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Abstract

Assuming that the Permanent polynomial requires algebraic circuits of exponential size, we

show that the class VNP does not have efficiently computable equations. In other words, any

nonzero polynomial that vanishes on the coefficient vectors of all polynomials in the class VNP

requires algebraic circuits of super-polynomial size.

In a recent work of Chatterjee and the authors [CKR+20], it was shown that the subclasses

of VP and VNP consisting of polynomials with bounded integer coefficients do have equations

with small algebraic circuits. Their work left open the possibility that these results could per-

haps be extended to all of VP or VNP. The results in this paper show that assuming the hard-

ness of Permanent, at least for VNP, allowing polynomials with large coefficients does indeed

incur a significant blow up in the circuit complexity of equations.
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1 Introduction

In the context of proving lower bounds in complexity theory, many of the existing approaches for

proving Boolean circuit lower bounds were unified by Razborov and Rudich under the Natural

Proofs framework [RR97] and they showed that, under standard cryptographic assumptions, any

technique that fits into this framework cannot yield very strong lower bounds. In the last few years

there has been some work (e.g. [Gro15], [GKSS17, FSV18]) aimed at developing an analogue of

the Natural Proofs framework for algebraic circuit lower bounds. A crucial notion in this context

is that of an equation for a class of polynomials which we now define.

For a class C of polynomials, an equation for C is a family of nonzero polynomials such that it

vanishes on the coefficient vector of polynomials in C.1 Informally, an algebraic natural proof for a

class C is a family of equations for C which can be computed by algebraic circuits of size and degree

polynomially bounded in their number of variables. Thus, a lower bound for C can be proved by

exhibiting an explicit polynomial on which an equation for C does not vanish.

Many of the known algebraic circuit lower bounds fit into this framework of algebraically nat-

ural proofs as observed by several authors [AD08, Gro15, FSV18, GKSS17], thereby motivating

the question of understanding whether techniques in this framework can yield strong algebraic

circuit lower bounds; in particular, whether such techniques are sufficient to separate VNP from

VP. Thus, in this framework, the first step towards a lower bound for VP is to understand whether

VP has a family of equations which itself is in VP, that is its degree and its algebraic circuit size

are polynomially bounded in the number of the variables. The next step, of course, would be to

show the existence of a polynomial family in VNP which does not satisfy this family of equations.

This work is motivated by the first step of this framework, that is the question of understand-

ing whether natural and seemingly rich circuit classes like VP and VNP can have efficiently con-

structible equations. We briefly discuss prior work on this problem, before describing our results.

1.1 Complexity of Equations for classes of polynomials

In one of the first results on this problem, Forbes, Shpilka and Volk [FSV18] and Grochow, Kumar,

Saks and Saraf [GKSS17] observe that the class VP does not have efficiently constructible equations

if we were to believe that there are hitting set generators for algebraic circuits with sufficiently suc-

cinct descriptions. However, unlike the results of Razborov and Rudich [RR97], the plausibility of

the pseudorandomness assumption in [FSV18, GKSS17] is not very well understood. The question

of understanding the complexity of equations for VP, or in general any natural class of algebraic

circuits, continues to remain open.

In a recent work of Chatterjee and the authors [CKR+20], it was shown that if we focus on

the subclass of VP (in fact, even VNP) consisting of polynomial families with bounded integer

coefficients, then we indeed have efficiently computable equations. More formally, the main result

1Strictly speaking, these notions need us to work with families of polynomials, even though we sometimes drop the
word family for ease of exposition.
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in [CKR+20] was the following.

Theorem 1.1 ([CKR+20]). For every constant c > 0, there is a polynomial family {PN,c} ∈ VPQ
2 such

that for all large n and N = (n+nc

n ), the following are true.

• For every family { fn} ∈ VNPQ, where fn is an n-variate polynomial of degree at most nc and

coefficients in {−1, 0, 1}, we have

PN,c(coeff( fn)) = 0 .

• There exists a family {hn} of n-variate polynomials and degree at most nc with coefficients in {−1, 0, 1}

such that

PN,c(coeff(hn)) 6= 0 .

Here, coeff( f ) denotes the coefficient vector of a polynomial f .

