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Abstract

We consider the problem of counting the number of copies of a fixed graph H within an input graph
G. This is one of the most well-studied algorithmic graph problems, with many theoretical and practical
applications. We focus on solving this problem when the input G has bounded degeneracy. This is a
rich family of graphs, containing all graphs without a fixed minor (e.g. planar graphs), as well as graphs
generated by various random processes (e.g. preferential attachment graphs). We say that H is easy
if there is a linear-time algorithm for counting the number of copies of H in an input G of bounded
degeneracy. A seminal result of Chiba and Nishizeki from ’85 states that every H on at most 4 vertices
is easy. Bera, Pashanasangi, and Seshadhri recently extended this to all H on 5 vertices, and further
proved that for every k > 5 there is a k-vertex H which is not easy. They left open the natural problem
of characterizing all easy graphs H.

Bressan has recently introduced a framework for counting subgraphs in degenerate graphs, from
which one can extract a sufficient condition for a graph H to be easy. Here we show that this sufficient
condition is also necessary, thus fully answering the Bera–Pashanasangi–Seshadhri problem. We further
resolve two closely related problems; namely characterizing the graphs that are easy with respect to
counting induced copies, and with respect to counting homomorphisms. Our proofs rely on several novel
approaches for proving hardness results in the context of subgraph-counting.

1 Introduction

Subgraph counting refers to the algorithmic task of computing the number of copies (i.e., occurences)
of a given graph H in an input graph G. Due to its fundamental nature, this problem has been studied
extensively, both from a theoretical perspective and for practical applications. In practice, subgraph counts
are widely used to analyze real-world graphs, such as graphs representing telecommunication networks,
biological structures and social interactions. Consequently, subgraph counts feature prominently in studies
of biological [25, 37, 38] and sociological [12, 24] networks, as well as in the network science literature in
general [6, 27, 34, 40, 41, 42]. For example, [34] observed that networks coming from different areas of
science (such as biochemistry, neurobiology, ecology, and engineering) have significantly different counts of
small subgraphs. Such frequently occuring subgraphs are called motifs, and, quoting [34], “may uncover
the basic building blocks of most networks”. Needless to say, some real-world graphs can be very large –
having billions of vertices – thus making it all the more desirable to have fast subgraph counting algorithms.
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In theoretical computer science, subgraph counting and detection1 are fundamental and widely-studied
problems. Much of the research focused on counting special kinds of graphs, such as cliques [20, 26, 36, 44];
cycles [2, 18, 26]; paths and matchings (and other graphs with bounded pathwidth) [7, 8]; graphs with
bounded vertex-cover number [16, 17, 29, 46]. Many of the algorithms use fast matrix multiplication
[2, 20, 26, 29, 36]. For example, the best known algorithm for counting k-cliques [36] runs in time nωk/3+O(1),
where ω < 2.373 is the matrix multiplication constant [45]. On the negative side, k-clique counting is the
canonical #W[1]-hard problem, and it is thus unlikely that there exists an algorithm which solves this
problem in time f(k) · no(k) (for any function f). We refer the reader to [9] for further references on both
theoretical and practical aspects of subgraph counting.

Subgraph counts also play a fundamental role in extremal graph theory, where subgraph densities are
the basic notion used for studying sequences of dense graphs [30]. In particular, knowing approximate
subgraph counts of small graphs inside a given graph G allows one to decide whether G is quasirandom
[15] or, more generally, whether G consists of a bounded number of quasirandom pieces with prescribed
edge densities [31].

Given the importance of the subgraph counting problem on the one hand, and its hardness in general
graphs on the other, it is natural to consider special classes of graphs which admit faster counting algo-
rithms, while also being rich enough to include many of the real-world graphs mentioned above. One prime
example of such a family of graph classes is classes having bounded degeneracy. Recall that a graph G is
κ-degenerate2 if there is an ordering v1, . . . , vn of the vertices of G such that vi has at most κ neighbours
in {vi+1, . . . , vn} (for each 1 ≤ i ≤ n). We say that a class of graphs has bounded degeneracy if there is an
integer κ such that all graphs in the class are κ-degenerate. With a slight abuse of terminology, we will
refer to graphs belonging to such classes as having bounded-degeneracy or being O(1)-degenerate.

There are many examples of well-studied graph classes having bounded degeneracy. These include all
minor-closed classes (including planar graphs and, more generally, graphs embeddable into a given surface),
preferential attachment graphs [3], and bounded expansion graphs [35].

The first result on subgraph counting in bounded-degeneracy graphs is probably the classical result of
Chiba and Nishizeki [14], who showed that in κ-degenerate graphs, one can count r-cliques in time O(nκr−2)
(for each r ≥ 3), and 4-cycles in time O(nκ). Bera, Pashanasangi and Seshadhri [9] recently extended this
result, by showing that the H-counting problem in bounded-degeneracy graphs can be solved in time O(n)
for every graph H on at most 5 vertices (here, the implicit constant in the big-O notation depends on
the degeneracy κ). They further showed that under a certain widely-believed hardness assumption in fine-
grained complexity, the problem of counting 6-cycles cannot be solved in linear time in bounded-degeneracy
graphs. (They also proved a similar result for all longer cycles, with the exception of the cycle of length
8.) The hardness assumption used asserts that detecting a triangle in a (general) graph with m edges
requires significantly more than O(m) time. This assumption will also serve as the foundation for our
complexity-theoretic hardness results, and we state it here as follows. We refer the reader to [1], where
Conjecture 1.1 was first formulated, for a detailed overview of the conjecture and its relations to many
other computational problems.

Conjecture 1.1 (Triangle Detection Conjecture [1]). There exists γ > 0 such that in the word
RAM model of O(log n) bits, any algorithm to decide whether an input graph with n vertices and m edges
is triangle-free requires Ω(m1+γ) time in expectation.

It is believed that the constant γ in Conjecture 1.1 could be as large as 1/3. The reason for this is that

1The H-detection problem is the problem of deciding whether an input graph contains a copy of H.
2We note that degeneracy is closely related to another well-studied graph parameter, namely arboricity, which is the

minimum number of forests into which the edge-set of a graph can be partitioned. It is well-known that the arboricity of a
κ-degenerate graph is between (κ+ 1)/2 and κ.
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the best known algorithm for triangle detection [2] runs in time O
(

min
(
nω,m2ω/(ω+1)

))
, where ω is the

matrix multiplication constant. If ω = 2 (which would be optimal), then the running time of this algorithm
is O

(
min

(
n2,m4/3

))
.

Having established both positive and negative results, Bera, Pashanasangi and Seshadhri [9] asked
whether one can characterize all graphs H for which the H-counting problem can be solved in linear time
in bounded-degeneracy graphs. Before proceeding to our resolution of this question, let us introduce some
notation. Let G,H be graphs. Following [30], we denote by hom(H,G) the number of homomorphisms
from H to G, by inj(H,G) the number of injective homomorphisms (i.e., embeddings) from H to G, and
by ind(H,G) the number of isomorphisms from H to (induced subgraphs of) G. See Section 3 for the
definition of graph homomorphism. The number of automorphisms of H is denoted aut(H). It is well-
known (and easy to see) that the number of unlabeled copies (resp. unlabeled induced copies) of H in G
is inj(H,G)/aut(H) (resp. ind(H,G)/aut(H)).

For a graph H, we denote by hom-cntH the problem of computing hom(H,G) for a given input
graph G. The problems inj-cntH and ind-cntH are defined analogously. In what follows, we say that
hom-cntH/inj-cntH/ind-cntH is easy if it can be solved in expected time f(κ,H)·n in n-vertex graphs of
degeneracy κ (for some function f); and otherwise we say that it is hard. We will usually avoid mentioning
the function f , and just speak of running time O(n) (or linear time), where the implicit constant in the
big-O notation may (and will) depend on κ and H. We will make no effort to optimize this dependence.
The following is the main open problem raised in [9].

Problem 1.2 ([9]). Characterize the graphs H for which inj-cntH is easy.

In this paper, we completely resolve Problem 1.2 by giving a very clean characterization of the graphs H
for which inj-cntH is easy. We will also solve the related problems of characterizing the graphs H for which
hom-cntH is easy and the graphs H for which ind-cntH is easy. It will turn out to be more convenient to
first deal with the problem of obtaining a characterization for hom-cntH . This characterization, discussed
in Section 1.2, constitutes the main result of this paper. In Section 1.3 we describe how the solution of
Problem 1.2 regarding inj-cntH can be derived from our result regarding hom-cntH . Then, in Section
1.4, we describe how a characterization for ind-cntH can be derived from the one for inj-cntH . This
approach – of relating homomorphisms to copies and copies to induced copies – was pioneered in [16] and
[13], and is based on the framework developed in [30]. Finally, in Section 1.5 we briefly consider subgraph-
counting in general (i.e., not necessarily degenerate) graphs. Using the methods developed to prove (the
hardness part of) Theorem 1, we show that for a graph H, hom(H, ·) can be computed in linear time in
general graphs if and only if H is a forest (again, the “only-if” direction assumes Conjecture 1.1).

1.1 α-acyclic hypergraphs and Bressan’s algorithm

Bressan [11] provided a dynamic programming algorithm for computing hom(H,G) in O(1)-degenerate
graphs G. A special case of Bressan’s result gives a sufficient condition for hom-cntH to be easy. To
state this condition, we first need some additional definitions. Let us begin with the well-known notion of
hypergraph α-acyclicity, which plays a key role in this paper.

Definition 1.3 (α-acyclic hypergraph). A hypergraph F is called α-acyclic if there exists a tree T whose
vertices are the hyperedges of F , such that the following condition is satisfied: for all e1, e2, e ∈ E(F ) =
V (T ), if e is on the unique path in T between e1 and e2, then e1 ∩ e2 ⊆ e.

Hypergraph α-acyclicity was introduced by Beeri, Fagin, Maier, Mendelzon, Ullman and Yannakakis
[4] in the early 1980s in connection with relational database schemes, and has subsequently been widely
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studied. For further information, we refer the reader to [5, 10]. Note that in the special case that F is a
graph, α-acyclicity is equivalent to being a forest.

Next, one associates to each directed acyclic graph ~H a hypergraph which captures the reachability
structure of ~H. For a vertex u in a directed graph ~H, we denote by R(u) the set of vertices that are
reachable from u (namely, the set of all v ∈ V ( ~H) such that there is a directed path from u to v). Note
that u ∈ R(u). Recall that any directed acyclic graph (DAG) has at least one source (i.e. vertex of
in-degree 0).

Definition 1.4 (α-acyclic graphs and digraphs). Let ~H be a DAG, and let u1, u2, . . . , ur ∈ V ( ~H) be the
source vertices of ~H. We associate to ~H a hypergraph F ~H , as follows. The vertices of F ~H are the vertices of
~H, and the hyperedges of F ~H are the sets R(ui) for 1 ≤ i ≤ r. We say that ~H is α-acyclic if the hypergraph

F ~H is α-acyclic. Finally, we say that an undirected graph H is α-acyclic if every acyclic orientation ~H of
H is α-acyclic.

Directed acyclic graphs arise naturally in the context of counting subgraphs in degenerate graphs.
Indeed, many of the known counting algorithms [14, 9, 11] begin by orienting the edges of the given κ-
degenerate input graph G according to some degeneracy ordering, thus obtaining an acyclic directed graph
~G in which all out-degrees are at most κ. Then the task becomes to compute hom( ~H, ~G) for every acyclic
orientation ~H of H. Summing these directed homomorphism counts then gives hom(H,G).

The main result3 of [11] implies that hom(H,G) can be computed in expected time O(n) whenever H
is α-acyclic. Our main result, described in the following section, states that this sufficient condition is also
necessary, thus giving a complete characterization of the graphs H for which hom-cntH is easy. Before
proceeding, let us note that Bressan’s algorithm [11] actually runs in time Õ(n) (rather than linear), with
the polylog(n) term arising from the need to search and update a dictionary with O(n) entries. If, however,
one allows Las Vegas randomized algorithms (as is done in [9]), then one can reduce the time for searching
and updating entries to O(1) by using perfect hashing [23]. This results in an algorithm which runs in
expected time O(n) (with randomness only appearing in the generation of the hash table, which is then
followed by a deterministic algorithm).

1.2 Main result: counting homomorphisms in linear time

Our main result in this paper is as follows.

Theorem 1 (Main result). Assuming Conjecture 1.1, hom-cntH is hard whenever H is not α-acyclic.

As mentioned above, Theorem 1 shows that the sufficient condition (for hom-cntH being easy) supplied
by Bressan’s algorithm [11] is in fact necessary. Thus we obtain the following characterization:

Corollary 2. Assuming Conjecture 1.1, hom-cntH is easy if and only if H is α-acyclic.

Given Theorem 1, it is natural to ask if there is a cleaner description of the α-acyclic graphs. Actually,
another reason for seeking such a clean description is that in order to prove Theorem 1, it would be
desirable to know that graphs that are not α-acyclic have certain easy-to-describe obstructions. Luckily
(and somewhat surprisingly), we have the following concise equivalent description of the α-acyclic graphs.
Throughout the paper, Ck denotes the cycle of length k. For graphs H,H0, we say that H is induced
H0-free if H contains no induced copy of H0.

