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Abstract

H̊astad showed that any De Morgan formula (composed of AND, OR and NOT gates) shrinks
by a factor of O(p2) under a random restriction that leaves each variable alive independently

with probability p [SICOMP, 1998]. Using this result, he gave an Ω̃(n3) formula size lower bound
for the Andreev function, which, up to lower order improvements, remains the state-of-the-art
lower bound for any explicit function.

In this work, we extend the shrinkage result of H̊astad to hold under a far wider family of
random restrictions and their generalization — random projections. Based on our shrinkage
results, we obtain an Ω̃(n3) formula size lower bound for an explicit function computed in AC0.
This improves upon the best known formula size lower bounds for AC0, that were only quadratic
prior to our work. In addition, we prove that the KRW conjecture [Karchmer et al., Compu-
tational Complexity 5(3/4), 1995] holds for inner functions for which the unweighted quantum
adversary bound is tight. In particular, this holds for inner functions with a tight Khrapchenko
bound.

Our random projections are tailor-made to the function’s structure so that the function
maintains structure even under projection — using such projections is necessary, as standard
random restrictions simplify AC0 circuits. In contrast, we show that any De Morgan formula
shrinks by a quadratic factor under our random projections, allowing us to prove the cubic lower
bound.

Our proof techniques build on the proof of H̊astad for the simpler case of balanced formulas.
This allows for a significantly simpler proof at the cost of slightly worse parameters. As such,
when specialized to the case of p-random restrictions, our proof can be used as an exposition of
H̊astad’s result.

1 Introduction

1.1 Background

Is there an efficient computational task that cannot be perfectly parallelized? Equivalently, is
P 6⊆ NC1? The answer is still unknown. The question can be rephrased as follows: is there a
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function in P that does not have a (De Morgan) formula of polynomial size?
The history of formula lower bounds for functions in P goes back to the 1960s, with the sem-

inal result of Subbotovskaya [Sub61] that introduced the technique of random restrictions. Sub-
botovskaya showed that the Parity function on n variables requires formulas of size at least Ω(n1.5).
Khrapchenko [Khr72], using a different proof technique, showed that in fact the Parity function on
n variables requires formulas of size Θ(n2). Later, Andreev [And87] came up with a new explicit
function (now known as the Andreev function) for which he was able to obtain an Ω(n2.5) size lower
bound. This lower bound was subsequently improved by [IN93, PZ93, H̊as98, Tal14] to n3−o(1).

The line of work initiated by Subbotovskaya and Andreev relies on the shrinkage of formulas
under p-random restrictions. A p-random restriction is a randomly chosen partial assignment to
the inputs of a function. Set a parameter p ∈ (0, 1). We fix each variable independently with
probability 1 − p to a uniformly random bit, and we keep the variable alive with probability p.
Under such a restriction, formulas shrink (in expectation) by a factor more significant than p.
Subbotovskaya showed that De Morgan formulas shrink to at most p1.5 times their original size,
whereas subsequent works of [PZ93, IN93] improved the bound to p1.55 and p1.63, respectively.
Finally, H̊astad [H̊as98] showed that the shrinkage exponent of De Morgan formulas is 2, or in
other words, that De Morgan formulas shrink by a factor of p2−o(1) under p-random restrictions.
Tal [Tal14] improved the shrinkage factor to O(p2) — obtaining a tight result, as exhibited by the
Parity function.

In a nutshell, shrinkage results are useful to proving lower bounds as long as the explicit function
being analyzed maintains structure under such restrictions and does not trivialize. For example,
the Parity function does not become constant as long as at least one variable remains alive. Thus
any formula F that computes Parity must be of at least quadratic size, or else the formula F under
restriction, keeping each variable alive with probability 100/n, would likely become a constant
function, whereas Parity would not. Andreev’s idea is similar, though he manages to construct a
function such that under a random restriction keeping only Θ(log n) of the variables, the formula
size should be at least Ω̃(n) (in expectation). This ultimately gives the nearly cubic lower bound.

The KRW Conjecture. Despite much effort, proving P 6⊆ NC1, and even just breaking the
cubic barrier in formula lower bounds, have remained a challenge for more than two decades. An
approach to solve the P versus NC1 problem was suggested by Karchmer, Raz and Wigderson
[KRW95]. They conjectured that when composing two Boolean functions, f and g, the formula
size of the resulting function, f � g, is (roughly) the product of the formula sizes of f and g.1 We
will refer to this conjecture as the “KRW conjecture”. Under the KRW conjecture (and even under
weaker variants of it), [KRW95] constructed a function in P with no polynomial-size formulas. It
remains a major open challenge to settle the KRW conjecture.

A few special cases of the KRW conjecture are known to be true. The conjecture holds when
either f or g is the AND or the OR function. H̊astad’s result [H̊as98] and its improvement [Tal14]
show that the conjecture holds when the inner function g is the Parity function and the outer
function f is any function. This gives an alternative explanation to the n3−o(1) lower bound for
the Andreev function. Indeed, the Andreev function is at least as hard as the composition of a
maximally-hard function f on log n bits and g = Parityn/ logn, where the formula size of f is Ω̃(n)

and the formula size of Parityn/ logn is Θ(n2/ log2 n). Since the KRW conjecture holds for this special

1More precisely, the original KRW conjecture [KRW95] concerns depth complexity rather than formula complexity.
The variant of the conjecture for formula complexity, which is discussed above, was posed in [GMWW17].
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case, the formula size of the Andreev function is at least Ω̃(n3). In other words, the state-of-the-art
formula size lower bounds for explicit functions follow from a special case of the KRW conjecture
— the case in which g is the Parity function. Moreover, this special case follows from the shrinkage
of De Morgan formulas under p-random restrictions.

Bottom-Up versus Top-Down Techniques. Whereas random restrictions are a “bottom-
up” proof technique [HJP95], a different line of work suggested a “top-down” approach using the
language of communication complexity. The connection between formula size and communication
complexity was introduced in the seminal work of Karchmer and Wigderson [KW90]. They defined
for any Boolean function f a two-party communication problem KW f : Alice gets an input x such
that f(x) = 1, and Bob gets an input y such that f(y) = 0. Their goal is to identify a coordinate
i on which xi 6= yi, while minimizing their communication. It turns out that there is a one-to-one
correspondence between any protocol tree solving KW f and any formula computing the function
f . Since protocols naturally traverse the tree from root to leaf, proving lower bounds on their size
or depth is done usually in a top-down fashion. This framework has proven to be very useful in
proving formula lower bounds in the monotone setting (see, e.g., [KW90, GH92, RW92, KRW95,
RM99, GP18, PR17]) and in studying the KRW conjecture (see, e.g., [KRW95, EIRS01, HW93,
GMWW17, DM18, KM18, Mei20, dRMN+20, MS20]). Moreover, a recent work by Dinur and
Meir [DM18] was able to reprove H̊astad’s cubic lower bound using the framework of Karchmer
and Wigderson. As Dinur and Meir’s proof showed that top-down techniques can replicate H̊astad’s
cubic lower bound, a natural question (which motivated this project) arose:

Are top-down techniques superior to bottom-up techniques?

Towards that, we focused on a candidate problem: prove a cubic lower bound for an explicit
function in AC0.2 Based on the work of Dinur and Meir [DM18], we suspected that such a lower
bound could be achieved using top-down techniques. We were also certain that the problem cannot
be solved using the random restriction technique. Indeed, in order to prove a lower bound on
a function f using random restrictions, one should argue that f remains hard under a random
restriction, however, it is well-known that functions in AC0 trivialize under p-random restrictions
[Ajt83, FSS84, Yao85, H̊as86]. Based on this intuition, surely random restrictions cannot show that
a function in AC0 requires cubic size. Our intuition turned out to be false.

1.2 Our results

In this work, we construct an explicit function in AC0 which requires De Morgan formulas of size
n3−o(1). Surprisingly, our proof is conducted via the bottom-up technique of random projections,
which is a generalization of random restrictions (more details below).

Theorem 1.1. There exists a family of Boolean functions hn : {0, 1}n → {0, 1} for n ∈ N such
that

1. hn can be computed by uniform depth-4 unbounded fan-in formulas of size O(n3).

2. The formula size of hn is at least n3−o(1).

2Recall that AC0 is the class of functions computed by constant depth polynomial size circuits composed of AND
and OR gates of unbounded fan-in, with variables or their negation at the leaves.
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Prior to our work, the best formula size lower bounds on an explicit function in AC0 were only
quadratic [Nec66, CKK12, Juk12, BM12].

Our hard function is a variant of the Andreev function. More specifically, recall that the
Andreev function is based on the composition f � g, where f is a maximally-hard function and g
is the Parity function. Since Parity is not in AC0, we cannot take g to be the Parity function in
our construction. Instead, our hard function is obtained by replacing the Parity function with the
Surjectivity function of [BM12].

As in the case of the Andreev function, we establish the hardness of our function by proving
an appropriate special case of the KRW conjecture. To this end, we introduce a generalization
of the complexity measure of Khrapchenko [Khr72], called the min-entropy Khrapchenko bound.
We prove the KRW conjecture for the special case in which the outer function f is any function,
and g is a function whose formula complexity is bounded tightly by the min-entropy Khrapchenko
bound. We then obtain Theorem 1.1 by applying this version of the KRW conjecture to the case
where g is the Surjectivity function. We note that our KRW result also implies the known lower
bounds in the cases where g is the Parity function [H̊as98] and the Majority function [GTN19].

Our KRW result in fact applies more generally, to functions g whose formula complexity is
bounded tightly by the “soft-adversary method”, denoted Advs(g), which is a generalization of
Ambainis’ unweighted adversary method [Amb02] (see Section 6.2).

Our proof of the special case of the KRW conjecture follows the methodology of H̊astad [H̊as93],
who proved the special case in which g is Parity on m variables. H̊astad proved that De Morgan
formulas shrink by a factor of (roughly) p2 under p-random restrictions. Choosing p = 1/m shrinks
a formula for f � g by a factor of roughly m2, which coincides with the formula complexity of g.
On the other hand, on average each copy of g simplifies to a single input variable, and so f � g
simplifies to f . This shows that L(f � g) & L(f) · L(g).

Our main technical contribution is a new shrinkage theorem that works in a far wider range of
scenarios than just p-random restrictions. Given a function g with soft-adversary bound Advs(g),
we construct a random projection3 which, on the one hand, shrinks De Morgan formulas by a factor
of Advs(g), and on the other hand, simplifies f �g to f . We thus show that L(f �g) & L(f)·Advs(g),
and in particular, if Advs(g) ≈ L(g), then L(f � g) & L(f) · L(g), just as in H̊astad’s proof. Our
random projections are tailored specifically to the structure of the function f � g, ensuring that
f � g simplifies to f under projection. This enables us to overcome the aforementioned difficulty.
In contrast, p-random restrictions that do not respect the structure of f � g would likely result in a
restricted function that is much simpler than f and in fact would be a constant function with high
probability.

Our shrinkage theorem applies more generally to two types of random projections, which we call
fixing projections and hiding projections. Fixing projections are random projections in which fixing
the value of a variable results in a projection which is much more probable. Hiding projections are
random projections in which fixing the value of a variable hides which coordinates it appeared on.
We note that our shrinkage theorem for fixing projections captures H̊astad’s result for p-random
restrictions as a special case.

The proof of our shrinkage theorem is based on H̊astad’s proof [H̊as98], but also simplifies it.
In particular, we take the simpler argument that H̊astad uses for the special case of completely
balanced trees, and adapt it to the general case. As such, our proof avoids a complicated case

3A projection is a mapping from the set of the variables {x1, . . . , xn} to the set {y1, . . . , ym, y1, . . . , ym, 0, 1}, where
y1, . . . , ym are formal variables.
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analysis, at the cost of slightly worse bounds. Using our bounds, it is nevertheless easy to obtain
the n3−o(1) lower bound for the Andreev function. Therefore, one can see the specialization of our
shrinkage result to p-random restrictions as an exposition of H̊astad’s cubic lower bound.

An example: our techniques when specialized to f �Majoritym. To illustrate our choice of
random projections, we present its instantiation to the special case of f�g, where f : {0, 1}k → {0, 1}
is non-constant and g = Majoritym for some odd integer m. In this case, the input variables to
f � g are composed of k disjoint blocks, B1, . . . , Bk, each containing m variables. We use the
random projection that for each block Bi = {xm(i−1)+1, . . . , xmi}, picks one variable in the block
Bi uniformly at random, projects this variable to the new variable yi, and fixes the rest of the
variables in the block in a balanced way so that the number of zeros and ones in the block is equal
(i.e., we have exactly (m − 1)/2 zeros and (m − 1)/2 ones). It is not hard to see that under this
choice, f � g simplifies to f . On the other hand, we show that this choice of random projections
shrinks the formula complexity by a factor of ≈ 1/m2. Combining the two together, we get that
L(f �Majoritym) & L(f) ·m2. Note that in this distribution of random projections, the different
coordinates are not independent of one another, and this feature allows us to maintain structure.

