂ ′ = M̂ \ {(x, y)} and observe that since f(x) ≤ f(y),∑
(s,t)∈M̂ ′

(f(s)− f(t)) ≥
∑

(s,t)∈M

(f(s)− f(t)) and |M̂ ′| < |M |.

Therefore, M is not a max-weight, min-cardinality matching and this is a contradiction. �

3.4 Tying it Together: Defining the Boolean Functions f1, . . . , fk

We are now equipped to define the functions f1, . . . , fk : V (G) → {0, 1} and complete the proof of Theo-
rem 1.3. First, given i ∈ [k] and z ∈ V (G) \ V (Hi), we say that z is below Hi if there exists y ∈ V (Hi) for
which z ≺ y, and z is above Hi if there exists x ∈ V (Hi) for which x ≺ z. Since Hi is the (Si, Ti)-sweeping
graph, by item 2 of Claim 3.2, vertex z cannot be both below and above Hi, simultaneously. Second, given
z ∈ V (Hi), we define the set Ti(z) = {t ∈ Ti : z � t}. Note that by item 1 of Claim 3.2, Ti(z) 6= ∅ for all
z ∈ V (Hi), and so the quantity maxt∈Ti(z) f(t) is always well-defined.

Definition 3.11. For each i ∈ [k], define the function fi : V (G)→ {0, 1} as follows. For every z ∈ V (G),

fi(z) =


1, if z ∈ V (Hi) and f(z) > maxt∈Ti(z) f(t),

0, if z ∈ V (Hi) and f(z) ≤ maxt∈Ti(z) f(t),

1, if z /∈ V (Hi) and z is above Hi,
0, if z /∈ V (Hi) and z is not above Hi.

See Fig. 3 for an illustration of the values of fi. We first prove item 1 of Theorem 1.3. Recall that
M(Si) = Ti for all i ∈ [k]. Let Mi = M |Si denote the matching M restricted to Si. Consider x ∈ Si. By
Lemma 3.10, f(x) > f(y) for all y ∈ Ti such that x ≺ y. Thus f(x) > maxt∈Ti(x) f(t) and so fi(x) = 1. Now
consider y ∈ Ti. Observe that y ∈ Ti(y). Thus, clearly, f(y) ≤ maxt∈Ti(y) f(t), and so fi(y) = 0. Therefore,
fi(x) = 1 for all x ∈ Si and fi(y) = 0 for all y ∈ Ti. In particular, fi(x) = 1 > 0 = fi(M(x)) for all x ∈ Si
and so Mi is a matching in the violation graph of fi. Thus, ε(fi) ≥ |Mi|

|V (G)| for all i ∈ [k]. It follows,

k∑
i=1

ε(fi) ≥ |V (G)|−1
k∑
i=1

|Mi| = |V (G)|−1 · |M | ≥ |V (G)|−1 · ε(f) · |V (G)|
2

=
ε(f)

2

by the above argument and Fact 3.9. Thus, item 1 of Theorem 1.3 holds.

To prove item 2 of Theorem 1.3, we need to show that for all i ∈ [k] the following hold:

S−fi ⊆ E(Hi) and S−fi ⊆ S
−
f .

We first prove that S−fi ⊆ E(Hi). Consider an edge (x, y) ∈ E(G)\E(Hi). We need to show that fi(x) ≤ fi(y).
First, observe that if both x, y ∈ V (Hi), then by item 3 of Claim 3.2, we have (x, y) ∈ E(Hi). Thus, we only
need to consider the following three cases. Recall that fi(x), fi(y) ∈ {0, 1}.

1. x ∈ V (Hi), y /∈ V (Hi): In this case, y is above Hi, and so fi(y) = 1. Thus, fi(x) ≤ fi(y).
2. x /∈ V (Hi), y ∈ V (Hi): In this case, x is below Hi, and so x is not above Hi by item 2 of Claim 3.2.

Thus, fi(x) = 0, and so fi(x) ≤ fi(y).
3. x /∈ V (Hi), y /∈ V (Hi): If x is above Hi, then y is above Hi as well, and so fi(x) = fi(y) = 1.

Otherwise, x is not above Hi and so fi(x) = 0. Thus, fi(x) ≤ fi(y).

Therefore, S−fi ⊆ E(Hi).
We now prove that S−fi ⊆ S

−
f . Consider an edge (x, y) ∈ S−fi . Then fi(x) = 1 and fi(y) = 0. Since

S−fi ⊆ E(Hi), we have (x, y) ∈ E(Hi) and so x, y ∈ V (Hi). By definition of the functions fi, it holds that
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Figure 3: An illustration for the Boolean function fi of Definition 3.11. The diamond represents the DAG G
whose paths are directed from bottom to top. The hexagon represents the sweeping graph Hi = H(Si, Ti).
The value of fi is 1 for the vertices in Si and 0 for the vertices in Ti. For vertices outside of Hi, its value is
1 for those vertices which are above Hi and 0 for vertices which are not above Hi.

f(x) > maxt∈Ti(x) f(t) and f(y) ≤ maxt∈Ti(y) f(t). Since x ≺ y, then Ti(y) ⊆ Ti(x), because all vertices
reachable from y are also reachable from x. Therefore,

f(x) > max
t∈Ti(x)

f(t) ≥ max
t∈Ti(y)

f(t) ≥ f(y).

