
Reciprocal Inputs in Arithmetic and Tropical Circuits

Stasys Jukna∗ Hannes Seiwert† Igor Sergeev‡

Abstract

It is known that the size of monotone arithmetic (+, ·) circuits can be exponentially
decreased by allowing just one division “at the very end,” at the output gate. A natural
question is: can the size of (+, ·) circuits be substantially reduced if we allow divisions “at
the very beginning,” that is, if besides nonnegative real constants and variables x1, . . . , xn,
the circuits can also use their reciprocals 1/x1, . . . , 1/xn as inputs. We answer this ques-
tion in the negative: the gain in circuit size is then always at most quadratic.

Over tropical (min, +) and (max, +) semirings, division turns into subtraction; so, re-
ciprocal inputs are then −x1, . . . , −xn. We give the same negative answer also for tropical
circuits. The question of whether reciprocal inputs can substantially speed up tropical
(min, +, max) circuits, using both min and max gates, remains open.

Keywords: Arithmetic circuit, tropical circuit, reciprocal input, dynamic programming

1 Introduction

A fundamental question in circuit complexity is: if we allow circuits to use some additional
resources, can then the same function be computed using fewer gates? In this paper, we
consider the situation when besides input variables x1, . . . , xn the circuits are allowed to use
their “reciprocals.” Can reciprocal inputs substantially decrease the circuit size?

In the case of Boolean circuits, reciprocal inputs are negations x1, . . . , xn. In every Boolean
(∨, ∧, ¬) circuit one can move all negations towards the inputs by only doubling the size. As
shown by Razborov [15], reciprocal inputs can super-polynomially reduce the size of monotone
Boolean (∨, ∧) circuits; this gap was later increased to exponential by Tardos [17].

In this paper, we consider the role of reciprocal inputs in arithmetic (+, ·) as well as in
tropical (min, +) and (max, +) circuits. In these circuits, inputs are variables x1, . . . , xn and
arbitrary nonnegative constants. In the case of arithmetic circuits, there are two types of recip-
rocal inputs: additive reciprocals −x1, . . . , −xn and multiplicative reciprocals 1/x1, . . . , 1/xn.
We denote the corresponding circuits as (+, ·, −xi) and (+, ·, 1/xi). In (+, ·, −) circuits, the
subtraction operation (−) can be used. Subtraction-free (+, ·) circuits are usually referred to
as monotone arithmetic circuits.

The (+, ·, −) and (+, ·, −xi) circuit complexities are almost the same: subtraction gates
can always be moved to the inputs via −(x + y) = (−x) + (−y) and −x · y = (−x) · y.

∗Faculty of Mathematics and Computer Science, Vilnius University, Lithuania. Research supported by the
DFG grant JU 3105/1-2 (German Research Foundation). Email: stjukna@gmail.com

†Faculty of Computer Science and Mathematics, Goethe University Frankfurt, Germany. Email:
seiwert@thi.cs.uni-frankfurt.de

‡Research Institute Kvant, Moscow, Russia. Research supported by RFBR grant, project no. 19-01-00294a.
Email: isserg@gmail.com

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 178 (2020)

So, Valiant’s result [18] implies that the (+, ·)/(+, ·, −xi) gap can be exponential. That is,
additive reciprocals −xi can even exponentially decrease the size of monotone arithmetic
circuits.

Strassen [16] has shown that if the subtraction (−) operation is allowed, then division (/)
gates cannot significantly decrease the size of arithmetic circuits: if a polynomial P of degree
d can be computed by a (+, ·, /, −) circuit of size s (divisions are not restricted to inputs),
then P can be also computed by a (+, ·, −) circuit of size O(sd log d). So, multiplicative
reciprocal inputs 1/x1, . . . , 1/xn in non-monotone arithmetic circuits are of little use.

But what about monotone (+, ·) circuits (without subtraction): can then the division
operation (/) help? The question is not trivial because the subtraction operation is crucially
used in Strassen’s argument to express 1/f as power series 1/(1−(1−f)) =

∑

i≥0(1−f)i. And
indeed, it turned out that Strassen’s result does not hold for monotone arithmetic circuits:
here division can exponentially decrease the circuit size.

The exponential (+, ·)/(+, ·, /) gap for subtraction-free circuits is exhibited by the span-

ning tree polynomial κn(x) =
∑

T

∏

e∈T xe, where the sum is over all spanning trees of a
complete undirected graph Kn on n vertices. Jukna and Seiwert [11] have shown that every
monotone arithmetic circuit computing κn must use 2Ω(

√
n) gates. For the directed version

of κn (when Kn is a complete directed graph and the sum is taken over all arborescences),
the lower bound 2Ω(n) was earlier proved by Jerrum and Snir [9]. On the other hand, Fomin,
Grigoriev and Koshevoy [6] have recently shown that both κn and its directed version can be
computed by a (+, ·, /) circuit of size O(n3).

The upper bound O(n3) also holds when (+, ·, /) circuits are allowed to use only one
division gate at the end: one can easily move all division gates to the output gate via (x/y) +
z = (x + yz)/y, (x/y)z = (xz)/y and (x/y)/z = x/(yz). Thus, the (+, ·)/(+, ·, /) gap can be
exponential even when only a single division operation “at the very end” (at the output gate)
is allowed.

In this paper we ask the “opposite” question: what happens if we only allow divisions “at
the very beginning”? Can (+, ·, 1/xi) circuits, that is, monotone arithmetic circuits with re-
ciprocal inputs 1/x1, . . . , 1/xn be super-polynomially smaller than monotone circuits without
these additional inputs? That multiplicative reciprocal inputs can save gates can be seen on
the polynomial x31. It can be computed as x32 · (1/x) using 6 gates, but 7 gates are necessary
to compute x31 by a circuit without reciprocals: this follows from known1 lower bounds on
the minimum length of so-called addition chains. So, our question is: can (+, ·, 1/xi) circuits
be considerably smaller than (+, ·) circuits?

We answer this question in the negative: the (+, ·)/(+, ·, 1/xi) gap cannot be larger than
quadratic (Theorem 1): if an n-variate polynomial P can be computed by a (+, ·, 1/xi) circuit
of size s, then P can also be computed by a (+, ·) circuit of size O(ns2).

We also investigate the role of reciprocal inputs in tropical (min, +) and (max, +) circuits.
Our motivation is that these circuits can simulate basic dynamic programming algorithms.
Inputs in tropical circuits are variables x1, . . . , xn and nonnegative real constants; gates per-
form additions (+) and min or max operations. The tropical (min, +) and (max, +) version
of the arithmetic division x/y is the (arithmetic) subtraction x − y. So, reciprocal inputs
1/x1, . . . , 1/xn turn into −x1, . . . , −xn in tropical circuits. That is, tropical versions of arith-
metic (+, ·, 1/xi) circuits are (min, +, −xi) and (max, +, −xi) circuits.

Over the tropical (min, +) semiring, the spanning tree polynomial κn turns into the min-

1See, for example, the On-line Encyclopedia of Integer Sequences at https://oeis.org/A003313.

2

https://oeis.org/A003313

imum weight spanning tree problem MSTn: given nonnegative weights xe to the edges e of
Kn, compute the minimum weight

∑

e∈T xe of a spanning tree T of Kn. As shown in [11],

this problem requires (min, +) circuits of size 2Ω(
√

n). On the other hand, since tropical cir-
cuits are not weaker than monotone arithmetic circuits, the upper bound O(n3) of [6] for κn

carries over to tropical circuits solving MSTn; the same result also holds for (max, +) cir-
cuits computing the (max, +) version of MSTn. Thus, both gaps (min, +)/(min, +, −) and
(max, +)/(max, +, −) can be exponential.

So, again, the question is: what if we restrict tropical circuits to use the subtraction
(−) operation only on inputs? We show (Theorem 2) that the (min, +)/(min, +, −xi) gap
is never larger than quadratic. The case of tropical (max, +, −xi) circuits turns out to be
more difficult, but we still are able to show (Theorem 3) that the (max, +)/(max, +, −xi) gap
cannot be larger than quadratic for circuits solving homogeneous maximization problems. The
extension of Theorem 1 to tropical circuits is not trivial because tropical circuits can be much
stronger than monotone arithmetic circuits. For example, the shortest path problem can be
solved by a polynomial-size (min, +) circuit resulting from the Bellman–Ford–Moore dynamic
programming algorithm, but the corresponding (arithmetic) polynomial requires monotone
arithmetic circuits of exponential size [9, Sect. 4.4].

