
Computation Over the Noisy Broadcast Channel

with Malicious Parties

Klim Efremenko∗

Ben-Gurion University

Gillat Kol†

Princeton University

Dmitry Paramonov‡

Princeton University

Raghuvansh R. Saxena§

Princeton University

Abstract

We study the n-party noisy broadcast channel with a constant fraction of malicious

parties. Specifically, we assume that each non-malicious party holds an input bit, and

communicates with the others in order to learn the input bits of all non-malicious

parties. In each communication round, one of the parties broadcasts a bit to all other

parties, and the bit received by each party is flipped with a fixed constant probability

(independently for each recipient). How many rounds are needed?

Assuming there are no malicious parties, Gallager gave an O(n log logn)-round

protocol for the above problem, which was later shown to be optimal. This protocol,

however, inherently breaks down in the presence of malicious parties.

We present a novel n · Õ
(√

log n
)
-round protocol, that solves this problem even

when almost half of the parties are malicious. Our protocol uses a new type of error

correcting code, which we call a locality sensitive code and which may be of independent

interest. Roughly speaking, these codes map “close” messages to “close” codewords,

while messages that are not close are mapped to codewords that are very far apart.

We view our result as a first step towards a theory of property preserving interactive

coding, i.e., interactive codes that preserve useful properties of the protocol being

encoded. In our case, the naive protocol over the noiseless broadcast channel, where

all the parties broadcast their input bit and output all the bits received, works even

in the presence of malicious parties. Our simulation of this protocol, unlike Gallager’s,

preserves this property of the original protocol.

∗klimefrem@gmail.com
†gillat.kol@gmail.com
‡dp20@cs.princeton.edu
§rrsaxena@princeton.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 1 (2021)

mailto:klimefrem@gmail.com
mailto:gillat.kol@gmail.com
mailto:dp20@cs.princeton.edu
mailto:rrsaxena@princeton.edu

1 Introduction

The field of interactive coding, pioneered by Schulman [Sch92, Sch93, Sch96], asks the

following question:

Let Π be a communication protocol designed to work over a noiseless channel.

Can Π be converted to a noise resilient protocol Π′ with similar communication

complexity?

Many works, mainly over the last decade, give affirmative answers to this question for the

two-party channel, as well as various multi-party distributed channels. For example, it

was shown that protocols in the extensively studied message passing model (peer-to-peer

channels) and in the shared blackboard model (broadcast channel), can be simulated by

protocols that tolerate stochastic noise, i.e., noise that flips each of the communicated bits

with constant probability [RS94, ABE+16, BEGH16, Gal88, KM98, FK00, New04, EKS18].

These only incur a small (sub-logarithmic and in many cases, even constant) multiplicative

overhead to the communication. Here, by “simulate” we mean that the new protocols retain

the same input-output behavior as the original protocols1.

Property preserving interactive coding. While the simulation protocols Π′, designed

by the aforementioned interactive coding works, are communication efficient and preserve

the input-output behavior of the original protocols Π, they often lose the “structure” of the

original protocols together with some of the basic properties making the original protocols

useful. For instance, the importance of celebrated distributed protocols for the consensus

and the leader election problems stems from their fault tolerance properties – the fact that

they keep the same input-output behavior, even in the presence of malicious parties that

may exhibit crashes or even Byzantine failures2.

We study the above interactive coding question in a different light: Assume that the

original communication protocol Π satisfies a special property P , can Π be converted to

a noise resilient protocol Π′ that still satisfies P? Specifically, we focus on protocols with

the property P = “Π is resilient to a constant fraction of malicious parties”, and give a

simulation protocol Π′ over a noisy channel that also satisfies P .

The noisy broadcast channel. In this paper, we consider this new “property preserving”

interactive coding question in the noisy broadcast model, a noisy version of the shared

1The parties participating in the distributed protocol are assumed to each have an input at the beginning
of the protocol and give an output when the protocol terminates. We often think of the entire transcript
received by a party as its output.

2Recall, for example, that in the consensus problem, each party gets an input bit and all parties need
to output the input bit of one of the parties (and, in particular, all parties need to output the same bit).
Indeed, there are short trivial protocols with the required input-output behavior, but these are not resilient
to malicious parties.

