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Abstract

We show that there is a family of monotone multilinear polynomials over n variables in VP,
such that any monotone arithmetic circuit for it would be of size 2Ω(n). Before this result, strongly
exponential size monotone lower bounds were known only for explicit polynomials in VNP [GS12,
RY11, Sri19, CKR20]. The family of polynomials we prescribe are the spanning tree polynomials
considered by Jerrum and Snir [JS82], but this time defined over constant-degree expander graphs.

1 Introduction

Proving lower bounds for the size of monotone arithmetic circuits computing explicit polynomials has
attracted a lot of attention in algebraic complexity theory. In a seminal work, Valiant proved exponential
lower bounds on the size of monotone arithmetic circuits computing the perfect matching polynomial
for a class of planar graphs [Val80]. Shortly after that, Jerrum and Snir proved similar lower bounds
for the permanent and the spanning tree polynomial for complete graphs [JS82]. These polynomials are
n-variate and the lower bounds are of order 2Ω(

√
n).

Notably, the matching polynomial considered in [Val80] and the spanning tree polynomial considered
in [JS82] can be computed by algebraic branching programs of polynomial size. This showed that the
presence of negations can exponentially cut down on the cost of computing monotone polynomials. The
question we study here is whether negations can provide even strongly exponential savings.
Interestingly, monotone lower bounds for any polynomial which are strongly exponential in the number of
variables were obtained much later. At present, there are several results which show strongly exponential
monotone lower bounds for explicit polynomials in VNP [GS12, RY11, Sri19, CKR20]. The proof
technique in [GS12] is based on the construction of Sidon Sets. In [RY11], Raz and Yehudayoff have
used a sophisticated exponential sum estimate [BGK06] as one of their main tools. The technique used
by Srinivasan [Sri19] is inspired by communication complexity and a separation of MVNP and MVP
by Yehudayoff [Yeh19]. The proof in [CKR20] is very short and elegant. It is based on the explicit
construction of a sufficiently good error correcting code 1.
All these results, therefore, still leave open the possibility that every monotone polynomial in VP can be
computed in size 2o(n) by monotone circuits. In this note, we rule out this possibility. Our argument is
short. It is a reinterpretation of the argument of [JS82] in more modern terms combined with the use of
expander graphs. The idea of using expander graphs is inspired from [Sri19]. Now, we explain our result
in detail.
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1Very recently, Hrubeś and Yehudayoff have given further example of VNP polynomial exhibiting strongly exponential size

monotone lower bound [HY20].
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Let G be an undirected graph on n vertices and let G̃ be the directed graph obtained from G which has
edges (u, v) and (v, u) (in both directions) for every undirected edge (u, v) in G. Consider the directed
spanning tree polynomial

STn(G̃) =
∑
τ∈Tn

x2,τ(2)x3,τ(3) · · ·xn,τ(n),

where Tn = {τ : {2, 3, . . . , n} 7→ {1, 2, . . . , n} | ∀i ∃k τk(i) = 1 ; ∀i (i, τ(i)) ∈ E(G̃)}. We note that
the maps in Tn correspond to directed spanning trees rooted at 1 and every monomial κ of STn is of
the form x2,i2x3,i3 · · ·xn,in . It is well-known that for every G, STn(G̃) can be computed even by an
algebraic branching program of size poly(n) [W70] via a determinant computation [MV97]. Jerrum and
Snir showed that if G is the complete graph, then any monotone circuit for STn(G̃) must be of size 2Ω(n)

[JS82]. Note that, in this case the number of variables is n2. In contrast, we show the following.

Theorem 1.1. For a sufficiently large constant d, let G be a d regular expander graph on n vertices with
λ2 ≤ d1−ε for some ε > 0. Then every monotone circuit for STn(G̃) must be of size at least 2Ω(n).

2 Preliminaries

Notation.

Let [n] = {1, 2, . . . , n}. Polynomials are always considered over R[X] where R is the set of reals. For a
polynomial p, let var(p) denote the set of variables in p.

Set-multilinear Polynomials.