2 Results

In this section, we describe our results and related facts more precisely. A summary of known
and new results is depicted in Fig. 1.

Arithmetic circuits Our first result (Theorem 1) shows that the (+, ·)/(+, ·, 1/xi) gap can
never be larger than quadratic. That is, reciprocal inputs cannot significantly decrease the
size of monotone arithmetic circuits.

Theorem 1. If an n-variate polynomial P can be computed by a (+, ·, 1/xi) circuit of size s,

then P can also be computed by a (+, ·) circuit of size O(ns2).

Theorem 1 has the following consequence which may be of independent interest. It con-
cerns the monotone arithmetic (+, ·) circuit complexity of “complementary” polynomials.
Every subset S ⊆ [n] = {1, . . . , n} has its associated multilinear monomial XS =

∏

i∈S xi.
The complement of a multilinear polynomial P (x) =

∑

S∈F XS is the multilinear polynomial

co-P (x) :=
∑

S∈F

∏

i6∈S

xi .

Can the (+, ·) circuit complexity of co-P be much smaller than that of P? The following
consequence of Theorem 1 answers this question in the negative.

Corollary 1. If a multilinear n-variate polynomial P can be computed by a (+, ·) circuit of

size s, then its complement co-P can be computed by a (+, ·) circuit of size O(ns2 + n3).

Proof. Take a (+, ·) circuit computing P (x1, . . . , xn) =
∑

S∈F XS , and let s be the size of this
circuit. If we replace each input variable xi by its reciprocal 1/xi, the obtained (+, ·, 1/xi)
circuit has the same size s, and computes the Laurent polynomial2 P (1/x1, . . . , 1/xn). We

2Laurent polynomials may have negative exponents.

3

have

co-P (x) =
∑

S∈F

∏

i6∈S

xi =
n

∏

i=1

xi ·
∑

S∈F

∏

i∈S

1

xi

=
n

∏

i=1

xi · P (1/x1, . . . , 1/xn) .

Hence, the polynomial co-P can be computed by a (+, ·, 1/xi) circuit of size t = s + n.
By Theorem 1, the polynomial co-P can be computed by a (+, ·) circuit of size O(nt2) =
O(ns2 + n3), as claimed.

Tropical circuits Many dynamic programming algorithms (DP algorithms) are “pure” in
that they only use the basic operations (min, +) or (max, +) in their recursion equations.
Notable examples of pure DP algorithms for combinatorial optimization problems are the
well-known Bellman–Ford–Moore shortest s-t path algorithm [2, 7, 13], the Floyd–Warshall
all-pairs shortest paths algorithm [5, 19], and the Held–Karp travelling salesman algorithm [8],
and the Dreyfus–Levin–Wagner Steiner tree algorithm [3, 12].

Tropical (min, +) or (max, +) circuits constitute a natural model for pure DP algorithms.
Such a circuit uses fanin-2 (min, +) or (max, +) operations. Inputs are variables x1, . . . , xn and
arbitrary nonnegative constants. That is, tropical circuits use addition (+) gates instead of
arithmetic multiplication (·), and use min or max gates (but not both) instead of arithmetic
addition gates (+). Tropical (min, +, −xi) or (max, +, −xi) circuits can additionally use
−x1, . . . , −xn as inputs.

Tropical (min, +) circuits compute tropical polynomials P (x) = mina∈A〈a, x〉 + ca, where
A ⊆ N

n is a finite set of vectors (these are exponent vectors of monomials in the arithmetic
case), ca ∈ R+ are nonnegative constant terms, and 〈a, x〉 = a1x1 + · · · + anxn is the scalar
product of vectors a and x. In tropical (max, +) circuits, we have max instead of min. Tropical
(min, +, −xi) and (max, +, −xi) circuits compute tropical Laurent polynomials: in this case,
we have A ⊆ Z

n, that is, some variables xi may have negative “exponents” ai.
We call two tropical n-variate Laurent polynomials P and Q equivalent if P (x) = Q(x)

holds for all x ∈ R
n
+. A tropical circuit Φ computes a given tropical polynomial P if the

Laurent polynomial produced by Φ is equivalent to P . That is, we only require that the
circuit solves the corresponding optimization problem on all nonnegative weights.

Remark 1 (Why only nonnegative weights?). The reason to restrict ourselves to nonnegative
input weights x1, . . . , xn ∈ R+ is twofold. First, efficient dynamic programming algorithms
usually work well on nonnegative weightings, but fail when negative weights are allowed.
Second, if tropical circuits are required to solve a given optimization problem on arbitrary
weightings, then their power is almost the same as that of monotone arithmetic circuits [9,
Theorem 2.6] (i.e., we have no new model then). On the other hand, if only nonnegative
weights are allowed, then tropical circuits can be even exponentially more powerful than mono-
tone arithmetic circuits. Say, the shortest path problem can be solved by a polynomial-size
(min, +) circuit resulting from the Bellman–Ford–Moore dynamic programming algorithm,
but the corresponding (arithmetic) polynomial requires monotone arithmetic circuits of expo-
nential size [9, Sect. 4.4].

The next theorem gives a tropical analogue of Theorem 1 in the case of minimization.

Theorem 2 (Minimization). If a tropical (min, +) polynomial P (x1, . . . , xn) can be computed

by a (min, +, −xi) circuit of size s, then P can also be computed by a (min, +) circuit of size

O(ns2).

4

The situation with tropical (max, +, −xi) circuits (solving maximization problems) turns
out to be more delicate. In this case, we can prove the analogue of Theorem 2 only for
polynomials P (x) = maxa∈A〈a, x〉 + ca that are homogeneous: there is an m ∈ N such that
a1 + · · · + an = m holds for all a ∈ A.

Theorem 3 (Maximization). If a homogeneous (max, +) polynomial P (x1, . . . , xn) can be

computed by a (max, +, −xi) circuit of size s, then P can also be computed by a (max, +)
circuit of size O(ns2).

By analogy with the arithmetic case, one can define the complement of a tropical polyno-
mial P (x) = minS∈F

∑

i∈S xi as co-P (x) = minS∈F
∑

i6∈S xi. But then no tropical analogue
of Corollary 1 holds: the gap between the circuit complexities of tropical polynomials P and
co-P can be exponentially large. For example, let F be the family of subsets of edges of a
complete bipartite n×n graph Kn,n consisting of all n! complements of perfect matchings and
all n2 singletons. Then the (min, +) polynomial P (x) = minS∈F

∑

e∈S xe can be computed
by a trivial (min, +) circuit of size n2 (which just outputs the minimum weight of an edge).
On the other hand, the complement polynomial co-P (x) = minS∈F

∑

e 6∈S xe is equivalent to
the tropical permanent polynomial Pern(x) = minM

∑

e∈M xe, where the minimum is over all
perfect matchings M in Kn,n (the minimum in co-P is always achieved on a perfect matching
S), and it is known that Pern requires (min, +) circuits of size 2Ω(n) [9].

The situation, however, changes if instead of complementary tropical polynomials, we
consider their duals, where in the dual polynomial, min turns into max, and vice versa.

Corollary 2. If a polynomial P (x) = maxa∈A 〈a, x〉 with A ⊆ {0, 1}n can be computed by a

(max, +) circuit of size s, then the dual polynomial P ∗(x) = mina∈A 〈~1−a, x〉 can be computed

by a (min, +, −xi) circuit of size n + s and by a (min, +) circuit of size O(ns2 + n3).

Proof. Let Φ be a (max, +) circuit of size s computing P . Turn the circuit Φ into a
(min, +, −xi) circuit: replace every max gate by a min gate and every input variable xi by
its reciprocal −xi. The resulting (min, +, −xi) circuit Φ′ has the same size and computes the
Laurent polynomial Q(x) = mina∈A 〈a, −x〉 = mina∈A 〈−a, x〉. Then the (min, +, −xi) circuit
x1 + · · ·+xn +Φ′(x) of size n+s computes 〈~1, x〉+mina∈A〈−a, x〉 = mina∈A〈~1−a, x〉 = P ∗(x).
By Theorem 2, the polynomial P ∗ can be computed by a (min, +) circuit of size O(ns2 + n3),
as claimed.

