
Monotone Circuit Lower Bounds from Robust Sunflowers

Bruno Pasqualotto Cavalar ∗

University of Warwick

Mrinal Kumar †

IIT Bombay

Benjamin Rossman ‡

Duke University

August 5, 2022

Abstract

Robust sunflowers are a generalization of combinatorial sunflowers that have applications in
monotone circuit complexity [24], DNF sparsification [11], randomness extractors [17], and recent
advances on the Erdős-Rado sunflower conjecture [3,18,21]. The recent breakthrough of Alweiss,
Lovett, Wu and Zhang [3] gives an improved bound on the maximum size of a w-set system
that excludes a robust sunflower. In this paper, we use this result to obtain an exp(n1/2−o(1))
lower bound on the monotone circuit size of an explicit n-variate monotone function, improving
the previous best known exp(n1/3−o(1)) due to Andreev [5] and Harnik and Raz [12]. We also
show an exp(Ω(n)) lower bound on the monotone arithmetic circuit size of a related polynomial
via a very simple proof. Finally, we introduce a notion of robust clique-sunflowers and use this
to prove an nΩ(k) lower bound on the monotone circuit size of the CLIQUE function for all
k 6 n1/3−o(1), strengthening the bound of Alon and Boppana [1].

Contents

1 Introduction 2

1.1 Monotone circuit lower bounds and sunflowers . 3
1.2 Preliminaries . 4

2 Harnik-Raz function 5

2.1 Notation for this section . 5
2.2 The function . 5
2.3 Test distributions . 6
2.4 A closure operator . 7
2.5 Trimmed monotone functions . 10
2.6 The approximators . 11
2.7 The lower bound . 11
2.8 Are better lower bounds possible with robust sunflowers? 12

∗Email: Bruno.Pasqualotto-Cavalar@warwick.ac.uk
†Email: mrinalkumar08@gmail.com
‡Email: benjamin.rossman@duke.edu

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 181 (2020)

3 Lower Bound for Cliquek,n 13

3.1 Notation for this section . 14
3.2 Clique-sunflowers . 14
3.3 Test distributions . 15
3.4 A closure operator . 15
3.5 Trimmed monotone functions . 17
3.6 Approximators . 18
3.7 The lower bound . 19
3.8 Proof of Lemma 3.2 (Clique-sunflowers) . 20

4 Monotone arithmetic circuits 23

5 Further directions 26

A Proof of Theorem 1.3 28

1 Introduction

A monotone Boolean circuit is a Boolean circuit with AND and OR gates but no negations (NOT
gates). Although a restricted model of computation, monotone Boolean circuits seem a very natural
model to work with when computing monotone Boolean functions, i.e., Boolean functions f :
{0, 1}n → {0, 1} such that for all pairs of inputs (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ {0, 1}n where
ai 6 bi for every i, we have f(a1, a2, . . . , an) 6 f(b1, b2, . . . , bn). Many natural and well-studied
Boolean functions such as Clique and Majority are monotone.

Monotone Boolean circuits have been very well studied in Computational Complexity over the
years, and continue to be one of the few seemingly largest natural sub-classes of Boolean circuits
for which we have exponential lower bounds. This line of work started with an influential paper
of Razborov [23] from 1985 which proved an nΩ(k) lower bound on the size of monotone circuits
computing the Cliquek,n function on n-vertex graphs for k 6 logn; this bound is super-polynomial
for k = log n. Prior to Razborov’s result, super-linear lower bounds for monotone circuits were
unknown, with the best bound being a lower bound of 4n due to Tiekenheinrich [29]. Further
progress in this line of work included the results of Andreev [4] who proved an exponential lower
bound for another explicit function. Alon and Boppana [1] extended Razborov’s result by proving

an nΩ(
√
k) lower bound for Cliquek,n for all k 6 n2/3−o(1). A second paper of Andreev [5] from the

same time period proved an 2Ω(n1/3/ logn) lower bound for an explicit n-variate monotone function.
Using a different technique, Harnik and Raz [12] proved a lower bound of 2Ω((n/ log n)1/3) for a family
of explicit n-variate functions defined using a small probability space of random variables with
bounded independence. However, modulo improvements to the polylog factor in this exponent, the
state of art monotone circuit lower bounds have been stuck at 2Ω(n1/3−o(1)) since 1987.1 To this day,
the question of proving truly exponential lower bounds for monotone circuits (of the form 2Ω(n))
for an explicit n-variate function) remains open! (Truly exponential lower bounds for monotone
formulas were obtained only recently [20].)

1Stasys Jukna (personal communication) observed that Andreev’s bound [5] can be improved to 2Ω((n/
√
logn)1/3)

using the lower bound criterion of [16].

2

In the present paper, we are able to improve the best known lower bound for monotone circuits
by proving an 2Ω(n1/2/ logn) lower bound for an explicit n-variate monotone Boolean function (Sec-
tion 2). The function is based on the same construction first considered by Harnik and Raz, but
our argument employs the approximation method of Razborov with recent improvements on robust
sunflower bounds [3, 21]. By applying the same technique with a variant of robust sunflowers that
we call clique-sunflowers, we are able to prove an nΩ(k) lower bound for the Cliquek,n function when

k 6 n1/3−o(1), thus improving the result of Alon and Boppana when k is in this range (Section 3).
Finally, we are able to prove truly exponential lower bounds in the monotone arithmetic setting to
a fairly general family of polynomials, which shares some similarities to the functions considered
by Andreev and Harnik and Raz (Section 4).

1.1 Monotone circuit lower bounds and sunflowers

The original lower bound for Cliquek,n due to Razborov employed a technique which came to be
known as the approximation method. Given a monotone circuit C of “small size”, it consists into
constructing gate-by-gate, in a bottom-up fashion, another circuit C̃ that approximates C on most
inputs of interest. One then exploits the structure of this approximator circuit to prove that it
differs from Cliquek,n on most inputs of interest, thus implying that no “small” circuit can compute
this function. This technique was leveraged to obtain lower bounds for a host of other monotone
problems [1].

A crucial step in Razborov’s proof involved the sunflower lemma due to Erdős and Rado. A
family F of subsets of [n] is called a sunflower if there exists a set Y such that F1 ∩ F2 = Y for
every F1, F2 ∈ F . The sets of F are called petals and the set Y =

⋂F is called the core. We say
that the family F is ℓ-uniform if every set in the family has size ℓ.

Theorem 1.1 (Erdős and Rado [8]). Let F be a ℓ-uniform family of subsets of [n]. If |F| >
ℓ!(r − 1)ℓ, then F contains a sunflower of r petals.

Informally, the sunflower lemma allows one to prove that a monotone function can be approxi-
mated by one with fewer minterms by means of the “plucking” procedure: if the function has too
many (more than ℓ!(r − 1)ℓ) minterms of size ℓ, then it contains a sunflower with r petals; remove
all the petals, replacing them with the core. One can then prove that this procedure does not
introduce many errors.

The notion of robust sunflowers was introduced by the third author in [24], to achieve better
bounds via the approximation method on the monotone circuit size of Cliquek,n when the negative

instances are Erdős-Rényi random graphs Gn,p below the k-clique threshold.2 A family F ⊆ 2[n] is
called a (p, ε)-robust sunflower if

P
W⊆p[n]

[∃F ∈ F : F ⊆ W ∪ Y] > 1− ε,

where Y :=
⋂F and W is a p-random subset of [n] (i.e., every element of [n] is contained in W

independently with probability p).

As remarked in [24], every ℓ-uniform sunflower of r petals is a (p, e−rpℓ)-robust sunflower.
Moreover, as observed in [18], every (1/r, 1/r)-robust sunflower contains a sunflower of r petals.

2Robust sunflowers were called quasi-sunflowers in [11, 17, 18, 24] and approximate sunflowers in [19]. Following
Alweiss et al [3], we adopt the new name robust sunflower.

3

A corresponding bound for the appearance of robust sunflowers in large families was also proved
in [24].

Theorem 1.2 ([24]). Let F be a ℓ-uniform family such that |F| > ℓ!(2 log(1/ε)/p)ℓ. Then F
contains a (p, ε)-robust sunflower.

For many choice of parameters p and ε, this bound is better than the one by Erdős and Rado,
thus leading to better approximation bounds. In a recent breakthrough, this result was significantly
improved by Alweiss, Lovett, Wu and Zhang [3]. Soon afterwards, alternative proofs with slightly
improved bounds were given by Rao3 [21] and Tao [28]. A more detailed discussion can be found
in a note by Bell, Suchakree and Warnke [6].

Theorem 1.3 ([3, 6, 21, 28]). There exists a constant B > 0 such that the following holds for all
p, ε ∈ (0, 1/2]. Let F be an ℓ-uniform family such that |F| > (B log(ℓ/ε)/p)ℓ. Then F contains a
(p, ε)-robust sunflower.

Theorem 1.3 can be verified by combining the basic structure of Rossman’s original argu-
ment [24] with the main technical estimate of Rao [21]. Since the proof does not appear explicitly
in any of those papers, for completeness we give a proof on Appendix A.

1.2 Preliminaries

We denote by {0, 1}n=m ⊆ {0, 1}n the set of all n-bit binary vectors with Hamming weight exactly
m. We extend the logical operators ∨ and ∧ to binary strings x, y ∈ {0, 1}n, as follows:

• (x ∧ y)i = xi ∧ yi, for every i ∈ [n];

• (x ∨ y)i = xi ∨ yi, for every i ∈ [n].

We will say that a distribution X with support in {0, 1}n is p-biased or p-random if the random
variables X1, . . . ,Xn are mutually independent and satisfy P[Xi = 1] = p for all i. If a distribution
U has support in 2[n], we will say that U is p-biased or p-random if the random Boolean string
X such that Xi = 1 ⇐⇒ i ∈ U is p-biased. We sometimes write U ⊆p [n] to denote that U is a
p-biased subset of [n].

We consistently write random objects using boldface symbols (such as W , Gn,p, etc). Every-
thing that is not written in boldface is not random. When taking probabilities or expectation, the
underlying distribution is always the one referred to by the boldface symbol. For instance, when
i ∈ [n] and W is a p-biased subset of [n], the event {i ∈ W } denotes that the non-random element
i is contained in the random set W .