1

blackboard model, first suggested by El Gamal in 1984 [Gam87]. In this model, a set of n

parties, each holding a private input, communicate over a noisy broadcast channel. In each

round, one of the parties broadcasts a bit to all the other parties3, and the bit received by

each of the other parties is flipped with some constant probability ε > 0 (independently for

each recipient).

We revisit the basic problem suggested by El Gamal, regarding the computation of the

identity function over the noisy broadcast channel: assume that each party receives a single

bit as an input and that the parties’ mutual goal is for all parties to learn all input bits. That

is, party i gets a bit xi ∈ {0, 1} and needs to output f(x1, x2, · · · , xn) = (x1, x2, · · · , xn).

How many communication rounds are needed? Observe that, over the noiseless broadcast

channel, this can be done in n rounds by simply having each party broadcast its bit. In 1988,

Gallager [Gal88] showed thatO(n log log n) broadcast rounds suffice to solve the problem over

the noisy broadcast channel, with polynomially small error probability. Note that this also

means that any function on n input bits can be computed over the noisy broadcast channel

in O(n log log n) rounds4, making the identity function “complete” for the computation of

such functions. Gallager’s result was shown to be tight in the beautiful 2005 paper by Goyal,

Kindler, and Saks [GKS08].

The noisy broadcast channel with malicious parties. We consider El Gamal’s

question in the presence of malicious parties. Specifically, assume that a constant fraction

of the parties participating in the protocol are malicious. These parties are controlled by a

know-it-all adversary that sees all inputs, as well as all the sent and received bits. The rest

of the parties are assumed to be honest and following the protocol, and they may not know

the identity of the malicious parties.

Due to the presence of malicious parties, it is unrealistic to expect all parties to compute

the identity function (neither over the noiseless broadcast channel, nor over the noisy

broadcast channel) for two reasons: (i) the malicious parties will deliberately give incorrect

outputs; (ii) a malicious party with an input xi can behave as if it is holding the input 1−xi,
preventing the honest parties from learning its input. Therefore, we relax our requirement

and only ask that each honest party outputs the input bits of all other honest parties.

Specifically, we want that for every input x, the following condition is satisfied with high

probability:

(*) Each party i outputs (x̃i1, x̃
i
2, · · · , x̃in), where if both i and i′ are honest, then

x̃ii′ = xi
′

(otherwise, x̃ii′ can be arbitrary).

Over the noiseless broadcast channel, it is easy to see that the simple aforementioned n-

round protocol, where each party broadcasts its bit once and outputs all the bits it received,

3Note that this model is non-adaptive and that two different parties can never broadcast in the same
round.

4To compute the function g(x1, x2, · · · , xn), the parties run the protocol that computes the identity
function. After the protocol, each party knows x1, x2, · · · , xn and can evaluate g(·) by itself.

2

satisfies this relaxed condition. How many rounds of communication are needed when we

work over the noisy broadcast channel?

1.1 Our Results

The main result of this paper is a novel n · Õ(
√

log n)-round protocol for computing the

identity function under the relaxed condition (*), in the presence of a constant fraction of

malicious parties and stochastic noise. While more costly than Gallager’s protocol, which

utterly breaks down in the presence of even a single malicious party (see discussion in

Subsection 2.3), our protocol does beat the naive O(n log n) protocol5.

We note that our protocol assumes the statistical variant of the noisy broadcast channel

(see, e.g., [KM98, New04]), where the noise flips every sent bit with probability exactly ε.

Generalizing the protocol for the fault tolerant noisy broadcast channel where the noise can

flip the jth bit received by the ith party with a different probability for different is and js,

as long as these probabilities are all between 0 and ε, is left open (see more about this in

Subsection 2.6).

Theorem 1.1. Let θ < 1/2, ε = 1
10

,6 and n be large enough. There exists an n · Õ(
√

log n)-

round randomized protocol with private and public randomness7 over the noisy broadcast

channel with noise rate exactly ε, that computes the identity function in the presence of a

θ-fraction of malicious parties (i.e., satisfies condition (*)) with error 1/n. Furthermore, the

protocol is computationally efficient – the algorithm for each party runs in almost-linear, i.e.,

n1+o(1), time.

As discussed above, due to the “completeness” of the identity function, our result also

implies that any n-bit function (each party gets a single input bit) can be computed over

the noisy broadcast channel in the presence of a constant fraction of malicious parties in

n · Õ(
√

log n) rounds.