3It is worth noting that the result of [11] is more general: it gives an algorithm that computes hom(H,G) in expected time
O(nτ(H)), where τ(H) is a certain “treewidth-type” graph parameter which equals 1 if and only if H is α-acyclic
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Theorem 3. An undirected graph H is α-acyclic if and only if H is induced Ck-free for every k ≥ 6.

By combining Theorems 1 and 3, we immediately see that hom-cntH is easy whenever H is induced
Ck-free for all k ≥ 6. In particular, hom-cntH is easy for every chordal4 graph H.

Let us now discuss the ideas that go into the proofs of Theorems 1 and 3, starting with the latter. Let us
now discuss the proof of Theorem 3. This proof relies on a useful characterization of α-acyclic hypergraphs
given in [5] (and stated here as Theorem 7). This characterization asserts that a hypergraph is α-acyclic if
and only if it does not contain two certain types of obstructions. These two types of obstructions generalize
in different ways the notion of an induced cycle from graphs to hypergraphs. The main difficulty in the
proof of Theorem 3 lies in translating these “hypergraph obstructions” into “digraph obstructions”, i.e.
recognizing the digraph structures whose reachability hypergraphs correspond to these obstructions.

We now move on to discuss the proof of Theorem 1. With Theorem 3 at hand, it is natural to first try
and show that hom-cntCk is hard for all k ≥ 6. This is indeed accomplished in the following lemma.

Lemma 1.5. Assuming Conjecture 1.1, hom-cntCk is hard for every k ≥ 6.

Lemma 1.5 closely resembles to the hardness result of Bera, Pashanasangi and Seshadhri [9], who proved
a similar statement for the problem inj-cntCk (with the exception of the case k = 8). Still, it turns out that
proving hardness results for hom-cnt is significantly more challenging5 than proving analogous statements
for inj-cnt. While the reduction we use to prove Lemma 1.5 is similar to the one used in [9], the proof
of its correctness is considerably more involved and requires several new ideas. First, it involves a subtle
application of Möbius inversion (see the discussion regarding (2) in Section 1.3) to a poset consisting of a
carefully chosen collection of partitions of V (Ck). The reason for considering only some (and not all) of the
partitions of V (Ck) is that this allows us to express Ck-counts in terms of homomorphism counts of Ck and
of certain trees, thus avoiding the need to compute homomorphism counts of other cyclic graphs. Second,
in order to compute this Möbius inversion, we need to solve hom-cntH in linear time for all trees H.
This is possible due to the “if” part of Corollary 2 (using Bressan’s algorithm [11]). Hence, an unexpected
aspect of the proof of Lemma 1.5 is that an algorithmic result for a problem (namely, Corollary 2 for H
being a tree) is used to prove a hardness result for the same problem.

The remaining ingredient in the proof of Theorem 1 is the following lemma, which implies that if
hom-cntH is easy then so is hom-cntH′ for every induced subgraph H ′ of H. It is easy to see that the
combination of Theorem 3 and Lemmas 1.5 and 1.6 implies Theorem 1.

Lemma 1.6. Let H be a graph. If hom-cntH is easy, then hom-cntH′ is easy for every induced subgraph
H ′ of H.

The proof of Lemma 1.6 uses an innovative application of a powerful technique developed recently in
several works on homomorphism-counting, see [16, 13]. At the heart of this technique is the observation that
for (non-isomorphic) graphs H1, . . . ,Hk and non-zero constants c1, . . . , ck, the problem of computing the
linear combination c1 hom(H1, ·)+· · ·+ck hom(Hk, ·) is as hard as computing hom(Hi, ·) for every 1 ≤ i ≤ k.
The proof of this fact (appearing in [16]) uses tensor products of graphs and a result of Erdős, Lovász and
Spencer [21] (stated here as Lemma A.2) regarding linear independence of homomorphism counts. For
completeness, we present this proof (adapted to the setting of input graphs of bounded degeneracy and
stated here as Lemma 5.2) in the appendix. The use of linear combinations of homomorphism-counts plays
a crucial role in many of the reductions presented in this paper.

Our proof of Lemma 1.6 proceeds by showing that for every graph G, one can (efficiently) construct a
graph G′ such that hom(H,G′) equals a linear combination of the homomorphism counts of all induced

4Recall that a graph is chordal if it is induced Ck-free for every k ≥ 4.
5Indeed, as we note after Lemma 1.7, if inj-cntH is easy then so is hom-cntH (for every graph H).
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subgraphs of H in G. Unlike Lemmas 1.7 and 1.8, which are similar (both in their statements and their
proofs) to results obtained in [16], Lemma 1.6 is (to the best of our knowledge) a new application of the
homomorphism-linear-combination technique.

In the next two sections we take advantage of known relations between the various subgraph counts
hom, inj, ind in order to derive analogues of Corollary 2 for the problems inj-cnt and ind-cnt. A similar
approach was taken in [16].

1.3 From homomorphisms to copies

In this section obtain a characterization of graphs H for which inj-cntH is easy, thus resolving Problem
1.2. To state this characterization, we first need to introduce the notion of a quotient graph. For a graph
H and a partition P = {U1, . . . , Uk} of V (H), the quotient graph H/P is the graph on P in which, for
every 1 ≤ i, j ≤ k, there is an edge6 between Ui and Uj if and only if there are ui ∈ Ui, uj ∈ Uj such that
{ui, uj} ∈ E(H). The following is our main result for inj-cntH .

Theorem 4. Let H be the family of all graphs H such that every quotient graph of H is induced Ck-free
for all k ≥ 6. If H ∈ H then inj-cntH is easy. Conversely, assuming Conjecture 1.1, if H /∈ H then
inj-cntH is hard.

To illustrate an application of Theorem 4, let us observe that every split graph belongs to the graph-
family H. Recall that a graph is split if its vertex-set can be partitioned into two parts: one spanning a
clique and the other an independent set. It is easy to see that every quotient graph of a split graph is itself
split, and that Ck is not split for any k ≥ 6 (in fact, this is also true for k = 4, 5). Thus, Theorem 4 implies
that inj-cntH is easy to every split graph H. At the end of Section 6, we discuss in further detail the
graph-family H appearing in Theorem 4. For now, let us note that this graph-family is hereditary (i.e.,
closed under taking induced subgraphs), and that among the forbidden induced subgraphs for H are the
6-edge path and 6-edge matching.

The reason for the appearance of quotient graphs in Theorem 4 is that they can be used to relate
homomorphism counts to injective homomorphism counts [30, Section 5.2.3]. Indeed, it is well-known and
easy to see (for a proof, see Fact 3.2), that

hom(H,G) =
∑
P

inj(H/P,G), (1)

where P runs over all partitions of V (H). Equation (1) can be thought of as a relation over the poset
of all partitions of V (H). As is well-known [30, Section 5.2.3], one can invert this relation using Möbius
inversion, thus obtaining the following:

inj(H,G) =
∑
P

µpart(P ) · hom(H/P,G). (2)

Here, µpart is the Möbius function of the partition poset. For more details, see Section 3.

Equation (2) expresses inj(H,G) as a linear combination of hom(H/P,G) (where P runs over all parti-
tions of V (H)). As mentioned above, this means that computing inj(H,G) is exactly as hard as computing
hom(H/P,G) for all P . Thus we have the following:

6Note that if some Ui is not an independent set in H, then the vertex Ui has a loop in H/P . Such partitions P can be
safely ignored in all of our arguments, since our input graphs G are always assumed to be simple, and hence hom(H/P,G) = 0
if H/P has a loop.
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Lemma 1.7. Let H be a graph. Then inj-cntH is easy if and only if hom-cntH/P is easy for every
partition P of V (H).

A similar result has appeared in [16]. It is easy to see that Lemma 1.7 and Theorem 1 together imply
Theorem 4. A corollary of Lemma 1.7 is that inj-cntH is at least as hard as hom-cntH .

1.4 From copies to induced copies

In this subsection we apply the results of the previous two subsections in order to obtain a characterization
of the graphs H for which ind-cntH is easy. Here and throughout the paper, a supergraph of H is any
graph on V (H) of which H is a subgraph. The following is our main result for ind-cntH .

Theorem 5. Let H∗ be the family of all graphs H such that H does not contain as an induced subgraph
any (not necessarily induced) spanning subgraph of C6. If H ∈ H∗ then ind-cntH is easy. Conversely,
assuming Conjecture 1.1, if H /∈ H∗ then H is hard.

We note that the graph-family H∗ is quite rich. For example, it contains all complements of triangle-free
graphs (i.e. graphs having no independent set of size 3). On the negative side, graphs H ∈ H∗ must be
free (among other things) of independent sets of size 6, induced paths of length 5 and induced matchings
of size 3.

Theorem 5 is derived from a result analogous to Lemma 1.7, this time relating the problems ind-cnt
and inj-cnt. Again, this relation has been previously used in [16]. It is well-known and easy to see that
the following holds for every pair of graphs G,H.

inj(H,G) =
∑

E⊆(V (H)
2 )\E(H)

ind(H ∪ E,G). (3)

Here, H ∪ E is the graph obtained from H by adding to it all edges in E. Hence, H ∪ E runs over all
supergraphs of H. The equation (3) can be thought of as a relation over the boolean poset of all subsets
of
(
V (H)

2

)
\ E(H). Just like (1), it is well-known that this relation can be inverted using Möbius inversion

(which in this case boils down to the inclusion-exclusion principle, see [30, Section 5.2.3]). The resulting
inverted relation is:

ind(H,G) =
∑

E⊆(V (H)
2 )\E(H)

(−1)|E| · inj(H ∪ E,G). (4)

Equation (4) shows that computing inj(H ′, G) for every supergraph H ′ of H is sufficient for computing
ind(H,G). The following lemma states that it is also necessary. It also gives a (seemingly weaker but in
fact equivalent) necessary and sufficient condition in terms of computing hom(H ′, G) for every supergraph
H ′ of H.

Lemma 1.8. For every graph H, the following are equivalent.

1. ind-cntH is easy.

2. inj-cntH′ is easy for every supergraph H ′ of H.

3. hom-cntH′ is easy for every supergraph H ′ of H.

Given the analogy between (2) and 4, one could hope for a reduction between ind-cnt and inj-cnt that
does not go through hom-cnt. We are not aware of such a reduction, however. Instead, we again exploit
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the homomorphism-linear-combination framework in order to reduce hom-cntH′ (for all supergraphs H ′

of H) to ind-cntH . We then complete the picture by proving that solving hom-cntH′ for all supergraphs
H ′ of H allows one to solve inj-cntH′ for all such H ′, which in turn allows one to solve ind-cntH using
(4). This step (i.e. proving the implication 3⇒ 2) requires Lemma 1.6.

A corollary of Lemma 1.8 is that ind-cntH is at least as hard as inj-cntH (which itself is at least as
hard as hom-cntH). At the end of Section 7, we give the simple derivation of Theorem 5 from Lemma
1.8 and Theorem 1.

We conclude by noting that the reductions used to prove Lemmas 1.6, 1.7 and 1.8 are more robust than
is stated in those lemmas. Namely, these reductions pertain not only to algorithms running in time O(n),
but to larger running times as well. See Lemmas 5.1, 6.1 and 7.1 for the general statements. Moreover,
all of our hardness results (including Theorem 1) actually give a lower bound of Ω(n1+γ) (and not just
a superlinear bound) on the expected time necessary to solve the respective problems. This is because
Ω(m1+γ) is the lower bound asserted by Conjecture 1.1. So we see that if γ = 1/3 (as is believed), then
our hardness results would actually give a lower bound of Ω(n4/3) on the expected running time (see the
remark following Conjecture 1.1).

1.5 Counting homomorphisms in linear time in general graphs

In this section we obtain a characterization of the graphs H such that hom(H, ·) can be computed in linear
time in general (i.e., not necessarily degenerate) input graphs. Dalmau and Jonsson [19] have shown that
the complexity of counting H-homomorphisms (in general graphs) is essentially controled by the tree-width
tw(H) of H: it had been previously shown (see [22, Proposition 7]) that hom(H, ·) can be computed in
time O(ntw(H)+1) in n-vertex graphs; and conversely, Dalmau and Jonsson [19] have shown that there is
a function f : N → N with f(t) → ∞ (as t → ∞), such that hom(H, ·) cannot be computed in time
O(nf(tw(H))) in n-vertex graphs (under the assumption that FPT does not equal #W[1]). Here we obtain
a sharper7 result for the special case of linear runtime; we show that hom(H, ·) can be computed in linear
time if and only if tw(H) = 1, namely H is a forest.

Theorem 6. Assuming Conjecture 1.1, hom(H,G) can be computed in time O(|V (G)| + |E(G)|) if and
only if H is a forest.