Many of the natural and well studied polynomial families like the Determinant, the Perma-

nent, Iterated Matrix Multiplication, etc., have this property of bounded coefficients, and in fact

the above result even holds when the coefficients are as large as poly(N). Thus, Theorem 1.1 could

be interpreted as some evidence that perhaps we could still hope to prove lower bounds for one

of these polynomial families via proofs which are algebraically natural. Extending Theorem 1.1

to obtain efficiently constructible equations for all of VP (or even for slightly weaker models like

formulas or constant depth algebraic circuits) is an extremely interesting open question. In fact,

even a conditional resolution of this problem in either direction, be it showing that the bounded

coefficients condition in Theorem 1.1 can be removed, or showing that there are no such equations,

would be extremely interesting and would provide much needed insight into whether or not there

is a natural-proofs-like barrier for algebraic circuit lower bounds.

1.2 Our results

In this paper, we show that assuming the Permanent is hard, the constraint of bounded coefficients

in Theorem 1.1 is necessary for efficient equations for VNP. More formally, we show the following

theorem.

Theorem 1.2 (Conditional Hardness of Equations for VNP). Let ε > 0 be a constant. Suppose, for an

m large enough, we have that Permm requires circuits of size 2mε

.

Then, for n = mε/4, any d ≤ n and N = (n+d
n ), we have that every nonzero polynomial P(x1, . . . , xN)

that vanishes on all coefficient vectors of polynomials in VNPC(n, d) has size(P) = Nω(1).

2For a field F, VPF denotes the class VP where the coefficients of the polynomials are from the field F. Similarly,
VNPF denotes the class VNP where the coefficients of the polynomials are from the field F.
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Remark. Our proof of the above theorem easily extends to any field of characteristic zero. We shall just

work with complexes for better readability. ♦

Extending the result in Theorem 1.2 to hardness of equations for VP, even under the assump-

tion that Permanent is sufficiently hard, is an extremely interesting open question. Such an exten-

sion would answer the main question investigated in [FSV18, GKSS17] and show a natural-proofs-

like barrier for a fairly general family of lower bound proof techniques in algebraic complexity.

Our proof of Theorem 1.2 however crucially relies on some of the properties of VNP and does not

appear to extend to VP.

Although the proof of the above theorem is quite elementary, the main message (in our opin-

ion) is that we do not3 have compelling evidence to rule out, or accept, the efficacy of algebraic

natural proofs towards proving strong lower bounds for rich classes of algebraic circuits.

1.3 An overview of the proof

As was observed in [FSV18, GKSS17], a lower bound for equations for a class of polynomials is

equivalent to showing the existence of succinctly describable hitting sets for this class. For our

proof we show that, assuming that the permanent is sufficiently hard, the coefficient vectors of

polynomials in VNP form a hitting set for the class VP. The connection between hardness and ran-

domness in algebraic complexity is well known via a result of Kabanets and Impagliazzo [KI04],

and we use this connection, along with some additional ideas for our proof. We briefly describe a

high level sketch of our proof in a bit more detail now.

Kabanets and Impagliazzo [KI04] showed that using any explicit polynomial family { fn} that

is sufficiently hard, one can construct a hitting set generator for VP, that is, we can construct a

polynomial map Gen f : Fk → Ft that “fools” any small algebraic circuit C on t variables in the

sense that C(y1, y2, . . . , yt) is nonzero if and only if the k-variate polynomial C ◦Gen f is nonzero. In

a typical invocation of this result, the parameter k is much smaller than t (typically k = poly log t).

Thus, this gives a reduction from the question of polynomial identity testing for t-variate polyno-

mials to polynomial identity testing for k-variate polynomials. Another related way of interpreting

this connection is that if { fn} is sufficiently hard then Gen f is a polynomial map whose image does

not have an equation with small circuit size. Thus, assuming the hardness of the Permanent, this

immediately gives us a polynomial map (with appropriate parameters) such that its image does

not have an efficiently constructible equation.

