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Abstract
We prove the first proof size lower bounds for the proof system Merge Resolution (MRes [6]), a
refutational proof system for prenex quantified Boolean formulas (QBF) with a CNF matrix. Unlike
most QBF resolution systems in the literature, proofs in MRes consist of resolution steps together
with information on countermodels, which are syntactically stored in the proofs as merge maps.
As demonstrated in [6], this makes MRes quite powerful: it has strategy extraction by design and
allows short proofs for formulas which are hard for classical QBF resolution systems.

Here we show the first exponential lower bounds for MRes, thereby uncovering limitations of
MRes. Technically, the results are either transferred from bounds from circuit complexity (for
restricted versions of MRes) or directly obtained by combinatorial arguments (for full MRes). Our
results imply that the MRes approach is largely orthogonal to other QBF resolution models such as
the QCDCL resolution systems QRes and QURes and the expansion systems ∀Exp + Res and IR.
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1 Introduction

Proof complexity aims to provide a theoretical understanding of the ease or difficulty of
proving statements formally. It also aims to explain the success stories of, as well as the
obstacles faced by, algorithmic approaches to hard problems such as satisfiability (SAT) and
Quantified Boolean Formulas (QBF) [19,29]. While propositional proof complexity, the study
of proofs of unsatisfiability of propositional formulas, has been around for decades [20,27],
the area of QBF proof complexity is relatively new, with theoretical studies gaining traction

∗ A preliminary version of this article appeared in the proceedings of the 40th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science – FSTTCS 2020 [8].
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only in the last decade or so [2, 7, 10, 11]. While inheriting and using a wealth of techniques
from propositional proof complexity [12,14, 25], QBF proof complexity has also given several
new perspectives specific to QBF [5,24,35], and these perspectives and their connections to
QBF solving [32, 39] as well as their practical applications [34] have driven the search for
newer proof systems [1, 11,22,28,30].

Many of the currently known QBF proof systems are built on the best-studied propositional
proof system resolution [17,33]. Broadly speaking, resolution has been adapted to handle
the universal variables in QBFs in two intrinsically different ways. The first is an expansion-
based approach: universal variables are eliminated at the outset by implicitly expanding the
universal quantifiers into conjunctions, creating annotated copies of existential variables.
The systems ∀Exp + Res, IR, and IRM [11,24] are of this type. The second is a reduction-
rule approach: under certain conditions, resolution may be blocked, and also under certain
conditions, universal variables can be deleted from clauses. The conditions are formulated to
preserve soundness, ensuring that if a QBF is true, then so is the QBF resulting from adding
a derived clause. The systems QRes, QURes, CP + ∀Red [13,26,37] are of this type.

A central role in QBF proof complexity is played by the two-player evaluation game on
QBFs, and the existence of winning strategies for the universal player in false QBFs. For
many QBF resolution systems, such strategies were used to construct proofs and demonstrate
completeness, and soundness was demonstrated by extracting such strategies from proofs
[1,11,21]. The strategy extraction procedures build partial strategies at each line of the proof,
with the strategies at the final line forming a complete countermodel. These extraction
procedures are based on the fact that in each application of a rule in the proof system, any
winning strategies of the existential player are not destroyed.

In the systems QRes [26] and QURes [37], the soundness of the resolution rule is ensured
by enforcing a very simple side-condition: variables other than the pivot cannot appear in
both polarities in the antecedents. It was observed early on that this is often too restrictive.
The long-distance resolution proof system LD-QRes [1, 39] arose from efforts to have less
restrictive but still sound rules. In this system, a universal variable could appear in both
polarities and get merged in the consequent, provided it was to the right of the pivot in the
quantifier prefix. This preserves soundness, but the strategy extraction procedures become
notably more complex.

The system LD-QRes, while provably better than QRes [21], is still needlessly restrictive
in some situations. In particular, by checking a very simple syntactic prefix-ordering condition,
it fails to exploit the fact that soundness is not lost even if universal variables to the left
of the pivot are merged in both antecedents, provided the partial strategies built for them
in both antecedents are identical. A new system Merge Resolution (MRes) was introduced
last year [6] by a subset of the current authors, precisely to address this point. In MRes,
partial strategies are explicitly represented within the proof, in a particular representation
format called merge maps – these are essentially deterministic branching programs (DBPs).
In this format, isomorphism checking can be done efficiently, and this opens the way for
enabling sound applications of resolution that would have been blocked in LD-QRes (and
QRes). In [6], it was shown that this brought a rich pay-off: there is a family of formulas, the
SquaredEquality formulas, with short (linear-size) proofs in MRes, even in its tree-like and
regular versions, but requiring exponential size in QRes, QURes, CP + ∀Red, ∀Exp + Res,
and IR. It is notable that the hardness of SquaredEquality in these systems stems from a
certain semantic cost associated with these formulas and a corresponding lower bound [4, 5].
Thus the results of [6] show that such semantic costs are not a barrier for MRes.

In this paper, we explore the price paid for overcoming the semantic cost barrier. We
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Figure 1 Visual summary of the proof complexity landscape, with new results shown in bold.
Tree-like and regular MRes are also incomparable with the tree-like versions of the five systems in
the big box.

show that (expectedly) MRes is not an unqualified success story. Building strategies into
proofs via merge maps, and screening out unsoundness only through isomorphism tests,
comes at a fairly heavy price.
(A) Lower bounds from circuit complexity for restricted versions of MRes. Since
the strategies are explicitly represented inside the proofs, computational hardness of strategies
immediately translates to proof size lower bounds. While computational hardness of strategies
is a known source of hardness in all reduction-based proof systems admitting efficient strategy
extraction [9,11], the computational model relevant for MRes is one for which no unconditional
lower bounds are known. For tree-like and regular MRes, the relevant models are decision
trees and read-once DBPs, where lower bounds are known. Using this approach, we show:
1. Tree-like MRes is exponentially weaker than MRes.

The QParity formulas witness the separation (Theorem 8) as their unique countermodel
is the parity function which requires large decision trees.

2. Tree-like MRes is incomparable with the dag-like and tree-like versions of QRes, QURes,
CP + ∀Red, ∀Exp + Res and IR.
One direction was shown in [6] via the Equality formulas: these formulas are easy for
tree-like MRes but hard for dag-like QRes, QURes, CP+∀Red, ∀Exp+Res, IR. The other
direction is witnessed by the Completion Principle formulas, easy in tree-like versions of
QRes and ∀Exp + Res [23,24], but exponentially hard for tree-like MRes (Theorem 11).
Unlike the QParity formulas, these formulas do not have unique countermodels. However,
we show that every countermodel requires large decision-tree size, and hence obtain the
lower bound for tree-like MRes.

(B) Combinatorial lower bounds for full MRes. Even when winning strategies are
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unique and easy to compute by DBPs, the formulas can be hard for MRes. We establish
such hardness in three cases, obtaining more incomparabilities.
1. The LQParity formulas, easy in ∀Exp+Res [11], are exponentially hard for regular MRes

(Theorem 15). Hence regular MRes is incomparable with ∀Exp + Res and IR.
2. The Completion Principle formulas, easy in tree-like versions of QRes and ∀Exp + Res

[23, 24], are exponentially hard for regular MRes (Theorem 20). Hence regular MRes
is incomparable with the dag-like and tree-like versions of QRes, QURes, CP + ∀Red,
∀Exp + Res and IR.

3. The KBKF-lq formulas, easy in QURes [2], are exponentially hard for MRes (Theorem 24).
Hence MRes is incomparable with QURes and CP + ∀Red.

The third hardness result above for the KBKF-lq formulas provides the first lower bound
for the full system of MRes, for which previously no lower bounds were known.

It may be noted that for existentially quantified QBFs, all the QBF proof systems
mentioned in this paper coincide with Resolution (or in case of CP + ∀Red, with Cutting
Planes). Therefore lower bounds for these propositional proof systems trivially lift to the
corresponding QBF proof system. In particular, the separations of tree-like and regular
MRes from MRes and other systems follow from the propositional case. However, such lower
bounds do not tell us much about the limitations of the QBF proof system other than what is
known from the underlying propositional proof system. Therefore, in QBF proof complexity,
we are interested in ‘genuine’ QBF lower bounds, i.e. lower bounds that do not follow from
propositional lower bounds (cf. [15] on how to formally define the notion of ‘genuine’ lower
bounds). The lower bounds we establish here are of this nature.

Figure 1 depicts the simulation order and incomparabilities we establish involving MRes
and its refinements. Amongst the five systems in the big box, all relationships not directly
implied by depicted connections are known to be incomparabilities [11,13,24].

2 Preliminaries

Let [n] = {1, 2, . . . , n} and [m,n] = {m, . . . , n}. We represent clauses by sets of literals.
The resolution rule derives, from clauses C ∨ x and D ∨ ¬x, the clause C ∨D. We say

that C ∨D is the resolvent, x is the pivot, and denote this by C ∨D = res(C ∨ x,D ∨¬x, x).
The propositional proof system Resolution proves that a CNF formula F is unsatisfiable

by deriving the empty clause through repeated applications of the resolution rule.

