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Abstract

The multiplicity Schwartz-Zippel lemma bounds the total multiplicity of zeroes of a multi-
variate polynomial on a product set. This lemma motivates the multiplicity codes of Kopparty,
Saraf and Yekhanin [J. ACM, 2014], who showed how to use this lemma to construct high-rate
locally-decodable codes. However, the algorithmic results about these codes crucially rely on
the fact that the polynomials are evaluated on a vector space and not an arbitrary product set.

In this work, we show how to decode multivariate multiplicity codes of large multiplicities
in polynomial time over finite product sets (over fields of large characteristic and zero char-
acteristic). Previously such decoding algorithms were not known even for a positive fraction
of errors. In contrast, our work goes all the way to the distance of the code and in particular
exceeds both the unique decoding bound and the Johnson bound. For errors exceeding the
Johnson bound, even combinatorial list-decodablity of these codes was not known.

Our algorithm is an application of the classical polynomial method directly to the multivari-
ate setting. In particular, we do not rely on a reduction from the multivariate to the univariate
case as is typical of many of the existing results on decoding codes based on multivariate poly-
nomials. However, a vanilla application of the polynomial method in the multivariate setting
does not yield a polynomial upper bound on the list size. We obtain a polynomial bound on
the list size by taking an alternative view of multivariate multiplicity codes. In this view, we
glue all the partial derivatives of the same order together using a fresh set z of variables. We
then apply the polynomial method by viewing this as a problem over the field F(z) of rational
functions in z.
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1 Introduction

The classical Schwartz-Zippel Lemma (due to Ore [Ore22], Schwartz [Sch80], Zippel [Zip79] and
DeMillo & Lipton [DL78]) states that if F is a field, and f ∈ F[x1, x2, . . . , xk] is a non-zero polynomial
of degree d, and S ⊆ F is an arbitrary finite subset of F, then the number of points on the grid 1

Sk where f is zero is upper bounded by d|S|k−1. A higher order multiplicity version of this lemma
(due to Dvir, Kopparty, Saraf and Sudan [DKSS13]) states the number of points on the grid Sk

where f is zero with multiplicity2 at least s is upper bounded by d|S|k−1

s .3

This innately basic statement about low degree polynomials has had innumerable applications
in both theoretical computer science and discrete mathematics and has by now become a part of
the standard toolkit when working with low degree polynomials [Sar11, Gut16]. Despite this, the
following natural algorithmic version of this problem remains open.

Algorithmic SZ question. Let F be a field, and S, d, k be as above. Design an efficient algorithm that
takes as input an arbitrary function P : Sk → F(s+k−1

k ) and finds a polynomial f ∈ F[x1, x2, . . . , xk] of
degree at most d (if one exists) such that the function Enc( f ) : Sk → F(s+k−1

k ) defined as

Enc( f )(a) =
(

∂ f
∂xe (a) : deg(xe) < s

)

differs from P on less than 1
2

(
1− d

s|S|

)
fraction of points on Sk.

The aforementioned multiplicity Schwartz-Zippel lemma (henceforth, referred to as the multi-
plicity SZ lemma for brevity) assures us that if there is a polynomial f ∈ F[x1, x2, . . . , xk] such that
Enc( f ) differs from P on less than 1

2

(
1− d

s|S|

)
fraction of points, then it must be unique! Thus, in

some sense, the above question is essentially asking for an algorithmic version of the multiplicity
SZ lemma.

Although a seemingly natural problem, especially given the ubiquitous presence of the SZ
lemma in computer science, this question continues to remain open for even bivariate polynomi-
als! In fact, even the s = 1 case, which corresponds to an algorithmic version of the classical SZ
lemma (without multiplicities) was only very recently resolved in a beautiful work of Kim and
Kopparty [KK17]. Unfortunately, their algorithm does not seem to extend to the case of s > 1, and
they mention this as one of the open problems.

In this work, we make some progress towards answering the algorithmic SZ question. In
particular, we design an efficient deterministic algorithm for this problem when the field F has
characteristic zero or larger than the degree d, the dimension k is an arbitrary constant and the

1We use “grids” and “product sets” interchangeably (see also Remark 1.2).
2This means that all the partial derivatives of f of order at most s− 1 are zero at this point. See Section 3 for a formal

definition.
3This bound is only interesting when |S| > d/s so that d|S|k−1

s is less than the trivial bound of |S|k.
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multiplicity parameter s is a sufficiently large constant. In fact, in this setting we prove a stronger
result, which we now informally state (see Theorem 1.1 for a formal statement).

Main result. Let ε ∈ (0, 1) be an arbitrary constant, k ∈N be a positive constant and s be a large enough
positive integer. Over fields F of characteristic zero or characteristic larger than d, there is a deterministic
polynomial algorithm that on input P outputs all degree d polynomials f ∈ F[x1, x2, . . . , xk] such that
Enc( f ) differs from the input function P : Sk → F(s+k−1

k ) on less than
(

1− d
s|S| − ε

)
fraction of points on

the grid Sk.

We note that the fraction of errors that can be tolerated in the above result is 1− d
s|S| − ε, which

is significantly larger than the error parameter in the algorithmic SZ question. Therefore, we no
longer have the guarantee of a unique solution f such that the function Enc( f ) which is close to P.
In fact, for this error regime, it is not even clear that the number of candidate solutions is polyno-
mially bounded. The algorithm stated in the main result outputs all such candidate solutions, and
in particular, shows that their number is polynomially bounded (for constant k). This fraction of
errors is the best one can hope for since there are functions P (for instance, the all zero’s function)
which have super-polynomially many polynomials of degree d which are

(
1− d

s|S|

)
-close to P.

(see Appendix A).
In the language of error correcting codes, the algorithmic SZ question is the question of de-

signing efficient unique decoding algorithms for multivariate multiplicity codes over arbitrary
product sets when the error is at most half the minimum distance, and main result gives an ef-
ficient algorithm for the possibly harder problem of list decoding these codes from relative error
δ− ε, where δ := 1− d

s|S| is the distance of the code, provided that the field has characteristic larger
than d or zero, k is a constant and s is large enough. In the next section, we define some of these
notions, state and discuss the results and the prior work in this language.

1.1 Multiplicity codes

Polynomial based error correcting codes, such as the Reed-Solomon codes and Reed-Muller codes,
are a very important family of codes in coding theory both in theory and practice. Multiplicity
codes are a natural generalization of Reed-Muller codes wherein at each evaluation point, one not
only gives the evaluation of the polynomial f , but also all its derivatives up to a certain order.

Formally, let F be a field, s a positive integer, S ⊂ F an arbitrary subset of the field F, d ≤ s|S|
the degree parameter and k ≥ 1 the ambient dimension. The codewords of the k-variate order-s
multiplicity code of degree-d polynomials over F on the grid Sk is obtained by evaluating a k-
variate polynomial of total degree at most d, along with all its derivatives of order less than s at all
points in the grid Sk. Thus, a codeword corresponding to the polynomial f of total degree at most
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k can be viewed as a function Encs,S( f ) : Sk → F|E| where E := {e ∈ Zk
≥0 | 0 ≤ ‖e‖1 < s} and

Encs,S( f )|a =

(
∂̄ f
∂̄xe (a) : e ∈ E

)

where ∂̄ f
∂̄xe is the Hasse derivative of the polynomial f with respect to xe. The s = 1 version of these

multiplicity codes corresponds to the classical Reed-Solomon codes (univariate case, k = 1) and
Reed-Muller codes (multivariate setting, k > 1). The distance of these codes is δ := 1− d

s|S| , which
follows from the multiplicity SZ Lemma mentioned earlier in the introduction.

Univariate multiplicity codes were first studied by Rosenbloom & Tsfasman [RT97] and Nielsen
[Nie01]. Multiplicity codes for general k and s were introduced by Kopparty, Saraf and Yekhanin
[KSY14] in the context of local decoding. Subsequently, Kopparty [Kop15] and Guruswami &
Wang [GW13] independently proved that the univariate multiplicity codes over prime fields (or
more generally over fields whose characteristic is larger than the degree of the underlying poly-
nomials) achieve “list-decoding capacity”. In the same work, Kopparty [Kop15] proved that mul-
tivariate multiplicity codes were list decodable up to the Johnson bound.

We remark that in the case of univariate multiplicity codes (both Reed-Solomon and larger or-
der multiplicity codes), the decoding algorithms work for all choices of the set S ⊂ F. However,
all decoding algorithms for the multivariate setting (both Reed-Muller and larger order multiplic-
ity codes) work only when the underlying set S has a nice algebraic structure (eg., S = F) or when
the degree d is very small (cf, the Reed-Muller list-decoding algorithm of Sudan [Sud97] and its
multiplicity variant due to Guruswami & Sudan [GS99]). The only exception to this is the unique
decoding algorithm of Kim and Kopparty [KK17] of Reed-Muller codes over product sets.

1.2 Our results

Below we state and contrast our results on the problem of decoding multivariate multiplicity codes
(over grids) from a δ− ε fraction of errors for any constant ε ∈ (0, 1) where δ is the distance of the
code. Our first result is as follows.

Theorem 1.1 (List decoding of multivariate multiplicity codes with polynomial list size). For every
ε ∈ (0, 1) and integer k, there exists an integer s0 such that for all s ≥ s0, degree parameter d, fields F of
size q and characteristic larger than d, and any set S ⊆ F where d < s|S|, the following holds.

For k-variate order-s multiplicity code of degree-d polynomials over F on the grid Sk, there is an efficient
algorithm which when given a received word P , outputs all code words with agreement at least (1− δ + ε)

with P, where δ = 1− d/(s|S|) is the relative distance of this code.

Remark 1.2. A general product set in Fk is of the form S1 × S2 × · · · Sk, where each Si is a subset of F.
For the ease of notation, we always work with product sets which are grids Sk for some S ⊆ F even though
all of our results hold for general product sets. y
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As indicated before, this is the best one can hope for with respect to polynomial time list-
decoding algorithms for multiplicity codes since there are super-polynomially many codewords
with minimum distance δ = 1 − d/(s|S|) (see Appendix A). Till recently, it was not known if
multivariate multiplicity codes were list decodable beyond the Johnson bound (even for the case
S = F). For the case of grids Sk, where S ⊆ F is an arbitrary set, even unique decoding algorithms
were not known. We note that the above result does not yield a list-decoding algorithm for all
multiplicities, but only for large enough multiplicities (based on the dimension k and the error
parameter ε).