For the proof of Theorem 1.2, we show that the points in the image of the map GenPerm, can

be viewed as the coefficient vectors of polynomials in VNP, or, equivalently in the terminology in

[FSV18, GKSS17], that the Kabanets-Impagliazzo hitting set generator is VNP-succinct. To this end,

we work with a specific instantiation of the construction of the Kabanets-Impagliazzo generator

where the underlying construction of combinatorial designs is based on Reed-Solomon codes.

Although this is perhaps the most well known construction of combinatorial designs, there are

3Or rather, the results of [CKR+20] and the above theorem seem to provide some evidence for both sides!
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other (and in some parameters, better) constructions known. However, our proof relies on the

properties of this particular construction to obtain the succinct description. Our final proof is fairly

short and elementary, and is based on extremely simple algebraic ideas and making generous use

of the fact that we are trying to prove a lower bound for equations for VNP and not VP.

Details of the proof. Let us assume that for some constant ε > 0 and for all4 m ∈ N, Permm

requires circuits of size 2mε

. Kabanets and Impagliazzo [KI04] showed that, for every combinato-

rial design D (a collection of subsets of a universe with small pairwise intersection) of appropriate

parameters, the map

GenPerm(z) = (Perm(zS) : S ∈ D)

where zS denotes the variables of in z restricted to the indices in S, is a hitting set generator for

circuits of size 2o(mε). Our main goal is to construct a polynomial F(y, z) in VNP such that

F(y, z) = ∑
S∈D

monS(y) · Perm(zS) (1.3)

By choosing parameters carefully, this would immediately imply that any equation on N-variables,

for N = (n+d
d ), that vanishes on the coefficient vector of polynomials in VNP(n, d) (which are n-

variate polynomials in VNP of degree at most d) requires size super-polynomial in N.

To show that the polynomial F(y, z) in Equation 1.3 is in VNP, we use a specific combinatorial

design. For the combinatorial design D obtained via Reed-Solomon codes, every set in the design

can be interpreted as a univariate polynomial g of appropriate degree over a finite field. The

degree of g (say δ) and size of the finite field (say p) are related to the parameters of the design D.

Now,

F(y, z) = ∑
g∈Fp[v]

deg(g)≤δ

(

δ

∏
i=0

y
gi

i

)

· Perm(zS(g)), (1.4)

where (g0, . . . , gδ) is the coefficient vector of the univariate polynomial g. Expressing F(y, z) in

Equation 1.4 as a polynomial in VNP requires us to implement the product
(

δ

∏
i=0

y
gi

i

)

as a polyno-

mial when given the binary representation of coefficients g0, . . . , gδ via a binary vector t of appro-

priate length (say r). This is done via the polynomial Mon(t, y) in Section 3.1 in a straightforward

manner. Furthermore, we want to algebraically implement the selection zS for a set S in the com-

binatorial design when given the polynomial g corresponding to S. This is implemented via the

4To be more precise, we should work with this condition for “infinitely often” m ∈ N and obtain that VNP does not
have efficient equations infinitely often. We avoid this technicality for the sake of simplicity and the proof continues to
hold for the more precise version with suitable additional care.
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polynomial RS-Design(t, z) in Section 3.2. Finally, we have

F(y, z) = ∑
t∈{0,1}r

Mon(t, y) · Perm(RS-Design(t, z))

which is clearly in VNP as Permp is in VNP and polynomials Mon(t, y) and RS-Design(t, z) are

efficiently computable. We refer the reader to Section 3 for complete details.

Related results. The concept of algebraically natural proofs was first studied in the works of

Forbes, Shpilka and Volk [FSV18] and Grochow, Kumar, Saks and Saraf [GKSS17] who showed

that constructing efficient equations for a class directly contradicts a corresponding succinct deran-

domization of the polynomial identity testing problem. In fact, Forbes, Shpilka and Volk [FSV18]

unconditionally ruled out equations for depth-three multilinear formulas computable by certain

structured classes of algebraic circuits using this connection. However, this does not imply any-

thing about complexity of equations for general classes of algebraic circuits such as VP and VNP.

In the context of proving algebraic circuit lower bounds, Efremenko, Garg, Oliveira and Wigder-

son [EGOW18] and Garg, Makam, Oliveira and Wigderson [GMOW19] explore limitations of

proving algebraic circuit lower bounds via rank based methods. However, these results are not

directly concerned with the complexity of equations for circuit classes.