For a Boolean function f and a probability distribution µ on the inputs on f , we write f(µ) to
denote the random variable which evaluates f on a random instance of µ.

In what follows, we will mostly ignore ceilings and floors for the sake of convenience, since these
do not make any substantial difference in the final calculations.

3Rao’s bound is also slightly stronger in the following sense. He shows that, if the random set W is chosen
uniformly at random among all sets of size ⌊np⌋, then we also have P [∃F ∈ F : F ⊆ W ∪ Y] > 1 − ε. However, for
our purposes, the p-biased case will suffice.

4

2 Harnik-Raz function

The strongest lower bound known for monotone circuits computing an explicit n-variate monotone
Boolean function is exp

(
Ω
(
(n/ logn)1/3

))
, and it was obtained by Harnik and Raz [12]. In this

section, we will prove a lower bound of exp(Ω(n1/2/ log n)) for the same Boolean function they
considered. We apply the method of approximations [23] and the new robust sunflower bound [3,
21]. We do not expect that a lower bound better than exp(n1/2−o(1)) can be obtained by the
approximation method with robust sunflowers. This limitation is discussed with more detail in
Section 2.8.

We start by giving a high level outline of the proof. We define the Harnik-Raz function fHR :
{0, 1}n → {0, 1} and find two distributions Y andN with support in {0, 1}n satisfying the following
properties:

• fHR outputs 1 on Y with high probability (Lemma 2.3);

• fHR outputs 0 on N with high probability (Lemma 2.4).

Because of these properties, the distribution Y is called the positive test distribution, and N is
called the negative test distribution. We also define a set of monotone Boolean functions called
approximators, and we show that:

• every approximator commits many mistakes on either Y orN with high probability (Lemma 2.17);

• every Boolean function computed by a “small” monotone circuit agrees with an approximator
on both Y and N with high probability (Lemma 2.18).

Together these suffice for proving that “small” circuits cannot compute fHR. The crucial part where
the robust sunflower result comes into play is in the last two items.

2.1 Notation for this section

For A ⊆ [n], let xA ∈ {0, 1}n be the binary vector with support in A. For a set A ⊆ [n], let ⌈A⌉ be
the indicator function satisfying

⌈A⌉(x) = 1 ⇐⇒ xA 6 x.

For a monotone Boolean function f : {0, 1}n → {0, 1}, let M(f) denote the set of minterms of
f , and let Mℓ(f) := M(f) ∩ {0, 1}n=ℓ. Elements of Mℓ(f) are called ℓ-minterms of f .

This notation is valid only in Section 2 and will be slightly tweaked in Section 3 (Lower Bound
for Cliquek,n) for the sake of uniformity of exposition.

2.2 The function

We now describe the construction of the function fHR : {0, 1}n → {0, 1} considered by Harnik and
Raz [12]. First observe that, for every n-bit monotone Boolean function f , there exists a family
S ⊆ 2[n] such that

f(x1, . . . , xn) = DS(x1, . . . , xn) :=
∨

S∈S

∧

j∈S
xj .

Indeed, S can be chosen to be the family of the coordinate-sets of minterms of f . Now, in or-
der to construct the Harnik-Raz function, we will suppose n is a prime number and let Fn =

5

{0, 1, . . . , n− 1} be the field of n elements. Moreover, we fix two positive integers c and k with
c < k < n. For a polynomial P ∈ Fn[x], we let SP be the set of the valuations of P in each element
of {1, 2, . . . , k} (in other words, SP = {P (1), . . . , P (k)}). Observe that it is not necessarily the case
that |SP | = k, since it may happen that P (i) = P (j) for some i, j such that i 6= j. Finally, we
consider the family SHR defined as

SHR := {SP : P ∈ Fn[x], P has degree at most c− 1 and |SP | > k/2} .

We thus define fHR as fHR := DSHR
.

We now explain the choice of SHR. First, the choice for valuations of polynomials with degree
at most c − 1 is explained by a fact observed in [2]. If a polynomial P ∈ Fn[x] with degree c − 1
is chosen uniformly at random, they observed that the random variables P (1), . . . ,P (k) are c-wise
independent, and are each uniform in [n]. This allows us to define a distribution on the inputs
(the positive test distribution) that has high agreement with fHR and is easy to analyze. Observe
further that, since |SHR| 6 nc, the monotone complexity of fHR is at most 2O(c logn). Later we will
choose c to be roughly n1/2, and prove that the monotone complexity of fHR is 2Ω(c).

Finally, the restriction |SP | > k/2 is a truncation made to ensure that no minterm of fHR is
very small. Otherwise, if fHR had small minterms, it might have been a function that almost always
outputs 1. Such functions have very few maxterms and are therefore computed by a small CNF.
Since we desire fHR to have high complexity, this is an undesirable property. The fact that fHR

doesn’t have small minterms is important in the proof that fHR almost surely outputs 0 in the
negative test distribution (Lemma 2.4).

Remark 2.1 (Parameters are now fixed). Formally, the function fHR depends on the choice of the
parameters c and k. In other words, for every choice of positive integers c, k such that c < k < n, we

obtain a different function f
(c,k)
HR . For the rest of Section 2, we will let c and k be fixed parameters,

and we will refer to fHR unambiguously, always with respect to the fixed parameters c and k. We
will make our choice of c and k explicit in Section 2.7, but before then we will make no assumptions
about c and k other than c < k < n.

2.3 Test distributions

We now define the positive and negative test distributions.

Definition 2.2 (Test distributions). Let Y ∈ {0, 1}n be the random variable which chooses a
polynomial P ∈ Fn[x] with degree at most c− 1 uniformly at random, and maps it into the binary
input xSP

∈ {0, 1}n. Let also N be the (1/2)-biased distribution on {0, 1}n (i.e., each bit is equal
to 1 with probablity 1/2, independently of all the others). Equivalently, N is the uniform distribution
on {0, 1}n.

Harnik and Raz proved that fHR outputs 1 on Y with high probability. For completeness, we
include their proof.

Lemma 2.3 (Claim 4.1 in [12]). We have P[fHR(Y) = 1] > 1− (k − 1)/n.

Proof. Let P be the polynomial randomly chosen by Y . Call a pair {i, j} ⊆ [k] with i 6= j
coinciding if P (i) = P (j). Because the random variables P (i) and P (j) are uniformly distributed
in [n] and independent for i 6= j, we have that P[P (i) = P (j)] = 1/n for i 6= j. Therefore, the

6

expected number Num(P) of coiciding pairs is
(
k
2

)
/n. Observe now that fHR(Y) = 0 if and only if

|P (1), . . . ,P (k)| < k/2, which occurs only if there exists more than k/2 coinciding pairs. Therefore,
by Markov’s inequality, we have

P [fHR(Y) = 0] 6 P [Num(P) > k/2] 6

(
k
2

)
/n

k/2
=

k − 1

n
.

We now claim that fHR also outputs 0 on N with high probability.

Lemma 2.4. We have P[fHR(N) = 0] > 1− 2−(k/2−c·log2 n).

Proof. Let xA be an input sampled from N . Observe that fHR(xA) = 1 only if there exists a
minterm x of fHR such that x 6 xA. Since all minterms of fHR have Hamming weight at least k/2
and fHR has at most nc minterms, we have

P[fHR(N) = 1] 6 nc · 2−k/2 = 2−(k/2−c·log2 n).

We will also need the following property about the positive test distribution.

Lemma 2.5. For every ℓ 6 c and A ⊆ [n] such that |A| = ℓ, we have

P[xA 6 Y] 6 (k/n)ℓ .

Proof. Recall that the distribution Y takes a polynomial P ∈ Fn[x] with degree at most c − 1

uniformly at random and returns the binary vector x{P (1),P (2),...,P (k)} ∈ {0, 1}n. Let A ∈
([n]

ℓ

)
for

ℓ 6 c. Observe that xA 6 Y if and only if A ⊆ {P (1),P (2), . . . ,P (k)}. Therefore, if xA 6 Y ,
then there exists indices {j1, . . . , jℓ} such that {P (j1),P (j2), . . . ,P (jℓ)} = A. Since ℓ 6 c, we get
by the c-wise independence of P (1), . . . ,P (k) that the random variables P (j1),P (j2), . . . ,P (jℓ)
are independent. It follows that

P[{P (j1),P (j2), . . . ,P (jℓ)} = A] =
ℓ!

nℓ
.

Therefore, we have

P[xA 6 Y] = P[A ⊆ {P (1),P (2), . . . ,P (k)}] 6
(
k

ℓ

)
ℓ!

nℓ
6

(
k

n

)ℓ

.

2.4 A closure operator

In this section, we describe a closure operator in the lattice of monotone Boolean functions. We
prove that the closure of a monotone Boolean function f is a good approximation for f on the
negative test distribution (Lemma 2.10), and we give a bound on the size of the set of minterms of
closed monotone functions. This bound makes use of the robust sunflower lemma (Theorem 1.3),
and is crucial to bounding errors of approximation (Lemma 2.16). Finally, we observe that input
functions are closed (Lemma 2.12). From now on, we let

(1) ε := n−2c.

7

Definition 2.6 (Closed function). We say that a monotone function f : {0, 1}n → {0, 1} is closed
if, for every A ∈

(
[n]
6c

)
, we have

P[f(N ∨ xA) = 1] > 1− ε =⇒ f(xA) = 1.

This means that for, a closed function, we always have P[f(N ∨ xA) = 1] /∈ (1 − ε, 1) when
|A| 6 c.

Remark 2.7 (On the parametrization of closedness). We remark that the definition of a closed
function depends on two parameters: the parameter ε, defined in (1), and the parameter c, used
in the construction of fHR (see Remark 2.1). Since both of these parameters are fixed throughout
Section 2, it is safe to omit them without risk of confusion. Therefore, we will henceforth say that
some function is closed without any further specification about the parameters. However, the reader
must bear in mind that, whenever a function is said to be closed, the fixed parameters c and ε are
in view.

Definition 2.8 (Closure operator). Let f be a monotone Boolean function. We denote by cl(f)
the unique minimal closed monotone Boolean function such that f 6 cl(f). In other words, the
function cl(f) is the unique closed monotone function such that, whenever f 6 g and g is monotone
and closed, we have f 6 cl(f) 6 g.