Thus f(x) > f(y), and so (x, y) ∈ S−f . As a result, S−fi ⊆ S
−
f and item 2 of Theorem 1.3 holds. This

concludes the proof of Theorem 1.3.

4 Testing Monotonicity of Real-Valued Functions

In this section, we prove Theorem 1.6. We show that the tester of [KMS18] for Boolean functions can be
employed to test monotonicity of real-valued functions. The tester is simple: it queries two comparable
vertices x and y and rejects if the pair exhibits a violation to monotonicity for f . The tester tries different
values τ for the distance between x and y, that is, the number of coordinates on which they differ. The
key step in the analysis of [KMS18] (and in our analysis) is to show that for some choice of τ , the tester
will detect a violation to monotonicity with high enough probability. The extra factor of r in the query
complexity of our tester arises because we are forced to choose τ which is a factor of (r− 1) smaller than for
the Boolean case. Intuitively, the reason for this is that as the walk length τ increases, the probability that
the function value stays below a certain threshold decreases. We make this precise in Section 4.2.

We first define the distribution from which the tester samples x and y. Following this, we present the
tester as Algorithm 2. Let p denote the largest integer for which 2p ≤

√
d/ log d. In Algorithm 2, we sample

pairs of vertices at distance τ , where τ ranges over the powers of two up to 2p.

Definition 4.1 (Pair Test Distribution). Given parameters b ∈ {0, 1} and a positive integer τ , define
the following distribution Dpair(b, τ) over pairs (x, y) ∈ ({0, 1}d)2. Sample x uniformly from {0, 1}d. Let
S = {i ∈ [d] : xi = b}. If τ > |S|, then set y = x. Otherwise, sample a uniformly random set T ⊆ S of size
|T | = τ . Obtain y by setting yi = 1− xi if i ∈ T and yi = xi otherwise.

Our tester only uses comparisons between function values, not the values themselves. Thus, for the
purposes of our analysis we can consider functions with the range [r] w.l.o.g.

When τ = 1, the algorithm is simply sampling edges from the d-dimensional hypercube. The distribution
from which we sample is not the uniform distribution on edges, but following an argument from [KMS18],
we can assume that for τ = 1, our tester has the same guarantees as the edge tester.

12



Algorithm 2 Monotonicity Tester for f : {0, 1}d → R

Input: Parameters ε ∈ (0, 1), dimension d, and image size r; oracle access to function f : {0, 1}d → R.

1: for all b ∈ {0, 1} and τ ∈ {1, 2, 4, . . . , 2p} do

2: repeat Õ
(

min
(
r
√
d

ε2 ,
d
ε

))
times:

3: Sample (x,y) ∼ Dpair(b, τ).

4: if b = 0 and f(x) > f(y) then reject. . if b = 0 then x � y

5: if b = 1 and f(x) < f(y) then reject. . if b = 1 then x � y

6: accept.

The choice of the distance parameter τ for which the rejection probability of the tester is high depends on
the existence of a certain “good” bipartite subgraph of violated edges. Our analysis differs from the analysis
of [KMS18] both in how we obtain the “good” subgraph of violated edges and in the choice of the optimal
distance parameter τ .

We extend the following definitions from [KMS18]. Let G(A,B,EAB) denote a directed bipartite graph
with vertex sets A and B and all edges in EAB directed from A to B.

Definition 4.2 ((K,∆)-Good Graphs). A directed bipartite graph G(A,B,EAB) is (K,∆)-good if for X,Y
such that either X = A, Y = B or X = B, Y = A, we have: (a) |X| = K. (b) Vertices in X have
degree exactly ∆. (c) Vertices in Y have degree at most 2∆. The graph G is (K,∆)-left-good if X = A and
(K,∆)-right-good if X = B.

The weight of x ∈ {0, 1}d, denoted by |x|, is the number of coordinates of x with value 1.

Definition 4.3 (Persistence). Given a function f : {0, 1}d → [r] and an integer τ ∈
[
1,
√

d
log d

]
, a vertex

x ∈ {0, 1}d of weight in the range d
2 ±O(

√
d log d) is τ -right-persistent for f if

Pr
y

[f(y) ≤ f(x)] >
9

10
,

where y is obtained by choosing a uniformly random set T ⊂ {i ∈ [d] : xi = 0} of size τ and setting yi = 1−xi
if i ∈ T and yi = xi otherwise3. We define τ -left-persistence symmetrically.

We use the following technical claim implicitly shown in the analysis of the tester of [KMS18].

Claim 4.4 ([KMS18]). Suppose there exists a (K,∆)-right-good subgraph G(A,B,EAB) of the directed d-

dimensional hypercube, such that (a) EAB ⊆ S−f , (b) K
√

∆ = Θ( ε(f)·2d

log d ), and (c) at least 99
100 |B| of the

vertices in B are (τ ′ − 1)-right-persistent for some τ ′ such that τ ′ · ∆ � d. Then there exists a constant
C ′ > 0, such that for (x,y) ∼ Dpair(0, τ

′),

Pr
x,y

[f(x) > f(y)] ≥ C ′ · τ ′

d
· K

2d
·∆.

