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Abstract

We establish nearly tight bounds on the expected shrinkage of decision lists and DNF formulas under
the p-random restriction Rp for all values of p ∈ [0, 1]. For a function f with domain {0, 1}n, let DL(f)
denote the minimum size of a decision list that computes f . We show that

E[ DL(f�Rp) ] ≤ DL(f)log2/(1−p)(
1+p
1−p

)
.

For example, this bound is
√

DL(f) when p =
√
5 − 2 ≈ 0.24. For Boolean functions f , we obtain the

same shrinkage bound with respect to DNF formula size plus 1 (i.e., replacing DL(·) with DNF(·) + 1 on
both sides of the inequality).

1 Introduction

Random restrictions are a powerful tool in circuit complexity and the analysis of Boolean functions. A
restriction is a partial assignment to the input bits of a function f on the hypercube {0, 1}n. For a parameter
p ∈ [0, 1], the p-random restriction Rp independently leaves each input bit free with probability p and
otherwise assigns it to 0 or 1 with equal probability. We denote by f�Rp the function obtained from f by
restricting its inputs to the subcube of {0, 1}n that correspond to Rp.

Random restrictions are known to reduce the complexity of functions in simple models of computations,
such as decision trees (DT), decision lists (DL), DNF formulas (DNF), and DeMorgan formulas (L); the
symbols in parentheses are notation for the corresponding size measures (see Section 2 for definitions). With
respect to DeMorgan formula leaf-size L, it is easy to see that L(f�Rp) has expectation at most p·L(f). (This
follows by linearity of expectation from the observation that each input literal in a minimal formula for f is
eliminated by Rp with probability p.) Subbotovskaya [25] was the first to show that the expected shrinkage
factor is in fact significantly smaller than p (she showed an upper bound O(p3/2) for p ≥ 1/L(f)2/3). A
subsequent line of results [1, 14, 19, 11, 26], culminating in an p2−o(1) bound of H̊astad [11] and a low-order
improvement by Tal [26], eventually established an asymptotically tight bound:

Theorem 1 (Shrinkage of DeMorgan formulas [26]). For all Boolean functions f ,

E[ L(f�Rp) ] = O( p2L(f) + p
√
L(f) ).

The constant 2 in the exponent p in Theorem 1 is known as the “shrinkage exponent” of DeMorgan
formulas. Shrinkage under Rp has also been studied for restricted types of formulas, namely read-once,
monotone, and bounded-depth (AC0). It was shown in [5, 13] that read-once formulas have shrinkage
exponent log√5−1(2) ≈ 3.27. The shrinkage exponent of monotone formulas is between 2 and log√5−1(2) and
conjectured to equal the latter; determining the exact constant is a longstanding question (Open Problem 24).
In the AC0 setting (bounded-depth formulas with unbounded and and or gates), it is known that depth-d
formulas with fan-in m shrink to expected size O(1) under Rp when p is O(1/ logm)d−1 [22]. However, it
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is open to determine the shrinkage rate for larger p, particularly in the “mild random restriction” regime
where p is Ω(1) or 1− o(1) (Open Question 21).

The results of this paper give nearly tight bounds on the shrinkage under Rp of depth-2 formulas (also
known as DNF and CNF formulas), as well as the more general computational model of decision lists. Before
stating our main result, it is instructive to first consider shrinkage in the simpler model of decision trees. For
a function f on the hypercube (with domain {0, 1}n and arbitrary range), we denote by DT(f) the minimum
number of leaves (i.e., output nodes) in a decision tree that computes f . The following bound is shown by
straightforward induction on DT(f). (I believe this bound is probably folklore, but could not find a reference
so have included the short proof in Section 3.1.)

Theorem 2 (Shrinkage of decision trees). For all functions f on the hypercube,

E[ DT(f�Rp) ] ≤ DT(f)log2(1+p).

This bound holds with equality when f is a parity function.

Decision lists are a natural computational model that has been studied in many contexts [3, 4, 16, 9, 21].
A decision list of size m is a sequence L = ((C1, b1), . . . , (Cm, bm)) where b1, . . . , bm are arbitrary output
values and C1, . . . , Cm are conjunctive clauses (ands of literals) such that C1 ∨ · · · ∨ Cm is a tautology.1

L computes a function on the hypercube as follows: on input x ∈ {0, 1}n, the output is bi for the first index
i ∈ [m] such that Ci(x) is satisfied. We denote by DL(f) the minimum size of a decision list that computes f .

Decision lists are a generalization decision trees: every decision tree is equivalent to a decision list of
the same size, and thus DL(f) ≤ DT(f) for all functions f on the hypercube.2 Boolean decision lists, in
which b1, . . . , bm ∈ {0, 1}, are moreover a generalization of both DNF and CNF formulas. In particular,
DNF formulas are the special case where b1 = · · · = bm−1 = 1 and bm = 0. Following custom, we count the
size of a DNF formula as m− 1 instead of m, and thus DL(f) ≤ DNF(f) + 1 for all Boolean functions f .