Remark 2.9 (On closure). Note that cl(f) is well-defined, since the constant Boolean function
that outputs 1 is closed and, if f, g are both closed monotone Boolean functions, then so is f ∧ g.
Furthermore, just as with the definition of closed functions (see Remark 2.7), the closure operator
cl(·) depends crucially on the parameters ε and c, which are fixed throughout Section 2.

We now give a bound on the error of approximating f by cl(f) under the distribution N .

Lemma 2.10 (Approximation by closure). For every monotone f : {0, 1}n → {0, 1}, we have

P [f(N) = 0 and cl(f)(N) = 1] 6 n−c.

Proof. We first prove that there exists a positive integer t and sets A1, . . . , At and monotone
functions h0, h1, . . . , ht : {0, 1}n → {0, 1} such that

1. h0 = f ,

2. hi = hi−1 ∨ ⌈Ai⌉,

3. P[hi−1(N ∨ xAi) = 1] > 1− ε,

4. ht = cl(f).

Indeed, if hi−1 is not closed, there exists Ai ∈
(
[n]
6c

)
such that P[hi−1(N ∨ xAi) = 1] > 1 − ε but

hi−1(xAi) = 0. We let hi := hi−1 ∨ ⌈Ai⌉. Clearly, we have that ht is closed, and that the value of t
is at most the number of subsets of [n] of size at most c. Therefore, we get t 6

∑c
j=0

(
n
j

)
. Moreover,

by induction we obtain that hi 6 cl(f) for every i ∈ [t]. It follows that ht = cl(f). Now, observe

8

that

P [f(N) = 0 and cl(f)(N) = 1] 6
t∑

i=1

P [hi−1(N) = 0 and hi(N) = 1]

=
t∑

i=1

P [hi−1(N) = 0 and xAi 6 N]

6

t∑

i=1

P [hi−1(N ∨ xAi) = 0]

6 ε
c∑

j=0

(
n

j

)
6 n−c.

We now bound the size of the set of ℓ-minterms of a closed function. This bound depends on
the robust sunflower theorem (Theorem 1.3).

Lemma 2.11 (Closed functions have few minterms). Let B > 0 be as in Theorem 1.3. If a
monotone function f : {0, 1}n → {0, 1} is closed, then, for all ℓ ∈ [c], we have

|Mℓ(f)| 6 (6Bc logn)ℓ

Proof. Fix ℓ ∈ [c]. For convenience, let p = 1/2 and recall from (3) that ε = n−2c. We will begin
by proving that |Mℓ(f)| 6 (B log(ℓ/ε)/p)ℓ.

For a contradiction, suppose we have |Mℓ(f)| > (B log(ℓ/ε)/p)ℓ. Consider the family F :={
A ∈

([n]
ℓ

)
: xA ∈ Mℓ(f)

}
. Observe that |F| = |Mℓ(f)|. By Theorem 1.3, there exists a (p, ε)-

robust sunflower F ′ ⊆ F . Let Y :=
⋂F ′ and let W ⊆p [n]. We have

P[f(N ∨ xY) = 1] > P[∃x ∈ Mℓ(f) : x 6 N ∨ xY]

= P[∃F ∈ F : F ⊆ W ∪ Y]

> P[∃F ∈ F ′ : F ⊆ W ∪ Y]

> 1− ε.

Therefore, since f is closed, we get that f(xY) = 1. However, since Y =
⋂F ′, there exists F ∈ F ′

such that Y (F . This is a contradiction, because xF is a minterm of f . We conclude that

|Mℓ(f)| 6 (B log(ℓ/ε)/p)ℓ 6 (2B log(cn2c))ℓ 6 (6Bc log n)ℓ.

Lemma 2.12 (Input functions are closed). For all i ∈ [n] and large enough n, the Boolean functions
⌈{i}⌉ are closed.

Proof. Fix i ∈ [n]. Let A ⊆ [n] be such that |A| 6 c and suppose that ⌈{i}⌉(xA) = 0. Note that
⌈{i}⌉(xA) = 0 is equivalent to (xA)i = 0. We have

P[⌈{i}⌉(N ∨ xA) = 1] = P[(N ∨ xA)i = 1] = P[Ni = 1] = 1/2 6 1− n−2c = 1− ε,

sinceN is (1/2)-biased (Definition 2.2) and ε = n−2c (as fixed in (3)). Therefore, ⌈{i}⌉ is closed.

9

2.5 Trimmed monotone functions

In this section, we define a trimming operation for Boolean functions. We will bound the probability
that a trimmed function gives the correct output on the distribution Y , and we will give a bound
on the error of approximating a Boolean function f by the trimming of f on that same distribution.

Definition 2.13 (Trimmed functions). We say that a monotone function f ∈ {0, 1}n → {0, 1} is
trimmed if all the minterms of f have size at most c/2. We define the trimming operation trim(f)
as follows:

trim(f) :=

c/2∨

ℓ=0

∨

A∈Mℓ(f)

⌈A⌉.

That is, the trim operation takes out from f all the minterms of size larger than c/2, yielding
a trimmed function.

Remark 2.14 (Parametrization of trim(·) and other remarks). We remark that the definition
of trimmed functions depends on the choice of the parameter c. As this parameter is fixed (see
Remark 2.1), the operator trim(·) is well-defined. Moreover, if all minterms of f have Hamming
weight larger than c/2 (i.e., if Mℓ(f) = ∅ for all ℓ ∈ {0, 1, . . . , c/2}), then trim(f) is the constant
function that outputs 0. Finally, if f is the constant function 1, then trim(f) = 1, because 1

contains a minterm of Hamming weight equal to 0.

We are now able to bound the probability that a trimmed Boolean function gives the correct
output on distribution Y and give a bound on the approximation error of the trimming operation.

Lemma 2.15 (Trimmed functions are inaccurate in the positive distribution). If a monotone
function f ∈ {0, 1}n → {0, 1} is trimmed and f 6= 1 (i.e., f is not identically 1), then

P [f(Y) = 1] 6

c/2∑

ℓ=1

(
k

n

)ℓ

|Mℓ(f)| .

Proof. It suffices to see that, since f is trimmed, if f(Y) = 1 and f 6= 1 then there exists a
minterm x of f with Hamming weight between 1 and c/2 such that x 6 Y . The result follows from
Lemma 2.5 and the union bound.

Lemma 2.16 (Approximation by trimming). Let f ∈ {0, 1}n → {0, 1} be a monotone function, all
of whose minterms have Hamming weight at most c. We have

P [f(Y) = 1 and trim(f)(Y) = 0] 6
c∑

ℓ=c/2

(
k

n

)ℓ

|Mℓ(f)| .

Proof. If we have f(Y) = 1 and trim(f)(Y) = 0, then there was a minterm x of f with Hamming
weight larger than c/2 that was removed by the trimming process. Therefore, since |x| 6 c by
assumption, the result follows from Lemma 2.5 and the union bound.

10

2.6 The approximators

Let A := {trim(cl(f)) : f : {0, 1}n → {0, 1} is monotone} . Functions in A will be called approx-
imators. We define the approximating operations ⊔,⊓ : A × A → A as follows: for f, g ∈ A,
let

f ⊔ g := trim(cl(f ∨ g)),

f ⊓ g := trim(cl(f ∧ g)).

We now observe that every input function is an approximator. Indeed, since every input ⌈{i}⌉ is
closed and trivially trimmed (Lemma 2.12), we have trim(cl(⌈{i}⌉)) = trim(⌈{i}⌉) = ⌈{i}⌉. Thus,
⌈{i}⌉ ∈ A for all i ∈ [n]. Therefore, we can replace each gate of a monotone {∨,∧}-circuit C by its
corresponding approximating gate, thus obtaining a {⊔,⊓}-circuit CA computing an approximator.

The rationale for choosing this set of approximators is as follows. By letting approximators be
the trimming of a closed function, we are able to plug the bound on the set of ℓ-minterms given by
the robust sunflower lemma (Lemma 2.11) on Lemmas 2.15 and 2.16, since the trimming operation
can only reduce the set of minterms. Moreover, since trimmings can only help to get a negative
answer on the negative test distribution, we can safely apply Lemma 2.10 when bounding the errors
of approximation.

2.7 The lower bound

In this section, we prove that the function fHR requires monotone circuits of size 2Ω(c). By properly
choosing c and k, this will imply the promised exp(Ω(n1/2−o(1))) lower bound for the Harnik-Raz
function. First, we fix some parameters. Choose B as in Lemma 2.11. Let T := 18B. We also let

k := n1/2, c :=
1

T
· (k/ log n) = k

18B · log n.

For simplicity, we assume these values are integers. Note that c = Θ(k/ log n) ≪ k.

Lemma 2.17 (Approximators make many errors). For every approximator f ∈ A, we have

P[f(Y) = 1] + P[f(N) = 0] 6 3/2.

Proof. Let f ∈ A. By definition, there exists a closed function h such that f = trim(h). Observe
that Mℓ(f) ⊆ Mℓ(h) for every ℓ ∈ [c]. From Lemma 2.11, we get

|Mℓ(h)| 6 (6Bc log n)ℓ = (n/3k)ℓ.

Hence, applying Lemma 2.15, we obtain that, if f 6= 1, we have

P[f(Y) = 1] 6

c/2∑

ℓ=1

(
k

n

)ℓ

|Mℓ(h)| 6
c/2∑

ℓ=1

3−ℓ
6 1/2.

Therefore, for every f ∈ A we have P[f(Y) = 1] + P[f(N) = 0] 6 1 + 1/2 6 3/2.

Lemma 2.18 (C is well-approximated by CA). Let C be a monotone circuit. We have

P[C(Y) = 1 and CA(Y) = 0] + P[C(N) = 0 and CA(N) = 1] 6 size(C) · 2−Ω(c).

11

Proof. We begin by bounding the approximation errors under the distribution Y . We will show
that, for two approximators f, g ∈ A, if f ∨ g accepts an input from Y , then f ⊔ g rejects that
input with probability at most 2−Ω(c), and that the same holds for the approximation f ⊓ g.

