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Abstract

It is shown that there exists f : {0, 1}n/2×{0, 1}n/2 → {0, 1} in ENP such that for every
2n/2 × 2n/2 matrix M of rank ≤ ρ we have Px,y[f(x, y) 6= Mx,y] ≥ 1/2 − 2−Ω(k), whenever
log ρ ≤ δn/k(log n+k) for a sufficiently small δ > 0, and n is large enough. This generalizes
recent results which bound below the probability by 1/2−Ω(1) or apply to constant-depth
circuits.

Starting with the seminal paper by Williams [Wil14b] a sequence of recent works have proved
new lower bounds for functions in various classes which contain super-polynomial non-deterministic
time [Wil11, Wil13, Wil14a, ACW16, Tam16, COS18, MW18, RSS18, AC19, Che19, CW19,
VW20, CR20, Vio20, CLW20, BHPT20], lower bounds that we do not know how to prove by
other means. Two sub-sequences of results are relevant to the present work. The first is the
sub-sequence establishing average-case hardness results for various circuit classes. The concur-
rent works [CR20, Vio20] proved incomparable, new average-case lower bounds against AC0 with
parity gates. Both results were improved in [CLW20] to obtain a function that any such circuit
of sub-exponential size cannot compute with a sub-exponentially small advantage over random
guessing, for a uniform input.

The second is the sub-sequence constructing rigid matrices [Val77], that is, obtaining functions
f(x, y), where |x| = |y| = n/2 such that the corresponding 2n/2×2n/2 matrix Mx,y = f(x, y) is far
from low-rank matrices. Using PCPs, [AC19] gave f such that P[Mx,y 6= f(x, y)] ≥ Ω(1) for any M

of rank up to at most 2n
1/4−ε

. Low-rank matrices are a generalization of low-degree polynomials
[SV12], but the rank bound in [AC19] is not strong enough to improve the classic results on
polynomials due to Razborov and Smolensky [Raz87, Smo87, Smo93] which hold up to degree√
n. The subsequent paper [Vio20] achieved nearly-optimal probabilistic degree n/poly log n

relying on the PCP construction [BV14]. It also raised the question of constructing PCPs with
stronger properties and showed that these would improve the rank bounds in [AC19] to 2n/Ω(log2 n)

(under some distribution). Related PCPs were constructed in the subsequent work [BHPT20],
finally obtaining f such that P[Mx,y 6= f(x, y)] ≥ Ω(1) for any M of rank up to 2n/Ω(logn).

In this paper we prove a result that generalizes both sub-sequences. We simultaneously achieve
the strong average-case hardness parameters of [CLW20] and work in the general model of low-
rank matrices.

Theorem 1. There exists a function f : {0, 1}n × {0, 1}n → {−1, 1} in ENP such that for any
rank-ρ matrix M , we have

Px,y[f(x, y) 6= Mx,y] ≥ 1/2− 2−Ω(k)
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for all large enough n, where k(log n+ k) log ρ ≤ δn for a sufficiently small constant δ > 0.

To illustrate the parameters, we can prove lower bounds whenever k2 log ρ ≤ δn, for k ≥ log n.
In particular we can for example bound below the probability by 1/2− 2−n

Ω(1)
for log rank n0.99.

We can also have log ρ = n/Ω(log n) whenever k = O(1), recovering the result from [BHPT20].
It seems within reach to improve the tradeoff between k and ρ to obtain lower bounds whenever

k log ρ ≤ δn. Improving the tradeoff even further to obtain lower bounds when k log ρ is n1+Ω(1)

would give new data-structure lower bounds, for functions in ENP, via a connection established
in [Vio20].

Independently, Chen and Lyu [CL21] proved lower bounds whenever k1.5 log ρ ≤ δn. Their
proof proceeds in exactly the same way as ours, but in addition they prove a new derandomized
XOR lemma where the seed length is just

√
kn as opposed to kn in our Lemma 22. One can also

plug their new XOR lemma in our proof and infer the stronger bound.

Techniques and organization. Our proof builds on the previous work mentioned earlier.
We adapt a clever approach in [CLW20] which is based on Levin’s proof of Yao’s famous XOR
lemma, cf. [GNW11]. The approach shows that to prove a strong average-case hardness result it
suffices to prove a mild average-case hardness result for an intermediate model. The intermediate
model in our case consists of rational sums of low-rank matrices. We show that a lower bound
for this model can be obtained from the rectangular PCP in [BHPT20], see Theorem 19.

A little more in detail, we prove a constant-error lower bound for rational sums of low-rank
matrices by contradiction using the non-deterministic time-hierarchy theorem following [Wil10].
We fix a unary language in NTIME(2n) \ NTIME(o(2n)), and let the lexicographically first
rectangular PCP proof for this language be the hard function. Assuming that this hard function
has constant correlation with a sum of low-rank matrices, we derive a contradiction by giving a
quick non-deterministic algorithm. This algorithm first guesses a sum of low-rank matrices as
an approximation of the hard function, i.e. the boolean proof, then performs a series of validity
tests that are adapted from [CLW20] to guarantee that this sum is bounded and close to boolean.
Then the rectangular property of the PCP is exploited to make sure that when the guessed sum
is plugged in as a proof, the bits that the PCP verifier probes can also be written as sums of
low-rank matrices, thus the algorithm can quickly evaluate the “acceptance probability” of the
guessed sum, based on the fast counting algorithm for low-rank matrices in [CW16, AC19]. Now
the boundedness and close-to-boolean properties will ensure that this “acceptance probability” is
close to that of the boolean proof approximated by the guessed sum, so the algorithm can make
a decision for the language based on this value.

We shall first prove our result for infinitely many input lengths n; at the end we shall explain
what modifications are sufficient to obtain all sufficiently large n, using results in [CLW20].

1 Preliminaries

For any n ∈ N, define [n] = {1, 2, . . . , n}. For any matrix M , we use Mi,j to denote its entry on
row i column j. For any n×m matrix M define the matrix (−1)M by

(
(−1)M

)
i,j

= (−1)Mi,j for

all i ∈ [n], j ∈ [m]. For any matrix M , we define its `p-norm as ‖M‖p = (Ei,j[|Mi,j|p])1/p, while
the `∞-norm is defined as ‖M‖∞ = maxi,j |Mi,j|. For any two matrices A and B with the same
shape, we define A ◦ B to be the Hadamard product (entrywise product) of them over R, which

is distributive. We use Õ to hide poly(n) terms in runtime.
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Definition 2. For any α ∈ Q we define its bit-complexity as the maximum of the bit lengths of
the denominator and numerator. For a polynomial p with rational coefficients we define its bit
complexity as the maximum bit complexity among the coefficients.