Despite decision lists and DNF/CNF formulas being more complex computational models than decision
trees, our main result shows that they shrink at a similar rate under Rp.

Theorem 3 (Shrinkage of decision lists and DNF formulas). For all functions f on the hypercube,

E[ DL(f�Rp) ] ≤ DL(f)γ(p) where γ(p) := log 2
1−p

( 1+p
1−p ).

If f is Boolean, then also E[ DNF(f�Rp) + 1 ] ≤ (DNF(f) + 1)γ(p) (and similarly for CNF(·) + 1).

Figure 1: Plots of γ(p) := log 2
1−p

( 1+p
1−p ) (blue) and log2(1 + p) (red)

1In other words, every input x ∈ {0, 1}n satisfies at least one of C1, . . . , Cm. Without loss of generality, Cm may be chosen
as the empty (always true) conjunctive clause >. We allow C1∨· · ·∨Cm to be an arbitrary tautology in order to more naturally
define the class of orthogonal decision lists later on in Section 3.3.

2The name “decision list” elsewhere commonly refers to (what we call) width-1 decision trees, in which each clause is a single
literal (i.e., an input variable xi or its negation xi). Whereas unbounded-width decision lists are a generalization decision trees,
width-1 decision lists are instead a special case.
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Note that γ : [0, 1]→ [0, 1] is an increasing function with γ(0) = 0 and γ(1) = 1 (see Figure 1). The bound
of Theorem 3 is thus nontrivial for all values of p ∈ (0, 1). This bound is moreover close to optimal: log2(1+p)
is a lower bound on the best possible function γ(p) (Section 3.4). As corollaries, we obtain additional bounds
ODL(f)γ(p) and wODL(f)γ(p) on the shrinkage of orthogonal and weakly orthogonal decision lists (Corollary
14), as well as (L2(f) + 1)γ(2p) for depth-2 formula leaf-size (Corollary 18).

Theorem 3 yields the following bounds for particular settings of p in terms of m = DL(f):

E[ DL(f�Rp) ] ≤



2 for p = O( 1
logm ),

√
m for p =

√
5− 2 ≈ 0.24,

m/2 for p = 1−O( log logm
logm ),

m− 1 for p = 1−O( logm
m ).

For small p = O(1/ logm), a variant of H̊astad’s Switching Lemma (discussed below) actually implies a
stronger inequality E[ DT(f�Rp) ] ≤ 2 with DT in place of DL (Corollary 6). Theorem 3 is mainly interesting
for larger values of p. In particular, the “mild random restriction” regime when p is Ω(1) or 1 − o(1) has
important applications in pseudorandomness [8, 20], DNF sparsification [7, 17] and hypercontractivity [18].

1.1 Switching lemmas and size measures vs. width/depth measures

We have so far discussed the shrinkage of various complexity measures under the p-random restriction Rp.
The switching lemmas stated below can be viewed as apples-to-oranges shrinkage results that bound one
complexity measure on f�Rp in terms of another complexity measure on f . Here there is a useful distinction
between “size measures” DT, DL, DNF and their corresponding “width/depth measures”, denoted by DTdepth,
DLwidth, DNFwidth. Width/depth measures are typically related to the logarithm of size measures: functions
with size complexity m are approximable by (or in some cases equivalent to) functions with width/depth
complexity O(logm). H̊astad’s Switching Lemma [10] gives a tail bound on the decision tree size of f�Rp

in terms of the decision list width of f .3

Theorem 4 (Switching Lemma [10]). For all functions f on the hypercube and t ∈ N,

P[ DTdepth(f�Rp) ≥ t ] ≤ O(p · DLwidth(f))t.

A variant of the Switching Lemma with logDL(f) in place of DLwidth(f) was proved in [22].

Theorem 5 (Switching Lemma in terms of decision list size [22]). For every function f on the hypercube
and t ∈ N,

P[ DTdepth(f�Rp) ≥ t ] ≤ O(p · logDL(f))t.

We remark that Theorem 5 follows directly from Theorem 4 for t ≤ O(logDL(f)) (by the standard width
reduction argument), but not for larger t. Obtaining a tail bound for all t ∈ N is essentially to the following:

Corollary 6 (Decision tree size of decision lists). For all functions f on {0, 1}n,

E[ DT(f�Rp) ] ≤ 2 and DT(f) ≤ O(2(1−p)n) where p = O(1/ logDL(f)),

3In its application to AC0 circuit lower bounds, Theorem 4 is usually stated (more narrowly) in the form

P[ CNFwidth(f�Rp) ≥ t ] ≤ O(p · DNFwidth(f))t

for Boolean functions f . The name “Switching Lemma” refers to the conversion of a DNF formula to a CNF formula. The
more general bound stated in Theorem 4 is implicit in proofs of [10].
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As previously mentioned, Corollary 6 strengthen the bound E[ DL(f�Rp) ] ≤ 2 for p = O(1/ logDL(f))
that follows from Theorem 3 (albeit for p that is a constant factor smaller). However, note that Corollary
6 is trivial for p above Ω(1/ logDL(f)). A different switching lemma for large p (even 1 − o(1)) in terms
of DNFwidth(f) was introduced by Segerlind, Buss and Impagliazzo [24] and quantitatively improved by
Razborov [20]. It is unclear if these switching lemmas for “mild random restriction” have analogues in terms
of logDL(f); if so, that might entail a shrinkage bound for DL that is nontrivial for all p ∈ (0, 1), although
potentially weaker than Theorem 3.