Paper organization The rest of the paper is organized as follows. Section 2 contains the proof of
Theorem 3. In Section 3 we survey some definitions and known results which will be used in subsequent
sections. Most of Section 3 is based on [30, Chapter 5]. Section 4 is devoted to proving Lemma 1.5. The
proofs of Lemmas 1.6, 1.7 and 1.8 appear in Sections 5, 6 and 7, respectively. Section 7 also contains the
proof of Theorem 5. Finally, in Section 8 we prove Theorem 6.

2 A Characterization of α-acyclic Graphs: Proof of Theorem 3

The key step in the proof of Theorem 3 is the following lemma. Recall that for a vertex u in a digraph,
R(u) denotes the set of all vertices reachable from u.

Lemma 2.1. Let ~H be an acyclic orientation of an undirected graph H. Let k ≥ 3, and assume that
there exist distinct vertices u0, . . . , uk−1, x0, . . . , xk−1 ∈ V ( ~H) such that for all 0 ≤ i ≤ k − 1, we have that

7Comparing Theorem 6 to the result of [19], we note that a special case of the latter also uses a reduction from the triangle-
counting problem; it shows that, assuming Conjecture 1.1, hom(H, ·) cannot be computed in time O(|V (G)|) whenever H
contains the 3× 3 grid as a minor. Evidently, this condition does not capture all non-forest graphs H (cf. Theorem 6).
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xi ∈ R(ui−1) ∩ R(ui) and xi /∈ R(uj) for all j 6= i, i− 1 (with indices taken modulo k). Then, H contains
an induced copy of a cycle C` for some ` ≥ 6.

Proof. We say that a 2k-tuple (v0, . . . , vk−1, y0, . . . , yk−1) of distinct vertices of ~H is good if for every
0 ≤ i ≤ k − 1, yi ∈ R(vi) ∩ R(vi−1) and yi /∈ R(vj) for all j 6= i, i − 1 (with indices taken modulo
k). In other words, (v0, . . . , vk−1, y0, . . . , yk−1) is good if and only if for every 0 ≤ i ≤ k − 1, there are
directed paths from vi to yi and yi+1, and there is no directed path from vi to yj for any j 6= i, i + 1.
By assumption, the tuple (u0, . . . , uk−1, x0, . . . , xk−1) is good, implying that the set of good 2k-tuples is
non-empty. Observe that for a good 2k-tuple (v0, . . . , vk−1, y0, . . . , yk−1) and 0 ≤ i ≤ k − 1, it holds
that R(vi) ∩ R(vi−1) ∩ {y0, . . . , yk−1} = {yi} (here we use the assumption that k ≥ 3). This implies that
R(vi) ∩ R(vi−1) ∩ {v0, . . . , vk−1} = ∅, because if vj ∈ R(vi) ∩ R(vi−1) (for some 0 ≤ j ≤ k − 1), then
yj , yj+1 ∈ R(vj) ⊆ R(vi) ∩ R(vi−1), which we just ruled out. Similarly, the definition of a good 2k-tuple
implies that if yi, yi+1 ∈ R(vj) (for some 0 ≤ i, j ≤ k − 1), then j = i (again, we are using here the
assumption that k ≥ 3). This implies that there are no 0 ≤ i, j ≤ k − 1 such that yi, yi−1 ∈ R(yj), since
otherwise we would have yi, yi−1 ∈ R(yj) ⊆ R(vj)∩R(vj−1), which is impossible since we cannot have both
j = i and j − 1 = i. We have thus established the following fact, which will be used several times.

Fact 2.2. Let (v0, . . . , vk−1, y0, . . . , yk−1) be a good tuple, let z ∈ {v0, . . . , vk−1, y0, . . . , yk−1} and let 0 ≤
i ≤ k − 1. If z ∈ R(vi) ∩R(vi−1) then z = yi, and if yi, yi+1 ∈ R(z) then z = vi.

For vertices a, b ∈ V (H) = V ( ~H), denote by
−−→
dist(a, b) the length of a shortest directed path from a to

b (in ~H). Now, fix a good 2k-tuple M = (v0, . . . , vk−1, y0, . . . , yk−1) which minimizes the sum

k−1∑
i=0

(−−→
dist(vi, yi) +

−−→
dist(vi−1, yi)

)
. (5)

Let us now fix specific shortest (directed) paths P (vi, yj) from vi to yj for 0 ≤ i ≤ k− 1 and j = i, i+ 1
(as always, indices are taken modulo k). We will denote by P{vi, yj} the underlying undirected path of
P (vi, yj). Let C be the (undirected) closed walk obtained by concatenating the paths

P{y0, v0}, P{v0, y1}, P{y1, v1}, . . . , P{vk−2, yk−1}, P{yk−1, vk−1}, P{vk−1, y0}. (6)

We now show that C is a simple cycle. We will then show that C is induced. While the proof idea is rather
simple, the details are somewhat lengthy.

Two paths appearing consecutively (in a cyclic manner) in (6) will be called consecutive. In other words,
the pairs of consecutive paths are (P{yi, vi}, P{vi, yi+1}) and (P{vi, yi+1}, P{yi+1, vi+1}) (for 0 ≤ i ≤ k−1).
If, by contradiction, C is not a simple cycle, then either there is a pair of non-consecutive paths which
intersect, or a pair of consecutive paths which intersect outside of the endpoint they share. We now rule
out each of these possibilities.

Case 1: We consider the intersection of P (vi, yi) and P (vi, yi+1) for some 0 ≤ i ≤ k − 1. Assume that
there exists a vertex z 6= vi such that z ∈ P (vi, yi)∩P (vi, yi+1). Then yi, yi+1 ∈ R(z). By Fact 2.2, we have
z /∈ {v0, . . . , vk−1, y0, . . . , yk−1}. Now, replacing vi with z in the tuple M , we get a new 2k-tuple of distinct
vertices which is also good. Indeed, there are paths from z to yi, yi+1, and there is no path from z to yj
for all j 6= i, i+ 1, as otherwise we would have a path from vi to yj (via z), contradicting the assumption.
Since z 6= vi, the two new paths we get by replacing vi with z are strictly shorter than the two original
ones, which contradicts the minimality of (5).

Case 2: We consider the intersection of P (vi−1, yi) and P (vi, yi) for some 0 ≤ i ≤ k − 1. Assume that
there exists a vertex z 6= yi such that z ∈ P (vi−1, yi) ∩ P (vi, yi). Then z ∈ R(vi) ∩ R(vi−1). By Fact 2.2,
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z /∈ {v0, . . . , vk−1, y0, . . . , yk−1}. Now, replacing yi with z in the tuple M , we get a new 2k-tuple of distinct
vertices which is also good. Indeed, there are paths from vi−1, vi to z, and there is no path from vj to z for
any j 6= i, i−1, as otherwise we would have a path from vj to yi (via z), which contradicts the assumption.
Since z 6= yi, the two new paths we get by replacing yi with z are strictly shorter than the two original
ones, which contradicts the minimality of (5).

Case 3: We consider the intersection of P (vi, ys) and P (vj , yt) for some i 6= j and s 6= t (where s ∈ {i, i+1}
and t ∈ {j, j + 1}). Assume that there exists a vertex z such that z ∈ P (vi, ys)∩ P (vj , yt). In this case, as
there are paths from vi and vj to ys, yt (via z), we must have {s, t} = {i, i+ 1} = {j, j + 1}, which implies
that i = j (as k ≥ 3), in contradiction to the assumption that i 6= j.

From Cases 1-3 it follows that the closed walk C is indeed a simple cycle in H. We now prove that C is an
induced cycle. We first observe that for a path P (vi, yj) with j ∈ i, i+ 1 and two vertices z1, z2 ∈ P (vi, yj)

such that z2 comes after z1 along the path, we cannot have the edge (z2, z1) as ~H is acyclic. In addition,
we cannot have the edge (z1, z2), unless it is an edge of the path, as this would contradict the fact that
P (vi, yj) is a shortest path from vi to yj . Thus, the (undirected) path P{vi, yj} is induced. We conclude
that if C has a chord, then it must connect two distinct paths among the paths in (6). We now rule out
the existence of such a chord by analyzing several cases.

Case 1: Consider an edge between the two paths P (vi, yi) and P (vi, yi+1) for some 0 ≤ i ≤ k − 1.
We assume, without loss of generality, that there is an edge (z1, z2) ∈ E( ~H) such that z1 ∈ P (vi, yi),
z2 ∈ P (vi, yi+1), and z1, z2 6= vi. Then yi ∈ R(z1) and yi+1 ∈ R(z2) ⊆ R(z2). By Fact 2.2, z1 /∈
{v0, . . . , vk−1, y0, . . . , yk−1}. Now, replacing vi with z1 in the tuple M , we get a new 2k-tuple of distinct
vertices which is also good. Indeed, there are paths from z1 to yi, yi+1, and there is no path from z1 to
yj for all j 6= i, i + 1, as otherwise we would have a path from vi to yj (via z1), which is impossible.

Since z1, z2 6= vi, we have
−−→
dist(z1, yi) +

−−→
dist(z1, yi+1) <

−−→
dist(vi, yi) +

−−→
dist(vi, yi+1), which contradicts the

minimality of (5).

Case 2: Consider an edge between the two paths P (vi−1, yi) and P (vi, yi) for some 0 ≤ i ≤ k − 1. We
assume, without loss of generality, that there is an edge (z1, z2) ∈ E( ~H) such that z1 ∈ P (vi−1, yi),
z2 ∈ P (vi, yi), and z1, z2 6= yi. Then z2 ∈ R(vi) ∩ R(z1) ⊆ R(vi) ∩ R(vi−1). By Fact 2.2, z2 /∈
{v0, . . . , vk−1, y0, . . . , yk−1}. Now, replacing yi with z2 in the tuple M , we get a new 2k-tuple of dis-
tinct vertices which is also good. Indeed, there are paths from vi−1, vi to z2, and there is no path from vj
to z2 for all j 6= i, i − 1, as otherwise we would have a path from vj to yi (via z2), which is impossible.

Since z1, z2 6= yi, we have
−−→
dist(vi, z2) +

−−→
dist(vi−1, z2) <

−−→
dist(vi, yi) +

−−→
dist(vi−1, yi), which contradicts the

minimality of (5).

Case 3: Consider an edge between the two paths P (vi, ys) and P (vj , yt) for some 0 ≤ i 6= j ≤ k − 1 and
s 6= t (where s ∈ {i, i+ 1} and t ∈ {j, j + 1}). We assume, without loss of generality, that there is an edge
(z1, z2) ∈ E( ~H) such that z1 ∈ P (vi, ys) and z2 ∈ P (vj , yt). In this case, as there is a path from vi to yt (via
z1, z2), we must have {s, t} = {i, i+ 1}. In addition, as t ∈ {j, j + 1}, we either have that s = i, t = i+ 1,
which implies t = j (as i 6= j); or that s = i+ 1, t = i, which implies t = j + 1 (as i 6= j).

We first consider the case when s = i, t = i + 1 and j = i + 1. In other words, we are considering
the situation where there is an edge (z1, z2) ∈ E( ~H) from z1 ∈ P (vi, yi) to z2 ∈ P (vi+1, yi+1). Note that
yi ∈ R(z1) and yi+1 ∈ R(z2) ⊆ R(z1). By Fact 3.2, either z1 = vi or z1 /∈ {v0, . . . , vk−1, y0, . . . , yk−1}.
Similarly, note that z2 ∈ R(z1) ∩ R(vi+1) ⊆ R(vi) ∩ R(vi+1), so by Fact 3.2 either z2 = yi+1 or z2 /∈
{v0, . . . , vk−1, y0, . . . , yk−1}. Furthermore, we cannot have both z1 = vi and z2 = yi+1, because then z1, z2
are both contained in the path P (vi, yi+1), and we have already ruled out the possibility of such a chord.

Now, replacing vi with z1 and yi+1 with z2 in the tuple M , we get a new 2k-tuple of distinct vertices
which is also good. Indeed, there are paths from z1 to yi, z2, and there is no path from z1 to yj for all
j 6= i, i + 1, as otherwise we would have a path from vi to yj (via z1), which contradicts the assumption.
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Similarly, there are paths from z1, vi+1 to z2, and there is no path from vj to z2 for all j 6= i, i+1, as otherwise
we would have a path from vj to yi+1 (via z2), which contradicts the assumption. Since either z1 6= vi or

z2 6= yi+1, we have
−−→
dist(z1, yi) +

−−→
dist(z1, z2) +

−−→
dist(vi+1, z2) <

−−→
dist(vi, yi) +

−−→
dist(vi, yi+1) +

−−→
dist(vi+1, yi+1),

which contradicts the minimality of (5).