Kopparty, Ron-Zewi, Saraf and Wootters [KRSW18] showed how to reduce the size of the
list for univariate multiplicity codes from polynomial to constant (dependent only on the error
parameter ε). We use similar ideas, albeit in the multivariate setting, to reduce the list size in
Theorem 1.1 to constant (dependent only on the error parameter ε and the dimension k).

Theorem 1.3 (List decoding of multivariate multiplicity codes with constant list size). For every
ε ∈ (0, 1) and integer k, there exists an integer s0 such that for all s ≥ s0, degree parameter d, fields F of
size q and characteristic larger than d, and any set S ⊆ F where d < s|S|, the following holds.

For k-variate order-s multiplicity code of degree-d polynomials over F on the grid Sk, there is a ran-
domized algorithm which requires poly

(
dk2

, |S|k2
, exp

(
O
(

k2

ε log3 1
ε

)))
operations over the field F and

which when given a received word P, outputs all code words with agreement at least (1− δ + ε) with P,
where δ = 1− d/(s|S|) is the relative distance of this code.

Moreover, the number of such codewords is at most exp
(

O
(

k2

ε log2 1
ε

))
.

Remark 1.4. We remark that by taking a slightly different view of the list decoding algorithm Theorem 1.1
and Theorem 1.3, the upper bound on the number of field operations needed in Theorem 1.1 and Theorem 1.3
can be improved to poly(|S|k, dk). We sketch this view in subsection 4.7 and note the runtime analysis in
Remark 4.8. y

The above two results are a generalization (and imply) the corresponding theorems for the
univariate setting due to Kopparty [Kop15] and Guruswami & Wang [GW13] and Kopparty,
Ron-Zewi, Saraf & Wootters [KRSW18]. We remark that Kopparty, Ron-Zewi , Saraf and Woot-
ters [KRSW18] in the recent improvement to their earlier work prove a similar list-decoding algo-
rithm for multivariate multiplicity codes as Theorem 1.3 for the case when S = F. Though their
list-decoding algorithm does not extend to products sets, it has the added advantage that it is local.

As noted earlier the only previous algorithmic method for decoding polynomial-based codes
over product sets was that of Kim and Kopparty [KK17]. We describe the ideas in our algorithm
shortly (in Section 2), but stress here that our approach is very different from that of Kim and
Kopparty. Their work may be viewed as an algorithmic version of the inductive proof of the
SZ lemma, and indeed recovers the SZ lemma as a consequence. Their work uses algorithmic
aspects of algebraic decoding as a black box (to solve univariate cases). Our work, in contrast, only
relies on the multiplicity SZ lemma as a black box. Instead, we open up the "algebraic decoding”
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black box and make significant changes there, thus adding to the toolkit available to deal with
polynomial evaluations over product sets.

1.3 Further discussion and open problems

Our result falls short of completely resolving the algorithmic SZ question in two respects; though
it works for all dimensions k it only works when the multiplicity parameter s is large enough and
when the characteristic of the field is either zero or larger than the degree parameter. Making
improvements on any of these fronts is an interesting open problem.

All multiplicities: The algorithms presented in this paper decode all the way up to distance if the
multiplicity parameter s is large enough. However, for small multiplicities, even the unique
decoding problem is open. For s = 1, the result due to Kim and Kopparty [KK17] addresses
the unique decoding question, but the list-decoding question for product sets is open.

Fields of small characteristic: All known proofs of list-decoding multiplicity codes beyond the
Johnson bound (both algorithmic and combinatorial) require the field to be of zero char-
acteristic or large enough characteristic. The problem of list-decoding multiplicity codes
over small characteristic beyond the Johnson bound is open even for the univariate setting.
As pointed to us by Swastik Kopparty, this problem of list-decoding univariate multiplicity
codes over fields of small characteristic beyond the Johnson bound is intimately related to
list-decoding Reed-Solomon codes beyond the Johnson bound.

For a more detailed discussion of multiplicity codes and related open problems, we refer the
reader to the excellent survey by Kopparty [Kop14].

Organization

The rest of this paper is organized as follows. We begin with an overview of our proofs in Section 2
followed by some preliminaries (involving Hasse derivatives, their properties, multiplicity codes)
in Section 3. We then describe and analyze the list-decoding algorithm for multivariate multi-
plicity codes in Section 4, thus proving Theorem 1.1. In Section 5, we then show how to further
reduce the list-size to a constant, thus proving Theorem 1.3. In Section 6, we prove some proper-
ties of subspace restriction of multivariate multiplicity codes needed in Section 5. In Appendix A,
we show that there are super-polynomially many minimum-weight codewords, thus proving the
tightness of Theorems 1.1 and 1.3 with respect to list-decoding radius.

2 Proof overview

In this section, we first describe some of the hurdles in extending the univariate algorithms of
Kopparty [Kop15] and Guruswami & Wang [GW13] to the multivariate setting, especially for
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product sets and then given a detailed overview of the proofs of Theorem 1.1 and Theorem 1.3.

2.1 Background and motivation for our algorithm

To explain our algorithm, it will be convenient to recall the general polynomial method framework
underlying the list-decoding algorithms in the univariate setting due to Kopparty [Kop15] and
Guruswami & Wang [GW13]. . Let P : S→ Fs be the received word and 1 ≤ m ≤ s

Step 1: Algebraic Explanation. Find a polynomial Q(x, y1, . . . , ym) ∈ F[x, y1, . . . , ym] of appropri-
ate degree constraints that “explains” the received word P.

Step 2: Q contains the close codewords. Show that every low-degree polynomial f whose en-
coding agrees with P in more than (1− δ + ε)-fraction of points satisfies the following con-
dition.

Q
(

x, f (x),
∂̄ f
∂̄x

,
∂̄ f
∂̄x2 , . . . ,

∂̄ f
∂̄xm−1

)
= 0 .

Step 3: Reconstruction step. Recover every polynomial f that satisfies the above condition.

The main (and only) difference between the list-decoding algorithms of Kopparty [Kop15]
and Guruswami & Wang [GW13] is that Guruswami and Wang show that it suffices to work
with a polynomial Q which is linear in the y-variables, more precisely, Q(x, y1, . . . , ym) of the
form Q0(x) + Q1(x) · y1 + · · · + Qm(x) · ym, while Kopparty allows for larger degrees in the y-
variables. As a result, Kopparty performs the recovery step by solving a differential equation
while Guruswami and Wang observe that dueto the simple structure of Q, the solution can be
obtained by solving a linear system of equations.

How is multivariate list-decoding performed? There are by now two standard approaches.
Inspired by the Pellikaan-Wu [PW04] observation that Reed-Muller codes are a subcode of Reed-
Solomon codes over an extension field, Kopparty performs a similar reduction of the multivariate
multiplicity code to a univariate multiplicity code over an extension field. Another approach is
to solve the multivariate case by solving the univariate subproblem on various lines in the space.
However, both these approaches work only if the set S = F or has some special algebraic structure.

For our proof, we take an alternate approach and always work in the multivariate setting
without resorting to a reduction to the univariate setting. As we shall see, our approach has some
advantages over that of Kopparty [Kop15], both in quantitative terms, since the algorithm can
tolerate a larger number of errors, and in qualitative terms, since the underlying set of evaluation
points does not have to be an algebraically nice subset of Fk as in [Kop15]; evaluations on an
arbitrary grid suffice for the algorithm to work.

To extend the univariate list-decoding algorithm outlined above to the multivariate setting,
we adopt the following approach. We consider a new set of formal variables z and instead of
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directly working with the information about partial derivatives in the received word, we think
of the partial derivatives of the same order as being glued together using monomials in z. With
this reorganized (and somewhat mysterious) view of the partial derivatives, we follow the outline
of the univariate setting as described above. We find a polynomial Q with coefficients from the
field of fractions F(z) instead of just F in the interpolation step to explain the received word P.
Thus, in this instance, the linear system in the interpolation step is over the field F(z). We then
argue that Q contains information about all the codewords that are close to the received word, and
eventually solve Q to recover all the codewords close to the received word. This might seem rather
strange to begin with, but these ideas of gluing together the partial derivatives and working over
the field F(z) immediately generalize the univariate list decoding algorithm to the multivariate
setting. Working with this field of fractions F(z) comes with its costs; it makes some of the steps
costly and in particular, the recovery step far more elaborate than that in the Guruswami-Wang
setting. However, this recovery step happens to be a special case of similar step in the recent work
of Guo, Kumar, Saptharishi and Solomon [GKSS19] and we adapt their algorithm to our setting.

As a first attempt, a more standard way to generalize the algorithms of Kopparty [Kop15]
and Guruswami & Wang [GW13] to the multivariate setting would have been to work with the
partial derivatives directly. And, while this approach seems alright for the interpolation step,
it seems hard to work with when we try to solve the resulting equation to recover all the close
enough codewords. In particular, it isn’t even clear in this set up that the number of solutions
of the algebraic explanation (and hence, the number of close enough codewords) is polynomially
bounded. This mysterious step of gluing together derivatives of the same order in a reversible
manner (in the sense that we can read off the individual derivatives from the glued term) gets
around this problem, and makes it viable to prove a polynomial upper bound on the number of
solutions, and eventually solve the equation to recover all the close enough codewords.

Given this background, we now give a more detailed outline of our algorithm below.

2.2 Theorem 1.1 : Multivariate list-decoding algorithm with polynomial-sized lists

Viewing the encoding as a formal power series

Multiplicity codes are described by saying that the encoding of a polynomial f ∈ F[x] consists of
the evaluation of all partial derivatives of f of order at most s− 1 at every point in the appropriate
evaluation set, e.g. the grid Sk. For our algorithm, we think of these partial derivatives of f as
being rearranged on the basis of the order of the derivatives as follows. We take a fresh set of
formal variables z and define the following differential operators.

∆i( f ) := ∑
e:‖e‖1=i

ze · ∂̄ f (x)
∂̄xe
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where ∂̄ f
∂̄xe denotes the Hasse derivative4 of the polynomial f with respect to xe.

Let ∆( f ) be an s tuple of polynomials defined as follows.

∆( f ) := (∆0( f ), ∆1( f ), . . . , ∆s−1( f )) .

We view the encoding for f as giving us the evaluation of the tuple ∆( f ) ∈ F[x, z] as x varies in Sk.
Note that for every fixing of x to some a ∈ Sk, ∆( f )(a) is in F[z]s. Thus, the alphabet size is still
large. Clearly, this is just a change of viewpoint, as we can go from the original encoding to this
and back efficiently, and at this point it is unclear that this change of perspective would be useful.