Definition 3. For any given function class C, we call the sum Q̃ = C
∑m

i=1 bi · fi an m-sum of

C, for bi ∈ {−1, 1} and fi ∈ C for all i ∈ [m] and C ∈ Q. We define the bit-complexity of Q̃ as
the bit-complexity of C.

In particular, an m-sum of rank-ρ F2-matrices Q̃ ∈ Rn×n′ is given by Q̃ = C
∑m

i=1 bi · (−1)M
(i)

where M (i) ∈ Fn×n′2 are rank-ρ matrices over F2.

Definition 4. Let f, g : {0, 1}n → [−1, 1] be two functions. We define their correlation as
corr(f, g) =

∣∣Ex∼{0,1}n [f(x)g(x)]
∣∣. We say f ε-correlates with g iff corr(f, g) ≥ ε.

Definition 5. We say a matrix M is bounded if Mi,j ∈ [−1, 1] for all i, j. Similarly, we say a
function f is bounded if f(x) ∈ [−1, 1] for all x.

Definition 6. For any boolean function f : {−1, 1}k → R, we identify f with its multilinear
extension over domain R, defined by its Fourier expansion f =

∑
S⊆[k] βS

∏
i∈S xi, where βS ∈ R.

For any sets X, Y and function f : Xk → Y we define its extension over matrices f : (Xn×m)
k →

Y n×m that maps matrices M (1),M (2), . . . ,M (n) ∈ Xn×m to a matrix M ′ ∈ Y n×m defined by
M ′

i,j = f(M
(1)
i,j ,M

(2)
i,j , . . . ,M

(k)
i,j ) for all i ∈ [n], j ∈ [m].

For example, the Hadamard product A◦B of matrices A and B is recovered as f(A,B) where
f is multiplication.

Rectangular PCP. We need the following rectangular PCP to prove this theorem.

Definition 7 (Rectangular PCP, [BHPT20]). For any language L, we say it has an (`2, r, q, p, t, s, τ)-
rectangular PCP verifier V over alphabet {−1, 1} if we have the following properties:

Proof. the proof π of length `2 is viewed as a matrix in {−1, 1}`×`.

Randomness. the random string R ∈ {0, 1}r is partitioned into three parts

R = (Rrow, Rcol, Rshared) ∈ {0, 1}rrect × {0, 1}rrect × {0, 1}rshared ,

where rrect = (1− τ)r/2 and rshared = τr.

Computation. Given input x and proof oracle π ∈ {−1, 1}`×`, with randomness R,
V π(x;R) runs as follows:

1. Use shared randomness Rshared ∈ {0, 1}rshared to:

(a) construct a decision function D = D(x;Rshared) : {−1, 1}q × {−1, 1}p → {0, 1},
(b) construct randomness parity check (C1, . . . , Cp) = (C1(x;Rshared), . . . , Cp(x;Rshared))

where each Ci : {0, 1}rrect×{0, 1}rrect → {−1, 1} is a parity function, i.e. Ci(Rrow, Rcol) =
(−1)〈Rrow,u〉+〈Rcol,v〉+b for some u, v ∈ {0, 1}rrect and b ∈ {0, 1}, where 〈x, y〉 is the
inner product of x and y.

2. Use row randomness Rrow ∈ {0, 1}rrect to construct row locations of queries

i(1) = i(1)(x;Rrow, Rshared), . . . , i
(q) = i(q)(x;Rrow, Rshared).

3



3. Use column randomness Rcol ∈ {0, 1}rrect to construct column locations of queries

j(1) = j(1)(x;Rcol, Rshared), . . . , j
(q) = j(q)(x;Rcol, Rshared).

4. Output the result

D(πi(1),j(1) , . . . , πi(q),j(q) , C1(Rrow, Rcol), . . . , Cp(Rrow, Rcol)).

Completeness. If x ∈ L then ∃π ∈ {−1, 1}`×`,PrR[V π(x;R) = 1] = 1.

Soundness. If x /∈ L then ∀π ∈ {−1, 1}`×`,PrR[V π(x;R) = 1] < s.

Complexity The verifier V runs in time t ≥ r, the query complexity is q and parity-check
complexity is p.

Definition 8. We say an (`2, r, q, p, t, s, τ)-rectangular PCP verifier is smooth if V queries uni-
formly on π over the choice of randomness R ∈ {0, 1}r and queries k ∈ [q].

The above definition means that each location of the proof has equal probability of being
queried by a random query. A stronger requirement would be that this holds for each query. The
stronger notion is available in some PCPs (e.g. [Par20]), but as far as we know not for rectangular
PCPs.

Lemma 9 ([BHPT20]). For any constants s ∈ (0, 1
2
), τ ∈ (0, 1), and language L ∈ NTIME(2n),

L has a smooth (`2, r, q, p, t, s, τ)-rectangular PCP verifier V over alphabet {−1, 1} with the fol-
lowing parameters:

• r = n+O(log n).

• q, p = Os(1).

• `2 = Os(2
r).

• t = 2O(τn).

2 Fast Algorithm for “Acceptance Probability”

In this section we prove and collect several facts that allow us to quickly compute the acceptance
probability of a rectangular PCP verifier when its proof is a rational sum of low-rank matrices.

First we need the following result to quickly calculate number of 1’s in low-rank matrices over
F2 given low-rank decompositions.

Lemma 10 ([CW16, AC19]). Given two matrices A ∈ FN×ρ2 and B ∈ Fρ×N2 where ρ = N o(1),
there is a deterministic algorithm that computes the number of 1’s in the product matrix AB over
F2 in time T (N, ρ) = N2−Ω(1/ log ρ).

We prove a general result on evaluating the expectation of a polynomial on sums of low-rank
matrices.
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Theorem 11. Let
{
Q̃i

}
i∈[k]

be k m-sums of rank-ρ F2 matrices with bit-complexity c, and let

their low-rank decompositions be Q̃i = Ci
∑m

i=1 bi,j · (−1)A
(i,j)B(i,j)

where Ci ∈ Q has bit-complexity

c, bi,j ∈ {−1, 1}, A(i,j) ∈ FN×ρ2 , and B(i,j) ∈ Fρ×N2 for all i ∈ [k] and j ∈ [m]. For any s-sparse
degree-d polynomial on k variables p : Rk → R with bit complexity c′, given the decompositions we

can compute the value of Ei,j∈[N ]

[(
p
(
Q̃1, . . . , Q̃k

))
i,j

]
in time O

(
smd(T (N, dρ) + poly(c, c′, d, logN))

)
if dρ = N o(1). In particular for any boolean function f : {−1, 1}k → {0, 1} it can be computed in
time O

(
2kmk(T (N, kρ) + poly(c, k, logN))

)
if kρ = N o(1).