First note that, if f, g ∈ A, then all the minterms of both f ∨ g and f ∧ g have Hamming weight
at most c, since f and g are trimmed. Let now h = cl(f ∨ g). We have (f ⊔ g)(x) < (f ∨ g)(x) only
if trim(h)(x) < h(x). Since h is closed, we get from Lemma 2.11 that, for all ℓ ∈ [c], we have

|Mℓ(h)| 6 (6Bc log n)ℓ = (n/3k)ℓ.

We then obtain the following inequality by Lemma 2.16:

P [(f ∨ g)(Y) = 1 and (f ⊔ g)(Y) = 0] 6
c∑

ℓ=c/2

(
k

n

)ℓ

|Mℓ(h)| 6
c∑

ℓ=c/2

3−ℓ = 2−Ω(c).

The same argument shows P [(f ∧ g)(Y) = 1 and (f ⊓ g)(Y) = 0] = 2−Ω(c). Since there are size(C)
gates in C, this implies that P[C(Y) = 1 and CA(Y) = 0] 6 size(C) · 2−Ω(c).

To bound the approximation errors under N , note that (f ∨ g)(x) = 0 and (f ⊔ g)(x) = 1 only
if cl(f ∨ g)(x) 6= (f ∨ g)(x), since trimming a Boolean function cannot decrease the probability that
it rejects an input. Therefore, by Lemma 2.10 we obtain

P [(f ∨ g)(N) = 0 and (f ⊔ g)(N) = 1] 6 n−c = 2−Ω(c).

The same argument shows P [(f ∧ g)(N) = 0 and (f ⊓ g)(N) = 1] = 2−Ω(c). Once again, doing
this approximation for every gate in C allows us to conclude P[C(N) = 0 and CA(N) = 1] 6
size(C) · 2−Ω(c). This finishes the proof.

Theorem 2.19. Any monotone circuit computing fHR has size 2Ω(c) = 2Ω(n1/2/ logn).

Proof. Let C be a monotone circuit computing fHR. Since k/2 − c log2 n = Ω(k) and k ≪ n, for
large enough n we obtain from Lemmas 2.3 and 2.4 that

P[fHR(Y) = 1] + P[fHR(N) = 0] > 2− (k − 1)/n− 2−(k/2−c log2 n) > 9/5.

We then obtain from Lemmas 2.17 and 2.18:

9/5 6 P[fHR(Y) = 1] + P[fHR(N) = 0]

6 P[C(Y) = 1 and CA(Y) = 0] + P[CA(Y) = 1]

+ P[C(N) = 0 and CA(N) = 1] + P[CA(N) = 0]

6 3/2 + size(C)2−Ω(c).

This implies size(C) = 2Ω(c).

2.8 Are better lower bounds possible with robust sunflowers?

In this section, we allow some degree of imprecision for the sake of brevity and clarity, in order to
highlight the main technical ideas of the proof.

12

A rough outline of how we just proved Theorem 2.19 is as follows. First, we noted that the
minterms of fHR are “well-spread”. This is Lemma 2.5, which states that the probability that a fixed
set A ⊆ [n] is contained in a random minterm4 of fHR is at most r|A|, where r = k/n. Moreover, we
observed that fHR outputs 0 with high probability in a p-biased distribution (Lemma 2.4), where
p = 1/2.

In the rest of the proof, we roughly showed how this implies that DNFs of size approximately
s = cc/2 and width w = c/2 cannot approximate fHR (Lemma 2.17).5 We also observed that we
can approximate the ∨ and ∧ of width-w, size-s DNFs by another width-w, size-s DNF, bounding
the error of approximation by rc/2 · cc/2. This was proved by noting that conjunctions of width c/2
accept a positive input with probability at most rc/2, and there are at most cc/2 of them. When
c ≈ k ≈ √

n, we have (rc)c/2 = 2−Ω(c), and thus we can approximate circuits of size 2o(c) with
width-w, size-s DNFs (Lemma 2.18). This yields the lower bound.

There are two essential numerical components in the proof. First, the “spreadness rate” of
the function fHR. A simple counting argument can show that the upper bound of (k/n)|A| to the
probability P[xA 6 Y] is nearly best possible when the support of Y is contained in {0, 1}n=k and
k = o(n). So this can hardly be improved with the choice of another Boolean function. Secondly, the
bounds for the size and width of the DNF approximators come from the robust sunflower lemma
(Theorem 1.3), which was used to employ the approximation method on p-biased distributions.
Since the bound of Theorem 1.3 is essentially best possible as well, as observed in [3], we cannot
hope to get better approximation bounds on a p-biased distribution from sunflowers. Therefore,
there does not seem to be much room for getting better lower bounds for monotone circuits using
the classical approximation method with sunflowers, if we use p-biased distributions. To get beyond
2Ω(

√
n), another approach seems to be required.

3 Lower Bound for Cliquek,n

Recall that the Boolean function Cliquek,n : {0, 1}(n2) → {0, 1} receives a graph on n vertices as an
input and outputs a 1 if this graph contains a clique on k vertices. In this section, we prove an
nΩ(δ2k) lower bound on the monotone circuit size of Cliquek,n for k 6 n(1/3)−δ.

We note that the first superpolynomial lower bound for the monotone circuit complexity of
Cliquek,n was given by Razborov [23], who proved a nΩ(k) lower bound for k 6 log n. Soon after,

Alon and Boppana [1] proved a nΩ(
√
k) for Cliquek,n when k 6 n2/3−o(1). This exponential lower

bound was better than Razborov’s, as it could be applied to a larger range of k, but it was short of
the obvious upper bound of nO(k). Our result finally closes that gap, by proving that the monotone
complexity of Cliquek,n is nΘ(k) even for large k.

As in Section 2, we will follow the approximation method. However, instead of using sunflowers
as in [1, 23] or robust sunflowers as in [24], we introduce a notion of clique-sunflowers and employ
it to bound the errors of approximation.

4Here, “random minterm” means an input from the distribution Y , which correlates highly with the minterms of
fHR.

5Formally, our approximators have at most O(c log n)ℓ terms of width ℓ (Lemma 2.11), and no terms of width
larger than c/2 (by trimming).

13

3.1 Notation for this section

In this section, we will often refer to graphs on n vertices and Boolean strings in {0, 1}(
n
2) inter-

changeably. For A ⊆ [n], let KA be the graph on n vertices with a clique on A and no other
edges. When |A| 6 1, the graph KA is the empty graph with n vertices and 0 edges (corresponding
to the Boolean string all of which

(
n
2

)
entries are equal to 0.) The size of KA is |A|. Let also

⌈A⌉ : {0, 1}(
n
2) → {0, 1} denote the indicator function of containing KA, which satisfies

⌈A⌉(G) = 1 ⇐⇒ KA ⊆ G.

Functions of the forms ⌈A⌉ are called clique-indicators. Moreover, if |A| = ℓ, we say that ⌈A⌉ is a
clique-indicator of size equal to ℓ. When |A| 6 1, the function ⌈A⌉ is the constant function 1.

For p ∈ (0, 1), we denote by Gn,p the Erdős-Rényi random graph, a random graph on n vertices
in which each edge appears independently with probability p.

Let f : {0, 1}(
n
2) → {0, 1} be monotone and suppose ℓ ∈ {1, . . . , δk}. We define

Mℓ(f) := {A ∈
([n]

ℓ

)
: f(KA) = 1 and f(KA\{a}) = 0 for all a ∈ A}.

Elements of Mℓ(f) are called ℓ-clique-minterms of f .

3.2 Clique-sunflowers

Here we introduce the notion of clique-sunflowers, which is analogous to that of robust sunflowers
for “clique-shaped” set systems.

Definition 3.1 (Clique-sunflowers). Let ε, p ∈ (0, 1). Let S be a family of subsets of [n] and let
Y :=

⋂S. The family S is called a (p, ε)-clique-sunflower if

P [∃A ∈ S : KA ⊆ Gn,p ∪KY] > 1− ε.

Equivalently, the family S is a clique-sunflower if the family {KA : A ∈ S} ⊆
(
[n]
2

)
is a (p, ε)-robust

sunflower, since KA ∩KB = KA∩B.

Though clique-sunflowers may seem similar to regular sunflowers, the importance of this def-
inition is that it allows us to explore the “clique-shaped” structure of the sets of the family, and
thus obtain an asymptotically better upper bound on the size of sets that do not contain a clique-
sunflower.

Lemma 3.2 (Clique-sunflower lemma). Let ε < e−1/2 and let S ⊆
([n]

ℓ

)
. If the family S satisfies

|S| > ℓ!(2 ln(1/ε))ℓ(1/p)(
ℓ
2), then S contains a (p, ε)-clique-sunflower.

Observe that, whereas the bounds for “standard” robust sunflowers (Theorems 1.2 and 1.3)
would give us an exponent of

(
ℓ
2

)
on the log(1/ε) factor, Lemma 3.2 give us only an ℓ at the

exponent. As we shall see, this is asymptotically better for our choice of parameters.
We defer the proof of Lemma 3.2 to Section 3.8. The proof is based on an application of Janson’s

inequality [13], as in the original robust sunflower lemma of [24] (Theorem 1.2).

14

3.3 Test distributions

We now define the positive and negative test distributions. First, we fix some parameters that will
be used throughout the proof. Fix δ ∈ (0, 1/3). Let

(2) k = n1/3−δ and p := n−2/(k−1).

For simplicity, we will assume from now on that δk and δk/2 are integers.

Remark 3.3 (Parameters are now fixed). From now on until the end of Section 3.7, the symbols
p, δ and k refer to fixed parameters, and will always unambiguously refer to the values just fixed.
This will only change in Section 3.8, which is independent of the proof of the lower bound for
Cliquek,n, and in which we will permit ourselves to reuse some of these symbols for other purposes.
This means that, whenever p, δ and k appear in the following discussion, the reader must bear in
mind that p = n−2/(k−1), δ is a fixed number inside (0, 1/3) and k is fixed to be k = n1/3−δ.

We observe that the probability that Gn,p has a k-clique is bounded away from 1.

Lemma 3.4. We have P[Gn,p contains a k-clique] 6 3/4.

Proof. There are
(
n
k

)
6 (en/k)k potential k-cliques, each present in Gn,p with probability p(

k
2) =

n−k. By a union bound, we have P[Gn,p contains a k-clique] 6 (e/k)k 6 (e/3)3 6 3/4.