Finding an equation satisfied by all close enough codewords

Let P be a received word. We view P as a function P : Sk → Σs, where Σ = F[z], as discussed in
the previous step. The goal of the decoding step is to find all the polynomials f ∈ F[x] of degree
at most d, whose encoding is close enough to P.

As a first step towards this, we find a non-zero polynomial Q(x, y) ∈ F(z)[x, y] of the form

Q(x, y) = Q1(x)y1 + · · ·+ Qm(x)ym ,

which explains the received word P, i.e., for every a ∈ Sk, Q(a, P(a)) = 0, and Q satisfies some
appropriate degree constraints. Here m ≤ s is a parameter. For technical reasons, we also end up
imposing some more constraints on Q in terms of its partial derivatives, the details of which can
be found in Section 4.3. Each of these constraints can be viewed as a homogeneous linear equation
in the coefficients of Q over the field F(z). We choose the degree of Q to be large enough to ensure
that this system has more variables than constraints, and therefore, has a non-zero solution.

This step is the interpolation step which shows up in any standard application of the polyno-
mial method, and our set up is closest and a natural generalization of the set up in the list decoding
algorithm of Guruswami and Wang [GW13] for univariate multiplicity codes.

The key property of the polynomial Q thus obtained is that for every degree d polynomial
f ∈ F[x] whose encoding is close enough to P,

Q(x, ∆( f )) = Q(x, ∆0( f ), ∆1( f ), . . . , ∆m−1( f )) ≡ 0 .

To see this, we note that from the upper bound on the degree of Q and the fact that f has degree
at most d, the polynomial Q(x, ∆( f )) ∈ F(z)[x] is of not too high degree in x. Moreover, from the
constraints imposed on Q during interpolation, it follows that at every a ∈ Sk where the encoding
of f and P agree, Q(x, ∆( f )) vanishes with high multiplicity. Thus, if the parameters are favorably

4Since we have both x and z variables, we use the notation ∂̄ f
∂̄x to denote the Hasse derivative wrt variable x to

explicitly indicate which variable the derivative is being taken
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set, it follows that Q(x, ∆( f )) has too many zeroes of high multiplicity on a grid, and hence by the
multiplicity Schwartz-Zippel emma (see Lemma 3.4), Q(x, ∆( f )) must be identically zero.

We note that this is the only place in the proof where we use anything about the structure of
the set of evaluation points, i.e., the set of evaluation points is a grid.

Solving the equation to recover all close enough codewords

As the final step of our algorithm, we try to recover all polynomials f ∈ F[x] of degree at most d
such that

Q(x, ∆( f )) = Q(x, ∆0( f ), ∆1( f ), . . . , ∆m−1( f )) ≡ 0 .

Q(x, ∆( f )) can be viewed as a partial differential equation of order m− 1 and degree one, and we
construct all candidate solutions f via the method of power series. We start by trying all possible
choices of field elements for coefficients of monomials of degree at most m− 1 in f , and iteratively
recover the remaining coefficients of f by reconstructing f one homogeneous component at a time.
Moreover, we observe that for each choice of the initial coefficients, there is a unique lift to a degree
d polynomial. Thus, the number of solutions is upper bounded by the number of initial choices,
which is at most |F|(m+k−1

k ).
We note that this is one place where working with ∆i( f ) as opposed to having an equation in

the individual partial derivatives of f is of crucial help. Even though the equation Q(x, ∆( f )) = 0
is a partial differential equation of high order in f , the fact that these derivatives appear in a
structured form via the operators ∆i( f ) helps us prove a polynomial upper bound on the number
of such solutions and solve for f . Without this additional structure, it is unclear if one can prove a
polynomial upper bound on the number of solutions of the corresponding equation.

This reconstruction step is a multivariate generalization of similar reconstruction steps in the
list decoding algorithms of Kopparty [Kop15] and Guruswami & Wang [GW13] for univariate
multiplicity codes. Interestingly, this is also a special case of a similar reconstruction procedure in
the work of Guo, Kumar, Saptharishi and Solomon [GKSS19], where the polynomial Q could po-
tentially be of higher degree in y variables, and is given to us via an arithmetic circuit of small size
and degree and the goal is to show that all (low degree) polynomials f , satisfying Q(x, ∆( f )) ≡ 0
have small circuits. In contrast, we are working with Q which is linear in y and we have access
to the coefficient representation of this polynomial, and construct the solutions f in the monomial
representation. As a consequence, the details of this step are much simpler here, when compared
to that in [GKSS19].

In this step of our algorithm viewing the encoding in terms of the differential operators ∆i()

turns out to be useful. The iterative reconstruction outlined above crucially uses the fact that for
any homogeneous polynomial g ∈ F[x] of degree r, ∆i(g) is a homogeneous polynomial in the x

10



variables of degree exactly r− i + 1. The other property that we use from ∆i() is that given ∆i(g)
for any homogeneous polynomial g, we can uniquely read off all the partial derivatives of order
i− 1 of g, and via a folklore observation of Euler, uniquely reconstruct the polynomial g itself (see
Lemma 4.4).

Finally, we note that the precise way of gluing together the partial derivatives of order i in the
definition of the operator ∆i() is not absolutely crucial here, and as is evident in Lemma 4.4, many
other candidates would have satisfied the necessary properties.

The details of this step are in Section 4.5, and essentially complete the proof of Theorem 1.1.

2.3 Theorem 1.3: Reducing the list size to a constant

In Section 5, we combine our proof of Theorem 1.1 with the techniques in the recent work of
Kopparty, Ron-Zewi, Saraf and Wootters [KRSW18] to show that the list size in the decoding
algorithm in Theorem 1.1 can be reduced to a constant.

The key to this step is the observation that since Q(x, y) is linear in the y variables, the solutions
f of the equation Q(x, ∆( f )) ≡ 0 form an affine subspace of polynomials. The reconstruction
algorithm in Section 4.5 in fact gives us an affine subspace V ⊆ F[x] of polynomials of degree at
most d which consists of all the solutions of Q(x, ∆( f )) ≡ 0.

This is precisely the setting in the work of Kopparty, Ron-Zewi, Saraf and Wootters [KRSW18]
in the context of folded Reed-Solomon codes and univariate multiplicity codes, and we essentially
apply their ideas off the shelf, and combine them with our proof of Theorem 1.1 to reduce the list
size to a constant.

In general, this idea of solving Q(x, ∆( f )) ≡ 0 to recover a subspace, and then using the ideas
in [KRSW18] to recover codewords in the subspace which are close to the received word has the
added advantage that it can be applied over all fields. As an immediate consequence, we get an
analog of Theorem 1.1 over infinite fields like rationals as well.

3 Preliminaries

3.1 Notation

We use the following notation.

• F is the field we work over, and we assume the characteristic of F to be either zero or larger
than the degree parameter d of the message space.

• We use bold letters to denote tuples of variables (i.e., x, z, y for (x1, . . . , xk), (z1, . . . , zk) and
(y1, . . . , ym) respectively).
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• We work with polynomials which are in general members of F(z)[x, y]. We denote mono-
mials in x and z by xe (= ∏i∈[k] xei

i ), ze (= ∏i∈[k] zei
i ) respectively where e ∈ Zk

≥0. The degree
of the monomial is ‖e‖1 = ∑k

i=1 ei.

• For e, e′ ∈ Zk
≥0 we say e′ ≤ e iff for all i ∈ [k] we have e′i ≤ ei. Also, we use ( e

e′) to denote

∏i∈[k] (
ei
e′i
).

• For a natural number n, [n] denotes the set {1, 2, . . . , n}.

3.2 Hasse derivatives

Throughout the paper we work with Hasse derivatives: we interchangeably use the term partial
derivatives.

Definition 3.1 (Hasse Derivative). For a polynomial f ∈ F[x] the Hasse derivative of type e is the
coefficient of ze in the polynomial f (x + z) ∈ F[x, z]. We denote this by ∂̄ f

∂̄xe or ∂̄ f (x)
∂̄xe y

We state some basic properties of Hasse Derivatives below. Some of these are taken from [DKSS13,
Proposition 4].

Proposition 3.2 (Basic Properties of Hasse Derivatives). Let f , g ∈ F[x] and consider e, e′ ∈ Zk
≥0.

1. ∂̄ f
∂̄xe +

∂̄g
∂̄xe = ∂̄( f+g)

∂̄xe .

2. If f is a homogeneous polynomial of degree d then ∂̄ f
∂̄xe is homogeneous polynomial of degree d− ‖e‖1.

3. If f = xe′ then ∂̄ f
∂̄xe = ( e

e′)x
e−e′ .

4. Hasse derivatives compose in the following manner:

∂̄

∂̄xe
∂̄ f (x)
∂̄xe′ =

(
e + e′

e

)
· ∂̄ f (x)
∂̄xe+e′ .

5. Product rule for Hasse derivatives:

∂̄
(

∏i∈[w] fi

)
∂̄xe = ∑

u1+u2+...+uw=e

(
∏

i∈[w]

∂̄ fi

∂̄xui

)
.

Proof. Items 1 to 3 and 5 follow directly from Definition 3.1. For Item 4, observe that by linearity
of Hasse derivatives we may assume WLOG that f is a monomial, say xẽ: in this case the claim
follows from Item 3 and the fact that (ẽ

e) · (
ẽ−e

e′ ) = (e+e′
e ) · ( ẽ

e+e′).
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3.3 Multiplicity code

We now define the notion of multiplicity of a polynomial f ∈ F[x] at a point a ∈ Fk. The multiplic-
ity of f at the origin is ` iff ` is the highest integer such that no monomial of total degree less than
` appears in the coefficient representation of f . We formalize this below using Hasse derivatives.

Definition 3.3 (multiplicity). A polynomial f ∈ F[x] is said to have multiplicity ` at a point a ∈ Fk,
denoted by mult( f , a), iff ` is the largest integer such that for all e ∈ Zk

≥0 with ‖e‖1 < ` we have
∂̄ f
∂̄xe (a) = 0. If no such ` exists then mult( f , a) = ∞. y

Dvir, Kopparty, Saraf and Sudan proved the following higher order multiplicity version of the
classical Schwartz-Zippel lemma.