The analogous claim holds given a (K,∆)-left-good subgraph with many (τ ′ − 1)-left-persistent vertices
in A and (x,y) drawn from Dpair(1, τ

′).
In Section 4.1, we prove Lemma 4.6 which obtains a good subgraph for f satisfying conditions (a) and (b)

of Claim 4.4. In Section 4.2, we prove Lemma 4.8 which gives an upper bound on the fraction of non-persistent
vertices, enabling us to satisfy condition (c). Finally, in Section 4.3, we use Lemma 4.6 and Lemma 4.8 to
show that the conditions of Claim 4.4 are satisfied. Finally, we use it to prove Theorem 1.6.

3Note that τ ≥ |{i ∈ [d] : xi = 0}| by our assumption on x and τ .
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4.1 Existence of a Good Bipartite Subgraph

In this section, we prove Lemma 4.6 on the existence of good bipartite subgraphs for real-valued functions,
which was proved in [KMS18] for the special case of Boolean functions. This lemma crucially relies on our
isoperimetric inequality for real-valued functions (Theorem 1.2). We first state (without proof) a combina-
torial result of [KMS18], which we need for our lemma.

Lemma 4.5 (Lemma 6.5 of [KMS18]). Let G(A,B,EAB) be a directed bipartite graph whose vertices have
degree at most 2s. Suppose in addition, that for any 2-coloring of its edges col : EAB → {red,blue} we have∑

x∈A

√
degred(x) +

∑
y∈B

√
degblue(y) ≥ L, (9)

where degred(x) denotes the number of red edges incident on x and degblue(y) denotes the number of blue
edges incident on y. Then G(A,B,EAB) contains a subgraph that is (K,∆)-good with K

√
∆ ≥ L

8s .

We can now generalize Lemma 7.1 of [KMS18].

Lemma 4.6. For all functions f : {0, 1}d → R, there exists a subgraph G(A,B,EAB) of the directed, d-

dimensional hypercube which is (K,∆)-good, where K
√

∆ = Θ( ε(f)·2d

log d ) and EAB ⊆ S−f .

Proof. Our proof relies on Lemma 4.5. Condition (9) is clearly reminiscent of the isoperimetric inequality in
Theorem 1.2. We want to partition the vertices in {0, 1}d into sets A and B such that all the violated edges
are directed from A to B and apply Theorem 1.2 to the resulting graph. In addition, we want (9) to hold
for a big enough value of L. In the Boolean case, we can simply partition the vertices by function values.
In contrast, for real-valued functions, a vertex x ∈ {0, 1}d can be incident on both incoming and outgoing
violated edges. To overcome this challenge we resort to the bipartiteness of the directed hypercube, where
each edge is between a vertex with an odd weight and a vertex with an even weight. Partition S−f into two
sets:

E0 = {(x, y) ∈ S−f : |x| is even};
E1 = {(x, y) ∈ S−f : |x| is odd}.

For j ∈ {0, 1}, let Vj and Wj denote the set of lower and upper endpoints, respectively, of the edges in Ej .
We consider the two subgraphs Gj(Vj ,Wj , Ej) for j ∈ {0, 1}. Notice that the vertices in V0 ∪W1 have even
weight and the vertices in V1∪W0 have odd weight. Obviously, V0 and W1 may not be disjoint, and similarly
V1 and W0 may not be disjoint, and thus G0 and G1 may not be vertex disjoint.

We quickly explain why we cannot simply use Lemma 4.5 with either G0 or G1. Fix a 2-coloring of the
edges E0 ∪E1. By averaging, one of the graphs will have a high enough contribution to left-hand side of the
isoperimetric inequality of Theorem 1.2. Assume this graph is G0. As a result, condition (9) will hold for
G0 with L = Ω(ε · 2d). However, one cannot guarantee that condition (9) holds for all possible colorings of
the edges of G0. Our construction below describes how to combine G0 and G1 so that we can jointly “feed”
them into Lemma 4.5.

We construct copies Ĝ0 and Ĝ1 of G0 and G1, so that Ĝ0 contains a vertex labelled (x, 0) for each vertex

x of G0, and Ĝ1 contains a vertex (x, 1) for each vertex x of G1. For each edge (x, y) in G0 we add an edge

from (x, 0) to (y, 0) in Ĝ0. We do the same for the edges of G1. Note that each edge of S−f has exactly one

copy, either in Ĝ0 or Ĝ1.
Let Ĝ(V̂ , Ŵ ,S−f ) denote the union of the two disjoint graphs Ĝ0 and Ĝ1. That is,

V̂ = {(x, 0) | x ∈ V0} ∪ {(x, 1) | x ∈ V1},

Ŵ = {(y, 0) | y ∈W0} ∪ {(y, 1) | y ∈W1}.

All the edges of Ĝ are directed from V̂ to Ŵ . Although imprecise, we think of the edges of Ĝ as S−f , since

each edge in S−f has exactly one copy in Ĝ.
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Consider a 2-coloring col : S−f → {red,blue}. Observe that∑
(x,·)∈V̂

√
I−f,red(x) +

∑
(y,·)∈Ŵ

√
I−f,blue(x) =

∑
x∈V0∪V1

√
I−f,red(x) +

∑
y∈W0∪W1

√
I−f,blue(y)

=
∑

x∈{0,1}d
|x| is even

√
I−f,red(x) +

√
I−f,blue(x) +

∑
x∈{0,1}d
|x| is odd

√
I−f,red(x) +

√
I−f,blue(x)

=
∑

x∈{0,1}d

√
I−f,red(x) +

∑
y∈{0,1}d

√
I−f,blue(y) ≥ C · ε(f) · 2d,

where the inequality holds by Theorem 1.2.
By construction, I−f,red(x) = degred((x, ·)) for all (x, ·) ∈ V̂ and I−f,blue(y) = degblue((y, ·)) for all

(y, ·) ∈ Ŵ . We have that condition (9) of Lemma 4.5 holds with L = C · ε(f) · 2d. Thus, Ĝ contains a
subgraph Ggood(A,B,EAB) that is (K,∆)-good with K

√
∆ ≥ L

8 log d . Without loss of generality, assume

Ggood(A,B,EAB) is (K,∆)-right-good.