Our proof of Theorem 3 involves an application of Jensen’s inequality with respect to a certain carefully
defined probability distribution on the set of clauses in a decision list L. This distribution is related to (but
not identical to) the distribution of the first satisfied clause of L under a uniform random input. A similar
convexity argument appears in the proof of Theorem 5 in [22]. A second key idea, the notion of “useful
indices” of L under a restriction %, comes from a recent paper of Lovett, Wu and Zhang [17] who proved
the following result as the main lemma in establishing tight bound on the sparsification of bounded-width
decision lists.

Theorem 7 (Decision list shrinkage in terms of width [17]). For every function f on the hypercube,

E[ DL(f�Rp) ] ≤
(

4

1− p

)DLwidth(f)

.

Note that our main result, Theorem 3, stands in relation to Theorem 7 just as Theorem 5 does to Theorem
4: in both cases we are essentially replacing DLwidth(f) with logDL(f).

1.2 Other related work

There are different ways to quantify the effect of random restrictions on complexity measures. Instead of
bounding expectation, one may show that shrinkage occurs with high probability. For DeMorgan formulas,
high probability shrinkage results were shown in [23, 15]. Shrinkage results and switching lemmas have also
been studied for random restrictions other than Rp (see [2]). Very interesting recent work of Filmus, Meir
and Tal [6] extends the technique of H̊astad [11] to obtain p2−o(1) factor shrinkage bounds for DeMorgan
formulas under a family of pseudorandom projections that generalize Rp.

2 Preliminaries

Throughout this paper, p is an arbitrary parameter in [0, 1]. All inequalities involving p hold for all values
in [0, 1]. We often use the special case of Jensen’s inequality E[Xc ] ≤ E[X ]c where X is a nonnegative
random variable and c ∈ [0, 1] (in particular, when c is log2(1 + p) or γ(p)). We write N for the natural
numbers {0, 1, 2, . . . }, and for m ∈ N, we write [m] for {1, . . . ,m}.

2.1 Functions and restrictions on the hypercube

Function on the hypercube refers to any function with domain {0, 1}n where n is a positive integer. A Boolean
function is a function on the hypercube with codomain {0, 1}. (The parameter n plays no role in most results
in this paper, so we suppress its mention whenever possible.)

A restriction is a partial assignment of Boolean variables x1, . . . , xn to values 0 and 1; this is formally
defined as a function % : {1, . . . , n} → {0, 1, ∗} where %(i) = ∗ signifies that xi is left free by %. We denote
by Stars(%) ⊆ [n] the set of free variables under %. For a function f on the hypercube {0, 1}n and a
restriction %, we denote by f�% the restricted function on the subcube {0, 1}Stars(%) defined in the obvious
way: (f�%)(y) = f(x) where x ∈ {0, 1}n is the input with xi = yi if i ∈ Stars(%) and xi = %(i) otherwise.

For p ∈ [0, 1], the p-random restriction Rp is the random restriction that independently leaves each
variable xi free with probability p and otherwise sets xi to 0 or 1 with equal probability. Thus, for any
particular restriction %, we have P[ Rp = % ] = p|Stars(%)|((1− p)/2)n−|Stars(%)|.
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2.2 Complexity measures DL,DT,DNF,CNF and their width/depth versions

Definition 8 (DNF formulas). We first define literals, conjunctive clauses, and DNF formulas over n
variables.

• A literal is a Boolean variable xi or negated Boolean variable xi where i ∈ {1, . . . , n}.

• A conjunctive clause (a.k.a. term) is an expression C of the form `1 ∧ · · · ∧ `w where `1, . . . , `w are
literals on disjoint variables. The parameter w is the width of C; this may be any nonnegative integer.
The conjunctive clause of width zero is denoted by >.

• A DNF formula is an expression F of the form C1∨· · ·∨Cm where C1, . . . , Cm are conjunctive clauses.
The parameter m is the size of F ; this may be any nonnegative integer. The DNF formula of size 0 is
denoted by ⊥. The width of F is defined as the maximum width of any Ci.

• CNF formulas are defined dually (with the roles of ∨ and ∧ exchanged).

Every literal, conjunctive clause, and DNF formula computes a Boolean function {0, 1}n → {0, 1} in the
usual way.

• A DNF formula F is a tautology if it computes the identically 1 function. Note that any DNF formula
that includes the empty conjunctive clause > is a tautology.

Definition 9 (Decision lists).