Definition 3.5. Let Y be the uniform random graph chosen from all possible KA, where |A| = k.
In other words, the distribution Y samples a random minterm of Cliquek,n. We call Y the positive
test distribution. Let also N := Gn,p. We call N the negative test distribution.

From Lemma 3.4, we easily obtain the following corollary.

Corollary 3.6. We have P[Cliquek,n(Y) = 1] + P[Cliquek,n(N) = 0] > 5/4.

We now prove an analogous result to that of Lemma 2.5, which shows that the positive distri-
bution Y is unlikely to contain a large fixed clique.

Lemma 3.7. For every ℓ 6 k and A ⊆ [n] such that |A| = ℓ, we have

P[KA 6 Y] 6 (k/n)ℓ .

Proof. The distribution Y samples a set B uniformly at random from
([n]
k

)
and returns the graph

KB. Note that KA ⊆ KB if and only if A ⊆ B. We have

P[KA 6 Y] = P[A ⊆ B] =

(
n−k
k−ℓ

)
(
n
k

) 6

(
k

n

)ℓ

.

3.4 A closure operator

As in Section 2.4, we define here a closure operator in the lattice of monotone Boolean functions.
We will again prove that the closure of a function will be a good approximation for it on the
negative test distribution. However, unlike Section 2.4, instead of bounding the set of minterms,
we will bound the set of “clique-shaped” minterms, as we shall see. Finally, we will observe that
input functions are also closed. Henceforth, we fix the error parameter

(3) ε := n−k.

15

Definition 3.8 (Closed functions). We say that f ∈ {0, 1}(
n
2) → {0, 1} is closed if, for every

A ⊆ [n] such that |A| ∈ {2, . . . , δk}, we have

P[f(N ∨KA) = 1] > 1− ε =⇒ f(KA) = 1.

Remark 3.9 (On the parametrization of closedness). Similarly to the Harnik-Raz case (see Re-
mark 2.7), the definition of a closed function depends on three parameters: the probability p, which
controls the distribution N (as discussed in Definition 3.5), the parameter ε, defined in (3), and
the parameter k. Since all of these three parameters are fixed until the end of Section 3.7 (see
Remark 3.3), and no other reference to closed functions will be made after that, it is safe to omit
them without risk of confusion. Therefore, we will henceforth say that some function is closed with-
out any further specification about the parameters. However, the reader must bear in mind that,
whenever a function is said to be closed, the fixed parameters p, ε and k are in view.

Remark 3.10 (Definitions of closedness compared). Definition 3.11 bears great resemblance to
Definition 2.8, which also talks about a notion of closed monotone functions in the context of
lower bounds for the function of Harnik and Raz. Apart from the different parametrizations, the
main difference between those two definitions is that, whereas Definition 2.8 looks into all inputs
of Hamming weight at most c, here we only care about clique-shaped inputs of size at most δk.

As before, we can define the closure of a monotone Boolean function f .

Definition 3.11 (Closure operator). Let f be a monotone Boolean function. We denote by cl(f)
the unique minimal closed monotone Boolean function such that f 6 cl(f).

Remark 3.12 (On closure). We note again that cl(f) is well-defined (the same arguments of
Remark 2.9 apply here) and remark that its definition also depends on the parameters p, ε and k
(see Remark 3.9), which are fixed throughout the proof, and therefore can be safely omitted.

Lemma 3.13 (Approximation by closure). For every monotone f : {0, 1}(
n
2) → {0, 1}, we have

P [f(N) = 0 and cl(f)(N) = 1] 6 n−(2/3)k.

Proof. We repeat the same argument as that of Lemma 2.10. Since there are at most nδk graphs
KA such that |A| 6 δk and ε = n−k, the final bound then becomes n−k · nδk 6 n−(2/3)k.

By employing the clique-sunflower lemma (Lemma 3.2), we are able to bound the set of ℓ-clique-
minterms of closed monotone functions.

Lemma 3.14 (Closed functions have few minterms). If a monotone function f : {0, 1}(
n
2) → {0, 1}

is closed, then, for all ℓ ∈ {2, . . . , δk}, we have

|Mℓ(f)| 6 n2ℓ/3.

Proof. Recall that p = n−2/(k−1) and ε = n−k (see (2) and (3)). Applying the same strategy of
Lemma 2.11, replacing the application of Theorem 1.3 (robust sunflower theorem) by Lemma 3.2
(clique-sunflower lemma), we obtain

|Mℓ(f)| 6 ℓ!(2 log(1/ε))ℓ(1/p)(
ℓ
2) 6 (2ℓk log n)ℓ · p−(ℓ2)

6 (2δk2 log n)ℓ · n2(ℓ2)/(k−1)
6 (n2/3−2δ log n)ℓ · nδℓ

6 n2ℓ/3.

16

Lemma 3.15 (Input functions are closed). Let i, j ∈ [n] be such that i 6= j. For large enough n,
the Boolean function ⌈{i, j}⌉ is closed.

Proof. Fix i, j ∈ [n] such that i 6= j. Let A ⊆ [n] be such that |A| 6 δk and suppose that
⌈{i, j}⌉(KA) = 0. Note that ⌈{i, j}⌉(KA) = 0 is equivalent to {i, j} 6⊆ A. This implies that {i, j}
is an edge of N ∪KA if and only if {i, j} is an edge of N . Therefore, we have

P[⌈{i, j}⌉(N ∨KA) = 1] = P[⌈{i, j}⌉(N) = 1]

= P[{i, j} is an edge of Gn,p]

= n−2/(k−1),

since N = Gn,p and p = n−2/(k−1) (see (2), Remark 3.3 and Definiton 3.5). It now suffices to show
that, for large enough n, we have p 6 1− ε = 1− n−k (recall from (3) that ε = n−k).

For convenience, let α = 1/3− δ. Note that k = nα. For large enough n, we have

2 · log n
nα − 1

> n−nα
+ n−2nα

.

Using the inequality log(1− x) > −x− x2 for x ∈ [0, 1/2], we get

2 · log n
k − 1

=
2 · log n
nα − 1

> n−nα
+ n−2nα

> − log(1− n−nα
) = − log(1− n−k).

Therefore, we have
n−2/(k−1)

6 1− n−k,

and we conclude that ⌈{i, j}⌉ is closed.

3.5 Trimmed monotone functions

In this section, we define again a trimming operation for Boolean functions and prove analogous
bounds to that of Section 2.5.

Definition 3.16 (Clique-shaped and trimmed functions). We say that a function f : {0, 1}(
n
2) →

{0, 1} is clique-shaped if, for every minterm x of f , there exists A ⊆ [n] such that x = KA.
Moreover, we say that f is trimmed if f is clique-shaped and all the clique-minterms of f have size
at most δk/2. For a clique-shaped function f , we define the trimming operation trim(f) as follows:

trim(f) :=

δk/2∨

ℓ=1

∨

A∈Mℓ(f)

⌈A⌉.

That is, the trim operation takes out from f all the clique-indicators of size larger than δk/2,
yielding a trimmed function.

Remark 3.17 (Parametrization of trim(·) and other remarks). Analogously to the Harnik-Raz case
(see Remark 2.14), the definition of trimmed functions depends on the choice of the parameters δ and
k. As these parameters are fixed (see Remark 3.3), the operator trim(·) is well-defined. Moreover,
if all clique-minterms of f have size larger than δk/2 (i.e., if Mℓ(f) = ∅ for all ℓ ∈ [δk/2]),
then trim(f) is the constant function that outputs 0. Finally, if f is the constant function 1, then
trim(f) = 1, because 1 contains a clique-minterm of size equal to 1 (a clique containing one vertex
and no edges).

17

Imitating the proofs of Lemmas 2.15 and 2.16, replacing Lemma 2.5 by Lemma 3.7, we may
now obtain the following lemmas.

Lemma 3.18 (Trimmed functions are inaccurate in the positive distribution). If a monotone

function f : {0, 1}(
n
2) → {0, 1} is a trimmed clique-shaped function such that f 6= 1, then

P [f(Y) = 1] 6

δk/2∑

ℓ=2

(
k

n

)ℓ

|Mℓ(f)| .

Lemma 3.19 (Approximation by trimming). Let f : {0, 1}(
n
2) → {0, 1} be a clique-shaped mono-

tone function, all of whose clique-minterms have size at most δk. We have

P [f(Y) = 1 and trim(f)(Y) = 0] 6
δk∑

ℓ=δk/2

(
k

n

)ℓ

|Mℓ(f)| .

3.6 Approximators

Similarly as in Section 2.6, we will consider a set of approximators A. Let

A := {trim(cl(f)) : f ∈ {0, 1}(
n
2) → {0, 1} is monotone and clique-shaped}.

Functions in A are called approximators. Note that every function in A is clique-shaped and is the
trimming of a closed function. Moreover, observe that every edge-indicator ⌈{u, v}⌉ belongs to A,
since every edge-indicator is closed by Lemma 3.15.

Let f, g ∈ A such that f =
∨t

i=1⌈Ai⌉ and g =
∨s

j=1⌈Bj⌉. We define
∧
(f, g) :=

∨t
i=1

∨s
j=1⌈Ai ∪

Bj⌉. We also define operations ⊔,⊓ : A×A → A as follows:

f ⊔ g := trim(cl(f ∨ g)),

f ⊓ g := trim
(
cl
(∧

(f, g)
))

.

It’s easy to see that, if f, g ∈ A, then f ⊔ g ∈ A. To see that f ⊓ g ∈ A, note that
∧
(f, g) is

also a monotone clique-shaped function.

Remark 3.20 (Reason for definition of ⊓). The reason for defining ⊓ in that way is as follows.
First observe that f∧g =

∨t
i=1

∨s
j=1(⌈Ai⌉∧⌈Bj⌉). We simply replace each ⌈Ai⌉∩⌈Bj⌉ with ⌈Ai∪Bj⌉,

thus obtaining f ⊓ g. In general, since ⌈Ai ∪Bj⌉ is a larger conjunction than ⌈Ai⌉ ∧ ⌈Bj⌉, we have∧
(f, g) 6 f ∧ g. However, note that, for every A ⊆ [n], we have

∧
(f, g)(KA) = (f ∧ g)(KA). Thus,

the transformation from f ∧ g to
∧
(f, g) incurs no mistakes in the positive distribution Y .