Let Ggood,0 = (A0, B0, EA0B0
) denote the subgraph of Ggood lying in Ĝ0 and let Ggood,1 = (A1, B1, EA1B1

)

denote the subgraph of Ggood lying in Ĝ1. Since B0∩B1 = ∅, we know that either |B0| ≥ K/2 or |B1| ≥ K/2.

Suppose |B0| ≥ K/2. Moreover, since Ĝ0 and Ĝ1 are vertex and edge disjoint subgraphs, the degree of a
vertex of A0∪B0 in Ggood,0 is the same its degree in Ggood. Thus, Ggood,0 is a (K/2,∆)-right-good subgraph

of the d-dimensional directed hypercube for which K
2

√
∆ ≥ L

16 log d .

By removing some vertices from B0, and redefining K if necessary, we may assume that K
√

∆ =

Θ
(
ε(f)·2d

log d

)
. This completes the proof of Lemma 4.6. �

4.2 Bounding the Number of Non-Persistent Vertices

We prove Lemma 4.8 that bounds the number of non-persistent vertices for a function f and a given distance
parameter τ . All results in this section also hold for τ -left-persistence.

For a function f : {0, 1}d → R, we define I−f as
|S−f |
2d .

Corollary 4.7 (Corollary of Theorem 6.6, Lemma 6.8 of [KMS18]). Consider a function h : {0, 1}d → {0, 1}
and an integer τ ∈

[
1,
√

d
log d

]
. If I−h ≤

√
d then

Pr
x∼{0,1}d

[
x is not τ -right-persistent for h

]
= O

(
τ√
d

)
. (10)

We generalize the above result to functions with image size r ≥ 2.

Lemma 4.8. Consider a function f : {0, 1}d → [r] and an integer τ ∈
[
1,
√

d
log d

]
. If I−f ≤

√
d, then

Pr
x∼{0,1}d

[
x is not τ -right-persistent for f

]
= (r − 1) ·O

(
τ√
d

)
.

Proof. For all t ∈ [r], define the threshold function ht : {0, 1}d → {0, 1} as:

ht(x) =

{
1 if f(x) > t,

0 otherwise.

Observe that for all t ∈ [r], we have S−ht
⊆ S−f , and thus I−ht

≤ I−f ≤
√
d. By Corollary 4.7, we have that

(10) holds for h = ht for all t ∈ [r]. Next, we point out that a vertex x ∈ {0, 1}d is τ -right-persistent for f
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if and only if x is τ -right-persistent for the Boolean function hf(x). Too see this, consider a vertex z such
that x ≺ z. First, note that hf(x)(x) = 0. Second, note that hf(x)(z) = 1 if and only if f(z) > f(x) by
definition of hf(x). Therefore, f(z) ≤ f(x) if and only if hf(x)(z) ≤ hf(x)(x). Finally, note that all vertices

are persistent for hr since hr(x) = 0 for all x ∈ {0, 1}d. Using these observations, we have

Pr
x∼{0,1}d

[x is not τ -right-persistent for f ] = Pr
x∼{0,1}d

[
x is not τ -right-persistent for hf(x)

]
≤ Pr

x∼{0,1}d
[∃t ∈ [r − 1] : x is not τ -right-persistent for ht]

≤
r−1∑
t=1

Pr
x∼{0,1}d

[x is not τ -right-persistent for ht]

=

r−1∑
t=1

O

(
τ√
d

)
= (r − 1) ·O

(
τ√
d

)
,

where the second inequality is by the union bound and the last equality is due to the fact that (10) holds
for all ht, t ∈ [r]. �

4.3 Proof of Theorem 1.6

In this section, we show how to use Lemma 4.6 and Lemma 4.8 to ensure that the conditions of Claim 4.4
hold. Once the conditions are met, we prove Theorem 1.6.

Proof of Theorem 1.6. LetG(A,B,EAB) be the (K,∆)-good subgraph for f which we obtain from Lemma 4.6.

Then K
√

∆ = Θ( ε(f)·2d

log d ) and EAB ⊆ S−f . Without loss of generality, suppose that G(A,B,EAB) is a (K,∆)-

right-good subgraph. Note that G(A,B,EAB) satisfies the conditions (a) and (b) of Claim 4.4. We define

σ = K/2d, so that σ
√

∆ = Θ( ε(f)
log d ). Before proceeding with the main analysis, we rule out some simple

cases with the following claim.

Claim 4.9. Suppose any of the following hold: (a) I−f ≥
√
d. (b) r ≥

√
d

log d . (c) σ ≤ r·log d√
d

. Then, for

(x,y) ∼ Dpair(0, 1), we have Prx,y[f(x) > f(y)] ≥ Ω̃( ε(f)2

r
√
d

).