For the duals of (min, +) polynomials, the same argument using Theorem 3 instead of
Theorem 2 gives a weaker fact.

Corollary 3. If a polynomial P (x) = mina∈A 〈a, x〉 with A ⊆ {0, 1}n can be computed by a

(min, +) circuit of size s, then the dual polynomial P ∗(x) = maxa∈A 〈~1−a, x〉 can be computed

by a (max, +, −xi) circuit of size n + s. If P is homogeneous, then P ∗ can be computed by a

(max, +) circuit of size O(ns2 + n3).

What about circuits that may use both min and max operations? It can be easily
shown (Proposition 1 below) that the power of (min, +, max, −xi) circuits is almost the
same as that of general tropical (min, +, −) circuits (with subtraction gates). Since the
(min, +)/(min, +, −) gap can be exponential [6], we know that the size of (min, +) circuits
can be exponentially decreased by allowing max gates and reciprocal inputs −xi. It turned
out that already the (min, +)/(min, +, max) gap can be exponential: the minimum weight

5

+ · 1/xi + · ⊕

+ · ⊕ 1/xi + · /≈

+ ·

arithmetic semiring

A

B

D

C

?

E
?

min + −xi min + max

min + max −xi min + −≈

min +

tropical semiring

A

B

D

C

E
?

Figure 1: Basic subclasses of arithmetic (+, ·, /) and tropical (min, +, −) circuits. Here, x ⊕ y =

(x−1 + y−1)
−1

is the harmonic sum operation; its tropical (min, +) version is max(x, y). The ≈ relation
means that the sizes of the corresponding circuits coincide up to (small) multiplicative constants
(Proposition 1). That the gap (A), in both the arithmetic and the tropical case, can be exponential
follows from the lower bounds proved in [9, 11] and the upper bounds for the same polynomials proved
in [6]. That already the tropical gap (C) can be exponential was proved in [10]. The main result of this
paper is that the gap (B) cannot be larger than quadratic for arithmetic and tropical (min, +) circuits
computing any polynomials (Theorems 1 and 2), and for (max, +) circuits computing homogeneous
polynomials (Theorem 3). Together with the gap (A), this implies that the gap (D) can be exponential
in both arithmetic and tropical cases. The status of the arithmetic and tropical gap (E), as well as of
the arithmetic gap (C) remains open.

spanning tree problem MSTn can be solved by a (min, +, max) circuit of size O(n3) [11], but
any (min, +) circuit solving MSTn must have 2Ω(

√
n) gates [10]. Together with Theorem 2,

this implies that even the (min, +, −xi)/(min, +, max) gap can be exponential.

Corollary 4. The MSTn problem can be solved by a (min, +, max) circuit of size O(n3), but

any (min, +, −xi) circuit for this problem must have 2Ω(
√

n) gates.

We summarize our results concerning the subclasses of arithmetic (+, ·, /) and tropical
(min, +, −) circuits in Fig. 1. In the tropical (min, +) semiring, addition x + y turns into
min(x, y), multiplication x · y into x + y, and division x/y into subtraction x − y. The max
operation is related with the min operation via the equality min(x, y) + max(x, y) = x + y.
So, in the arithmetic (+, ·) semiring, the analogue of the max operation is the harmonic sum

(the half of the harmonic mean) operation:

x ⊕ y :=
1

1
x

+ 1
y

=
x · y

x + y
.

Note that (x + y) · (x ⊕ y) = x · y and (x + y)−1 = x−1 ⊕ y−1. These are arithmetic versions
of the tropical equations min(x, y) + max(x, y) = x + y and − min(x, y) = max(−x, −y). In
particular, the arithmetic circuits corresponding to tropical (min, +, max) circuits are (+, ·, ⊕)
circuits.

The ≈ relation in Fig. 1 is the content of the following simple fact.

Proposition 1. The (+, ·, /) and (+, ·, ⊕, 1/xi) circuit complexities are proportional, that

is, differ by at most absolute constant factors. The same holds for the (min, +, −) and

(min, +, max, −xi) complexities.

Here, we allow (min, +, max, −xi) circuits to use also negative constants as inputs.

6

Proof. We treat both arithmetic and tropical circuits in one argument: in the former, we have
x−1

i = 1/xi, while in the latter, we have x−1
i = −xi and x ⊕ y = max(x, y). One direction is

trivial: (+, ·, ⊕, xi
−1) circuits can be simulated by at most three times larger (+, ·, /) circuits.

To show the converse direction, take an arbitrary (+, ·, /) circuit Φ of size s. We replace each
gate g by two gates g and g−1. In particular, if g = xi is an input variable, then we have two
input gates g = xi and g−1 = x−1

i in the new circuit Φ′. If g = c is an input constant, then
we have two input gates g = c and g−1 = c−1 in the new circuit. If a and b are the gates
entering a non-input gate g in Φ, then wire these gates in Φ′ according to the following rules.

◦ if g = a · b in Φ, then g = a · b and g−1 = a−1
· b−1 in Φ′;

◦ if g = a + b in Φ, then g = a + b and g−1 = a−1 ⊕ b−1 in Φ′;
◦ if g = a/b in Φ, then g = a · b−1 and g−1 = a−1

· b in Φ′.
Thus, the new circuit Φ′ uses only gates from {+, ·, ⊕}, has size at most 2s, and computes
the same function.

So, since the (+, ·)/(+, ·, /) gap can be exponential, reciprocal inputs 1/x1, . . . , 1/xn, to-

gether with the harmonic sum operation x ⊕ y, can exponentially decrease the size monotone
arithmetic circuits. Theorem 1 shows that the presence of ⊕-gates is crucial to achieve such
a speed-up. So, a natural question is whether reciprocal inputs can considerably decrease the
size of (+, ·, ⊕) circuits, that is, whether the (+, ·, ⊕)/(+, ·, ⊕, 1/xi) gap can be large.

The situation with tropical (min, +) circuits, where the harmonic sum operation x ⊕ y
turns into max(x, y), is similar. By Corollary 4, we know that the (min, +, −xi)/(min, +, max)
gap can be exponential. This means that the extension of (min, +) circuits by including the
max operation leads to a stronger model than the inclusion of reciprocal inputs −xi. A
natural question is whether reciprocal inputs can be useful in (min, +, max) circuits at all. In
Section 8, we discuss these open questions in more detail.

3 Preliminaries

Arithmetic (+, ·) and tropical (min, +) or (max, +) circuits are circuits over the corresponding
semirings. To treat these circuits “under one umbrella,” let3 (R+, +, ·) stand for any of these
three semirings. That is, in tropical semirings, “addition” x + y turns into min(x, y) or
max(x, y), while “multiplication” x · y in both these semirings turns into addition x + y.
The multiplicative identity element is 1 in the arithmetic semiring, and is 0 in the tropical
semirings (since 0+x = x+0 = x). Hence, the multiplicative inverse (or reciprocal) of x ∈ R+

is x−1 := 1/x in the arithmetic semiring, and is x−1 := −x in both tropical semirings. The
size of a circuit is the number of its non-input gates.

Polynomials As customary, an n-variate polynomial over a semiring (R+, +, ·) is an ex-
pression of the form P (x) =

∑

a∈A caXa, where A ⊆ N
n is some finite set of exponent vectors,

Xa =
∏n

i=1 xai

i are monomials, caXa are terms, and ca > 0 are coefficients of the polynomial P .
The degree of a monomial Xa is the sum a1 + · · · + an of its exponents, and the degree of a
polynomial is the maximum degree of its monomials. Laurent polynomials may have negative
exponents: in this case, we have A ⊆ Z

n. To stress that a given Laurent polynomial P is

3As customary, R+ stands for the set of all nonnegative real numbers, Z for the set of all integers, and N

for the set of all nonnegative integers.