We now consider the (symmetrical) case when s = i + 1, t = i and j = i − 1. In other words,
we are considering the situation where there is an edge (z1, z2) ∈ E( ~H) from z1 ∈ P (vi, yi+1) to z2 ∈
P (vi−1, yi). Note that yi+1 ∈ R(z1) and yi ∈ R(z2) ⊆ R(z1). By Fact 3.2, either z1 = vi or z1 /∈
{v0, . . . , vk−1, y0, . . . , yk−1}. Similarly, note that z2 ∈ R(z1) ∩ R(vi−1) ⊆ R(vi) ∩ R(vi−1), so by Fact 3.2
either z2 = yi or z2 /∈ {v0, . . . , vk−1, y0, . . . , yk−1}. Furthermore, we cannot have both z1 = vi and z2 = yi,
because then z1, z2 are both contained in the path P (vi, yi), and we have already ruled out the possibility
of such a chord.

Now, replacing vi with z1 and yi with z2 in the tuple M , we get a new 2k-tuple of distinct vertices which
is also good. Indeed, there are paths from z1 to z2, yi+1, and there is no path from z1 to yj for all j 6= i, i+1,
as otherwise we would have a path from vi to yj (via z1), which contradicts the assumption. Similarly,
there are paths from z1, vi−1 to z2, and there is no path from vj to z2 for all j 6= i, i − 1, as otherwise
we would have a path from vj to yi (via z2), which contradicts the assumption. Since either z1 6= vi or

z2 6= yi, we have
−−→
dist(z1, yi+1) +

−−→
dist(z1, z2) +

−−→
dist(vi−1, z2) <

−−→
dist(vi, yi+1) +

−−→
dist(vi, yi) +

−−→
dist(vi−1, yi),

which contradicts the minimality of (5).

Cases 1-3 imply that C is an induced cycle. The length of C is evidently at least 2k ≥ 6. This completes
the proof of the lemma. �

To prove Theorem 3, we combine Lemma 2.1 with the following theorem, which gives a structural
characterization of α-acyclic hypergraphs. The proof of this theorem can be found in [4, 5].

Theorem 7. A hypergraph F is α-acyclic if and only if for every k ≥ 3, there is no
S = {x0, x1, . . . , xk−1} ⊆ V (F ) such that one of the following conditions holds:

1. For every 0 ≤ i ≤ k− 1 there exists e ∈ E(F ) such that e∩ S = {xi, xi+1}, and there is no e ∈ E(F )
with |e ∩ S| ≥ 2 such that e ∩ S 6= {xi, xi+1} for all 0 ≤ i ≤ k − 1. (All indices are taken modulo k.)

2. For every 0 ≤ i ≤ k − 1 there exists e ∈ E(F ) such that e ∩ S = S \ {xi}, and there is no e ∈ E(F )
such that S ⊆ e.

We are now ready to prove Theorem 3.

Proof of Theorem 3. We first prove the “only if” part of the theorem, or, more precisely, the contra-
positive of this statement. Suppose that H contains an induced copy of C` for some ` ≥ 6, and let
C = (c0, c1, . . . , c`−1) be such a cycle. We now orient the edges of H as follows. The edges of C are
oriented alternatingly along the cycle. More precisely, for an even 0 ≤ i ≤ ` − 1, we orient the edge
{ci, ci+1} ∈ E(H) from ci to ci+1, and for an odd 0 ≤ i ≤ ` − 1, we orient the edge {ci, ci+1} ∈ E(H)
from ci+1 to ci (with indices taken modulo `). Now, orient all edges between C and V (H) \ C from C
to V (H) \ C, and orient all edges in V (H) \ C arbitrarily while avoiding the creation of a directed cycle.
We denote the resulting orientation of H by ~H. One can easily verify that ~H is acyclic. Indeed, by our
construction, the induced subgraphs ~H[C] and ~H[V (H) \ C] do not contain directed cycles, and all the
edges between C and V (H) \ C go in the same direction. Next, we observe that for an even `, all vertices
of C with an even index are source vertices in ~H, while for an odd `, all vertices of C with an even index
apart from c0 are source vertices in ~H. Let S = {cj | j is odd}, observing that |S| ≥ b`/2c ≥ 3. We also

observe that for an even i we have that R(ci)∩S = {ci−1, ci+1}, and for every source vertex u of ~H, which
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is not in C we have that R(u) ∩ S = ∅. Therefore, applying Theorem 7 with respect to S, we get that ~H
is not α-acyclic. Thus, H has an acyclic orientation which is not α-acyclic, as required.

We now establish the “if” part of the theorem. Again, we will prove the contrapositive. Suppose that
there exists an acyclic orientation ~H of H which is not α-acyclic. Let F ~H be the hypergraph as in Definition
1.4. Then F ~H is not α-acyclic. Hence, by Theorem 7, there exists S = {x0, x1, . . . , xk−1} ⊆ V (F ~H) with
k ≥ 3 such that (at least) one of the conditions 1-2 in that theorem holds with respect to S. Our goal is
to show that this implies the existence of an induced `-cycle in H for some ` ≥ 6.

Assume first that S satisfies Condition 1 of Theorem 7. For each 0 ≤ i ≤ k− 1, let ei ∈ E(F ~H) be such

that ei ∩ S = {xi, xi+1}. By the definition of F ~H , for each 0 ≤ i ≤ k − 1 there is a source ui of ~H such
that ei = R(ui). So for every 0 ≤ i ≤ k − 1 we have that xi ∈ R(ui−1) ∩ R(ui) and xi /∈ R(uj) for all
j 6= i, i − 1. Moreover, u0, . . . , uk−1, x0, . . . , xk−1 are pairwise-distinct because x0, . . . , xk−1 are pairwise-
distinct, u0, . . . , uk−1 are pairwise-distinct, and u0, . . . , uk−1 are sources of ~H while x0, . . . , xk−1 are not.
Therefore, we can apply Lemma 2.1 and get that H contains an induced copy of C` for some ` ≥ 6, as
required.

Now assume that S satisfies Condition 2 of Theorem 7. For each 0 ≤ i ≤ k− 1, let ei ∈ E(F ~H) be such

that ei ∩ S = S \ {xi}. By the definition of F ~H , for each 0 ≤ i ≤ k − 1 there is a source ui of ~H such
that ei = R(ui). Considering only R(u0), R(u1), R(u2), and setting y0 := x1, y1 := x2, y2 := x0, we have
that y0 ∈ R(u2) ∩ R(u0) but y0 /∈ R(u1), y1 ∈ R(u0) ∩ R(u1) but y1 /∈ R(u2), and y2 ∈ R(u1) ∩ R(u2)
but y2 /∈ R(u0). Furthermore, just like in the previous case, u0, u1, u2, y0, y1, y2 are pairwise-distinct.
Therefore, we can again apply Lemma 2.1 and get that H contains an induced copy of C` for some ` ≥ 6,
as required. �

3 Preliminaries: Homomorphism Counts and Möbius Inversion

For a graph F , we will denote by v(F ) and e(F ) the number of vertices and edges of F , respectively.
Recall that for graphs G,H, a homomorphism from H to G is a function ϕ : V (H) → V (G) such that
{ϕ(u), ϕ(v)} ∈ E(G) for every {u, v} ∈ E(H).

It will sometimes be convenient to consider the empty graph K0. For every graph G, we define
hom(K0, G) = 1. If G is non-empty, then we also define hom(G,K0) = 0.

We now survey some basic properties of partitions and quotient graphs. For a graph H, we denote by
P(H) the set of all partitions of V (H). Recall that a partition P is a refinement of a partition Q if every
part of P is contained in some part of Q. Note that for every partition P ∈ P(H), there is a one-to-one
correspondence between partitions of V (H/P ), on the one hand, and partitions Q ∈ P(H) such that P
refines Q, on the other. Given P,Q ∈ P(H) such that P refines Q, we denote by Q/P the partition of
V (H/P ) corresponding to Q. Namely, Q/P = {{V ∈ P : V ⊆ U} : U ∈ Q}. We will need the following
simple observation.

Observation 3.1. Let H be a graph and let P,Q be partitions of V (H) such that P refines Q. Then
H/Q ∼= (H/P )/(Q/P ).

Proof. It is easy to check that the map U 7→ {V ∈ P : V ⊆ U} (for U ∈ Q) from Q to Q/P is an
isomorphism from H/Q to (H/P )/(Q/P ). �

The family of all partitions of some fixed ground set admits a natural order relation: that of refinement.
For partitions P,Q, we will write P ≤ Q to mean that P refines Q. The following simple fact generalizes
(1). For completeness, we include a proof.
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Fact 3.2. Let H,G be graphs, and let P be a partition of V (H). Then

hom(H/P,G) =
∑

Q∈P(H): Q≥P

inj(H/Q,G).

Proof. Let P0 denote the partition of V (H) into singletons; so H/P0
∼= H. Note that for P = P0,

the statement of Fact 3.2 reduces to (1). So let us start by proving (1). Let ϕ : V (H) → V (G) be a
homomorphism, and write Imϕ = {x1, . . . , xk}. For each 1 ≤ i ≤ k, put Ui := ϕ−1(xi). Then P :=
{U1, . . . , Uk} is a partition of V (H). Moreover, it is easy to check that the map Ui 7→ xi (1 ≤ i ≤
k) is an injective homomorphism from H/P to G. So we see that each homomorphism from H to G
corresponds to an injective homomorphism from some quotient graph of H to G. It is easy to verify that
this correspondence is one-to-one. This establishes (1). Now, the general statement of Fact 3.2 follows
from the combination of (1) and Observation 3.1:

hom(H/P,G) =
∑

Q′∈P(H/P )

inj((H/P )/Q′, G)

=
∑

Q∈P(H): Q≥P

inj((H/P )/(Q/P ), G)

=
∑

Q∈P(H): Q≥P

inj(H/Q,G).

�

We will need the general Möbius Inversion Theorem for posets (see [43]), which we state as follows.

Theorem 8 (Möbius Inversion Theorem). Let (P,≤) be a poset. Then there exists a (unique) function
µ : P2 → Z such that for every pair of functions f, g : P → Z, the following are equivalent:

1. g(P ) =
∑

Q≥P f(Q) for every P ∈ P.

2. f(P ) =
∑

Q≥P µ(P,Q)g(Q) for every P ∈ P.

Furthermore, the function µ satisfies µ(P, P ) = 1 for each P ∈ P, and∑
P≤R≤Q

µ(P,R) = 0 (7)

for each pair (P,Q) ∈ P2 with P < Q.

Note that the the Möbius function µ of a poset can be computed effectively by using the recursive
relation (7) or, equivalently, inverting the adjacency matrix of the poset. In any case, the posets we
consider will be of constant size, depending only on the graph H.

In what follows, we will need to know the Möbius function of the partition poset8. Let H be a graph
and let P0 be the partition of V (H) into singletons. For each P ∈ P(H), set µpart(P ) := µ(P0, P ).
Note that µpart is exactly the Möbius function appearing in (2). The value of µpart is determined by the
Frucht–Rota-–Schützenberger formula (see, e.g., [43, Chapter 25]), which states that

µpart(P ) = µ(P0, P ) = (−1)v(H)−|P | ·
∏
U∈P

(|U | − 1)!. (8)

8We will actually only need to know the sign of this Möbius function; the precise formula (8) is stated solely for completeness.
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4 Hardness Results for HOM-CNTCk
: Proof of Lemma 1.5

In this section we prove Lemma 1.5. Our reduction gives the following result:

Lemma 4.1. For every k ≥ 4 and for every graph F , one can construct in time O(|V (F )|+ |E(F )|) graphs
G,G′ such that |V (G)|, |E(G)|, |V (G′)|, |E(G′)| = O(|V (F )|+ |E(F )|), and such that knowing hom(Ck, G)
and hom(Ck, G

′) allows one to decide whether F is triangle-free in expected time
O(|V (F )|+ |E(F )|). Furthermore, if k ≥ 6 then G and G′ are 2-degenerate.

It is easy to see that Lemma 4.1 implies Lemma 1.5. For k = 4, 5, Lemma 4.1 cannot produce graphs
G,G′ which are O(1)-degenerate, as C4 and C5 are α-acyclic (and so their homomorphisms can be counted
in linear time). The reason for including the cases k = 4, 5 (in Lemma 4.1) is that these will be necessary
in the proof of Theorem 6. We note that the statement of Lemma 4.1 remains true if we replace “expected
time O(|V (F )|+ |E(F )|)” with “deterministic time Õ(|V (F )|+ |E(F )|)”.

The proof of Lemma 4.1 is split into several cases, according to the parity of the cycle length k and its
residue modulo 3. There are also some exceptional cases: those of k = 4, 5, 7, 8. As mentioned before, the
proof relies on the use of Möbius inversion as well as on a special case of the main result of [11], stated
below as Lemma 4.5. The cleanest variant of our argument appears in Section 4.1, which deals with the
case where k is divisible by 3. In this case one can avoid some technical complications which arise for
k ≡ 1, 2 (mod 3). The case of an odd k is somewhat easier to handle than the general one, and does not
require the use of Möbius inversion or Lemma 4.5. This case is resolved in Sections 4.2 (the case k ≥ 9),
4.3 (the case k = 7) and 4.4 (the case k = 5). Section 4.5 handles the remaining “irregular” case k = 4.
The cases k ≡ 4, 2 (mod 6) are handled in Sections 4.6 and 4.7, respectively. The case k ≡ 2 (mod 6), and
k = 8 in particular, appears to be the hardest one, requiring a more involved use of Möbius inversion.