1.3 Related work

Our technique of using tailor-made random projections was inspired by the celebrated result of
Rossman, Servedio, and Tan [RST15, HRST17] that proved an average-case depth hierarchy. In
fact, the idea to use tailor-made random restrictions goes back to H̊astad’s thesis [H̊as87, Chap-
ter 6.2]. Similar to our case, in [H̊as87, RST15, HRST17], p-random restrictions are too crude to
separate depth d from depth d+ 1 circuits. Given a circuit C of depth d+ 1, the main challenge is
to construct a distribution of random restrictions or projections (tailored to the circuit C) that on
the one hand maintains structure for C, but on the other hand simplify any depth d circuit C ′.

Paper outline

The paper starts with brief preliminaries in Section 2. We prove our shrinkage theorem for fixing
projections in Section 3, and our shrinkage theorem for hiding projections in Section 4. In Section 5
we provide a brief interlude on concatenation of projections. Khrapchenko’s method, the quantum
adversary bound and their relation to hiding projections are discussed in Section 6. Finally, Sec-
tion 7 contains a proof of Theorem 1.1, as a corollary of a more general result which is a special case
of the KRW conjecture. In the same section we also rederive the cubic lower bound on Andreev’s
function, and the cubic lower bound on the Majority-based variant considered in [GTN19].

2 Preliminaries

Throughout the paper, we use bold letters to denote random variables. For any n ∈ N, we denote
by [n] the set {1, . . . , n}. Given a bit σ ∈ {0, 1}, we denote its negation by σ. We assume familiarity
with the basic definitions of communication complexity (see, e.g., [KN97]). All logarithms in this
paper are base 2.

Definition 2.1. A (De Morgan) formula (with bounded fan-in) is a binary tree, whose leaves are
labeled with literals from the set {x1, x1, . . . , xn, xn}, and whose internal vertices are labeled as
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AND (∧) or OR (∨) gates. The size of a formula φ, denoted size(φ), is the number of leaves in
the tree. The depth of the formula is the depth of the tree. A formula with unbounded fan-in is
defined similarly, but every internal vertex in the tree can have any number of children. Unless
stated explicitly otherwise, whenever we say “formula” we refer to a formula with bounded fan-in.

Definition 2.2. A formula φ computes a Boolean function f : {0, 1}n → {0, 1} in the natural way.
The formula complexity of a Boolean function f : {0, 1}n → {0, 1}, denoted L(f), is the size of
the smallest formula that computes f . The depth complexity of f , denoted D(f), is the smallest
depth of a formula that computes f . For convenience, we define the size and depth of the constant
function to be zero.

A basic property of formula complexity is that it is subadditive:

Fact 2.3. For every two functions f1, f2 : {0, 1}n → {0, 1} it holds that L(f1 ∧ f2) ≤ L(f1) +L(f2)
and L(f1 ∨ f2) ≤ L(f1) + L(f2).

The following theorem shows that every small formula can be “balanced” to obtain a shallow
formula.

Theorem 2.4 (Formula balancing, [BB94], following [Spi71, Bre74]). For every α > 0, the following

holds: For every formula φ of size s, there exists an equivalent formula φ′ of depth at most O(2
1
α ·

log s) and size at most s1+α.

Notation 2.5. With a slight abuse of notation, we will often identify a formula φ with the func-
tion it computes. In particular, the notation L(φ) denotes the formula complexity of the function
computed by φ, and not the size of φ (which is denoted by size(φ)).

Notation 2.6. Given a Boolean variable z, we denote by z0 and z1 the literals z and z, respectively.
In other words, zb = z ⊕ b.

Notation 2.7. Given a literal `, we define var(`) to be the underlying variable, that is, var(z) =
var(z) = z.

Notation 2.8. Let Π be a deterministic communication protocol that takes inputs from A × B,
and recall that the leaves of the protocol induce a partition of A× B to combinatorial rectangles.
For every leaf ` of Π, we denote by A` × B` the combinatorial rectangle that is associated with `.

We use the framework of Karchmer–Wigerson relations [KW90], which relates the complexity
of f to the complexity of a related communication problem KW f .

Definition 2.9 ([KW90]). Let f : {0, 1}n → {0, 1} be a Boolean function. The Karchmer–
Wigderson relation of f , denoted KW f , is the following communication problem: The inputs
of Alice and Bob are strings a ∈ f−1(1) and b ∈ f−1(0), respectively, and their goal is to find a co-
ordinate i ∈ [n] such that ai 6= bi. Note that such a coordinate must exist since f−1(1)∩f−1(0) = ∅
and hence a 6= b.

Theorem 2.10 ([KW90], see also [Raz90]). Let f : {0, 1}n → {0, 1}. The communication com-
plexity of KW f is equal to D(f), and the minimal number of leaves in a protocol that solves KW f

is L(f).

We use the following two standard inequalities.
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Fact 2.11 (the AM-GM inequality). For every two non-negative real numbers x, y it holds that√
x · y ≤ x+y

2 .

Fact 2.12 (special case of Cauchy-Schwarz inequality). For every t non-negative real numbers
x1, . . . , xt it holds that

√
x1 + . . .+

√
xt ≤

√
t ·
√
x1 + . . .+ xt.

Proof. It holds that
√
x1+. . .+

√
xt ≤

√
12 + . . .+ 12·

√
(
√
x1)2 + . . .+ (

√
xt)2 =

√
t·
√
x1 + . . .+ xt,

as required.

3 Shrinkage theorem for fixing projections

In this section we prove our main result on the shrinkage of De Morgan formulas under fixing
projections, which we define below. We start by defining projections and the relevant notation.

Definition 3.1. Let x1, . . . , xn and y1, . . . , ym be Boolean variables. A projection π from x1, . . . , xn
to y1, . . . , ym is a function from the set {x1, . . . , xn} to the set {0, 1, y1, y1, . . . , ym, ym}. Given such
a projection π and a Boolean function f : {0, 1}n → {0, 1} over the variables x1, . . . , xn, we denote
by f |π : {0, 1}m → {0, 1} the function obtained from f by substituting each input variable xi with
π(xi) in the natural way. Unless stated explicitly otherwise, all projections in this section are from
x1, . . . , xn to y1, . . . , ym, and all functions from {0, 1}n to {0, 1} are over the variables x1, . . . , xn.
A random projection is a distribution over projections.

Notation 3.2. Let π be a projection. For every j ∈ [m] and bit σ ∈ {0, 1}, we denote by πyj←σ
the projection that is obtained from π by substituting yj with σ.

Notation 3.3. With a slight abuse of notation, if a projection π maps all the variables x1, . . . , xn
to constants in {0, 1}, we will sometimes treat it as a binary string in {0, 1}n.

We use a new notion of random projections, which we call q-fixing projections. Intuitively, a q-
fixing projection is a random projection in which for every variable xi, the probability that π maps a
variable xi to a literal is not much larger than the probability that π fixes that literal to a constant,
regardless of the values that π assigns to the other variables. This property is essentially the minimal
property that is required in order to carry out the argument of H̊astad [H̊as98]. Formally, we define
q-fixing projections as follows.

Definition 3.4. Let 0 ≤ q0, q1 ≤ 1. We say that a random projection π is a (q0, q1)-fixing projection
if for every projection π, every bit σ ∈ {0, 1}, and every variable xi, it holds that

Pr
[
π(xi) /∈ {0, 1} and πvar(π(xi))←σ = π

]
≤ qσ · Pr[π = π] . (1)

For shorthand, we say that π is a q-fixing projection, for q =
√
q0q1.

If needed, one can consider without loss of generality only variables xi such that π(xi) ∈ {0, 1},
as otherwise Equation (1) holds trivially with the left-hand side equaling zero.

Example 3.5. In order to get intuition for the definition of fixing projections, let us examine
how this definition applies to random restrictions. In our terms, a restriction is a projection from
x1, . . . , xn to x1, . . . , xn that maps every variable xi either to itself or to {0, 1}. Suppose that ρ is
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any distribution over restrictions, and that ρ is some fixed restriction. In this case, the condition
of being q-fixing can be rewritten as follows:

Pr
[
ρ(xi) = xi and ρxi←σ = ρ

]
≤ qσ · Pr[ρ = ρ] .

Denote by ρ′, ρ′ the restrictions obtained from ρ, ρ by truncating xi (i.e., ρ′ = ρ|{x1,...,xn}−{xi}).
Using this notation, we can rewrite the foregoing equation as

Pr
[
ρ(xi) = xi and ρ′ = ρ′ and ρxi←σ(xi) = ρ(xi)

]
≤ qσ · Pr

[
ρ(xi) = ρ(xi) and ρ′ = ρ′

]
.

Now, observe that it is always the case ρxi←σ(xi) = σ, and therefore the probability on the left-
hand side is non-zero only if ρ(xi) = σ. Hence, we can restrict ourselves to the latter case, and the
foregoing equation can be rewritten again as

Pr
[
ρ(xi) = xi and ρ′ = ρ′

]
≤ qσ · Pr

[
ρ(xi) = σ and ρ′ = ρ′

]
.

Finally, if we divide both sides by Pr[ρ′ = ρ′], we obtain the following intuitive condition:

Pr
[
ρ(xi) = xi | ρ′ = ρ′

]
≤ qσ · Pr

[
ρ(xi) = σ | ρ′ = ρ′

]
.

This condition informally says the following: ρ is a fixing projection if the probability of leaving xi
unfixed is at most qσ times the probability of fixing it to σ, and this holds regardless of what the
restriction assigns to the other variables.

In particular, it is now easy to see that the classic random restrictions are fixing projections.
Recall that a p-random restriction fixes each variable independently with probability 1 − p to a
random bit. Due to the independence of the different variables, the foregoing condition simplifies
to

Pr
[
ρ(xi) = x′i

]
≤ qσ · Pr[ρ(xi) = σ] ,

and it is easy to see that this condition is satisfied for q0 = q1 = 2p
1−p .

We prove the following shrinkage theorem for q-fixing projections, which is analogous to the shrink-
age theorem of [H̊as98] for random restrictions in the case of balanced formulas.

Theorem 3.6 (Shrinkage under fixing projections). Let φ be a formula of size s and depth d, and
let π be a q-fixing projection. Then

E [L(φ|π)] = O
(
q2 · d2 · s+ q ·

√
s
)
.

Our shrinkage theorem has somewhat worse parameters compared to the theorem of [H̊as98]:
specifically, the factor of d2 does not appear in [H̊as98]. The reason is that the proof of [H̊as98]
uses a fairly-complicated case-analysis in order to avoid losing that factor, and we chose to skip
this analysis in order to obtain a simpler proof. We did not check if the factor of d2 in our result
can be avoided by using a similar case-analysis. By applying formula balancing (Theorem 2.4) to
our shrinkage theorem, we can obtain the following result, which is independent of the depth of the
formula.

Corollary 3.7. Let f : {0, 1}n → {0, 1} be a function with formula complexity s, and let π be a
q-fixing projection. Then

E [L(f |π)] = q2 · s1+O
(

1√
log s

)
+ q · s1/2+O

(
1√
log s

)
.
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Proof. By assumption, there exists a formula φ of size s that computes f . We balance the formula φ
by applying Theorem 2.4 with α = 1√

log s
, and obtain a new formula φ′ that computes f and has

size s
1+ 1√

log s and depth O(2
√

log s · log s) = s
O( 1√

log s
)
. The required result now follows by applying

Theorem 3.6 to φ′.

3.1 Proof of Theorem 3.6

In this section, we prove our main shrinkage theorem, Theorem 3.6. Our proof is based on the ideas
of [H̊as98], but the presentation is different. Fix a formula φ of size s and depth d, and let π be a q-
fixing projection. We would like to upper-bound the expectation of L(φ|π). As in [H̊as98], we start
by upper-bounding the probability that the projection π shrinks a formula to size 1. Specifically,
we prove the following lemma in Section 3.2.

Lemma 3.8. Let f : {0, 1}n → {0, 1} be a Boolean function, and let π be a q-fixing projection.
Then,

Pr[L(f |π) = 1] ≤ q ·
√
L(f).

Next, we show that to upper-bound the expectation of L(φ|π), it suffices to upper-bound the
probability that the projection π shrinks two formulas to size 1 simultaneously. In order to state
this claim formally, we introduce some notation.

Notation 3.9. Let g be a gate of φ. We denote the depth of g in φ by depthφ(g) (the root has
depth 0), and omit φ if it is clear from context. If g is an internal node, we denote the sub-formulas
that are rooted in its left and right children by left(g) and right(g), respectively.

We prove the following lemma, which says that in order to upper-bound L(φ|π) it suffices to
upper-bound, for every internal gate g, the probability that left(g) and right(g) shrink to size 1
under π.

Lemma 3.10. For every projection π it holds that

L(φ|π) ≤
∑

internal gate g of φ

(depth(g) + 2) · 1{L(left(g)|π)=1 and L(right(g)|π)=1} + 1L(φ|π)=1.