Proof. To calculate Ei,j
[(
p
(
Q̃1, . . . , Q̃k

))
i,j

]
, by linearity of expectation it suffices to calculate

the expectation for each monomial of p. Wlog, let the monomial p′(x) = x1x2 · · ·xd. Then by the
distributive property of Hadamard products we have

p′
(
Q̃1, . . . , Q̃k

)
= Q̃1 ◦ Q̃2 ◦ · · · ◦ Q̃d

= ◦di=1

(
Ci

m∑
j=1

bi,j · (−1)A
(i,j)B(i,j)

)

=
∑

(j1,j2,...,jd)∈[m]d

(
d∏
i=1

Cibi,ji

)
·
(
◦di=1(−1)A

(i,ji)B(i,ji)
)

=
∑

(j1,j2,...,jd)∈[m]d

(
d∏
i=1

Cibi,ji

)
·
(

(−1)⊕
d
i=1A

(i,ji)B(i,ji)
)
,

where ‘⊕’ is the addition of F2-matrices over F2. Hence by linearity of expectation, it suffices
to calculate the expectation of (−1)⊕

d
i=1A

(i,ji)B(i,ji) for each (j1, . . . , jd) ∈ [m]d. Note that for any

F2-matrix M we have Erow,col

[(
(−1)M

)
row,col

]
= 1− 2Erow,col[Mrow,col], thus it suffices to calculate

Erow,col

[(
⊕di=1A

(i,ji)B(i,ji)
)
row,col

]
=

1

N2
· number of 1’s in ⊕di=1A

(i,ji)B(i,ji).

Note that ⊕di=1A
(i,ji)B(i,ji) is just the product of an N × dρ matrix and a dρ×N matrix over F2,

where the first matrix is obtained by concatenating the rows of
{
A(i,ji)

}
i∈[d]

and the second matrix

is obtained by concatenating the columns of
{
B(i,ji)

}
i∈[d]

. Hence by Lemma 10 the counting can

be done in time T (N, dρ) if dρ = N o(1). This expectation value has bit-complexity O(logN), so
multiplying it by

∏d
i=1Cibi,ji and adding to the running sum take time poly(c, d, logN). We still

need to multiply the result by the coefficients of the monomials in p, thus the runtime becomes
poly(c, c′, d, logN). Therefore the total running time is O

(
smd(T (N, dρ) + poly(c, c′, d, logN))

)
.

For any boolean function f , it can be written as a degree-k multilinear polynomial so there
are at most 2k monomials. Fourier analysis shows that every coefficient of this polynomial is
a multiple of 2−k, so its bit complexity is O(k). Therefore the total running time becomes
O(2kmk(T (N, kρ) + poly(c, k, logN))) if kρ = N o(1).

The following claim from [BHPT20] shows that randomness parity checks can be written as
low-rank matrices.
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Claim 12 ([BHPT20, Claim B.1]). For any parity function f : {0, 1}m × {0, 1}m → {−1, 1}
defined by f(i, j) = (−1)〈i,u〉+〈j,v〉+b for some u, v ∈ {0, 1}m and b ∈ {0, 1}, we can compute in
time O(m2m) two matrices A ∈ F2m×3

2 and B ∈ F3×2m

2 such that f(i, j) =
(
(−1)AB

)
i,j

for all

i, j ∈ {0, 1}m.

Proof. The first column of A is 〈i, u〉, row-indexed by i ∈ {0, 1}m. The second column of A is
all 1, while the third column of A is all b. The second row of B is 〈j, u〉, column-indexed by
j ∈ {0, 1}m, while every other entry in B is 1.

We use the following lemma to quickly calculate the “acceptance probability” of a sum of
low-rank matrices π̃.

Lemma 13. Let V be any (`2, r, q, p, t, s, τ)-rectangular PCP verifier over {−1, 1}, and Ṽ be the

same as V but with D multilinearly extended over R. Given π̃ = C
∑m

i=1 bi ·(−1)A
(i)B(i)

with C ∈ Q
of bit-complexity O(n), bi ∈ {−1, 1}, A(i) ∈ F`×ρ2 , and B(i) ∈ Fρ×`2 for all i ∈ [m]. Assuming that

log((q + p)ρ) = o(r), we can calculate ER
[
Ṽ π̃(1n;R)

]
in time Õ

(
2rrect+rshared · (t + mρ) + mq+p ·

2q+p+r−Ω(r/ log((q+p)ρ))
)
.

Using the parameters of the PCP in Lemma 9, the time bound in the above lemma becomes

Õ
(
mO(1)

(
20.51nρ+ 2n−Ω(n/ log ρ)

))
, (1)

which is O(2n/n) when n/ log ρ ≥ κ(logm + log n) for a constant κ. The proof of Lemma 13
follows closely from the computation process of the PCP in Definition 7, similar to parts of the
proof of Lemma 3.1 in [BHPT20].

Proof of Lemma 13. The algorithm on input π̃ =
∑m

i=1 αi · (−1)A
(i)B(i)

runs as follows:

1. Initialize the result res to be 0.

2. For each Rshared ∈ {0, 1}rshared :

(a) Compute the decision function D = D(1n;Rshared) and randomness parity check

(C1, . . . , Cp) = (C1(1n;Rshared), . . . , Cp(1
n;Rshared)).

(b) For each k ∈ [q], for each i ∈ [m],

i. Compute the 2rrect × ρ matrices A(k,i) whose Rrow-th row is the row of A(i) indexed
by i(k)(1n;Rrow, Rshared) for all Rrow ∈ {0, 1}rrect .

ii. Compute the ρ × 2rrect matrices B(k,i) whose Rcol-th column is the column of B(i)

indexed by j(k)(1n;Rcol, Rshared) for all Rcol ∈ {0, 1}rrect .
(c) For each j ∈ [p],

i. Compute the 2rrect × 3 matrix A(q+j,1) and the 3× 2rrect matrix B(q+j,1) with(
(−1)A

(q+j,1)B(q+j,1)
)
Rrow,Rcol

= Cj(Rrow, Rcol) given by Claim 12.

(d) Now we define q m-sums of rank-ρ matrices, Q̃k = C
∑m

i=1 bi · (−1)A
(k,i)B(k,i)

for each

k ∈ [q], and p 1-sums of rank-3 matrices, Q̃q+j = (−1)A
(q+j,1)B(q+j,1)

for each j ∈ [p].
Apply Theorem 11 to calculate the following value and add it to res:

ERrow,Rcol

[(
D(Q̃1, . . . , Q̃q, Q̃q+1, . . . , Q̃q+p)

)
Rrow,Rcol

]
.
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3. Return res as the value of ER
[
Ṽ π̃(1n;R)

]
.