We note that in some cases, namely in Sections 4.1, 4.2, 4.3, 4.5 and 4.6, our reduction to hom-cntCk
is not just from the triangle-detection problem, but actually from the (evidently harder) triangle-counting
problem. Furthermore, in the case where k ≥ 9 is odd, our reduction shows that even detecting Ck-
homomorphisms is at least as hard as detecting triangles. Finally, we note that in most cases (with the
exception of k = 4, 5, 8), our reduction will actually use a single graph G (rather than two graphs G and
G′); we decided to state Lemma 4.1 in the above form in order to capture all cases in one statement.

We will need the following three simple lemmas, whose proofs we postpone to the end of this section.

Lemma 4.2. For every k ≥ 3, there is no partition P of V (Ck) such that Ck/P ∼= Ck−1.

Lemma 4.3. Let k ≥ 4 be even and let ` > k/2 be odd. Then there is no partition P of V (Ck) such that
Ck/P contains exactly one odd cycle, and this cycle has length `.

Lemma 4.4. Let k ≥ 5. Denote by C ′k−2 the graph obtained from the cycle Ck−2 by adding a pendant
vertex (i.e., a vertex of degree one adjacent to one of the vertices of the cycle). Then:

1. There are exactly k partitions P of V (Ck) such that Ck/P ∼= C ′k−2, and exactly k partitions P of
V (Ck) such that Ck/P ∼= Ck−2.

2. For every partition P of V (Ck) satisfying Ck/P ∼= C ′k−2, there are exactly 2 partitions Q of V (Ck)
such that P refines Q and Ck/Q ∼= Ck−2. Conversely, for every partition Q of V (Ck) satisfying
Ck/Q ∼= Ck−2, there are exactly 2 partitions P of V (Ck) which refine Q and satisfy Ck/P ∼= C ′k−2

The following lemma follows immediately by combining the main result of [11] (which is stated here as the
“if” part of Corollary 2) and Theorem 3.

Lemma 4.5. For every forest H, one can compute hom(H,F ) in expected time O(|V (F )|+ |E(F )|).

We are now ready to begin the proof of Lemma 4.1.
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4.1 The case k ≡ 0 (mod 3)

Fix any graph F , and let G = G(F ) be the graph obtained from F by replacing each edge of F by a path
of length `. Note that G is 2-degenerate and that |V (G)| = |V (F )|+ (`−1) · |E(F )| = O(|V (F )|+ |E(F )|).
It is easy to see that girth(G) ≥ 3` and that inj(C3`, G) = ` · inj(C3, F ) (so in particular, girth(G) = 3` if
and only if F contains a triangle). Hence, in order to decide whether or not F is triangle-free, it is enough
to know inj(C3`, G).

Denote by P0 the partition of V (C3`) in which every part is a singleton; so C3`/P0
∼= C3`. Let P be the

set of all partitions P of V (C3`) such that either P = P0 , or C3`/P is a (simple) forest9. We claim that
for every P ∈ P, it holds that

hom(C3`/P,G) =
∑

Q∈P: Q≥P
inj(C3`/Q,G). (9)

Fix any P ∈ P. By Fact 3.2, we have

hom(C3`/P,G) =
∑

Q∈P(C3`): Q≥P

inj(C3`/Q,G),

where P(C3`) denotes the set of all partitions of V (C3`). Thus, in order to prove (9) it suffices to show
that if Q ∈ P(C3`) \ P then inj(C3`/Q,G) = 0. So let Q ∈ P(C3`) \ P. The definition of P implies that
C3`/Q is neither C3` nor a forest. Hence, C3`/Q must contain a cycle of length shorter than 3` (this cycle
could be a loop). However, we have girth(G) ≥ 3`, implying that there is no injective homomorphism from
C3`/Q to G. We have thus established (9).

We now invert (9) using Theorem 8. Define f, g : P → Z by g(P ) = hom(C3`/P,G), f(P ) =
inj(C3`/P,G). Then (9) states that Item 1 in Theorem 8 holds (for these f and g). It follows that
Item 2 in Theorem 8 holds as well, namely that

inj(C3`/P,G) =
∑

Q∈P: Q≥P
µ(P,Q) · hom(C3`/Q,G) (10)

for all P ∈ P. For P = P0 (which is the minimum element of P), (10) becomes:

inj(C3`, G) =
∑
Q∈P

µ(P0, Q) · hom(C3`/Q,G). (11)

By the definition of P, the graph C3`/Q is a forest for each Q ∈ P \{P0}. Therefore, for each Q ∈ P \{P0},
one can compute hom(C3`/Q,G) in expected time O(|V (G)| + |E(G)|) = O(|V (F )| + |E(F )|) by Lemma
4.5. Hence, knowing hom(C3`, G) = hom(C3`/P0, G) would allow one to compute inj(C3`, G) in expected
time O(|V (F )|+ |E(F )|), using (11). This in turn allows one one to decide whether F contains a triangle,
as inj(C3`, G) = ` · inj(C3, F ).

4.2 Odd k ≥ 9

Let k ≥ 9 be an odd integer. Having already dealt with the case k ≡ 0 (mod 3) in Section 4.1, we assume,
for convenience of presentation, that k is not divisible by 3. We note, however, that a similar reduction
works in the case k ≡ 0 (mod 3) as well. Write k = 3` + r, where r ∈ {1, 2}, and set p := ` + r − 2,
q := ` + r. Fix any graph F , and let G = G(F ) be the graph obtained from F by replacing each

9Actually, since C3` is connected, so are all of its quotient graphs, so one could replace “forest” by “tree”.
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edge {x, y} of F by a pair of internally-disjoint paths P px,y, P
q
x,y, both having x, y as their endpoints,

where P px,y is of length p and P qx,y is of length q. It is easy to see that G is 2-degenerate and that
|V (G)| = |V (F )|+ (p+ q − 2) · |E(F )| = O(|V (F )|+ |E(F )|). We will need the following claim.

Claim 4.6. For every odd cycle C in G, there are x1, . . . , xt ∈ V (F ) such that x1, . . . , xt, x1 is an odd cycle
in F , and such that C is the concatenation of the paths (P rixi,xi+1

: 1 ≤ i ≤ t), where r1, . . . , rt ∈ {p, q}, and
indices are taken modulo t.

Proof. Let x1, . . . , xt be the vertices of C which belong to V (F ), in the order they appear when traversing
the cycle C. It is easy to see that t ≥ 2. Note also that for each 1 ≤ i ≤ t, the section of C between xi
and xi+1 is either P pxi,xi+1 or P qxi,xi+1 . This implies that {xi, xi+1} ∈ E(F ) for every 1 ≤ i ≤ t (with indices
taken modulo t).

We see that C is the concatenation of paths P rixi,xi+1
(1 ≤ i ≤ t), where ri ∈ {p, q}. It only remains to

show that t is odd. This in particular will imply that t ≥ 3, meaning that x1, . . . , xt, x1 is a cycle in F . If,
by contradiction, t is even, then, since p ≡ q (mod 2), we would get

|C| =
t∑
i=1

e(P rixi,xi+1
) ≡ t · p ≡ 0 (mod 2),

in contradiction to the fact that C is odd. Hence, t must be odd. This proves the claim. �

We now show that there is a homomorphism from Ck to G if and only if F contains a triangle. This
will establish the validity of our reduction. In one direction, it is easy to check that if F contains a triangle
then G contains a cycle of length k (so, in particular, there is a homomorphism from Ck to G). Indeed,
suppose that x, y, z ∈ V (F ) span a triangle in F . If k ≡ 1 (mod 3) then a cycle of length k is formed by
concatinating the paths P px,y, P

q
y,z, P

q
z,x, as in this case p + 2q = ` − 1 + 2(` + 1) = 3` + 1 = k. And if

k ≡ 2 (mod 3) then a cycle of length k is formed by concatinating the paths P px,y, P
p
y,z, P

q
z,x, as in this case

2p+ q = 2`+ `+ 2 = 3`+ 2 = k.

Suppose now, in the other direction, that F is triangle-free. Then, by Claim 4.6, the shortest odd cycle
in G has length at least 5p = 5(`+ r− 2) = 5(3`+ r)− 10`− 10 = 5k− 10`− 10 = 5k− 10 · bk/3c − 10. It
is easy to verify that for each odd k ≥ 9 not divisible by 3, it holds that 5k − 10 · bk/3c − 10 > k. Hence,
all odd cycles in G have length larger than k. Since the homomorphic image of an odd cycle must itself
contain an odd cycle, there can be no homomorphism from Ck to G, as required. This completes the proof.

4.3 The case k = 7

Here we use the following reduction: given a graph F , we replace each edge {x, y} of F by two internally-
disjoint paths, one of length 2 and the other of length 3. The resulting graph is denoted by G = G(F ).
It is easy to see that G′ is 2-degenerate, that |V (G)| = |V (F )| + 3|E(F )| = O(|V (F )| + |E(F )|), that
girth(G) = 5, that inj(C7, G) = 7 · inj(C3, F ), and that every subgraph of G on at most 7 vertices contains
at most one cycle. It follows that if P is a partition of V (C7) such that inj(C7/P,G) > 0, then C7/P
must be isomorphic to one of the graphs C7, C

′
5, C5, where C ′5 is the graph obtained from C5 by adding

a pendant vertex. To see this, note first that C7/P must contain an odd cycle for every partition P of
V (C7). On the other hand, by the properties of G′ stated above, if inj(C7/P,G) > 0 then this odd cycle
must be the unique cycle in C7/P and have length either 5 or 7. It is easy to see that C7, C

′
5, C5 are the

only quotient graphs of C7 satisfying these conditions.

By Item 1 of Lemma 4.4, there are 7 partitions P of V (C7) for which C7/P ∼= C ′5, and 7 such partitions
for which C7/P ∼= C5. Hence, (1) gives

hom(C7, G) = inj(C7, G) + 7 · inj(C ′5, G) + 7 · inj(C5, G). (12)
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Observe that inj(C5, G) = 10 · e(F ) and that

inj(C ′5, G) =
∑

x∈V (F )

2 · 2 · dF (x) · (dF (x)− 1),

which means that both inj(C5, G) and inj(C ′5, G) can be computed in time O(|V (F )| + |E(F )|), as they
only depend on the degree sequence of F . So we see that knowing hom(C7, G) would allow one to compute
inj(C7, G) in time O(|V (F )|+ |E(F )|) by using (12). But as inj(C7, G) = 7 · inj(C3, F ), knowing inj(C7, G)
would allow one to decide whether or not F is triangle-free.

4.4 The case k = 5

Given a graph F , let G′ = G′(F ) be the graph obtained by adding for each edge {x, y} ∈ E(G), a path
of length two between x and y, where the middle vertex of this path is new. (Note that, unlike in a
subdivision, the edges of F are kept.) Then |V (G′)| = |V (F )| + |E(F )| and |E(G′)| = 3|e(G)|. Let C ′3
denote the graph obtained by adding a pendant vertex to the triangle C3. It is easy to see that the
only simple quotient graphs of C5 are C5, C

′
3, C3. Therefore, by using (1) and Item 1 of Lemma 4.4, we

conclude that hom(C5, F0) = inj(C5, F0) + 5 · inj(C ′3, F0) + 5 · inj(C3, F0) holds for every graph F0. It is
also straightforward to check that inj(C3, G

′) = inj(C3, G), inj(C5, G
′) = inj(C5, G) + 3 · inj(C3, G) and

inj(C ′3, G
′) = 2 · inj(C ′3, G) + 2 · inj(C3, G). It follows that

hom(C5, F ) = inj(C5, F ) + 5 · inj(C ′3, F ) + 5 · inj(C3, F )

and

hom(C5, G
′) = inj(C5, G

′) + 5 · inj(C ′3, G
′) + 5 · inj(C3, G

′) = inj(C5, F ) + 10 · inj(C ′3, F ) + 18 · inj(C3, F ).

Subtracting, we obtain hom(C5, G
′) − hom(C5, F ) = 5 · inj(C ′3, F ) + 13 · inj(C3, F ). Now, note that 5 ·

inj(C ′3, F )+13·inj(C3, F ) > 0 if and only if F contains a triangle. Thus, knowing the quantity hom(C5, G
′)−

hom(C5, F ) would enable one to decide whether F is triangle-free. So we see that the assertion of Lemma
4.1 holds with G := F and G′ as defined above.

4.5 The case k = 4

We start by observing that given a graph F , knowing hom(C4, F ) allows us to find inj(C4, F ) in time
O(|V (F )|+ |E(F )|). Indeed, the only simple quotient graphs of C4 are C4 itself, K2 and K1,2 (where K2

is an edge and K1,2 is a star with two leaves). Now, both hom(K2, F ) = 2|E(F )| and hom(K1,2, F ) =∑
v∈V (F ) d(v)2 depend only on the degree-sequence of F , and hence can be computed in time

O(|V (F )| + |E(F )|). Therefore, by (1), knowing hom(C4, ·) allows one to find inj(C4, ·) in time
O(|V (F )|+ |E(F )|), as claimed.

