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Abstract

Recently several conjectures were made regarding the Fourier spectrum of low-
degree polynomials. We show that these conjectures imply new correlation bounds for
functions related to Majority. Then we prove several new results on correlation bounds
which aim to, but don’t, resolve the conjectures. In particular, we prove several new
results on Majority which are of independent interest and complement Smolensky’s
classic result.

The recent “polarizing random walks” paradigm [CHHL18, CHLT19, CHH+20, CGL+20]
constructs new pseudorandom generators against classes of functions with “bounded Fourier
tails.” For a function f : {0, 1}n → {−1, 1} define

Lk(f) :=
∑

S⊆{1,2,...,n}:|S|=k

∣∣∣f̂(S)
∣∣∣ ,

Mk(f) :=
∑

S⊆{1,2,...,n}:|S|=k

f̂(S),

where f̂(S) := Exf(x)χS(x) for χS(x) := (−1)
∑

i∈S xi is the Fourier transform of f
[O’D14]. These papers construct pseudorandom generators for functions with small Lk or
Mk for several settings of parameters.

In an effort to use this framework to improve the state of pseudorandom generators
against low-degree polynomials over F2 = {0, 1} [BV10a, Lov09, Vio09b, FSUV13], several
conjectures have been put forth about polynomials. Let p be a degree-d polynomial over F2

in n variables. For f := (−1)p it has been conjectured (see [CHHL18, CHLT19, CGL+20]):

Lk(f) ≤ 2O(dk) ∀k. (1)

L2(f) ≤ O(d2), (2)

Mk(f) ≤ 2o(dk)+O(k log logn) ∀k ≤ O(log n). (3)

Conjecture (1) would not imply new pseudorandom generators, but would come close
to matching the state-of-the-art using this framework – something which was eventually

∗This paper includes the results in [Vio19]
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achieved in [CGL+20]. But conjectures (2) and (3) would imply new generators, improving
on long-standing open problems. One interesting feature of this approach is that, unlike the
influential approach by Nisan [Nis91], it is not based on correlation bounds. In particular,
Conjecture (2) is not known to imply such bounds. Still, correlation bounds where shown
to be sufficient for this approach in [CHH+20].

We show that in fact correlation bounds are also necessary. That is, we show that this
approach requires proving new correlation bounds for polynomials. This is new information
about Conjecture (2). Conjecture (3) was shown in [CGL+20] to imply new pseudorandom
generators with good dependence on the error, and the latter are known to imply new
correlation bounds for a function in NP [Vio09b]. We give a direct proof of this implication
which yields a function in P (and other parameter improvements). In fact, we show that even
weaker versions of the conjectures, such as M2 ≤ o(

√
n) for polynomials of degree log2 n,

already imply new correlation bounds.

Correlation bounds. We say that a function f : {0, 1}n → {−1, 1} has δ-advantage (or
(1−δ)-error) (probabilistic) degree d if there is a distribution P on polynomials p : {0, 1}n →
{0, 1} over F2 of degree d such that for every input x we have P[(−1)P (x) = f(x)] ≥ δ.
By Yao’s min-max argument [Yao77], a function f has δ-advantage degree d iff for every
distribution D on {0, 1}n it has δ-advantage degree d under D, meaning there exists a
polynomial p over F2 of degree d such that P[(−1)p(D) = f(D)] ≥ δ. If f has range {0, 1}
instead of {−1, 1}, as will be the case for majority, we use the same notation except (−1)P (x)

is replaced simply by P (x).
For two functions f and g from {0, 1}n to {−1, 1} we define their correlation under a

distribution D by E[(−1)f(D)(−1)g(D)], which we note equals 2(P[f(D) = g(D)] − 1/2) and
so it is (twice) the distance of 1/2 from the advantage.

Since the classical works by Razborov and Smolensky [Raz87, Smo87] the best-available
explicit probabilistic-degree lower bound for degree d ≥ log2 n gives error at best

1/2− Ω(d/
√
n) (4)

which holds for the Majority function on n bits. In particular, it is consistent with our
knowledge that every explicit function has (1/2+1/

√
n)-advantage degree log2 n (while non-

constructively there exist functions which do not even have advantage exponentially close to
1/2 for polynomial degree). For recent progress on less explicit functions see [Vio20].

Proving correlation bounds is a fundamental open problem whose solution stands in the
way of progress on a striking variety of fronts, including: circuit lower bounds, multiparty
communication complexity, and matrix rigidity. For more on this long-standing challenge and
a discussion of the just-mentioned implications, we refer the reader to [Vio09a, Vio17, Vio20].

The conjectures imply new correlation bounds. We show that bounds on Mk imply
new probabilistic-degree lower bounds for an explicit function hk. We now define hk and
state our results.
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Let gk : {0, 1}n → Z and hk : {0, 1}n → {−1, 1} be defined as

gk(x) :=
∑

S:|S|=k

χS(x),

hk(x) := Sign(gk(x)),

where Sign(i) = 1 if i > 0 and −1 otherwise (the value on i = 0 is arbitrary).

Theorem 1. Let F be a distribution on functions from {0, 1}n to {−1, 1} such that P[F (x) =

hk(x)] ≥ 1/2+ε for every x. Then there is an outcome f of F such that Mk(f) ≥ 2ε·e−k
√(

n
k

)
.