We would like to use Lemmas 3.8 and 3.10 to prove the shrinkage theorem. As a warm-up,
let us make the simplifying assumption that for every two functions f1, f2 : {0, 1}n → {0, 1}, the
events L(f1|π) = 1 and L(f2|π) = 1 are independent. If this was true, we could have upper-
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bounded E [L(φ|π)] as follows:

E [L(φ|π)] ≤
∑

int. gate g of φ

(depth(g) + 2) · E
[
1{L(left(g)|π)=1 and L(right(g)|π)=1}

]
(Lemma 3.10)

+ E
[
1L(φ|π)=1

]
≤ (d+ 2) ·

∑
int. gate g of φ

Pr[L(left(g)|π) = 1 and L(right(g)|π) = 1] (φ is of depth d)

+ E
[
1L(φ|π)=1

]
= (d+ 2) ·

∑
int. gate g of φ

Pr[L(left(g)|π) = 1] · Pr[L(right(g)|π) = 1] (simplifying assumption)

+ E
[
1L(φ|π)=1

]
≤ (d+ 2) ·

∑
int. gate g of φ

q2 ·
√
L(left(g)) · L(right(g)) + q ·

√
s (Lemma 3.8)

≤ q2 · (d+ 2) ·
∑

int. gate g of φ

(L(left(g)) + L(right(g))) + q ·
√
s (AM–GM inequality)

≤ q2 · (d+ 2) ·
∑

int. gate g of φ

(size(left(g)) + size(right(g))) + q ·
√
s

= q2 · (d+ 2) ·
∑

int. gate g of φ

size(g) + q ·
√
s.

The last sum counts every leaf ` of φ once for each internal ancestor of `, so the last expression is
equal to

q2 · (d+ 2) ·
∑

leaf ` of φ

depth(`) + q ·
√
s

≤ q2 · (d+ 2) ·
∑

leaf ` of φ

d+ q ·
√
s

= q2 · (d+ 2) · d · s+ q ·
√
s

= O
(
q2 · d2 · s+ q ·

√
s
)
,

which is the bound we wanted. However, the above calculation only works under our simplifying
assumption, which is false: the events L(f1|π) = 1 and L(f2|π) = 1 will often be dependent. In
particular, in order for the foregoing calculation to work, we need to the following inequality to
hold:

Pr[L(f2|π) = 1 | L(f1|π) = 1] ≤ q ·
√
L(f2).

This inequality holds under our simplifying assumption by Lemma 3.8, but may not hold in general.
Nevertheless, we prove the following similar statement in Section 3.3.

Lemma 3.11. Let π be a q-fixing projection. Let f1, f2 : {0, 1}n → {0, 1}, let σ, τ ∈ {0, 1}, and let
yj be a variable. Then,

Pr
[
L(f2|πyj←σ) = 1

∣∣∣ f1|π = yτj

]
≤ q ·

√
L(f2).

10



Intuitively, Lemma 3.11 breaks the dependency between the events L(f1|π) = 1 and L(f2|π) = 1
by fixing in f2 the single literal to which f1 has shrunk. We would now like to use Lemma 3.11
to prove the theorem. To this end, we prove an appropriate variant of Lemma 3.10, which allows
using the projection πyj←σ rather than π in the second function. This variant is motivated by the
following “one-variable simplification rules” of [H̊as98], which are easy to verify.

Fact 3.12 (one-variable simplification rules). Let h : {0, 1}m → {0, 1} be a function over the
variables y1, . . . , ym, and let σ ∈ {0, 1}. We denote by hyj←σ the function obtained from h by
setting yj to the bit σ. Then:

� The function yσj ∨ h is equal to the function yσj ∨ hyj←σ.

� The function yσj ∧ h is equal to the function yσj ∧ hyj←σ.

In order to use the simplification rules, we define, for every internal gate g of φ and projection π,
an event Eg,π as follows: if g is an OR gate, then Eg,π is the event that there exists some literal yσj
(for σ ∈ {0, 1}) such that left(g)|π = yσj and L(right(g)|πyj←σ) = 1. If g is an AND gate, then Eg,π
is defined similarly, except that we replace πyj←σ with πyj←σ. We have the following lemma, which
is proved in Section 3.4.

Lemma 3.13. For every projection π it holds that

L(φ|π) ≤
∑

internal gate g of φ

(depth(g) + 2) · 1Eg,π + 1L(φ|π)=1.

We can now use the following corollary of Lemma 3.11 to replace our simplifying assumption.

Corollary 3.14. For every internal gate g of φ it holds that

Pr[Eg,π] ≤ q2 ·
√
L(left(g)) · L(right(g)).

Proof. Let g be an internal gate of φ. We prove the corollary for the case where g is an OR gate,
and the proof for the case that g is an AND gate is similar. It holds that

Pr[Eg,π] = Pr
[
∃ literal yσj : left(g)|π = yσj and L(right(g)|πyj←σ) = 1

]
=

∑
literal yσj

Pr
[
left(g)|π = yσj and L(right(g)|πyj←σ) = 1

]
=

∑
literal yσj

Pr
[
L(right(g)|πyj←σ) = 1

∣∣∣ left(g)|π = yσj

]
· Pr
[
left(g)|π = yσj

]
≤ q ·

√
L(right(g)) ·

∑
literal yσj

Pr
[
left(g)|π = yσj

]
(Lemma 3.11)

= q ·
√
L(right(g)) · Pr[L(left(g)|π) = 1]

≤ q2 ·
√
L(left(g)) · L(right(g)), (Lemma 3.8)

as required.
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The shrinkage theorem now follows using the same calculation as above, replacing Lemma 3.10
with Lemma 3.13 and the simplifying assumption with Corollary 3.14:

E [L(φ|π)] ≤ q ·
√
s+ (d+ 2) ·

∑
internal gate g of φ

Pr[Eg,π] (Lemma 3.13)

≤ q2 · (d+ 2) ·
∑

internal gate g of φ

√
L(left(g)) · L(right(g)) + q ·

√
s (Corollary 3.14)

≤ q2 · (d+ 2) ·
∑

internal gate g of φ

(L(left(g)) + L(right(g))) + q ·
√
s (AM–GM inequality)

= q2 · (d+ 2) ·
∑

internal gate g of φ

size(g) + q ·
√
s

≤ O(q2 · d2 · s+ q ·
√
s).

In the remainder of this section, we prove Lemmas 3.8, 3.11 and 3.13.

Remark 3.15. In this paper, we do not prove Lemma 3.10, since we do not actually need it for our
proof. However, this lemma can be established using the proof of Lemma 3.13, with some minor
changes.

3.2 Proof of Lemma 3.8

Let f : {0, 1}n → {0, 1}, and let E be the set of projections π such that L(f |π) = 1. We prove that
the probability that π ∈ E is at most q ·

√
L(f). Our proof follows closely the proof of [H̊as98,

Lemma 4.1].
Let Π be a protocol that solves KW f and has L(f) leaves (such a protocol exists by The-

orem 2.10). Let A and B be the sets of projections π for which f |π is the constants 1 and 0,
respectively. We extend the protocol Π to take inputs from A × B as follows: when Alice and
Bob are given as inputs the projections πA ∈ A and πB ∈ B, respectively, they construct strings
a, b ∈ {0, 1}n from πA, πB by substituting 0 in all the variables y1, . . . , ym, and invoke Π on the
inputs a and b. Observe that a and b are indeed legal inputs for Π (since f(a) = 1 and f(b) = 0).
Moreover, recall that the protocol Π induces a partition of A×B to combinatorial rectangles, and
that we denote the rectangle of the leaf ` by A` × B` (see Notation 2.8).

Our proof strategy is the following: We associate with every projection π ∈ E a leaf of Π,
denoted leaf(π). We consider the two disjoint events E+, E− that correspond to the event that f |π
is a single positive literal or a single negative literal, respectively, and show that for every leaf ` it
holds that

Pr
[
π ∈ E+ and leaf(π) = `

]
≤ q ·

√
Pr[π ∈ A`] · Pr[π ∈ B`] (2)

Pr
[
π ∈ E− and leaf(π) = `

]
≤ q ·

√
Pr[π ∈ A`] · Pr[π ∈ B`]. (3)

Together, the two inequalities imply that

Pr[π ∈ E and leaf(π) = `] ≤ 2q ·
√

Pr[π ∈ A`] · Pr[π ∈ B`].

The desired bound on Pr[π ∈ E ] will follow by summing the latter bound over all the leaves ` of Π.
We start by explaining how to associate a leaf with every projection π ∈ E+. Let π ∈ E+.

Then, it must be the case that f |π = yj for some j ∈ [m]. We define the projections π1 = πyj←1
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and π0 = πyj←0, and observe that π1 ∈ A and π0 ∈ B. We now define leaf(π) to be the leaf to
which Π arrives when invoked on inputs π1 and π0. Observe that the output of Π at leaf(π) must
be a variable xi that satisfies π(xi) ∈

{
yj , yj

}
, and thus πvar(π(xi))←1 = π1.

Next, fix a leaf `. We prove that Pr[π ∈ E+ and leaf(π) = `] ≤ q1 · Pr[π ∈ A`]. Let xi be the
output of the protocol Π at `. Then,

Pr
[
π ∈ E+ and leaf(π) = `

]
≤ Pr

[
π1 ∈ A` and π(xi) /∈ {0, 1} and πvar(π(xi))←1 = π1

]
= Pr

[
π(xi) /∈ {0, 1} and πvar(π(xi))←1 ∈ A`

]
=
∑
π∈A`

Pr
[
π(xi) /∈ {0, 1} and πvar(π(xi))←1 = π

]
≤ q1 ·

∑
π∈A`

Pr[π = π] (since π is (q0, q1)-fixing)

= q1 · Pr[π ∈ A`] .

Similarly, it can be proved that Pr[π ∈ E+ and leaf(π) = `] ≤ q0 · Pr[π ∈ B`]. Together, the two
bounds imply that

Pr
[
π ∈ E+ and leaf(π) = `

]
≤
√
q1 Pr[π ∈ A`] · q0 Pr[π ∈ B`] = q

√
Pr[π ∈ A`] · Pr[π ∈ B`]

for every leaf ` of Π. We define leaf(π) for projections π ∈ E− in an analogous way, and then a
similar argument shows that

Pr
[
π ∈ E− and leaf(π) = `

]
≤ q ·

√
Pr[π ∈ A`] · Pr[π ∈ B`].

It follows that
Pr[π ∈ E and leaf(π) = `] ≤ 2q ·

√
Pr[π ∈ A`] · Pr[π ∈ B`].

Finally, let L denote the set of leaves of Π. It holds that

Pr[π ∈ E ] =
∑
`∈L

Pr[π ∈ E and leaf(π) = `]

≤ 2q ·
∑
`∈L

√
Pr[π ∈ A`] · Pr[π ∈ B`]

≤ 2q ·
√
|L| ·

√∑
`∈L

Pr[π ∈ A`] · Pr[π ∈ B`] (Cauchy-Schwarz – see Fact 2.12)

= 2q ·
√
L(f) ·

√∑
`∈L

Pr[π ∈ A`] · Pr[π ∈ B`].

We conclude the proof by showing that
∑

`∈L Pr[π ∈ A`] ·Pr[π ∈ B`] ≤ 1
4 . To this end, let πA,πB

13



be two independent random variables that are distributed identically to π. Then, it holds that∑
`∈L

Pr[π ∈ A`] · Pr[π ∈ B`] =
∑
`∈L

Pr
[
πA ∈ A`

]
· Pr
[
πB ∈ B`

]
=
∑
`∈L

Pr
[
(πA,πB) ∈ A` × B`

]
(πA,πB are independent)

= Pr
[
(πA,πB) ∈ A× B

]
(A` × B` are a partition ofA× B)

= Pr[πA ∈ A] · Pr[πB ∈ B] (πA,πB are independent)

= Pr[π ∈ A] · Pr[π ∈ B]

≤ Pr[π ∈ A] · (1− Pr[π ∈ A]) . (A,B are disjoint)

It is not hard to check that the last expression is always at most 1
4 .

3.3 Proof of Lemma 3.11

Recall that π is a (q0, q1)-fixing random projection, and that q =
√
q0q1. Let f1, f2 : {0, 1}n →

{0, 1}, let σ, τ ∈ {0, 1}, and let yj be a variable. We would like to prove that

Pr
[
L(f2|πyj←σ) = 1

∣∣∣ f1|π = yτj

]
≤ q ·

√
L(f2). (4)

For simplicity, we focus on the case that f1|π = yj , and the case that f1|π = yj can be dealt
with similarly. The crux of the proof is to show that the random projection πyj←σ is essentially a
(q0, q1)-fixing projection even when conditioned on the event f1|π = yj , and therefore Equation (4)
is implied immediately by Lemma 3.8.

In order to carry out this argument, we first establish some notation. Let I+ = π−1(yj) and
I− = π−1(yj), and denote by π′ the restriction of π to {x1, . . . , xn} \(I+ ∪ I−). We denote by
f2,I+,I− the function over {x1, . . . , xn} \(I+ ∪ I−) that is obtained from f2 by hard-wiring σ and

σ to the variables in I+ and I−, respectively. Observe that f2|πyj←σ = f2,I+,I− |π′ , so it suffices to

prove that for every two disjoint sets I+, I− ⊆ {x1, . . . , xn} it holds that

Pr
[
L(f2,I+,I− |π′) = 1

∣∣∣ f1|π = yj , I
+ = I+, I− = I−

]
≤ q ·

√
L(f2). (5)

Let I+, I− ⊆ {x1, . . . , xn} be disjoint sets, and let I be the event that I+ = I+ and I− = I−.
For convenience, let K = {x1, . . . , xn} \(I+ ∪ I−) and Y = {y1, . . . , ym} \ {yj}, so π′ is a random
projection from K to Y when conditioned on I. To prove Equation (5), it suffices to prove that
π′ is a (q0, q1)-fixing projection when conditioned on the events I and f1|π = yj , and then the
inequality will follow from Lemma 3.8. We first prove that π′ is a (q0, q1)-fixing projection when
conditioning only on the event I (and not on f1|π = yj).