Next, we use the same construction as in the case k = 5. Namely, given a graph F , we let G′ be the
graph obtained by adding for each edge {x, y} ∈ E(F ), a path of length two between x and y, where the
middle vertex of this path is new. Then |V (G′)| = |V (F )|+ |E(F )| and |E(G′)| = 3|E(F )|. Furthermore, it
is not hard to check that inj(C4, G

′) = inj(C4, F )+4 · inj(C3, F ). Hence, knowing inj(C4, F ) and inj(C4, G
′)

would allow one to solve for inj(C3, F ) and thus decide if F is triangle-free. So we see that the assertion of
Lemma 4.1 holds with G := F and G′ as defined above.
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4.6 The case k ≡ 4 (mod 6)

Here we consider the case that k ≡ 4 (mod 6) and k ≥ 10. Set ` := bk/3c; so k = 3` + 1. We use the
following reduction: for a graph F , let G = G(F ) be the graph obtained from F by replacing each edge
{x, y} of F by a pair of internally-disjoint paths, both having x, y as their endpoints, one of length `,
denoted P `x,y, and the other of length ` + 1, denoted P `+1

x,y . It is easy to see that G is 2-degenerate, that
|V (G)| = |V (F )| + (2` − 1) · |E(F )| = O(|V (F )| + |E(F )|), that inj(C3`+1, G) = (3` + 1) · inj(C3, F ), and
that every cycle in G either has length at least 3`, or has length exactly 2` + 1. Note also that every
subgraph of G on at most k = 3`+ 1 vertices contains at most one cycle.

Let P be the set of all partitions P of V (Ck) such that either Ck/P ∼= Ck (i.e., P , is the partition of
V (Ck) into singletons) or Ck/P is a (simple) forest. We claim that for every P ∈ P, it holds that

hom(Ck/P,G) =
∑

Q∈P: Q≥P
inj(Ck/Q,G). (13)

Fix any P ∈ P. By Fact 3.2, we have

hom(Ck/P,G) =
∑

Q∈P(Ck): Q≥P

inj(Ck/Q,G),

where P(Ck) denotes the set of all partitions of V (Ck). Thus, in order to prove (13), it suffices to show
that if Q ∈ P(Ck) \ P then inj(Ck/Q,G) = 0. So let Q ∈ P(Ck) \ P, and suppose by contradiction that
inj(Ck/Q,G) > 0. By the definition of P, Ck/Q contains a cycle of length less than k. This cycle must
have length either 2` + 1 or 3` = k − 1, since the length of any cycle in G is either 2` + 1 or at least 3`.
Moreover, Ck/Q must contain exactly one cycle, since every subgraph of G of order at most k contains
at most one cycle. By Lemma 4.2, Ck/Q cannot be isomorphic to Ck−1. By Lemma 4.3, Ck/Q cannot
contain a cycle of length 2`+ 1, since 2`+ 1 is odd and 2`+ 1 > (3`+ 1)/2 = k/2. We have thus arrived
at a contradiction. This proves (13).

Denote by P0 the partition of V (Ck) in which every part is a singleton; so Ck/P0
∼= Ck. By combining

(13) with Theorem 8, we obtain

inj(Ck, G) = inj(Ck/P0, G) =
∑
Q∈P

µ(P0, Q) · hom(Ck/Q,G). (14)

By the definition of P, the graph Ck/Q is a forest for eachQ ∈ P\{P0}. It follows that for eachQ ∈ P\{P0},
one can compute hom(Ck/Q,G) in expected time O(|V (G)| + |E(G)|) = O(|V (F )| + |E(F )|) by Lemma
4.5. Hence, knowing hom(Ck, G) = hom(Ck/P0, G) allows one to compute inj(Ck, G) in expected time
O(|V (F )| + |E(F )|) using (14). This in turn allows one to decide whether or not F is triangle-free, since
inj(Ck, G) = k · inj(C3, F ).

4.7 The case k ≡ 2 (mod 6)

Proof. Let k ≥ 8 be such that k ≡ 2 (mod 6). Set ` := bk/3c; so k = 3`+ 2. We use the same reduction
as in Section 4.1, but the analysis is somewhat more involved. For a graph F , let G = G(F ) be the graph
obtained from F by replacing each edge {x, y} of F by a path of length `. It is easy to see that G is
2-degenerate, that |V (G)| = |V (F )|+ (`− 1) · |E(F )| = O(|V (F )|+ |E(F )|), that girth(G) ≥ 3`, and that
if F is triangle-free then in fact girth(G) ≥ 4`. Note also that every subgraph of G on at most k = 3`+ 2
vertices contains at most one cycle.
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As in Lemma 4.4, we denote by C ′k−2 the graph obtained from Ck−2 by adding a pendant vertex.
Let P be the set of all partitions P of V (Ck) such that either Ck/P is isomorphic to one of the graphs
Ck, C

′
k−2, Ck−2 or Ck/P is a (simple) forest. We claim that for every P ∈ P, it holds that

hom(Ck/P,G) =
∑

Q∈P: Q≥P
inj(Ck/Q,G). (15)

Fix any P ∈ P. As in previous proofs, we first note that by Fact 3.2, for every P ∈ P we have

hom(Ck/P,G) =
∑

Q∈P(Ck): Q≥P

inj(Ck/Q,G),

where P(Ck) denotes the set of all partitions of V (Ck). So in order to prove (15), we only need to show that
inj(Ck/Q,G) = 0 for each Q ∈ P(Ck)\P. Let Q ∈ P(Ck)\P. By the definition of P, either Ck/Q contains
more than one cycle, or it contains a cycle of length (strictly) smaller than k − 2. To see this, recall first
that, according to Lemma 4.2, Ck/Q is not isomorphic to Ck−1. Hence, if Ck/Q contains exactly one cycle,
which is of length at least k− 2, then Ck/Q must be isomorphic to one of the graphs Ck, C

′
k−2, Ck−2. But

this is impossible as Q /∈ P. Now, recall that G contains neither a cycle of length smaller than k− 2 = 3`,
nor a subgraph on at most k vertices having more than one cycle. So we see that inj(Ck/Q,G) = 0 for
each Q ∈ P(Ck) \ P, as required.

We have thus proved (15). By inverting (15) using Theorem 8, we get that

inj(Ck/P,G) =
∑

Q∈P: Q≥P
µ(P,Q) · hom(Ck/Q,G) (16)

for each P ∈ P. Let P0 denote the partition of V (Ck) into singletons (so Ck/P0
∼= Ck), let P1 be the set

of all P ∈ P such that Ck/P ∼= C ′k−2, let P2 be the set of all P ∈ P such that Ck/P ∼= Ck−2, and put
P ′ = P \ ({P0} ∪ P1 ∪ P2). By the definition of P, the graph Ck/P is a forest for every P ∈ P ′. By Item
1 of Lemma 4.4, we have |P1| = |P2| = k. By Item 2 of Lemma 4.4, for each P ∈ P1 there are exactly
two Q ∈ P2 such that Q ≥ P , and for every Q ∈ P2 there are exactly two P ∈ P1 such that P ≤ Q. By
summing (16) over all P ∈ {P0} ∪ P1 ∪ P2 we obtain

inj(Ck, G) + k · inj(C ′k−2, G) + k · inj(Ck−2, G) =
∑

P∈{P0}∪P1∪P2

inj(Ck/P,G) =

∑
P∈{P0}∪P1∪P2

∑
Q∈P: Q≥P

µ(P,Q) · hom(Ck/Q,G) =

∑
Q∈P

∑
P∈{P0}∪P1∪P2:

P≤Q

µ(P,Q) · hom(Ck/Q,G) =

∑
Q∈P ′

cQ · hom(Ck/Q,G) +
∑

P,Q∈{P0}∪P1∪P2:
P≤Q

µ(P,Q) · hom(Ck/Q,G),

(17)

where (cQ : Q ∈ P ′) are (explicit) integers whose values will not be important for our argument. In the
last equality above, we split the sum over Q ∈ P into two parts: Q ∈ P ′ and Q ∈ P \P ′ = {P0} ∪P1 ∪P2.

Let S denote the last sum appearing in (17). We claim that S = hom(Ck, G). To this end, first note that
for Q = P0, the only P ∈ P satisfying P ≤ Q is P = P0 = Q. By Theorem 8, µ(P0, P0) = 1. Next, observe
that for each Q ∈ P1, there are exactly 2 partitions P ∈ P satisfying P ≤ Q, namely P0 and Q itself. Both
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of these partitions are in {P0} ∪ P1 ∪ P2. By (7), for every Q ∈ P1 it holds that µ(P0, Q) + µ(Q,Q) = 0.
Finally, observe that for every Q ∈ P2, there are exactly 4 partitions P ∈ P satisfying P ≤ Q; these are
P0, two partitions belonging to P1, which we denote by R1 and R2, and Q itself. All of these partitions
are in {P0} ∪ P1 ∪ P2. By (7), it holds that µ(P0, Q) + µ(R1, Q) + µ(R2, Q) + µ(Q,Q) = 0. This shows
that S = hom(Ck, G), as required. Now, plugging this equality into (17), we obtain:

inj(Ck, G) + k · inj(C ′k−2, G) + k · inj(Ck−2, G) =
∑
Q∈P ′

cQ · hom(Ck/Q,G) + hom(Ck, G). (18)

For each Q ∈ P ′, the homomorphism number hom(Ck/Q,G) can be computed in expected time
O(|V (G)| + |E(G)|) = O(|V (F )| + |E(F )|), since Ck/Q is a forest (see Lemma 4.5). Hence, one can
compute the sum on the right-hand side of (18) in expected time O(|V (F )| + |E(F )|). It follows that
knowing hom(Ck, G) allows one to compute h := inj(Ck, G) + k · inj(C ′k−2, G) + k · inj(Ck−2, G) in expected
time O(|V (F )| + |E(F )|). It is easy to see that inj(C ′k−2, G) + inj(Ck−2, G) > 0 if and only if F contains
a triangle, and that if k > 8 then inj(Ck, G) = 0, since the length of every cycle in G is a multiple of
` = bk/3c, while k = 3` + 2 is not a multiple of ` if k > 8. So we see that for k > 8, knowing whether
h > 0 allows one to decide whether F is triangle-free. This completes the proof in the case k > 8.

It remains to handle the case k = 8. The exception in this case is that inj(C8, G) is not necessarily 0,
as inj(C8, G) = 2 · inj(C4, F ). To overcome this difficulty, we use an additional construction, as follows.
Let G′ = G′(F ) be the graph obtained from F by replacing each edge {x, y} ∈ E(F ) with two internally-
disjoint paths: one of length 2 and the other of length 3. It is easy to see that G′ is 2-degenerate, that
|V (G′)| = |V (F )| + 3|E(F )| = O(|V (F )| + |E(F )|), that girth(G′) = 5, and that every subgraph of G′

on at most 8 vertices contains at most one cycle. By combining these last two facts with Lemma 4.3, we
conclude that every Q ∈ P(C8) \ P satisfies inj(C8/Q,G

′) = 0 (due to similarity to previous arguments,
we omit the details). From this it follows that (15) also holds for the graph G′, namely that

hom(C8/P,G
′) =

∑
Q∈P: Q≥P

inj(Ck/Q,G
′)

for every P ∈ P. By repeating the above steps used to derive (18), we obtain a similar equality for G′,
namely that

inj(C8, G
′) + 8 · inj(C ′6, G

′) + 8 · inj(C6, G
′) =

∑
Q∈P ′

cQ · hom(C8/Q,G
′) + hom(C8, G

′). (19)

Observe that

inj(C6, G) = inj(C6, G
′) = 2 · inj(C3, F ), inj(C8, G) = 2 · inj(C4, F ),

inj(C8, G
′) = 2 · inj(C4, F ) + 8 · inj(C3, F ).