To illustrate the theorem, consider first k = 2, in which case the conclusion becomes
M2(f) ≥ Ω(εn). This means that showing even just M2(p) ≤ o(

√
n) for every degree-d

polynomial requires showing that h2 does not have (1/2 + Ω(1/
√
n))-advantage degree d.

This would improve the tradeoff (4) mentioned above when d ≥ log2 n. Conjecture (2)
implies the stronger bound M2(p) ≤ O(d2) for every degree-d polynomial p. This would
mean that h2 does not even have (1/2 + cd2/n)-advantage degree d for a constant c, a
quadratic improvement on the tradeoff (4). Consider now the case of larger k. Assuming
that hk has (1/2 + ε)-advantage degree d, and assuming Conjecture (3) and using the bound(
n
k

)
≥ (n/k)k we obtain

2ε · e−k
(n
k

)k/2
≤ 2ε · e−k

√(
n

k

)
≤ 2o(dk)+O(k log logn).

This implies ε ≤ 2k(o(d)+O(log logn)−0.5 log2(n/k)). For k = log2 n this yields new correlation
bounds. Indeed, let d := log2 n. Then because o(d), log log n, and log(k) are all o(log n) we
obtain

ε ≤ 2−Ω(k logn) = 2−Ω(log2 n)

which improves on the tradeoff (4).

Proof. Note that for any function f , by linearity of expectation, we have

Mk(f) = Exf(x)gk(x).

Fix any x and let P[F (x) = hk(x)] be equal to 1/2 + εx ≥ 1/2 + ε. We can write

EF [F (x)gk(x)] = (1/2 + εx) · Sign(gk(x)) · gk(x) + (1/2− εx) · (−Sign(gk(x))) · gk(x),

holding even if gk(x) = 0. Note that Sign(gk(x)) · gk(x) = |gk(x)|. Hence

EF [F (x)gk(x)] = (1/2 + εx)|gk(x)|+ (1/2− εx)(−|gk(x)|) = 2εx|gk(x)| ≥ 2ε|gk(x)|.

This gives Ex,FF (x)gk(x) ≥ Ex2ε|gk(x)|. In particular, there exists an outcome f such
that

Exf(x)g(x) ≥ 2εEx|gk(x)|.
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There remains to bound Ex|gk(x)|. We make use of hypercontractivity from the analysis
of Boolean functions. Because gk is a polynomial of degree k, by Theorem 9.22 in [O’D14]
we have

Ex|gk(x)| ≥ e−k
√

Ex|gk(x)|2.
Now observe that

Ex|gk(x)|2 = Ex
∑

S,T :|S|=|T |=k

χS(x)χT (x) = Ex
∑

S,T :|S|=|T |=k

χS⊕T (x) =

(
n

k

)
,

where ⊕ is symmetric difference. The last equality holds because the terms where S 6= T
have expectation zero, and the others have expectation one. The result follows.

A natural question is whether Theorem 1 holds even for functions that correlate with hk
under the uniform distribution. We show that it does not.

Theorem 2. Let n be a power of 2. For any integer s between 0 and
√
n/2 there is a function

f : {0, 1}n → {−1, 1} such that P[f(x) = h2(x)] ≥1/2 + Ω(s/
√
n) but M2(f) ≤ O(s2).

To get a sense of the parameters let P[f(x) = h2(x)] = 1/2 + ε. Then M2(f) is only
O(ε2n) as opposed to Ω(εn) in Theorem 1. In particular, if s = O(1) and ε = Θ(1/

√
n) we

get M2(f) = O(1) as opposed to Ω(
√
n) in Theorem 1.

We have shown that understanding the probabilistic degree of the functions hk is also
important for the feasibility of recent approaches to pseudorandom generators against poly-
nomials. We obtain new bounds on the probabilistic degree of the functions hk which however
fall short of resolving whether the correlation bounds in the conclusion of Theorem 1 hold or
not. We begin with studying h1 which is essentially the majority function Maj. The results
are of independent interest, and a natural step to tackle hk for larger k. Indeed, below we
use techniques developed for Maj to give new results on h2.

We point out that the probabilistic degree tradeoff of Majority is not known. Given the
tremendous interest in this function, this may come as a surprise. One might be tempted to
think that Smolensky’s tradeoff (4) is tight. We can show that it is indeed tight under the
uniform distribution.

For concreteness, we define Maj : {0, 1}n → {−1, 1} as Maj(x) = 1 iff the Hamming
weight of x is ≥ n/2. Note that h1 = 1− 2Maj = (−1)Maj.

Theorem 3. Majority has (1/2 + Ω(d/
√
n))-advantage degree d under the uniform distribu-

tion.

Recall this means that there are degree-d polynomials p over F2 such that Px[p(x) =
Maj(x)] ≥ 1/2 + Ω(d/

√
n), where x is uniform in {0, 1}n. Such a result was only known for

d = O(1) or d = Ω(
√
n), see [Vio09a].

However, there are harder distributions. We beat Smolensky’s bound for degree one.
While such polynomials are simple, in light of Theorem 3 this result already requires a
non-uniform distribution.

Theorem 4. Majority does not have (1/2 + c/n)-advantage degree one, for some constant
c. This bound is tight up to the value of c.

4



We now turn to constructions of probabilistic polynomials for majority. This problem is
closely related to the so-called coin problem, defined next.