Recently, Bläser, Ikenmeyer, Jindal and Lysikov [BIJL18] studied the complexity of equations

in a slightly different context. They studied a problem called “matrix completion rank”, a mea-

sure for tensors that is NP-hard to compute. Assuming coNP * ∃BPP, they construct an explicit

tensor of large (border) completion rank such that any efficient equation for the class of tensors of

small completion rank must necessarily also vanish on this tensor of large completion rank. That

is, efficient equations cannot certify that this specific tensor has large (border) completion rank.

Subsequently, this result was generalized to min-rank or slice-rank [BIL+19]. The set-up in these

papers is different from the that in our paper, and that of [GKSS17, FSV18]. One way to interpret

this difference is that [BIJL18] shows that “variety of small completion rank tensors” cannot be

“cut out” by efficient equations, whereas the set-up of [GKSS17, FSV18] and our paper would ask

if every equation for this variety requires large complexity.

In the context of equations for varieties in algebraic complexity, Kumar and Volk [KV20]

proved polynomial degree bounds on the equations of the Zariski closure of the set of non-rigid

matrices as well as small linear circuits over all large enough fields.

2 Preliminaries

2.1 Notation

• We use [n] to denote the set {1, . . . , n} and JnK to denote the set {0, 1, . . . , n}. We also use

N≥0 to denote the set of non-negative integers.
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• We use boldface letters such as x, y to denote tuples, typically of variables. When necessary,

we adorn them with a subscript such as y[n] to denote the length of the tuple.

• We also use xe to denote the monomial ∏ xei
i . We write x≤d for the set of all monomials of

degree at most d in x, and F[x]≤d for the set of polynomials in x over the field F of degree at

most d.

• As usual, we identify the elements of Fp with {0, 1, . . . , p − 1} and think of JnK as a subset of

Fp in the natural way for any n < p.

2.2 Some basic definitions

Circuit classes

Definition 2.1 (Algebraic circuits). An algebraic circuit is specified by a directed acyclic graph, with

leaves (indegree zero; also called inputs) labelled by field constants or variables, and internal nodes labelled

by + or ×. The nodes with outdegree zero are called the outputs of the circuit. Computation proceeds in

the natural way, where inductively each + gate computes the sum of its children and each × gate computes

the product of its children.

The size of the circuit is defined as the number of nodes in the underlying graph. ♦

Definition 2.2 (VP and VNP). A family of polynomials { fn}, where fn is n-variate, is said to be in VP if

deg( fn) and the algebraic circuit complexity of fn is bounded by a polynomial function of n. That is, there

is a constant c ≥ 0 such that for all large enough n we have deg( fn), size( fn) ≤ nc.

A family of polynomials { fn} is said to be in VNP if there is a family
{

gn(x[n], y[m])
}

∈ VP such that

m is bounded by a polynomial function of n and

fn(x) = ∑
y∈{0,1}m

gn(x, y). ♦

For some n, d ∈ N, let Cn,d be a class of n-variate polynomials of total degree at most d. That is,

Cn,d ⊆ F[x]≤d. Similarly, we will use VP(n, d) and VNP(n, d) to denote the intersection of VP and

VNP respectively, with F[x[n]]
≤d.

Equations and succinct hitting sets

Definition 2.3 (Equations for a class). For N = (n+d
n ), a nonzero polynomial PN(Z) is called an equa-

tion for Cn,d if for all f (x) ∈ Cn,d, we have that PN(coeff( f )) = 0, where coeff( f ) is the coefficient vector

of f . ♦

Alternatively, we also say that a polynomial P(Z) vanishes on the coefficient vectors of polyno-

mials in class C if PN(coeff( f )) = 0 for all f ∈ C.

Definition 2.4 (Hitting Set Generator (HSG)). A polynomial map G : Fℓ → Fn given by G(z1, . . . , zℓ) =

(g1(z), . . . , gn(z)) is said to be a hitting set generator (HSG) for a class C ⊆ F[x] of polynomials if for

all nonzero P ∈ C, P ◦ G = P(g1, . . . , gn) 6≡ 0. ♦
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We review the definition of succinct hitting sets introduced [GKSS17, FSV18].