Correctness of the algorithm follows from Definition 7.
Step 2(b) runs in time O(2rrect · (t + mρ)), while Step 2(c) runs in O(r2rrect) by Claim 12,

which is dominated by the runtime of Step 2(b) since t ≥ r. By Theorem 11, Step 2(d) takes time
O(2q+p ·mq+p · (T (2rrect , (q + p)ρ) + poly(n, q + p, r))) = O(2q+p ·mq+p · T (2rrect , (q + p)ρ))poly(n),

if (q+p)ρ = (2rrect)o(1), i.e. log((q+p)ρ) = o(r). Therefore the running time of the above algorithm
is

O
(
2rshared ·

(
2rrect · (t+mρ) + 2q+p ·mq+p · T (2rrect , (q + p)ρ)

))
poly(n)

= O
(
2rshared+rrect · (t+mρ) +mq+p · 2q+p+r−Ω(r/ log((q+p)ρ))

)
poly(n).

3 Validity Tests

In this section we discuss two tests on sums of low-rank matrices π̃ to ensure that they are close
to boolean and somewhat bounded. The following close-to-boolean test simplifies a similar test in
[CLW20] due to the smoothness of the PCP verifier. Using the parameters of the PCP in Lemma

9, the time bound in the following lemma becomes Õ(m4 · 2n−Ω(n/ log ρ)), which is O(2n/n) for m
and ρ satisfying n/ log ρ ≥ κ(logm+ log n) for a constant κ.

Lemma 14 (Close-to-Boolean Test). Given π̃ = C
∑m

i=1 bi · (−1)A
(i)B(i)

with C ∈ Q of bit-

complexity O(n), bi ∈ {−1, 1}, A(i) ∈ F`×ρ2 , and B(i) ∈ Fρ×`2 . Assuming that ρ = `o(1), we can

perform a test on π̃ in time Õ
(
m4 · `2−Ω(1/ log ρ)

)
such that:

• (Completeness) If π̃ is bounded and there is a proof π ∈ {−1, 1}`×` with ‖π − π̃‖1 ≤ ε, then
we have ‖π − π̃‖2 ≤

√
2ε, and π̃ passes the test.

• (Soundness) If π̃ passes the test, there exists a proof π ∈ {−1, 1}`×` with ‖π − π̃‖2 ≤ 2
√

2ε.

Proof. We use Theorem 11 to evaluate the expectation of the degree-4 univariate polynomial
f(x) = (−1 − x)2(1 − x)2 on π̃. We accept π̃ if Ei,j[f(π̃i,j)] ≤ 8ε, and reject otherwise. It takes

time O(m4 · (T (`, 4ρ) + poly(n, log `))) = Õ
(
m4 · `2−Ω(1/ log ρ)

)
if ρ = `o(1).

For soundness, define π ∈ {−1, 1}`×` by πi,j = 1 if π̃i,j ≥ 0, and −1 otherwise, for all i, j ∈ [`].
Then for all i, j ∈ [`], we have |(−πi,j)− π̃i,j| ≥ 1. As {πi,j,−πi,j} = {−1, 1}, we have

f(π̃i,j) = (−1− π̃i,j)2(1− π̃i,j)2 = ((−πi,j)− π̃i,j)2(πi,j − π̃i,j)2 ≥ (πi,j − π̃i,j)2.

Therefore ‖π − π̃‖2 =
√
Ei,j[(πi,j − π̃i,j)2] ≤

√
Ei,j[f(π̃i,j)] ≤ 2

√
2ε.

For completeness, observe that for π̃i,j ∈ [−1, 1] and πi,j ∈ {−1, 1} we have |(−πi,j)− π̃i,j| ≤ 2
and so (πi,j − π̃i,j)

2 ≤ 2|πi,j − π̃i,j|. Therefore f(π̃i,j) ≤ 22(πi,j − π̃i,j)
2 ≤ 8|πi,j − π̃i,j|, thus

Ei,j[f(π̃i,j)] ≤ 8‖π − π̃‖1 ≤ 8ε, so π̃ passes the test. Moreover we have ‖π − π̃‖2 =
√
Ei,j[(πi,j − π̃i,j)2] ≤√

2Ei,j|πi,j − π̃i,j| =
√

2‖π − π̃‖1 ≤
√

2ε.

We also need to test if the sum of low-rank matrices is somewhat bounded. Ideally we would
like to ensure that the sum is point-wise bounded. However the quick algorithm in Theorem
11 can only calculate expectation so it is unlikely that we can use it to get a pointwise bound.
Fortunately it turns out that for our purpose we don’t really need pointwise boundedness. The
test we present here generalizes a similar test in [CLW20]. We use the following notion of sampling
from the lists I, J .
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Definition 15. Let I, J be any two lists of the same size taking (possibly duplicate) elements
from [`]. We say a real matrix π̃ ∈ R`×` is power-d bounded for (I, J) if Ei∼I,j∼J [π̃di,j] ≤ 1, where
i ∼ I means that i is sampled from I uniformly at random.

Lemma 16 (Boundedness Test). Let π̃ = C
∑m

i=1 bi · (−1)A
(i)B(i)

be an m-sum with C ∈ Q of

bit-complexity O(log n), bi ∈ {−1, 1}, A(i) ∈ F`×ρ2 , and B(i) ∈ Fρ×`2 for all i ∈ [m]. Let I, J be two
lists of the same size taking elements from [`]. Let d be any number. Assuming that dρ = |I|o(1),

we can perform a test on π̃ in time Õ
(
mρ|I|+md|I|2−Ω(1/ log(dρ))

)
such that:

• (Completeness) If π̃ is bounded, it passes the test.

• (Soundness) If π̃ passes the test, it is power-d bounded for (I, J).

Jumping ahead, we will set I (and J) to be the list of the row (column, respectively) indices
the verifier probes over row (column, respectively) randomness for each of the q queries and each
choice of the shared randomness, so |I| = |J | = 2rrect . Using the parameters of the PCP in Lemma
9, each boundedness test runs in time

Õ(mO(1)(20.49nρ+ 20.98n−Ω(n/ log ρ))).

We will use O(20.02n)-many boundedness tests so the total runtime is similar to (1), which becomes
O(2n/n) when n/ log ρ ≥ κ(logm+ log n) for a constant κ.