Proposition 3.16. Conditioned on the event I, the projection π′ is a (q0, q1)-fixing projection.

Proof. We prove that π′ satisfies the definition of a fixing projection. Let π′ be a projection from
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K to Y , and let xi ∈ K. Let σ ∈ {0, 1}. It holds that

Pr
[
π′(xi) /∈ {0, 1} and π′var(π′(xi))←σ = π′

∣∣∣ I]
= Pr

[
π(xi) /∈ {0, 1} and πvar(π(xi))←σ|K = π′ and I

]
/Pr[I]

=
∑

π : π|K=π′,π−1(yj)=I
+,

π−1(yj)=I
−

Pr
[
π(xi) /∈ {0, 1} and π|var(π(xi))←σ = π

]
/Pr[I]

≤
∑

π : π|K=π′,π−1(yj)=I
+,

π−1(yj)=I
−

qσ · Pr[π = π]/Pr[I] (since π is (q0, q1)-fixing)

= qσ · Pr
[
π|K = π′ and I

]
/Pr[I]

= qσ · Pr
[
π′ = π′ | I

]
,

as required.

We now prove that π′ remains a (q0, q1)-fixing projection when conditioning on f1|π = yj in
addition to I. The crucial observation is that the event f1|π = yj is essentially a filter, defined
next.

Definition 3.17. A set of projections E from x1, . . . , xn to y1, . . . , ym is a filter if it is closed under
assignment to variables, i.e., if for every π ∈ E , every variable yj , and every bit τ ∈ {0, 1}, it holds
that πyj←τ ∈ E .

It turns out that the property of a projection being a (q0, q1)-fixing projection is preserved when
conditioning on filters. Formally:

Proposition 3.18. Let E be a filter and let π∗ be a (q0, q1)-fixing projection. Then, π∗|E is a
(q0, q1)-fixing projection.

Proof. Let π∗ be a projection, and let xi be a variable. Let σ ∈ {0, 1}. We would like to prove that

Pr
[
π∗(xi) /∈ {0, 1} and π∗var(π∗(xi))←σ = π∗

∣∣∣ π∗ ∈ E] ≤ qσ · Pr[π∗ = π∗ | π∗ ∈ E ] .

If π∗ /∈ E , then both sides of the equation are equal to zero: this is obvious for the right-hand side,
and holds for the left-hand side since if there is a projection π0 ∈ E and a variable yj such that
π0
yj←σ = π∗ then it must be the case that π∗ ∈ E by the definition of a filter. Thus, we may assume

that π∗ ∈ E . Now, it holds that

Pr
[
π∗(xi) /∈ {0, 1} and π∗var(π∗(xi))←σ = π∗

∣∣∣ π∗ ∈ E]
≤ Pr

[
π∗(xi) /∈ {0, 1} and π∗var(π∗(xi))←σ = π∗

]
/Pr[π∗ ∈ E ]

≤ qσ · Pr[π∗ = π∗] /Pr[π∗ ∈ E ] (π∗ is (q0, q1)-fixing)

= qσ · Pr[π∗ = π∗|π∗ ∈ E ] , (π∗ ∈ E)

as required.
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Consider the event f1|π = yj . Viewed as a set of projections from x1, . . . , xn to y1, . . . , ym, this
event is not a filter, since it is not closed under assignments to yj . However, this event is closed
under assignments to all variables except yj : when f1|π = yj , the equality continues to hold even
if the variables in Y are fixed to constants. Moreover, observe that conditioned on I, the event
f1|π = yj depends only on the values that π assigns to K. Thus, we can view the event f1|π = yj
as a set of projections from K to {y1, . . . , ym} \ {yj}, and taking this view, this event is a filter.
Since π′ is a (q0, q1)-fixing projection from K to {y1, . . . , ym} \ {yj} when conditioned on I, we
conclude that it is a (q0, q1)-fixing projection when conditioned on both I and f1|π = yj . It follows
by Lemma 3.8 that

Pr
[
L(f2,I+,I− |π′) = 1

∣∣ f1|π = yj , I
+ = I+, I− = I−

]
≤ q ·

√
L(f2,I+,I−) ≤ q ·

√
L(f2),

as required.

3.4 Proof of Lemma 3.13

Let π be a projection. We prove that

L(φ|π) ≤
∑

internal gate g of φ

(depth(g) + 2) · 1Eg,π + 1L(φ|π)=1,

where Eg,π is the event that there exists some literal yσj such that left(g)|π = yσj and

� L(right(g)|πyj←σ) = 1 if g is an OR gate, or

� L(right(g)|πyj←σ) = 1 if g is an AND gate.

We prove this claim by induction. If φ consists of a single leaf, then the upper bound clearly holds.
Otherwise, the root of φ is an internal gate. Without loss of generality, assume that the root is an
OR gate. We denote the sub-formulas rooted at the left and right children of the root by φ` and
φr, respectively. We consider several cases:

� If L(φ|π) = 1, then the upper bound clearly holds.

� Suppose that L(φ`|π) ≥ 2. By the subadditivity of formula complexity (Fact 2.3), it holds
that

L(φ|π) ≤ L(φ`|π) + L(φr|π).

By the induction hypothesis, it holds that

L(φ`|π) ≤
∑

internal gate g of φ`

(depthφ`(g) + 2) · 1Eg,π + 1L(φ`|π)=1

=
∑

internal gate g of φ`

(depthφ`(g) + 2) · 1Eg,π (L(φ`|π) ≥ 2)

=
∑

internal gate g of φ`

(depthφ(g) + 1) · 1Eg,π ,
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where the equality holds since depthφ`(g) = depthφ(g) − 1 for every gate g of φ`. Since
L(φ`|π) ≥ 2, at least one of the terms in the last sum must be non-zero, so it holds that∑

internal gate g of φ`

(depthφ(g) + 1) · 1Eg,π ≤
∑

internal gate g of φ`

(depthφ(g) + 2) · 1Eg,π − 1.

Next, by the induction hypothesis it holds that

L(φr|π) ≤
∑

internal gate g of φr

(depthφr(g) + 2) · 1Eg,π + 1L(φr|π)=1

≤
∑

internal gate g of φr

(depthφ(g) + 2) · 1Eg,π + 1.

By combining the two bounds, we get that

L(φ|π) ≤ L(φ`|π) + L(φr|π)

≤
∑

internal gate g of φ`

(depthφ(g) + 2) · 1Eg,π − 1

+
∑

internal gate g of φr

(depthφ(g) + 2) · 1Eg,π + 1

≤
∑

internal gate g of φ

(depth(g) + 2) · 1Eg,π

≤
∑

internal gate g of φ

(depth(g) + 2) · 1Eg,π + 1L(φ|π)=1,

as required.

� If L(φr|π) ≥ 2, then we use the same argument of the previous case by exchanging φ` and φr.

� Suppose that L(φ|π) ≥ 2, L(φ`|π) ≤ 1 and L(φr|π) ≤ 1. Then, it must be the case that
L(φ|π) = 2 and also that L(φ`|π) = 1 and L(φr|π) = 1 (or otherwise L(φ|π) = 1). In
particular, φ`|π is equal to some literal yσj . It follows that φ|π = yσj ∨ φr|π, and by the
one-variable simplification rules (Fact 3.12), this function is equal to

yσj ∨ (φr|π)yj←σ = yσj ∨ φr|πyj←σ .

Thus, it must be the case that L(φr|πyj←σ) = 1 (since L(φ|π) = 2). It follows that if we let g
be the root of φ, then the event Eg,π occurs and so

(depth(g) + 2) · 1Eg,π = 2 = L(φ|π),

so the desired upper bound holds.

We proved that the upper bound holds in each of the possible cases, so the required result follows.
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4 Hiding projections

Fixing projections are the most general type of random projection for which our shrinkage theorem
holds. In this section we define a new type of random projections, hiding projections, which are
sometimes easier to understand and construct, and show how to convert them into fixing projections.
Intuitively, a hiding projection is a random projection π in which, when given πyj←σ, it is hard
to tell in which locations the variable yj appears in π. Formally, we define q-hiding projections as
follows.

Definition 4.1. Let 0 ≤ q0, q1 ≤ 1. We say that a random projection π is a (q0, q1)-hiding
projection if for every projection π, every bit σ ∈ {0, 1}, and every variables xi, yj , it holds that

Pr
[
π(xi) ∈ {yj , yj}

∣∣ πyj←σ = π
]
≤ qσ,

whenever the event conditioned on has positive probability. For shorthand, we say that π is a
q-hiding projection, for q =

√
q0q1.

To illustrate the definition, consider the following natural random restriction: given n variables
x1, . . . , xn, the restriction chooses a set of m variables uniformly at random, and fixes all the other
variables to random bits. This restriction is not captured by the notion of p-random restrictions
or by fixing projections, but as we demonstrate next, it can be implemented by hiding projections.
We start with the simple case of k = 1, and then consider the general case.

Example 4.2. In order to implement that case of m = 1, consider the random projection π
from x1, . . . , xn to y that is defined as follows: the projection π chooses an index i ∈ [n] and
a bit τ ∈ {0, 1} uniformly at random, sets π(xi) = yτ , and sets π(xi′) to a random bit for all
i′ ∈ [n] \ {i}. It is clear that π is equivalent to the random restriction described above for m = 1.
We claim that π is a 1

n -hiding projection. To see it, observe that for every bit σ ∈ {0, 1}, the
projection πy←σ is a uniformly distributed string in {0, 1}n, and moreover, this is true conditioned
on any possible value of i. In particular, the random variable i is independent of πy←σ. Therefore,
for every projection π ∈ {0, 1}n and index i ∈ [n] it holds that

Pr[π(xi) ∈ {y, y} | πy←σ = π] = Pr[i = i | πy←σ = π] = Pr[i = i] =
1

n
,

so π satisfies the definition of a (q0, q1)-hiding projection with q0 = q1 = 1
n .

Example 4.3. We turn to consider the case of a general m ∈ N. Let π be the random projection
from x1, . . . , xn to y1, . . . , ym that is defined as follows: the projection π chooses m distinct indices
i1, . . . , im ∈ [n] and m bits τ 1, . . . , τm ∈ {0, 1} uniformly at random, sets π(xij ) = y

τ j
j for every

j ∈ [m], and sets all the other variables xi to random bits. It is clear that π is equivalent to the
random projection described above. We show that π is a 1

n -hiding projection. To this end, we
should show that for every i ∈ [n], j ∈ [m], and σ ∈ {0, 1} it holds that

Pr
[
π(xi) ∈ {yj , yj}

∣∣ πyj←σ = π
]
≤ 1

n
.

For simplicity of notation, we focus on the case where j = m. Now, observe that for every
σ ∈ {0, 1}, the random projection πym←σ is distributed exactly according to the distribution of π
for m − 1. Moreover, the latter assertion is true conditioned on any possible value of im, so the
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random variable im is independent of πym←σ. It follows that for every projection π in the support
of πym←σ and every index i ∈ [n]:

Pr[π(xi) ∈ {ym, ym} | πym←σ = π] = Pr[im = i | πym←σ = π] = Pr[im = i] =
1

n
,

as required.

As mentioned above, hiding projections can be converted to fixing projections. This is captured
by the following result.

Lemma 4.4. Let π be a q-hiding projection from x1, . . . , xn to y1, . . . , ym. Then, there exists an
(4m2 · q)-fixing projection π′ from x1, . . . , xn to y1, . . . , ym such that Pr[π′ = π] ≥ 1

2 . Furthermore,
the event π′ = π is independent of π.

We prove Lemma 4.4 in Section 4.1. Note that the conversion from hiding to fixing projections
loses a factor of m2 in the parameter q. While this loss might be large in general, it will be of no
importance in our applications. The factor m2 can be improved to m in our actual applications, as
we indicate during the proof of Lemma 4.4. By combining Lemma 4.4 with our shrinkage theorem
for fixing projections, we obtain the following shrinkage theorem for hiding projections.

Theorem 4.5. Let φ be a formula of size s and depth d, and let π be a q-hiding projection. The

E [L(φ|π)] = O
(
m4 · q2 · d2 · s+m2 · q ·

√
s
)
.

Proof. Let π′ be the (m2·q)-fixing projection obtained from π by Lemma 4.4. Since Pr[π′ = π] ≥ 1
2 ,

it holds that

E [L(φ|π′)] ≥ Pr
[
π′ = π

]
· E
[
L(φ|π′)

∣∣ π′ = π
]
≥ 1

2
· E
[
L(φ|π)

∣∣ π′ = π
]

=
1

2
· E [L(φ|π)] ,

where the last equality holds since the event π′ = π is independent of π. On the other hand, by
applying Theorem 3.6 to π′, we obtain that

E [L(φ|π′)] = O(m4 · q2 · d2 · s+m2 · q ·
√
s).