Definition 2.5 (Succinct Hitting Sets for a class of polynomials [GKSS17, FSV18]). For N = (n+d
n ),

we say that a class of N-variate polynomials DN has Cn,d-succinct hitting sets if for all nonzero P(Z) ∈

DN , there exists some f ∈ Cn,d such that PN(coeff( f )) 6= 0. ♦

Hardness to randomness connection

For our proofs, we will need the following notion of combinatorial designs, which is a collection

of subsets of a universe with small pairwise intersection.

Definition 2.6 (Combinatorial designs). A family of sets {S1, . . . , SN} ⊆ [ℓ] is said to be an (ℓ, m, n)-

design if

• |Si| = m for each i ∈ [n]

• |Si ∩ Sj| < n for any i 6= j. ♦

Kabanets and Impagliazzo [KI04] obtain hitting set generators from polynomials that are hard

to compute for algebraic circuits. The following lemma is crucial to the proof of our main theorem.

Lemma 2.7 (HSG from Hardness [KI04]). Let {S1, . . . , SN} be an (ℓ, m, n)-design and f (xm) be an

m-variate, individual degree d polynomial that requires circuits of size s. Then for fresh variables yℓ, the

polynomial map KI-gen(N,ℓ,m,n)( f ) : Fℓ → Fn given by

( f (yS1), . . . , f (ySN
)) (2.8)

is a hitting set generator for all circuits of size at most
(

s0.1

N(d+1)n

)

.

3 Proof of the main theorem

Notation

1. For a vector t = (t1, . . . , tr), we will use the short-hand t
(a)
i,j to denote the variable t(i·a+j+1).

This would be convenient when we consider the coordinates of t as blocks of length a.

2. For integers a, p, we shall use Mod(a, p) to denote the unique integer ap ∈ [0, p − 1] such

that ap = a mod p.

As mentioned in the overview, the strategy is to convert the hitting set generator given in (2.8)

into a succinct hitting set generator. Therefore, we would like to associate the coordinates of (2.8)

into coefficients of a suitable polynomial. That is, we would like to build a polynomial in VNP of

the form

g(y1, . . . , yℓ, z1, . . . , zt) = ∑
m∈y≤d

m · f (zSm
)
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with the monomials m ∈ y≤d suitably indexing into the sets of the combinatorial design. The

above expression already resembles a VNP-definition and with a little care this can be made ef-

fective. We will first show that the different components of the above expression can be made

succinct using the following constructions.

3.1 Building monomials from exponent vectors

For n, r ∈ N, let a = ⌊r/n⌋, and define Monr,n(t, y) as follows.

Monr,n(t1, . . . , tr, y1, . . . , yn) =
n−1

∏
i=0

a−1

∏
j=0

(

t
(a)
i,j y2j

i+1 + (1 − t
(a)
i,j )
)

The following observation is now immediate from the definition above.

Observation 3.1. For any (e1, . . . , en) ∈ JdKn, we have

Monr,n(Bin(e1), . . . , Bin(en), y1, . . . , yn) = ye1
1 · · · yen

n ,

where Bin(e) is the tuple corresponding to the binary representation of e, and r = n · ⌈log2 d⌉. Furthermore,

the polynomial Monr,n is computable by an algebraic circuit of size poly(n, r).

3.2 Indexing Combinatorial Designs Algebraically

Next, we need to effectively compute the hard polynomial f on sets of variables in a combinato-

rial design, indexed by the respective monomials. We will need to simulate some computations

modulo a fixed prime p. The following claim will be helpful for that purpose.

Claim 3.2. For any i, b, p ∈ N≥0 with i ≤ p, there exists a unique univariate polynomial Qi,b,p(v) ∈ Q[v]

of degree at most b such that

Qi,b,p(a) =







1 if 0 ≤ a < b and a ≡ i (mod p),

0 if 0 ≤ a < b and a 6≡ i (mod p).

Proof. We can define a unique univariate polynomial Qi,b,p(v) satisfying the conditions of the claim

via interpolation to make a unique univariate polynomial take a value of 0 or 1 according to the

conditions of the claim. Since, there are b conditions, there always exists such a polynomial of

degree at most b.