Quantified Boolean formulas. A Quantified Boolean formula (QBF) in prenex conjunctive
normal form is denoted Φ := Q ·φ, where (a) Q = Q1Z1Q2Z2 . . . QkZk is the quantifier prefix,
in which Zi are pairwise disjoint finite sets of Boolean variables, Qi ∈ {∃,∀} for each i ∈ [k]
and Qi 6= Qi+1 for each i ∈ [k − 1], and (b) the matrix φ is a CNF over vars(Φ) := ∪i∈[k]Zi.

The existential (resp. universal) variables of Φ, typically denoted X or X∃ (resp. U or
X∀) is the set obtained as the union of Zi for which Qi = ∃ (resp. Qi = ∀). The prefix Q
defines a binary relation <Q on vars(Φ), such that z <Q z′ holds iff z ∈ Zi, z′ ∈ Zj , and
i < j, in which case we say that z′ is right of z and z is left of z′. For each u ∈ U , we define
LQ(u) := {x ∈ X | x <Q u}, i.e. the existential variables left of u.

For a set of variables Z, let 〈Z〉 denote the set of assignments to Z. A strategy h for a QBF
Φ is a set {hu | u ∈ U} of functions hu : 〈LQ(u)〉 → {0, 1} (for each α ∈ 〈X〉, hu(α�LQ(u))
and h(α) should be interpreted as a Boolean assignment to the variable u and the variable
set U respectively). Additionally h is winning if, for each α ∈ 〈X〉, the restriction of φ by
the assignment (α, h(α)) is false. We use the terms “winning strategy” and “countermodel”
interchangeably. A QBF is called false if it has a countermodel, and true if it does not.
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The semantics of QBFs is also explained by a two-player evaluation game played on a
QBF. In a run of the game, two players, the existential and the universal player, assign
values to the variables in the order of quantification in the prefix. The existential player wins
if the assignment so constructed satisfies all the clauses of φ; otherwise the universal player
wins. Assigning values according to a countermodel guarantees that the universal player
wins no matter how the existential player plays; hence the term “winning strategy”.

2.1 The formulas

We describe the formulas we will use throughout the paper.

The QParity and LQParity formulas [11]. Let parityc(y1, y2, . . . , yk) be a shorthand
for the following conjunction of clauses:

∧
S⊆[k], |S|≡1(mod 2) ((∨i∈Syi) ∨ (∨i 6∈Syi)). Thus

parityc(y1, y2, . . . , yk) is equal to 1 iff y1 + y2 + · · ·+ yk ≡ 0 (mod 2). QParityn is the QBF
∃x1, . . . , xn,∀z,∃t1, . . . , tn.

(∧
i∈[n+1] φ

i
n

)
where

φ1
n = parityc(x1, t1); ∀i ∈ [2, n], φi

n = parityc(ti−1, xi, ti); φn+1
n = (tn ∨ z)∧

(
tn ∨ z

)
.

The QBFs are false: they claim that there exist x1, . . . , xn such that x1 + · · ·+ xn is neither
congruent to 0 nor 1 modulo 2. Note that the only winning strategy for the universal player
is to play z satisfying z ≡ x1 + · · ·+ xn (mod 2).

Similarly, let p̂arityc(y1, y2, . . . , yk, z) abbreviate
∧

C∈parityc(y1,y2,...,yk)
(
(C ∨ z)∧ (C ∨ z)

)
.

LQParityn is the QBF ∃x1, . . . , xn,∀z,∃t1, . . . , tn.
(∧

i∈[n+1] φ
i
n

)
where

φ1
n = p̂arityc(x1, t1, z); ∀i ∈ [2, n], φi

n = p̂arityc(ti−1, xi, ti, z); φn+1
n = (tn ∨ z)∧

(
tn ∨ z

)
.

For both QParityn and LQParityn, for i, j ∈ [n + 1], i ≤ j, we let φ[i,j]
n denote

∧
k∈[i,j] φ

k
n.

Also, X = {x1, . . . , xn} and T = {t1, . . . , tn}.

I Observation 1. For both QParityn and LQParityn: (a) for each i ∈ [n], and each C ∈ φi
n,

{xi, ti} ⊆ var(C); and (b) for each i ∈ [n+ 1] \ {1}, and each C ∈ φi
n, {ti−1} ⊆ var(C).

The Completion Principle formulas CRn [24]. The QBF CRn is defined as follows:

CRn = ∃
i,j∈[n]

xij ,∀ z, ∃
i∈[n]

ai, ∃
j∈[n]

bj .

(
∧

i,j∈[n]
(Aij ∧Bij)

)
∧ LA ∧ LB

where Aij = xij ∨ z ∨ ai, Bij = xij ∨ z ∨ bj , LA = a1 ∨ · · · ∨ an, and LB = b1 ∨ · · · ∨ bn.
Let X,A,B denote the variable sets {xij : i, j ∈ [n]}, {ai : i ∈ [n]}, and {bj : j ∈ [n]}. It is
convenient to think of the X variables as arranged in an n× n matrix.

Intuitively, the formulas describe a completion game, played on the matrix(
a1 . . . a1 . . . an . . . an

b1 . . . bn . . . b1 . . . bn

)
where the ∃-player first deletes exactly one cell per column and the ∀-player then chooses
one row. The ∀-player wins if his row contains all of A or all of B (cf. [24]).

The KBKF-lq[n] formulas [2]. Our last QBFs are a variant of the formulas introduced
by Kleine Büning et al. [26], which in various versions appear prominently throughout the
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QBF literature [2,5,11,21,37]. For n > 1, the nth member of the KBKF-lq[n] family consists
of the prefix ∃d1, e1,∀x1,∃d2, e2,∀x2, . . . ,∃dn, en,∀xn,∃f1, f2, . . . , fn and clauses

A0 = {d1, e1, f1, . . . , fn}
Ad

i = {di, xi, di+1, ei+1, f1, . . . , fn} Ae
i = {ei, xi, di+1, ei+1, f1, . . . , fn} ∀i ∈ [n− 1]

Ad
n = {dn, xn, f1, . . . , fn} Ae

n = {en, xn, f1, . . . , fn}
B0

i = {xi, fi, fi+1, . . . fn} B1
i = {xi, fi, fi+1, . . . fn} ∀i ∈ [n− 1]

B0
n = {xn, fn} B1

n = {xn, fn}

Note that the existential part of each clause in KBKF-lq[n] is a Horn clause (at most one
positive literal), and except A0, is even strict Horn (exactly one positive literal).

We use the following shorthand notation. Sets of variables: D = {d1, . . . , dn}, E =
{e1, . . . , en}, F = {f1, . . . , fn}, and X = {x1, . . . , xn}. Sets of literals: For Y ∈ {D,E,X, F},
set Y 1 = {u | u ∈ Y } and Y 0 = {u | u ∈ Y }. Sets of clauses:

A0 = {A0}
Ai = {Ad

i , A
e
i} ∀i ∈ [n] Bi = {B0

i , B
1
i } ∀i ∈ [n]

A[i,j] = ∪k∈[i,j]Ak ∀i, j ∈ [0, n], i ≤ j B[i,j] = ∪k∈[i,j]Bk ∀i, j ∈ [n], i ≤ j
A = A[0,n] B = B[1,n]

We use the following property of these formulas:

I Proposition 2. Let h be any countermodel for KBKF-lq[n]. Let α be any assignment to
D, and β be any assignment to E.
For each i ∈ [n], if αj 6= βj for all 1 ≤ j ≤ i, then hxi

(
(α, β)�LQ(xi)

)
= αi.

In particular, if αj 6= βj for all j ∈ [n], then the countermodel computes h(α, β) = α.

Proof. Let h be any countermodel for KBKF-lq[n]. For i ∈ [n], let αi be an assignment
to {d1, . . . , di}, and βi be an assignment to {e1, . . . , ei}. For j ≤ i, let αi

j (resp. βi
j) be the

assignment to dj (resp. ej) set by the assignment αi
j (resp. βi

j). We will show that for each
i ∈ [n], if αi

j 6= βi
j for all 1 ≤ j ≤ i, then hxi(αi, βi) = αi

i. This implies the claimed result.
Fix some i ∈ [n]. Assume to the contrary that αi

j 6= βi
j for all 1 ≤ j ≤ i and hxi(αi, βi) 6=

αi
i. We will give a winning strategy for the existential player. Note that all clauses in A[0, i−1]

are satisfied by the partial assignment (αi, βi). The existential player sets dj = ej = 1 for all
j > i and sets fj = 1 for all j ∈ [n]. This satisfies all the remaining clauses, irrespective of
the strategy of the universal player. Therefore the existential player wins. This contradicts
the assumption that h is a countermodel for KBKF-lq[n]. J

2.2 The Merge Resolution proof system [6]
The formal definition of the Merge Resolution proof system, denoted MRes, is rather technical
and can be found in [6]. Here we present a somewhat informal description.