1.2 Our Techniques and the Notion of Locality Sensitive Codes

The starting point of our construction is Gallager’s protocol. At the heart of this protocol is

a clever trick that uses (standard) error correcting codes. While Gallager’s trick inherently

5In the naive protocol, each party broadcasts its bit Θ(log n) times. Party i outputs (x̃i1, x̃
i
2, · · · , x̃in),

where x̃ii′ is the majority of the bits party i received from party i′. If both parties i and i′ are honest, the bit
x̃ii′ is the input of party i′, except with polynomially small probability, and by a union bound, our relaxed
property holds, except with polynomially small probability.

6Our ideas extend to other values of ε but we fix it to avoid notational clutter. We note that the standard
technique of decreasing ε by repetition does not work as the malicious players may not repeat the same bits.

7Observe that private and public randomness are “incomparable” in our model: the public random string
is known to all parties, including the malicious parties. The private random strings are each known to a
single party, and, in particular, the private random string of an honest party is not known to any of the
malicious parties (see Subsection 3.3).

3

breaks in the presence of malicious parties, we draw inspiration from his ideas and design a

different protocol using a new type of codes that we call locality sensitive codes.

Roughly speaking, our locality sensitive codes map “close” messages to “close” codewords,

while messages that are not close are mapped to codewords that are very far apart. In more

detail, our alphabet set is the set of integers. Two messages m,m′ ∈ Zk that are close in

every coordinate (|mi −m′i| ≤ α for every i ∈ [k]) will be mapped to codewords that are close

in almost every coordinate, but two messages that are far apart in at least one coordinate

are mapped to codewords that are far in almost all coordinates. Note that locality sensitive

codes are a generalization of classical error correcting codes. Indeed, by setting α = 0 we

can interpret “closeness” as “equality” (two messages are close only if they are identical) and

retrieve the definition of standard error correcting codes – identical messages are mapped

to identical codewords and non-identical messages are mapped to codewords with a large

distance.

We mention that the definition of locality sensitive codes is reminiscent of that of locality

sensitive hash functions, often used by algorithms for the approximate nearest neighbor

problem and other related problems (see, e.g., [AI08, AIR18]). However, while locality

sensitive hash functions are hash functions, and as such, are contracting the message, locality

sensitive codes stretch the message. Since the problem studied in this paper is, at least

seemingly, very different from other known applications of locality sensitive hash functions,

devising further connections between locality sensitive codes and locality sensitive hashes

will be interesting.

1.3 Future Directions

Our work suggests several future directions, we list a few below.

Improving our result. One obvious interesting question is whether our result in

Theorem 1.1 is optimal in terms of communication complexity, or whether it can be improved.

In particular, is it possible to match Gallager’s construction and design an O(n log log n)

protocol for the identity function that handles stochastic noise and also works in the presence

of a constant fraction of malicious parties8? One direction towards this goal is to improve

the construction of locality sensitive error correcting codes.

Interactive codes preserving other properties. In this paper, we consider the property

P = “Π is resilient to a constant fraction of malicious parties” and show that in certain cases,

protocols Π that satisfy P can be compiled into noise resilient protocols that still respect P .

Can this be done for other useful properties P? We mention that work of [GSW15] can be

8Goyal et al. [GKS08], proved their lower bounds for the statistical model assumed in this paper, where
each received bit is flipped with probability exactly ε. Therefore, our result cannot be improved to an
o(n log logn)-round protocol.

4

interpreted as asking a similar question with P = “Π is computing some function f privately”

(and with adversarial noise), and answering it in the negative.

General interactive coding with malicious parties. As mentioned in Subsection 1.1,

Theorem 1.1 implies a similar simulation for any n-bit function. Thus, one could have hoped

that our simulation would also extend to functions with more than n input bits (i.e., the case

where parties get long inputs), allowing us to convert any t-round noiseless protocol with

malicious parties to a t · Õ(
√

log n)-round protocol over the noisy broadcast channel with

malicious parties. However, even without the presence of malicious parties, we suspect that

the overhead in making a broadcast protocol noise resilient can be a multiplicative factor

of Ω̃(log n) (and, in particular, a multiplicative O(log log n) overhead á la Gallager does not

always suffice).