The theorem follows by combining the two bounds.

Applying formula balancing, we can obtain an analog of Corollary 3.7, with an identical proof.

Corollary 4.6. Let f : {0, 1}n → {0, 1} be a function with formula complexity s, and let π be a
q-hiding projection. Then

E [L(f |π)] = m4 · q2 · s1+O
(

1√
log s

)
+m2 · q · s1/2+O

(
1√
log s

)
.

Remark 4.7. The following example shows that the loss of a factor of at least m2 is necessary for
Theorem 4.5. Let f = Parityn be the Parity function over x1, . . . , xn, and note that the formula
complexity of f is s = Θ(n2). Let π be the random projection from Example 4.3, and recall that
it is a q-hiding projection for q = 1

n . Then, f |π is the Parity function over m bits, and therefore
its formula complexity is Θ(m2). It follows that

E [L(f |π)] = Θ(m2) = Θ(m2 · q2 · s).
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4.1 Proof of Lemma 4.4

We use the following straightforward generalization of the property of hiding projections.

Claim 4.8. Let π be be (q0, q1)-hiding projection, and let E be a random set of projections that is
independent of π. Then, for every σ ∈ {0, 1}, it holds that

Pr
[
π(xi) ∈ {yj , yj}

∣∣ πyj←σ ∈ E] ≤ qσ.
The straightforward proof of Claim 4.8 works by applying the property of hiding projections

separately to each possible value of E and each possible projection π ∈ E , and can be found in
Appendix A.

We turn to proving Lemma 4.4. Suppose that π is a (q0, q1)-hiding projection from x1, . . . , xn to
y1, . . . , ym. Let ρ be a

(
1− 1

2m

)
-random restriction over y1, . . . , ym, i.e., ρ is the random projection

from y1, . . . , ym to y1, . . . , ym that assigns each yj independently as follows:

ρ(yj) =


yj with probability 1− 1

2m ,

0 with probability 1
4m ,

1 with probability 1
4m .

For convenience, we define ρ(0) = 0, ρ(1) = 1, and ρ(yj) = ρ(yj) for every j ∈ [m]. We now choose
the random projection π′ to be the composition ρ ◦ π. Observe that the event π′ = π occurs
whenever it holds that ρ(yj) = yj for every j ∈ [m], and therefore

Pr
[
π′ = π

]
≥
(

1− 1

2m

)m
≥ 1− m

2m
=

1

2
,

as required. Moreover, this event is independent of π, since ρ is independent of π. We show that
π′ is a (4 ·m2 ·q0, 4 ·m2 ·q1)-fixing projection. To this end, we should show that for every projection
π′, every bit σ ∈ {0, 1}, and every variable xi,

Pr
[
π′(xi) /∈ {0, 1} and π′var(π′(xi))←σ = π′

]
≤ 4 ·m2 · qσ · Pr

[
π′ = π′

]
. (6)

This is implied by the following inequality, which we will prove for all j ∈ [m]:

Pr
[
π′(xi) ∈ {yj , yj} and π′yj←σ = π′

]
≤ 4 ·m · qσ · Pr

[
π′ = π′

]
. (7)

Let j ∈ [m] and let ρ−j be the restriction of ρ to {y1, . . . , ym}\{yj}. First, observe that if ρ(yj) = σ
then π′ = ρ ◦ π = ρ−j ◦ πyj←σ, and therefore

Pr
[
π′ = π′

]
≥ Pr

[
ρ(yj) = σ and ρ−j ◦ πyj←σ = π′

]
=

1

4m
· Pr
[
ρ−j ◦ πyj←σ = π′

]
,

where the equality holds since ρ(yj) is independent of ρ−j and π. In the rest of this section we
will prove the following inequality, which together with the last inequality will imply Equation (7):

Pr
[
π′(xi) ∈ {yj , yj} and π′yj←σ = π′

]
≤ qσ · Pr

[
ρ−j ◦ πyj←σ = π′

]
. (8)
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To this end, observe that the event π′(xi) ∈ {yj , yj} happens if and only if π(xi) ∈ {yj , yj} and
ρ(yj) = yj , and therefore

Pr
[
π′(xi) ∈ {yj , yj} and π′yj←σ = π′

]
= Pr

[
π(xi) ∈ {yj , yj} and ρ(yj) = yj and π′yj←σ = π′

]
.

Next, observe that if ρ(yj) = yj then π′yj←σ = ρ−j ◦πyj←σ. It follows that the latter expression is
equal to

Pr
[
π(xi) ∈ {yj , yj} and ρ(yj) = yj and ρ−j ◦ πyj←σ = π′

]
≤ Pr

[
π(xi) ∈ {yj , yj} and ρ−j ◦ πyj←σ = π′

]
= Pr

[
π(xi) ∈ {yj , yj}

∣∣ ρ−j ◦ πyj←σ = π′
]
· Pr
[
ρ−j ◦ πyj←σ = π′

]
≤ qσ · Pr

[
ρ−j ◦ πyj←σ = π′

]
,

where the last inequality follows by applying Claim 4.8 with E being the set of projections π that
satisfy ρ−j ◦ π = π′. This concludes the proof of Equation (8).

Remark 4.9. We can improve the bound m2 in the statement of Lemma 4.4 to mk, where k is
the maximal number of variables 1, . . . ,m which could appear in any position of π. The reason
is that in the latter case, the transition from Equation (7) to Equation (6) incurs a factor of k
rather than m. This is useful, for example, since the random projections π of Section 7.1 have the
feature that for each i ∈ [n] there is a unique j ∈ [m] such that π(xi) ∈ {0, 1, j, j}, and so for these
projections k = 1.

5 Joining projections

In this section, we define a join operation on fixing and hiding projections, and show that it
preserves the corresponding properties. This operation provides a convenient tool for constructing
random projections, and will be used in our applications.

Definition 5.1. Let α be a random projection from x1, . . . , xna to y1, . . . , yma , and let β be a
random projection from w1, . . . , wnb to z1, . . . , zmb . The join α ] β is the random projection from
x1, . . . , xna , w1, . . . , wnb to y1, . . . , yma , z1, . . . , zmb obtained by sampling α,β independently and
joining them together in the obvious way.

Lemma 5.2. If α and β are (q0, q1)-fixing projections, then so is α ] β.

Proof. Let α and β be (q0, q1)-fixing projections, and let γ = α]β. We prove that γ is a (q0, q1)-
fixing projection. Let α be a projection from x1, . . . , xna to y1, . . . , yma , let β be a projection from
w1, . . . , wnb to z1, . . . , zmb , and let γ = α ] β. We should show that for every σ ∈ {0, 1} and every
input variable u (either xi or wi) it holds that

Pr
[
γ(u) /∈ {0, 1} and γvar(γ(u))←σ = γ

]
≤ qσ · Pr[γ = γ] .

Let σ ∈ {0, 1} be a bit, and let v be an input variable. Assume that u = xi for some i ∈ [na] (if
u = wi for some i ∈ [nb], the proof is similar). The above equation is therefore equivalent to

Pr
[
α(xi) /∈ {0, 1} and αvar(α(xi))←σ = α and βvar(α(xi))←σ = β

]
≤ qσ · Pr[α = α and β = β] .
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Since the ranges of α and β are disjoint, the variable var(α(xi)) does not appear in the range of β,
and therefore βvar(α(xi))←σ = β. The independence of α and β shows that the above inequality is
equivalent to

Pr
[
α(xi) /∈ {0, 1} and αvar(α(xi))←σ = α

]
· Pr[β = β] ≤ qσ · Pr[α = α] · Pr[β = β] ,

which follows from α being (q0, q1)-fixing.

Lemma 5.3. If α and β are (q0, q1)-hiding projections, then so is α ] β.

Proof. Let α and β be (q0, q1)-hiding projections, and let γ = α]β. We prove that γ is a (q0, q1)-
hiding projection. Let α be a projection from x1, . . . , xna to y1, . . . , yma , let β be a projection from
w1, . . . , wnb to z1, . . . , zmb , and let γ = α]β. We should show that for every σ ∈ {0, 1}, every input
variable u (either xi or wi), and every output variable v (either yj or zj) it holds that

Pr[γ(u) ∈ {v, v} | γv←σ = γ] ≤ qσ.

Let σ ∈ {0, 1} be a bit, let u be an input variable, and let v be an output variable. Assume that
u = xi for some i ∈ [na] (if u = wi for some i ∈ [nb], the proof is similar). In this case, we may
assume that v = yj for some j ∈ [ma], since the probability on the left-hand size is 0. Thus, the
above equation is equivalent to

Pr
[
α(xi) ∈ {yj , yj}

∣∣∣ αyj←σ = α and βyj←σ = β
]
≤ qσ.

Since α and β are independent, whenever the conditioned event has positive probability, it holds
that

Pr
[
α(xi) ∈ {yj , yj}

∣∣∣ αyj←σ = α and βyj←σ = β
]

= Pr[α(xi) ∈ {yj , yj} | αxi←σ = α] ≤ qσ,

where the inequality holds since α is (q0, q1)-hiding.

6 Hiding projections from complexity measures

In this section we define generalization of the complexity measures due to Khrapchenko [Khr72]
and Ambainis [Amb02], and show how they can be used to construct hiding projections.

Along the way, we prove several auxiliary results on the generalized complexity measures. Since
these results are not necessary for proving our main results, we have relegated them to appendices.

6.1 The min-entropy Khrapchenko bound

Khrapchenko [Khr72] defined the following complexity measure for Boolean functions, and proved
that it is a lower bound on formula complexity.

Definition 6.1. Let f : {0, 1}n → {0, 1}. For every two sets A ⊆ f−1(1) and B ⊆ f−1(0), let
E(A,B) be the set of pairs (a, b) ∈ A×B such that a and b differ on exactly one coordinate. The
Khrapchenko bound of f is

Khr(f) = max
A⊆f−1(1),B⊆f−1(0)

|E(A,B)|2

|A| · |B|
.
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Theorem 6.2 ([Khr72]). For every non-constant function f : {0, 1}n → {0, 1} it holds that L(f) ≥
Khr(f).

The Khrapchenko measure can be viewed as follows: Consider the subgraph of the Hamming

cube that consists only of the cut between A and B. Then, the measure |E(A,B)|2
|A|·|B| is the product

of the average degree of a vertex in A (which is |E(A,B)|
|A| ) and the average degree of a vertex in B

(which is |E(A,B)|
|B| ). Note that the average degree of A can also be described as the average, over

all strings a ∈ A, of the number of coordinates i ∈ [n] such that if we flip the i-th bit of a we get a
string in B. We generalize the Khrapchenko measure as follows:

� Whereas the Khrapchenko bound maximizes over all cuts (A,B) of the Hamming cube with
A ⊆ f−1(1) and B ⊆ f−1(0), we are maximizing over all distributions over edges (a, b) of the
Hamming cube, where a ∈ f−1(1) and b ∈ f−1(0).

� Whereas the Khrapchenko bound considers the average number of coordinates i as described
above, we consider the min-entropy of the coordinate i that is associated with the random
edge (a, b).

� Whereas the Khrapchenko bound considers functions whose inputs are binary strings, we
consider inputs that are strings over arbitrary finite alphabets.

Our generalization uses the following notion: The conditional min-entropy of a random variable x
conditioned on a random variable y is H∞(x | y) = minx,y log 1

Pr[x=x|y=y] . We can now define our
generalization formally:

Definition 6.3. Let Σ be a finite alphabet, and let f : Σn → {0, 1} be a Boolean function. We
say that a distribution (a, b) on f−1(1) × f−1(0) is a Khrapchenko distribution for f if a and b
always differ on a unique coordinate i ∈ [n]. We define the min-entropy Khrapchenko bound of f ,
denoted KhrH∞(f), to be the maximum of the quantity

2H∞(i|a)+H∞(i|b)

over all Khrapchenko distributions (a, b) for f .

Observe that when Σ = {0, 1}, the min-entropy H∞(i | a) is exactly the min-entropy of a
random neighbor of a. In particular, when (a, b) is the uniform distribution over a set of edges,
the min-entropy H∞(i | a) is the logarithm of the minimal degree of the vertex a. Moreover, if
the latter set of edges also induces a regular graph, then the measure 2H∞(i|a)+H∞(i|b) coincides

exactly with the original measure |E(A,B)|2
|B|·|B| of Khrapchenko. More generally, when Σ = {0, 1}, the

bound KhrH∞(f) is within a constant factors of the original Khrapchenko bound, as we show in
Appendix B.

Proposition 6.4. For any f : {0, 1}n → {0, 1} it holds that Khr(f)
4 ≤ KhrH∞(f) ≤ Khr(f).