Proof. We construct an m-sum Q̃ = C
∑m

i=1 bi · (−1)A
′(i)B′(i) , where A′(i) ∈ F|I|×ρ2 consists of the

rows of A(i) indexed by elements in I and B′(i) ∈ Fρ×|I|2 consists of the columns of B(i) indexed by
elements in J . This step takes time O(mρ|I|).

Note that the uniform distribution over entries of Q̃ is the same as the distribution over entries

of π̃ under I, J , so we have Ei∼I,j∼J [π̃di,j] = Ei,j
[(
Q̃
)d
i,j

]
. Hence we use Theorem 11 to evaluate

the expectation of the polynomial xd on Q̃. We accept π̃ if the value is at most 1, and reject
otherwise. This step takes time O(md · (T (|I|, dρ) + poly(n, d, log |I|)) if dρ = |I|o(1). Therefore
the total running time is O

(
mρ|I|+md|I|2−Ω(1/ log(dρ))

)
poly(n).

Completeness and soundness follow from the definition.

We need the following technical lemma for the main theorem. Intuitively it shows that if a
real-valued proof is bounded and close to a boolean proof, then its “acceptance probability” is
also close to that of the boolean proof.

Definition 17. Let V be any (`2, r, q, p, t, s, τ)-rectangular PCP verifier. We say a real matrix
π̃ ∈ R`×` is bounded for V if for all Rshared ∈ {0, 1}rshared, and all S ⊆ [q], we have

ERrow,Rcol∈{0,1}rrect

[∏
k∈S

π̃2
i(k),j(k)

]
≤ 1,

where i(k) = i(k)(1n;Rrow, Rshared) and j(k) = j(k)(1n;Rrow, Rshared) for all k ∈ [q].

Lemma 18. Let V be any smooth (`2, r, q, p, t, s, τ)-rectangular PCP verifier over {−1, 1}, and

Ṽ be the same as V but with D multilinearly extended over R. Let π be any matrix in {−1, 1}`×`
and π̃ be any matrix in R`×` that is bounded for V . Then we have∣∣∣ER[V π(1n;R)]− ER

[
Ṽ π̃(1n;R)

]∣∣∣ ≤ 2O(q+p)‖π − π̃‖2.
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Proof. Fix an arbitrary Rshared ∈ {0, 1}rshared . By definition ERrow,Rcol

[∣∣∣V π(1n;R)− Ṽ π̃(1n;R)
∣∣∣] is

ERrow,Rcol

[∣∣D(πi(1),j(1) , . . . , πi(q),j(q) , C1(Rrow, Rcol), . . . , Cp(Rrow, Rcol))

−D(π̃i(1),j(1) , . . . , π̃i(q),j(q) , C1(Rrow, Rcol), . . . , Cp(Rrow, Rcol))
∣∣], (2)

whereD = D(1n;Rshared), (C1, . . . , Cp) = (C1(1n;Rshared), . . . , Cp(1
n;Rshared)), i

(k) = i(k)(1n;Rrow, Rshared)
and j(k) = j(k)(1n;Rrow, Rshared) for all k ∈ [q].

We write D in its Fourier expansion D(z1, . . . , zq+p) =
∑

S⊆[q+p] βS
∏

k∈S zk, where for each

S ⊆ [q+p], βS = Ez∈{−1,1}q+p

[
D(z)

∏
k∈S zk

]
. For all z ∈ {−1, 1}q+p, D(z) ∈ {0, 1} and

∏
k∈S zk ∈

{−1, 1}, thus |βS| ≤ 1 for any S. Hence by the triangular inequality we can bound (2) by

∑
S⊆[q+p]

ERrow,Rcol

∣∣∣∣∣∣
 ∏
k∈S∩[q]

πi(k),j(k) −
∏

k∈S∩[q]

π̃i(k),j(k)

 ∏
k∈S\[q]

Ck(Rrow, Rcol)

∣∣∣∣∣∣


= 2p
∑
S⊆[q]

ERrow,Rcol

[∣∣∣∣∣∏
k∈S

πi(k),j(k) −
∏
k∈S

π̃i(k),j(k)

∣∣∣∣∣
]
, (3)

as all the Ck’s are {−1, 1}-valued.
Fix any S ⊆ [q]. Wlog let S = {1, . . . , d} for some d ≤ q, then the expectation in (3) can be

written as

ERrow,Rcol

[∣∣∣∣∣
d∏

u=1

πi(u),j(u) −
d∏

u=1

π̃i(u),j(u)

∣∣∣∣∣
]

= ERrow,Rcol

[∣∣∣∣∣
d∑
v=1

(
v−1∏
u=1

π̃i(u),j(u)

d∏
u=v

πi(u),j(u) −
v∏

u=1

π̃i(u),j(u)

d∏
u=v+1

πi(u),j(u)

)∣∣∣∣∣
]

≤
d∑
v=1

ERrow,Rcol

[∣∣∣∣∣
v−1∏
u=1

π̃i(u),j(u)

d∏
u=v

πi(u),j(u) −
v∏

u=1

π̃i(u),j(u)

d∏
u=v+1

πi(u),j(u)

∣∣∣∣∣
]

=
d∑
v=1

ERrow,Rcol

[∣∣∣∣∣
v−1∏
u=1

π̃i(u),j(u) ·
(
πi(v),j(v) − π̃i(v),j(v)

)
·

d∏
u=v+1

πi(u),j(u)

∣∣∣∣∣
]

≤
d∑
v=1

(
ERrow,Rcol

[(
πi(v),j(v) − π̃i(v),j(v)

)2
])1/2

(
ERrow,Rcol

[
v−1∏
u=1

π̃2
i(u),j(u)

d∏
u=v+1

π2
i(u),j(u)

])1/2

≤
d∑
v=1

(
ERrow,Rcol

[(
πi(v),j(v) − π̃i(v),j(v)

)2
])1/2

=
∑
k∈S

(
ERrow,Rcol

[(
πi(k),j(k) − π̃i(k),j(k)

)2
])1/2

,

where the first inequality comes from the triangular inequality, the second inequality follows
from the Cauchy-Schwarz inequality, and the last inequality follows from the assumptions that
π ∈ {−1, 1}`×` and π̃ is bounded for V .