Definition 5. We say that a distribution F on boolean functions solves the δ-coin problem
with advantage α if the following is true. Suppose the support of F consists of functions on
t bits. Let X1, X2, . . . , Xt be i.i.d. boolean random variables with P[Xi = 1] = δ. Then:

(1) P[F (X1, X2, . . . , Xt) = 1] ≥ α; and
(2) P[F (1−X1, 1−X2, . . . , 1−Xt) = 0] ≥ α.

Note that 1−Xi comes up 1 with probability 1− δ.
The study of the coin problem for low-degree polynomials goes back to [SV10] (see also the

thesis [Vio06]) and has been the subject of several recent works including [LSS+19, GII+19,
Sri20]. This problem has also been studied in a variety of other models; the terminology
“coin problem” was coined in [BV10b].

However, these works consider large advantage α = 1/2 + Ω(1). By contrast, we are
interested in the setting where α is close to 1/2. We give nearly tight bounds in this setting,
showing that with degree d the best we can do is to boost the bias by d.

Theorem 6. There is a distribution on polynomials of degree O(d
√

log(1/(dε)) that (1/2 +

dε)-solves the (1/2+ε)-coin problem. Moreover, this is tight up to the factor O(
√

log(1/(dε)).

This theorem immediately gives a result for majority. Indeed, computing Majority on n
bits for odd n can be randomly reduced to solving the (1/2 + 1/n)-coin problem, simply by
selecting uniform bits from the input. Hence, Theorem 6 shows that Majority has (1/2+d/n)-
advantage degree ≤ O(d

√
log n).

We improve the advantage by a factor d for large d.

Theorem 7. There is a constant c such that for all d ≥ cn1/3 Majority on n bits, for odd
n, has (1/2 + d2/n)-advantage degree ≤ O(d

√
log n).

To determine the probabilistic-degree tradeoff of Majority is a very interesting question
whose answer is also likely to shed more light on the Fourier conjectures.

Finally, we can also use Theorem 6 to obtain a new construction for h2. One can reduce
computing h2 to computing a majority on

(
n
2

)
bits, and then apply Theorem 6 to obtain

advantage 1/2 + Ω(d/n2). With a more careful argument we can improve the advantage to
1/2 + Ω(d/n3/2).

Theorem 8. For infinitely many n, h2 has (1/2+d/n3/2 log n)-advantage degree O(d
√

log n).

This result is not strong enough to disprove Conjecture (2). For that we require advantage
1/2 + ω(d2/n).

The rest of the paper is organized as follows. We begin with some preliminaries in Section
1. The proof of Theorem 3 is in Section 2. The proof of Theorem 4 is in Section 3. In Section
4 we prove Theorem 6 on the coin problem, and then we use it to deduce the result about
h2, proving Theorem 8. Section 5 is devoted to the proof of Theorem 7. Finally, the proof
of Theorem 2 is in Section 6.
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1 Preliminaries

In this section we collect several results which are used in later proofs.
The following lemma shows that the majority of several i.i.d. Bernoulli random variables

increases their bias, even in the regime where the bias is very small to start with.

Lemma 9. There exists c > 0 such that the following holds:
Let X1, . . . , Xt be i.i.d. boolean random variables with P[Xi = 1] ≥ 1/2 + α, where√
tα < c and t is odd. Then P[Maj(X1, . . . Xt) = 1] ≥ 1/2 + Ω(α

√
t).

We are not aware of a source from which this result can be easily extracted, so we provide
a proof.

Proof. Assume that P[Xi = 1] = 1/2+α without loss of generality. We prove P[Maj(X1, . . . Xt) =
1]− P[Maj(X1, . . . Xt) = 0] ≥ Ω(α

√
t). The former difference can be written as

t/2∑
i=1/2

(
t

t/2 + i

)(
(1/2 + α)t/2+i(1/2− α)t/2−i − (1/2− α)t/2+i(1/2 + α)t/2−i

)
,

where the sum is for i = 1/2, 1 + 1/2, 2 + 1/2, . . . , t/2.
Collecting a 2t factor and writing z for 2α this equals

2−t
t/2∑
i=1/2

(
t

t/2 + i

)(
(1 + z)t/2+i(1− z)t/2−i − (1− z)t/2+i(1 + z)t/2−i

)
.

Further collecting (1− z)t/2(1 + z)t/2 = (1− z2)t/2 we rewrite it as

2−t(1− z2)t/2
t/2∑
i=1/2

(
t

t/2 + i

)((
1 + z

1− z

)i
−
(

1− z
1 + z

)i)
.

Note that
(

1+z
1−z

)
> 1 and so

(
1+z
1−z

)i − (1−z
1+z

)i
is positive and increasing with i. Hence for

any s we can bound below the expression by

2−t(1− z2)t/2
t/2∑
i=s

(
t

t/2 + i

)((
1 + z

1− z

)s
−
(

1− z
1 + z

)s)
.

Moreover, let us write(
1 + z

1− z

)s
−
(

1− z
1 + z

)s
= (1 + x)s − (1− y)s

where x = 2z/(1− z) and y = 2z/(1 + z). We bound below the right-hand side by

1 + xs− e−ys ≥ 1 + xs− (1− ys+ (ys)2) = s(x+ y)− y2s2.
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We pick s =
√
t/100+1/2. The above expression is Ω(

√
tα) as long as

√
tα = Θ(st) is

sufficiently small. Moreover, we have

2−t(1− z2)t/2
t/2∑
i=s

(
t

t/2 + i

)
≥ Ω(1).