Interactive coding with malicious parties over different models. While we believe

that there is no scheme with a small overhead that converts protocols in the noiseless

broadcast channel that are resilient to malicious parties to protocols in the noisy broadcast

channel that are resilient to malicious parties, such a scheme may exist for other channels,

such as the (synchronous or asynchronous) peer-to-peer model. If it does, this scheme would

imply noise resilient consensus and leader election protocols in the respective models. We

mention that noise resilient consensus is considered in [HMP20], under a different noise

model.

Better than optimal interactive coding with adversarial noise. Another interesting

direction is further exploring the relaxed requirement (*). In this paper, we design a protocol

for the identity function that satisfies (*) even in the presence of a constant fraction of

malicious parties and stochastic noise. Does such a protocol exist in the presence of a more

general type of noise – say, if we allow the adversary to corrupt a different set of parties

in each round or if we allow general adversarial noise, where the adversary can corrupt a

constant fraction of the received bits? While prior works argue that in multi-party settings

it is impossible to handle more than a 1/n fraction of adversarial noise, as with this budget,

the adversary can corrupt one of the parties completely, this may be possible under a relaxed

definition along the lines of (*).

2 Overview of Our Protocol

In this section, we build up to our protocol step by step, covering our main ideas.

2.1 The Identity Problem Over the Broadcast Channel

In the broadcast channel, there are n parties that communicate with one another. This

communication happens through bit “broadcasts”, namely, bits sent from one of the n

5

parties to all the parties. The party sending these bits computes them using the bits it

received during the communication that happened so far and its own private input. The

end-goal of this communication is to compute a joint function of all the private inputs while

communicating as few bits as possible.

An important setting (indeed, complete in certain respects) is when all the n parties have

a bit as their input, and they want to know the inputs of all the other parties. Formally, party

i ∈ [n] has a bit xi and should output the bit string x1, x2, · · · , xn after the communication.

We shall call this problem the identity problem in the rest of this document.

The identity problem admits a simple and optimal n round communication protocol over

the broadcast channel: In round i ∈ [n], party i broadcasts their bit xi to all the parties.

After n rounds, all the parties would have received all the bits and can output the string

x1, x2, · · · , xn.

This simple protocol boasts of some nice and non-trivial properties. For example, even

if an (arbitrarily large) subset of parties do not follow the protocol and are malicious, we

still have the guarantee that all non-malicious parties will output the bit of all other non-

malicious parties correctly. This property makes sure that, when this protocol is run on

a large distributed system, it will be resilient to a subset of the parties failing or being

taken over by an adversary. Moreover, the protocol described is also communicationally and

computationally efficient.

However, this protocol also has a major weakness in that it crucially relies on the fact

that the channel does not corrupt any of the bits sent, which are received exactly by all

the parties. Is it possible to have a protocol that is resilient to both malicious parties and

channel corruptions?

2.2 The Noisy Broadcast Channel and Gallager’s Protocol

To study the above question, one needs to move to the noisy broadcast channel. This channel

is identical to the broadcast channel except that it has stochastic noise, namely, there is a

parameter 0 < ε < 1
2

such that when any of the parties broadcasts a bit b over the channel,

all the parties may either receive b, with (independent) probability 1− ε, or may receive the

bit 1− b, with probability ε.

The protocol for the identity problem described above can even be simulated over the

noisy broadcast channel, albeit with higher communication. For example, one may repeat

each bit broadcast during the protocol O(log n) times, and this will ensure that all the

parties receive the bit sent except with probability polynomially small in n. A simple union

bound over all the n parties and all the n bits shows that the protocol does solve the identity

problem except with probability polynomially small in n.

In fact, not only does this protocol solve the identity problem in a way that is resilient to

channel corruptions, it also preserves the property of the original protocol of being resilient

to malicious parties. Indeed, even if an arbitrarily large subset of parties in the protocol are

malicious, all the non-malicious parties will output the bits of all the malicious parties with

6

high probability.

2.2.1 Gallager’s Protocol [Gal88]

The main drawback of this protocol is that it communicates O(n log n) bits and it is

not immediately clear if this is optimal in terms of communication. In fact, without the

restriction of being resilient to malicious parties, Gallager, in his elegant work [Gal88], showed

that it is provably not so, exhibiting a protocol that communicates O(n log log n) bits and

is resilient to channel corruptions9.