Summing over S, we can bound (3) by

2p
∑
S⊆[q]

∑
k∈S

(
ERrow,Rcol

[(
πi(k),j(k) − π̃i(k),j(k)

)2
])1/2
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= 2p+q−1
∑
k∈[q]

(
ERrow,Rcol

[(
πi(k),j(k) − π̃i(k),j(k)

)2
])1/2

= 2O(p+q)Ek∈[q]

[(
ERrow,Rcol

[(
πi(k),j(k) − π̃i(k),j(k)

)2
])1/2

]
≤ 2O(p+q)

(
ERrow,Rcol,k

[(
πi(k),j(k) − π̃i(k),j(k)

)2
])1/2

,

where the first step uses double counting, and the last step follows from Jensen’s inequality.
Therefore by averaging over Rshared, we have∣∣∣ER[V π(1n;R)]− ER

[
Ṽ π̃(1n;R)

]∣∣∣ ≤ ERshared
ERrow,Rcol

[∣∣∣V π(1n;R)− Ṽ π̃(1n;R)
∣∣∣]

≤ 2O(p+q)ERshared

[(
ERrow,Rcol,k

[(
πi(k),j(k) − π̃i(k),j(k)

)2
])1/2

]
≤ 2O(p+q)

(
ERshared,Rrow,Rcol,k

[(
πi(k),j(k) − π̃i(k),j(k)

)2
])1/2

= 2O(p+q)
(
Ei,j
[
(πi,j − π̃i,j)2])1/2

= 2O(p+q)‖π − π̃‖2,

where the first step uses triangular inequality, the second step uses the above bound for ev-
ery Rshared, the third step comes from Jensen’s inequality, and the fourth step follows from the
smoothness of V .

4 Constant hardness for rational sums of low-rank matri-

ces

In this section we prove our main hardness result against rational sums of low-rank matrices.

Theorem 19. There is a function f : {0, 1}n+O(logn) → {−1, 1} in ENP that does not (1−Ω(1))-
correlate with any bounded m-sum of rank-ρ matrices with O(n) bit-complexity, for infinitely many
n, as long as n/ log ρ ≥ κ(logm+ log n) for a constant κ.

Proof. Fix L to be a unary language in NTIME(2n) \NTIME(o(2n)) [Coo73, SFM78, Zák83].
Let V be the smooth (`2, r, q, p, t, s, τ)-rectangular PCP verifier over alphabet {−1, 1} for L given

by Lemma 9, for s and τ to be determined later. Let Ṽ be the same as V but with D multilinearly
extended over R.

We use the lexicographically first proof oracle π as our hard function, i.e. our algorithm
fn : [`] × [`] → {−1, 1} on input (i, j) searches bit-by-bit for the lexicographically first proof π
such that ∀R, V π(1n;R) = 1 if one exists, and outputs πi,j. Clearly fn ∈ ENP. Note that fn can

also be seen as a family of matrices fn ∈ {−1, 1}`×`.
Now for the sake of contradiction, we assume that fn (1−ε)-correlates with a bounded m-sum

of rank-ρ matrices π̃ with bit-complexity O(n), for a constant ε to be determined later. We will
show that L ∈ NTIME(2n/n), thus deriving a contradiction.

Algorithm. The nondeterministic algorithm for L goes as follows:

1. Guess π̃ = C
∑m

i=1 bi · (−1)A
(i)B(i)

by guessing bi ∈ {−1, 1}, matrices A(i) ∈ F`×ρ2 , and

B(i) ∈ Fρ×`2 for all i ∈ [m] and C ∈ Q with bit-complexity O(n).
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2. Perform the close-to-boolean test in Lemma 14 for ε on π̃, reject if it doesn’t pass.

3. For each Rshared ∈ {0, 1}rshared , k ∈ [q]:

(a) Compute the lists

I(k) =
[
i(k)(1n;Rrow, Rshared)|Rrow ∈ {0, 1}rrect

]
,

J (k) =
[
j(k)(1n;Rcol, Rshared)|Rcol ∈ {0, 1}rrect

]
.

(b) For each 2 ≤ d ≤ 2q:

i. Perform the boundedness test in Lemma 16 for d and (I(k), J (k)) on π̃, reject if it
doesn’t pass.

4. Use Lemma 13 to calculate ER[Ṽ π̃(1n;R)], and only accept if ER[Ṽ π̃(1n;R)] > γ where the
constant γ is to be determined later.

Runtime. Step 1 takes time O(m`ρ+ n).

By Lemma 14, Step 2 takes time Õ
(
m4 · `2−Ω(1/ log ρ)

)
if ρ = `o(1).

Step 3(a) takes time Õ(2rrect · t), and we have |I| = 2rrect . Therefore by Lemma 16, Step 3(b)

takes time Õ
(
qmρ2rrect + qm2q22rrect−Ω(r/ log(qρ))

)
, if qρ = (2rrect)o(1), i.e. log(qρ) = o(r). Hence the

total runtime for Step 3 is

Õ
(
2rshared ·

(
2rrect · (t+ qmρ) + q ·m2q · 22rrect−Ω(r/ log(qρ))

))
= Õ

(
2rshared+rrect · (t+ qmρ) + qm2q · 2r−Ω(r/ log(qρ))

)
.

By Lemma 13, Step 4 runs in time Õ
(
2rshared+rrect · (t+mρ) +mq+p · 2q+p+r−Ω(r/ log((q+p)ρ))

)
if

log((q + p)ρ) = o(r).
For the algorithm to run in time O(2n/n), it suffices to satisfy all the above requirements and

make all the runtime to be O(2n/n). For convenience we take logarithms on all the time bounds.
In summary, it is sufficient to satisfy the following conditions:

1. log(m`ρ+ n) < n− log n.

2. ρ = `o(1).

3. log(m4`2)− Ω(log `/ log ρ) +O(log n) < n− log n.

4. log(qρ) = o(r).

5. rshared + rrect + log(t+ qmρ) +O(log n) < n− log n.

6. log q + 2q logm+ r − Ω
(

r
log(qρ)

)
+O(log n) < n− log n.

7. log((q + p)ρ) = o(r).

8. (q + p)(logm+ 1) + r − Ω
(

r
log((q+p)ρ)

)
+O(log n) < n− log n.

We are going to set parameters to meet these conditions at the end.
Correctness. We first prove the following claim.

Claim 20. If π̃ passes all the tests in the definition of the algorithm then it is bounded for V .
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Proof. Fix any Rshared ∈ {0, 1}rshared and S ⊆ [q]. Let d = |S|. By Hölder’s inequality, we get

ERrow,Rcol

[∏
k∈S

π̃2
i(k),j(k)

]
≤
∏
k∈S

(
ERrow,Rcol

[
π̃2d
i(k),j(k)

])1/d

=
∏
k∈S

(
Ei∼I(k),j∼J(k)

[
π̃2d
i,j

])1/d
.

We have 2d ≤ 2q, therefore the boundedness tests in Step 3 can guarantee that all the terms in

the product are bounded by 1, hence ERrow,Rcol

[∏
k∈S π̃

2
i(k),j(k)

]
≤ 1, thus by definition π̃ is bounded

for V .