For any n, b, p ∈ N≥0 with n ≥ p, define

Seln,b,p(u1, . . . , un, v) ,
n

∑
i=1

ui · Qi,b,p(v).
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Observation 3.3. For any n, b, p ∈ N≥0 with n ≥ p, for any 0 ≤ a < b, we have that

Seln,b,p(u1, . . . , un, a) = uMod(a,p) = ua mod p

The degree of Seln,b,p is at most (b + 1) and can be computed by an algebraic circuit of size poly(b).

Proof. From the definition of the univariate polynomial Qi,b,p(v) of degree b in Claim 3.2, Qi,b,p(a)

outputs 1 if and only if i = a mod p. Hence, Seln,b,p(u1, . . . , un, a) is ua mod p and is of degree at

most (b + 1).

And finally, we choose a specific combinatorial design to instantiate Lemma 2.7 with.

3.3 Reed-Solomon based combinatorial designs

For any prime p and any choice of a ≤ p, the following is an explicit construction of a (p2, p, a)-

combinatorial design of size pa, defined as follows:

With the universe U = Fp ×Fp, for every univariate polynomial g(t) ∈ Fp[t] of degree

less than a, we add the set Sg =
{

(i, g(i)) : i ∈ Fp

}

to the collection.

Since any two distinct univariate polynomials of degree less than a can agree on at most a points,

it follows that the above is indeed a (p2, p, a)-design.

The advantage of this specific construction is that it can be made succinct as follows. For

r = a · ⌊log2 p⌋, let t1, . . . , tr be variables taking values in {0, 1}. The values assigned to t-variables

can be interpreted as a univariate over Fp of degree < a by considering t ∈ {0, 1}r as a matrix

with a rows and ⌊log2 p⌋ columns each 5. The binary vector in each row represents an element in

Fp. We illustrate this with an example.

t =

1 1 1
0 1 0
0 0 1
1 0 0
0 1 1

































−→

7
2
1
4
2

































∼= g(v)

For p = 11, a = 5, g(v) = 7 + 2v + v2 + 4v3 + 2v4 ∈ F11[v],

t is a 5 × 3 matrix that encodes the coefficients of g(v).

Let z denote the p2 variables
{

z1, . . . , zp2

}

, put in into a p × p matrix. Let S be a set in the

Reed-Solomon based (p2, p, a)-combinatorial design. We want to implement the selection zS alge-

braically. In the following, we design a vector of polynomials that outputs the vector of variables

5Working with ⌊log2 p⌋ bits (as opposed to ⌈log2 p⌉) makes the proofs much simpler, and does not affect the size of
the design by much.
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(

z
(p)
0,g(0) mod p

, . . . , z
(p)
p−1,g(p−1) mod p

)

. Note that as mentioned above the polynomial g can be speci-

fied via variables t1, . . . , tr. That is,

RS-Designp,a(t1, . . . , tr, z1, . . . , zp2) ∈ (F[t, z])p , for r = a · ⌊log2 p⌋,

RS-Designp,a(t1, . . . , tr, z1, . . . , zp2)i+1 = Selp,p3,p

(

z
(p)
i,0 , . . . , z

(p)
i,p−1, Ri,a,p(t)

)

, for each i ∈ Fp,

where Ri,a,p(t) =
a−1

∑
j=0

[(

ℓp−1

∑
k=0

t
(ℓp)

j,k · 2k

)

· Mod(ij, p)

]

,

with ℓp = ⌊log2 p⌋ .

Observation 3.4. For any prime p, a ≤ p, and t ∈ {0, 1}r for r = a · ⌊log2 p⌋, we have

RS-Designp,a(t, z) =
(

zi,g(i) : i ∈ Fp

)

,

where g(v) ∈ Fp[v] is the univariate whose coefficient vector is represented by the bit-vector t. Furthermore,

the polynomial RS-Designp,a is computable by an algebraic circuit of size poly(p).