Proof. As we remarked, for τ = 1, Algorithm 2 has the same guarantees as the edge tester. By definition,

the edge tester rejects with probability at least
I−f
d . Therefore, (a) implies the conclusion, since if I−f ≥

√
d,

then the edge tester succeeds with probability Ω( 1√
d
). In addition, the edge tester rejects with probability

Ω( ε(f)
d ) for all real-valued functions. Thus, (b) implies the conclusion, since if r ≥

√
d

log d , then ε(f)
d ≥

ε(f)2

r
√
d log d

.

To see that (c) implies the conclusion, suppose σ ≤ r·log d√
d

. Recall that σ
√

∆ = Θ( ε(f)
log d ). Thus,

σ ·∆ =
(σ
√

∆)2

σ
= σ−1 ·Θ

(( ε(f)

log d

)2
)

= Ω

(
ε(f)2

√
d

r(log d)3

)
.

Next, recall that EAB ⊆ S−f and since G is (K,∆)-right-good, we have |EAB | = |B| · ∆ = K · ∆. Thus,

I−f ≥
K∆
2d = σ ·∆. Therefore, the edge tester rejects with probability

I−f
d ≥

σ∆
d ≥ Ω

(
ε(f)2

r
√
d·(log d)3

)
. �

In light of Claim 4.9, we henceforth assume that I−f ≤
√
d, r ≤

√
d

log d , and σ ≥ r·log d√
d

. Note that this

implies r·log d√
d
≤ 1 and r·log d√

d
≤ σ ≤ 1. Since the tester iterates through all values of τ that are powers of 2

and at most
√

d
log d , we can fix the unique value τ ′ satisfying

τ ′ ≤ σ

r − 1

√
d

log d
≤ 2τ ′.
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Note that these bounds imply that τ ′ ≥ 1
2 ·
√

log d. Moreover, since I−f ≤
√
d, we can apply Lemma 4.8 to

conclude that the fraction of vertices in {0, 1}d which are not (τ ′−1)-right-persistent for f is at most c·τ ′·(r−1)√
d

for some constant c > 0. Using our upper bound on τ ′, this value is at most c·σ√
log d
≤ σ

100 for sufficiently large

d. Since |B| = σ · 2d, we conclude that at least 99
100 |B| vertices in B are (τ ′ − 1)-right-persistent. Finally, we

show that ∆ · τ ′ � d.

∆ · τ ′ ≤ ∆ · σ

r − 1

√
d

log d
=

1

r − 1
· σ
√

∆

√
d∆

log d
≤ 1

r − 1
·Θ
(
ε(f)

log d

)
d√

log d
� d,

and therefore condition (c) of Claim 4.4 holds. We have shown that all conditions, (a), (b), and (c) of
Claim 4.4 hold. Therefore, for (x,y) ∼ Dpair(0, τ

′), we have

Pr
x,y

[f(x) > f(y)] ≥ C ′ · τ ′

d
· σ ·∆ for some constant C ′ > 0.

Using our lower bound on τ ′, it follows that

Pr
x,y

[f(x) > f(y)] ≥ C ′ · τ ′ · σ ·∆
d

≥ 1

2
· σ

r − 1

√
d

log d
· C
′ · σ ·∆
d

=
C ′ · σ2 ·∆

2(r − 1)
√
d log d

.

Since (σ
√

∆)2 = Θ
(( ε(f)

log d

)2)
, then:

Pr
(x,y)∼Dpair(0,τ ′)

[f(x) > f(y)] ≥ C ′ε(f)2

2(r − 1)
√
d(log d)5/2

= Õ

(
ε(f)2

r
√
d

)
.

Therefore, Õ( r
√
d

ε(f)2 ) iterations of the tester with (x,y) ∼ Dpair(0, τ
′) will suffice for the tester to detect a

violation to monotonicity and reject with high probability. This concludes the proof of Theorem 1.6. �

5 Approximating the Distance to Monotonicity of Real-Valued
Functions

In this section, we prove Theorem 1.8 by showing that the algorithm of Pallavoor et al. [PRW20] can be
employed to approximate distance to monotonicity of real-valued functions.

To prove Theorem 1.8, it is sufficient to give a tolerant tester for monotonicity of functions f : {0, 1}d → R.
A tolerant tester for monotonicity gets two parameters ε1, ε2 ∈ (0, 1), where ε1 < ε2, and oracle access to
a function f . It has to accept with probability at least 2/3 if f is ε1-close to monotone and reject with

probability at least 2/3 if f is ε2-far from monotone. Our tester distinguishes functions that are Õ(ε/
√
d)-

close to monotone from those that are ε-far. Suppose this tolerant tester has query complexity q(ε, d). Then,
by [PRW20, Theorem A.1], it can be converted to a distance approximation algorithm with the required
approximation guarantee and query complexity O(q(α, d) log log(1/α)). The following lemma, proved by
Pallavoor et al. for the special case of Boolean functions, states our result on tolerant testing of monotonicity.
Together with the conversion procedure from tolerant testing to distance approximation discussed above, it
implies Theorem 1.8.

Lemma 5.1. There exists a fixed universal constant c ∈ (0, 1) and a nonadaptive algorithm, ApproxMono,
that gets a parameter ε ∈ (0, 1/2) and oracle access to a function f : {0, 1}d → R, makes poly(n, 1/ε) queries
and returns close or far as follows:

1. If ε(f) ≤ c·ε√
d log d

it outputs close with probability at least 2/3.