If x = 1n ∈ L, let π̃ ∈ R`×` be any bounded m-sum of rank-ρ matrices with bit-complexity
O(log n) that (1−ε)-correlates with the hard function fn, which is the lexicographically first proof
π in this case. We can assume wlog Ei,j[πi,jπ̃i,j] ≥ 1− ε, otherwise we can simply use −π̃. Note
that for any x ∈ {−1, 1}, y ∈ [−1, 1] we have |x − y| = 1 − xy. As πi,j ∈ {−1, 1}, π̃i,j ∈ [−1, 1],
we have

‖π − π̃‖1 = Ei,j[|πi,j − π̃i,j|] = 1− Ei,j[πi,jπ̃i,j] ≤ ε.

Hence ‖π − π̃‖2 ≤
√

2ε, and moreover π̃ passes the close-to-boolean test. Since π̃ is bounded
by assumption it is also bounded for V . Therefore by Lemma 18 we have

ER
[
Ṽ π̃(1n;R)

]
≥ ER[V π(1n;R)]−

∣∣∣ER[V π(1n;R)]− ER
[
Ṽ π̃(1n;R)

]∣∣∣
≥ 1− 2O(p+q)‖π − π̃‖2

≥ 1− 2O(p+q)
√
ε.

If x = 1n /∈ L, then for any guessed m-sum of matrices π̃ that passes all the tests, by soundness
there exists a boolean proof π ∈ {−1, 1}`×` such that ‖π − π̃‖2 ≤ 2

√
2ε, and by Claim 20 we

know that π̃ is bounded for V . Therefore by Lemma 18 we have

ER[Ṽ π̃(1n;R)] ≤ ER[V π(1n;R)] +
∣∣∣ER[V π(1n;R)]− ER

[
Ṽ π̃(1n;R)

]∣∣∣
≤ s+ 2O(p+q)‖π − π̃‖2

≤ s+ 2O(p+q)
√
ε.

We can set γ to be any value between these two. Assuming Condition 1-8 are all met, the
above nondeterministic algorithm decides L in time O(2n/n), a contradiction to our choice of L.

Setting parameters. We choose an arbitrary small constant s so both p,q are constants.

Then we set ε to be any constant smaller than
(

1−s
2O(q+p)

)2
.

Now fix any ρ and m such that n/ log ρ ≥ κ(logm + log n) for a large constant κ to be
determined. We are going to verify that Conditions 1-8 are satisfied. Note that by Lemma 9 we
have r = n+O(log n), log ` = n/2+O(log n), and log t = O(τn). First, log ρ ≤ n/(κ log n) = o(r)
and similarly ρ = `o(1), so Condition 2, 4, and 7 are all satisfied. As both log ρ and logm are at
most n/κ, for Condition 1 we have

log(m`ρ) + log n ≤ 2n/κ+ n/2 +O(log n) < n− log n,

for κ sufficiently large, while for Condition 5 we have

(1 + τ)r/2 + log t+ log(qmρ) +O(log n) ≤ (1/2 +O(τ))n+ log ρ+ logm < n− log n,
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for κ sufficiently large and τ sufficiently small. For Condition 8 we have

(q + p)(logm+ 1) + r − Ω

(
(1− τ)r

log((q + p)ρ)

)
+O(log n) ≤ O(logm) + n+O(log n)− Ω(n/ log ρ)

≤ n+O(logm+ log n)− Ω(κ(logm+ log n))

< n− log n,

for κ sufficiently large. Similarly Condition 3, 5, and 6 are also satisfied, and we are done.

5 Correlation bounds via XOR Lemma

In this section we adapt the approach in [CLW20] to our setting, and then prove the main result
in this paper, Theorem 1.

Definition 21. For any boolean function f : {0, 1}n → {−1, 1} and number k, we define f⊕k : {0, 1}nk →
{−1, 1} by f⊕k(x1, . . . , xk) =

∏k
i=1 f(xi) for all x1, . . . , xk ∈ {0, 1}n.

Lemma 22. Let f : {0, 1}n → {−1, 1} be any boolean function. Let rational ε < 1 have constant
bit-complexity, and for any number k ≥ 1, let εk = (1+ε

2
)k−1ε. Assume that f⊕k εk-correlates with

some function h : {0, 1}nk → [−1, 1]. Then f ε-correlates with a bounded m-sum of restrictions

of h (by fixing some inputs), where m = O
(
n
ε2k

)
and the bit-complexity is O(k + log n).

Proof. We prove it by induction on k. For k = 1 it is trivial as h is bounded. Now we assume
that the hypothesis holds for k − 1, and we are proving for k.

For all x1 ∈ {0, 1}n, define g(x1) = Ey∼{0,1}n(k−1)

[
f⊕k−1(y)h(x1, y)

]
, where we use y for

(x2, . . . , xk) for convenience. If there exists x1 ∈ {0, 1}n such that |g(x1)| ≥ εk−1, then we
know that f⊕k−1 εk−1-correlates with h′ defined by h′(y) = h(x1, y), so we can use the induction
hypothesis for k − 1 to get a bounded m-sum of functions obtained by fixing inputs of h′, thus
by fixing inputs of h.

Otherwise, for all x1 ∈ {0, 1}n we have |g(x1)| ≤ εk−1 = 2εk
1+ε

. We take m i.i.d. samples

y1, . . . , ym uniformly from {0, 1}n(k−1) form = O
(

n
(εk)2

)
, then define g̃(x1) = Ei∈[m]

[
f⊕k−1(yi)h(x1, yi)

]
.

By Chernoff bound,

Pr
y1,...,ym

[
|g(x1)− g̃(x1)| ≥ 1− ε

(1 + ε)2
εk

]
≤ 2−n−1.

By union bound, there exists a fix assignment to y1, . . . , ym such that for all x1 ∈ {0, 1}n,

|g(x1)− g̃(x1)| ≤ 1− ε
(1 + ε)2

εk, (4)

thus |g̃(x1)| ≤ |g(x1)|+ |g(x1)− g̃(x1)| ≤
(

2
1+ε

+ 1−ε
(1+ε)2

)
εk = 3+ε

(1+ε)2 εk.

Let r = 3+ε
(1+ε)2 εk. We define h̃ by

h̃(x1) =
g̃(x1)

r
=

1

mr

m∑
i=1

f⊕k−1(yi)h(x1, yi).
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Now |h̃(x1)| ≤ 1 for all x1. We can write h̃ as C
∑m

i=1 bihi, where

C =
1

mr
,

bi = f⊕k−1(yi),∀i ∈ [m],

hi : x1 7→ h(x1, yi), ∀x1 ∈ {0, 1}n,∀i ∈ [m],

which is a bounded O(n/ε2
k)-sum of functions that can be obtained by fixing inputs of h. The

bit-complexity of m is O(k + log n), and O(k) for r, thus the bit-complexity of h̃ is O(k + log n).