First, we describe the idea behind the proof system. MRes is a line-based proof system.
Each line L has a clause C with only existential literals, and a partial strategy hu for each
universal variable u. The idea is to maintain the invariant that for each existential assignment
α, if α falsifies C, then α extended by the partial universal assignment setting each u to hu(α)
falsifies at least one of the clauses used to derive L. Thus the set of functions {hu} gives a
partial strategy that wins whenever the existential player plays from the set of assignments
falsifying C. The goal is to derive a line with the empty clause; the corresponding strategy
at that line will be a complete winning strategy, a countermodel. Along the way, resolution
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is used on the clauses. If the pivot is x, then for universal variables u right of x, the partial
strategies can be combined with a branching decision on x. However, for u left of x, in
the evaluation game, the value of u is already set when x is to be assigned. Thus already
existing non-trivial partial strategies for u cannot be combined with a branching decision,
and so this resolution step is blocked. However, if both the strategies are identical, or if
one of them is trivial (unspecified), then the non-trivial strategy can be carried forward
while maintaining the desired invariant. Checking whether strategies are identical can itself
be hard, making verification of the proof difficult. In MRes, this is handled by choosing a
particular representation called merge maps, where isomorphism checks are easy.

Now we can describe the proof system itself. First we describe merge maps. Syntactically,
these are deterministic branching programs, specified by a sequence of instructions of one of
the following two forms:
〈line `〉 : b where b ∈ {∗, 0, 1}.1
Merge maps containing a single such instruction are called simple. In particular, if b = ∗,
then they are called trivial.
〈line `〉 : If x = 0 then go to 〈line `1〉 else go to 〈line `2〉, for some `1, `2 < `. In a merge
map M for u, all queried variables x must precede u in the quantifier prefix.
Merge maps with such instructions are called complex.

(All line numbers are natural numbers.) The merge map Mu computes a partial strategy
for the universal variable u starting at the largest line number (the leading instruction) and
following the instructions in the natural way. The value ∗ denotes an undefined value.

Two merge maps M1,M2 are said to be consistent, denoted M1 ./ M2, if for every line
number i appearing in both M1,M2, the instructions with line number i are identical. Two
merge maps M1,M2 are said to be isomorphic, denoted M1 ' M2, if there is a bijection
between the line numbers in M1 and M2 that transforms M1 to M2 in the natural way.

For the remainder of this section let Φ = Q · φ be a QBF with existential variables X
and universal variables U . The proof system MRes has the following rules:
1. Axiom: For a clause A in the matrix φ, let C be the existential part of A. For each

universal variable u, let bu be the value u must take to falsify A; if u 6∈ var(A), then
bu = ∗. For any natural number i, the line (C, {Mu : u ∈ U}) where each Mu is the
simple merge map 〈i〉 : bu can be derived in MRes.

2. Resolution: From lines La = (Ca, {Mu
a : u ∈ U}) for a ∈ {0, 1}, in MRes, the line

L = (C, {Mu : u ∈ U}) can be derived, where for some x ∈ X,
C = res(C0, C1, x), and
for each u ∈ U , either Mu

a is trivial and Mu = Mu
1−a for some a, or Mu = Mu

0 'Mu
1 ,

or x precedes u and Mu has a leading instruction that builds the complex merge map
If x = 0 then 〈Mu

0 〉 else 〈Mu
1 〉.

A refutation is a derivation using these rules and ending in a line with the empty existential
clause. The size of the refutation is the number of lines. In the rest of this paper, we will
denote refutations by the Greek letter Π.

I Example 3. We reproduce from [6] a small example to illustrate how MRes operates. The
formulas to be refuted are the Equality formulas from [5], defined as follows: The equality fam-
ily is the QBF family whose nth instance has the prefix ∃x1, . . . , xn,∀u1, . . . , un,∃t1, . . . , tn
and the matrix consisting of the clauses {xi, ui, ti}, {xi, ui, ti} for i ∈ [n], and {t1, . . . , tn}.

1 In [6], the notation used is b ∈ {∗, u, u}; u, u, ∗ denote u = 1, u = 0, undefined respectively.
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In [6] (Example 3), linear-size reductionless LDQRes refutations are described for these
formulas, and later, MRes is shown to simulate reductionless LDQRes. Here, we directly
present the implied linear-size MRes refutations.

First, we download the axioms. Line 0 downloads the long clause, with all trivial merge
maps. The next 2n lines download the short axiom clauses. Letting i ∈ [n], we define these
lines as follows:
Line 2i−1 is the clause {xi, ti} with merge map 0 for ui and all other merge maps are trivial.
Line 2i is the clause {xi, ti} with merge map 1 for ui and all other merge maps are trivial.

For i ∈ [n], line 2n+ i is obtained by applying the merge resolution rule on lines 2i− 1
and 2i. This gives the clause {ti}; the merge maps for j 6= i are trivial, and the merge map
for ui has the instruction: If xi = 0 then go to 〈line 2i− 1〉 else go to 〈line 2i〉.

At line 3n + 1, applying merge resolution on lines 0 and 2n + 1, we obtain the clause
{t2, . . . , tn}. The merge map for u1 is taken from line 2n+ 1, since at line 0 it is trivial.

Now for i ∈ [2, n], line 3n+ i is obtained by applying merge resolution on lines 2n+ i

and 3n+ i− 1. This gives the clause {ti+1, . . . , tn}. The merge map for ui is taken from line
2n+ i since at line 3n+ i− 1 it is trivial. For j < i, the merge map for uj is taken from line
3n+ i− 1 since at line 2n+ i it is trivial. Effectively, at this line, for all j ≤ i, the merge
map for uj is from line 2n+ j, and for all j > i, the merge map for uj is trivial.

Line 4n derives the empty clause and the strategy computing, for each i ∈ [n], ui = xi.
This completes the refutation. y

As shown in [6], the merge maps at the final line compute a countermodel for the QBF.
To establish this, some stronger properties of the derivation are established and will be useful
to us. We restate the relevant properties here.

I Lemma 4 (Extracted/adapted from [6] Section 4.3, (Proof of Lemma 21)). Let Φ = Q · φ
be a QBF with existential variables X and universal variables U . Let Π def= L1, . . . , Lm be an
MRes refutation of Φ, where each Li = (Ci, {Mu

i | u ∈ U}). Further, for each i ∈ [m],
let αi be the minimal partial assignment falsifying Ci,
let Ai be the set of assignments to X consistent with αi,
for each u ∈ U , let hu

i be the function computed by Mu
i ,

for each α ∈ Ai, let hi(α) be the partial assignment which sets variable u to hu
i (α�LQ(u))

if hu
i (α�LQ(u)) 6= ∗, and leaves it unset otherwise.

Then for each α ∈ Ai, the (partial) assignment (α, hi(α)) falsifies at least one clause of φ
used in the sub-derivation of Li.

Let GΠ be the derivation graph corresponding to Π (with edges directed from the
antecedents to the consequent, hence from the axioms to the final line).

I Proposition 5 ([6]). For all u ∈ U , Mu
m is isomorphic to a subgraph of GΠ (up to path

contraction).

Let S be a subset of the existential variables X of Φ. We say that an MRes refutation of
Φ is S-regular if for each x ∈ S, there is no leaf-to-root path that uses x as pivot more than
once. An X-regular proof is simply called a regular proof. If GΠ is a tree, then we say that
Π is a tree-like proof.

3 Lifting branching program lower bounds

We now start to explore lower bounds for MRes, first for its version where proofs are tree-like.
The following lemma is an immediate consequence of Proposition 5.
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I Lemma 6. Let Π def= L1, . . . , Lm be an MRes refutation. If Π is tree-like (resp. regular),
then for all u ∈ U , Mu

m is a decision tree (resp. read-once branching program). Moreover,
the size of Π is lower bounded by the size of Mu

m.

This lemma allows us to lift lower bounds for decision trees (resp. read-once branching
programs) to lower bounds for tree-like (resp. regular) Merge Resolution.

For QParityn and LQParityn, the only winning strategy for the universal player is to set
z such that z ≡ x1 + x2 + · · ·+ xn (mod 2).

I Proposition 7 (Folklore). The decision-tree size complexity of the parity function is 2n.

From Lemma 4, Lemma 6, and Proposition 7, we obtain the desired lower bound.

I Theorem 8. sizeMResTree(QParityn) = 2Ω(n) and sizeMResTree(LQParityn) = 2Ω(n).

I Corollary 9. Tree-like MRes is exponentially weaker than MRes.

Proof. Theorem 8 shows that QParity requires exponential-size refutations in tree-like MRes.
It has polynomial-size refutations in reductionless LD-QRes [31] (and hence also in MRes).
The result follows. J

For the QBF CRn, the winning strategy for the universal player (countermodel) is not
unique. However, we show that all countermodels require large decision trees.

I Lemma 10. Every countermodel for CRn has decision tree size complexity at least 2n.