Lemma 3.4 (multiplicity SZ lemma [DKSS13, Lemma 2.7]). Let F be any field and let S be an arbitrary
subset of F. Then, for any non-zero k-variate polynomial P of degree at most d,

∑
a∈Sk

mult(P, a) ≤ d|S|k−1 .

The above lemma implies the classical SZ lemma, which states that two distinct k-variate poly-
nomials of degree d cannot agree everywhere on a grid Sk for any set S of size larger than d trivially.
This in particular tells us that the grid Sk serves as hitting set for polynomials of degree at most d
provided d < |S|.

As mentioned before, a multiplicity code over a grid Sk consists of evaluations of the message
polynomial f along with its derivatives of various orders (up to s− 1), at the points of the grid.

Definition 3.5 (multiplicity code). Let s, k ∈ N, d ∈ Z≥0, F a field and S ⊂ F a non-empty finite
subset. The k-variate order-s multiplicity code of degree-d polynomials over F on the grid Sk is defined as
follows.

Let E := {e ∈ Zk
≥0 | 0 ≤ ‖e‖1 < s}. Note that |E| = (s+k−1

k ). The code is over alphabet FE and has
length Sk (where the coordinates are indexed by elements of Sk).

The code is an F-linear map from the space of degree d polynomials in F[x] to
(
FE)Sk

. The encoding of
f ∈ F[x] at a point a ∈ Sk is given by:

Encs,S( f )|a =

(
∂̄ f
∂̄xe (a) : e ∈ E

)
. y

Remark 3.6.

• The distance of the code is exactly δ := 1− d
s|S| and the rate of the of the code is (d+k

k )

(s+k−1
k )·|S|k

.

• As mentioned in the introduction we can also view the encoding by clubbing partial derivatives of the
same degree. Thus, the encoding of f at a point a is (∆0( f )(a), ∆1( f )(a), . . . , ∆s−1( f )(a)) ∈ F[z]s
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where ∆i( f )(a) = ∑e:‖e‖1=i ze · ∂̄ f (x)
∂̄xe (a).

• We think of k, m and s as constants, but m much larger than k and s is much larger than m. The
precise trade-offs will be alluded to when we need to set parameters in our proofs.

y

3.4 Computing over polynomial rings

In this section, we state a few basic results that show how to perform algebraic operations over
polynomial rings.

The following lemma, proved via an easy application of polynomial interpolation, lets us con-
struct the coefficient representation of a polynomial given an arithmetic circuit for it.

Lemma 3.7. Let k ∈ N. There exists a deterministic algorithm that takes as input an arithmetic circuit
C of size s that computes a k-variate polynomial P ∈ F[z] of degree at most d and outputs the coefficient
vector of P in at most poly(dk, s) field operations over F

Proof. From Lemma 3.4, we know that no two degree d polynomials can agree everywhere on a
grid of size larger than d. So, we pick an arbitrary subset S of F of size d + 1 and evaluate the
circuit C at all points on the grid |S|k. This requires at most poly(dk, s) field operations. Now,
given these evaluations, we set up a linear system in the coefficients of P where for every a in the
grid, we have a constraint of the form P(a) = C(a). We know that this system has a solution.
Furthermore, from Lemma 3.4, we know that this system has a unique solution.

Solving this system gives us the coefficient vector of P and requires at most dk additional field
operations.

The next lemma tells us how to perform linear algebra over the polynomial ring F[z].

Lemma 3.8 (linear algebra over polynomial rings). Let A(z) ∈ F[z]t
′×t be a matrix such that each

of its entries is a polynomial of degree at most m in the variables z = (z1, z2, . . . , zk) and t′ ≤ t. Then,
there is a deterministic algorithm which takes as input the coefficient vectors of the entries of A and outputs
a non-zero vector u ∈ F[z]t in time poly(mk, tk) such that A · u = 0. Moreover, every entry in u is a
polynomial of degree at most tm.

Proof. As a first step, we reduce this to the problem of solving a linear system of the form A′ · u′ =
b, where A′ and b have entries in F[z] of degree at most m, and A′ is a square matrix of dimension
at most t′, which is non-singular. At this point, we can just apply Cramer’s rule to find a solution
of this system.

Since t′ ≤ t, the rank r of A(z) over F(z) is at most t′. Thus, there is a square submatrix A′(z) of
A such that det(A′) is a non-zero polynomial of degree at most mr ≤ mt′ in F[z]. For a hitting set
Hmt′,k of polynomials of degree at most mt′ on k variables over F, we consider the set of matrices
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{A(c) : c ∈ Hmt′,k}. From the guarantees of the hitting set, we know that there is a c ∈ Hmt′,k such
that A′(c) is of rank equal to r. Let c0 ∈ Hmt′,k be such that the rank of A(c0) over F is maximum
among all matrices in the set {A(c) : c ∈ Hmt′,k}. Moreover, let A′(z) be a submatrix of A(z) such
that rank(A′(c0)) equals rank(A(c0)). From Lemma 3.4, there is an explicit hitting set Hmt′,k of
size at most (mt′ + 1)k ≤ (mt + 1)k. Thus, we can find A′(z) of rank equal to the rank of A(z)
with at most poly(mk, tk) field operations over F. Without loss of generality, let us assume that A′

is the top left submatrix of A of size r. Clearly, the (r + 1)-st column of A is linearly dependent on
the first r columns of A over the field F(z). In other words, the linear system given by

A′ · u′ = b

where b = (A1,r+1, A2,r+1, . . . , Ar,r+1), has a solution in F(z). Moreover, for every solution u′

of this system, where u′ = (u′1, u′2, . . . , u′r), the t dimensional vector (u′1, u′2, . . . , u′r,−1, 0, . . . , 0) is
in the kernel of A(z). Also, since A · u = 0 is a homogeneous linear system, for any non-zero
polynomial P(z), (P · u′1, P · u′2, . . . , P · u′r,−P, 0, . . . , 0) continues to be a non-zero vector in the
kernel of A(z).

Since A′ is non-singular, u′ = (A′)−1 · b is a solution to this system. Moreover, by Cramer’s
rule, (A′)−1 = adj(A′)/ det(A′), where adj(A′) is the adjugate matrix of A′ and det(A′) is its de-
terminant. Since, every entry of adj(A′) is a polynomial in F[z] of degree at most tm, we get a
solution of the form u′ = (p1/ det(A′), p2/ det(A′), . . . , pr/ det(A′)) where each pi is a polyno-
mial in F[z] of degree at most tm. By getting rid of the denominators by scaling by det(A′), we get
that the non-zero t dimensional vector (p1, p2, . . . , pr,−det(A′), 0, . . . , 0) is in the kernel of A(z).

Moreover, using the fact that the determinant polynomial has a polynomial size efficiently
constructible circuit, and Lemma 3.7, we can output this vector, with each entry being a list of
coefficients in F in time poly(mk, tk) via an efficient deterministic algorithm.

4 List decoding the multivariate multiplicity code

In this section, we prove Theorem 1.1. We follow the outline of the proof described in Section 2.
We start with the interpolation step.

4.1 Viewing the encoding as a formal power series

The message space is the space of k-variate polynomials of degree at most d over F. In the standard
encoding, we have access to evaluations of the polynomial and all its derivatives of order up to
s− 1 on all points on a grid Sk ⊆ Fk.

For our proof, it will be helpful to group the derivatives of the same order together.
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Definition 4.1. Let f ∈ F[x] be a polynomial. Then, for any i ∈ Z≥0, ∆i( f ) is defined as

∆i( f ) := ∑
e:‖e‖1=i

ze · ∂̄ f (x)
∂̄xe . y

So, we have a distinct monomial in z attached to each of the derivatives. The precise form of
the monomial in z is not important, and all that we will use is that these monomials are linearly
independent over the underlying field, don’t have very high degree and there aren’t too many
variables in z.

Now, we think of the encoding of f as giving us the evaluation of the tuple of polynomials
∆( f ) = (∆0( f (x)), ∆1( f (x)), . . . , ∆s−1(x)) ∈ F(z)[x]s as x takes values in Fk.

Note that ∆i( f ) is a homogeneous polynomial of degree at equal to i in z.

4.2 The τ operator

We will need to compute the Hasse derivative of ∆i( f ) with respect to xe, i.e., ∂̄∆i( f )
∂̄xe . From the

definition of ∆i( f ), we have

∂̄∆i( f )
∂̄xe = ∑

e′ :‖e′‖1=i
ze′ · ∂̄

∂̄xe
∂̄ f (x)
∂̄xe′ = ∑

e′ :‖e′‖1=i
ze′ ·

(
e + e′

e

)
· ∂̄ f (x)
∂̄xe+e′

= ∑
e′ :‖e′‖1=i

ze′ ·
(

e + e′

e

)
· coeffze+e′ (∆i+‖e‖1

f (x)) .

The key point to note is that the Hasse derivative of ∆i( f ) with respect to xe can be read off the
coefficients of ∆i+‖e‖1

( f ).
This motivates the following definition. Consider a tuple P = (P0, P1, . . . , Ps−1), where for each

i, Pi is a homogeneous polynomial of degree i in F[z]. For any e ∈ Zk
≥0, and i ≤ s− 1 such that

i + ‖e‖1 ≤ s− 1, we define

τ
(i)
e (P) := ∑

e′ :‖e′‖1=i
ze′ ·

(
e + e′

e

)
· coeffze+e′ (Pi+‖e‖1

) .

Thus, for ∆( f ) = (∆0( f (x)), ∆1( f (x)), . . . , ∆s−1(x)), we have

τ
(i)
e (∆( f )) =

∂̄∆i( f )
∂̄xe .

4.3 Interpolation step

Let P be the received word, Thus, we are given a collection of s-tuples of polynomials P(a) =

(P0(a), P1(a), . . . , Ps−1(a)) for every a ∈ Sk, where each Pi(a) is a homogeneous polynomial of

16



degree i in z. From the earlier definition of τ, given such a P(a), we have τ
(i)
e (P(a)) for every

i ≤ m and e with ‖e‖1 ≤ s− 1−m.

Lemma 4.2. Let k and s be constants. For every natural number m ≤ s − 1− k, and D = 10|S|(s −
m)/m1/k, there is a non-zero polynomial Q(x, y) = Q1(x)y1 + · · ·+ Qm(x)ym ∈ F(z)[x, y] such that

• For every i ∈ {1, 2, . . . , m}, the x-degree of each Qi is at most D.