The main idea behind Gallager’s improved protocol can be easily understood from

an information theoretic viewpoint. Consider the O(log n) rounds where a given party

broadcasts in the simple O(n log n) communication protocol. In the first few rounds when

this party broadcasts, each bit broadcast gives a relatively large amount of information about

its input to all the other parties. However, as the number of repetitions increases, the other

parties already know the input bit with significant probability and each bit sent starts to

give lesser and lesser information about the party’s input. Thus, by independently repeating

their inputs later in the protocol, the parties are wasting a lot of communication to convey

a small amount of information about their inputs. This is clearly suboptimal and a more

sensible approach is to ‘combine’ the inputs of several of the parties into fewer bits, while

maintaining that the information conveyed is the same.

Actually implementing this idea requires ingenuity, and [Gal88] does it by having a

protocol with three stages as described below10:

• Stage Broadcast: This stage of Gallager’s protocol has O(n log log n) rounds and

in this stage, all the parties broadcast their input O(log log n) times. As the total

number of broadcasts per party is small (only O(log log n)), all the broadcasts in this

stage convey a large amount of information to the other parties.

Because all the parties broadcast O(log log n) times in stage Broadcast, after this stage,

any party can decode (by simple majority based decoding) the input of any other party

correctly, except with probability at most 1
polylog(n)

.

• Stage Guess: In this stage, the parties divide themselves into families of size

A = Θ(log n). As the size of the families is Θ(log n), a simple union bound shows

that any party in a family can decode the inputs of all other parties in the family

correctly, except with probability at most 1
polylog(n)

.

In fact, as the noise received by all the parties is independent, we also have

concentration and, except with probability polynomially small in n, we have that at

least 90% of the parties in a family correctly decode the inputs of all the parties in the

family.

9[GKS08] later showed that Gallager’s protocol is optimal up to constant factors.
10We note that [Gal88] does not describe his protocol in terms of these stages. However, it will be helpful

for us to talk about his protocol in this framework.

7

• Stage Boost: This is the most important stage of the protocol, where the parties

‘combine’ multiple input bits and give information about all of the combined bits in

the same communication bit. Recall that before this stage, the parties are divided into

families of size A, and, except with probability polynomially small in n, at least 90%

of the parties in a family know the input of all the parties in the family.

We describe stage Boost from the perspective of a single family, noting that the behavior

of all the families is symmetric. Party i in this family, for all i ∈ [A], takes the

vector of bits it decoded for all the parties in the family, encodes this vector using a

constant rate error correcting code, and broadcasts the ith coordinate of this encoding11.

Observe that as this coordinate depends on all the decoded bits, transmitting it conveys

information about all the A bits in the family. Indeed, it is this combination that

reduces the failure probability (“boosts” the success probability) of the protocol from
1

polylog(n)
to 1

poly(n)
without wasting Ω(log n) communication per party and allows us to

union bound over all parties and all bits.

Due to the fact that 90% of the parties in a family encode the same (correct) vector of

inputs, at least 90% of the sent coordinates are actually coordinates from one codeword.

As the channel corrupts each sent symbol with a small constant probability, for any

one of the n parties, it holds, except with probability polynomially small in n, that at

least 80% of the received coordinates come from the same (correct) codeword. Because

this is a codeword of a good error correcting code, these 80% of the coordinates suffice

to decode the inputs of all parties in the family correctly, except with probability

polynomially small in n, and a union bound over all families and all parties finishes

the proof of correctness of Gallager’s protocol.

2.3 Gallager’s Protocol in the Presence of Malicious Parties

Gallager’s protocol shows that if resilience to malicious parties is not required, then the

simple O(n log n) bit communication protocol can be improved. Our main result is stronger,

showing that it is possible to do better than the O(n log n) bit communication protocol while

maintaining its resilience against malicious parties. Before we describe our ideas, however,

it will be helpful to first understand where Gallager’s protocol fails if some of the parties are

malicious.