This holds because (1− z2)t/2 ≥ Ω(1) and the sum of binomial coefficients is also Ω(2−t)
using Stirling’s approximation to the binomial coefficient.

We use the following characterization of symmetric polynomials which is Theorem 2.4 in
[BGL06] and follows from Lucas’ theorem.

Lemma 10. Let f : {0, 1}n → {0, 1} be a symmetric function that only depends on the
input Hamming weight modulo 2`. Then f is computable by a symmetric F2 polynomial of
degree < 2`. Conversely, any function f : {0, 1}n → {0, 1} computable by a symmetric F2

polynomial of degree < 2` only depends on the input Hamming weight modulo 2`.

Then we need constructions of probabilistic polynomials for symmetric functions, ob-
tained in [AW15]. The bounds in the earlier paper [Sri13] would also suffice for the main
points in this paper. See also [STV19] for a recent characterization.

Lemma 11. [AW15] Let f : {0, 1}n → {0, 1} be symmetric. Then f has (1 − ε)-advantage
degree O(

√
n log(1/ε)), for any ε.

2 Proof of Theorem 3

The main proof is for odd n. If n is even we can use the polynomial p′(x0, x1, . . . , xn−1) :=
p(x0, x1, . . . , xn−2)(1 − xn−1) where p is the polynomial with the highest correlation γ with
majority on input length n− 1. The correlation of p′ is > γ/2.

We now proceed with the main proof. We can assume without loss of generality that d is
a power of 2 and ≤ 0.1

√
n. The polynomial witnessing the correlation will be symmetric. For

a symmetric function f : {0, 1}n → {0, 1} write fw : {0, 1, . . . , n} → {0, 1} for f(x) = fw(|x|)
where |x| is the Hamming weight of x. The correlation between a symmetric polynomial p
and (−1)Maj can be written as

2−n
n∑
i=0

(
n

i

)
(−1)pw(i)(−1)Majw(i).

To construct p we use Lemma 10 for ` = log2(2d). That shows that for any fw :
{0, 1, . . . , n} → {0, 1} that depends only on the input modulo 2` there is a symmetric poly-
nomial p : {0, 1}n → {0, 1} of degree 2` such that pw = fw.

The definition of fw and hence p is as follows. Define Block i to be the 2d integers
2di + 0, 2di + 1, . . . , 2di + 2d − 1. Let i∗ be the smallest i such that Block i contains an
integer larger than n/2. Let t be the number of integers less than n/2 in Block i∗. (If n+ 1
is a power of 2 we have t = 0, and below there is no residual chunk.) Define fw to be 1 on
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the smallest t inputs, 0 on the next t, 0 on the next d − t, and finally 1 on the next d − t.
Here’s an example for n = 17, d = 2, t = 1, i∗ = 2; the last row shows the division in blocks:

weight 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
(−1)Majw - - - - - - - - - + + + + + + + + +
(−1)pw - + + - - + + - - + + - - + + - - +

Note that pw is by construction anti-symmetric in the sense, different from above, that:
pw(i) = 1 − pw(n − i). The same is true for Majw. Therefore g(i) := (−1)pw(i)(−1)Majw(i)

is symmetric, that is g(i) = g(n− i). Hence we only need to consider the bigger half of the
Hamming weights. Majority is always 1, and so we can rewrite the correlation as

2−n · 2 ·
(n−1)/2∑
i=0

(
n

(n+ 1)/2 + i

)
(−1)pw((n+1)/2+i).

Enumerate the above binomial coefficients starting from the biggest one for i = 0. The term
(−1)pw((n+1)/2+i) will be +1 on the first t + (d − t) = d, then −1 on the next d, then again
+1 on the next d, and so on. We group the coefficients in chunks of length 2d; in each chunk
the term is +1 for the first half and −1 for the second half. The number of coefficients is
(n + 1)/2. Hence we have b(n + 1)/4dc chunks, plus a residual truncated chunk of length
` < 2d.

Hence we can write the correlation as follows.

2−n · 2 ·
b(n+1)/4dc−1∑

i=0

d−1∑
j=0

((
n

(n+ 1)/2 + 2di+ j

)
−
(

n

(n+ 1)/2 + 2di+ j + d

))

+ 2−n · 2 ·
`−1∑
i=0

(
n

n− i

)
(−1)pw((n+1)/2+i).

By, say, a Chernoff bound the absolute value of the latter summand +2−n · · · is at most
2−Ω(n), using that ` < 2d = O(

√
n). Now consider the first summand. Because the binomials

are decreasing in size, each difference is positive. Hence we obtain a lower bound if we reduce
the range of i. We reduce it to b

√
n/dc. So the correlation is at least

2−n · 2 ·
b
√
n/dc∑
i=0

d−1∑
j=0

((
n

(n+ 1)/2 + 2di+ j

)
−
(

n

(n+ 1)/2 + 2di+ j + d

))
− 2−Ω(n).

The next lemma bounds below the difference of two such binomial coefficients.

Lemma 12. For s ≤ 4
√
n and d ≤ 0.1

√
n we have: 2−n

((
n

n/2+s

)
−
(

n
n/2+s+d

))
≥ Ω(sd/n3/2).