If C is a monotone {∨,∧}-circuit, let CA be the corresponding {⊔,⊓}-circuit, obtained by
replacing each ∨-gate by a ⊔-gate, and each ∧-gate by an ⊓-gate. Note that CA computes an
approximator.

18

3.7 The lower bound

In this section we obtain the lower bound for the clique function. Recall that k = n1/3−δ. We will
prove that the monotone complexity of Cliquek,n is nΩ(δ2k).

Repeating the same arguments of Lemmas 2.17 and 2.18, we obtain the following analogous
lemmas.

Lemma 3.21 (Approximators make many errors). For every f ∈ A, we have

P[f(Y) = 1] + P[f(N) = 0] 6 1 + o(1).

Proof. Let f ∈ A. By definition, there exists a closed function h such that f = trim(h). Observe
that Mℓ(f) ⊆ Mℓ(h) for every ℓ ∈ {2, . . . , δk/2}. By Lemmas 3.14 and 3.18, if f ∈ A is such that
f 6= 1, then

P[f(Y) = 1] 6

δk/2∑

ℓ=2

(
k

n

)ℓ

|Mℓ(h)| 6
δk/2∑

ℓ=2

(
k

n1/3

)ℓ

6

δk/2∑

ℓ=2

n−δℓ = o(1).

Therefore, for every f ∈ A we have P[f(Y) = 1] + P[f(N) = 0] 6 1 + o(1).

Lemma 3.22 (C is well-approximated by CA). Let C be a monotone circuit. We have

P[C(Y) = 1 and CA(Y) = 0] + P[C(N) = 0 and CA(N) = 1] 6 size(C) ·O(n−δ2k/2).

Proof. To bound the approximation errors under the distribution Y , first note that, if f, g ∈ A,
then all the clique-minterms of both f ∨g and f ∧g have size at most δk. Moreover, if (f ∨g)(x) = 1
but (f ⊔ g)(x) = 0, then trim(cl(f ∨ g)(x)) 6= cl(f ∨ g)(x). Therefore, we obtain by Lemmas 3.14
and 3.19 that, for f, g ∈ A, we have

P [(f ∨ g)(Y) = 1 and (f ⊔ g)(Y) = 0] 6
δk∑

ℓ=δk/2

(
k

n

)ℓ

|Mℓ(cl(f ∨ g))|

6

δk∑

ℓ=δk/2

n−δℓ = O(n−δ2k/2).

As observed in Remark 3.20, we have
∧
(f, g)(Y) = (f ∧ g)(Y). Thus, once again, the only

approximation mistakes incurred by changing a ∧-gate for a ⊓-gate comes from the trimming
operation. Again, we conclude

P [(f ∧ g)(Y) = 1 and (f ⊓ g)(Y) = 0] = O(n−δ2k/2),

which implies
P[C(Y) = 1 and CA(Y) = 0] 6 size(C) ·O(n−δ2k/2).

Similarly, to bound the approximation errors under N , note that (f∨g)(x) = 0 and (f⊔g)(x) =
1 only if cl(f ∨ g)(x) 6= (f ∨ g)(x). Therefore, we obtain by Lemma 3.13 that, for f, g ∈ A, we have

P [(f ∨ g)(N) = 0 and (f ⊔ g)(N) = 1] 6 n−(2/3)k.

19

Moreover, note that
∧
(f, g) 6 f ∧ g. As f ⊓ g = trim(cl(

∧
(f, g))), we obtain that (f ∧ g)(x) = 0

and (f ⊓ g)(x) = 1 only if cl(
∧
(f, g))(x) >

∧
(f, g)(x). Therefore, we also have

P [(f ∧ g)(N) = 0 and (f ⊓ g)(N) = 1] 6 n−(2/3)k.

By the union bound, we conclude:

P[C(N) = 0 and CA(N) = 1] 6 size(C) · n−(2/3)k.

This finishes the proof.

We now prove the lower bound for the clique function.

Theorem 3.23. Let δ ∈ (0, 1/3) and k = n1/3−δ. The monotone circuit complexity of Cliquek,n is

Ω(nδ2k/2).

Proof. Let C be a monotone circuit computing Cliquek,n. For large n, we obtain from Corollary 3.6
and Lemmas 3.21 and 3.22

5/4 6 P[Cliquek,n(Y)] + P[Cliquek,n(N)]

6 P[C(Y) = 1 and CA(Y) = 0] + P[CA(Y) = 1]

+ P[C(N) = 0 and CA(N) = 1] + P[CA(N) = 1]

6 1 + o(1) + size(C) ·O(n−δ2k/2).

This implies size(C) = Ω(nδ2k/2).

3.8 Proof of Lemma 3.2 (Clique-sunflowers)

In this section, we give the proof of Lemma 3.2. The proof is essentially the same as the one given
by Rossman for Theorem 1.2 in [24]. We will rely on an inequality due to Janson [13] (see also
Theorem 2.18 in [14]).

Lemma 3.24 (Janson’s inequality [13]). Let F be a nonempty hypergraph on [n] and let W ⊆p [n].
Define µ and ∆ in the following way:

µ :=
∑

F∈F
P[F ⊆ W],

∆ :=
∑

F,H∈F
F∩H 6=∅

P[F ∪H ⊆ W].

Then we have
P[∀F ∈ F : F 6⊆ W] 6 exp{−µ2/∆}.

The following estimates appear in an unpublished note due to Rossman [25], and a slightly
weaker form appears implicitly in [24]. We reproduce the proof for completeness.

20

Lemma 3.25 (Lemma 8 of [25]). Let s0(t), s1(t), . . . be the sequence of polynomials defined by

s0(t) := 1 and sℓ(t) := t

ℓ−1∑

j=0

(
ℓ

j

)
sj(t).

For all t > 0, we have sℓ(t) 6 ℓ!(t+ 1/2)ℓ.

Proof. We first prove by induction on ℓ that sℓ(t) 6 ℓ!(log(1/t+ 1))−ℓ, as follows:

sℓ(t) = t
ℓ−1∑

j=0

(
ℓ

j

)
sj(t) 6 t

ℓ−1∑

j=0

(
ℓ

j

)
j!(log(1/t+ 1))−j

= tℓ!(log(1/t+ 1))−ℓ
ℓ−1∑

j=0

(log(1/t+ 1))ℓ−j

(ℓ− j)!

6 tℓ!(log(1/t+ 1))−ℓ


−1 +

∞∑

j=0

(log(1/t+ 1))j

j!




= tℓ!(log(1/t+ 1))−ℓ(−1 + exp(log(1/t+ 1)))

= ℓ!(log(1/t+ 1))−ℓ.

To conclude the proof, we apply the inequality 1/ log(1/t+ 1) < t+ 1/2 for all t > 0.

We will also need the following auxiliary definition.

Definition 3.26. Let ε, p, q ∈ (0, 1). Let Un,q ⊆ [n] be a q-random subset of [n] independent of
Gn,p. Let S be a family of subsets of [n] and let B :=

⋂S. The family S is called a (p, q, ε)-clique-
sunflower if

P [∃A ∈ S : KA ⊆ Gn,p ∪KB and A ⊆ Un,q ∪B] > 1− ε.

The set B is called core.

Clearly, a (p, 1, ε)-clique sunflower is a (p, ε)-clique sunflower. By taking q = 1 in the following
lemma, and observing that sℓ(log(1/ε)) 6 log(1/ε) + 1/2 6 2 log(1/ε) for ε 6 e−1/2, we obtain
Lemma 3.2.

Lemma 3.27. For all ℓ ∈ {1, . . . , n} and S ⊆
([n]

ℓ

)
, if |S| > sℓ(log(1/ε)) · (1/q)ℓ(1/p)(

ℓ
2), then S

contains a (p, q, ε)-clique sunflower.

Proof. By induction on ℓ. In the base case ℓ = 1, we have by independence that

P[∀A ∈ S : KA * Gn,p or A * Un,q] = P[∀A ∈ S : A * Un,q]

=
∏

A∈S
P[A * Un,q]

= (1− q)|S| < (1− q)ln(1/ε)/q 6 e− ln(1/ε) = ε.

Thus S is itself a (p, q, ε)-clique sunflower.

21

Let now ℓ > 2 and assume that the claim holds for t ∈ {1, . . . , ℓ− 1}. For convenience, let

cj := sj(log(1/ε)),

for every j ∈ {0, 1, . . . , ℓ− 1}.
Case 1. There exists j ∈ {1, . . . , ℓ− 1} and B ∈

(
[n]
j

)
such that

|{A ∈ S : B ⊆ A}| > cℓ−j(1/qp
j)ℓ−j(1/p)(

ℓ−j
2).

Let T = {A \ B : A ∈ S such that B ⊆ A} ⊆
([n]
ℓ−j

)
. By the induction hypothesis, there exists a

(p, qpj , ε)-clique sunflower T ′ ⊆ T with core a D satisfying D ∈
([n]\B
<ℓ−j

)
. We will now show that

S ′ := {B ∪ C : C ∈ T ′} ⊆ S is a (p, q, ε)-clique sunflower contained in S with core B ∪D. We have

P[∀A ∈ S ′ : KA *Gn,p ∪KB∪D or A * Un,q ∪B ∪D]

= P[∀C ∈ T ′ : KB∪C * Gn,p ∪KB∪D or B ∪ C * Un,q ∪B ∪D]

= P[∀C ∈ T ′ : KB∪C * Gn,p ∪KB∪D or C * Un,q ∪D]

= P[∀C ∈ T ′ : KC * Gn,p ∪KD or

C *
{
v ∈ Un,q : {v, w} ∈ E(Gn,p) for all w ∈ B

}
∪D]

6 P[∀C ∈ T ′ : KC * Gn,p ∪KD or C * Un,qpj ∪D]

< ε.

Therefore, S ′ is a (p, q, ε)-clique sunflower contained in S.
Case 2. For all j ∈ {1, . . . , ℓ− 1} and B ∈

(
[n]
j

)
, we have

|{A ∈ S : B ⊆ A}| 6 cℓ−j(1/qp
j)ℓ−j(1/p)(

ℓ−j
2).