Proof. Fix some t ∈ {0, 1}r. From the definition of Ri,a,p(t), it is clear that Ri,a,p(t) returns an

integer α such that g(i) = α mod p where t encodes the coefficients of the polynomial g(t) in

binary. Furthermore, since Mod(ij, p) is the unique integer c ∈ [0, p − 1] with c = ij mod p, it also

follows that Ri,a,p(t) is an integer in the range [0, p3]. Hence,

Selp,p3,p

(

z
(p)
i,0 , . . . , z

(p)
i,p−1, Ri,a,p(t)

)

= zi,g(i)

as claimed.

3.4 The VNP-Succinct-KI generator

We are now ready to show the VNP-succinctness of the Kabanets-Impagliazzo hitting set generator

when using a hard polynomial from VNP and a Reed-Solomon based combinatorial design.

For a prime p and for the largest number m such that m2 ≤ p, we will use Perm[p] ∈ F[y[p]] to

denote Permm applied to the first m2 variables of y.

We now define the polynomial Fn,a,p(y[n], z[p2]) as follows.

Fn,a,p(y1, . . . , yn, z1, . . . , zp2) = ∑
t∈{0,1}r

Monr,n(t, y) · Perm[p](RS-Designp,a(t, z)) (3.5)

where r = a · ⌊log2 p⌋

It is evident from the above definition that the polynomial Fn,a,p(y, z) is in VNP for any p that is

poly(n), when seen as a polynomial in y-variables with coefficients from C[z].
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From the construction, we have that

Fn,a,p(y1, . . . , yn, z1, . . . zp2) = ∑
e

ye · Perm[p](zSe
),

where {Se} is an appropriate ordering of the Reed-Solomon based (p2, p, a)-combinatorial design

of size pa, described in Section 3.3.

3.5 Putting it all together

We are now ready to show that if the Permanent polynomial is exponentially hard, then any poly-

nomial P that vanishes on the coefficient vectors of all polynomials in the class VNP requires

super-polynomial size to compute it.

Theorem 1.2 (Conditional Hardness of Equations for VNP). Let ε > 0 be a constant. Suppose, for an

m large enough, we have that Permm requires circuits of size 2mε

.

Then, for n = mε/4, any d ≤ n and N = (n+d
n ), we have that every nonzero polynomial P(x1, . . . , xN)

that vanishes on all coefficient vectors of polynomials in VNPC(n, d) has size(P) = Nω(1).

Proof. Let p be the smallest prime larger than m2; we know that p ≤ 2m2. We will again use

Perm[p] ∈ F[y[p]] to denote Permm acting on the first m2 variables of y. Therefore, if Permm re-

quires size 2mε

then so does Perm[p].

Consider the polynomial Fn,n,p(y[n], z[p2]) ∈ VNP defined in (3.5), which we interpret as a polyno-

mial in y with coefficients in C[z]. The individual degree in y is at least d, and at most p.

Let F≤d
n,n,p(y[n], z[p2]) denote the polynomial obtained from Fn,n,p by discarding all terms whose to-

tal degree in y exceeds d. By standard homogenisation arguments, it follows that F≤d
n,n,p ∈ VNP as

well. Therefore,

F≤d
n,n,p(y, z) = ∑

deg(ye)≤d

ye · Perm[p](zSe
),

where Se, for various e, is an appropriate indexing into a (p2, p, n)-combinatorial design of size

N. Since the individual degree in y of Fn,n,p was at least d, every coefficient of F≤d
n,n,p is Perm[p](zS)

for some S in the combinatorial design. In other words, the coefficient vector of F≤d
n,n,p is precisely

KI-genN,p2,p,n(Perm[p]).

Suppose P(x1, . . . , xN) is a nonzero equation for VNP(n, d), then in particular it should be

zero on the coefficient vector of F≤d
n,n,p(y, a) ∈ VNP for any a ∈ Cp2

. By the Polynomial Identity

Lemma [Ore22, DL78, Zip79, Sch80], this implies that P must be zero on the coefficient vector of

F≤d
n,n,p(y, z) ∈ (C[z])[y], where coefficients are formal polynomials in C[z]. Since the coefficient

vector of F≤d
n,n,p(y, z) is just KI-genN,p2,p,n(Perm[p]), the contrapositive of Lemma 2.7 gives that

size(P) >
size(Perm[p])

0.1

N · 2n
>

size(Permm)0.1

N · 2n

12



=⇒ size(P) >
20.1mε

N · 2n

Since N = (n+d
n ) ≤ 22n ≤ 2o(mε), it follows that size(P) = Nω(1).