• For every a ∈ Sk and every e ∈ Zk
≥0 such that 0 ≤ ‖e‖1 ≤ s− 1−m, ∆e(Q)(a) = 0, where

∆e(Q)(a) :=
m

∑
i=1

∑
e′≤e

∂̄Qi(x)
∂̄xe′ (a) · τ(i−1)

e−e′ (P(a)) .

Here, e′ ≤ e means that e dominates e′ coordinate wise.

Moreover, the coefficients of Q are polynomials in F[z] of degree at most O(|S|ks2k), and such a Q can be
deterministically constructed by using at most poly(|S|k2

, sk2
, dk) operations over the field F.

Proof. We start by showing the existence of a polynomial Q with the appropriate degree con-
straints, followed by an analysis of the running time.

Existence of Q. We view the above constraints as a system of linear equations over the field F(z),
where the variables are the coefficients of Q. The number of homogeneous linear constraints is
|S|k(s−m+k

k ) and the number of variables is m(D+k
k ).

By using the fact that k is much smaller than s, and a crude approximation of the binomial
coefficients, we have |S|k(s−m+k

k ) ≤ (2e|S|(s−m)/k)k and m(D+k
k ) > m(D/k)k. Plugging in the

value of D, we get m(D/k)k = (10|S|(s−m)/k)k, which is clearly greater than the number of
constraints. Hence, there is a non-zero solution, where the coefficients of the polynomial are from
the field F(z), i.e., are rational functions in z.

Next we analyze the degree of these coefficients and show that we can recover such a Q effi-
ciently, with the appropriate degree bounds.

The running time. For the running time, we recall that each τi
e is a polynomial of degree at

most m− 1 in the z variables. As a consequence, observe that the linear system we have for the
coefficients of Q is of the form A · u = 0, where A is a matrix with dimension at most O(|S|k(s−
m)k) over the ring F[z], and every entry of A is a polynomial in F[z] of degree at most m. From
Lemma 3.8, we get that we can find a non-zero solution in F[z] using at most poly(|S|k2

, sk2
) field

operations over F. Moreover, each of the coordinates of this output vector is a polynomial of
degree at most O(|S|k(s−m)k) ·m = O(|S|ks2k) in F[z].

Going forward, we work with the polynomial Q and the degree parameter D as set in Lemma 4.2.
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4.4 Close enough codewords satisfy the equation

We now show that for every polynomial f ∈ F[x] of degree at most d whose encoding is close
enough to the received word P, f satisfies the equation Q in some sense.

Lemma 4.3. If f ∈ F[x] is a degree d polynomial such that the number of a ∈ Sk which satisfy

P(a) = ∆( f )(a) ,

is at least T > (D + d) · |S|k−1/(s−m), then Q(x, ∆0( f ), ∆1( f ), . . . , ∆m−1( f )) is identically zero as a
polynomial in F(z)[x].

Proof. Define the polynomial R ∈ F(z)[x] as follows

R(x) := Q(x, ∆0( f ), ∆1( f ), . . . , ∆m−1( f )) =
m

∑
i=1

Qi(x) · ∆i−1( f ) .

R is a polynomial in x of degree at most D+ d over the field F(z). Whenever a satisfies that P(a) =
∆( f )(a), from the definitions of τ

(i)
e and ∆e, we have that for all e such that 0 ≤ ‖e‖1 ≤ s−m− 1,

∂̄R(x)
∂̄xe (a) =

m

∑
i=1

∑
e′≤e

∂̄Qi(x)
∂̄xe′ (a) · ∂̄∆i−1( f )

∂̄xe−e′ (a)

=
m

∑
i=1

∑
e′≤e

∂̄Qi(x)
∂̄xe′ (a) · τ(i−1)

e−e′ (P(a))

= ∆e(Q)(a)

= 0 .

Hence, at every point of agreement between ∆( f ) and the received word P, R(x) vanishes with
multiplicity at least s−m. From Lemma 3.4, we know that if

T(s−m) > (D + d)|S|k−1 ,

then, R must be identically zero.

Let us try to get a sense of the parameters here. The relative distance of this code is δ = 1− d
s|S| .

Now, in T
|S|k > D+d

|S|(s−m)
, plugging in the value of D from the earlier discussion gives us

T
|S|k >

d
|S|(s−m)

+
10|S|(s−m)/m1/k

|S|(s−m)

=
10

m1/k +

(
s

s−m

)
· d

s|S|
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=
10

m1/k +

(
m

s−m

)
· d

s|S| +
d

s|S| .

In our final analysis for the proof of Theorem 1.1, we choose m and s large enough as a function of
ε, so that this bound is of the form ε + (1− δ), which is precisely what is claimed in Theorem 1.1.

4.5 Solving the equation to find close enough codewords

All that remains now is to solve equations of the form Q(x, ∆0( f ), ∆1( f ), . . . , ∆m−1( f )) to recover
f . This would be done via iteratively constructing f one homogeneous component at a time. We
will need the following easy observations.

Lemma 4.4. Let F be a field of characteristic zero or larger than d. Let f ∈ F[z] be a polynomial of degree d,
and for every i ∈ Z≥0, ∆i be the differential form of order i as defined in Definition 4.1. Then, the following
are true.

• For each i ∈ Z≥0, ∆i( f ) is homogeneous in z and has degree i in the z variables. Moreover, for any
monomial ze of degree i, its coefficient in ∆i( f ) equals ∂̄ f

∂̄xe .

• If f is a homogeneous polynomial, then, for every i ≤ d, f can be uniquely recovered from all its
partial derivatives of order i. As a consequence, for any homogeneous f , given the formal polynomial
∆i( f ), we can recover f .

Proof. The first item follows directly from the definition of ∆ in Definition 4.1.
The second item follows from an immediate generalization of the following well known ob-

servation of Euler to Hasse derivatives. For any homogeneous polynomial f of degree d,

d · f = ∑
i

xi ·
∂̄ f (x)

∂̄xi
.

We also have that

∂̄

∂̄xe
∂̄ f (x)
∂̄xe′ =

(
e + e′

e

)
· ∂̄ f (x)
∂̄xe+e′ .

Using this we can compute the first order Hasse derivatives of ∂̄ f
∂̄xe′ for all ‖e′‖1 = i− 1 from ∆i( f ).

So, for any i, given all Hasse derivatives of degree i, we can recover Hasse derivatives of degree
i− 1 (using Euler’s formula), and so on, till we recover f .

Remark 4.5. We remark that the second item in Lemma 4.4 is false for fields of small characteristic. For
instance, if the characteristic is smaller than d, then even for a non-zero f , all its first order derivatives could
be zero, and hence f cannot be recovered from its first order derivatives. y
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The following lemma shows that under very mild conditions on Q(x, y), we can (efficiently)
recover all polynomials f of degree at most d such that Q(x, ∆<m( f )) ≡ 0. This will complete all
the ingredients needed for the proof of Theorem 1.1.

Lemma 4.6. Let F be a finite field of characteristic larger than d and let Q(x, y) = Q1y1 + · · ·+ Qmym

be any non-zero polynomial in F[z, x, y] where, degx(Q) ≤ D + d, degz(Q) ≤ Γ and Qi does not depend
on y. Then, there is a deterministic algorithm that outputs all polynomials f ∈ F[x] of degree at most d
such that

Q(x, ∆0( f ), ∆1( f ), . . . , ∆m−1( f )) ≡ 0 .

Moreover, the algorithm requires at most poly
(

Dk, dk, |F|(m+k
m ), Γk

)
arithmetic operations over the un-

derlying field F.

Proof. We will reconstruct f iteratively, one homogeneous component at a time. This iterative
process has to be started by fixing the homogeneous components of f of degree at most m, and as
will be evident from the discussion ahead, every fixing of this initial seed can be lifted to a unique
f of degree at most d satisfying

Q(x, ∆0( f ), ∆1( f ), . . . , ∆m−1( f )) ≡ 0 .

Before starting the reconstruction, we need to ensure appropriate non-degeneracy conditions
which are typical in iterative reconstruction arguments of this kind.

Preprocessing. We know from the hypothesis of the lemma that Q depends on at least one y
variable. Let j be the largest index in {1, . . . , m} such that Q depends on yj, i.e., Qj is non-zero and
Qi is identically zero for all i > j. For the ease of notation, we shall assume that j = m, thus, Qm

is a non-zero polynomial. Recall that f is a polynomial in F[x] and each ∆i( f ) is a polynomial in
F[x, z].

Since Qm(x) ∈ F[x] is a non-zero polynomial, there is an a ∈ Fk such that Qm(a) 6= 0.5

Replacing the variable xi by x′i + ai (i.e., translating the origin), we can ensure that in this translated
coordinate system, Qm(x′ + a) is non-zero at the origin, i.e., when x′ is set to 0. We work in this
translated coordinate system for the ease of notation. Observe that every solution f (x) ∈ F[x] is
bijectively mapped to a solution f̃ (x′) = f (x′+ a) ∈ F[x′] and given f̃ , we can efficiently recover f .
Also, note that ∆i( f )(x′ + a) = ∆i( f (x′ + a)) = ∆i( f̃ (x)), i.e., taking derivatives and then setting
x = x′ + a is equivalent to first doing the translation x = x′ + a and then taking derivatives. Let

Q′(x′) := Q(x′ + a) = Q1(x′ + a)y1 + · · ·+ Qm(x′ + a)ym ,

5This is assuming F is large enough, else we can find such an a in a large enough extension field of F.
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and let I = 〈x′1, . . . , x′k〉 be the ideal generated by {x′1, . . . , x′k}.

Iterative Reconstruction. We are now ready to describe the iterative reconstruction of f̃ .

• Base Case : We will try all possible values for the coefficients of monomials of degree at
most m in f̃ from the field F. There are |F|(m+k

k ) possible choices. The next steps are going to
uniquely lift each of these candidate solutions to a degree d polynomial, so the number of
solutions remains |F|(m+k

k ).

• Induction Step : We now assume that we have recovered f̃0, f̃1, . . . , f̃t ∈ F[x′] for some
t ≥ m, where f̃i is a homogeneous component of f̃ of degree i. The goal is to recover f̃t+1,
the (t + 1)-st homogeneous component. Let f̃≤t = f̃0 + f̃1 + · · ·+ f̃t. Now, let us consider
the equation Q′(x′, ∆0( f̃ ), ∆1( f̃ ), . . . , ∆m−1( f̃ )) = 0 when we work modulo the ideal It−m+3.
Clearly, the homogeneous components of f̃ of degree larger than t + 1 do not contribute
anything modulo It−m+3, and so we have,

Q′(x′, ∆0( f̃≤t), ∆1( f̃≤t), . . . , ∆m−1( f̃≤t + f̃t+1)) = 0 mod It−m+3 .