In this case, we show that the bound of the lemma holds with B = ∅. Let

µ := |S| qℓp(ℓ2) > cℓ,

∆ :=
ℓ−1∑

j=1

∑

(A,A′)∈S2 : |A∩A′|=j

q2ℓ−jp2(
ℓ
2)−(

j
2).

Note that ∆ excludes j = ℓ from the sum, which corresponds to pairs (A,A′) such that A = A′,
in which case the summand becomes µ. In other words, the number ∆ of Janson’s inequal-
ity (Lemma 3.24) satisfies ∆ = µ+∆. Janson’s Inequality now gives the following bound:

(4) P[∀A ∈ S : KA * Gn,p or A * Un,q] 6 exp

(
− µ2

µ+∆

)
.

22

We bound ∆ as follows:

∆ 6

ℓ−1∑

j=1

q2ℓ−jp2(
ℓ
2)−(

j
2)

∑

B∈([n]
j)

|{A ∈ S : B ⊆ A}|2

6

ℓ−1∑

j=1

q2ℓ−jp2(
ℓ
2)−(

j
2)

∑

B∈([n]
j)

|{A ∈ S : B ⊆ A}| · cℓ−j(1/q)
ℓ−j(1/p)(

ℓ−j
2)

6 qℓp(
ℓ
2)

ℓ−1∑

j=1

cℓ−j

∑

B∈([n]
j)

|{A ∈ S : B ⊆ A}|

= qℓp(
ℓ
2)

ℓ−1∑

j=1

cℓ−j

∑

A∈S

∑

B∈(Aj)

1

= |S|qℓp(ℓ2)
ℓ−1∑

j=1

(
ℓ

j

)
cℓ−j

= µ
ℓ−1∑

j=1

(
ℓ

j

)
cj = µ

ℓ−1∑

j=0

(
ℓ

j

)
cj − µ.

Therefore,

µ2

µ+∆
>

µ
∑ℓ−1

j=0

(
ℓ
j

)
cj

=
µ

cℓ/(log(1/ε))
> log(1/ε).

Finally, from (4) we get

P[∀A ∈ S : KA * Gn,p or A * Un,q] 6 exp

(
− µ2

µ+∆

)
< ε.

Therefore, the family S is a (p, q, ε)-clique sunflower with an empty core.

4 Monotone arithmetic circuits

In this section, we give a short and simple proof of a truly exponential (exp(Ω(n))) lower bound
for real monotone arithmetic circuits computing a multilinear n variate polynomial. Real mono-
tone arithmetic circuits are arithmetic circuits over the reals that use only positive numbers as
coefficients. As we shall see, the lower bound argument holds for a general family of multilinear
polynomials constructed in a very natural way from error correcting codes, and the similarities to
the hard function used by Harnik and Raz in the Boolean setting is quite evident (see Section 2.2).
In particular, our lower bound just depends on the rate and relative distance of the underlying
code. We note that exponential lower bounds for monotone arithmetic circuits are not new, and
have been known since the 80’s with various quantitative bounds. More precisely, Jerrum and Snir
proved an exp(Ω(

√
n)) lower bound for an n variate polynomial in [15]. This bound was subse-

quently improved to a lower bound of exp(Ω(n)) by Raz and Yehudayoff in [22], via an extremely

23

clever argument, which relied on deep and beautiful results on character sums over finite fields. A
similar lower bound of exp(Ω(n)) was shown by Srinivasan [26] using more elementary techniques
building on a work of Yehudayoff [30]. In a recent personal communication Igor Sergeev pointed out
to us that truly exponential lower bounds for monotone arithmetic circuits had also been proved
in the 1980’s in the erstwhile Soviet Union by several authors, including the works of Kasim-Zade,
Kuznetsov and Gashkov. We refer the reader to [10] for a detailed discussion on this line of work.

We show a similar lower bound of exp(Ω(n)) via a simple and short argument, which holds
in a somewhat general setting. Our contribution is just the simplicity, the (lack of) length of the
argument and the observation that it holds for families of polynomials that can be constructed
from any sufficiently good error correcting codes.

Definition 4.1 (Monotone, multilinear, homogeneous). A real polynomial is said to monotone
if all of its coefficients are positive. A real arithmetic circuit is said to be monotone if it uses
only positive numbers as coefficients. A polynomial P is said to be multilinear if the degree of each
variable of P is at most 1 in all of the monomials of P . A polynomial P is said to be homogeneous if
all the monomials of P have the same degree. An arithmetic circuit C is said to be to homogeneous
(multilinear) if the polynomial computed in each of the gates of C is homogeneous (multilinear).

Definition 4.2 (From sets of vectors to polynomials). Let C ⊆ Fn
q be an arbitrary subset of

Fn
q . Then, the polynomial PC is a multilinear homogeneous polynomialof degree n on qn variables

{xi,j : i ∈ [q], j ∈ [n]} and is defined as follows:

PC =
∑

c∈C

∏

j∈[n]
xc(j),j .

Here, c(j) is the jth coordinate of c which is an element of Fq, which we bijectively identify with
the set [q].

Here, we will be interested in the polynomial PC when the set C is a good code, i.e it has high
rate and high relative distance. The following observation summarizes the properties of PC and
relations between the properties of C and PC .

Observation 4.3 (Codes vs Polynomials). Let C be any subset of Fn
q and let PC be the polynomial

as defined in Definition 4.2. Then, the following statements are true:

• PC is a multilinear homogeneous polynomial of degree equal to n with every coefficient being
either 0 or 1.

• The number of monomials with non-zero coefficients in PC is equal to the cardinality of C.

• If any two distinct vectors in C agree on at most k coordinates (i.e. C is a code of distance
n − k), then the intersection of the support of any two monomials with non-zero coefficients in
PC has size at most k.

The observation immediately follows from Definition 4.2. We note that we will work with
monotone arithmetic circuits here, and hence will interpret the polynomial PC as a polynomial
over the field of real numbers.

We now prove the following theorem, which essentially shows that for every code C with suffi-
ciently good distance, any monotone arithmetic circuit computing PC must essentially compute it
by computing each of its monomials separately, and taking their sum.

24

Theorem 4.4. If any two distinct vectors in C agree on at most n/3 − 1 locations, then any
monotone arithmetic circuit for PC has size at least |C|.

The proof of this theorem crucially uses the following well known structural lemma about
arithmetic circuits. This lemma also plays a crucial role in the other proofs of exponential lower
bounds for monotone arithmetic circuits (e.g. [15, 22, 26, 30]).

Lemma 4.5 (See Lemma 3.3 in [22]). Let Q be a homogeneous multilinear polynomial of degree d
computable by a homogeneous arithmetic circuit of size s. Then, there are homogeneous polynomials
g0, g1, g2, . . . , gs, h0, h1, h2, . . . , hs of degree at least d/3 and at most 2d/3− 1 such that

Q =

s∑

i=0

gi · hi .

Moreover, if the circuit for Q is monotone, then each gi and hi is multilinear, variable disjoint and
each one their non-zero coefficients is a positive real number.

We now use this lemma to prove Theorem 4.4.

Proof of Theorem 4.4. Let B be a monotone arithmetic circuit for PC of size s. We know from
Observation 4.3 that PC is a multilinear homogeneous polynomial of degree equal to n. This along
with the monotonicity of B implies that B must be homogeneous and multilinear since there can
be no cancellations in B. Thus, from (the moreover part of) Lemma 4.5 we know that PC has a
monotone decomposition of the form

PC =
s∑

i=0

gi · hi ,

where, each gi and hi is multilinear, homogeneous with degree between n/3 and 2n/3 − 1, gi and
hi are variable disjoint. We now make the following claim.

Claim 4.6. Each gi and hi has at most one non-zero monomial.

We first observe that the claim immediately implies theorem 4.4: since every gi and hi has at
most one non-zero monomial, their product gihi is just a monomial. Thus, the number of summands
s needed in the decomposition above must be equal to the number of monomials in PC , which is
equal to |C| from the second item in Observation 4.3.

We now prove the Claim.

Proof of Claim. The proof of the claim will be via contradiction. To this end, let us assume that
there is an i ∈ {0, 1, 2, . . . , s} such that gi has at least two distinct monomials with non-zero
coefficients and let α and β be two of these monomials. Let γ be a monomial with non-zero
coefficient in hi . Since hi is homogeneous with degree between n/3 and 2n/3 − 1, we know that
the degree of γ is at least n/3. Since we are in the monotone setting, we also know that each
non-zero coefficient in any of the gj and hj is a positive real number. Thus, the monomials α · γ
and β · γ which have non-zero coefficients in the product gi · hi must have non-zero coefficient in
PC as well (since a monomial once computed cannot be cancelled out). But, the supports of αγ
and βγ overlap on γ which has degree at least n/3. This contradicts the fact that no two distinct
monomials with non-zero coefficients in PC share a sub-monomial of degree at least n/3 from the
distance of C and the third item in Observation 4.3.

25

Theorem 4.4 when instantiated with an appropriate choice of the code C, immediately implies
an exponential lower bound on the size of monotone arithmetic circuits computing the polynomial
PC . Observe that the total number of variables in PC is N = qn and therefore, for the lower bound
for PC to be of the form exp(Ω(N)), we would require q, the underlying field size to be a constant.
In other words, for any code of relative distance at least 2/3 over a constant size alphabet which
has exponentially many code words, we have a truly exponential lower bound.

The following theorem of Garcia and Stichtenoth [9] implies an explicit construction of such
codes. The statement below is a restatement of their result by Cohen et al.[7].

Theorem 4.7 ([9] and [27]). Let p be a prime number and let m ∈ N be even. Then, for every
0 < ρ < 1 and a large enough integer n, there exists an explicit rate ρ linear error correcting block

code C : Fn
pm → Fn/ρ

pm with distance

δ > 1− ρ− 1

pm/2 − 1
.

The theorem has the following immediate corollary.

Corollary 4.8. For every large enough constant q which is an even power of a prime, and for all
large enough n, there exist explicit construction of codes C ⊆ Fn

q which have relative distance at
least 2/3 and |C| > exp(Ω(n)).