Unfortunately, when Σ is a larger alphabet then the connection between KhrH∞(f) and the

measure |E(A,B)|2
|A||B| is not so clean. Specifically, the min-entropy H∞(i | a) has no clear connec-

tion to the degree of a, since the vertex a may have multiple neighbors that correspond to the
same coordinate i. Nevertheless, even when Σ is a large alphabet, the min-entropy Khrapchenko
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bound KhrH∞(f) still gives a lower bound on the formula complexity L(f). In order to formalize
the latter statement, we first need to deal with the following small issue: formula complexity is not
defined for functions over a non-binary alphabet Σ. Thus, for the purpose of formula complexity, we
view a function f : Σn → {0, 1} over a non-binary finite alphabet Σ as if its input is a binary string

in {0, 1}n·dlog|Σ|e that encodes a string in Σn via some fixed encoding (the choice of the encoding
does not matter for what follows). We now have the following result, proved in Appendix C.4

Proposition 6.5. Let Σ be a finite alphabet, and let f : Σn → {0, 1} be a Boolean function. Then
L(f) ≥ KhrH∞(f).

The min-entropy Khrapchenko bound can be used for constructing hiding projections. Specifi-
cally, we have the following result.

Lemma 6.6. Let Σ be a finite alphabet, let f : Σn → {0, 1} be a Boolean function. There is a
random projection π to a single variable y such that π is q-hiding for q =

√
1/KhrH∞(f), and f |π

is a non-constant function with probability 1.

Lemma 6.6 follows immediately from Lemmas 6.12 and 6.14, which are proved in Section 6.2 below.
We will use this construction in our applications in Section 7.

Previous works on the Khrapchenko bound. Several versions of the Khrapchenko bound
appeared in the literature: Zwick [Zwi91] generalized the Khrapchenko bound such that different
input coordinates can be given different weights, and Koutsoupias [Kou93] gave a spectral gener-
alization of the bound. The paper of H̊astad [H̊as98] observed that his analogue of Lemma 3.8 can
be viewed as a generalization of the Khrapchenko bound. Ganor, Komargodski, and Raz [GKR12]
considered a variant of the Khrapchenko bound in which the edges of the Boolean hypercube are
replaced with random walks on the noisy hypercube. Of particular relevance is a paper of Laplante,
Lee, and Szegedy [LLS06] that defined a complexity measure that is very similar to our min-entropy
Khrapchenko bound, except that the entropy is replaced with Kolmogorov complexity.

An entropy Khrapchenko bound. It is possible to generalize the complexity measure KhrH∞
by replacing the min-entropy in Definition 6.3 with Shannon entropy. Such a measure would still
lower bound formula complexity — specifically, the proof of Proposition 6.5 would go through
without a change. However, we do not know how to use such a measure for constructing hiding
projections as in Lemma 6.6. We note that it is easy to prove that such a measure is an upper
bound on KhrH∞ .

6.2 The soft-adversary method

Ambainis [Amb02] defined the following complexity measure for Boolean functions, called the un-
weighted quantum adversary bound and proved that it is a lower bound on quantum query com-
plexity (for a definition of quantum query complexity, see [Amb02] or [BdW02]).

Definition 6.7. Let f : {0, 1}n → {0, 1}. Let R ⊆ f−1(1)×f−1(0), and let A,B be the projections
into the first and second coordinates, respectively. Let R(a,B) = {b ∈ B : (a, b) ∈ R}, let

4We note that Lemma 6.6 along with Lemma 4.4 and Lemma 3.8 imply Proposition 6.5 up to a constant factor
(i.e., L(f) ≥ 1

64
KhrH∞(f)).
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Ri(a,B) = {b ∈ B : (a, b) ∈ R, ai 6= bi}, and define R(A, b), Ri(A, b) analogously. The unweighted
quantum adversary bound of f is

Advu(f) = max
R⊆f−1(1)×f−1(0)

mina∈A |R(a,B)| ·minb∈B |R(A, b)|
maxa∈A

i∈[n]
|Ri(a,B)| ·max b∈B

i∈[n]
|Ri(A, b)|

.

Theorem 6.8 ([Amb02]). The quantum query complexity of a function f : {0, 1}n → {0, 1} is
Ω(
√

Advu(f)).

In contrast to Khrapchenko’s bound which only considers inputs differing in a single position,
the unweighted quantum adversary bound allows the relation R to contain inputs at arbitrary
distance. On the other hand, the unweighted quantum adversary method is not a strict gener-
alization of Khrapchenko’s bound since Khrapchenko’s bound measures average degree whereas
the unweighted quantum adversary bound measures minimum degree. Nonetheless, since chang-
ing average degree to minimum degree incurs only a constant factor to the Khrapchenko measure
(as stated in Proposition 6.4), the two bounds are related as follows (for a formal proof, see Ap-
pendix B).

Proposition 6.9. For any f : {0, 1}n → {0, 1} it holds that Advu(f) ≥ Khr(f)
4 .

We generalize the unweighted quantum adversary method to a min-entropy variant along the
lines of the min-entropy Khrapchenko bound. In this case, we can stick to the binary input alphabet.

Definition 6.10. Let f : {0, 1}n → {0, 1} be a Boolean function. We define the soft-adversary
bound of f , denoted Advs, to be the maximum of the quantity

min
a∈supa
i∈[n]

1

Pr[ai 6= bi | a = a]
· min
b∈sup b
i∈[n]

1

Pr[ai 6= bi | b = b]

over all distributions (a, b) supported on f−1(1)× f−1(0).

We chose to call this notion “soft-adversary bound” since we view it as a variant of the un-
weighted adversary bound in which, instead of choosing for each pair (a, b) whether it belongs to
R or not (a “hard” decision), we assign each pair (a, b) a probability of being in the relation R (a
“soft” decision). Indeed, the soft-adversary bound generalizes the unweighted quantum adversary
method.

Lemma 6.11. Let f : {0, 1}n → {0, 1}. Then Advs(f) ≥ Advu(f).

Proof. Let R ⊆ f−1(1) × f−1(0) be a relation that attains Advu(f). Let (a, b) be a uniform
element of R. Using Pr[ai 6= bi | a = a] = |Ri(a,B)|/|R(a,B)| and Pr[ai 6= bi | b = b] =
|Ri(A, b)|/|R(A, b)|, it is easy to check that the quantity in the definition of Advs(f) is lower
bounded by Advu(f).

The soft-adversary bound also generalizes the min-entropy Khrapchenko bound.

Lemma 6.12. Let Σ be a finite alphabet, and let f : Σn → {0, 1} be a Boolean function. Then
Advs(f) ≥ KhrH∞(f), where for the sake of defining Advs(f), we treat f as a function on

{0, 1}n·dlog |Σ|e as described in Section 6.1.
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Proof. Let (a, b) be a Khrapchenko distribution that attains KhrH∞(f). Let i ∈ [n] be the unique
index at which a, b differ, and let ai,j , bi,j be the j-th bits of the binary encoding of ai, bi ∈ Σ. For
any a ∈ supa and (i, j) ∈ [n]× [dlog |Σ|e], we have

Pr[ai,j 6= bi,j | a = a] ≤ Pr[ai 6= bi | a = a] = Pr[i = i | a = a] ≤ 2−H∞(i|a).

It follows that the first factor in the definition of Advs is at least 2H∞(i|a). An identical calculation
shows that the second factor is at least 2H∞(i|b), and so the entire expression is at least KhrH∞(f).

We note that the soft-adversary bound is a lower bound on formula complexity. The reason is
that this bound is a special case of the complexity measure WA2 due to [ŠS06]. Since [LLS06] show
that WA2 is a lower bound on formula complexity, the same holds for the soft-adversary bound.
We provide more details in Appendix D. 5

Proposition 6.13. For any f : {0, 1}n → {0, 1} it holds that L(f) ≥ Advs(f).

We turn to show how to use the soft-adversary bound for constructing hiding projections,
generalizing Lemma 6.6.

Lemma 6.14. Let f : {0, 1}n → {0, 1} be a Boolean function. There is a random projection π
from x1, . . . , xn to a single variable y such that π is q-hiding for q =

√
1/Advs(f), and f |π is a

non-constant function with probability 1.

Proof. Let (a, b) be a distribution supported on f−1(1) × f−1(0) which attains Advs(f). We
construct a q-hiding projection π from x1, . . . , xn to a single variable y for q =

√
1/Advs(f), such

that πy←1 = a and πy←0 = b. Note that this implies in particular that f |π is a non-constant
function, since a ∈ f−1(1) and b ∈ f−1(0). For every input variable xi of f , we define π as follows:

� If ai = bi then π(xi) = ai.

� If ai = 1 and bi = 0 then π(xi) = y.

� If ai = 0 and bi = 1 then π(xi) = y.

It is not hard to see that indeed πy←1 = a and πy←0 = b.
We now show that π is

√
1/Advs(f)-hiding. To this end, we show that π is (q0, q1)-hiding for

q0 = max
b∈sup b
i∈[n]

Pr[ai 6= bi | b = b], q1 = max
a∈supa
i∈[n]

Pr[ai 6= bi | a = a].

Note that indeed
√
q0q1 =

√
1/Advs(f). We should show that for every projection π and every

input variable xi,

Pr[π(xi) ∈ {y, y} | πy←1 = π] ≤ max
a∈supa
i∈[n]

Pr[ai 6= bi | a = a],

and a similar inequality for πy←0. Since πy←1 = a, we only need to consider projections π that
are equal to some string a in the support of a. Furthermore, π(xi) ∈ {y, y} if and only if ai 6= bi.
The desired inequality immediately follows. The inequality for πy←1 is proved in an identical
fashion.

Lemma 6.6 immediately follows by Lemma 6.12.

5We note that Lemma 6.14 along with Lemma 4.4 and Lemma 3.8 implies Proposition 6.13 up to a constant factor
(i.e., L(f) ≥ 1

64
Advs(f)).
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Other generalizations of the quantum adversary method. Several generalizations of Am-
bainis’ original quantum adversary bound have appeared in the literature. Špalek and Szegedy [ŠS06]
showed that all of these methods are equivalent, and so they are known collectively as the strong
quantum adversary bound. The formulation of the strong quantum adversary bound in Ambai-
nis [Amb06] makes it clear that it subsumes our min-entropy version, as we explain in Appendix D.
Laplante, Lee and Szegedy [LLS06] showed that the strong quantum adversary bound lower bounds
formula complexity, and came up with an even stronger measure maxPI2 that still lower bounds
formula complexity, but no longer lower bounds quantum query complexity.

Høyer, Lee and Špalek [HyLŠ07] generalized the strong quantum adversary bound, coming up
with a new measure known as the general adversary bound, which lower bounds both quantum query
complexity and (after squaring) formula complexity. Reichardt [Rei09, Rei11, LMR+11, Rei14]
showed that the general adversary bound in fact coincides with quantum query complexity (up to
constant factors). These results are described in a recent survey by Li and Shirley [LS20].

Remark 6.15. We note that Advs(f) is always upper bounded by n2. The reason is that, as noted
above,

√
Advs(f) is a lower bound on the complexity measure of WA of [ŠS06]. Since the latter

measure is a lower bound on quantum query complexity, which in turn is upper bounded by n,
it follows that Advs(f) ≤ n2. In particular, the soft-adversary bound Advs(f) on its own cannot
directly prove formula lowers bounds that are better than quadratic.

7 Applications

In this section, we apply our shrinkage theorems to obtain new results regarding the KRW conjecture
and the formula complexity of AC0. First, in Section 7.1, we prove the KRW conjecture for inner
functions for which the min-entropy Khrapchenko bound is tight. We use this version of the KRW
conjecture in Section 7.2 to prove cubic formula lower bounds for a function in AC0. Finally, we
rederive some closely related known results in Section 7.3.

7.1 Application to the KRW conjecture

Given two Boolean functions f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1}, their (block-)composition
is the function f � g : ({0, 1}n)m → {0, 1} defined by

(f � g)(x1, . . . , xm) = f (g(x1), . . . , g(xm)) ,

where x1, . . . , xm ∈ {0, 1}n. It is easy to see that L(f � g) ≤ L(f) · L(g). The KRW conjec-
ture [KRW95] asserts that this is roughly optimal, namely, that L(f � g) ' L(f) · L(g). In this
section, we prove the following related result.

Theorem 7.1. Let f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1} be non-constant Boolean functions.
Then,

L (f � g)
1+O

(
1√

logL(f�g)

)
≥ 1

O(m4)
· (L(f)−O(1)) ·Advs(g).

Proof. Let π be the q-hiding projection constructed in Lemma 6.14 for q =
√

1/Advs(g), and recall
that g|π is non-constant with probability 1. Let πm be the m-fold join of π with itself, which is also
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q-hiding according to Lemma 5.3. Applying Corollary 4.6 and using the estimate x+
√
x = O(x+1),

we see that s = L(f � g) satisfies

E [L ((f � g)|πm)] = m4 · 1

Advs(g)
· s1+O

(
1√
log s

)
+O(1).

On the other hand, it is not hard to see that

(f � g)|πm = f � g|π,

and since g|π is non-constant, f reduces to (f � g)|πm . In particular,

L(f) ≤ E [L ((f � g)|πm)] = m4 · 1

Advs(g)
· s1+O

(
1√
log s

)
+O(1).

We obtain the theorem by rearranging.