Using the linearity of ∆i and the fact that Q′ is linear in y, we get

Q′(x′, ∆0( f̃≤t), ∆1( f̃≤t), . . . , ∆m−1( f̃≤t)) + Qm(x′ + a) · ∆m−1( f̃t+1) = 0 mod It−m+3 .

We know that the degree of ∆m−1( f̃t+1) equals t + 1− (m− 1) = t−m + 2, and it is homo-
geneous in x′. Also, we have ensured in the preprocessing phase that Qm(x′ + a) mod I =
Qm(a) is some non-zero constant F. Thus, this is a non-trivial linear equation in ∆m−1( f̃t+1)

and if we can use it to recover all the partial derivatives of f̃t+1 of order m− 1, we can then
use Lemma 4.4 to recover f̃t+1 itself. We elaborate on the details of this step of recovering
the partial derivatives of f̃t+1 from ∆m−1( ft+1) next.

Recovering partial derivatives of f̃t+1 from ∆m−1( f̃t+1). Recall that since f̃t+1 is a homogeneous
polynomial in F[x] of degree t + 1, each of its partial derivatives of order m− 1 is a homogeneous
polynomial in x′ of degree equal to t + 1− (m− 1) = t−m + 2. Thus,

∆m−1( f̃t+1) := ∑
e:‖e‖1=m−1

ze · ∂̄ f̃t+1(x′)
∂̄x′e

.

is a homogeneous polynomial in both z and x′, with degree m − 1 in z and degree t − m + 2 in
x′. Our goal is to recover the coefficients of all monomials ze of degree m− 1 in z when viewing
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∆m−1( f̃t+1) as a polynomial in F[x][z], and we have access to the expression

Q′(x′, ∆0( f̃≤t), ∆1( f̃≤t), . . . , ∆m−1( f̃≤t)) = −Qm(a)∆m−1( f̃t+1) mod It−m+3 .

As a first step, observe that the polynomial Qm(a)∆m−1( f̃t+1) has degree at most Γ + m − 1 in
z and degree exactly t − m + 2 in x′. Moreover, since Qm(a) ∈ F[z] is non-zero, the polynomi-
als {Qm(a)ze : deg(ze) = m − 1} are linearly independent as polynomials of degree at most
Γ + (m− 1) in z over the field over the field F. Therefore, for any hitting set H ⊆ Fk for k-variate
polynomials of degree at most Γ + (m− 1), the evaluation vectors EvalH(Qm(a)ze) of these poly-
nomials on H are linearly independent over F. So, for every x′e0 of degree m − 1, there exists
an F linear combination of the polynomials {Qm(a)∆m−1( f̃t+1)b : b ∈ H} which equals ∂̄ f̃t+1(x′)

∂̄x′e .
Moreover, such a linear combination can be found (e.g. via Gaussian Elimination over the field F)
efficiently in the size of this linear system.

Thus, to recover the partial derivatives of order m− 1 of f̃t+1 given a monomial representation
of Qm(a)∆m−1( f̃t+1), we consider the hitting set H of size O(Γ ·m)k for k-variate degree Γ(m− 1)
polynomials given by Lemma 3.4, compute the evaluation of the polynomials

Qm(a) · ∆m−1( f̃t+1) = ∑
e:‖e‖1=m−1

Qm(a)ze · ∂̄ f̃t+1(x)
∂̄xe ,

at every b ∈ H, and take appropriate weighted linear combinations to recover each of the partial
derivatives ∂̄ f̃t+1(x)

∂̄xe .
Since Q′(x′, ∆0( f̃≤t), ∆1( f̃≤t), . . . , ∆m−1( f̃≤t)) is a polynomial of degree at most Γ + m in z and

at most D + d in x, we can do the evaluations by writing the coefficient vector of this polynomial
in time poly(Dk, dk, Γk, mk) and doing evaluations one monomial at a time.

The running time. Observe that we can go from the original polynomial Q to the polynomial Q′

by finding an appropriate a deterministically in time at most (D + d)k by just querying all points
on a large enough grid in Fk (or a grid in an extension field of F, if F isn’t large enough). This
follows from Lemma 3.4.

Once we have Q′, we reconstruct f in d iterations, so it suffices to estimate the cost of each iter-
ation. As we just argued in the earlier part of the proof, every iteration just involves evaluating the
polynomial Q′(x′, ∆0( f̃≤t), ∆1( f̃≤t), . . . , ∆m−1( f̃≤t)) at a hitting set H of size at most poly(Γk, mk)

and solving about mk linear systems of the same size. The straightforward implementation of this
takes no more than poly(Dk, dk, Γk, mk) field operations.

As is evident from the proof of Lemma 4.6, the following more structured version of Lemma 4.6
is true.
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Lemma 4.7. Let F be a field of characteristic zero or larger than d and let Q(x, y) = Q1y1 + · · ·+ Qmym

be any polynomial in F[z, x, y] where, degx(Q) ≤ D + d, degz(Q) ≤ Γ and Qi’s do not depend on y.
Then, there is a deterministic algorithm that outputs a linear space of polynomials in F[x] of dimension at
most (m+k

k ) over F which contains all polynomials f ∈ F[x] of degree at most d such that

Q(x, ∆0( f ), ∆1( f ), . . . , ∆m−1( f )) ≡ 0 .

Moreover, the algorithm requires at most poly
(

Dk, dk, Γk) arithmetic operations over the underlying
field F.

To bound the true running time of the algorithm in Lemma 4.7, we need to add a poly(log F)

factor in the the upper bound on the field operations for finite fields and a polynomial factor in the
bit complexity of the input over the field of rational numbers. While working over rationals, we
might need a bit more care to solve the linear systems appearing in the proof of Lemma 4.6 effi-
ciently, since the naive implementation of Gaussian Elimination might blow up the bit complexity
of the numbers appearing at various intermediate stages.

4.6 Putting things together

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We start by setting the parameters. ε and k are fixed apriori, and we choose
s, m such that s = m2 and m is large enough so that

10
m1/k +

m
s−m

< ε .

With this choice of parameters, we use Lemma 4.2 to construct a non-zero polynomial Q which
explains the received word P. Then, we use Lemma 4.6 to find all polynomials f ∈ F[x] of degree
at most d such that

Q(x, ∆0( f ), ∆1( f ), . . . , ∆m−1( f )) ≡ 0 .

We know, from Lemma 4.6 that the number of such solutions is upper bounded by |F|(m+k
k ) and

from Lemma 4.3 that every polynomial f of degree at most d in F[x] such that Dist(Enc( f ), P) is
at most (1− δ)− ε, where δ = 1− d/(s|S|) satisfies the equation

Q(x, ∆0( f ), ∆1( f ), . . . , ∆m−1( f )) ≡ 0 .

Thus, all such polynomials f are included in the list of outputs. The running time of the algorithm
immediately follows from the running time guarantees in Lemma 4.2 and Lemma 4.6.
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4.7 Another view of the algorithm

We now discuss an alternative description of the decoding algorithm. In essence, this is just a
rewording of the previous algorithm, but appears to have some qualitative advantages. For in-
stance, the description itself seems simpler here as we don’t need to introduce the z variables, but
instead, end up working with a system of equations over the original field F itself. Moreover, the
runtime analysis of the algorithm gives a slightly better bound of poly(|S|k, dk) on the number of
field operations needed by the decoding algorithm as opposed to the bound of poly(|S|k2

, dk2
) that

is claimed in Theorem 1.1.
Given the received word P : Sk → F(s+k−1

k ), we assume that the coordinates of F(s+k−1
k ) are

indexed by k-variate monomials of degree at most s− 1. Let t = 10mk+1 and for each i ∈ [s] and
j ∈ [t], let ai,j ∈ F(i−2+k

k ) be vectors such that for every i, the dimension of the space spanned by
{ai,1, ai,2, . . . , ai,t} over F equals (i−2+k

k ). Again we think of the coordinates of ai,j as being indexed
by k-variate monomials of degree equal to i− 1.

Now, from P, we construct P1, P2, . . . , Pt where each Pj is a function Sk to Fs, such that for every
b ∈ Sk, the ith coordinate of Pj(b) equals the weighted linear combination of the coordinates of
P(b) indexed by monomials of degree exactly i− 1, with weights according to ai,j. In other words,
the ith coordinate of Pj(b) equals

∑
e∈Zk

≥0,‖e‖1=i−1

ai,j(e) · P(b)e ,

where P(b)e is the coordinate of P(b) indexed by e. Now, for the interpolation step, for each
j ∈ [t], we find a polynomial Q̃j = ∑m

i=1 Q̃i,j(x)yj of not too high degree which explains Pj in
the sense of Lemma 4.2. Note that each Q̃j is now a polynomial over the original field F. An
immediate instantiation of Lemma 4.3 for this setting shows that if f ∈ F[x] of degree at most d
and Enc( f ) and P are close enough, then for every j ∈ [t], Q̃j(x, Ψj( f )) must be identically zero,
where Ψj( f ) =

(
Ψj,1( f ), . . . , Ψj,m( f )

)
is defined as

Ψj,i( f ) = ∑
e∈Zk

≥,‖e‖1=i−1

ai,j(e) ·
∂̄ f
∂̄xe .

Before going to the reconstruction step, we note that it might be the case that Q̃1, Q̃2, . . . , Q̃t

depend on different subsets of y variables. But since t > mk+1, by averaging, it follows that there
exist an ` ∈ [m] such that at least mk of the polynomials {Q̃j : j ∈ [t]} have the property that they
depend on y` and do not depend on y`′ for any `′ > `. For the ease of notation, let us assume that
Q̃1, Q̃2, . . . , Q̃t′ depend on ym, where t′ = mk.

Now, to recover f , we solve the equations Q̃j(x, Ψj( f )) ≡ 0 for all j ∈ [t′]. We solve for f
one homogeneous component as in the proof of Lemma 4.6. Assuming that we have recovered
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homogeneous components of degree at most u of f , we can follow the proof of Lemma 4.6 to
recover Ψj,m( fu+1) for every j ∈ [t′], where fu+1 is the homogeneous component of f of degree
u + 1.6 At this point, the choice of the vectors ai,j, the definition of Ψj,m( fu+1) and the fact that t′ ≥
mk, we get that we have sufficiently many linearly independent homogeneous linear equations in
all the partial derivatives of fu+1 of order (m− 1). Thus, we can solve this linear system to recover
each of these partial derivatives and combine them according to Lemma 4.4 to obtain fu+1, and
proceed to the next step. Moreover, as in Lemma 4.6, if we start from the correct coefficients of f
in the base case of this process, each of the subsequent steps are unique.