Let X = ∪ni=1Xi be a set of variables where Xi = {xi,1, xi,2, . . . , xi,m}. A polynomial p ∈ R[X] is
set-multilinear if each monomial in p respects the partition given by the set of variables X1, X2, . . . , Xn.
In other words, each monomial κ in p is of the form x1,j1x2,j2 · · ·xn,jn .

Ordered Polynomial.

For a monomial of the form κ = xi1,j1xi2,j2 · · ·xin,jn we define the set I(κ) = {i1, i2, . . . , in}. If a
polynomial p has the same set I(κ) for every monomial occurring it it with a non-zero coefficient, then
we say that the polynomial is ordered and we write I(p) = I(κ) for each κ. Clearly, the set-multilinear
polynomials are ordered polynomials with I(p) = {1, 2, . . . , n}.

Structure of Monotone Circuits.

The main structural result for monotone circuits that we use throughout, is the following theorem.

Theorem 2.1. [Yeh19, Lemma 1] Let n > 2 and p ∈ R[X] be an ordered monotone polynomial with
I(p) = [n]. Let C be a monotone circuit of size s that computes p. Then, we can write

p =
s∑
t=1

at · bt

where at and bt are monotone ordered polynomials with n
3 ≤ |I(at)| ≤

2n
3 and I(bt) = I(at) \ [n].

Moreover, atbt ≤ p for each 1 ≤ t ≤ s.
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3 Strong Exponential Separation of VP and Monotone VP

In this section we prove Theorem 1.1. For a graph G, let V (G), E(G) denote the set of vertices and edges
of G respectively, and for any pair S, T ⊆ V (G), let E(S, T ) ≡ {(u, v) ∈ E(G) : u ∈ S , v ∈ T}.

Lemma 3.1 (Expander Mixing Lemma). [HLW06, Lemma 2.5] Let G be an undirected d regular graph
such that λ2 is the second largest eigenvalue of the adjacency matrix of G. Then, for every S, T ⊆ V (G)∣∣∣|E(S, T )| − d

n
|S||T |

∣∣∣ ≤ λ2

√
|S||T |.

We also need Matrix Tree Theorem which we state below.

Theorem 3.1. [Matrix Tree Theorem][MM11, Theorem 13.1] LetG be an undirected graph on n vertices
and let 0, µ1, µ2, . . . , µn−1 be the eigenvalues of the Laplacian of G. Then the number of spanning trees
in G is 1

nµ1 · µ2 · · ·µn−1

Proof of Theorem 1.1. Consider a family of d-regular expander graphs where d is a sufficiently large
constant and the second largest eigenvalue is bounded by d1−ε for a suitable ε > 0. For example, the
current proof works for ε = 0.25 and such a family of graphs can be explicitly constructed [RVW00].
Let G = Gn be the nth graph in the family.
Suppose STn(G̃) has a monotone circuit of size S. Then applying Theorem 2.1 to the polynomial STn(G̃)
we get

STn(G̃) =
S∑
s=1

asbs. (1)

For a fixed s, let Xt = {xt,j |xt,j ∈ var(as) ∪ var(bs)}. Since every monomial of STn(G̃) has distinct
first indices we conclude that I(as) ∩ I(bs) = ∅.
Now we upper bound

∑n
t=2 |Xt|. We note that if i ∈ I(as) and j ∈ I(bs) then it cannot be the case that

both xi,j and xj,i are in ∪nt=2Xt. Suppose xi,j , xj,i ∈ ∪nt=2Xt then it must be the case that xi,j ∈ var(as)
and xj,i ∈ var(bs) (since i 6∈ I(bs) and j 6∈ I(as)). Then some monomial in asbs contains xi,jxj,i which
is a two cycle and cannot be part of the spanning tree polynomial.
This shows that in the set of undirected edges E(I(as), I(bs)), at least one out of the two directed edge
variables, corresponding to an undirected edge, must be absent in ∪nt=2Xt. Thus we may bound,

n∑
t=2

|Xt| ≤ dn− |E(I(as), I(bs))|.