7

actually a polynomial (has no negative exponents), we will sometimes call P a non-Laurent

polynomial; thus, the terms “polynomial” and “non-Laurent polynomial” are equivalent.
In tropical semirings, monomials Xa turn into linear forms 〈a, x〉 = a1x1 + · · ·+anxn, and

terms turn into affine forms 〈a, x〉 + ca = a1x1 + · · · + anxn + ca. Hence, “exponents” ai are
the coefficients of these forms. So, in the tropical (min, +) semiring, Laurent polynomials are
expressions of the form P (x) = mina∈A 〈a, x〉 + ca; in the (max, +) semiring, we have max
instead of min.

Polynomials produced by circuits By a (+, ·, xi
−1) circuit we will mean a conventional

circuit Φ using the semiring operations + and · as gates. Inputs are variables x1, . . . , xn, their
reciprocals x1

−1, . . . , xn
−1 and arbitrary nonnegative constants c ∈ R+.

Every (+, ·, xi
−1) circuit produces (purely syntactically) a unique Laurent polynomial

in a natural way: at an addition (+) gate, add the two produced polynomials, and at a
multiplication (·) gate, multiply every term of one produced polynomial with every term of
the other produced polynomial, and take the sum of the resulting terms. That is, at each
input gate holding xi, x−1

i or a constant c, the corresponding Laurent polynomials xi, x−1
i

or c are produced. If P (x) =
∑

a∈A caXa and Q(x) =
∑

b∈B cbX
b are Laurent polynomials

produced at the predecessors of some gate, then the polynomial produced at that gate is

P + Q =
∑

a∈A

caXa +
∑

b∈B

cbX
b

if it is an “addition” gate, and is

P · Q =
∑

a∈A

∑

b∈B

cacbX
a+b

if it is a “multiplication” gate. In particular, if we deal with tropical (min, +, −xi) circuits,
then the (Laurent) polynomials produced at predecessors of a gate are of the form P (x) =
mina∈A〈a, x〉 + ca and Q(x) = minb∈B〈b, x〉 + cb with A, B ⊆ Z

n and all ca, cb ∈ R+. The
polynomial produced at this gate is either min{P, Q} or P + Q = mina∈A minb∈B 〈a + b, x〉 +
ca + cb.

Computing versus producing We say that two n-variate Laurent polynomials P and
Q are equivalent if P (x) = Q(x) holds for all x ∈ R

n
+. An arithmetic or tropical circuit Φ

(with or without reciprocal inputs) computes a given Laurent polynomial P if the Laurent
polynomial produced by Φ is equivalent to P .

It is well known and easy to show (using, for example, the multivariate version of the
“fundamental theorem of algebra”) that if two arithmetic Laurent polynomials are equivalent,
then they coincide as formal expressions, that is, have the same Laurent monomials with the
same nonzero coefficients (see Section 5). Thus, if an arithmetic (+, ·, 1/xi) circuit computes
a polynomial, then it also produces this polynomial.

This does not hold for tropical circuits: a lot of distinct tropical Laurent polynomials may
be equivalent to one fixed tropical polynomial. For example, for any (min, +) polynomial
P , all polynomials min{x, x + P} are equivalent to the polynomial x. The following tight
structural characterization of equivalent tropical Laurent polynomials was proved by Jerrum
and Snir [9, Corollary A3] using a version of Farkas’ lemma due to Fan [4, Theorem 4]
(where a vector u lies above a vector v if u ≥ v, and u lies below v if u ≤ v holds): two

8

76540123+

y
?>=<89:;max

76540123+ 76540123+

?>=<89:;max

76540123+

76540123+76540123+ x

x

y

z

))❘❘
❘❘❘ ��

$$
■■

■■
■■

��

��

��

�� ��

��
❄❄❄

||②②
②

""
❊❊

❊

""
❊❊❊ 76540123+

?>=<89:;max ?>=<89:;max

76540123+

76540123+

76540123+

x

y

−z

z

x

��
❄❄

��⑧⑧

��
✻✻

✻

��

��✟✟
✟✟

��
✻✻
✻✻

��✟✟
✟

||②②
②

""
❊❊

❊

��☎☎
☎

��
✿✿

✿✿

Figure 2: On the left: a (max, +) circuit (without reciprocal inputs) computing the tropical poly-
nomial P (x, y, z) = max{2x + y + 2z, 2y, 3x + z} using 7 gates; here ⇓ stands for two parallel edges.
However, the (max, +, −xi) circuit on the right computes the same polynomial using only 6 gates. It
can be shown that this circuit is optimal: at least 6 gates are necessary to compute P . Moreover, every
(max, +, −xi) circuit of size 6 for this polynomial P must produce a term with negative “exponents”
(we omit a tedious proof via case considerations). The latter circuit produces the Laurent polynomial
Q = max{2x + y + 2z, 2y, 3x + z, x + y − z} which is different from the computed polynomial P : it has
a “redundant” term x + y − z. Note that the variable z has a negative “exponent” −1 in this term.

tropical Laurent polynomials P (x) = mina∈A〈a, x〉 + ca and Q(x) = minb∈B〈b, x〉 + cb are
equivalent if and only if every vector (a, ca) lies above some convex combination of vectors
(b, cb), and every vector (b, cb) lies above some convex combination of vectors (a, ca). Due to
the equality max(x, y) = − min(−x, −y), the same holds for (max, +) polynomials with “lies
above” replaced by “lies below.”

For example, the Laurent polynomials P = max{2x, 2y} and Q = max{2x, x − y, 2y}
are equivalent because (1, −1) ≤ 1

2(2, 0) + 1
2 (0, 2). The variable y has a negative “exponent”

in Q, so that the Laurent polynomial Q cannot be produced by a (max, +) circuit at all.
The example given in Fig. 2 shows that even optimal (max, +, −xi) circuits computing (non-
Laurent) (max, +) polynomials may produce negative “exponents.”

Factors of polynomials Let P =
∑

a∈A caXa be a (non-Laurent) polynomial, and Xb =
∏n

i=1 xbi

i a monomial; hence, A ⊆ N
n and b ∈ N

n. The monomial Xb is a factor of P if
it divides all monomial of P , that is, if all vectors a − b with a ∈ A are nonnegative. The
monomial Xb whose ith exponent is bi = min{ai : a ∈ A} is the greatest factor of P . That is,
the greatest factor of P is the monomial of largest possible degree b1 + · · · + bn dividing all
monomials of P . The contraction of the polynomial P is the polynomial

[P] := P/M =
∑

a∈A

caXa−b .

where M = Xb is the greatest factor of P . For example, if P = xi (a single variable), then
M = xi and [P] = 1 (the “multiplicative” identity), while if P = c ∈ R+ (a constant),
then M = 1 and [P] = c. In tropical semirings, the “multiplicative” identity is 0. So, the
contraction of a tropical (max, +) polynomial P = maxa∈A 〈a, x〉 + ca is [P] := P − M =
maxa∈A 〈a − b, x〉 + ca.

9

4 Syntactic elimination of reciprocal inputs

The goal of this section is to prove that we can efficiently eliminate reciprocal inputs x1
−1, . . . , xn

−1

from a (+, ·, xi
−1) circuit, as long as the Laurent polynomial produced by this circuit has no

negative exponents (Lemma 3). Recall that a (+, ·, xi
−1) circuit stands either for an arith-

metic (+, ·, 1/xi) or for a tropical (min, +, −xi) or (max, +, −xi) circuit. That is, in tropical
circuits, “addition” is either x + y := min{x, y} or x + y := max{x, y}, “multiplication” is
x · y := x + y, and reciprocal inputs are x−1

i := −xi.
The following lemma shows that the Laurent polynomials produced by (+, ·, xi

−1) circuits
are of a very special form “polynomial P divided by a monomial M ,” where both P and M
have not much larger (+, ·) circuits.

Lemma 1. Let Φ be a (+, ·, xi
−1) circuit of size s. Then the Laurent polynomial Q produced

by Φ is of the form Q = P/M , where P is a polynomial and M a monomial such that both P
and M can be simultaneously produced by a (+, ·) circuit of size at most 4s.

Here, as customary, P/M stands for P · M−1; for example, in the case of tropical circuits,
P/M is the tropical (Laurent) polynomial of the form P − M .