Proof. We prove the size bound by showing that in every decision tree for every countermodel,
all root-to-leaf paths query at least n variables, and hence the decision tree has at least 2n

nodes.
Assume to the contrary that some countermodel h is computed by a decision tree M

that has a root-to-leaf path p querying less than n variables. Then there exist k, ` ∈ [n] such
that no variable from Row k and no variable from Column ` is on this path. Let ρp be the
minimal partial assignment that takes this path in M , and let ρ′ be an arbitrary extension
of ρp to variables in {xij | i 6= k, j 6= `}. Consider the following extension of ρ′ to variables
in (X \ {xk`}) ∪ T , giving assignment σ:
Set all variables in row k (other than xk,`) to 1.
Set all variables in column ` (other than xk,`) to 0.
Set ak and b` to 0 and all other ai, bj variables to 1.

For n ≥ 2, σ satisfies all the clauses of CRn except Ak` and Bk`, which get restricted to
xk` ∨ z and xk` ∨ z respectively.

Let α0 = σ ∪ {xk` = 0} and α1 = σ ∪ {xk` = 1}. Since both α0 and α1 extend ρp, they
follow path p, therefore h(α0) = h(α1). If h(α0) = h(α1) = 0, then (α1, h(α1)) satisfies
all clauses of CRn. On the other hand, if h(α0) = h(α1) = 1, then (α0, h(α0)) satisfies all
clauses of CRn. Thus in either case, h is not a countermodel for CRn. J

From Lemmas 4, 6, and 10, we obtain the desired lower bound.

I Theorem 11. sizeMResTree(CRn) = 2Ω(n).

I Corollary 12. Tree-Like MRes is incomparable with the tree-like and general versions of
QRes, QURes, CP + ∀Red, ∀Exp + Res, and IR.
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Proof. We showed in Theorem 11 that the Completion Principle CRn requires exponential-
size refutations in tree-like Merge Resolution. It has polynomial-size refutations in tree-like
QRes [23] (and hence also in QURes and CP+∀Red) and tree-like ∀Exp+Res [24] (and hence
also in IR). (While [24] does not explicitly mention tree-like proofs, the proof provided there
for CRn is tree-like.) On the other hand, the Equality formulas have polynomial-size tree-like
MRes refutations [6] but require exponential-size refutations in QRes, QURes, CP + ∀Red
[5], ∀Exp + Res, IR [4] (cf. [3] on how to apply the lower bound technique from [4] to the
Equality formulas). J

We now show how to lift lower bounds for read-once branching programs to those for
regular MRes. This follows the method used, for instance, in [11] (Section 4.1) and [31]
(Section 6). Let f : X → {0, 1} be a Boolean function, let Cf be a Boolean circuit encoding
f , and let u be a variable not in X. Using Tseitin transformation [36], we can construct
a CNF formula φ(X,u, Y ) such that ∃Y.φ(X,u, Y ) is logically equivalent to Cf (X) 6= u.
Therefore, Φ := ∃X∀u∃Y.φ(X,u, Y ), called the QBF encoding of f , is a false QBF formula
with f as the unique winning strategy. Moreover, the size of Φ is polynomial in the size of
Cf . Choosing a function f that can be computed by polynomial-size Boolean circuits but
requires exponential-size read-once branching programs gives the desired lower bound. Many
such functions are known [38]. For instance, we can use the following result:

I Theorem 13 ([18]). There is a Boolean function f in n variables that can be computed by
a Boolean circuit of size O(n3/2) but requires read-once branching programs of size 2Ω(

√
n).

I Corollary 14. There is a Boolean function f in n variables with a QBF encoding Φ of size
polynomial in n such that any regular MRes refutation of Φ has size 2Ω(

√
n).

4 Lower bounds for Regular Merge Resolution

In this section, we prove Regular MRes lower bounds for formulas whose countermodels can
be computed by polynomial-size read-once branching programs.

4.1 LQParity formulas
Our first result concerns the long-distance versions of the parity formulas [11] (cf. Section 2.1),
which are known to be hard for LD-QRes. We establish that they are hard for regular Merge
Resolution as well.

I Theorem 15. sizeMResReg(LQParityn) = 2Ω(n).

This follows from a stronger result that we prove below: any T -regular refutation of LQParityn

in MRes must have size 2Ω(n) (Theorem 19).
The proof proceeds as follows: Let Π be a T -regular MRes refutation of LQParityn.

Since every axiom has a variable from T while the final clause in Π is empty, there is a
maximal “component” of the proof leading to and including the final line, where all clauses
are T -free. The clauses in this component involve only the X variables. We show that the
“boundary” of this component is large, by showing in Lemma 18 that each clause here must
be wide. (This idea was used in [31] to show that CR is hard for reductionless LD-QRes.) To
establish the width bound, we note that no lines have trivial strategies. Since the pivots at
the boundary are variables from T , the merge maps incoming into each boundary resolution
must be isomorphic. By carefully analysing which axiom clauses can and must be used to
derive lines just above the boundary (Lemma 17), we conclude that the merge maps must be
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simple, yielding the lower bound. To fill in all the details, we first describe some properties
(Lemma 16) of Π that will be used in obtaining this result.

The lines of Π will be denoted by L,L′, L′′ etc. For lines L and L′ the respective clause,
merge map and the function computed by the merge map will be denoted by C, M , h and
C ′, M ′, h′ respectively. Let GΠ be the derivation graph corresponding to Π (with edges
directed from the antecedents to the consequent, hence from the axioms to the final line).
We will refer to the nodes of this graph by the corresponding line. For L,L′ ∈ Π, we will say
L L′ if there is a path from L to L′ in GΠ.

For a line L ∈ Π, let ΠL be the minimal sub-derivation of L, and let GΠL
be the

corresponding subgraph of GΠ with sink L. Define UsedConstraints(ΠL) = {φi
n | i ∈

[n + 1], leaves(GΠL
) ∩ φi

n 6= ∅}, and Uci(ΠL) = {i ∈ [n + 1] | φi
n ∈ UsedConstraints(ΠL)}.

(Uci stands for UsedConstraintsIndex.) Note that for any leaf L, Uci(ΠL) is a singleton.
Define S ′ to be the set of those lines in Π where the clause part has no T variable and

furthermore there is a path in GΠ from the line to the final empty clause via lines where all
the clauses also have no T variables. Let S denote the set of leaves in the subgraph of GΠ
restricted to S ′; these are lines that are in S ′ but their parents are not in S ′. Note that no
leaf of Π is in S ′ because all leaves of GΠ contain a variable in T .

I Lemma 16. Let L = (C,M) be a line of Π. Then Uci(ΠL) is an interval [i, j] for some
1 ≤ i ≤ j ≤ n+ 1. Furthermore, (below i, j refer to the endpoints of this interval )
1. For all k ∈ [i, j − 1], tk 6∈ var(C).
2. If i > 1, then ti−1 ∈ var(C).
3. If j ≤ n, then tj ∈ var(C).
4. |var(C) ∩ T | = 1 iff [i, j] contains exactly one of 1, n+ 1.

var(C) ∩ T = ∅ iff [i, j] = [1, n+ 1].
5. For all k ∈ [i, j] ∩ [1, n], xk ∈ var(C) ∪ var(M).

Proof. Let I = Uci(ΠL). Assume, to the contrary, that I is not an interval; for some
k ∈ [2, n], I contains an index i < k and an index j > k, but does not contain k. Let L′ be
the first line in Π such that Uci(ΠL′) intersects both [1, k− 1] and [k+ 1, n+ 1]. Since leaves
have singleton Uci sets, L′ is not a leaf. Say L′ = res(L′′, L′′′, v). Assume that Uci(ΠL′′) ⊆
[1, k − 1] and Uci(ΠL′′′) ⊆ [k + 1, n + 1]; the argument for the other case is identical. So
v ∈ var∃(UsedConstraints(ΠL′′)) ⊆ var∃(φ[1,k−1]

n ), and v ∈ var∃(UsedConstraints(ΠL′′′)) ⊆
var∃(φ[k+1,n+1]

n ). But var∃(φ[1,k−1]
n ) and var∃(φ[k+1,n+1]

n ) are disjoint, a contradiction.
Fixing i, j so that I = Uci(ΠL) = [i, j], we now prove the remaining statements in the

Lemma.
1. Fix any k ∈ [i, j − 1]. Note that {k, k + 1} ⊆ Uci(ΠL). Let L′ be the first line in ΠL

such that {k, k + 1} ⊆ Uci(ΠL′). Say L′ is obtained as res(L′′, L′′′, v). Assume that
Uci(ΠL′′) contributes k and Uci(ΠL′′) contributes k + 1; the other case is symmetric.
Since Uci(ΠL′′) must also be an interval, and since it contains k but not k+1, Uci(ΠL′′) ⊆
[1, k] ∩ Uci(ΠL) = [i, k]. Similarly, Uci(ΠL′′′) ⊆ [k + 1, j]. The pivot variable v must
thus belong to both φ[i,k]

n and φ[k+1,j]
n ; the only such existential variable is tk. Hence each

tk is used as a pivot in ΠL.
Since Π is T -regular, and since tk is used as a pivot to derive L′ inside ΠL, it cannot
reappear in any line on any path from (including) L′ to the final clause. Hence it does
not appear in L.