2. If ε(f) ≥ ε it outputs far with probability at least 2/3.
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Proof. We show that Algorithm ApproxMono of Pallavoor et al. [PRW20], presented as Algorithm 3, works for
real-valued functions. At a high level, the algorithm uses the fact that a function that is far from monotone
violates many edges or has a large matching of violated edges of a special type. The first subroutine estimates
the number of edges violated by the function by sampling edges uniformly at random and checking if they
violate monotonicity. The second subroutine estimates the size of the special type of matching of violated
edges. If either of these estimates is large enough, the algorithm outputs far. Otherwise, it outputs close.

The class of matchings sought by the algorithm is parametrized by a subset of the coordinates S ⊆ [d].
The special property of these matchings is that one can verify locally whether a given point is matched by
querying its neighbors and their neighbors.

To estimate the size of the matching parametrized by S, the algorithm estimates the probability of the
following event Capture(x, S, f). We denote by x(i) the point in {0, 1}d whose i-th coordinate is equal to
1− xi and the remaining coordinates are the same as in x.

Definition 5.2 (Capture Event). For a function f : {0, 1}d → R, a set S ⊆ [d], and a point x ∈ {0, 1}d, let
Capture(x, S, f) be the following event:

1. There exists an index i ∈ S such that, for y = x(i), the edge between x and y is violated by f . (Note
that the edge between x and y is (x, y) if xi = 0; otherwise, it is (y, x).)

2. Neither the edges of the form (y, y(j)) nor the edges of the form (y(j), y), where j ∈ S \{i}, are violated
by f.

Denote Prx∼{0,1}d [Capture(x, S, f)] by µf (S).

Observe that µf (S) can be estimated nonadaptively, by sampling vertices x uniformly and independently
at random and querying f on x and all points that differ from x in at most two coordinates.

𝑥

𝑦

𝑖

𝑆

𝑥

𝑦

𝑖

𝑆

Figure 4: An illustration to Definition 5.2. Two cases are depicted: when x ≺ y and when y ≺ x.

The first component of the analysis is the observation that both the fraction of violated edges and µf (S),
for every S ⊆ [d], provide a good lower bound on the distance to monotonicity. We state this observation
without proof because the proof for the Boolean case from [PRW20] extends to the general case verbatim.
Intuitively, it tells us that, assuming that the two estimates computed by Algorithm 3 are accurate, if one
of the estimates is large enough then the input function is far from monotone.

Observation 5.3 ([PRW20]). For every function f : {0, 1}d → R, the distance ε(f) is at least half the
fraction of the hypercube edges that are violated by f and ε(f) ≥ µf (S)/2 for all S ⊆ [d].

The second (and the main) component of the analysis for the Boolean case is [PRW20, Lemma 2.8], which
relies on the robust isoperimetric inequality of [KMS18]. We generalize this lemma to real-valued functions
in Lemma 5.4 below. Intuitively, it states that, if function f violates few edges then, for one of the O(log d)
choices of the parameter tried in Step 3 of Algorithm 3 for sampling set S, the expectation of µf (S) is large
in terms of ε(f). That is, again assuming that the estimates computed by Algorithm 3 are accurate, if none
of the estimates is large enough then the input function is close to monotone.
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Algorithm 3 Algorithm ApproxMono

Input: Parameters ε ∈ (0, 1/2) and dimension d; oracle access to function f : {0, 1}d → R.

1: Calculate ν̂, an estimate of the fraction of the hypercube edges that are violated by f , up to an additive

error ε
4
√
d log d

.

2: if ν̂ ≥ 3ε/(4
√
d log d) then return far.

3: for t ∈ {1, 2, 4, . . . , 2blog2 dc} do

4: Sample S ⊆ [d] by including each coordinate i ∈ [d] independently with probability 1/t.

5: Calculate µ̂, an estimate of µf (S) = Prx∼{0,1}d [Capture(x, S, f)] up to an additive error c′·ε
4
√
d log d

for

some constant c′ > 0.

6: if µ̂ ≥ 3c′·ε
4
√
d log d

then return far.

7: Return close.

Equipped with Observation 5.3 and Lemma 5.4, it is easy to convert the intuition above into the for-
mal proof that the algorithm satisfies the guarantees of Lemma 5.1. This part of the proof uses standard
techniques and is the same as for the case of Boolean functions described in [PRW20], so we omit it. This
completes the proof of Lemma 5.1. �

It remains to prove the following lemma, which crucially relies on our robust isoperimetric inequality for
real-valued functions. We generalize the quantities used by Pallavoor et al. so that the proof is syntactically
similar to that for the case of Boolean functions. One subtlety that arises in the case of real-valued functions
is that a vertex can be incident to violated edges of both colors. In constrast, in the case of Boolean functions,
each vertex can be adjacent either to violated edges going to higher-weight vertices or to violated edges going
to lower-weight vertices, that is, it cannot be incident on both blue and red violated edges.

Lemma 5.4 (Generalized Lemma 2.8 of [PRW20]). Let f : {0, 1}d → R be ε-far from monotone, with fraction
of violated edges smaller than ε√

d log d
. Then, for some t ∈ {1, 2, 4, . . . , 2blog2 dc}, it holds

E
S⊆[d]

i∈S w.p. 1/t

[µf (S)] = Ω

(
ε√

d log d

)
.