At first glance, one may mistakenly believe that Gallager’s protocol is also resilient to

malicious parties. Indeed, the bits broadcast by the parties in stage Broadcast do not depend

on the bits received by them, no communication happens in stage Guess, and the argument

described in Subsubsection 2.2.1 would work (with slightly different parameters) as long

as no family has a lot, say more than 10%, of malicious parties. As the families are size

11We assume in this description that the error correcting code takes a bit string to a string over a larger
alphabet but of the same length, and assume for simplicity that the parties can broadcast symbols from this
larger alphabet in one round.

8

A = Θ(log n), this last property can be ensured, except with probability polynomially small

in n, by, say, partitioning the parties into families randomly before the execution of the

protocol.

However, delving deeper reveals a major problem. Recall that, for stage Boost to work,

stage Guess must ensure that, except with probability polynomially small in n, at least 90%

of the parties in any family have the same (correct) decoding for the input bits of all the

parties in the family. As the parties perform majority based decoding in stage Guess, this is

equivalent to saying that, for at least 90% of the parties in a family, the majority bit they

receive for all the parties in the family in stage Broadcast is the same (and correct) except

with probability polynomially small in n.

The last property is true if there are no malicious parties. Indeed, all parties repeatedly

broadcast their input in stage Broadcast, and because the channel only corrupts with a small

constant probability, a simple concentration argument shows that, except with probability

polynomially small in n, the majority bit received by at least 90% of the parties in a family

will be the same as the bit sent.

However, if one of the parties in a family is malicious, it may, in stage Broadcast, broadcast

the bit 0 half the time and the bit 1 the other half of the time. This implies that the majority

bit received by any other party is equally likely to be 0 or 1, and only around 50% of the

parties in the family can agree on the inputs of all the other parties in the family. To

make matters worse, if a constant fraction (and not just 1) of the parties in the family are

malicious, and all of them behave this way, then no two parties in the family will agree on

the inputs of all the parties in the family (with large probability).

Before describing how our protocol gets around this problem, we quickly note that the

source of this problem is not that the parties perform majority based decoding and decode to

a bit only if it is heard at least 50% of the time. Even if the parties have another threshold,

say 70%, the malicious parties can simply broadcast 0 in 30% of their broadcasts in stage

Broadcast, and 1 in the remaining 70%, and cause the same problem.

2.4 Our Approach: Boosting Before Guessing

We define the ‘true count’ of a party to be the number of times it broadcasts 1 in stage

Broadcast. The example from the foregoing section shows that, when there is a malicious

party i whose true count is half of the total broadcasts by party i in stage Broadcast, then

majority based decoding implies that no more than 50% of the parties in the family of party

i agree on the bit they decoded for party i.

Nonetheless, the fact that the channel corrupts only a small constant fraction of the bits

sent implies that, except with probability at most 1
polylog(n)

, all the parties in the family of

party i can approximately decode the true count for party i. Our main idea is to run stage

Boost on these true counts directly, without first executing stage Guess to decode the true

counts to bits.

Indeed, if we can run stage Boost on the true counts, and get all the parties to agree on

9

an approximation for the true counts that is correct except with probability polynomially

small in n, we can union bound over all parties and all counts to conclude that, except with

probability polynomially small in n, all the parties know all the true counts approximately

correctly. Once this happens, the parties can discard all counts that are close to 1
2
, as these

can only be from malicious parties, and run stage Guess on the remaining counts to get the

input bits of all the non-malicious parties correctly.

2.4.1 Computing the Encodings

There is however, a key difference between boosting the true counts and boosting the guessed

bits. While boosting the guessed bits, Gallager’s protocol ensured that most of the parties

in a family have the same Boolean vector u ∈ {0, 1}A of the bits guessed for parties in the

family. This allowed an error correcting code of u to be computed in a distributed way,

where every party i in the family contributes coordinate i by encoding its Boolean vector.

With the true counts, this is no longer possible as no party in the family is likely to have

the vector of true counts exactly, and the parties merely possess a good approximation of

it. That is, if p ∈ ZA denotes the vector of the true counts for the family, each party in

the family now has a different approximation q ∈ ZA of p. The task to be solved now is

to compute an encoding of p in a distributed manner, when parties only have access to the

approximations q!