(20)

We claim that additionally, one has

inj(C ′6, G
′) = 2 · inj(C ′6, G) + 2 · inj(C3, F ). (21)

To prove (21), it will be convenient to consider unlabeled copies; for graphs H1, H2, let us denote by
cop(H1, H2) the number of unlabeled copies of H1 in H2; so cop(H1, H2) = inj(H1, H2)/aut(H1), where
aut(H1) is the number of automorphisms of H1. It is easy to see that cop(C6, G) = cop(C6, G

′) =
cop(C3, F ). Now, fix any triangle {x, y, z} in F , and consider the copy of C6 corresponding to {x, y, z} in the
graphs G,G′. In G, this copy of C6 can be extended to a copy of C ′6 in exactly
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(dF (x)− 2) + (dF (y)− 2) + (dF (z)− 2) = dF (x) + dF (y) + dF (z)− 6 ways, for in order to add a pendant
vertex, one must select some w ∈ {x, y, z} and some neighbour v ∈ NF (w)\{x, y, z} of w which is outside of
the triangle {x, y, z}, and choose as the pendant vertex the middle vertex of the 2-edge path which replaces
the edge {v, w}. In G′, on the other hand, there are two types of copies of C ′6 which extend the given copy
of C6. One type is obtained by selecting, as before, vertices w ∈ {x, y, z} and v ∈ NF (w) \ {x, y, z}, and
then selecting the pendant vertex to be a vertex adjacent to w on one of the 2 internally-disjoint paths
between w and v which replace the edge {v, w}; there are 2 · (dF (x) + dF (y) + dF (z) − 6) copies of C ′6 of
this type. The second type is obtained by choosing as the pendant vertex one of the internal vertices of the
3-edge paths between x, y and z; there are exactly 6 copies of C ′6 of this type. Summing over all triangles
{x, y, z} of F , we see that

cop(C ′6, G
′) = 2 ·

∑
{x,y,z}

(dF (x) + dF (y) + dF (z)− 6) + 6 · cop(C3, F ) = 2 · cop(C ′6, G) + inj(C3, F ).

By multiplying the above equation by aut(C ′6) = 2, we get (21).

Finally, we plug (20) and (21) into (18) and (19) to obtain

2 · inj(C4, F ) + 8 · inj(C ′6, G) + 16 · inj(C3, F ) = inj(C8, G) + 8 · inj(C ′6, G) + 8 · inj(C6, G)

=
∑
Q∈P ′

cQ · hom(C8/Q,G) + hom(C8, G), (22)

and

2 · inj(C4, F ) + 16 · inj(C ′6, G) + 40 · inj(C3, F ) =

2 · inj(C4, F ) + 8 · inj(C3, F ) + 8 · (2 · inj(C ′6, G) + 2 · inj(C3, F )) + 16 · inj(C3, F ) =

inj(C8, G
′) + 8 · inj(C ′6, G

′) + 8 · inj(C6, G
′) =

∑
Q∈P ′

c′Q · hom(C8/Q,G
′) + hom(C8, G

′),
(23)

respectively. By subtracting (22) from (23), we obtain

8 · inj(C ′6, G) + 24 · inj(C3, F ) = S′ + hom(C8, G
′)− hom(C8, G),

where
S′ :=

∑
Q∈P ′

cQ · (hom(C8/Q,G
′)− hom(C8/Q,G)).

As before, S′ can be computed in expected time O(|V (F )| + |E(F )|) because C8/Q is a forest for each
Q ∈ P ′ (see Lemma 4.5). Thus, knowing hom(C8, G) and hom(C8, G

′) allows one to compute h :=
8 · inj(C ′6, G) + 24 · inj(C3, F ) in expected time O(|V (F )| + |E(F )|). But since h > 0 if and only if F
contains a triangle, knowing h allows one to decide whether or not F is triangle-free, as required. �

4.8 Proof of auxiliary lemmas

Proof of Lemma 4.2. Suppose by contradiction that there is a partition P = {U1, . . . , Uk−1} of V (Ck)
such that Ck/P is the cycle U1, . . . , Uk−1, U1. Clearly, one of the parts Ui has 2 elements, and all other
parts have 1. Suppose without loss of generality that |U1| = 2, and write Ui = {ui} for 2 ≤ i ≤ k−1. Then
u2, . . . , uk−1 is a path in Ck because U2, . . . , Uk−1 is a path in Ck/P . This implies that the two vertices in
U1 are adjacent along the cycle Ck, which in turn means that U1 has a loop in Ck/P . Hence, Ck/P is not
isomorphic to Ck−1 (since it contains a loop), a contradiction. �
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Proof of Lemma 4.3. Suppose, by contradiction, that there exists a partition P of Ck as in the statement
of the claim, and let U1, . . . , U` ∈ P be such that U1, . . . , U`, U1 is the unique cycle in Ck/P . Since ` > k/2,
there must be 1 ≤ i ≤ ` such that |Ui| = 1. Suppose, without loss of generality, that |U1| = 1, and write
U1 = {u}. Let v, w be the neighbours of u in the cycle Ck. Since U2, U` are both adjacent to U1 in Ck/P , it
must be the case that |U2 ∩ {v, w}| = 1 and |U` ∩ {v, w}| = 1. Since U1, . . . , U`, U1 is the unique odd cycle
in Ck/P , deleting U1 from Ck/P leaves a bipartite graph. This means that in the graph (Ck/P ) \ {U1},
all walks between U2 and U` have the same parity. Note that U2, U3, . . . , U` is a path of odd length ` − 2
between U2 and U`. On the other hand, since there is a path of length k−2 between v and w which avoids
u (in the cycle Ck), there must be a (not necessarily simple) walk of even length k − 2 between U2 and U`
which avoids U1. We have thus arrived at a contradiction. �

Proof of Lemma 4.4. Let x1, . . . , xk be the vertices of Ck (appearing in this order when traversing the
cycle). It is easy to see that both items in the lemma follow from the following assertion: for a partition P of
V (Ck), Ck/P ∼= C ′k−2 holds if and only if P is of the form
{{xi, xi+2}} ∪ {{xj} : j ∈ [k] \ {i, i + 2}} for some 1 ≤ i ≤ k, and Ck/P ∼= Ck−2 holds if and only if
P is of the form {{xi, xi+2}, {xi+1, xi+3}} ∪ {{xj} : j ∈ [k] \ {i, i+ 1, i+ 2, i+ 3}} for some 1 ≤ i ≤ k. (All
indices are taken modulo k.) Let us now prove this assertion.

Assume first that Ck/P ∼= C ′k−2. Then P consists of one part of size 2 and k − 2 parts of size 1 (since
|V (C ′k−2)| = k − 1). Let U = {x, y} ∈ P be the part of P of size 2. Then x, y are not adjacent in Ck,
because otherwise Ck/P would have a loop. Furthermore, x, y must have a common neighbour in Ck,
because otherwise U would have degree 4 in Ck/P , which is impossible as Ck/P ∼= C ′k−2. Thus, we must
have that {x, y} = {xi, xi+2} for some 1 ≤ i ≤ k, as required.

Suppose now that Ck/P ∼= Ck−2. Since |P | = k−2, the “type” of P must be either (3, 1, . . . , 1), meaning
that P has one part of size 3 and k − 3 parts of size 1, or (2, 2, 1, . . . , 1), meaning that P has two parts of
size 2 and k − 4 parts of size 1. The former case is impossible, since if P has type (3, 1, . . . , 1) then the
part U ∈ P of size 3 must either have a loop or degree at least 3 in Ck/P , contradicting the assumption
that Ck/P ∼= Ck−2. So suppose that P has type (2, 2, 1, . . . , 1), and let U = {x, y} and V = {z, w} be
the parts of P of size 2. Then {x, y}, {z, w} /∈ E(Ck), as otherwise Ck/P would have loops. Furthermore,
considering first the pair x, y, we see that x, y must have a common neighbour in Ck, because otherwise the
degree of U in Ck would be at least 3. If the common neighbour u of x, y was neither z nor w, then u would
have degree 1 in Ck/P , a contradiction. Thus, either z or w is a common neighbour of x, y. Symmetrically,
either x or y is a common neighbour of z, w. It follows that {U, V } = {{xi, xi+2}, {xi+1, xi+3}} for some
1 ≤ i ≤ k, as required. �

5 Solvability of HOM-CNTH is Hereditary: Proof of Lemma 1.6

In this section we prove Lemma 1.6. We will actually prove the following more general statement.

Lemma 5.1. For every graph H there is k = k(H) such that the following holds. For every graph G
there are graphs G1, . . . , Gk, computable in time O(|V (G)| + |E(G)|), such that |V (Gi)| = O(|V (G)|)
and |E(Gi)| = O(|E(G)|) for every i = 1, . . . , k, and such that knowing hom(H,G1), . . . ,hom(H,Gk)
allows one to find hom(H ′, G) for all induced subgraphs H ′ of H in time O(1). Furthermore, if G is
O(1)-degenerate, then so are G1, . . . , Gk.

It is easy to see that Lemma 5.1 implies Lemma 1.6.

We now state an important lemma concerned with computing linear combinations of homomorphism
counts. As mentioned in the introduction, many of the reductions presented in this paper — including the
proof of Lemma 5.1 — rely on this lemma.
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Lemma 5.2. Let H1, . . . ,Hk be pairwise non-isomorphic graphs and let c1, . . . , ck be non-zero constant.
For every graph G there are graphs G1, . . . , Gk, computable in time O(|V (G)|+|E(G)|), such that |V (Gi)| =
O(|V (G)|) and |E(Gi)| = O(|E(G)|) for every i = 1, . . . , k, and such that knowing bj := c1 ·hom(H1, Gj) +
· · ·+ ck · hom(Hk, Gj) for every j = 1, . . . , k allows one to find hom(H1, G), . . . ,hom(Hk, G) in time O(1).
Furthermore, if G is O(1)-degenerate, then so are G1, . . . , Gk.

Lemma 5.2 is implicit in [16]. For completeness, we give its proof in the appendix.

Proof of Lemma 1.6. Let H be a graph on h vertices. For a graph F , we denote by F +Kh the graph
obtained from F by adding a clique of size h and connecting it to V (F ) with a complete bipartite graph.
We start by showing that for every graph F , it holds that

hom(H,F +Kh) =
∑

U⊆V (H)

hom(H[U ], F ) · hom(H[V (H) \ U ],Kh). (24)

To see that (24) holds, let us assign to each function ϕ : V (H) → V (F + Kh) the set
U = U(ϕ) := ϕ−1(V (F )) ⊆ V (H). Our definition of the graph F + Kh guarantees that a function
ϕ : V (H)→ V (F +Kh) is a homomorphism if and only if ϕ|U(ϕ) is a homomorphism from H[U ] to F and
ϕ|V (H)\U(ϕ) is a homomorphism from H[V (H) \ U(ϕ)] to Kh. By summing over all possible values of U ,
we get (24). Note that U(ϕ) may be empty (in case Im(ϕ) ⊆ Kh); in this case hom(H[U ], F ) = 1 (as H[U ]
is the empty graph).

Let H1, H2, . . . ,Hk be an enumeration of all induced subgraphs of H (including the empty one), up to
isomorphism (that is, H1, . . . ,Hk are pairwise non-isomorphic). For each 1 ≤ i ≤ k, set

ci :=
∑

U⊆V (H):
H[U ]∼=Hi

hom(H[V (H) \ U ],Kh).

Note that c1, . . . , ck depend only on H (and not on the “host graph” G). With this notation, we can
rewrite (24) as follows:

hom(H,F +Kh) =
k∑
i=1

ci · hom(Hi, F ). (25)

Note that for each 1 ≤ i ≤ k we have ci > 0, since there is some U ⊆ V (H) for which H[U ] ∼= Hi (by
our choice of H1, . . . ,Hk), and for this U it clearly holds that hom(H[V (H) \ U ],Kh) > 0. In particular,
c1, . . . , ck are non-zero.

Now let G be a graph. Apply Lemma 5.2 (to the graph G), and let G′1, . . . , G
′
k be the graphs given

by that lemma. For each 1 ≤ i ≤ k, set Gi := G′i + Kh, noting that |V (Gi)| = |V (G′i)| + h =
O(|V (G)| + |E(G)|) and |E(Gi)| = |E(G′i)| + |V (G′i)| · h +

(
h
2

)
= O(|V (G)| + |E(G)|), where in both

cases the last equality is guaranteed by Lemma 5.2. Furthermore, if G is O(1)-degenerate then so is G′i for
every 1 ≤ i ≤ k (by Lemma 5.2), and hence so is Gi for every 1 ≤ i ≤ k (indeed, if a graph F is κ-degenerate
then F +Kh is (κ+ h)-degenerate). Crucially, observe that knowing hom(H,G1), . . . ,hom(H,Gk) allows
one to compute c1 ·hom(H1, G

′
j)+ · · ·+ck ·hom(Hk, G

′
j) for every 1 ≤ j ≤ k (by (25)), which in turn allows

one to find hom(H1, G), . . . ,hom(Hk, G) in time O(1) (by our choice of G′1, . . . , G
′
k via Lemma 5.2). This

completes the proof, as every induced subgraph of H is isomorphic to one of the graphs H1, . . . ,Hk. �

6 Counting Copies: Proof of Lemma 1.7

We start with the following more general lemma, from which Lemma 1.7 will easily follow.
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Lemma 6.1. For every graph H there is k = k(H) such that the following holds. For every graph G
there are graphs G1, . . . , Gk, computable in time O(|V (G)|+ |E(G)|), such that |V (Gi)| = O(|V (G)|) and
|E(Gi)| = O(|E(G)|) for every i = 1, . . . , k, and such that knowing inj(H,G1), . . . , inj(H,Gk) allows one to
find hom(H/P,G) for all partitions P of V (H) in time O(1). Furthermore, if G is O(1)-degenerate, then
so are G1, . . . , Gk.