We apply the lemma with s = 1/2 + 2di+ j which note is ≤ 1/2 + 2
√
n+ 0.1

√
n ≤ 3

√
n.

The correlation is at least

b
√
n/dc∑
i=0

d−1∑
j=0

Ω((1/2 + 2di+ j)d/n3/2)− 2−Ω(n) ≥
Ω(
√
n)∑

k=0

Ω(kd/n3/2)− 2−Ω(n) ≥ Ω(d/
√
n).

To justify the first inequality we use 1/2 + 2di + j ≥ di + j and then do the change of
variable k = di+ j. For the second we use that the sum of all k up to Ω(

√
n) is Ω(n). This

concludes the proof except for the lemma.
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Proof of lemma We have(
n

n/2 + s

)
−
(

n

n/2 + s+ d

)
=

n!

(n/2 + s)!(n/2− s)!
− n!

(n/2 + s+ d)!(n/2− s− d)!

=
n!

(n/2 + s)!(n/2− s)!

[
1− (n/2− s)(n/2− s− 1) · · · (n/2− s− d+ 1)

(n/2 + s+ d)(n/2 + s+ d− 1) · · · (n/2 + s+ 1)

]
.

The ratio inside the square bracket is at most

(n/2− s)d

(n/2)d
= (1− 2s/n)d ≤ e−2sd/n ≤ 1− sd/n,

where the last inequality holds because 2sd/n ≤ 1.
The binomial coefficient outside of the square bracket is(

n

n/2 + s

)
≥ 2nh(1/2+s/n)√

8n(1/2 + s/n)(1/2− sn)
≥ Ω

(
2n(1−O(s2/n2))

√
n

)
≥ Ω

(
2n√
n

)
.

Here h is the binary entropy function, and the first inequality can be found as Lemma
17.5.1 in [CT06]. The second and third inequalities follow from the approximation h(1/2 +
x) ≥ 1− 4x2, valid for every x, and s = O(

√
n).

The lemma follows by combining the two bounds.

3 Proof of Theorem 4

First let us discuss tightness. To show tightness for odd n we simply output a uniformly
selected bit. For even n this works for all inputs except those of Hamming weight = n/2.
To fix this, we modify the distribution on polynomials to equal 1 with probability 1/n.
On input of weight = n/2 we get the right value with probability 1/n + (1 − 1/n)(1/2) ≥
1/2 + Ω(1/n). On inputs of Hamming weight 6= n/2 we also get the right value with
probability (1− 1/n)(1/2 + 1/n) ≥ 1/2 + Ω(1/n).

We now move to negative results. First we note that we can reduce the case of even n to
that of odd n: simply append a bit whose value is that of majority on balanced inputs. This
does not change the value of majority, and has negligible effect on the advantage. Hence it
suffices to prove a negative result for even n, and we do so in the rest of this section.

We select as hard distribution the distribution D which is uniform on inputs of Hamming
weight n/2 + 1 and n/2− 1. Our goal is to show that for every fixed degree-one polynomial
p we have P[p(D) = Maj(D)] ≤ 1/2 + O(1/n). Using generating functions we obtain a
proof which is nearly calculation-free, requiring only elementary bounds on binomials. Let
m = n/2. Let k be the number of variables in the degree-one polynomial. Let

b(n,m, k) =
k∑
i=0

(−1)i
(
m

i

)(
n−m
k − i

)
.
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Note that b(n,m, k)/
(
n
k

)
is the probability p that a uniform set of size k has odd inter-

section with a fixed set of size m, minus the probability that it has even intersection. This
difference equals 1− 2p and so the quantity to bound is

α(n, n/2− 1, k) :=

∣∣∣∣∣ 1(
n
k

)(b(n, n/2− 1, k)− b(n, n/2 + 1, k))

∣∣∣∣∣ .
First we use generating functions to obtain a closed form for b(n,m, k). Recall the

generating functions (see e.g. [GKP94] for background on this technique)

(1 + z)n =
∑
i≥0

(
n

i

)
zi,

(1− z)n =
∑
i≥0

(
n

i

)
(−1)izi.

We have

(1− z)m(1 + z)n−m =
∑

i≥0,j≥0

(
m

i

)(
n−m
j

)
(−1)izi+j =

∑
k≥0

b(n,m, k)zk.

If m = n/2− t the left-hand side can be written as

(1− z)n/2−t(1 + z)n/2−t(1 + z)2t

=(1− z2)n/2−t(1 + z)2t

=
∑
i≥0

(−1)i
(
n/2− t

i

)
z2i(1 + z)2t.

Similarly, if m = n/2 + t the it can be written as

(1− z)n/2−t(1 + z)n/2−t(1− z)2t

=
∑
i≥0

(−1)i
(
n/2− t

i

)
z2i(1− z)2t.

Specializing to t = 1 we obtain∑
k≥0

(b(n, n/2− 1, k)− b(n, n/2 + 1, k))zk

=
∑
i≥0

(−1)i
(
n/2− 1

i

)
z2i
(
(1 + z)2 − (1− z)2

)
=
∑
i≥0

(−1)i
(
n/2− 1

i

)
z2i · 4z

=4
∑
i≥0

(−1)i
(
n/2− 1

i

)
z2i+1.