This task seems to be impossible for standard error correcting codes, for which changing

any of the coordinates of the message being encoded even slightly may result in a codeword

completely unrelated to the original codeword. What we need instead is an error correcting

code that is also ‘locality sensitive’, namely, for two messages (not necessarily Boolean) q1
and q2 that are close in all the coordinates, the encodings of q1 and q2 are also close in most

of the coordinates. On the other hand, if q1 and q2 are far in any of the coordinates, then

their encodings must be far in almost all of the coordinates.

Connection to locality sensitive hashing. Our description above may remind the

reader of the area of locality sensitive hashing, where vectors in Rd are hashed into buckets

such that vectors that are close to each other are likely to be hashed into the same bucket,

while vectors that are far apart are likely to be hashed to different buckets.

Our description of locality sensitive error correcting codes is related, but different. Firstly,

by definition, a hash function loses information to make the data more manageable while

an error correcting code adds more redundant information to make the data resilient to

corruptions. Moreover, a locality sensitive hash only requires the hash values of two inputs

that are far to be different, while in our definition of locality sensitive error correcting codes,

we will require the codewords to not only be different, but also far apart, in most of the

coordinates. In fact, how far they can be will be critical in determining the communication

complexity of our protocol.

10

2.5 Locality Sensitive Error Correcting Codes

As described above, we desire a code C that is locality sensitive. Namely, it has the following

properties:

1. (“close” → “close”): If two messages q1 and q2 are such that their coordinate-wise

difference is at most α in absolute value, for some α ≥ 0, then the difference of most

of the coordinates of C(q1) and the corresponding coordinate of C(q2) is at most β, for

some β ≥ 0.

2. (“not close” → “far”): If there exists a coordinate where messages q1 and q2 differ

by more than α′, for some α′ > α, then the difference of most of the coordinates of

C(q1) and the corresponding coordinate of C(q2) is more than β in absolute value.

2.5.1 Constructing Locality Sensitive Error Correcting Codes

We present a randomized construction of locality sensitive error correcting codes that

proceeds in two steps. First, we construct a version of the codes over the alphabet Z with

weak parameters by taking each coordinate of the codeword to be a random linear function

of the coordinates of the messages being encoded (details later). The codes we construct in

this step will satisfy the property in item 1 above for an extremely large, say 99.99% of the

coordinates but will satisfy the property in item 2 for only 50% of the coordinates.

This is followed by an amplification step where we combine independent copies of the

codes constructed in the previous step to get better parameters. Specifically, we take L

copies, for some constant L, and construct a ‘joint’ codeword each of whose coordinates

∈ ZL is a tuple consisting of the corresponding coordinate in all the codewords. A pair of

such joint coordinates is considered to be far if any one of the constituent coordinates is far.

By setting L to be the right amount, we can make sure that the constant in item 1 only

degrades slightly, say to 99%, while the constant in item 2 improves drastically to 99%.

It remains to describe step 1, the construction of un-amplified locality sensitive error

correcting codes. As mentioned earlier, every coordinate of these codes is a random linear

function of the coordinates of the message being encoded. The coefficients in this linear

function belong to {−1, 1} chosen independently and uniformly. A simple concentration

argument shows that, for messages q1 and q2 of length k > 0 whose coordinate-wise difference

is at most α, the value of such a random linear function will not differ by more thanO
(
α
√
k
)

,

with high probability. Thus, setting β = O
(
α
√
k
)

ensures that item 1 above is satisfied.

It remains to show why item 2 is satisfied. For this, assume that two messages q1 and q2
of length k are being encoded such that q1 and q2 differ by at least α′ > α in at least one

coordinate. Let us assume without loss of generality that this is the last coordinate. Then,

for any choice of coefficients for the first k − 1 coordinates, there exists a choice in {−1, 1}
of the coefficient for the last coordinate such that the difference in the value of the linear

function is at least α′ in magnitude. Indeed, either the difference without the last coordinate

11

is positive, in which we can select the value in {−1, 1} that will make the difference increase

by α′, or it is negative, in which case we can select the other value and make the difference

decrease by α′. In either case, the resulting difference is at least α′ in absolute value.

This implies that, with probability at least 1
2
, setting β = α′ satisfies item 2 finishing the

argument.

2.6 Our Protocol

Armed with locality sensitive error correcting codes, we now describe our protocol. Note

that our description has parameters such as k, m, α, etc. and we set these parameters to

appropriate values later in the sketch. Recall that the n parties are divided into families

of size A = Θ(log n) randomly and this ensures that, except with probability polynomially

small in n, all families have a small fraction of malicious parties.