Proof of Lemma 6.1. The lemma follows easily by combining (2) and Lemma 5.2. Let H1, . . . ,Hk be
an enumeration of all quotient graphs of H, up to isomorphism. That is, H1, . . . ,Hk are pairwise non-
isomorphic and {H1, . . . ,Hk} = {H/P : P ∈ P(H)}, where, as before, P(H) denotes the set of all partitions
of V (H).) Let G be a graph. By using (2) and “combining like terms”, we get that

inj(H,G) =
∑

P∈P(H)

µpart(P ) · hom(H/P,G) =

k∑
i=1

 ∑
P∈P(H):
H/P∼=Hi

µpart(P )

 · hom(Hi, G). (26)

From (8) we know that µpart(P ) 6= 0 for all P ∈ P(H), and that the sign of µpart(P ) depends only on
the number of parts in P . In particular, if P,Q ∈ P(H) are such that H/P ∼= H/Q, then µpart(P ) and
µpart(Q) have the same sign. Now, setting

ci :=
∑

P∈P(H):
H/P∼=Hi

µpart(P ),

we see that ci is non-zero, since the summands in the above sum cannot cancel each other. With this
notation, (26) becomes

inj(H,G) =
k∑
i=1

ci · hom(Hi, G). (27)

Now the lemma immediately follows from (27) and Lemma 5.2, as every quotient graph of H is isomorphic
to one of the graphs H1, . . . ,Hk. �

Proof of Lemma 1.7. The “if” part of the lemma follows from (2), and the “only-if” part of the lemma
follows from Lemma 6.1. �

What can be said of the graph-family H appearing in Theorem 4? It turns out that H is hereditary
and, furthermore, can be (explicitly) characterized by a finite collection of minimal forbidden induced
subgraphs. In fact, every such minimal forbidden induced subgraph has at most 14 vertices. Evidently, a
collection of forbidden induced subgraphs for H is the collection of all graphs F such that for some k ≥ 6,
the cycle Ck is (isomorphic to) a quotient graph of F . However, not all such graphs are minimal (with
respect to not being in H). Indeed, it is easy to see that for each k ≥ 5, Ck−2 is a quotient graph of Ck.
This implies that if Ck is a quotient graph of a graph H, then so is Ck−2. Thus, it is enough to forbid
graphs which have a quotient isomorphic to C6 or C7. Now, note that if a graph F has Ck as a quotient
and is minimal with this property (with respect to containment), then F has at most 2k vertices. Hence,
every minimal forbidden induced subgraph for H has at most 14 vertices.
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7 Counting Induced Copies: Proof of Theorem 5 and Lemma 1.8

Here we prove Lemma 1.8. We again start with a more general lemma.

Lemma 7.1. For every graph H there is k = k(H) such that the following holds. For every graph G
there are graphs G1, . . . , Gk, computable in time O(|V (G)|+ |E(G)|), such that |V (Gi)| = O(|V (G)|) and
|E(Gi)| = O(|E(G)|) for every i = 1, . . . , k, and such that the following holds:

1. Knowing ind(H,G1), . . . , ind(H,Gk) allows one to find hom(H ′, G) for all supergraphs H ′ of H in
time O(1).

2. Knowing hom(H ′, Gi) for every supergraph H ′ of H and every 1 ≤ i ≤ k, allows one to find inj(H ′, G)
for all supergraphs H ′ of H in time O(1).

Furthermore, if G is O(1)-degenerate, then so are G1, . . . , Gk.

Proof. We will show that there are G1, . . . , Gk which satisfy the assertion of each of the items 1-2 sepa-
rately. One can then take the union of these two families of graphs to obtain the desired graphs G1, . . . , Gk
for which both items hold.

Starting with Item 2, we begin by proving the following preliminary claim: for every supergraph H ′ of
H and every partition P of V (H), there is a supergraph H ′′ of H such that H ′/P is an induced subgraph of
H ′′. Indeed, fixing H ′ and P as above, we define H ′′ as follows: for each {U, V } ∈ E(H ′/P ) (so U, V ∈ P ),
add to H all edges between U and V ; the resulting graph is H ′′. It is easy to see that H ′/P is indeed an
induced subgraph of H ′′, as required.

Now let G be a graph. By combining the above claim with Lemma 5.1 (which we apply to all supergraphs
H ′ of H at once), we see that there are graphs G1, . . . , Gk with |V (Gi)| = O(|V (G)|) and |E(Gi)| =
O(|E(G)|) for every i = 1, . . . , k, such that knowing hom(H ′, Gi) for every supergraph H ′ of H and every
1 ≤ i ≤ k, allows one to find hom(H ′/P,G) for all supergraphs H ′ of H and all partitions P of V (H) in
time O(1). With this information at hand, one can use (1) to compute inj(H ′, G) for all supergraphs H ′

of H in time O(1), as required.

We now move on the establish Item 1. For convenience, we denote by E the set of all subsets of(
V (H)

2

)
\E(H), and by P the set of all partitions of V (H). We start by observing that for every graph F ,

ind(H,F ) =
∑
E∈E

(−1)|E| · inj(H ∪ E,F )

=
∑
E∈E

∑
P∈P

(−1)|E| · µpart(P ) · hom((H ∪ E)/P, F ),
(28)

where the first equality uses (4) and the second equality uses (2). For an (unlabeled) graph H ′, put

cH′ :=
∑

E∈E, P∈P:
(H∪E)/P∼=H′

(−1)|E| · µpart(P ). (29)

With this notation, (28) becomes

ind(H,F ) =
∑

H′: cH′ 6=0

cH′ · hom(H ′, F ).
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Let H1, . . . ,Hk be an enumeration of all graphs H ′ such that cH′ 6= 0, up to isomorphism. In other words,
H1, . . . ,Hk are pairwise non-isomorphic and {H1, . . . ,Hk} = {H ′ : cH′ 6= 0}. For each 1 ≤ i ≤ k, we put
ci := cHi . Finally, we can write

ind(H,F ) =
k∑
i=1

ci · hom(Hi, F ). (30)

Crucially, observe that every supergraph of H is isomorphic to one of the graphs H1, . . . ,Hk. To see this,
let H ′ be a (representative of the isomorphism class of a) supergraph of H. Clearly, if E ∈ E and P ∈ P are
such that (H ∪ E)/P ∼= H ′, then P is the partition of V (H) into singletons, and |E| = |E(H ′)| − |E(H)|.
Hence, all summands on the right-hand side of (29) have the same sign, implying that cH′ 6= 0. This in
turn implies that H ′ is isomorphic to one of the graphs H1, . . . ,Hk, as required. Now Item 1 of the lemma
immediately follows from (30) and Lemma 5.2. �

Proof of Lemma 1.8. The implication 2⇒ 1 follows from (4), the implication 3⇒ 2 follows from Item
2 of Lemma 7.1, and the implication 1⇒ 3 follows from Item 1 of Lemma 7.1. �

Proof of Theorem 5. The “conversely”-part of the theorem follows immediately from Lemma 1.8 and
Theorem 1. Let now H ∈ H∗. If every supergraph of H is induced Ck-free for all k ≥ 6, then the assertion
of the theorem again follows from Lemma 1.8 and Theorem 1. Suppose then, by contradiction, that some
supergraph H ′ of H contains an induced copy of Ck for some k ≥ 6. It is easy to see that by adding a chord
of this k-cycle, we obtain a supergraph H ′′ of H which contains an induced copy of C6. This means that
H contains an induced copy of some (not necessarily induced) spanning subgraph of C6, in contradiction
to the assumption that H ∈ H∗. �

8 Proof of Theorem 6

The “if” part of Theorem 6 follows from the following proposition.

Proposition 8.1. Let H be a forest. Then for every graph G, hom(H,G) can be computed in expected
time O(|V (G)|+ |E(G)|).

Proof. First, observe that if H is a disconnected graph with connected components H1, . . . ,Hk, then
hom(H,G) =

∏k
i=1 hom(Hi, G) for every graph G. Thus, to prove the proposition, it suffices to consider

the case that H is a tree.

Suppose then that H is a tree. To compute hom(H,G), we use dynamic programming to compute, for
each subtree H ′ of H, v ∈ V (H ′) and x ∈ V (G), the number N(H ′, v, x) of homomorphisms ϕ from H ′ to
G such that ϕ(v) = x. To compute N(H ′, v, x) for given H ′ and v (simultaneously for all x ∈ V (G)), we
consider two cases according to whether or not v is a leaf of H ′. Suppose first that v is a leaf of H ′, let u
be the only neighbour of v in H ′, and set H ′′ := H ′ − v. Now, for each x ∈ V (G), compute N(H ′, v, x) =∑

y:{x,y}∈E(G)N(H ′′, u, y) (where the sum is over all neighbours y of x). Suppose now that v is not a leaf,

let C1, . . . , Ck be the connected components of the forest H ′−v, and set H ′i := H ′[Ci∪{v}]. Now, for each

x ∈ V (G), compute N(H ′, v, x) =
∏k
i=1N(H ′i, v, x). Thus, in both cases, one can compute N(H ′, v, x) for

all x ∈ V (G) by relying on counts for smaller trees which have already been computed and stored. By using
perfect hashing [23], one can construct in expected linear time a hash table which allows writing and reading
entries in time O(1). So overall, this algorithm runs in (expected) time O(|V (G)|+|E(G)|), as required. �
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Proof of Theorem 6. The “if” part of the theorem follows from Proposition 8.1. The “only if” part
of the theorem follows from the combination of Lemmas 4.1 and 5.1 (as any non-forest graph evidently
contains an induced cycle). �
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A Proof of Lemma 5.2

We start by recalling the definition of the tensor product of graphs. The tensor product of graphs G1 and
G2, denoted G1 ×G2 has vertex set V (G1 ×G2) = V (G1)× V (G2) and edge-set

E(G1 ×G2) = {{(x1, x2), (y1, y2)} : {x1, y1} ∈ E(G1) and {x2, y2} ∈ E(G2)}.

A key property of the tensor product is that the parameter hom(H, ·) is multiplicative with respect to it
(for any graph H). That is, for every pair of graphs G1, G2, it holds that

hom(H,G1 ×G2) = hom(H,G1) · hom(H,G2). (31)

To see that (31) holds, simply observe that for functions ϕi : V (H) → V (Gi) (where 1 ≤ i ≤ 2), the
function v 7→ (ϕ1(v), ϕ2(v)) is a homomorphism from H to G1 ×G2 if and only if ϕi is a homomorphism
from H to Gi for each 1 ≤ i ≤ 2. In what follows, we will use the following (trivial) observation regarding
tensor products and degeneracy.

Observation A.1. Let F,G be graphs. If G is κ-degenerate, then F ×G is (v(F ) · κ)-degenerate.

Proof. It is easy to see that for each x ∈ V (F ) and y ∈ V (G), the degree of (x, y) in F×G is dF×G((x, y)) =
dF (x) · dG(y) < v(F ) · dG(y). It follows that every subgraph of F ×G contains a vertex of degree at most
v(F ) · κ (since G is κ-degenerate). �

We now state a lemma of Erdős, Lovász and Spencer [21] (see also Proposition 5.44(b) in [30]), which
will play a crucial role in the proof of Lemma 5.2.

Lemma A.2 ([30]). Let H1, . . . ,Hk be pairwise non-isomorphic graphs, and let c1, . . . , ck 6= 0 be non-
zero constants. Then there exist graphs F1, . . . , Fk such that the k × k matrix Mi,j = cj · hom(Hj , Fi),
1 ≤ i, j ≤ k, is invertible.

Finally, we are ready to prove Lemma 5.2.

Proof of Lemma 5.2. Let G be a graph. By Lemma A.2, there are graphs F1, . . . , Fk such that the k×k
matrix Mi,j := cj · hom(Hj , Fi) (1 ≤ i, j ≤ k) is invertible. For each 1 ≤ i ≤ k, we set Gi := Fi × G and
bi := c1 · hom(H1, Gi) + · · ·+ ck · hom(Hk, Gi), observing that

bi =

k∑
j=1

cj · hom(Hj , Fi ×G) =

k∑
j=1

cj · hom(Hj , Fi) · hom(Hj , G) =

k∑
j=1

Mi,j · hom(Hj , G). (32)

In the third equality above, we used (31). We will treat (32) (1 ≤ i ≤ k) as a system of linear equations,
where hom(H1, G), . . . ,hom(Hk, G) are the variables, M is the matrix of the system, and b1, . . . , bk are
the constant terms. Since M is invertible (as guaranteed by our choice of F1, . . . , Fk), knowing b1, . . . , bk
indeed enables us to find hom(H1, G), . . . ,hom(Hk, G) in time O(1), as required. To complete the proof,
we note that |V (Gi)| = |V (G)| · |V (Fi)| = O(|V (G)|) and |E(Gi)| ≤ |E(G)| · |E(Fi)|2 = O(|E(G)|) for every
1 ≤ i ≤ k, and that if G is O(1)-degenerate then so are G1, . . . , Gk by Observation A.1. �
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