Thus, instead of working with a single polynomial equation as in a standard application of the
polynomial method, this algorithm proceeds via working simultaneously with many equations.

We now remark on the running time.

Remark 4.8. We note that in algorithm sketched above, the number of field operations needed is upper
bounded by poly(|S|k, dk). This follows from the observation that in this algorithm we are essentially
solving mk < dk linear systems of size poly(|S|k, dk) over the underlying field F to recover all codewords
close to the received word. y

5 Reducing the list size to a constant

In this section, we use the pruning algorithm due to Kopparty, Ron-Zewi, Saraf and Wootters
[KRSW18] together with Lemma 4.7 to obtain a shorter list of correct polynomials, thereby im-
proving the bound on the list size in Theorem 1.1 from a polynomial (in the input size) to an
absolute constant depending only on the parameter ε and dimension k. This would complete the
proof of Theorem 1.3. The first step towards the goal of recovering codewords from a small linear
space is the following theorem, which is a natural multivariate analog of [GK16, Theorem 17] in
the work of Guruswami and Kopparty [GK16]. Our proof is essentially the same, apart from the
fact that we are in the multivariate setting and hence have to work with Generalized Wronskians
matrices.

Theorem 5.1 (subspace restrictions). Let F be a field of characteristic zero or larger than d. Let µ ≥
w ∈N be parameters and let W ⊆ F[x] be an F-linear subspace of k-variate polynomials of degree at most
d, such that dimension of W is at most w. For any a ∈ Fk, let Ha be the F-linear space of polynomials of
degree at most d which vanish with multiplicity at least µ at a. Then, for every set S ⊆ F, we have,

∑
a∈Sk

dim(Ha ∩W) ≤ dw|S|k−1

(µ− w + 1)
.

We use this statement in our proof in this section, and prove it in Section 6.

6We might have to do an initial translation of coordinates as in the proof of Lemma 4.6.
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5.1 The pruning algorithm

The input to this algorithm is a received word P and a linear subspace W of polynomials of degree
at most d in F[x] of dimension at most w. The goal is to output all polynomials in f ∈ W such
that Encs,S( f ) agrees with P on at least α = δ + ε locations. The description of the algorithm has a
parameter r, which we later set to an appropriate value.

Algorithm A

1. Choose a1, a2, . . . , ar independently and uniformly at random from Sk.

2. If there is a unique polynomial f ∈ W such that Encs,S( f ) and P agree on each of a1, . . . , ar,
then output f .

Clearly, the second step of the algorithm can be implemented efficiently via Gaussian Elimination.
The final pruning algorithm invokes Algorithm A multiple times and outputs the union of all

the lists. In the rest of this section, we show that with high probability, this will output the list of
all codewords close to the received word that are contained in the input linear space.

The algorithm and the analysis is precisely the same as that in the work of Kopparty, Ron-Zewi,
Saraf and Wootters [KRSW18], apart from the fact that we invoke it for multivariate multiplicity
codes, whereas in [KRSW18] it was designed for folded Reed Solomon Codes and univariate mul-
tiplicity codes. We briefly sketch some of the details in the rest of this section. For brevity, we
again use Enc() for Encs,S(). We also assume that the dimension w of W is less than the multiplic-
ity parameter s of the code.

Lemma 5.2 (Analogous to [KRSW18, Lemma IV.5 (conference version)]). For any polynomial f ∈W
such that Dist(Enc( f ), P) < α, f is output by Algorithm A with probability at least

(1− α)r − w
(

d
|S|(s− w)

)r

.

Moreover, Algorithm A runs in polynomial time in the input size.

Proof Sketch. The proof of the lemma is precisely the same as that of [KRSW18, Lemma IV.5 (con-
ference version)] except we use Theorem 5.1 as opposed to an analogous statement for folded
Reed Solomon codes.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Given the error parameter ε and the number of variables k, we choose s, m as
follows.

• m =
( 20

ε

)k ,
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• s = 4
ε · (

m+k
k ) .

We note that for this choice of parameters, m
s−m < ε

2 and hence,

10
m1/k +

m
s−m

< ε ,

as is needed to invoke Lemma 4.2. We now use Lemma 4.2 to construct the polynomial Q which
explains the received word P, and Lemma 4.7 to give us a subspace W of polynomials in F[x] of
dimension at most w = (m+k

k ) over F, that contains all polynomials f ∈ F[x] of degree at most d
such that Dist(Enc( f ), P) < (δ− ε), where δ = 1− d/(s|S|) is the relative distance of the code. Let
the parameter r be set as

r =
log(2 · (m+k

k ))

log(1 + ε/4)
≤ O

(
k2 log 1/ε

ε

)
.

We now instantiate Lemma 5.2 with inputs being the received word P, the subspace W of dimen-
sion at most w = (m+k

k ) and the parameter r as set above.
A single run of Algorithm A returns at most one polynomial f in W such that Dist(Enc( f ), P) <

(δ− ε). Moreover, every such f is output with probability at least

ρ = (1− δ + ε)r − w
(

d
|S|(s− w)

)r

.

To simplify this, we note that from the choice of parameters

w
(

d
|S|(s− w)

)r

=

(
m + k

k

)(
s

(s− w)
· (1− δ)

)r

≤ 1
2
· (1 + ε/4)r

(
1

(1− ε/4)
· (1− δ)

)r

[plugging in the values of s, r]

≤ 1
2
·
(

1 + ε/4
1− ε/4

· (1− δ)

)r

≤ 1
2
· (1− δ + ε)r ,

where the last inequality follows from the fact that 1+ε/4
1−ε/4 · (1− δ) ≤ (1− δ + ε), whenever 1 + δ−

ε/2 > 0, which is always true in our setting, since δ, ε ∈ (0, 1). Thus, we get

ρ ≥ 1
2
(1− δ + ε)r .

Hence, the number of polynomials in the space W such that Dist(Enc( f ), P) < (δ− ε) is at most
1
ρ = 2

(1−δ+ε)r .
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It follows from a union bound that if we run Algorithm A about O
(

1
ρ · log 1

ρ

)
times with fresh

randomness each time, and output every polynomial obtained, with high probability, we would
have output all the polynomials f in W with Dist(Enc( f ), P) < (δ− ε). Thus the number of runs
of Algorithm A is

O
(

1
ρ
· log

1
ρ

)
= O

(
r log( 1

1−δ+ε )

(1− δ + ε)r

)
≤ exp

(
O
(

k2

ε
log3 1

ε

))
.

The upper bound on the running time immediately follows from the running time guarantees
in Lemma 4.2, Lemma 4.7 and the final pruning that happens in the process of recovering the
relevant codewords from the subspace output by Lemma 4.7.

6 Subspace restrictions of multivariate multiplicity codes

In this section, we prove Theorem 5.1. For the proof, we follow the outline of Guruswami and
Kopparty [GK16] and essentially observe that (almost) everything works even for multivariate
polynomials. The only difference is that instead of the Wronskian criterion for univariate poly-
nomial, we need to work with the following generalized Wronskian criterion for multivariate
polynomials.

Theorem 6.1 (generalized Wronskian criterion). Let f1, f2, . . . , fw ∈ F[x] be k-variate polynomials of
maximum individual degree at most d. If the characteristic of F is zero or larger than d, then the following
is true. f1, f2, . . . , fw are linearly independent over F if and only if there exist monomials xe1 , xe2 , . . . , xew

such that for every i ∈ [w], deg(xei) ≤ i− 1, and the w× w matrix M(e1,...,ew) whose (i, j) entry equals
∂̄ f j
∂̄xei is full rank over the field F(x).

The classical Wronskian criterion (and its generalized counterpart) are typically proved for fields
of characteristic zero and with the usual notion of partial derivatives (cf., Bostan and Dumas [BD10,
Theorem 3]). These proofs extend to the above setting. For the sake of completeness, we provide
an alternative proof of the above theorem in Appendix B.

Equipped with this criterion, we are now ready to prove Theorem 5.1

Proof of Theorem 5.1. Let f1, f2, . . . , fw ∈ W be linearly independent polynomials of degree at most
d which span W. Let E be a subset of µ-tuples of monomials defined as follows.

E := {(xe1 , xe2 , . . . , xeµ) : deg(xei) ≤ i− 1} .
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For every ψ = (xe1 , xe2 , . . . , xeµ) in E, let Mψ ∈ F[x]µ×w matrix defined as follows.

Mψ :=



∂̄ f1
∂̄xe1

∂̄ f2
∂̄xe1 . . . ∂̄ fw

∂̄xe1
∂̄ f1

∂̄xe2
∂̄ f2

∂̄xe2 . . . ∂̄ fw
∂̄xe2

...
...

...
...

...
...

...
...

∂̄ f1
∂̄xeµ

∂̄ f2
∂̄xeµ . . . ∂̄ fw

∂̄xeµ


.

And, let M̃ψ denote the w× w submatrix of Mψ by taking the first w rows and columns, i.e.,

M̃ψ :=



∂̄ f1
∂̄xe1

∂̄ f2
∂̄xe1 . . . ∂̄ fw

∂̄xe1
∂̄ f1

∂̄xe2
∂̄ f2

∂̄xe2 . . . ∂̄ fw
∂̄xe2

...
...

...
...

...
...

...
...

∂̄ f1
∂̄xew

∂̄ f2
∂̄xew . . . ∂̄ fw

∂̄xew


.

From Theorem 6.1, we know that there exists ψ0 in E such that M̃ψ0 (and hence, Mψ0) is full rank
over F(x). Let Lψ0 denote the determinant of M̃ψ0 . Clearly, Lψ0 is a non-zero k-variate polynomial
of degree at most dw. We note that for many choices of ψ ∈ E, the corresponding matrix Mψ could
be of rank less than w. Perhaps somewhat surprisingly, all these matrices play a role in the proof.
The proof essentially follows from the following claim.

Claim 6.2. For every a ∈ Fk, the multiplicity of Lψ0(x) at a is at least (µ− w + 1)dim(Ha ∩W).