A direct consequence of the theorem is the following corollary, which is a special case of the
KRW conjecture for inner functions g for which the soft-adversary bound is almost tight.

Corollary 7.2. Let f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1} be non-constant Boolean functions

such that Advs(g) ≥ L(g)
1−O

(
1√

logL(g)

)
. Then,

L(f � g) ≥ 1
O(m4)

· L (f)
1−O

(
1√

logL(f)

)
· L(g)

1−O
(

1√
logL(g)

)
.

Proof. By substituting the assumption on g in the bound of Theorem 7.1, we obtain that

L (f � g)
1+O

(
1√

logL(f�g)

)
≥ 1

O(m4)
· (L(f)−O(1)) · (L(g))

1−O
(

1√
logL(g)

)
.

Moreover, since L(f � g) ≤ L(f) · L(g), it holds that

L (f � g)
1+O

(
1√

logL(f�g)

)
≤ L(f � g) · (L(f) · L(g))

O

(
1√

logL(f�g)

)

= L(f � g) · L (f)
O

(
1√

logL(f�g)

)
· L (g)

O

(
1√

logL(f�g)

)

≤ L(f � g) · L (f)
O

(
1√

logL(f)

)
· L (g)

O

(
1√

logL(g)

)
.

The corollary follows by combining the two bounds.

We have the next immediate corollary.

Corollary 7.3. Let f : {0, 1}m → {0, 1} and g : Σr → {0, 1} be non-constant Boolean functions.
Then,

L (f � g)
1+O

(
1√

logL(f�g)

)
≥ 1

O(m4)
· (L(f)−O(1)) ·KhrH∞(g).

Moreover, if KhrH∞(g) ≥ L(g)
1−O

(
1√

logL(g)

)
, then

L(f � g) ≥ 1
O(m4)

· L (f)
1−O

(
1√

logL(f)

)
· L(g)

1−O
(

1√
logL(g)

)
.
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Remark 7.4. We believe that a result along the lines of Corollary 7.3 could also be proved using
the techniques of [DM18]. However, we have not verified it.

In the special case where Σ = {0, 1}, we can get analogues of Theorem 7.1 and Corollary 7.2
for the original Khrapchenko bound, by combining the above results with Proposition 6.9.

Corollary 7.5. Let f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1} be non-constant Boolean func-
tions. Then,

L (f � g)
1+O

(
1√

logL(f�g)

)
≥ 1

O(m4)
· (L(f)−O(1)) ·Khr(g).

Moreover, if Khr(g) ≥ L(g)
1−O

(
1√

logL(g)

)
, then

L(f � g) ≥ 1
O(m4)

· L (f)
1−O

(
1√

logL(f)

)
· L(g)

1−O
(

1√
logL(g)

)
.

7.2 Formula lower bounds for AC0

In this section, we derive our second main application: cubic formula lower bounds for AC0.
Formally, we have the following result.

Theorem 7.6 (Restatement of Theorem 1.1). There exists an infinite family of Boolean functions
Fn : {0, 1}n → {0, 1}, for n ∈ N, that is computable by uniform formulas with unbounded fan-in of

depth 4 and size O( n3

log3 n
) such that L(Fn) = Ω(n3−o(1)).

The function Fn is constructed similarly to the Andreev function [And87], with the Parity
function replaced with the surjectivity function [BM12], defined next. Fix a parameter s ∈ N,
define Σ = [2s+ 1], and let r = 3s + 1. The surjectivity function Surj : Σr → {0, 1} interprets its
input as a function from [r] to Σ, and outputs whether the function is surjective. In other words,
Surj(σ1, . . . , σr) = 1 if and only if every symbol in Σ appears in (σ1, . . . , σr). Observe that the input
length of the function Surj measured in bits is

n = r · dlog |Σ|e = (3s+ 1) · dlog(2s+ 1)e ,

where the dlog |Σ|e factor appears since it takes dlog |Σ|e bits to encode a symbol in Σ. We now
define the function Surj for any sufficiently large input length n by choosing s to be the largest
number such that n ≥ (3s+ 1) · dlog(2s+ 1)e, and defining the function Surjn : {0, 1}n → {0, 1} as
above by interpreting its input as a string in Σr. It can be verified that for this choice of s it holds
that

(3s+ 1) · dlog(2s+ 1)e = Θ(n)

(provided that n is sufficiently large), and in particular s = Θ( n
logn). In order to prove Theorem 7.6,

we will use Theorem 7.1 with the inner function g being Surjn. To this end, we first analyze
KhrH∞(Surjn).

Lemma 7.7. For every sufficiently large input length n, it holds that KhrH∞(Surjn) = Ω
(

n2

log2 n

)
.
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Proof. Let n be sufficiently large such that Surjn is well-defined, and let s be the corresponding
parameter. We define a Khrapchenko distribution (a, b) for Surjn as follows. The input b ∈
Surj−1

n (0) is a uniformly distributed string in Σ3s+1 in which s + 1 of the symbols in Σ appear
exactly twice, s− 1 of the symbols in Σ appear exactly once, and the remaining symbol in Σ does
not appear at all. The string a is sampled by choosing uniformly at random a coordinate i such
that bi is one of the symbols that appear twice in b, and replacing bi with the unique symbol in Σ
that does not appear in b.

We turn to bound H∞(i | b) and H∞(i | a). First, observe that conditioned on any choice of b,
the coordinate i is uniformly distributed among 2s+ 2 coordinates, and therefore

H∞(i | b) = log(2s+ 2).

In order to bound H∞(i | a), observe that a is distributed like a uniformly distributed string
in Σ3s+1 in which s+ 1 of the symbols in Σ appear exactly once, and the remaining s symbols in Σ
appear exactly twice. Conditioned on any choice of a, the coordinate i is uniformly distributed
over the s+ 1 coordinates of symbols that appear exactly once. It follows that

H∞(i | a) ≥ log(s+ 1).

We conclude that

KhrH∞(Surjn) = 2H∞(i|a)+H∞(i|b) ≥ (s+ 1) · (2s+ 2) = Ω

(
n2

log2 n

)
.

Lemma 7.7 implies, via Proposition 6.5, that L(Surjn) = Ω̃(n2). The same result also follows
from the lower bound Q(Surjn) = Ω(n/ log n) proved in [BM12], where Q(f) is the quantum query
complexity of f , via the relation Q(f) = O(

√
L(f)) [ACR+10, Rei11].

We turn to prove Theorem 7.6 using our special case of the KRW conjecture (Corollary 7.2).

Proof of Theorem 7.6. We would like to construct, for every sufficiently large n ∈ N, a func-
tion F : {0, 1}n → {0, 1} that is computable by a formula with unbounded fan-in of depth 4

and size O( n3

log3 n
) such that L(F ) = Ω(n3−o(1)). We start by constructing the function F for input

lengths n of a special form, and then extend the construction to all sufficiently large input lengths.
First, assume that the input length n is of the form 2k · (k + 1), where k ∈ N is sufficiently

large such that Surj2k is well-defined. The function F : {0, 1}n → {0, 1} takes two inputs: the truth

table of a function f : {0, 1}k → {0, 1}, and k strings x1, . . . , xk ∈ {0, 1}2
k

. On such inputs, the
function F outputs

F (f, x1, . . . , xk) = (f � Surj2k)(x1, . . . , xk) = f (Surj2k(x1), . . . ,Surj2k(xk)) .

It is easy to see that the function F has input length n. We show that F can be computed by a
formula with unbounded fan-in of depth 4 and size O( n3

log3 n
). We start by constructing a formula

for Surj2k . Recall that Surj2k takes as input (the binary encoding of) a string (σ1, . . . , σr) ∈ Σr,

where |Σ| , r = O(2k

k ). For simplicity, let us assume that every symbol in Σ is encoded by exactly

one binary string, and that if the binary input to Surj2k contains a binary string in {0, 1}dlog|Σ|e that
does not encode any symbol in Σ, then we do not care what the formula outputs. Now, observe
that

Surjn(σ1, . . . , σr) =
∧
γ∈Σ

r∨
j=1

(σj = γ). (9)
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It is not hard to see that the expression on the right-hand side can be implemented by a formula

with unbounded fan-in of depth 3 and size |Σ| · r · dlog |Σ|e = O
(

22k

k

)
. Next, observe that

F (f, x1, . . . , xk) =
∨

y∈{0,1}k

[
(f(y) = 1) ∧

(
k∧
i=1

Surj2k(xi) = yi

)]
.

Using the foregoing formula for surjectivity, it is not hard to see that the expression on the right-
hand side can be implemented by a formula with unbounded fan-in of depth 4 and size

O

(
2k · k · 22k

k

)
= O

(
23k
)

= O

(
n3

log3 n

)
,

as required.
Finally, we prove that L(F ) = Ω(n3−o(1)). To this end, let us hardwire the input f to be some

function from {0, 1}k to {0, 1} such that L(f) = Ω( 2k

log k ) (such a function exists by a well-known
counting argument, see [Juk12, Theorem 1.23]). After hardwiring the input f , the function F
becomes exactly the function f � Surj2k . Now, by Theorem 7.1 it follows that

L(F )
1+O

(
1√

logL(F )

)
≥ L (f � Surj2k)

1+O

(
1√

logL(f�Surj
2k

)

)

≥ 1

O(k4)
· (L(f)−O(1)) ·Advs(Surj2k)

≥ 1

O(k4)
· (L(f)−O(1)) ·KhrH∞(Surj2k)

= Ω

(
23k

k6 log k

)
= Ω

(
n3

log9+o(1) n

)
.

Since L(F ) = O(n3), we obtain that

L(F ) ≥ Ω

(
n3

log9+o(1) n

)/
L (F )

O

(
1√

logL(F )

)
≥ Ω

(
n3

log9+o(1) n

)/
n
O
(

1√
logn

)
= Ω(n3−o(1)),

as required.
It remains to deal with input lengths n that are not of the form 2k · (k + 1). For such input

lengths n, we choose k to be the largest natural number such that 2k · (k + 1) ≤ n, and proceed as
before. It can be verified that for this choice of k it holds that 2k · (k + 1) = Θ(n), and therefore
all the foregoing asymptotic bounds continue to hold.

Remark 7.8. We note that our methods cannot prove formula lower bounds that are better than
cubic. As explained in Remark 6.15, it holds that Advs(f) is upper bounded by n2. In particular,
this implies that KhrH∞(f) is upper bounded by n2. Thus, one cannot expect to obtain a lower
bound that is better than cubic by combining these measures with Andreev’s argument.
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7.3 Reproving known formula lower bounds

The proof of Theorem 7.6 combines a lower bound on Advs(Surjn) with an upper bound on L(Surjn).
More generally, we can prove the following result along similar lines.

Theorem 7.9. Let g : {0, 1}n → {0, 1} be an arbitrary function, and let k be an integer satisfying

k = log n + O(1). Let F : {0, 1}2
k+nk → {0, 1} be a function on N = Θ(n log n) variables, whose

input consists of a function f : {0, 1}k → {0, 1} and k strings x1, . . . , xk ∈ {0, 1}n, given by

F (f, x1, . . . , xk) = (f � g)(x1, . . . , xk).

We call F the g-based Andreev function.

1. If Advs(g) = Ω(n2−o(1)) then L(F ) = Ω(N3−o(1)).

2. If L(g) = O(n2+o(1)) then L(F ) = O(N3+o(1)).

The proof of Theorem 7.9 is very similar to the proof of Theorem 7.6, and so we leave it to the
reader (the main difference is that we use Corollary 7.5 instead of Theorem 7.1). Using Theorem 7.9,
we can derive two known special cases: the original Andreev function (in which g is Parity), and
the variant considered in [GTN19]. In particular, using the known facts that Khr(Parity) ≥ n2 and
Khr(Majority) ≥ Ω(n2) [Khr72], we obtain the following results.

Corollary 7.10. The formula complexity of the Parityn-based Andreev function is Θ(N3±o(1)).

Corollary 7.11. For m ≥ 3 odd, let Majorityn : {0, 1}m → {0, 1} be the Majority function. The
formula complexity of the Majorityn-based Andreev function is Ω(N3−o(1)).

The best upper bound on the formula complexity of Majorityn is only O(n3.91) [Ser16], and so
we do not expect Corollary 7.11 to be tight.
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A Proof of Claim 4.8

In this appendix we prove Claim 4.8, restated next.

Claim 4.8. Let π be be (q0, q1)-hiding projection, and let E be a random set of projections that is
independent of π. Then, for every σ ∈ {0, 1}, it holds that

Pr
[
π(xi) ∈ {yj , yj}

∣∣ πyj←σ ∈ E] ≤ qσ.
Proof. Let π and E be as in the claim, and let σ ∈ {0, 1}. It holds that

Pr
[
π(xi) ∈ {yj , yj}

∣∣ πyj←σ ∈ E
]

=
∑
π

Pr
[
π(xi) ∈ {yj , yj}

∣∣ πyj←σ = π and π ∈ E
]
· Pr
[
πyj←σ = π

∣∣ πyj←σ ∈ E
]

=
∑
π

Pr
[
π(xi) ∈ {yj , yj}

∣∣ πyj←σ = π
]
· Pr
[
πyj←σ = π

∣∣ πyj←σ ∈ E
]

(π and E are independent)

≤
∑
π

qσ · Pr
[
πyj←σ = π

∣∣ πyj←σ ∈ E
]

(π is (q0, q1)-hiding)

= qσ.