10



Equating coefficients of zk yields

b(n, n/2− 1, k)− b(n, n/2 + 1, k) = 4(−1)(k−1)/2

(
n/2− 1

(k − 1)/2

)
if k is odd, otherwise the left-hand side is zero.

Hence we get

α = 4

(
n/2− 1

(k − 1)/2

)
/

(
n

k

)
if k is odd, and α = 0 if k is even.
There remains to bound the right-hand side. First, we can assume that k ≤ n/2 because

replacing k with n−k does not change the value of α. If k = 0, 1 we readily have α = O(1/n),
using that n is even. Otherwise we can use the bounds

(n/k)k ≤
(
n

k

)
≤ (en/k)k

to again show α = O(1/n). We have

α ≤ 4

(
n

(k − 1)

)(k−1)/2(
k

n

)k
= 4

√
k

n

(√
1

k − 1
· k√

n

)k

.

We can conclude by noticing that if k ≤ 100 log2 n then this is at most poly log n/n1.5 ≤
O(1/n), using k ≥ 2; while if k ≥ 100 log2 n using that k ≤ n/2 and k − 1 ≥ 0.99k we have

α ≤ O(1) ·

( √
k√

0.99n

)k

≤ O(1)(
√

0.5/0.99)k ≤ O(1)(3/4)k ≤ 1/n.

4 The coin problem, and the probabilistic degree of h2

In this section we prove Theorems 6 and 8.

4.1 Proof of Theorem 6

To solve the coin problem, we simply compute Majority on d2 bits, for odd d. By Lemma
9, this solves the coin problem with advantage 1/2 + Ω(dε). By Lemma 11 Maj on d2 bits
has (1− γ)-advantage degree O(d

√
log(1/γ)). Setting γ := dε/c for a large enough constant

c yields the result. (Note that by increasing d by a constant factor we can remove the
Ω(1) in the expression for the advantage, and also have that d is odd, without changing the
expression for the degree bound.)

To prove that this result is tight up to the
√

log(1/dε) factor, reason as follows. Suppose
that there is a distribution on degree-d polynomials that solves the (1/2 + ε)-coin problem
with advantage 1/2 + α. If we sample O(1/α)2 times independently these polynomials, and
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compute the majority, a Chernoff bound shows that we obtain advantage 0.99. By Lemma
11 the majority computation can be done with error 1/100 by a probabilistic polynomial
of degree O(1/α). Composing this with the degree-d polynomial we obtain a probabilistic
polynomial of degree O(d/α) which solves the (1/2 + ε)-coin problem with advantage 0.98.
By averaging we can fix the polynomial and still maintain advantage 0.96. Now we can
appeal to a result proved in [LSS+19] which shows that any such polynomial has degree
Ω(1/ε). Hence, d/α ≥ Ω(1/ε). In other words, α ≤ O(dε), as desired.

4.2 Proof of Theorem 8

We again use our solution to the coin problem. However, we carefully set n to make the bias
as large as possible. Note that on inputs x with n/2 + t zeroes and n/2− t ones we have

g2(x) = 2t2 − n/2.

Let m =
(
n
2

)
. For x ∈ {0, 1}n let y ∈ {−1, 1}m be all the parities on 2-bits, that is for

S a subset of size 2 of [n] we have yS = χS(x) = (−1)
∑

i∈S xi . Further, let z be the 0 − 1
version of y, that is zS = (yS + 1)/2. Note that computing h2(x) is the same as Maj(z).
Moreover, the Hamming weight of z is (g2(x) +m)/2. (Because if the weight of z is w then
g2(x) = w − (m− w) = 2w −m.)

By ensuring that g2 is not close to 0 we ensure that the weight of z is not close to m/2.
This will make the problem easier.

Let n be such that the distance between n/4 and any square is at least Ω(
√
n). This can

be accomplished by setting n/4 = u2 + u for an integer u. This guarantees that the distance
between n/4 and u2 is at least u, and also the distance between n/4 and the next square
(u+ 1)2 = u2 + 2u+ 1 is at least u. Because n = Θ(u2), this distance is at least Ω(

√
n).

And so also |g2(x)| ≥ Ω(
√
n) for every x. Hence for every x the Hamming weight

(g2(x) +m)/2 of z is always bounded away by Ω(
√
n) from m/2.

Now, for any x ∈ {0, 1}n consider picking a uniform bit zI from the associated z. Note
that computing one such bit can be done with constant degree. We have:

(1) If h2(x) = 1 then P[zI = 1] ≥ 1/2 + Ω(n/m) ≥ 1/2 + Ω(1/n3/2);
(2) If h2(x) = −1 then P[zI = 0] ≥ 1/2 + Ω(1/n3/2).
Hence, it suffices to solve the (1/2 + Ω(1/n3/2))-coin problem. By Theorem 6 this can be

done with degree O(d
√

log n) and advantage 1/2 + Ω(d/n3/2), proving the result.

5 Proof of Theorem 7

We take s = d2 uniform samples from the input, where d is odd. If the (relative) weight is
> 1/2 + βd/n we output YES, if < 1/2− βd/n NO, and otherwise we give the right answer
via “brute-force” using Theorem 10. Brute-force gives the right answer on inputs of weight
∈ [1/2− d/n, 1/2 + d/n]. Here β is a small enough constant to be set later.