Proof. Our goal is to transform the (+, ·, xi
−1) circuit Φ circuit into a (+, ·) circuit Φ′ of size

at most 4s producing the pair (P, M) with Q = P/M . We are going to build Φ′ by traversing
the circuit Φ from inputs towards outputs. Let 1 be the multiplicative identity element of
the underlying semiring; this is constant 1 in the arithmetic case, and is constant 0 in the
tropical case.

At the inputs xi, x−1
i and c ∈ R+, the corresponding pairs (P, M) are (xi, 1), (1, xi) and

(c, 1). Now assume that the Laurent polynomials Q1 and Q2 produced at the predecessors of
some gate already have the desired representations Q1 = P1/M1 and Q2 = P2/M2. We have
to show that the Laurent polynomial produced at this gate is also of the form Q = P/M ,
where P is a polynomial and M is a monomial. If this is a “multiplication” gate, then4

Q = Q1 ·Q2 = (P1/M1)·(P2/M2) = P1P2/M1M2, and we can take P = P1P1 and M = M1M2;
we replaced one multiplication gate by two multiplication gates in this case. If this is an
“addition” gate, then Q = Q1 + Q2 = (P1/M1) + (P2/M2) = (P1M2 + P2M1)/M1M2, and we
can take P = P1M2 + P2M1 and M = M1M2. In this case, we replaced one addition gate by
one addition gate and three multiplication gates in this case. The resulting (+, ·) circuit Φ′

has at most four times more gates than the original (+, ·, xi
−1) circuit Φ, as claimed.

If Q is a Laurent polynomial produced by a (+, ·, x−1
i) circuit, then Lemma 1 gives us

a not much larger (+, ·) circuit (without reciprocal inputs) that simultaneously produces a
polynomial P and a monomial M such that Q = P/M . That is, we have removed reciprocal
inputs x−1

1 , . . . , x−1
n at the cost of introducing one “division by a monomial” gate. Our goal

is to eliminate also this division gate. If Q is a non-Laurent polynomial (has no negative
exponents), then the monomial M in the representation Q = P/M must divide all monomials
of the polynomial P . The next Lemma 2 shows that, at the cost of a quadratic increase in size,
it is possible to eliminate the last division gate in the case when M is the “largest possible”
monomial, that is, when M is the greatest factor of P : then Q = [P] · M , where [P] is the
contraction of the polynomial P .

The following lemma holds for circuits over any semiring (+, ·) with the following property:

4As customary, we will sometimes omit the “multiplication” symbol · and write xy for x · y.

10

(∗) if P1 and P2 are polynomials produced at some gates of a (+, ·) circuit, then every factor
of the polynomial P1 + P2 is a factor of both polynomials P1 and P2.

Non-monotone arithmetic (+, ·, −) circuits do not have this property (due to possible cancel-
lations). For example, x is a factor of P = P1 + P2 with P1 = x + y and P2 = x − y but is
neither a factor of P1 nor of P2. But monotone arithmetic circuits as well as tropical circuits
already have this property.

Lemma 2. If a polynomial P of n variables can be produced by a (+, ·) circuit of size s, then

its contraction [P] can be produced by a (+, ·) circuit of size O(ns2).

Proof. Let Φ be a (+, ·) circuit of size s producing P . Call a monomial Xa =
∏n

i=1 xai

i small

if ai ≤ 2s for all i = 1, . . . , n. Since the multiplication gates have fanin two, every factor
of the polynomial produced at any gate of Φ is small. Under an extended (+, ·) circuit we
understand a (+, ·) circuit in which arbitrary small monomials can be used as inputs for free.

The following claim reduces the problem of producing the contraction [P] of our polyno-
mial P to producing these small monomials.

Claim. The contraction [P] of P can be produced by an extended (+, ·) circuit of size 3s.

Proof. Our goal is to transform the (+, ·) circuit Φ producing the polynomial P into an
extended (+, ·) circuit Φ′ of size at most 3s producing [P]. Again, we are going to build Φ′

by traversing the circuit Φ from inputs towards outputs. At the inputs xi and c ∈ R+ of the
circuit Φ, we have [xi] = 1 and [c] = c.

Now assume that we are dealing with some gate in Φ producing a polynomial P from the
polynomials P1 and P2 produced by its predecessors. By construction, we have already built
a part of Φ′ producing the contractions [P1] = P1/M1 and [P2] = P2/M2, where M1 and M2

are the greatest factors of the polynomials P1 and P2. If P = P1 · P2, then M = M1 · M2

is the greatest factor of P , and we can produce the contraction [P] of P as [P] = P/M =
(P1/M1) · (P2/M2) = [P1] · [P2]; in this case, we need no new gates. If P = P1 + P2 and M is
the greatest factor of P , then we can produce [P] as

[P] = [P1 + P2] =
P1 + P2

M
=

M1 · [P1] + M2 · [P2]

M
= M ′

1 · [P1] + M ′
2 · [P2]

where M ′
1 = M1/M and M ′

2 = M2/M . Property (∗) ensures that M divides both monomials
M1 and M2. So, M ′

1 and M ′
2 are small (non-Laurent) monomials, and can be used as inputs

for free. The resulting extended (+, ·) circuit Φ′ has at most 3s gates and produces the
polynomial [P].

The extended (+, ·) circuit guaranteed by the claim may have up to t = 2s small mono-
mials as inputs. Each variable in each of these monomials may have degree up to 2s. These
additional input monomials can be removed at the cost of a quadratic increase in circuit
size. Namely, by repeated squaring, for each variable xi, all the univariate monomials
x2

i , x22

i , . . . , x2s

i can be simultaneously produced using only s multiplication gates. Then each
xd

i with d ≤ 2s can be produced using at most s additional multiplications (by looking at
the binary expansion of the exponent d). Thus, every small input monomial of the circuit
given by Claim 1 can be produced by using at most 2ns multiplication gates, and we obtain
a (non-extended) (+, ·) circuit of size at most 2ns · t + 3s = 4ns2 + 3s = O(ns2) producing
the contraction [P] of P , as desired.

11

In the proofs of Theorems 1 to 3, we will use the following simple consequence of Lemmas 1
and 2 for circuits producing non-Laurent polynomials (without negative exponents).

Lemma 3. If an n-variate non-Laurent polynomial can be produced by a (+, ·, xi
−1) circuit

of size s, then it can be produced by a (+, ·) circuit of size O(ns2).

Proof. Let Q be an n-variate non-Laurent polynomial (hence, there are no negative expo-
nents), and suppose that Q can be produced by a (+, ·, xi

−1) circuit Φ of size s. Lemma 1
gives us a (+, ·) circuit Φ′ of size at most 4s simultaneously producing a polynomial P and a
monomial M such that P = Q · M . Let Xa be the greatest factor of the polynomial Q. Since
[P] = [Q · M] = [Q], we obtain Q = [Q] · Xa = [P] · Xa. By Lemma 2, the polynomial [P]
can be produced by a (+, ·) circuit of size O(ns2). On the other hand, since the polynomial
P can be produced by a (+, ·) circuit of size at most 4s (by the circuit Φ′), no variable can
have degree larger than d = 24s in P . Since the monomial Xa divides all monomials of P , no
entry of the vector a can be larger than 24s as well. So, by repeated squaring, the monomial
Xa can be produced by a (+, ·) circuit of size O(n log d) = O(ns), and we have the desired
(+, ·) circuit of size O(ns2) producing our polynomial Q.

Remark 2. Even if the produced polynomial Q is a Laurent polynomial with negative ex-
ponents, we still have Q = [P] · Xa for the Laurent monomial Xa with each ai being the
minimum of the (possible negative) “exponents” of xi in Q. But then the Laurent mono-
mial Xa might have negative exponents, and could not be produced by a (+, ·) circuit at all.
This is why we require the produced polynomial Q to be a non-Laurent polynomial (without
negative exponents).