B Proof of Propositions 6.4 and 6.9

In this appendix we prove Propositions 6.4 and 6.9, restated next.

Proposition 6.4. For any f : {0, 1}n → {0, 1} it holds that Khr(f)
4 ≤ KhrH∞(f) ≤ Khr(f).

Proposition 6.9. For any f : {0, 1}n → {0, 1} it holds that Khr(f)
4 ≤ Advu(f).

We relate Khr(f) to KhrH∞(f) using an auxiliary measure Khrmin(f):

Khrmin(f) = max
A⊆f−1(1),B⊆f−1(0)

(
min
a∈A
|E(a,B)| ·min

b∈B
|E(A, b)|

)
,

where E(a,B) = E({a}, B) and similarly E(A, b) = E(A, {b}).
We first show that Khrmin(f) and Khr(f) are equal up to constants.

Claim B.1. For any f : Σn → {0, 1} it holds that Khr(f)
4 ≤ Khrmin(f) ≤ Khr(f).

Proof. The inequality Khrmin(f) ≤ Khr(f) is simple since mina∈A |E(a,B)| ≤ |E(A,B)|/|A| and
similarly minb∈B |E(A, b)| ≤ |E(A,B)|/|B|.

The other direction is more subtle. For ease of notation, for any sets A ⊆ f−1(1) and B ⊆ f−1(0)

we denote Khr(A,B) = |E(A,B)|2
|A||B| . Thus,

Khr(f) = max
A⊆f−1(1),B⊆f−1(0)

Khr(A,B). (10)
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Assume that A and B are sets that maximize Khr(A,B) in Equation (10). We show that

∀a ∈ A : |E(a,B)| ≥ |E(A,B)|
2|A| , (11)

∀b ∈ B : |E(A, b)| ≥ |E(A,B)|
2|B| . (12)

In words, the min-degree is at least half the average degree. Before showing why Equations (11)
and (12) hold, we show that they imply the statement of the claim. Indeed,

Khrmin(f) ≥
(

min
a∈A
|E(a,B)| ·min

b∈B
|E(A, b)|

)
≥ |E(A,B)|

2|A| ·
|E(A,B)|

2|B| = Khr(A,B)
4 = Khr(f)

4 .

It remains to show that Equations (11) and (12) hold. We focus on Equation (11) due to
symmetry. Assume by contradiction that there exists an a ∈ A for which

|E(a,B)| < |E(A,B)|
2|A| .

It must be the case that |A| > 1, as otherwise A contains only one element and |E(a,B)| =
|E(A,B)|/|A| for this element. Consider now the set A′ = A \ {a} — which is non-empty by the
above discussion. We claim that Khr(A′, B) > Khr(A,B), contradicting the choice of A,B. Indeed,

Khr(A′, B) =
|E(A′, B)|2

|A′||B|

=
(|E(A,B)| − |E(a,B)|)2

(|A| − 1)|B|

>
(|E(A,B)| − |E(A,B)|

2|A| )2

(|A| − 1)|B|
(By assumption on a)

=
|E(A,B)|2 · (1− 1

2|A|)
2

|A||B| · (1− 1
|A|)

= Khr(A,B) ·
(1− 1

2|A|)
2

(1− 1
|A|)

> Khr(A,B).

It turns out that over the binary alphabet, Khrmin(f) and KhrH∞(f) coincide.

Claim B.2. For any f : {0, 1}n → {0, 1} it holds that KhrH∞(f) = Khrmin(f).

Proof. We first show that KhrH∞(f) ≥ Khrmin(f). Let A,B be sets that maximize the expression
(mina∈A |E(a,B)| ·minb∈B |E(A, b)|). We take (a, b) to be a uniformly distributed over E(A,B).
It is not hard to see that

2H∞(i|a) = 2H∞(b|a) = min
a∈A
|E(a,B)|,

and similarly 2H∞(i|b) = mina∈A |E(a,B)|. We thus get KhrH∞(f) ≥ Khrmin(f).
Next, we show the other direction, Khrmin(f) ≥ KhrH∞(f). Let (a, b) be a random vari-

able distributed according to a Khrapchenko distribution for f that attains the maximum of
2H∞(a|b)+H∞(b|a) over all such distributions. Let A := supp(a) and B := supp(b) be the supports
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of a and b, respectively. By definition of H∞ we have 2H∞(a|b) = 1
maxa,b Pr[a=a|b=b] . Rearranging,

we get that for any b in the support of b it holds that

Pr[a = a | b = b] ≤ 1/2H∞(a|b).

In particular, since theses probabilities sum to 1, it must be the case that there are at least 2H∞(a|b)

neighbors of b in A — i.e., |E(A, b)| ≥ 2H∞(a|b) for all b ∈ B. Similarly, |E(a,B)| ≥ 2H∞(b|a) for all
a ∈ A. The two sets A and B show that Khrmin(f) ≥ 2H∞(a|b) · 2H∞(b|a) = KhrH∞(f).

Proposition 6.4 follows by combining these two claims. Proposition 6.9 follows from Claim B.2
using the following simple observation.

Claim B.3. For any f : {0, 1}n → {0, 1} it holds that Advu(f) ≥ Khrmin(f).

Proof. Let A,B be sets that attain Khrmin(f). Define R to be the set of pairs (a, b) ∈ A × B
that differ at a single coordinate. Thus |R(a,B)| = |E(a,B)| and |R(A, b)| = |E(A, b)|. Moreover,
|Ri(a,B)| ≤ 1 since there is a unique b that differs from a only on the i-th coordinate. Similarly,
|Ri(A, b)| ≤ 1. The claim now immediately follows by comparing the definitions of Khrmin(f) and
Advu(f).

C Proof of Proposition 6.5

In this appendix, we prove Proposition 6.5, restated next.

Proposition 6.5. Let Σ be a finite alphabet, and let f : Σn → {0, 1} be a Boolean function. Then
L(f) ≥ KhrH∞(f).

Preliminaries

While the proof of Proposition 6.5 is fairly simple, it uses some basic concepts from information
theory which we review next.

Definition C.1. Let x,y, z be discrete random variables.

� The entropy of x is H(x) = Ex←x
[
log 1

Pr[x=x]

]
.

� The conditional entropy of x given y is H(x | y) = Ey←y [H (x | y = y)].

� The mutual information between x and y is I(x;y) = H(x)−H(x | y).

� The conditional mutual information between x and y given z is

I(x;y | z) = H(x | z)−H(x | y, z).

We use the following basic facts from information theory (see [CT91] for proofs).

Fact C.2. Let x,y, z be discrete random variables with finite supports, and let X denote the support
of x.

� It holds that 0 ≤ H(x) ≤ log |X|.
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� It holds that 0 ≤ H∞(x | y) ≤ H(x | y) ≤ H(x), where H(x | y) = 0 if and only if y
determines x (i.e., x is a function of y).

� If y determines x conditioned on z (i.e., x is a function of y and z) then H(y | z) ≥ H(x | z).

� It holds that 0 ≤ I(x;y) ≤ H(x). Similarly, it holds that 0 ≤ I(x;y | z) ≤ H(x | z), where
I(x;y | z) = 0 if and only if x and y are independent conditioned on any value of z.

� It holds that I(x;y) = I(y;x). Similarly, I(x;y | z) = I(y;x | z).

� The chain rule: It holds that

I(x;y, z | w) = I(x; z | w) + I(x;y | z,w).

Finally, we use the following result from the theory of interactive information complexity.

Claim C.3 ([BBCR13, Fact 4.15]). Let Π be a deterministic protocol. Suppose we invoke Π on
random inputs x and y for Alice and Bob, respectively, and let ` denote the random leaf that Π
reaches on those inputs. Then,

I(x,y; `) ≥ I(x; ` | y) + I(y; ` | x).

Proof sketch. Let t denote the transcript of the protocol that is associated with `. We prove that
I(x,y; t) ≥ I(x; t | y) + I(y; t | x), as this is equivalent to the claim. Suppose Alice speaks first,
and denote the (random) bit she sends by t1. We show that I(x,y; t1) ≥ I(x; t1 | y) + I(y; t1 | x).
Using the chain rule, the external information of Π1 can be written as

I(x,y; t1) = I(y; t1) + I(x; t1 | y) ≥ I(x; t1 | y) = I(x; t1 | y) + I(y; t1 | x),

where the last equality follows since I(y; t1 | x) = 0, as Alice’s message t1 is independent of y
given her input x. Proceeding by induction on the coordinates of t using the chain rule finishes
the proof.

The proof of Proposition 6.5

Our proof of Proposition 6.5 generalizes similar arguments in [KW90, GMWW17]. The proof
employs the KW relation KW f , which we extend to non-binary alphabets as follows: Alice and

Bob get strings in {0, 1}n·dlog|Σ|e, and would like to find a coordinate in n · [log |Σ|] on which the
strings differ.

Let Π be a protocol that solves KW f . We prove that L(Π) ≥ KhrH∞(f). Let (a, b) be a
Khrapchenko distribution for f that attains KhrH∞(f), and let j be the unique coordinate in [n]
on which a and b differ. Let ` be the leaf that Π reaches on input (a, b). By Fact C.2, it holds
that

I(`;a, b) ≤ H(`) ≤ log |L(Π)| .

On the other hand, Claim C.3 implies that

I(`;a, b) ≥ I(`;a | b) + I(`; b | a).
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Next, observe that a and b together determine `, and also that ` determines i. This implies that

I(`;a | b) = H(` | b)−H(` | a, b) (by definition)

= H(` | b) (a and b determine `)

≥ H(i | b) (` determines i).

Similarly, it can be shown that I(`; b | a) ≥ H(i | a). By combining the foregoing equations, it
follows that

log |L(Π)| ≥ I(`;a | b) + I(`; b | a) ≥ H(i | b) +H(i | a),

and thus
|L(Π)| ≥ 2H(i|a)+H(i|b) ≥ 2H∞(i|a)+H∞(i|b) = KhrH∞(f),

as required.

D Proof of Proposition 6.13

In this appendix, we prove Proposition 6.13, restated next.

Proposition 6.13. For any f : {0, 1}n → {0, 1} it holds that L(f) ≥ Advs(f).

We prove Proposition 6.13 by relating Advs(f) to Ambainis’ weighted quantum adversary
bound [Amb06], which we now define.

Definition D.1. Let f : {0, 1}n → {0, 1}. Let R ⊆ f−1(1)×f−1(0), and let A,B be the projections
into the first and second coordinates, respectively. A weighting scheme consists of an assignment
of weights w(a, b) > 0 for all (a, b) ∈ R and w′(a, b, i), w′(b, a, i) > 0 for all (a, b) ∈ R and i ∈ [n]
such that ai 6= bi. A weighting scheme is valid if for all (a, b) ∈ R and i ∈ [n] such that ai 6= bi, it
holds that

w′(a, b, i)w′(b, a, i) ≥ w(a, b)2.

The weighted quantum adversary bound of f , denoted WA2(f), is the maximal value of

min
a∈A,i∈[n]

∑
b : (a,b)∈R w(a, b)∑

b : (a,b)∈R,ai 6=bi w
′(a, b, i)

· min
b∈B,i∈[n]

∑
a : (a,b)∈R w(a, b)∑

a : (a,b)∈R,ai 6=bi w
′(b, a, i)

over all R ⊆ f−1(1)× f−1(0) and all valid weighting schemes w,w′.

Špalek and Szegedy showed that WA(f) =
√

WA2(f) is equivalent to several other strength-

enings of the unweighted quantum adversary bound, which are collectively denoted by sumPI(f)
by Laplante et al. [LLS06]. Laplante et al. also define a more general bound maxPI(f) which sat-
isfies L(f) ≥ maxPI2(f) ≥ sumPI2(f). Hence to prove Proposition 6.13, it suffices to show that
WA2(f) ≥ Advs(f).

Claim D.2. For any f : {0, 1}n → {0, 1} it holds that WA2(f) ≥ Advs(f).

41



Proof. Let (a, b) be a distribution on f−1(1)× f−1(0) that attains Advs(f). Let R be its support.
For (a, b) ∈ R, define w(a, b) = Pr[(a, b) = (a, b)]. For (a, b) ∈ R and i ∈ [n] such that ai 6= bi,
define w′(a, b, i) = w′(b, a, i) = w(a, b). The weighting scheme is trivially valid.

Given a ∈ A and i ∈ [n], clearly Pr[a = a] =
∑

b : (a,b)∈R w(a, b) and Pr[a = a,ai 6= bi] =∑
b : (a,b)∈R,ai 6=bi w

′(a, b, i). Therefore

1

Pr[ai 6= bi | a = a]
=

∑
b : (a,b)∈R w(a, b)∑

b : (a,b)∈R,ai 6=bi w
′(a, b, i)

.

Thus the first factor in the definition of WA2(f) equals the first factor in the definition of Advs(f).
The same holds for the second factors, and we conclude that WA2(f) ≥ Advs(f).
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