2. Let i > 1. By Observation 1, ti−1 appears in at least one axiom used in ΠL. Assume to the
contrary that ti−1 6∈ var(C). Let ρC be the minimal partial assignment falsifying C. By
assumption, ρC does not set ti−1, and by item 1 above, ρC does not set any variable tk with
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i ≤ k < j. Extend ρC arbitrarily to all unassigned variables in (X∪T )\{ti−1, . . . , tj−1} to
get ρ1. Since the merge map M does not depend on variables in T , the partial assignment
ρ1 is sufficient to evaluate M and h. Define the value y as follows:

y =
{
ρ1(tj) if j ≤ n
h(ρ1) if j = n+ 1

For b ∈ {0, 1}, let ρb
1 denote the extension of ρ1 by ti−1 = b. Exactly one of ρ0

1, ρ
1
1 satisfies

the equation ti−1 + xi + xi+1 + . . .+ xj + y ≡ 0 mod 2; let this extension be ρ2. Then
there is a unique extension α of ρ2 to X ∪ T such that

if j ≤ n, then α satisfies the existential part of all clauses in φ[i,j]
n ;

if j = n + 1, then (α, h(ρ1)) satisfies all clauses in φ[i,j]
n . (That is, assigning X ∪ T

according to α and assigning z the value h(ρ1) satisfies φ[i,j]
n .)

(To find α, work backwards from y to determine the appropriate values of tj−1, tj−2, . . . , ti
to satisfy φj

n, φ
j−1
n , . . . , φi

n.)
Note that h(ρ1) = h(ρ2) = h(α). So (α, h(α)) falsifies C (since it extends ρC) and satisfies
all axiom clauses used to derive L. This contradicts Lemma 4.

3. Let j ≤ n. Assume to the contrary that tj 6∈ var(C). The argument is identical to that in
item 2 (only the indices differ): ρC falsifies C; ρ1 extends it arbitrarily to all unassigned
variables in (X ∪ T ) \ {ti, . . . , tj}; ρ2 is the extension of ρ1 obtained by setting tj so as to
satisfy the equation ti−1 + xi + xi+1 + . . .+ xj + tj ≡ 0 mod 2; (Here, if i = 1, discard t0
from the equation; i.e. assume t0 = 0); α is the unique extension of ρ2 to X ∪T satisfying
φ

[i,j]
n (To obtain α, work forwards obtaining ti, ti+1, . . . , tj−1). Now (α, h(α)) contradicts

Lemma 4.
4. Since Uci(ΠL) = [i, j], variables tk for k 6∈ [i − 1, j] do not appear in any of the used

axioms (Observation 1) and hence do not appear in C. By the preceding three items,
var(C) ∩ T does not include any tk with k ∈ [i, j − 1], includes ti−1 whenever i > 1, and
includes tj whenever j < n+ 1. The claim follows.

5. Assume to the contrary that for some k ∈ [i, j], xk 6∈ var(C) ∪ var(M). The argument is
similar to that in item 2: ρC falsifies C; ρ1 extends it arbitrarily to all unassigned variables
in (X \{xk})∪(T \{ti, . . . , tj−1}); y is the value of tj if j ≤ n and the value of h otherwise
(since xk 6∈ var(M), ρ1 is sufficient to evaluate h); ρ2 is the extension of ρ1 obtained by
setting xk so as to satisfy the equation ti−1 + xi + xi+1 + . . .+ xj + y ≡ 0 mod 2; (Here,
if i = 1, discard t0 from the equation; i.e. assume t0 = 0); α is the unique extension of
ρ2 to X ∪ T satisfying φ[i,j]

n (To obtain α, work forwards from ti towards tj−1). Now
(α, h(α)) contradicts Lemma 4. J

I Lemma 17. Let L ∈ S be derived in Π as L = res(L′, L′′, tk). Then Uci(ΠL) = [1, n+ 1],
and Uci(ΠL′),Uci(ΠL′′) partition [1, n+ 1] into [1, k], [k + 1, n+ 1].

Proof. Since L ∈ S, L has no variable from T . By Lemma 16(4), Uci(ΠL) = [1, n+ 1].
Since L = res(L′, L′′, tk), var(C ′) ∩ T = var(C ′′) ∩ T = {tk}. By Lemma 16(2,3,4),

Uci(ΠL′),Uci(ΠL′′) ∈ {[1, k], [k + 1, n+ 1]}.
If both Uci(ΠL′),Uci(ΠL′′) equal [k+1, n+1], then Uci(ΠL) = [k+1, n+1], contradicting

Uci(Πl) = [1, n+ 1].
If both Uci(ΠL′),Uci(ΠL′′) equal [1, k], then Uci(ΠL) = [1, k]. Since tk is a pivot

variable, k ≤ n, contradicting Uci(Πl) = [1, n+ 1].
Hence one each of Uci(ΠL′),Uci(ΠL′′) equals [1, k] and [k + 1, n+ 1] as claimed. J

I Lemma 18. For all L ∈ S, width(C) = n.
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Proof. Let L ∈ S be derived in Π as L = res(L′, L′′, tk). Since all axioms create non-trivial
strategies, neither M ′ nor M ′′ equals ∗. By the rules of MRes, M ′ = M ′′ = M 6= ∗. We will
show that in fact M must be a constant strategy, M ∈ {0, 1}.

By definition of S, var(C) ∩ T = ∅, and hence var(C ′) ∩ T = var(C ′′) ∩ T = {tk}. By
Lemma 17, Uci(ΠL) = [1, n+ 1] is partitioned by Uci(ΠL′) and Uci(ΠL′′) into [1, k], [k +
1, n+ 1].

Assume Uci(ΠL′) = [1, k], Uci(ΠL′′) = [k + 1, n + 1]; the argument in the other case
is identical. Then var(M) = var(M ′) ⊆ var(φ[1,k]) ∩ X = {x1, . . . , xk}, and var(M) =
var(M ′′) ⊆ var(φ[k+1,n+1]) ∩X = {xk+1, . . . , xn}. The only way both these conditions can
be satisfied is if var(M) = ∅; that is, M is a constant strategy.

Since Uci(ΠL) = [1, n + 1] and var(M) = ∅ , Lemma 16(5) implies that X ⊆ var(C).
Therefore width(C) = n. J

I Theorem 19. Every T -regular refutation of LQParityn in MRes has size 2Ω(n).

Proof. Let Π be a T -regular refutation of LQParityn in MRes. Let S ′,S be as defined in
the beginning of this sub-section. By definition, for each L = (C,M) ∈ S′, var(C) ⊆ X.
Let Π̂ = {C | L = (C,M) ∈ S′}. Then Π̂ contains a propositional resolution refutation
of C = {C | L = (C,M) ∈ S}. Therefore C is an unsatisfiable CNF formula over the n
variables in X. By Lemma 18, each clause in C has width n and so is falsified by exactly one
assignment. Therefore, to ensure that each of the 2n assignments falsifies some clause, (at
least) 2n clauses are required. Therefore |C| > 2n. Hence |Π| > 2n. J

4.2 Completion Principle formulas
Our second hardness result for regular Merge Resolution is for the completion principle
formulas, introduced in [24] (cf. Section 2.1).

I Theorem 20. Every (A ∪B)-regular refutation of CRn in MRes has size 2Ω(n).

The proof proceeds as follows: Let Π be a (A ∪ B)-regular MRes refutation of CRn.
Since every axiom has a variable from A ∪B while the final clause in Π is empty, there is a
maximal “component” of the proof leading to and including the final line, where all clauses
are (A ∪ B)-free. The clauses in this component involve only the X variables. We show
that the “boundary” of this component is large, by showing in Lemma 21 that each clause
here must be wide. (This idea was used in [31] to show that CR is hard for reductionless
LD-QRes.)

To establish the width bound, we first note that except for the axioms LA, LB , no lines
have trivial strategies. Since the pivots at the boundary are variables from A ∪ B, which
are all to the right of z, the merge maps incoming into each boundary resolution must be
isomorphic. By analysing what axiom clauses cannot be used to derive lines just above the
boundary, we show that many variables are absent in the corresponding merge maps, and
invoking soundness of MRes, we show that they must then be present in the boundary clause,
making it wide.