Proof. For x ∈ {0, 1}d, let U−f (x) denote the number of violated edges incident on x (both incoming and

outgoing). Consider the following 2-coloring of the edges in S−f :

col((x, y)) =

{
red if U−f (x) ≥ U−f (y);

blue if U−f (x) < U−f (y).

This coloring ensures that, in the isoperimetric inequality, each edge is counted towards the endpoint incident
on the largest number of violated edges (and, in case of a tie, towards the lower endpoint).

The proof of [PRW20, Lemma 2.8] relies on the existence of a set B ⊆ {0, 1}d and a color b ∈ {red,blue}
that satisfy the following two properties:

1. no edge violated by f has both endpoints in the set B;

2. 1
2d

∑
x∈B

√
I−f,b(x) = Ω(ε).

To obtain the set B and the color b, we partition {0, 1}d into two sets:

Beven = {x ∈ {0, 1}d : |x| is even} ,
Bodd = {x ∈ {0, 1}d : |x| is odd} .
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The sets Beven and Bodd clearly satisfy property 1. Note that, for the case of Boolean functions, Pallavoor
et al. partition the domain points according to their function values instead of the parity of their weight to
guarantee property 1.

By Theorem 1.2,∑
x∈Beven

√
I−f,red(x) +

√
I−f,blue(x) +

∑
x∈Bodd

√
I−f,red(x) +

√
I−f,blue(x) ≥ C · ε · 2d .

By averaging, there exist a color b ∈ {red,blue} and a set B ∈ {Beven, Bodd} that satisfy∑
x∈B

√
I−f,b(x) ≥ C

4
· ε · 2d . (11)

Therefore, property 2 also holds. Note that due to the partition into even-weight and odd-weight points we
loose an extra factor of 2 as compared to Pallavoor et al. in the contribution of the set B and the color b to
the isoperimetric inequality. This results in a loss by a factor of 2 (hidden in the Ω-notation) in the lower
bound in Lemma 5.4.

The rest of the proof is the same as in [PRW20], so we only summarize the key steps. We proceed by
partitioning the points x ∈ B into buckets Bt,s for t, s ∈ {1, 2, 4, . . . , 2blog2 dc}, where t ≥ s, as follows:

Bt,s = {x ∈ B : t ≤ U−f (x) < 2t and s ≤ I−f,b(x) < 2s} .

Each vertex x ∈ Bt,s is incident on between t and 2t violated edges and between s and 2s edges colored b,
which are counted towards x in property 2.

When the set S is chosen so that each coordinate is included with probability 1/t, it holds for all x ∈ Bt,s
that the event Capture(x,S, f) occurs with probability Ω(s/t). Using this claim, one can lower bound the
contribution of each bucket towards ES⊆[d][µf (S)]. By combining the contributions of the buckets with the
same value s and applying the Cauchy-Schwartz inequality, one obtains

∑
t∈{1,2,4,...,2blog2 dc}

E
S⊆[d]

i∈S w.p. 1/t

[µf (S)] = Ω

(
1

2d
·

(
∑
t,s:t≥s |Bt,s|

√
s)2∑

t,s:t≥s |Bt,s|t

)
. (12)

We lower bound the sum in the numerator using (11) and upper bound the sum in the denominator using
the assumed upper bound on the number of violated edges. As a result, we get that the left-hand side of
(12) is Ω(ε

√
log d/

√
d). Averaging over the O(log d) possible values of t yields Lemma 5.4. �

6 Our Lower Bound for Testing Monotonicity

In this section, we prove Theorem 1.7 which gives a lower bound on the query complexity of testing mono-
tonicity of real-valued functions with 1-sided error nonadaptive testers. Fischer et al. proved Theorem 1.7
for the special case of r = 2 [FLN+02, Theorem 19]. Our proof of Theorem 1.7 is a natural extension of
their construction to the more general case of r ∈ [2,

√
d].

Proof. Fix r ∈ [2,
√
d]. We show that every nonadaptive, 1-sided error tester for functions over {0, 1}d with

image size r must make Ω(r
√
d) queries. This implies Theorem 1.7, since Blais et al. [BBM12, Theorem 1.6]

proved an Ω(min(d, r2)) lower bound for all testers.
For convenience, assume d is an odd perfect square and r divides 2

√
d + 1. We partition the points

z ∈ {0, 1}d−1 into levels, according to their weight |z|. We group levels from the middle of the (d − 1)-

dimensional hypercube into r blocks of width w, where w = 2
√
d+1
r . Specifically, for each j ∈ [r], we define

the set

Zj =

{
z ∈ {0, 1}d−1 : (j − 1)w ≤ |z| −

(d− 1

2
−
√
d
)
≤ jw

}
.
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Observe that
r⋃
j=1

Zj =

{
z ∈ {0, 1}d−1 : −

√
d ≤

∣∣∣|z| − d− 1

2

∣∣∣ ≤ √d}
and Zj is a block of w consecutive levels from the middle of the (d − 1)-dimensional hypercube. For each
i ∈ [d], we define function fi : {0, 1}d → [r] as follows. For x ∈ {0, 1}d and i ∈ [d], let x−i be the point in
{0, 1}d−1 obtained by removing the i’th coordinate from x. Given x ∈ {0, 1}d, we define

fi(x) =


r if |x−i| > d−1

2 +
√
d,

1 if |x−i| < d−1
2 −

√
d,

j + (1− xi) if x−i ∈ Zj .