What remains is to prove that corr(f, h̃) ≥ ε. By the definition of g and assumption we have

corr(f, g) = corr(f⊕k, h) ≥ εk. Therefore by the definition of h̃, the fact that f(x1) ∈ {−1, 1} for
all x1, and (4), we have

corr(f, h̃) =
corr(f, g̃)

r

≥ 1

r
(corr(f, g)− Ex1|g(x1)− g̃(x1)|)

≥
εk − 1−ε

(1+ε)2 εk
3+ε

(1+ε)2 εk

= ε.

We first show a proof of a weaker version of Theorem 1 that only works for infinitely many n,
by combining Theorem 19 and Lemma 22 directly.

Proof of Theorem 1 for infinitely many n. Let f : {0, 1}n+O(logn) → {−1, 1} in ENP be the func-
tion given by Theorem 19. We know that f does not ε-correlate with any bounded m-sum of
rank-ρ matrices with O(n) bit-complexity for infinitely many n, for a rational constant ε with
constant bit-complexity.

Let k ≤ n. We set εk = (1+ε
2

)k−1ε = 2−O(k), and F = f⊕k so N = k(n + O(log n)). For the
sake of contradiction we assume that F εk-correlates with some rank-ρ matrix h for infinitely
many N . We view a matrix as the truth table of a function, so when we take restrictions on the
function, we are taking some rows and columns of the matrix but keeping its dimensions, thus
the rank doesn’t increase. By Lemma 22 we know that f ε-correlates with a bounded m-sum of
rank-ρ matrices h̃, where m = O(n/ε2

k) = n2O(k) and the bit complexity is O(k + log n) = O(n).
To get a contradiction for infinitely many n we still need to verify that n/ log ρ ≥ κ(logm +

log n) for a sufficiently large constant κ given by Theorem 19. We have log n ≤ logN − log k −
O(log log n), thus

(logm+ log n) log ρ = (2 log n+O(k)) log ρ = O((logN + k) log ρ).

Let c > 0 be the constant hidden in the last big-O. We take δ = 1/2cκ. Then

κ(logm+ log n) log ρ ≤ cκ(logN + k) log ρ ≤ N

2k
=
n+O(log n)

2
< n.
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To prove the full version of Theorem 1 that works for all sufficiently large n, we need the
following refuter from [CLW20].

Theorem 23. There is a constant c > 0 such that the following holds.
For any non-decreasing time-constructible function T (n) such that n ≤ T (n) ≤ 2poly(n), there

is an NTIME(T (n)) language L and an algorithm R such that:

Input. The input for R is a pair (M, 1n) where M is a nondeterministic algorithm running
in time ≤ cT (n)/ log T (n).

Output. For any fixed M , for all large enough n, R(M, 1n) outputs a string x such that
|x| ∈ [n, n+ T (n)] and L(x) 6= M(x).

Complexity. R is a deterministic algorithm running in O(T (n) · T (T (n) + n)) time with
an NP oracle.

We also need a lemma on padding rigid matrices from [AC19].

Lemma 24. Let 1m be the all-ones m×m matrix. For any square matrix A, A ε-correlates with
some rank-ρ matrix if and only if A ⊗ 1m ε-correlates with some rank-ρ matrix, where ⊗ is the
tensor product of matrices.

Proof of Theorem 1. We show how to remove the “infinitely often” part from the previous proof.
Fix T (n) = nC for a large constant C. We are going to use the general version of Lemma 9 in
[BHPT20] that works for NTIME(T (n)) languages. Most importantly, we have r = log T (n) +
O(log log T (n)) + O(log n) and 2 log ` = r + O(1). Then the proof of Theorem 19 shows that we
have the following results:

1. For any NTIME(T (n)) language L, let V be the smooth (`2, r, q, p, t, s, τ)-rectangular PCP
verifier over alphabet {−1, 1} for L given by the generalized version of Lemma 9, for small
constants s and τ . We define the function fL,x : [`]× [`]→ {−1, 1} such that on input (i, j)
it searches bit-by-bit for the lexicographically first proof π such that ∀R, V π(x;R) = 1 if
one exists, and outputs πi,j. Clearly fL,x ∈ ENP. Note that fL,x can also be seen as an `× `
matrix.

2. For any NTIME(T (n)) language L, there exists an explicit nondeterministic algorithm
that decides if x ∈ L in time O(T (n)/ log T (n)), for any input x such that |x| = n and
fL,x (1− Ω(1))-correlates with a bounded m-sum of rank-ρ matrices π̃ with bit-complexity
O(log T (n)), as long as log T (n)/ log ρ ≥ κ(logm+ log log T (n)) for a constant κ.

We consider the language L for NTIME(T (n)) from Theorem 23. Similarly as before, by
combining Item 2 with Lemma 22, there exists an explicit nondeterministic O(T (n)/ log T (n))-
time algorithm M deciding if x ∈ L for any input x such that |x| = n and f⊕kL,x εk-correlates with
some rank-ρ matrix h, for any k ≤ log T (|x|) = C log |x|.

We aim to use the refuter R from Theorem 23 to get a contradiction. For all large enough n, R
on (1n,M) will output an x such that |x| ∈ [n, nC ] and L(x) 6= M(x). Now the input length of f⊕kL,x
is k ·2 log ` = k(r+O(1)) = k(log T (|x|)+O(log log T (|x|))+O(log |x|)) ∈ [k ·C log n, k ·2C2 log n].
We view f⊕kL,x as a matrix and use Lemma 24 to get a function Fx with input length k · 2C2 log n

such that Fx εk-correlates with some rank-ρ matrix iff f⊕kL,x εk-correlates with some rank-ρ matrix.
Therefore if Fx εk-correlates with some rank-ρ matrix then M can decide if x ∈ L, a contradiction.
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Our final hard function f works as follows. On input of length N = k · 2C2 log n it runs R on
(1n,M) to get an x, then run Fx. Then for all large enough n, f does not εk-correlate with any
rank-ρ matrices, for any k ≤ C log n. R runs in O(nC

2
) = 2O(N/k) time with an NP oracle and

fL,x ∈ ENP, thus f ∈ ENP. The condition log T (n)/ log ρ ≥ κ(logm+ log log T (n)) in Item 2 can
be verified similarly as in the previous proof for a sufficiently small δ.
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