By an explicit construction here, we mean that given a vector v of length n over Fq, we can decide
in deterministic polynomial time if v ∈ C. In the arithmetic complexity literature, a polynomial
P is said to be explicit, if given the exponent vector of a monomial, its coefficient in P can be
computed in deterministic polynomial time. Thus, if a code C is explicit, then the corresponding
polynomial PC is also explicit in the sense described above. Therefore, we have the following
corollary of Corollary 4.8 and Theorem 4.4.

Corollary 4.9. There exists an explicit family {Pn} of homogeneous multilinear polynomials such
that for every large enough n, any monotone arithmetic circuit computing the n variate polynomial
Pn has size at least exp(Ω(n)).

5 Further directions

In this paper, we obtained the first monotone circuit lower bound of the form exp(Ω(n1/2/ log n))
for an explicit n-bit monotone Boolean function. It’s natural to ask if we can do better. Ideally,
we would like to achieve a truly exponential bound for Boolean monotone circuits, like the one
achieved for arithmetic monotone circuits in Section 4. However, as discussed in Section 2.8, the√
n exponent seems to be at the limit of what current techniques can achieve.
An important open-ended direction is to develop sharper techniques for proving monotone

circuit lower bounds. Sticking to the approximation method, it is not yet known whether there
exists another “sunflower-type” notion which still allows for good approximation bounds and yet
admits significantly better bounds than what is possible for robust sunflowers.

One approach can be to try to weaken the requirement of the core, and ask only that the core
of a “sunflower-type” set system F is properly contained in one of the elements of F . A weaker
notion of robust sunflowers with this weakened core could still be used succesfully in the proof of

26

the lower bound of Section 2, but it’s not yet clear whether this weaker notion admits stronger
bounds or not.

Moreover, perhaps developing specialised sunflowers for specific functions, such as done for
Cliquek,n in Section 3, could help here. One could also consider distributions which are not p-
biased, as perhaps better bounds are possible in different regimes.

Finally, as noted before, our proof of the clique-sunflower lemma follows the approach of Ross-
man in [24]. We expect that a proof along the lines of the work of Alweiss, Lovett, Wu and
Zhang [3] and Rao [21] should give us an even better bound on the size of set systems without
clique-sunflowers, removing the ℓ! factor. This would extend our nΩ(δ2k) lower bound to k 6 n1/2−δ.

Acknowledgements

We are grateful to Stasys Junka for bringing the lower bound of Andreev [5] to our attention
and to the anonymous referees of LATIN 2020 for numerous helpful suggestions. We also thank
Igor Sergeev for bringing [10] and the references therein to our attention which show that truly
exponential lower bounds for monotone arithmetic circuits had already been proved in the 1980s.
Finally, we thank the anonymous reviewers of Algorithmica for careful proofreading and many
helpful suggestions and comments.

Bruno Pasqualotto Cavalar was supported by São Paulo Research Foundation (FAPESP), grants
#2018/22257-7 and #2018/05557-7, and he acknowledges CAPES (PROEX) for partial support of
this work. A part of this work was done during a research internship of Bruno Pasqualotto Cavalar
and a postdoctoral stay of Mrinal Kumar at the University of Toronto. Benjamin Rossman was
supported by NSERC and Sloan Research Fellowship.

This version of the article has been accepted for publication after peer review, but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The
Version of Record is available online at: https://doi.org/10.1007/s00453-022-01000-3.

References

[1] N. Alon and R. B. Boppana, The monotone circuit complexity of Boolean functions, Combinatorica 7 (1987),
no. 1, 1–22. MR905147

[2] Noga Alon, László Babai, and Alon Itai, A fast and simple randomized parallel algorithm for the maximal

independent set problem, J. Algorithms 7 (1986), no. 4, 567–583. MR866792

[3] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang, Improved bounds for the sunflower lemma,
Proceedings of the 52nd annual acm sigact symposium on theory of computing, 2020, pp. 624–630.

[4] A. E. Andreev, A method for obtaining lower bounds on the complexity of individual monotone functions, Dokl.
Akad. Nauk SSSR 282 (1985), no. 5, 1033–1037. MR796937

[5] AE Andreev, A method for obtaining efficient lower bounds for monotone complexity, Algebra and Logic 26
(1987), no. 1, 1–18.

[6] Tolson Bell, Suchakree Chueluecha, and Lutz Warnke, Note on sunflowers, Discrete Mathematics 344 (2021),
no. 7, 112367.

[7] Gil Cohen, Bernhard Haeupler, and Leonard J. Schulman, Explicit binary tree codes with polylogarithmic size

alphabet, Proceedings of the 50th annual acm sigact symposium on theory of computing, pp. 535–544.

[8] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85–90.
MR0111692

27

https://doi.org/10.1007/s00453-022-01000-3

[9] A Garcia and H Stichtenoth, A tower of artin-schreier extensions of function fields attaining the drinfeld-vladut

bound, Inventiones Mathematicae 121 (1995), no. 1, 211–222.

[10] Sergey B. Gashkov and Igor’S. Sergeev, A method for deriving lower bounds for the complexity of monotone

arithmetic circuits computing real polynomials, Sbornik: Mathematics 203 (October 2012), no. 10, A02.

[11] Parikshit Gopalan, Raghu Meka, and Omer Reingold, DNF sparsification and a faster deterministic counting

algorithm, Computational Complexity 22 (2013), no. 2, 275–310.

[12] Danny Harnik and Ran Raz, Higher lower bounds on monotone size, Proceedings of the Thirty-Second Annual
ACM Symposium on Theory of Computing, 2000, pp. 378–387. MR2114553

[13] Svante Janson, Poisson approximation for large deviations, Random Structures and Algorithms 1 (1990), no. 2,
221–229.

[14] Svante Janson, Tomasz L uczak, and Andrzej Ruciński, Random graphs, Wiley-Interscience Series in Discrete
Mathematics and Optimization, Wiley-Interscience, New York, 2000. MR1782847

[15] Mark Jerrum and Marc Snir, Some exact complexity results for straight-line computations over semirings, J.
ACM 29 (July 1982), no. 3, 874–897.

[16] Stasys Jukna, Combinatorics of monotone computations, Combinatorica 19 (1999), no. 1, 65–85.

[17] Xin Li, Shachar Lovett, and Jiapeng Zhang, Sunflowers and quasi-sunflowers from randomness extractors,
Approx-random, 2018, pp. 51:1–13.

[18] Shachar Lovett, Noam Solomon, and Jiapeng Zhang, From dnf compression to sunflower theorems via regularity,
arXiv preprint arXiv:1903.00580 (2019).

[19] Shachar Lovett and Jiapeng Zhang, Dnf sparsification beyond sunflowers, Proceedings of the 51st annual acm
sigact symposium on theory of computing, 2019, pp. 454–460.

[20] Toniann Pitassi and Robert Robere, Strongly exponential lower bounds for monotone computation, Proceedings
of the 49th annual acm sigact symposium on theory of computing, 2017, pp. 1246–1255.

[21] Anup Rao, Coding for sunflowers, Discrete Anal. (2020), Paper No. 2, 8. MR4072543

[22] Ran Raz and Amir Yehudayoff, Multilinear formulas, maximal-partition discrepancy and mixed-sources extrac-

tors, J. Comput. Syst. Sci. 77 (2011), no. 1, 167–190.

[23] A. A. Razborov, Lower bounds on the monotone complexity of some Boolean functions, Dokl. Akad. Nauk SSSR
281 (1985), no. 4, 798–801. MR785629

[24] Benjamin Rossman, The monotone complexity of k-clique on random graphs, SIAM J. Comput. 43 (2014), no. 1,
256–279. MR3166976

[25] , Approximate sunflowers, 2019. unpublished, available at http://www.math.toronto.edu/rossman/approx-sunflowers.pdf

[26] Srikanth Srinivasan, Strongly exponential separation between monotone VP and monotone VNP, CoRR
abs/1903.01630 (2019), available at 1903.01630.

[27] H. Stichtenoth, Algebraic function fields and codes, Vol. 254, Springer Science & Business Media, 2009.

[28] Terence Tao, The sunflower lemma via shannon entropy, Blogpost (2020).

[29] J Tiekenheinrich, A 4n-lower bound on the mononotone network complexity of a oneoutput boolean function,
Information Processing Letters 18 (1984), 201–201.

[30] Amir Yehudayoff, Separating monotone VP and VNP, Proceedings of the 51st annual ACM SIGACT symposium
on theory of computing, STOC 2019, phoenix, az, usa, june 23-26, 2019., 2019, pp. 425–429.

A Proof of Theorem 1.3

We say that a family F of sets is r-spread if there are most |F| /r|T | sets in F containing any
given non-empty set T . The following theorem is a p-biased variant of the main technical lemma
of Rao [21]. A full proof is given in the appendix of [6].

28

http://www.math.toronto.edu/rossman/approx-sunflowers.pdf
1903.01630

Theorem A.1 (Theorem 3 of [6]). There exists a constant B > 0 such that the following holds for
all p, ε ∈ (0, 1/2] and all positive integers ℓ. Let r = B log(ℓ/ε)/p. Let F be a r-spread ℓ-uniform
family of subsets of [n] such that |F| > rℓ. Then PW⊆p[n][∃F ∈ F : F ⊆ W] > 1− ε.

We now combine Theorem A.1 with the main argument of the proof of Theorem 4.4 of [24] to
finish the proof of Theorem 1.3.

Proof of Theorem 1.3. The proof is by induction on ℓ. When ℓ = 1, we have

P[∀F ∈ F : F 6⊆ W] = (1− p)|F|
6 e−p|F| < ε.

Therefore, F itself is a (p, ε)-robust sunflower. We now suppose ℓ > 1 and that the result holds for
every t ∈ [ℓ− 1]. For a set T ⊆ [n], let FT = {F \ T : F ∈ F , T ⊆ F}. Let r = B log(ℓ/ε)/p, where
B is the constant of Theorem A.1.

Case 1. The family F is not r-spread. By definition, there exists a nonempty set T ⊆ [n] such
that |FT | > |F| /r|T | > rℓ−|T |. By induction, the family FT contains a (p, ε)-robust sunflower F ′.
It is easy to see that {F ∪ T : F ∈ F ′} is a (p, ε)-robust sunflower contained in F .

Case 2. The family F is r-spread. Therefore, from Theorem A.1, it follows that F is itself a
(p, ε)-robust sunflower.

29

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