• A decision list is an expression L of the form ((C1, b1), . . . , (Cm, bm)) where b1, . . . , bm are arbitrary
output values (not necessarily Boolean) and C1, . . . , Cm are conjunctive clauses such that C1∨· · ·∨Cm
is a tautology. The parameter m is the size of L; this may be any positive integer. The width of C is
defined as the maximum width of any Ci.

A decision list L computes a function {0, 1}n → {b1, . . . , bm} as follows: on input x, the output is b` where
i ∈ [m] is the minimum index such that Ci(x) = 1. (Note that the final clause Cm may be replaced by >
without changing the function computed by L.)

Definition 10 (Decision trees).

• A decision tree is a rooted binary tree T in which each leaf is labeled by an output value (not necessarily
Boolean) and each non-leaf node is labeled by a variable xi, with the edges to its two children labeled
“xi = 0” and “xi = 1”. The size of T is the number of leaves; this may be any positive integer. The
depth of T is the maximum number of non-leaf nodes on any root-to-leaf branch; this may be any
nonnegative integer.

Definition 11 (Associated complexity measures). For a function f with domain {0, 1}n (and arbitrary
codomain), let

DT(f) := minimum size of a decision tree that computes f,

DL(f) := minimum size of a decision list that computes f,

When f is Boolean, we additionally define

DNF(f) := minimum size of a DNF formula that computes f,

CNF(f) := minimum size of a CNF formula that computes f.

For constant functions 0 and 1, note that DNF(0) = 0 and DNF(1) = 1 according to our definition, since 0 is
computed by the empty DNF formula, while 1 is computed by the DNF formula with a single empty clause.
Also note that CNF(f) = DNF(¬f).

Each of the above size measures has a corresponding width/depth measure. These are denoted by

DTdepth(f), DLwidth(f), DNFwidth(f), CNFwidth(f).
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Proposition 12 (see [3, 16]). These size measures satisfy the following inequalities for all Boolean functions:

1 ≤ DL ≤
{

DNF + 1
CNF + 1

}
≤ DNF + CNF ≤ DT.

The corresponding width/depth measures satisfy:

0 ≤ DLwidth ≤

 DNFwidth

CNFwidth

d log2(DT) e

 ≤ DTdepth ≤ DNFwidth · CNFwidth.

The above inequalities that involve decision trees and decision lists also apply to non-Boolean functions on
the hypercube.

We introduce additional computational models later on: (weakly) orthogonal decision lists in Section 3.3
and AC0 formulas in Section 4.

3 Shrinkage of decision trees and decision lists

We prove Theorems 2 and 3 in Sections 3.1 and 3. We then discuss extensions of our shrinkage bound to
(weakly) orthogonal decision lists in Section 3.3 and tightness of the bounds Section 3.4.

3.1 Shrinkage of decision trees

Proof of Theorem 2. Let T be a decision tree (with arbitrary output values). We must show that

E[ size(T �Rp) ] ≤ size(T )log2(1+p).

We argue by induction of the size of T . The inequality is trivial in the base case that T has size 1.
Assume T has size m ≥ 2. Then T has the form “If xi = 0 then T0 else T1” where T0, T1 are decision

trees of size m0,m1 ≥ 1 with m0 +m1 = m. Without loss of generality, T0 and T1 never query xi. We have

E[ size(T �Rp) ] = pE
[

size(T �Rp)
∣∣ Rp(xi) = ∗

]
+

1− p
2

(
E
[

size(T0�Rp)
∣∣ Rp(xi) = 0

]
+ E

[
size(T1�Rp)

∣∣ Rp(xi) = 1
])

=
1 + p

2

(
E[ size(T0�Rp) ] + E[ size(T1�Rp) ]

)
≤ 1 + p

2

(
(m0)log2(1+p) + (m1)log2(1+p)

)
(induction hypothesis)

≤ (1 + p)
(m

2

)log2(1+p)

(Jensen’s inequality)

= mlog2(1+p).

As for tightness of the bound: If f is a parity function f(x1, . . . , xk) = x1 ⊕ · · · ⊕ xk, then we have
DT(f) = 2k and

E[ DT(f�Rp) ] = E[ 2Bin(k,p) ] =

k∑
i=0

2iP[ Bin(k, p) = i ]

=

k∑
i=0

(
k

i

)
(2p)i(1− p)k−i = (1 + p)k = DT(f)log2(1+p).
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3.2 Shrinkage of decision lists

We now prove our main result on the shrinkage of decision lists and DNF formulas.

Proof of Theorem 3. Let f be any function on the hypercube and let p ∈ [0, 1]. (Note: Neither the hypercube
dimension n nor the nature of output values of f play no role in our analysis.)

Let L = ((C1, b1), . . . , (Cm, bm)) be a decision list of minimum size that computes f , that is, with
m = DL(f). For ` ∈ [m], let |C`| denote the width of the clause C` (i.e., the number of literals in C`).
Without loss of generality, we have |C1|, . . . , |Cm−1| ≥ 1 and |Cm| = 0 (i.e., Cm is the empty clause >).