We first complete the proof of the theorem using the above claim and then prove the claim.
From Claim 6.2, we get

∑
a∈Sk

(µ− w + 1)dim(Ha ∩W) ≤ ∑
a∈Sk

mult(L(x), a) .

From the earlier discussion, Lψ0 is a non-zero polynomial of degree at most dw. Thus, by Lemma 3.4,
the quantity ∑a∈Sk mult(L(x), a) is upper bounded by dw|S|k−1, and this completes the proof of
Theorem 5.1.

We now prove the claim. For this, we need the following claim.

Claim 6.3. For every ψ ∈ E, and for every a ∈ Fk,

rank(Mψ(a)) ≤ w− dim(Ha ∩W) .

29



Proof of Claim 6.3. We just follow the definition.

dim(Ha ∩W) = dim

({
b = (b1, b2, . . . , bw) ∈ Fw : mult(

w

∑
i=1

bi fi, a) ≥ µ

})

= dim

({
b = (b1, b2, . . . , bw) ∈ Fw : ∀xe s.t deg(xe) < µ,

w

∑
i=1

bi
∂̄ fi

∂̄xe (a) = 0

})
= dim

({
b = (b1, b2, . . . , bw) ∈ Fw : ∀ψ ∈ E, (Mψ(a))b = 0

})
≤ min

ψ∈E
(dim(Kernel(Mψ(a))))

≤ min
ψ∈E

(w− rank(Mψ(a))) .

Proof of Claim 6.2. To show the claim, we show that for every monomial xf of degree less than
(µ− w + 1)dim(Ha ∩W), the Hasse derivative

∂̄Lψ0
∂̄xf is zero at a. Let ψ0 = (e1, e2, . . . , ew). Then,

we have (using Proposition 3.2: Items 4 and 5).

∂̄Lψ0

∂̄xf (a) = ∑
u1+u2+···+uw=f

∏
j∈[w]

(
ej + uj

uj

)det(M̃(e1+u1,...,ew+uw))(a) .

Now, we know that ∑j ‖uj‖1 < (µ − w + 1)dim(Ha ∩W), so there are less than dim(Ha ∩W)

values of j ∈ {1, 2, . . . , w} such that ‖uj‖1 is more than µ− w. Moreover, ‖uj‖1 ≤ µ− w implies
that ‖ej‖1 + ‖uj‖1 ≤ µ− 1. Thus, there is a ψ ∈ E, such that there are more than w− dim(Ha ∩
W) rows of the matrix M̃(e1+u1,...,ew+uw)(a) which are also rows in the matrix Mψ(a). But, from
Claim 6.3, we know that for every ψ ∈ E, Mψ(a) has rank at most w − dim(Ha ∩W). Thus,
each of the matrices M̃(e1+u1,...,ew+uw)(a) in the summand above is rank deficient, and hence has
determinant zero.
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A Exponential number of codewords at a distance δ

Let T ⊆ S be an arbitrary subset of size d/s. For a variable x1, consider the polynomial f (x) =

∏b∈T(x1 − b)s−1. At every point a ∈ Sk such that a1 ∈ T, f (x) vanishes with multiplicity at least
s. Moreover, the set {a ∈ Sk : a1 ∈ T} ⊆ Sk is of size exactly d

s |S|k−1. Thus, the encoding of every
polynomial in the set

M =

{
∏
b∈T

(x1 − b)s−1 : deg(L(x)) = 1, T ⊆ S, |T| = d/s

}

under the k-variate multiplicity code, with multiplicity parameter s agrees with the encoding of
the polynomial 0 on at least d/(qs) fraction of points, i.e., the relative distance between them
is (1 − δ), where δ is the distance of the code. Moreover, the set M is of size ( q

d/s), which is
superpolynomially growing in d. In this sense, the error tolerance of the result in Theorem 1.1 is
the best one could hope for (up to the ε > 0 term) if we are hoping for polynomial list size.

B Generalized Wronskian criterion

In this section, we give a proof of the generalized Wronskian criterion in the multivariate setting
that works over fields of finite characteristic, and using the notion of Hasse derivatives.

We first state and prove a proposition which we will use to prove Theorem 6.1. Given a se-
quence f1, f2, . . . , fw of w k-variate polynomials of individual degree at most d and a sequence
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e1, e2, . . . , ew of w monomials, let M(e1,...,ew)( f1, . . . , fw) be the w×w matrix whose (i, j)-th entry is
∂̄ f j
∂̄xei . Let W(e1,...,ew)( f1, . . . , fw) := det (M(e1,...,ew)( f1, . . . , fw)): so, W(e1,...,ew)( f1, . . . , fw) ∈ F[x].

We say that xe′ ≤ xe if e′ ≤ e, that is, for all i ∈ [k]: e′i ≤ ei. Let . be the degree-stratified-
lexicographic-total order, which is a extension of the ≤ ordering: so, for distinct e and e′, we have
xe′ . xe iff ‖e′‖1 < ‖e‖1 or ‖e′‖1 = ‖e‖1 and e′i < ei where i is the first index where e′i < ei. Also,
for a polynomial f ∈ F[x], let f̃ denote its monomial of minimum degree under . if f is non-zero
and 0 otherwise. Thus, for every non-zero polynomial f of the form ∑e αe · xe with αe ∈ F, f̃ is
xe∗ where xe∗ is the least monomial among the set of monomials {xe : αe 6= 0}. For a monomial,
` = xe we denote ‖e‖1 by |`|.

Proposition B.1.

1. (linear combinations) For a fixed i, let fi = αi f ′i + ∑j 6=i αj f j where αj ∈ F. Then

W(e1,...,ew)( f1, . . . , fw) = αi ·W(e1,...,ew)( f1, . . . , fi−1, f ′i , fi+1, . . . , fw).

2. (translation) Let x + 1 = (x1 + 1, x2 + 1, . . . , xk + 1). Then

(W(e1,...,ew)( f1(x), . . . , fw(x)))(x + 1) = (W(e1,...,ew)( f1(x + 1), . . . , fw(x + 1)))(x).

3. (minimum monomial) If W(e1,...,ew)( f̃1, . . . , f̃w) 6= 0, then

W̃(e1,...,ew)( f1, . . . , fw) = W(e1,...,ew)( f̃1, . . . , f̃w).

Proof. By linearity of Hasse derivatives we have

∂̄ f ′i
∂̄xe = αi

∂̄ fi

∂̄xe + ∑
j 6=i

αj
∂̄ f j

∂̄xe .

Hence, M(e1,...,ew)( f1, . . . , fw) and M(e1,...,ew)( f1, . . . , fi−1, f ′i , fi+1, . . . , fw) are related by column el-
ementary operations. Thus, their determinants are the same modulo a multiplicative factor of
αi. This proves item 1. The proof of item 2 follows from the fact that for any f ∈ F[x] we have
( ∂̄ f

∂̄xe )(x + 1) = (∂̄ f (x+1)
∂̄xe )(x). Also, item 3 follows directly by expanding out the determinant.

Equipped with this proposition, we will now show that if f1, . . . , fw are linearly indepen-
dent over F, then there exist monomials xe1 , . . . , xew such that W(xe1 ,...,xew )( f1, . . . , fw) 6= 0 and
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deg (xei) < i.

Proof of Theorem 6.1. Using Proposition B.1-Item 1 we can WLOG assume that each fi has a distinct
minimum monomial. We can take an appropriate linear combination of the fis of the form fi ←
fi + ∑j 6=i αj f j (this preserves linear independence) to clear out a minimum monomial if it repeats.
Hence, the minimal monomials f̃is are all distinct. Further, by reordering if necessary we can
assume that f̃is are in increasing order according to .. Now, using Proposition B.1-Item 3, we are
left to show that there are xe1 , . . . , xew such that deg (xei) < i and W(e1,...,ew)( f̃1, . . . , f̃w) 6= 0. To
show this first we massage the monomials in the following manner.

1. Set t← 0 and for all i ∈ [w] let `0
i ← f̃i.

2. While (∃i : |`t
i | ≥ i):

(a) For all i let gt+1
i = `t

i(x + 1).

(b) Take appropriate linear combinations of the form gt+1
i ← gt+1

i −∑j<i αj · gt+1
j to ensure

that all g̃t+1
i s are distinct.

(c) For all i set `t+1
i ← g̃t+1

i . Reorder to ensure that `t+1
i s are in increasing order wrt ..

(d) t← t + 1.

We will now show that the while loop terminates in at most w steps and at the end we have
|`t

i | < i for all i ∈ [w]. Suppose we enter the while loop at a particular value of t. Let i∗ be the
first index such that |`t

i | ≥ i. Observe that gt+1
i∗ will include all monomials xe′ such that e′ ≤ e

where `t
i∗ = xe. This is because the characteristic of F is larger than the maximum individual

degree. Hence, at time t + 1 we will have |`t+1
j | < j for all j ≤ i∗: for j < i∗ step 2(b) does not

increase the degree of gt+1
j and for j = i∗ the minimal monomial g̃t+1

i∗ will be of degree less than i∗

as gt+1
i∗ includes a monomial of degree i∗ − 1 which does not occur in any gt+1

j for j < i∗. Thus at
termination, we have |`t

i | < i for all i ∈ [w] and further the `t
is are all distinct monomials and in

increasing order.
Also, by Proposition B.1 we have that if We1,...,ew(`

t+1
1 , . . . , `t+1

w ) 6= 0, then, We1,...,ew(`
t
1, . . . , `t

w) 6=
0. At termination set `i = `t

i . Hence, we are left to show that there are xe1 , . . . , xew such that
deg (xei) < i and W(e1,...,ew)(`1, . . . , `w) 6= 0. Towards this end observe that the matrix M(`1,...,`w)(`1, . . . , `w)

is upper triangular with all the diagonal entries as 1. For contradiction suppose that i > j and
∂̄`i
∂̄`j
6= 0: then `j > `i which is a contradiction. Hence, W(`1,...,`w)(`1, . . . , `w) = 1. Thus, letting

xei = `i for all i ∈ [w] gives us the requisite monomials xei .
The other direction that if there are monomials xe1 , . . . , xew such that W(xe1 ,...,xew )( f1, . . . , fw) 6= 0

then f1, . . . , fw are linearly independent, is simpler. Suppose the fis are linearly dependent and in
particular, ∑i αi fi be a non-trivial linear combination which is zero. Due to linearity of Hasse
derivatives we have (α1, . . . , αw) ∈ ker (M(xe1 ,...,xew )( f1, . . . , fw)). This completes the proof of The-
orem 6.1.
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