Proof. (of Theorem 20) Let Π be an (A∪B)-regular refutation of CRn (for n ≥ 2) in MRes.
Define S ′ to be the set of those lines in Π where the clause part has no variable from

A∪B, and furthermore there is a path in GΠ from the line to the final empty clause via lines
where all the clauses also have no variables from A∪B. Let S denote the set of leaves in the
subgraph of GΠ restricted to S ′; these are lines that are in S ′ but their parents are not in S ′.
Note that no leaf of Π is in S ′ because all leaves of GΠ contain a variable in A ∪B.
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By definition, for each L = (C,Mz) ∈ S′, var(C) ⊆ X. The sub-derivation Π̂ = {C |
∃L = (C,Mz) ∈ S′} contains a propositional resolution refutation of the conjunction of
clauses F = {C | ∃L = (C,Mz) ∈ S}. Hence F is an unsatisfiable CNF formula over the
n2 variables in X. We show below, in Lemma 21, that each clause in F has width at least
n− 1. Hence it is falsified by at most 2n2−(n−1) assignments. Therefore, to ensure that each
of the 2n2 assignments falsifies some clause, at least 2n−1 clauses are required. Therefore
|F | > 2n−1. Hence |Π| = 2Ω(n). J

I Lemma 21. For all L = (C,Mz) ∈ S, width(C) ≥ n− 1.

Proof. Since var(C) ∩ (A ∪ B) = ∅, L is not a leaf of Π. Say L = res(L1, L2, v) where
L1 = (C1,M

z
1 ) and L2 = (C2,M

z
2 ). Since var(C1) ∩ (A ∪B) 6= ∅ and var(C2) ∩ (A ∪B) 6= ∅,

we have v ∈ A ∪B. Consider the case when v ∈ A; the argument for the case when v ∈ B is
symmetrically identical. Without loss of generality, assume that v = an; and an ∈ C1 and
an ∈ C2.

Since Π is (A ∪ B)-regular, an does not occur as a pivot in the sub-derivation ΠL1 .
Therefore LA 6∈ leaves(GΠL1

) (otherwise an ∈ C1, and therefore C1 would be tautological
clause, a contradiction). This implies that the sub-derivation ΠL1 cannot use any axiom that
contains a positive A literal other than an, since such a literal would have to be eliminated
by resolution before reaching C1, requiring the corresponding negated literal, and LA is the
only axiom with negated literals from A. That is, ΠL1 does not use any of the axioms Aij

for i ∈ [n − 1]. The positive literal xij appears only in Aij . Hence for i ∈ [n − 1], j ∈ [n],
xij is not a pivot in ΠL1 and hence does not appear in Mz

1 . On the other hand, Mz
1 is not

trivial since some Anj clause is used.
C2 contains an, but no other ai. So C2 is not the axiom LA. Hence Mz

2 is not trivial.
Since the pivot an at the step obtaining line L is to the right of z, by the rules of MRes,

Mz
1 and Mz

2 are isomorphic. Hence for each i ∈ [n− 1], and each j ∈ [n], xij 6∈ var(Mz
2 ). We

claim the following:

B Claim 22. Either for all i ∈ [n− 1], C2 has a variable of the form xi∗, or for all j ∈ [n],
C2 has a variable of the form x∗j .

In either case, C2 has at least n− 1 variables.
It remains to prove the claim.

Proof. (of Claim) We know that an ∈ C2, and for all i ∈ [n−1], for all j ∈ [n], xij 6∈ var(Mz
2 ).

Aiming for contradiction, suppose that there exist i ∈ [n− 1] and j ∈ [n] such that for all
` ∈ [n], xi` 6∈ var(C2), and for all k ∈ [n], var(xkj) 6∈ C2. Fix such an i, j.

Let ρ be the minimum partial assignment falsifying C2. Then
ρ sets an = 1, leaves all other variables in A ∪B unset.
ρ does not set any xi` or xkj .

For c ∈ {0, 1}, extend ρ to αc as follows: Set ai = 0, bj = 0, set all other unset variables from
A ∪B to 1. Set xij = c. All xi` other than xij set to 1. All xkj other than xij set to 0. Set
remaining variables arbitrarily (but in the same way in α0 and α1).

The common part of α0 and α1 satisfies all axiom clauses except Aij and Bij , and does
not falsify any axiom. The extensions αc satisfy one more axiom, and still do not falsify the
remaining axiom (it has a universal literal z or z). They both falsify C2, since they extend ρ.

Since α0 and α1 agree everywhere except on xij , and since xij 6∈ var(Mz
2 ), it follows that

Mz
2 (α0) = Mz

2 (α1) = d, say.
By Lemma 4, both (α0, d) and (α1, d) should falsify some axiom. However, (αd̄, d) actually

satisfies all axioms, a contradiction. J
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With the claim established, the proof of the lemma is complete. J

I Corollary 23. Regular MRes is incomparable with the tree-like and general versions of
QRes, QURes, CP + ∀Red, ∀Exp + Res, and IR.

Proof. Let S ∈ {QRes,QURes,CP + ∀Red,∀Exp + Res, IR}.
The CRn formulas are easy in tree-like S but hard for regular MRes, so regular MRes

does not simulate tree-like or general versions of S.
The Equality formulas are hard for S but easy in regular MRes, so S (and hence also

tree-like S) does not simulate regular MRes. J

5 A lower bound for Merge Resolution

In this section we turn towards the full system of Merge Resolution and consider the KBKF-lq
formulas (cf. Section 2.1). Similarly as the LQParity formulas, these formulas were originally
introduced as hard principles for LD-QRes [2]. Here we show that they are hard for the full
system of Merge Resolution, thus making it our strongest lower bound in the paper. This
constitutes the first lower bound for unrestricted MRes in the literature.

I Theorem 24. sizeMRes(KBKF-lq[n]) = 2Ω(n).

Proof idea

We will show that, in any MRes refutation of the KBKF-lq formulas, the literals over the
variables in F = {f1, f2, . . . , fn} must be removed before the strategies become ‘very complex’.
From this we conclude that there must be exponentially many lines.

To argue that literals over F must be removed before the strategies become ‘very complex’,
we look at the form of the lines containing literals over F . If any such line has a ‘very
complex’ strategy (by which we mean that for some i ∈ [n], ui depends on either di or ei),
then the literals over F cannot be removed from the clause.

Elaborating on the roadmap of the argument: Let Π be an MRes refutation of KBKF-lq[n].
Each line in Π has the form L = (C,Mx1 , . . . ,Mxn) where C is a clause over D,E, F , and
each Mxi is a merge map computing a strategy for xi.

Define S ′ to be the set of those lines in Π where the clause part has no F variable and
furthermore the line has a path in GΠ to the final empty clause via lines where all the clauses
also have no F variables. Let S denote the set of leaves in the subgraph of GΠ restricted to
S ′; these are lines that are in S ′ but their parents are not in S ′. Note that by definition,
for each L = (C, {Mxi | i ∈ [n]}) ∈ S ′, var(C) ⊆ D ∪ E. No line in S ′ (and in particular, no
line in S) is an axiom since all axiom clauses have variables from F .

Recall that the variables of KBKF-lq[n] can be naturally grouped based on the quantifier
prefix: for i ∈ [n], the ith group has di, ei, xi, and the (n+ 1)th group has the F variables.
By construction, the merge map for xi does not depend on variables in later groups, as is
indeed required for a countermodel. We say that a merge map for xi has self-dependence if
it does depend on di and/or ei.

We show that every merge map at every line in S ′ is non-trivial (Lemma 29). Further, we
show that at every line on the boundary of S ′, i.e. in S, no merge map has self-dependence
(Lemma 30). Using this, we conclude that S must be exponentially large, since in every
countermodel the strategy of each variable must have self-dependence (Proposition 2).

In order to show that lines in S do not have self-dependence, we first establish several
properties of the sets of axiom clauses used in a sub-derivation (Lemmas 25, 26, 27, 28).
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Detailed proof

For a line L ∈ Π, let ΠL be the minimal sub-derivation of L, and let GΠL
be the corresponding

subgraph of GΠ with sink L. Let Uci(ΠL) = {i ∈ [0, n] | leaves(GΠL
)∩Ai 6= ∅}. (Uci stands

for UsedConstraintsIndex). Note that we are only looking at the clauses in A to define Uci.

I Lemma 25. For every line L = (C, {Mxi | i ∈ [n]}) of Π,
1. Uci(ΠL) = ∅ if and only if C ∩ F 1 6= ∅ if and only if |C ∩ F 1| = 1.
2. Uci(ΠL) 6= ∅ if and only if C ∩ F 1 = ∅.

Proof. Since the existential part of each clause in KBKF-lq[n] is a Horn clause, and since
the resolvent of Horn clauses is also Horn, |C ∩ F 1| ≤ 1 for each line of Π. It thus suffices to
prove that ∀L ∈ Π, Uci(ΠL) = ∅ ⇐⇒ C ∩ F 1 6= ∅.

(⇒): For an arbitrary line L ∈ Π, suppose Uci(ΠL) = ∅, so L is derived from B. Since
var∃(B) = F , var(C) ⊆ F . The existential part of these clauses is strict Horn, and the
resolvent of strict Horn clauses is also strict Horn, so C is strict Horn. So C ∩ F 1 6= ∅.