Following Lovett, Wu and Zhang [17], for a restriction %, we define the set U(%) ⊆ [m] of useful indices
of L under % by

U(%) := {` ∈ [m] : ∃ an input x consistent with % such that C`(x) = 1 and C1(x) = · · · = C`−1(x) = 0}.

If U(%) = {`1, . . . , `t} where 1 ≤ `1 < · · · < `t ≤ m, then the restricted function f�% is computed by the
decision list L�% defined by

L�% := ((C`1�%, b`1), . . . , (C`t�%, b`t))

where C`i�% is the sub-clause of C`i on the variables left unrestricted by %. (Note that C`1 ∨ · · · ∨ C`t is a
tautology, so L�% is indeed a decision list.) Thus, we have

(1) DL(f�%) ≤ |U(%)|.

For example, suppose m = 4 and

C1 = x1 ∧ x3, C2 = x1 ∧ x4, C3 = x2 ∧ x3, C4 = >.

For %1 := {x1 7→ 1} (the restriction fixing x1 to 1 and leaving other variables free), we have

U(%1) = {1, 3, 4}, L�%1 = ((x3, b1), (x2 ∧ x3, b3), (>, b4)).

For %2 := {x1 7→ 1, x2 7→ 1}, we have

U(%2) = {1, 3}, L�%2 = ((x3, b1), (x3, b3)).

In particular, the final clause C4 is not useful under %2 (since any input consistent with %2 satisfies
C1 or C3).

Now comes a key definition: let µ = (µ1, . . . , µm) be the probability density vector (defining a probability
distribution on [m])

µ` := P
%∼Rp

[ max(U(%)) = ` and C`�% ≡ 1 ] for ` ∈ [m− 1],

µm := P
%∼Rp

[ max(U(%)) = m or Cmax(U(%))�% 6≡ 1 ].

Since events max(U(%)) = ` are mutually exclusive, clearly we have µ1 + · · ·+ µm = 1.

Note that max(U(%)) = ` does not imply C`�% ≡ 1, that is, µ` does not necessarily equal
P%∼Rp [ max(U(%)) = ` ]. This is illustrated by the restriction %2 in the above example, for
which we have max(U(%2)) = 3, yet C3�%2 = x3 6≡ 1. Restrictions %1 and %2 both contribute to
probability mass µ4: in the case of %1, this is because max(U(%1)) = 4, and in the case of %2, this
is because Cmax(U(%2))�%2 6≡ 1.
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For each ` ∈ [m], we have µ` ≤ P[ C`�% ≡ 1 ] = ((1− p)/2)|C`| and therefore

(2) |C`| ≤ log2/(1−p)(1/µ`).

We require one more definition. For a restriction % and a useful index ` ∈ U(%), let %(`) be the restriction
obtained by augmenting % by the unique satisfying assignment for the clause C`. That is, %(`) fixes a variable
xi to a ∈ {0, 1} if, and only if, % fixes xi to a or xi = a in the satisfying assignment to C`.

As in proofs of the Switching Lemma, we will use the fact that

(3)
P[ Rp = % ]

P[ Rp = %(`) ]
=

(
2p

1− p

)|Stars(%)∩Vars(C`)|

since %(`) has exactly |Stars(%) ∩Vars(C`)| fewer unrestricted variables (“stars”) than %.
As observed in [17], for every ` ∈ U(%), we have U(%(`)) = U(%) ∩ [`] and therefore

(4) max(U(%(`))) = ` and C`�%
(`) ≡ 1.

Thus, %(`) contributes to the probability mass µ`.
As a consequence of (3) and (4), we claim that for all ` ∈ [m],

(5) P
%∼Rp

[ ` ∈ U(%) ] ≤ µ`
(

1 + p

1− p

)|C`|

.

In the case ` = m, this follows from m ∈ U(%)⇒ max(U(%)) = m. For ` ∈ [m− 1], this is shown as follows:

P
%∼Rp

[ ` ∈ U(%) ] =
∑

S⊆Vars(C`)

P
%∼Rp

[ ` ∈ U(%) and Stars(%) ∩Vars(C`) = S ]

(4)

≤
∑

S⊆Vars(C`)

P
%∼Rp

[ ` = max(U(%(`))) and C`�%
(`) ≡ 1 and Stars(%) ∩Vars(C`) = S ]

=
∑

S⊆Vars(C`)

∑
% : `=max(U(%(`))) and C`�%(`)≡1 and Stars(%)∩Vars(C`)=S

P[ Rp = % ]

=
∑

S⊆Vars(C`)

∑
σ : `=max(U(σ)) and C`�σ≡1

∑
% : %(`)=σ and Stars(%)∩Vars(C`)=S

P[ Rp = % ]

(3)
=

∑
S⊆Vars(C`)

∑
σ : `=max(U(σ)) and C`�σ≡1

∑
% : %(`)=σ and Stars(%)∩Vars(C`)=S

(
2p

1− p

)|S|
P[ Rp = σ ]

=
∑

S⊆Vars(C`)

(
2p

1− p

)|S| ∑
σ : `=max(U(σ)) and C`�σ≡1

P[ Rp = σ ] (% is determined by σ and S)

= µ`
∑

S⊆Vars(C`)

(
2p

1− p

)|S|
(definition of µ`)

= µ`

(
1 + p

1− p

)|C`|

(binomial expansion of (1 + 2p
1−p )|C`|).