Since G is an expander, using Lemma 3.1 we conclude that∣∣∣|E(I(as), I(bs))| −
d

n
|I(as)||I(bs)|

∣∣∣ ≤ λ2

√
|I(as)||I(bs)|.

On rearranging, we obtain∣∣∣E(I(as), I(bs))
∣∣∣ ≥ d

n
|I(as)||I(bs)| − λ2

√
|I(as)||I(bs)|.

Since |I(as)|, |I(bs)| ≥ n
3 and |I(as)|+ |I(bs)| = n we may simplify the right hand side as∣∣∣E(I(as), I(bs))

∣∣∣ ≥ d

n

n2

9
− λ2

n

2
= n(

d

9
− λ2

2
).

Since λ2 ≤ d1−ε, we may relax the right hand side and write |E(I(as), I(bs))| ≥ nd
18 for sufficiently

large d. Let α = 1
18 . Now we bound the total numbers of monomials in asbs as
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|mon(asbs)| ≤
n∏
t=2

|Xt| ≤
(∑n

t=2 |Xt|
n− 1

)n−1

≤ ((1− α) nd

n− 1
)n−1 ≤ (1.01d(1− α))n−1

for sufficiently large n.
Then, the number of monomials in STn(G̃):

|mon(STn(G̃))| ≤ S(1.01d(1− α))n−1. (2)

Let L(G) be the Laplacian of the graph G with eigenvalues 0 < µ1 ≤ µ2 ≤ . . . ≤ µn−1. Since G is an
expander, we conclude that µ1 ≥ (d− λ2). Then, Theorem 3.1 implies that

|mon(STn(G̃))| =
1

n
µ1µ2 · · ·µn−1 ≥

1

n
(d− λ2)

n−1 ≥ 1

n
(d− d1−ε)n−1.

Remark 3.1. Notice that each spanning tree rooted at the vertex 1 in G is in bijective correspondence
with a rooted tree at the vertex 1 in G̃.

Putting the above bound together with the upper bound in Equation 2, we get that

1

n
(d− d1−ε)n−1 ≤ |mon(STn(G̃))| ≤ S(1.01d(1− α))n−1.

This immediately implies that S ≥ 1
n

(
d−d1−ε

1.01d(1−α)

)n−1
≥ 1

n(
99

101(1−α))
n−1 = 2Ω(n), for sufficiently large

d.
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[HY20] Pavel Hrubeś and Amir Yehudayoff, Shadows of Newton polytopes, Electronic Colloquium of
Computational Complexity TR20-189 (2020).

4



[JS82] Mark Jerrum and Marc Snir, Some exact complexity results for straight-line computations over
semirings, J. ACM 29 (1982), no. 3, 874–897.

[MM11] Christofer Moore and Stephan Mertens, The nature of computation, Oxford University Press,
2011.

[MV97] Meena Mahajan and V. Vinay, Determinant: Combinatorics, algorithms, and complexity, Chic.
J. Theor. Comput. Sci. 1997 (1997).

[RVW00] Omer Reingold, Salil P. Vadhan, and Avi Wigderson, Entropy waves, the zig-zag graph product,
and new constant-degree expanders and extractors, FOCS, 2000, pp. 3–13.

[RY11] Ran Raz and Amir Yehudayoff, Multilinear formulas, maximal-partition discrepancy and
mixed-sources extractors, J. Comput. Syst. Sci. 77 (2011), no. 1, 167–190.

[Sri19] Srikanth Srinivasan, Strongly exponential separation between monotone VP and monotone
VNP, Electron. Colloquium Comput. Complex. 26 (2019), 32.

[Val80] Leslie G. Valiant, Negation can be exponentially powerful, Theor. Comput. Sci. 12 (1980),
303–314, Preliminary version in STOC 1979.

[W70] Moon J W, Counting labelled trees, Canadian Mathematical Congress, Montreal (1970).

[Yeh19] Amir Yehudayoff, Separating monotone VP and VNP, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019 (Moses Charikar and Edith Cohen, eds.), ACM, 2019, pp. 425–429.

5

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