(⇐): The statement C ∩ F 1 6= ∅ ⇒ Uci(ΠL) = ∅ holds at all axioms. Assume to the
contrary that it does not hold everywhere in Π. Pick a highest L (closest to the axioms)
for which this statement fails. That is, C ∩ F 1 6= ∅, and Uci(ΠL) 6= ∅. Let L′, L′′ be
the parents of L in Π; by choice of L, both L′ and L′′ satisfy the statement. Let fj be
the positive literal in C (unique, because C is Horn). Without loss of generality, fj ∈ C ′.
Since L′ satisfies the statement, Uci(ΠL′) = ∅. So var(C ′) ⊆ F , and since C ′ is Horn,
C ′ \ {fj} ⊆ F 0. Since fj ∈ C, the pivot at this step is not fj , so it must be an fk for
some fk ∈ C ′. So fk ∈ C ′′. Since L′′ satisfies the statement, Uci(ΠL′′) = ∅. But then
Uci(ΠL) = Uci(ΠL′) ∪Uci(ΠL′′) = ∅, contradicting our choice of L. Hence our assumption
was wrong, and the statement holds for all L in Π. J

I Lemma 26. A line L = (C, {Mxi | i ∈ [n]}) of Π with Uci(ΠL) = ∅ has these properties:
1. var(C) ⊆ F ; for all i ∈ [n], Mxi ∈ {∗, 0, 1};
2. For some j ∈ [n], fj ∈ C and Mxj ∈ {0, 1};
3. For 1 ≤ i < j, fi 6∈ var(C) and Mxi = ∗;
4. For j < i ≤ n, if fi 6∈ var(C), then Mxj ∈ {0, 1}.

Proof. 1. Since Uci(ΠL) = ∅, var(C) ⊆ var∃(B) = F .
All pivots in ΠL are from F , and all universal variables are left of F in the quantifier
prefix. So no step in ΠL can use the merge operation to update merge maps; all steps in
ΠL use only the select operation, which does not create any branching.

2. By Lemma 25, |C ∩ F 1| = 1, so there is a unique j with the literal fj ∈ C. This literal
appears only in the clauses of Bj , both of which create a non-trivial strategy for xj . So
Mxj 6= ∗. By item (1) proven above, Mxj ∈ {0, 1}.

3. Let k be the least index such that ΠL uses an axiom from Bk. Since the positive literal fj

is in C and appears only in Bj , k ≤ j. Assume k < j. The axiom from Bk introduces the
positive literal fk into ΠL, and by choice of k, no axiom in ΠL has the literal fk. Hence
fk cannot be removed by resolution, and so fk ∈ C, contradicting the fact that C is Horn.
So in fact k = j. This means that no axiom introduces the variables fi, i < j, into ΠL,
so fi 6∈ var(C). Furthermore, amongst all the axioms in B, only the axioms in Bi have a
non-trivial merge map for xi. Hence for i < j, no non-trivial merge map for xi is created.

4. Since fj ∈ C, ΠL uses an axiom from Bj . This axiom introduces the literals fi, for
j < i ≤ n, into ΠL.
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If fi is removed (by resolution) in ΠL, then an axiom from Bi must be used to introduce
the positive literal fi. This axiom created a non-trivial merge map for xi, so the merge
map for xi at L is also non-trivial. J

I Lemma 27. Let L = (C, {Mxi | i ∈ [n]}) be a line of Π with Uci(ΠL) 6= ∅. Then Uci(ΠL)
is an interval [a, b] for some 0 ≤ a ≤ b ≤ n. Furthermore, (in the items below, a, b refer to
the endpoints of this interval ), it has the following properties:
1. For k ∈ [n] ∩ [a, b], Mxk 6= ∗.
2. If a ≥ 1, then |{da, ea} ∩ C| = 1. If a = 0, then C does not have any positive literal.
3. If b < n, then db+1, eb+1 ∈ C.
4. For all k ∈ [n] \ [a, b], (i) dk, ek 6∈ var(Mxk ), and (ii) if Mxk = ∗ then fk ∈ C.

Proof. Assume to the contrary that Uci(ΠL) is not an interval. Then there exist 0 ≤ a <
c < b ≤ n such that a, b ∈ Uci(ΠL) but c 6∈ Uci(ΠL). Let L1 be the first line in ΠL such
that Uci(ΠL1) intersects both [0, c− 1] and [c+ 1, n] (note that L1 exists). Since leaves have
singleton Uci sets, L1 is not a leaf. Say L1 = res(L2, L3, v). By our choice of L1, exactly
one each of Uci(ΠL2) and Uci(ΠL3) is a non-empty subset of [0, c− 1] and of [c+ 1, n]. So
v ∈ var∃(A[0,c−1]) and v ∈ var∃(A[c+1,n]). But var∃(A[0,c−1]) ∩ var∃(A[c+1,n]) = F , and by
Lemma 25, both C2 and C3 contain variables of F only in negated form. So no variable from
F can be a resolution pivot, a contradiction. It follows that Uci(ΠL) is an interval.

1. For k ∈ [n] ∩ [a, b], some axiom from Ak has been used to derive L. Both these axioms
create non-trivial strategies for xk. Subsequent MRes steps cannot make a non-trivial
strategy trivial.

2. Consider first the case a ≥ 1. Since C is a Horn clause, C can contain at most one of the
literals da, ea.
Since a ∈ Uci(ΠL), at least one of Ad

a, A
e
a appears in leaves(ΠL), so at least one of the

literals da, ea is introduced into ΠL. Since Ad
a−1 and Ae

a−1 are the only axioms that
contain da or da, and since neither of these is used in ΠL, therefore the positive literals
da, ea, if introduced, cannot be removed through resolution. Hence at least one of them
is in C. It follows that C has exactly one of da, ea.
If a = 0, ΠL uses the clause A0 which has only negative literals. The resolvent of such
a clause and a Horn clause also has only negative literals. Following the sequence of
resolutions on the path from a leaf using A0 to C shows that C has only negative literals.

3. Since b < n and b ∈ Uci(ΠL), some clause from Ab is used in ΠL and introduces the
literals db+1, eb+1 into ΠL. Since b + 1 6∈ Uci(ΠL), no leaf of ΠL contains the positive
literals db+1, eb+1. So db+1 and eb+1 cannot be removed through resolution.

4. For k > b, no leaf in ΠL contains the positive literals dk, ek. For k < a, no leaf in ΠL

contains the negative literals dk, ek. Thus, for k 6∈ [a, b], the variables dk, ek are not used
as resolution pivots anywhere in ΠL, and hence are not queried in any of the merge maps.
Each negative literal fk is present in every clause of A, and hence is introduced into ΠL.
If Mxk = ∗, then B0

k, B
1
k 6∈ leaves(ΠL) (both of them have non-trivial merge maps for

xk). Since these are the only clauses with the positive literal fk, the literal fk cannot be
removed in ΠL; hence fk ∈ C. J

I Lemma 28. For any line L = (C, {Mxi | i ∈ [n]}) in Π, and any k ∈ [n], if {dk, ek} ∩
var(Mxk ) 6= ∅, then Uci(ΠL) = [a, n] for some a ≤ k − 1.

Proof. Since {dk, ek} ∩ var(Mxk ) 6= ∅, either dk or ek must be used as a pivot in ΠL, and
hence must appear in both polarities in ΠL. The variables dk, ek appear positively only in
Ak, and negatively only in Ak−1. Hence a ≤ k − 1.
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Suppose b < n. By Lemma 27 (3), both db+1 and eb+1 are in C. Consider any path ρ
in Π from L to the final line L�. At every line on this path, the merge map for xk queries
at least one of dk, ek since it is at least as complex as the merge map Mxk . Along this
path, both db+1 and eb+1 must appear as pivots, since the negated literals are eventually
removed. Pick the first such step on ρ, and assume without loss of generality that the pivot
is db+1 (the other case is symmetric). So db+1 is present in the line, say L1, on ρ, and db+1
is present in the clause L2 with which it is resolved to obtain L3 = res(L2, L1, db+1) on ρ.
By Lemma 27 (2), Uci(ΠL2) = [b + 1, b′] for some b′ ≥ b + 1. Hence by Lemma 27 (4),
dk, ek 6∈ var((M2)xk ). However, {dk, ek} ∩ var((M1)xk ) 6= ∅. Since this resolution on db+1 is
not blocked, it must be the case that (M2)xk = ∗. Hence, by Lemma 27 (4), fk ∈ C2 and
so fk ∈ C3. To remove this literal, at some later point along ρ, fk must appear as pivot.
However, at that point, the line from ρ has a complex merge map for xk, while the line with
the positive literal fk has a non-trivial constant merge map (by Lemma 26 (2)). Hence the
resolution on fk is blocked, a contradiction.

It follows that b = n. J

I Lemma 29. For all L ∈ S ′, for all k ∈ [n], Mxk 6= ∗.