Finally, we obtain the shrinkage bound of Theorem 3 by the following calculation, which uses Jensen’s
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inequality in addition to the above observations:

E
%∼Rp

[ DL(f�%) ]
(1)

≤ E
%∼Rp

[ |U(%)| ] =
∑
`∈[m]

P
%∼Rp

[ ` ∈ U(%) ]

(5)
=
∑
`∈[m]

µ`

(
1 + p

1− p

)|C`|

(2)

≤
∑
`∈[m]

µ`

(
1 + p

1− p

)log2/(1−p)(1/µ`)

= E
`∼µ

[ (
1

µ`

)γ(p) ]
(definition of γ(p) = log 2

1−p
( 1+p

1−p ))

≤
(
E
`∼µ

[
1

µ`

])γ(p)

(Jensen’s inequality)

= mγ(p).

Since m = DL(f), this complete the proof of our bound on decision list shrinkage.

We shall now assume that f is Boolean and C1 ∨ · · · ∨Cm is a minimum size DNF formula computing f .
Let L be the equivalent decision list ((C1, 1), . . . , (Cm, 1), (>, 0)) of size m+ 1. The shrinkage bound

E[ DNF(f�Rp) + 1 ] ≤ (DNF(f) + 1)γ(p)

now follows from the above analysis, noting that DNF(f�%) + 1 ≤ size(L�%) for all restrictions %.

3.3 Shrinkage of (weakly) orthogonal decision lists

Definition 13. Let L = ((C1, b1), . . . , (Cm, bm)) be a decision list. We say that L is

• orthogonal if each input x satisfies exactly one of the conjunctive clauses C1, . . . , Cm,

• weakly orthogonal if each input x satisfies at most one of C1, . . . , Cm−1.

(Note that if L is weakly orthogonal, then it remains so after replacing Cm with >. In contrast, an orthogonal
decision list has Cm = > if and only if m = 1.)

For a function f on the hypercube, we denote by (w)ODL(f) the minimum size of a (weakly) orthogonal
decision list that computes f . These complexity measures lies in-between DL and DT:

DL ≤ wODL ≤ ODL ≤ DT.

Our proof of Theorem 3 implies a shrinkage bound for ODL and wODL in the same way as for DNF + 1.

Corollary 14. For every function f on the hypercube,

E[ ODL(f�Rp) ] ≤ ODL(f)γ(p) and E[ wODL(f�Rp) ] ≤ wODL(f)γ(p).

This follows from the observation that if L is orthogonal, then so is L�% for any restriction %, and if L is
semi-orthogonal, then L�% is semi-orthogonal after replacing the final conjunctive clause with >.
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3.4 Lower bound on the optimal γ(p)

What is the optimal function γ(p) that may be chosen in the bound on decision list shrinkage of Theorem 3?
We observe that γ(p) cannot be improved beyond log2(1 + p). The lower bound is given by a (non-Boolean)
function f computed by a read-once decision tree of depth k and size 2k, in which each internal node queries
a distinct variable and each leaf returns a distinct output value. For this f , we have DL(f) = 2k and
E[ DL(f�Rp) ] = (1 + p)k = DL(f)log2(1+p). The same function also shows that γ(p) in Corollary 14 cannot
improved beyond log2(1 + p). Since this function is not Boolean, it does not imply a lower bound on DNF
shrinkage; however, a similar bound can be shown asymptotically by considering parity functions.

4 Shrinkage of AC0 formulas

Our bound the shrinkage DNF and CNF formulas implies an (only slightly weaker) bound on the shrinkage
of depth-2 formula leaf-size. We also discuss the relationship between leaf-size and a related size measure on
AC0 formulas, the number of depth-1 gates.

Definition 15. An AC0 formula is a formula composed unbounded fan-in and and or gates with inputs
labeled by literals. We measure depth by the maximum number of gates on an input-to-output path; the
expression “depth-d formula” refers to an AC0 formula of depth at most d. As with DeMorgan formulas,
the leaf-size of an AC0 formula is the number of leaves labeled by literals. An alternative size measure is the
number of depth-1 gates (that have only literals as inputs). This number is at least half the total number of
gates in any formula with no (useless) gates of fan-in 1.

For a Boolean function f and d ≥ 2, we denote by Ld(f) the minimum leaf-size of depth-d formula
that computes f , and we denote by Fd(f) the minimum number of depth-1 gates in a depth-d formula
that computes f . Note that Ld(f) = 1 iff f is a literal, and Fd(f) = 1 iff f is a nonempty conjunctive or
disjunctive clause, and Ld(f) = Fd(f) = 0 iff f is constant (hence computed by a single and or or gate
with fan-in zero, which as a formula has no inputs and no depth-1 gates).