5 Proof of Theorem 1: arithmetic circuits

Suppose that an n-variate polynomial P can be computed by a monotone arithmetic (+, ·, 1/xi)
circuit Φ of size s. Our goal is to show that P can also be computed by a monotone (+, ·)
circuit of size O(ns2). To show this, let Q be the Laurent polynomial produced by the circuit
Φ. Since Φ computes P , we know that P (x) = Q(x) holds for all x ∈ R

n
+. In view of Lemma 3,

it is enough to show that Q = P , i.e., that the circuit Φ produces the polynomial P itself.
A basic fact about arithmetic polynomials is that if a univariate polynomial F of degree d

vanishes on any set S ⊆ R of |S| ≥ d + 1 points, then F is a zero polynomial. Easy induction
on the number of variables extends this fact to multivariate polynomials (see, for example, [1,
Lemma 2.1]): if F ∈ R[x1, . . . , xn] is a nonzero polynomial of degree d, then for every subset
S ⊆ R of size |S| ≥ d + 1, the polynomial F takes nonzero value on at least one point x ∈ Sn.

Now take a monomial M of sufficiently large degree such that the polynomial MQ has
no negative exponents, and consider the polynomial F = MP − MQ. Assume for the sake
of contradiction that Q 6= P . Then F is a nonzero polynomial of finite degree d and, when
applied with any set S ⊆ R+ of size |S| ≥ d + 1, the aforementioned fact yields F (x) 6= 0 and,
hence, also P (x) 6= Q(x) for some x ∈ R

n
+, a contradiction.

6 Proof of Theorem 2: minimization

Let P (x1, . . . , xn) = mina∈A〈a, x〉 + ca be a tropical (min, +) polynomial; hence A ⊆ N
n and

ca ∈ R+. Suppose that P can be computed by a (min, +, −xi) circuit Φ of size s. Our goal
is to show that P can also be computed by a (min, +) circuit of size O(ns2).

12

The circuit Φ produces some tropical Laurent polynomial Q(x) = minb∈B 〈b, x〉 + cb with
B ⊆ Z

n and cb ∈ R+ for all b ∈ B, and with the property that Q(x) = P (x) holds for all
x ∈ R

n
+. In order to apply Lemma 3, it is enough to show that Q has no negative “exponents,”

i.e., that B ⊆ N
n holds. This follows from the general characterization of equivalent tropical

Laurent polynomials given by Jerrum and Snir [9] (see Section 3): for every vector b ∈ B
there must be a convex combination c of vectors in A such that b ≥ c holds; since the vector
c is nonnegative, the vector b must also be nonnegative. But in the case of minimization, the
inclusion B ⊆ N

n can also be shown more directly.
Assume for the sake of contradiction that bi < 0, that is, bi ≤ −1 holds for some vector

b ∈ B and some position i. Let K = 1 + cb, where cb is the “coefficient” of the tropical term
〈b, x〉 + cb of the polynomial Q, and consider the weighting x ∈ {0, K}n which sets xi := K
and xj := 0 for all j 6= i. On this weighting, we have P (x) ≥ 0 but Q(x) ≤ 〈b, x〉 + cb =
bi · K + cb ≤ −K + cb < 0, a contradiction with Q(x) = P (x).

Remark 3. If we required (max, +, −xi) circuits to correctly compute a given polynomial on
all input weightings from R

n (including negative weights), then the same argument would
yield the (max, +) version of Theorem 2: just give a sufficiently small negative weight to a
“bad” position i with bi < 0 to enforce Q(x) > P (x).

But since we only require (max, +, −xi) circuits to correctly compute a given (max, +) poly-
nomial on nonnegative weightings (see Remark 1 for why this relaxation is reasonable), the
above argument does not work: the set B ⊆ Z

n of “exponent” vectors of the Laurent
(max, +) polynomial Q can contain any vector b ∈ Z

n such that b ≤ a holds for some a ∈ A.
The example in Fig. 2 shows that, in general, negative “exponents” cannot be excluded.

7 Proof of Theorem 3: maximization

Let Q(x) = maxb∈B 〈b, x〉+cb be a tropical Laurent (max, +) polynomial; hence, B ⊆ Z
n and

cb ∈ R+ for all b ∈ B. Recall that the degree of a (tropical) term 〈b, x〉+ cb is the sum 〈b,~1〉 =
b1 + · · ·+ bn of its “exponents.” A Laurent polynomial is homogeneous if all its terms have the
same degree. The higher envelope of Q is the Laurent polynomial ⌈Q⌉ = maxb∈⌈B⌉ 〈b, x〉 + cb,
where ⌈B⌉ ⊆ B is the set of all “exponent” vectors b ∈ B of Q whose degree is maximal. Note
that the Laurent polynomial ⌈Q⌉ is always homogeneous.

Lemma 4. Let Q be a Laurent (max, +) polynomial, and P a homogeneous non-Laurent

(max, +) polynomial of degree m. If Q is equivalent to P , then the higher envelope ⌈Q⌉ of Q
is a non-Laurent polynomial of degree m, and is also equivalent to P .

Proof. Let P (x) = maxa∈A 〈a, x〉+ca; hence, A ⊆ N
n, ca ∈ R+ and 〈a,~1〉 = a1 + · · ·+an = m

holds for all a ∈ A. Let Q(x) = maxb∈B 〈b, x〉 + cb; hence, B ⊆ Z
n and cb ∈ R+ for all b ∈ B.

Suppose that Q is equivalent to P ; hence, Q(x) = P (x) holds for all x ∈ R
n
+. The (possibly

Laurent, at this moment) polynomial ⌈Q⌉ is homogeneous by its definition. Let us first show
that ⌈Q⌉ has the same degree m as P .

Claim 1. 〈b,~1〉 = m for all b ∈ ⌈B⌉.

Proof. Let cA := maxa∈A ca and cB = maxb∈B cb be the largest “coefficients” of polynomials
P and Q. If 〈b,~1〉 ≤ m − 1 held for some vector b ∈ ⌈B⌉, then 〈b,~1〉 ≤ m − 1 would hold for
all vectors b ∈ B. So, if we take a sufficiently large number r, say r = 1 + cB , then for the
vector ~r = (r, . . . , r), we obtain Q(~r) = maxb∈B {r · 〈b,~1〉 + cb} ≤ rm − r + cb ≤ rm − 1, while

13

P (~r) = maxa∈A {r · 〈a,~1〉 + ca} ≥ rm. On the other hand, if 〈b,~1〉 ≥ m + 1 held for some
vector b ∈ ⌈B⌉, then on the vector ~r with r = 1 + cA, we would have Q(~r) ≥ 〈b, ~r〉 ≥ rm + r,
while P (~r) ≤ rm + cA < Q(~r). Thus, 〈b,~1〉 = m holds for all b ∈ ⌈B⌉.

Let us now show that ⌈Q⌉ is a non-Laurent polynomial, that is, has no negative “expo-
nents.”

Claim 2. ⌈B⌉ ⊆ N
n.

Proof. Assume for the sake of contradiction that some vector b ∈ ⌈B⌉ has a negative entry,
and let I = {i : bi > 0}. Since, by Claim 1, 〈b,~1〉 = m holds, we have

∑

i∈I bi ≥ m + 1.
Take r := 1 + cA, and consider the weighting x with xi = r for all i ∈ I, and xi = 0 for all
i 6∈ I. Then Q(x) ≥ 〈b, x〉 = r ·

∑

i∈I bi ≥ rm + r, but P (x) ≤ P (~r) ≤ rm + cA < Q(x), a
contradiction.

Claim 3. The polynomial ⌈Q⌉ is equivalent to Q and, hence, also to P .

Proof. Fix an arbitrary input weighting x ∈ R
n
+. We have to show that ⌈Q⌉(x) = Q(x) holds.

By Claims 1 and 2, ⌈Q⌉ is a homogeneous polynomial of degree m. Hence, ⌈Q⌉(x + ~1) =
⌈Q⌉(x)+m. Since Q is equivalent to P , and since the polynomial P is homogeneous of degree
m, we also have Q(x + ~1) = P (x + ~1) = P (x) + m = Q(x) + m. So, it remains to show that
Q(x + ~1) = ⌈Q⌉(x + ~1) holds. Let b ∈ B be a vector on which the maximum in Q(x + ~1) is
achieved; hence, 〈b, x〉+ cb + 〈b,~1〉 = Q(x)+ m. Since 〈b, x〉+ cb ≤ Q(x) holds, 〈b,~1〉 ≥ m and,
hence, b ∈ ⌈B⌉ follows. That is, the maximum in Q(x +~1) is achieved on a vector in ⌈B⌉, as
desired.