Proof. Consider a line L = (C, {Mxi | i ∈ [n]}) ∈ S ′. Since L ∈ S ′, var(C) ∩ F = ∅, so
C ∩ F 1 = ∅. By Lemma 25, Uci(ΠL) 6= ∅. Since every clause in A contains all literals in
F 0, for each k ∈ [n], ΠL has a leaf where the clause contains fk. This literal is removed in
deriving L, so ΠL also has a leaf where the clause contains the positive literal fk. That is, it
uses an axiom from Bk; this leaf has a non-trivial merge map for xk. Since a step in MRes
cannot make a non-trivial merge map trivial, the merge map for xk at L is non-trivial. J

I Lemma 30. For all L ∈ S, for all k ∈ [n], dk, ek 6∈ var(Mxk ).

Proof. Consider a line L ∈ S; L = (C, {Mxi | i ∈ [n]}). Assume to the contrary that for
some k ∈ [n], {dk, ek} ∩ var(Mxk ) 6= ∅.

Line L is obtained by performing resolution on two non-S ′ clauses with a pivot from F .
Let L = res(L′, L′′, f`) for some ` ∈ [n]; f` ∈ C ′ and f` ∈ C ′′. Since L has no variable in F ,
f` is the only variable from F in var(C ′) and var(C ′′).

Since C ′ has the literal f` ∈ F 1, by Observation 25, Uci(ΠL′) = ∅ and L′ is derived
exclusively from B. Since D ∪E and var(B) are disjoint, all the merge maps in L′ have no
variable from D∪E. So Mxk gets its D∪E variables from (M ′′)xk . Since this does not block
the resolution step, (M ′)xk must be trivial and Mxk = (M ′′)xk . Since var(C ′) ∩ F = f`, by
Lemma 26 (2),(3),(4), k < `.

The line L′′ has no literal from F 1, so by Observation 25, Uci(ΠL′′) 6= ∅. It has a merge
map for xk involving at least one of dk, ek, so by Lemma 28, Uci(ΠL′′) = [a, n] for some
a ≤ k − 1. Thus we have a ≤ k − 1 < k < ` ≤ n.

Consider the resolution of L′ with L′′. By Lemma 26 (2), (M ′)x` ∈ {0, 1}, and by
Lemma 27 (1), (M ′′)x` 6= ∗. To enable this resolution, (M ′′)x` = (M ′)x` . The clauses Ad

`

and Ae
` give rise to different constant strategies for x`. So the derivation of L′′ uses exactly

one of these two clauses. Assume it uses Ad
` ; the other case is symmetric. Since a < `, the

derivation of L′′ uses a clause from A`−1, introducing literals d` and e`. Since the only clause
containing positive literal e` is not used, e` survives in C ′′. Going from L′′ to L removes only
f`, so e` ∈ C.

To summarize, at this stage we know that L ∈ S, e` ∈ C, {dk, ek} ∩ var(Mxk ) 6= ∅,
Mx` ∈ {0, 1} and 1 ≤ k < ` ≤ n.
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Fix any path ρ in GΠ from L to L�. Along this path, e` appears as the pivot somewhere,
since the literal e` is eventually removed. Consider the resolution step at that point, say
C1 = res(C2, C3, e`), with C3 being the clause at the line on ρ. At the corresponding line
L3, the strategies are at least as complex as those at L. Hence var(Mxk

3 ) ∩ {dk, ek} 6= ∅. On
the other hand, C2 has the positive literal e`. By Lemma 27, for the corresponding line
L2, Uci(ΠL2) = [`, c] for some c ≥ `. Since k < `, by Lemma 27, {dk, ek} ∩ var(Mxk

2 ) = ∅.
However, the path from L2 to L1 and thence to L� along ρ witnesses that L2 ∈ S ′, so by
Lemma 29, (M2)xk 6= ∗. Thus Mxk

2 and Mxk
3 are non-trivial but not isomorphic, and this

blocks the resolution on e`.
Thus our assumption that {dk, ek}∩var(Mxk ) 6= ∅must be false. The lemma is proved. J

Proof. (of Theorem 24) Let Π be a refutation of KBKF-lq[n] in MRes. Let S ′,S be as
defined in the beginning of this section. Let the final line of Π be L� = (�, {sxi | i ∈ [n]}),
and for i ∈ [n], let hi be the functions computed by the merge map sxi . By soundness of
MRes, the functions {hi}i∈[n] form a countermodel for KBKF-lq[n].

For each a ∈ {0, 1}n, consider the assignment α to the variables of D ∪ E where di = ai,
ei = ai. Call such an assignment an anti-symmetric assignment. Given such an assignment,
walk from L� towards the leaves of Π as far as is possible while maintaining the following
invariant at each line L = (C, {Mxi | i ∈ [n]}) along the way:
1. α falsifies C, and
2. for each i ∈ [n], hi(α) = Mxi(α).
Clearly this invariant is initially true at L�, which is in S ′. If we are currently at a line
L ∈ S ′ where the invariant is true, and if L 6∈ S, then L is obtained from lines L′, L′′. The
resolution pivot in this step is not in F , since that would put L in S. So both L′ and L′′ are
in S ′, and the pivot is in D ∪E. Let the pivot be in {d`, e`} for some ` ∈ [n]. Depending on
the pivot value, exactly one of C ′, C ′′ is falsified by α; say C ′ is falsified. By Lemma 29, for
each i ∈ [n], both (M ′)xi and (M ′′)xi are non-trivial. By definition of the MRes rule,

For i < `, (M ′)xi and (M ′′)xi are isomorphic (otherwise the resolution is blocked), and
Mxi = (M ′)xi = (M ′′)xi .
For i ≥ `, there are two possibilities:
(1) (M ′)xi and (M ′′)xi are isomorphic, and Mxi = (M ′)xi .
(2) Mxi is a merge of (M ′)xi and (M ′′)xi with the pivot variable queried. By definition
of the merge operation, since C ′ is falsified by α, Mxi(α) = (M ′)xi(α).

Thus in all cases, for each i, hi(α) = Mxi(α) = (M ′)xi(α). Hence L′ satisfies the invariant.
We have shown that as long as we have not encountered a line in S, we can move further.

We continue the walk until a line in S is reached. We denote the line so reached by P (α).
Thus P defines a map from anti-symmetric assignments to S.

Suppose P (α) = P (β) = (C, {Mxi | i ∈ [n]}) for two distinct anti-symmetric assignments
obtained from a, b ∈ {0, 1}n respectively. Let j be the least index in [n] where aj 6= bj . By
Lemma 30, Mxj depends only on {di, ei | i < j}, and α, β agree on these variables. Thus
we get the equalities aj = hj(α) = Mxj (α) = Mxj (β) = hj(β) = bj , where the first and last
equalities follow from Proposition 2, the third equality from by Lemma 30 and choice of j,
and the second and fourth equalities by the invariant satisfied at P (α) and P (β) respectively.
This contradicts aj 6= bj .

We have established that the map P is one-to-one. Hence, S has at least as many lines
as anti-symmetric assignments, so |Π| ≥ |S| ≥ 2n. J

I Corollary 31. MRes is incomparable with QURes and CP + ∀Red.
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Proof. Theorem 24 shows that the KBKF-lq[n] formula requires exponential-size refutations
in MRes. It has polynomial-size refutations in QURes [2], and also in CP + ∀Red (since
CP + ∀Red simulates QURes [13]). The other direction follows from the Equality formulas,
as already mentioned in the proofs of Corollaries 12, 23. J

6 Conclusions and Future Work

The proof system MRes was introduced in [6], using the novel idea of building strategies
directly into the proof and using them to enable additional sound applications of resolution.
In [6], the strengths of the proof system were demonstrated. In this paper, we complement
that study by exposing some limitations of MRes. We obtain hardness for tree-like MRes by
transferring computational hardness of the countermodels in decision trees, and for regular
and general MRes by ad hoc combinatorial arguments.

Several questions still remain.
1. One of the driving goals behind the definition of MRes was overcoming a perceived

weakness of LD-QRes: its criterion for blocking unsound applications of resolution also
blocks several sound applications. However, whether MRes actually overcomes this
weakness is yet to be demonstrated. In [6], MRes is shown to be more powerful than the
reductionless variant of LD-QRes (introduced in [16] and further investigated in [6, 31]).
However, we still do not have an instance of a formula hard for LD-QRes but easy for
MRes. A natural candidate is LQParity, for which we only have a lower bound in regular
MRes. Another natural candidate is SquaredEquality. The other direction, whether there
is a formula easy for LD-QRes but hard for MRes, is also open. One possible candidate
for this separation might appear to be KBKF, which is easy for LD-QRes [21] (that paper
uses the name ϕt). However the KBKF formulas can be shown to have short refutations
in MRes as well, and hence cannot be used for this purpose.

2. In the propositional case, regular resolution simulates tree-like resolution. This relation
may not hold in the case of MRes, and even if it does, it will need a different proof. The
trick used in the propositional case – (i) interpret the proof tree as a decision tree for
search, (ii) make the decision tree read-once, (iii) then return from the search tree to a
refutation, – does not work here because when we prune away parts of the decision tree
to get a read-once tree, we may end up destroying isomorphism of strategies of blocking
variables.
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