While the high-level approach is similar to the constructions in [AW15, OSS19], our
setting is different. Those works consider the setting of small error, while we work with
error close to 1/2, and this makes the proof different.
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Formally, for an interval I ⊆ R denote by fI the boolean function which outputs 1 if
the input weight is in I. The fI are symmetric, so by Lemma 11 they have probabilistic
polynomials of degree O(

√
n log n) with error 1/n2. The error is so small that it can be

ignored, and we will do so in the rest of the proof.
Also, by Lemma 10 there exists a (symmetric) polynomial b of degree O(d) which com-

putes Maj on inputs of weight in [n/2− d, n/2 + d].
Our final polynomial is then

p[s(1/2−βd/n),s(1/2+βd/n)](Y ) · b(x) + p(s(1/2+βd/n),s](Y ),

where Y is a uniform sample of s bits of x.
The analysis is as follows. Let B(n, p) be the sum of n i.i.d. boolean r.v. coming up 1

with probability p.
If the input has weight ∈ (1/2, 1/2 + d/n]: error occurs only if the weight of the

samples is < 1/2 − βd/n. The probability of this is at most P[B(d2, 1/2) < 1/2 − βd/n]
which can be written as

P[B(d2, 1/2) < 1/2]− P[B(d2, 1/2) ∈ [1/2− βd/n, 1/2)] = 1/2−
βd3/n∑
i=1/2

(
d2

d2/2− i

)
2−d

2

.

Using the hypothesis d ≥ cn1/3, the sum has Ω(βd3/n) terms. Each summand is Ω(1/d)
as long as βd3/n ≤ αd for a suitable α, for which it is sufficient that d3/n ≤ αd, which is
satisfied by hypothesis. Hence the error is ≤ 1/2−Ω(βd3/n) · (1/d) = 1/2−Ω(d2/n) in this
case.

If the input has weight > 1/2 + d/n: error occurs only if the weight of the samples is
≤ 1/2 + βd/n. The probability of error is ≤ P[B(d2, 1/2 + d/n) ≤ 1/2 + βd/n].

Recall that
P[B(d2, 1/2 + d/n) > 1/2] ≥ 1/2 + Ω(d2/n)

by Lemma 9, valid as long as d · d/n ≤ α, which is satisfied by hypothesis. On the other
hand we have

P[B(d2, 1/2 + d/n) ∈ [1/2, 1/2 + βd/n]]

=

βd3/n∑
i=1/2

(
d2

d2/2 + i

)
(1/2 + d/n)d

2/2+i(1/2− d/n)d
2/2−i

≤O(2d
2

/d) · (1/4− d2/n2)d
2/2
∑
i

(
1/2 + d/n

1/2− d/n

)i
≤O(1/d) ·

∑
i

(1 +O(d/n))i

≤O(1/d) · βd3/n · (1 +O(d/n))βd
3/n

≤O(βd2/n) · eO(βd4/n2)

=O(βd2/n).
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Hence, by making β small enough, we have

P[B(d2, 1/2 + d/n) ≥ 1/2 + βd/n] ≥ 1/2 + Ω(d2/n),

as desired.
The cases where the input has weight < 1/2 are symmetric, and this concludes the proof.

6 Proof of Theorem 2

We essentially define f to have correlation zero with h2 on every Hamming weight, except
for s Hamming weights where the value of g2 is as small as possible. Let M := {n/2 +√
n/2, n/2 +

√
n/2− 1, . . . , n/2 +

√
n/2− s+ 1} and let Zi be the inputs with i zeroes. For

x ∈ Zi and i ∈ M let f(x) = h(x) = −1. For x ∈ Z0 let, say, f(x) = 1 and for x ∈ Zn let
f(x) = −1. For any other Zi, divide the inputs in Zi in two equals parts, which is possible
by Lucas’ theorem because n is a power of 2. Let f be 1 on one part and −1 on the other.

Consider Ex[f(x)h2(x)]. We have Ex[f(x)h2(x)|x ∈ Z0 ∪ Zn] = 0, and Ex[f(x)h2(x)|x ∈
Zi] = 0 if i 6∈ M and i 6= 0 and i 6= n, by definition. Otherwise the expectation is 1.
Hence Ex[f(x)h(x)] is the probability that x ∈ Zi for some i ∈M . Assuming s ≤

√
n/2 this

probability is ≥ Ω(s)·P[x ∈ Zn/2+
√
n/2]. The latter probability is Ω(1/

√
n) using the standard

bound
(

n
n/2+

√
n/2

)
= Θ(2n/

√
n) which can be verified using Stirling’s approximation. Hence

Ex[f(x)h2(x)] ≥ Ω(s/
√
n), and so P[f(x) = h2(x)] ≥ 1/2 + Ω(s/

√
n).

Now consider Ex[f(x)g2(x)]. Again, this is zero unless the number of zeroes of x lies in
M . Note that g2(x) = 2t2−n/2 on inputs in Zn/2+t. The maximum value of |g2(x)| for inputs
with weights in M is for t =

√
n/2 − s + 1 which yields value |2(

√
n/2 − s + 1)2 − n/2| =

|2(−s + 1)2 + (−s + 1)
√
n| ≤ O(s2 + s

√
n). For s ≤

√
n/2 the latter is O(s

√
n). The

chance that the number of zeroes of x lies in M is Θ(s/
√
n) as noted before. Hence we get

M2(f) ≤ O(s
√
n · s/

√
n) ≤ O(s2).