This completes the proof of Claim 3 and, thus, the proof of Lemma 4.

Remark 4. Note that the homogeneity of the polynomial P was only used in the proof of
Claim 3. If P is a not necessarily homogeneous polynomial of degree m, then for every
x ∈ R

n
+ we still have Q(x +~r) = ⌈Q⌉(x +~r) for all r ≥ 1 + Q(x): if b ∈ B is a vector on which

the maximum in Q(x +~r) is achieved, then 〈b, x〉 + cb + r · 〈b,~1〉 = Q(x +~r) = P (x +~r) ≥ rm.
Since 〈b, x〉+cb ≤ Q(x) ≤ r−1, we obtain r−1+r ·〈b,~1〉 ≥ rm and, hence, 〈b,~1〉 ≥ m−1+1/r.
Since 〈b,~1〉 is an integer, we obtain 〈b,~1〉 ≥ m, that is, 〈b,~1〉 = m. But for 0 ≤ r ≤ Q(x), the
maximum in Q(x + ~r) may be achieved on a vector b ∈ B with 〈b,~1〉 < m.

Proof of Theorem 3. Let P (x) = maxa∈A 〈a, x〉 + ca be a homogeneous (max, +) polynomial
of some degree m; hence, A ⊆ N

n, ca ∈ R+ and 〈a,~1〉 = a1 + · · · + an = m holds for all a ∈ A.
Suppose that the polynomial P can be computed by a (max, +, −xi) circuit Φ of size s. Our
goal is to show that then P can be computed by a (max, +) circuit of size O(ns2).

Let Q(x) = maxb∈B 〈b, x〉+ cb be the tropical Laurent polynomial produced by the circuit
Φ; hence, B ⊆ Z

n and cb ∈ R+ for all b ∈ B. Since the circuit Φ computes the polynomial P ,
we know that Q is equivalent to P . Lemma 4 implies that the higher envelope ⌈Q⌉ of Q is
a non-Laurent polynomial (has no negative “exponents”) and is also equivalent to P . So, by
Lemma 3, it is enough to show that the polynomial ⌈Q⌉ can be produced by a (max, +, −xi)
circuit of size ≤ s. As observed already by Jerrum and Snir [9, Theorem 2.4], the desired
circuit Φ′ can be obtained from Φ by appropriately discarding ingoing edges of some of its
max gates.

Namely, Laurent polynomials xi, −xi, c ∈ R+ produced at input gates coincide with their
higher envelopes. If the higher envelopes ⌈Q1⌉ and ⌈Q2⌉ of the Laurent polynomials Q1 and Q2

14

produced at the predecessors of a gate in Φ are already produced in the new circuit, then do the
following. If this is an addition (+) gate, then do nothing: since 〈b1 + b2,~1〉 = 〈b1,~1〉 + 〈b2,~1〉,
the higher envelope ⌈Q1 + Q2⌉ = ⌈Q1⌉ + ⌈Q2⌉ is already produced at this gate. If this is a
max gate, and if one of ⌈Q1⌉ and ⌈Q2⌉ has smaller degree than the other, then delete the
ingoing edge from the corresponding (“smaller”) predecessor gate. If the degrees of ⌈Q1⌉ and
⌈Q2⌉ are equal, then do nothing.

8 Final remarks and open problems

The main message of this paper is that reciprocal inputs cannot substantially decrease the size
of monotone arithmetic (+, ·) as well as of tropical (min, +) circuits (Theorems 1 and 2). The
same holds for (max, +) circuits (Theorem 3) as long as the computed (max, +) polynomial
P (x) = maxa∈A〈a, x〉 + ca is homogeneous, that is, a1 + · · · + an = m holds for some m ∈ N

and all a ∈ A.

Problem 1. Can the (max, +)/(max, +, −xi) gap be super-polynomial for non-homogeneous

(max, +) polynomials?

As a possible candidate for a polynomial showing a large (max, +)/(max, +, −xi) gap we
suggest the non-homogeneous heaviest co-path polynomial: co-Pathn(x) = maxp

∑

e 6∈p xe,
where the maximum is over all simple paths p in Kn from the vertex s = 1 to the vertex
t = n; we view paths as sets of their edges. Note that this polynomial is not homogeneous:
the degrees of its monomials vary between

(n
2

)

− n + 1 and
(n

2

)

− 1. The polynomial co-Pathn

is the dual of the s-t path polynomial Pathn(x) = minp

∑

e∈p xe, which can be computed by a
(min, +) circuit of size O(n3) resulting from the Bellman–Ford–Moore dynamic programming
algorithm for the shortest s-t path problem. So, by Corollary 3, the polynomial co-Pathn can
be computed by a (max, +, −xi) circuit using O(n3) gates.

Problem 2. Prove or disprove that the (max, +) polynomial co-Pathn requires (max, +) cir-

cuits of super-polynomial size.

By Corollary 4, we know that the (min, +, −xi)/(min, +, max) gap can be exponential.
So, a natural question is whether reciprocal inputs can substantially speed up (min, +, max)
circuits? Recall that the (min, +, max, −xi) and (min, +, −) circuit complexities are propor-
tional (Proposition 1). So, the problem actually is the following.

Problem 3. Can the (min, +, max)/(min, +, −) gap be super-polynomial?

To answer this question in the affirmative, it is enough to find a minimization problem f
that can be solved by a “small” (min, +, −) circuit but requires “large” (min, +, max) circuits.
The latter task (lower bound) can be settled by proving a large lower bound on the monotone
Boolean circuit complexity of the Boolean version of the minimization problem f . Namely,
define the Boolean version of a minimization problem f(x) = minS∈F

∑

i∈S xi to be the
monotone Boolean function g(x) =

∨

S∈F
∧

i∈S xi.

Proposition 2. If a minimization problem can be solved by a (min, +, max) circuit of size s,

then the Boolean version of this problem can be computed by a monotone Boolean (∧, ∨) circuit

of size s.

15

The intuition behind is simple. For a nonnegative number x, let [x] = 0 if x = 0, and
[x] = 1 if x > 0. Then for all x, y ∈ R+, we have [min(x, y)] = [x] ∧ [y], and [max(x, y)] =
[x + y] = [x] ∨ [y] (see Appendix A for details).

So, Problem 3 reduces to showing that some optimization problem, whose Boolean ver-
sion requires “large” monotone Boolean circuits, can be solved by “small” tropical circuits
using subtraction gates. A possible candidate could be the well-known assignment prob-

lem. The corresponding (min, +) polynomial is the tropical permanent polynomial Pern(x) =
minM

∑

e∈M xe, where the minimum is over all perfect matchings M in the complete bipartite
n × n graph. As shown by Jerrum and Snir [9], Pern requires (min, +) circuits of size 2Ω(n).
In fact, Pern requires even (min, +, max) circuits of super-polynomial size.

Corollary 5. Any (min, +, max) circuit computing Pern must have nΩ(log n) gates.

Proof. The logical permanent function is the monotone Boolean function pern(x) of n2 vari-
ables that, given an input vector x ∈ {0, 1}n2

, outputs 1 if and only if the subgraph of
Kn,n specified by x has a perfect matching. A celebrated result of Razborov [15] is that every
monotone Boolean circuit computing pern must have nΩ(log n) gates. Since pern is the Boolean
version of Pern, Proposition 2 yields the same lower bound on the size of (min, +, max) circuits
computing Pern.

Problem 4. Can the tropical permanent Pern be computed by a (min, +, −) circuit of poly-

nomial size?

Actually, even the following weaker version of Problem 3 remains open.

Problem 5. Can the (min, max)/(min, +, −) gap be super-polynomial? That is, can subtrac-

tions help for bottleneck problems?

A next challenge is to prove nontrivial lower bounds on the (min, +, −) circuit complexity.
By “nontrivial” we mean a lower bound for a tropical polynomial of not too large degree.
Say, a lower bound of 2n on the (min, +, −) circuit complexity of the polynomial P (x, y) =
max

{

22n

x, y
}

of doubly exponential degree is trivial: the size of a circuit computing a given
polynomial is always at least the logarithm of the “degree” of this polynomial.