Finally, we denote by F(f) the minimum number of depth-1 gates in an (unbounded depth, unbounded
fan-in) formula that computes f .

Note that F2 = min{DNF, CNF}. Theorem 3 therefore implies:

Corollary 16. For all Boolean functions f ,

E[ F2(f�Rp) + 1 ] ≤ (F2(f) + 1)γ(p).

Over n-variable Boolean functions, clearly Fd ≤ Ld ≤ n · Fd and F ≤ L ≤ n · F . The next lemma shows
that, under a 1/2-random restriction, Fd shrinks below Ld and F shrinks below L (independent of n).

Lemma 17. For all Boolean functions f and d ≥ 2,

E[ Ld(f�R1/2) ] ≤ Fd(f) and E[ L(f�R1/2) ] ≤ F(f).

Proof. Let F be a [depth-d] AC0 formula that computes f using the minimum number of depth-1 gates. By
linearity of expectation, it suffices to show that each depth-1 subformula of F (i.e., conjunctive or disjunctive
clause) has expected leaf-size at most 1 under R1/2. Indeed, for any k ≥ 1 and p ∈ [0, 1],

E[ L(andk�Rp) ] = E[ L(ork�Rp) ] =

k∑
j=0

j

(
k

j

)
pj
(

1− p
2

)k−j
= kp

(
1− p

2

)k−1

.

When p = 1
2 , we have k

2

(
3
4

)
k−1 < 1 for all k ≥ 1.

Using Lemma 17, we obtain the following bound on the shrinkage of depth-2 formula leaf-size L2, which
has a slightly worse exponent γ(2p) compared to γ(p) for F2 in Corollary 16.
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Corollary 18 (Shrinkage of depth-2 formula leaf-size). For all Boolean functions f ,

E[ L2(f�Rp) + 1 ] ≤ (L2(f) + 1)γ(2p).

Proof. Viewing Rp as a composition of R1/2 (first) and R2p (second), we have

E[ L2(f�Rp) + 1 ] = E
%∼R2p

[
E

σ∼R1/2

[ L2((f�%)�σ) + 1 ]
]

≤ E
%∼R2p

[ F2(f�%) + 1 ] (Lemma 17)

= (F2(f) + 1)γ(2p) (Corollary 16)

≤ (L2(f) + 1)γ(2p) (F2 ≤ L2).

As an additional consequence of Lemma 17, we observe that F has the same expected shrinkage factor
(up to a constant factor) as DeMorgan leaf-size L.

Corollary 19 (Shrinkage of unbounded fan-in, unbounded depth formulas). For all Boolean functions f ,

E[ F(f�Rp) ] = O( p2F(f) + p
√
F(f) ).

Proof. Assume p ≤ 1/2, since the bound is trivial otherwise. Viewing Rp as a composition of R2p (first)
and R1/2 (second), we have

E[ F(f�Rp) ] = E
σ∼R1/2

[
E

%∼R2p

[ F((f�σ)�%) ]
]

≤ E
σ∼R1/2

[
E

%∼R2p

[ L((f�σ)�%) ]
]

(F ≤ L)

= E
σ∼R1/2

[
O
(
4p2L(f�σ) + 2p

√
L(f�σ)

) ]
(Theorem 1)

= O
(
p2 E

σ∼R1/2

[ L(f�σ) ] + p
√

E
σ∼R1/2

[ L(f�σ) ]
)

(Jensen’s inequality)

= O( p2F(f) + p
√
F(f) ) (Lemma 17).

5 Open problems

We conclude by mentioning some questions raised by this work.

Open Problem 20. Determine the optimal function γDL(p) in Theorem 3. We have shown that

log2(1 + p) = γDT(p) ≤ γDL(p) ≤ log 2
1−p

( 1+p
1−p ).

A simpler problem is to determine the least constant CDL such that E[ DL(f�Rp) ] ≤ O(DL(f)CDL·p). It follows
from our bounds that 1

ln 2 = CDT ≤ CDL ≤ 2
ln 2 . The same questions may be asked with respect to complexity

measures ODL, wODL and DNF.

Open Problem 21. Determine the shrinkage rate of depth-d AC0 formulas for d ≥ 3. We expect that

(6) E[ Ld(f�Rp) ] ≤ Ld(f)O(p1/(d−1)).

Ideally the constant in this big-O should not depend on d.

We remark that inequality (6) is known to hold for small p = O(1/ logLd(f))d−1, when the bound is
O(1). This can be shown using the (Multi-)Switching Lemma of H̊astad [12]. It is also a direct consequence
of the following result of the author [22], which generalizes Corollary 6 (on the decision tree size of decision
lists) to AC0 formulas of any depth.
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Theorem 22 (Decision tree size of AC0 formulas [22]). For all functions f : {0, 1}n → {0, 1} computable by
depth-d AC0 formulas with fan-in m (and leaf-size at most nmd−1),

E[ DT(f�Rp) ] ≤ 2 and DT(f) ≤ O(2(1−p)n) where p = O(1/ logm)d−1.