Acknowledgment. I am grateful to Chin Ho Lee for pointing out the work [CGL+20] to
me, and to an anonymous reviewer for suggesting the use of hypercontractivity to bound
E|gk(x)| in the proof of Theorem 1 (alternatively one can reason along the lines of the proof
of Theorem 4).

References

[AW15] Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest
neighbors. In IEEE Symp. on Foundations of Computer Science (FOCS), pages
136–150, 2015.

[BGL06] Nayantara Bhatnagar, Parikshit Gopalan, and Richard J. Lipton. Symmetric
polynomials over Zm and simultaneous communication protocols. J. of Computer
and System Sciences, 72(2):252–285, 2006.

[BV10a] Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials.
SIAM J. on Computing, 39(6):2464–2486, 2010.

14



[BV10b] Joshua Brody and Elad Verbin. The coin problem, and pseudorandomness for
branching programs. In 51th IEEE Symp. on Foundations of Computer Science
(FOCS), 2010.

[CGL+20] Eshan Chattopadhyay, Jason Gaitonde, Chin Ho Lee, Shachar Lovett, and Ab-
hishek Shetty. Fractional pseudorandom generators from any fourier level. CoRR,
abs/2008.01316, 2020.

[CHH+20] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett, and
David Zuckerman. XOR lemmas for resilient functions against polynomials. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy, editors, ACM Symp. on the Theory of Computing (STOC),
pages 234–246. ACM, 2020.

[CHHL18] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseu-
dorandom generators from polarizing random walks. In CCC, volume 102 of
LIPIcs, pages 1:1–1:21. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[CHLT19] Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal. Pseu-
dorandom generators from the second fourier level and applications to AC0 with
parity gates. In ACM Innovations in Theoretical Computer Science conf. (ITCS),
pages 22:1–22:15, 2019.

[CT06] Thomas Cover and Joy Thomas. Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). Wiley-Interscience, 2006.

[FSUV13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On
beating the hybrid argument. Theory of Computing, 9:809–843, 2013.

[GII+19] Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, An-

tonina Kolokolova, and Avishay Tal. AC0[p] lower bounds against MCSP via
the coin problem. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi, editors, 46th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume
132 of LIPIcs, pages 66:1–66:15. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2019.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathemat-
ics: A Foundation for Computer Science, 2nd Ed. Addison-Wesley, 1994.

[Lov09] Shachar Lovett. Unconditional pseudorandom generators for low degree polyno-
mials. Theory of Computing, 5(1):69–82, 2009.

[LSS+19] Nutan Limaye, Karteek Sreenivasaiah, Srikanth Srinivasan, Utkarsh Tripathi,

and S. Venkitesh. A fixed-depth size-hierarchy theorem for AC0[⊕] via the coin
problem. In ACM Symp. on the Theory of Computing (STOC), pages 442–453.
ACM, 2019.

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica. An
Journal on Combinatorics and the Theory of Computing, 11(1):63–70, 1991.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,
2014.

[OSS19] Igor Carboni Oliveira, Rahul Santhanam, and Srikanth Srinivasan. Parity helps
to compute majority. In Conf. on Computational Complexity (CCC), volume 137
of LIPIcs, pages 23:1–23:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

15



2019.
[Raz87] Alexander Razborov. Lower bounds on the dimension of schemes of bounded

depth in a complete basis containing the logical addition function. Akademiya
Nauk SSSR. Matematicheskie Zametki, 41(4):598–607, 1987. English translation
in Mathematical Notes of the Academy of Sci. of the USSR, 41(4):333-338, 1987.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. In 19th ACM Symp. on the Theory of Computing (STOC),
pages 77–82. ACM, 1987.

[Sri13] Srikanth Srinivasan. On improved degree lower bounds for polynomial approx-
imation. In FSTTCS, volume 24 of LIPIcs, pages 201–212. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2013.

[Sri20] Srikanth Srinivasan. A robust version of hegedus’s lemma, with applications. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26,
2020, pages 1349–1362. ACM, 2020.

[STV19] Srikanth Srinivasan, Utkarsh Tripathi, and S. Venkitesh. On the probabilistic
degrees of symmetric boolean functions, 2019.

[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require ma-
jority. SIAM J. on Computing, 39(7):3122–3154, 2010.

[Vio06] Emanuele Viola. The complexity of hardness amplification and derandomization.
Ph.D. thesis, Harvard University, 2006.

[Vio09a] Emanuele Viola. On the power of small-depth computation. Foundations and
Trends in Theoretical Computer Science, 5(1):1–72, 2009.

[Vio09b] Emanuele Viola. The sum of d small-bias generators fools polynomials of degree
d. Computational Complexity, 18(2):209–217, 2009.

[Vio17] Emanuele Viola. Challenges in computational lower bounds. SIGACT News,
Open Problems Column, 48(1), 2017.

[Vio19] Emanuele Viola. Matching Smolensky’s correlation bound with majority. Avail-
able at http://www.ccs.neu.edu/home/viola/, 2019.

[Vio20] Emanuele Viola. New lower bounds for probabilistic degree and ac0 with parity
gates. Available at http://www.ccs.neu.edu/home/viola/, 2020.

[Yao77] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure
of complexity (extended abstract). In IEEE Symp. on Foundations of Computer
Science (FOCS), pages 222–227. IEEE Computer Society, 1977.

16
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