Concluding that VNP has no efficient equations Note that for a family {PN} to be a family of

equations for a class C, we want that for all large enough n, the corresponding polynomial PN should

vanish on the coefficient vectors of all n-variate polynomials in C. This condition is particularly

important if we want to use equations for C to prove lower bounds against it, since a family of

polynomials { fn} is said to be computable in size s(n) if size( fn) ≤ s(n) for all large enough n.

Theorem 1.2 shows that, for m large enough, if there is a constant ε > 0 such that size(Permm) ≥

2mε

, then for n = mε/4 and any d ≤ n, the coefficient vectors of polynomials in VNP(n, d) form a

hitting set for all N-variate polynomials (where N = (n+d
d )) of degree poly(N) that are computable

by circuits of size poly(N). Now suppose the Permanent family is 2mε

-hard for a constant ε > 0,

which means that Permm is 2mε

-hard for infinitely many m ∈ N. Then using Theorem 1.2, we can

conclude that for any family {PN} ∈ VP, we must have for infinitely many n that PN(coeff( fn)) 6= 0

for some fn ∈ VNP, which then shows that {PN} is not a family of equations for VNP.

4 Discussion and Open Problems

In the context of proving circuit lower bounds, and in relation to the notion of algebraically nat-

ural proofs, an interesting question that emerges from the recent work of Chatterjee and the au-

thors [CKR+20] (stated in Theorem 1.1) is whether the condition of “small coefficients” is neces-

sary for efficiently constructible equations to exist, especially for the class VP. While this question

remains open for VP, our result shows that this additional restriction on the coefficients is essen-

tially vital for the existence of efficiently constructible equations for the class VNP, and therefore

provides strong evidence against the existence of efficient equations for VNP.

In light of Theorem 1.1 and Theorem 1.2 for VNP, one could make a case that equations for

VP might also incur a super-polynomial blow up, without the restriction on coefficients. On the

other hand, it could also be argued that an analogue of Theorem 1.2 may not be true for VP, since

our proof crucially uses the fact that VNP is “closed under exponential sums”. In fact, our proof

essentially algebraises the intuition that coefficient vectors of polynomials in VNP “look random”

to a polynomial in VP, provided that VNP was exponentially more powerful than VP.

Thus, along with the previously known results on efficient equations for polynomials in VP

with bounded coefficients, our result highlights that the existence of such equations for VP in

general continues to remain an intriguing mystery.
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Open Problems

We now conclude with some possible directions for extending our results.

• Perhaps the most interesting question here is to prove an analogue of Theorem 1.2 for equa-

tions for VP. This would provide concrete evidence for the possibility that we cannot hope

to prove very strong lower bounds for algebraic circuits using proofs which proceed via

efficiently constructible equations, from a fairly standard complexity theoretic assumption.

• At the moment, we cannot rule out the possibility of there being efficient equations for VP

in general; it may be possible that the bounded coefficients condition in Theorem 1.1 can be

removed. In particular, the question of proving upper bounds on the complexity of equa-

tions for VP is also extremely interesting, even if one proves such upper bounds under some

reasonable complexity theoretic assumptions. A first step perhaps would be to prove upper

bounds on the complexity of potentially simpler models, like formulas, algebraic branching

programs or constant depth circuits. From the works of Forbes, Shpilka and Volk [FSV18],

we know that such equations for structured subclasses of VP (like depth-3 multilinear cir-

cuits) cannot be too simple (such as sparse polynomials, depth-3 powering circuits, etc.). Can

we prove a non-trivial upper bound for equations for these structured classes within VP?

• Another question of interest would be to understand if the hardness assumption in Theo-

rem 1.2 can be weakened further. For instance, is it true that VNP does not have efficiently

constructible equations if VP 6= VNP, or if Permn requires circuits of size npoly log(n)? The

current proof seems to need an exponential lower bound for the Permanent.
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