Problem 6. Prove any nontrivial lower bound on the size of (min, +, −) circuits.

The arithmetic analogue of (min, +, −) circuits is that of arithmetic (+, ·, /) circuits. To
prove an exponential lower bound for (+, ·, /) circuits, Fomin, Grigoriev and Koshevoy [6] used
an indirect argument: the hard to compute polynomials are constructed using subtraction.
Even if (+, ·, /) circuits cannot subtract, some polynomials with negative coefficients are still
computable by (+, ·, /) circuits. For example, the polynomial f(x, y) = x2 − xy + y2 can be
computed by a (+, ·, /) circuit Φ = (x3 +y3)/(x+y). A general result of Pólya [14] states that
if F is a homogeneous polynomial such that F (x) > 0 for all x ∈ R

n
+ such that x1+· · ·+xn = 1,

then F (x) = P (x)/(x1 + · · ·+ xn)r for some r ≥ 1 and some positive polynomial P (with only
positive coefficients). Hence, every such polynomial F can be computed by a (+, ·, /) circuit.

In [6], the authors present an explicit homogeneous n-variate polynomial F of degree
only four (but with negative coefficients) which fulfills Pólya’s condition and, hence, can be
represented as a quotient P/Q of two positive polynomials. But the authors show that in
any such representation F = P/Q, the polynomial P must have degree d ≥ 22n−2

. Since

16

the degree of the polynomial computed by a (+, ·, /) circuit of size s cannot exceed 2s, this
implies that any (+, ·, /) circuit computing F must have s ≥ log2 d ≥ 2n−2 gates.

The case of tropical (min, +, −) circuits is less clear. First, in the tropical world, there
exist no “additive” inverses at all (here “addition” is either min or max) and, hence, there
is no tropical analogue of the arithmetic polynomial constructed in [6]. A next problem is
whether any tropical analogue of Pólya’s theorem holds. In particular, the mere fact that
the function computed by a (min, +, −) circuit is “nonnegative” (takes nonnegative values on
nonnegative inputs) does not imply that this function can be computed by a (min, +, max)
circuit at all: consider, for example, the circuit Φ(x, y) = max{x, y} − min{x, y} computing
the nonnegative Laurent polynomial P (x, y) = max{x − y, y − x}. So, Problem 6 may be an
even harder challenge than Problem 3.

When dealing with (min, +, −) circuits, the following simple observation may be useful:
if a tropical polynomial P can be computed by a (min, +, −) circuit of size s, then P can be
computed by a (min, +, −) circuit of size 2s with at most one subtraction gate as the output
gate. Namely, we can move subtraction (−) gates towards the output gate using the equations
min{a − b, c} = min{a, b + c} − b, (a − b) + c = (a + c) − b and (a − b) − c = a − (b + c).
At each min gate two new gates are added, while at + and − gates no new gates are added.
Thus, (min, +, −) circuits are essentially of the form Φ(x) = Φ1(x) − Φ2(x), where Φ1 and Φ2

are (min, +) circuits.

A Proof of Proposition 2

Recall that the Boolean version of a minimization problem f(x) = minS∈F
∑

i∈S xi is the
monotone Boolean function g(x) =

∨

S∈F
∧

i∈S xi. Suppose that the problem f can be solved
by a (min, +, max) circuit Φ(x1, . . . , xn) of size s. Our goal is to show that then its Boolean
version g can be computed by a monotone Boolean (∧, ∨) circuit of size s.

For a nonnegative real number x ∈ R+, let [x] = 0 if x = 0, and [x] = 1 if x > 0. For a
vector x ∈ R

n
+, let [x] = ([x1] , . . . , [xn]) ∈ {0, 1}n denote the corresponding Boolean vector.

Consider the Boolean function f̂(x) =
∧

S∈F
∨

i∈S xi. Note that, for all inputs x ∈ {0, 1}n, we
have

[f(x)] =

[

min
S∈F

∑

i∈S

xi

]

=
∧

S∈F

[

∑

i∈S

xi

]

=
∧

S∈F

∨

i∈S

[xi] = f̂([x]) = f̂(x) . (1)

Let Φ̂(x1, . . . , xn) be a monotone Boolean (∧, ∨) circuit obtained from Φ as follows: replace
each constant input c ∈ R+ by [c], replace each min gate min(u, v) by an AND gate u ∧ v,
each max gate max(u, v) and each addition gate u + v by an OR gate u ∨ v. We know that
Φ(x) = f(x) and, hence, also [Φ(x)] = [f(x)] holds for all x ∈ {0, 1}n. So, by Eq. (1), we
have only to show that [Φ(x)] = Φ̂ ([x]) holds for all inputs x ∈ {0, 1}n, because then Φ̂(x) =
Φ̂ ([x]) = [Φ(x)] = [f(x)] = f̂(x), that is, the Boolean circuit Φ̂ computes f̂ . The function f̂
if the dual of the Boolean version g(x) =

∨

S∈F
∧

i∈S xi of our minimization problem f . Thus,

the dual of the circuit Φ̂, obtained from Φ̂ by interchanging AND and OR gates, computes g.
If Φ = xi, then [Φ(x)] = xi = Φ̂(x) (the input x is Boolean), and if Φ = c is a constant

c ∈ R+, then [Φ(x)] = [c] = Φ̂(x). The rest follows by induction on the size of the circuit Φ
using the equalities holding for all numbers u, v ∈ R+: [min(u, v)] = [u]∧[v], and [max(u, v)] =
[u + v] = [u] ∨ [v].

17

Acknowledgment

The first author would like to thank Vladimir Lysikov for interesting discussions at the initial
stage.

References

[1] N. Alon and M. Tarsi. Colorings and orientations of graphs. Combinatorica, 12:125–134, 1992.
[2] R. Bellman. On a routing problem. Quarterly of Appl. Math., 16:87–90, 1958.
[3] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1(3):195–207, 1971.
[4] K. Fan. Linear Inequalities and Related Systems, chapter On systems of linear inequalities, pages 99–156.

Princeton University Press, 1956.
[5] R. W. Floyd. Algorithm 97, shortest path. Comm. ACM, 5:345, 1962.
[6] S. Fomin, D. Grigoriev, and G. Koshevoy. Subtraction-free complexity, cluster transformations, and

spanning trees. Found. Comput. Math., 15:1–31, 2016.
[7] L. R. Ford. Network flow theory. Technical Report P-923, The Rand Corp., 1956.
[8] M. Held and R. M. Karp. A dynamic programming approach to sequencing problems. SIAM J. on Appl.

Math., 10:196–210, 1962.
[9] M. Jerrum and M. Snir. Some exact complexity results for straight-line computations over semirings. J.

ACM, 29(3):874–897, 1982.
[10] S. Jukna and H. Seiwert. Greedy can beat pure dynamic programming. Inf. Process. Letters, 142:90–95,

2019.
[11] S. Jukna and H. Seiwert. Sorting can exponentially speed up pure dynamic programming. Inf. Process.

Letters, Article Nr. 105962:159–160, 2020.
[12] A. Y. Levin. Algorithm for the shortest connection of a group of graph vertices. Sov. Math. Dokl.,

12:1477–1481, 1971.
[13] E. F. Moore. The shortest path through a maze. In Proc. Internat. Sympos. Switching Theory, volume II,

pages 285–292, 1957.
[14] G. Pólya. Über positive Darstellung von Polynomen. In Vierteljschr. Naturforsch. Ges. Zürich, volume 73.

1928.
[15] A. A. Razborov. Lower bounds on monotone complexity of the logical permanent. Math. Notes of the

Acad. of Sci. of the USSR, 37(6):485–493, 1985.
[16] V. Strassen. Vermeidung von Divisionen. J. Reine Angew. Math., 264:184–202, 1973.
[17] É. Tardos. The gap between monotone and non-monotone circuit complexity is exponential. Combina-

torica, 8(1):141–142, 1988.
[18] L. G. Valiant. Negation can be exponentially powerful. Theor. Comput. Sci., 12:303–314, 1980.
[19] S. Warshall. A theorem on boolean matrices. J. ACM, 9:11–12, 1962.

18

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