A related question:

Open Problem 23. Prove a stronger version of Theorem 22 for depth-dAC0 formulas withm = Fd(f)1/(d−1)

(instead of fan-in, which is larger for unbalanced formulas). Such a result could be helpful in proving the
shrinkage bound (6).

Finally, we repeat the longstanding question concerning shrinkage of monotone formulas:

Open Problem 24. Determine the shrinkage exponent of monotone formulas. That is, find the maximum
constant Γm such that

E[ Lm(f�Rp) ] ≤ O(pΓm−o(1)Lm(f) + 1)

for all monotone Boolean functions f , where Lm is monotone formula leaf-size. It is known that 2 =
ΓDeMorgan ≤ Γm ≤ Γread-once = log√5−1(2) ≈ 3.27, and the second inequality is believed to be tight [5, 13].

Acknowledgements

I am grateful to the anonymous referees of ITCS 2021 for their valuable comments and to the authors of
[17], Shachar Lovett, Kewen Wu and Jiapeng Zhang, for stimulating conversations related to this work.

References

[1] Alexander E Andreev. On a method for obtaining more than quadratic effective lower bounds for the
complexity of π-schemes. Moscow Univ. Math. Bull., 42(1):63–66, 1987.

[2] Paul Beame. A switching lemma primer. Technical report, Technical Report UW-CSE-95-07-01, De-
partment of Computer Science and Engineering, University of Washington, 1994.

[3] Avrim Blum. Rank-r decision trees are a subclass of r-decision lists. Information Processing Letters,
42(4):183–185, 1992.

[4] Nader H Bshouty. A subexponential exact learning algorithm for dnf using equivalence queries. Infor-
mation Processing Letters, 59(1):37–39, 1996.

[5] Moshe Dubiner and Uri Zwick. How do read-once formulae shrink? parity, 2(1):63, 1993.

[6] Yuval Filmus, Or Meir, and Avishay Tal. Shrinkage under random projections and cubic formula lower
bounds for AC0. In 12th Innovations in Theoretical Computer Science Conference (ITCS), 2021.

[7] Parikshit Gopalan, Raghu Meka, and Omer Reingold. DNF sparsification and a faster deterministic
counting algorithm. Computational Complexity, 22(2):275–310, 2013.

[8] Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan. Better pseudo-
random generators from milder pseudorandom restrictions. In 2012 IEEE 53rd Annual Symposium on
Foundations of Computer Science, pages 120–129. IEEE, 2012.

[9] Thomas Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning decision lists and
trees. Information and Computation, 126(2):114–122, 1996.

[10] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Proc. 18th ACM Symposium
on Theory of Computing, pages 6–20, 1986.

12



[11] Johan H̊astad. The shrinkage exponent of de Morgan formulas is 2. SIAM Journal on Computing,
27(1):48–64, 1998.

[12] Johan H̊astad. On the correlation of parity and small-depth circuits. SIAM Journal on Computing,
43(5):1699–1708, 2014.

[13] Johan H̊astad, Alexander Razborov, and Andrew Yao. On the shrinkage exponent for read-once formu-
lae. Theoretical Computer Science, 141(1-2):269–282, 1995.

[14] Russell Impagliazzo and Noam Nisan. The effect of random restrictions on formula size. Random
Structures & Algorithms, 4(2):121–133, 1993.

[15] Ilan Komargodski and Ran Raz. Average-case lower bounds for formula size. In Proceedings of the 45th
ACM Symposium on Theory of Computing, pages 171–180, 2013.

[16] Matthias Krause. On the computational power of boolean decision lists. Computational Complexity,
14(4):362–375, 2006.

[17] Shachar Lovett, Kewen Wu, and Jiapeng Zhang. Decision list compression by mild random restrictions.
In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 247–254,
2020.

[18] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[19] Michael S Paterson and Uri Zwick. Shrinkage of de Morgan formulae under restriction. Random
Structures & Algorithms, 4(2):135–150, 1993.

[20] Alexander A Razborov. Pseudorandom generators hard for k-DNF resolution and polynomial calculus
resolution. Annals of Mathematics, pages 415–472, 2015.

[21] Ronald L Rivest. Learning decision lists. Machine learning, 2(3):229–246, 1987.

[22] Benjamin Rossman. Criticality of Regular Formulas. In 34th Computational Complexity Conference
(CCC 2019), volume 137 of Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1–28,
2019.

[23] Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and QBF satisfiability.
In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 183–192. IEEE,
2010.

[24] Nathan Segerlind, Sam Buss, and Russell Impagliazzo. A switching lemma for small restrictions and
lower bounds for k-DNF resolution. SIAM Journal on Computing, 33(5):1171–1200, 2004.

[25] Bella A. Subbotovskaya. Realizations of linear functions by formulas using +,·,−. Doklady Akademii
Nauk SSSR, 136(3):553–555, 1961.

[26] Avishay Tal. Shrinkage of De Morgan formulae by spectral techniques. In 55th Annual IEEE Symposium
on Foundations of Computer Science, pages 551–560, 2014.

13

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