Claim 6.1. For all i ∈ [d], ε(fi) = Ω(1).

Proof. Consider the matching of edges M =
{

(x, y) : xi = 0, yi = 1, and x−i = y−i ∈
⋃r
j=1 Zj

}
. Observe

that all pairs in M are edges violated by fi and |M | = Ω(1) · 2d. �

Every 1-sided error tester must accept if the function values on the points it queried are consistent with
a monotone function. We say that a set Q ⊆ {0, 1}d of queries contains a violation for a function f if there
exist x, y ∈ Q such that x ≺ y and f(x) > f(y). If Q does not contain a violation, then the function values
on Q are consistent with a monotone function.

Claim 6.2. For all sets Q ⊆ {0, 1}d of queries,∣∣{i ∈ [d] : Q contains a violation for fi}
∣∣ < w · |Q|.

Proof. We use the following claim due to [BCP+20].

Claim 6.3 (Lemma 3.18 of [BCP+20], rephrased). Let c, d ∈ N and Q ⊆ {0, 1}d. Given x, y ∈ Q, define
capc(x, y) as follows. If x and y differ on at least c coordinates, then let capc(x, y) be the set of the first c
coordinates on which x and y differ. Otherwise, let capc(x, y) be the set of all coordinates on which x and y
differ. Define capc(Q) =

⋃
x,y∈Q capc(x, y). Then |capc(Q)| ≤ c(|Q| − 1).

By design of fi, if Q contains a violation for fi, then there exist x, y ∈ Q that differ in at most w
coordinates, one of which is i. Then i ∈ capw(x, y) and thus i ∈ capw(Q). Therefore, by Claim 6.3,∣∣{i ∈ [d] : Q contains a violation for fi}

∣∣ ≤ |capw(Q)| ≤ w(|Q| − 1) < w · |Q|.

This completes the proof of Claim 6.2. �

Now, consider a nonadaptive tester T with 1-sided error that makes q = q(ε, d, r) queries. Let Q ⊆ {0, 1}n
denote the random set of queries of size q made by T . Using linearity of expectation and Claim 6.2,

d∑
i=1

Pr[T finds a violation for fi] = E
Q

[∣∣{i ∈ [d] : Q contains a violation for fi}
∣∣] < w · q

and therefore there exists i ∈ [d] such that

Pr [T finds a violation for fi] <
w · q
d

=
(2
√
d+ 1) · q
rd

<
3q

r
√
d

,

whereas, if T is a valid monotonicity tester, then we must have Pr[T finds a violation for fi] ≥ 2/3. There-
fore, for T to be a valid monotonicity tester, we require that it makes q ≥ 2

9r
√
d = Ω(r

√
d) queries. �
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7 Undirected Talagrand Inequality for Real-Valued Functions

In this section we prove Theorem 1.5 through a simple reduction to Talagrand’s (undirected) isoperimetric
inequality for Boolean functions, which we state as Theorem 1.4.

Proof. Given t ∈ R, let pt = 1
2d |{x : f(x) = t}| denote the fraction of points x in {0, 1}d with f(x) = t. Note

that
∑
t∈R pt = 1 and that pt > 0 for at most 2d values of t. Choose m ∈ R to be the smallest real number

such that
∑
t≤m pt ≥ 1/2. Then we also have

∑
t<m pt < 1/2 and so

∑
t≥m pt > 1/2.

Since
∑
t<m pt+

∑
t>m pt = 1−pm, only one of the two sums can be less than 1−pm

2 . We define a Boolean

function h : {0, 1}d → {0, 1} as follows, depending on the value of
∑
t<m pt.

1. Suppose
∑
t<m pt <

1−pm
2 . Then

∑
t>m pt >

1−pm
2 . Moreover,

∑
t≤m pt ≥ 1/2 ≥ 1−pm

2 by our choice of

m. In this case, we define the Boolean threshold function h : {0, 1}d → {0, 1} as h(x) = 1 if f(x) > m
and h(x) = 0 otherwise.

2. Suppose
∑
t<m pt ≥

1−pm
2 . We know that

∑
t≥m pt ≥ 1/2 ≥ 1−pm

2 by our choice of m. In this case,

we define the Boolean threshold function h : {0, 1}d → {0, 1} as h(x) = 1 if f(x) ≥ m and h(x) = 0
otherwise.

In either case, observe that the fraction of 0’s and 1’s for h are both at least 1−pm
2 . Thus,

dist(h, const) ≥ 1− pm
2

≥ 1−maxt∈R pt
2

=
dist(f, const)

2
.

Moreover, for all edges {x, y}, if h(x) > h(y) then f(x) > f(y). Thus, If (x) ≥ Ih(x) for all x, and so

E
x∼{0,1}d

[√
If (x)

]
≥ E

x∼{0,1}d

[√
Ih(x)

]
.

Using these two facts and applying Theorem 1.4 yields

E
x∼{0,1}d

[√
If (x)

]
≥ E

x∼{0,1}d

[√
Ih(x)

]
≥ dist(h, const)√

2
≥ dist(f, const)

2
√

2
,

and this completes the proof. �
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