We divide our protocol into the same three stages as in Gallager’s protocol, although the

order of the stages is different.

• Stage Broadcast: In this stage, all the parties broadcast their input m times (we set m

later in this sketch). The parameter m will be chosen so that, except with probability

at most 1
polylog(n)

, all the parties in a family receive approximately the same counts of

the number of 1s from all other parties in the family up to an additive error of α.

As in Gallager’s protocol, as the noise received by each party is independent, except

with probability polynomially small in n, at least 90% of the parties in any family

receive the same counts up to an additive error of α.

• Stage Boost: Notwithstanding the high level similarity to it, in that the parties in a

family join forces to convince all the parties of the approximately correct counts, stage

Boost in our protocol is very different from stage Boost in Gallager’s protocol.

In our protocol, we first divide the families into A
k

groups of k parties each. Then, for

all i, party i in the family computes, using a locality sensitive error correcting code,

an encoding for each group in the family of the vector of counts it received from that

group in stage Broadcast, and broadcasts coordinate i of all the A
k

encodings.

All the parties then combine the coordinates received from the different parties in a

family to get a codeword for all the A
k

groups in the family, and decode it to get the

individual counts for the parties in the group. We note that these decoded counts are

within α′ of the true counts. Indeed, 90% of the parties in the family sent coordinates

from encodings of counts that were within α of the true counts. Only a small constant

fraction of coordinates were altered due to corruptions, and another small number

of coordinates were sent by malicious parties in each family. Therefore, most of the

coordinates received are from encodings of vectors within α of the true counts. Due

to the property in item 1 above, these coordinates are within β of the corresponding

coordinates in the encoding of the true counts.

12

Because of the large number of coordinates that are within β of the corresponding

coordinates in the encoding of the true counts, due to item 2 above, these coordinates

are unlikely to come from a vector that is not within α′ of the true counts.

Consequently, except with probability polynomially small in n, all the parties decode

to a vector of counts within α′ of the true counts, as desired. We will set α′ to be the

same order of magnitude as m, but smaller, say α′ = m
10

.

• Stage Guess: In this stage, the parties simply perform majority based decoding of

the counts decoded after stage Boost. This results in correct outputs for non-malicious

parties because their true counts are either 0, if they have input 0, or m, if they have

input 1. As the decoded counts are only α′ = m
10

off from the true counts, majority

based decoding will work correctly for the non-malicious parties.

Setting the parameters. Recall the size of a family is A = Θ(log n). We already

explained α′ = m
10

, and our construction of locality sensitive error correcting codes in

Subsection 2.5 implies β = O
(
α
√
k
)

= m
10

as well. The number of bits communicated

by a given party in our protocol is m in stage Broadcast and (roughly) A
k

in stage Boost.

Thus, total communication by a party equals

m+
A

k
= m+O

(
A · α

2

m2

)
.

In the fault tolerant model, where the best guarantee obtainable is α = Θ(m), the expression

above is at least Ω(log n) and we do not get any gains over the protocol in Subsection 2.2.

However, in the statistical model, where the more predictable nature of the noise allows

us to use concentration bounds and get α = Θ(
√
m), the expression above is minimized

when m = Θ
(√

log n
)

(implying k = Θ
(√

log n
)

as well), and we get an improvement over

the protocol in Subsection 2.2. Observe that, perhaps surprisingly, the malicious parties are

weaker in the model with “more” noise, and this is because the noise is also more predictable.

Mixability of the encodings. We finish the section by covering one subtlety about stage

Boost that we omitted from the description above. In our implementation, instead of party

i in the family sending coordinate i of the encoding it computed, we have it send a random

coordinate along with the identity of the coordinate. As a typical coordinate will satisfy the

properties in item 1 and item 2 above, this does not affect our analysis by much, but it does

help us avoid the pathological case where all parties send a coordinate that is atypical in

that it does not satisfy item 1 and item 2.

We note that this pathological case never arose in Gallager’s implementation as there, the

coordinates sent by different parties in a family were different coordinates from the encodings

of the same message, and thus, only a small number of them could possibly be atypical. For

us, the parties send encodings of nearby messages, and it is possible that all coordinates that

13

are sent are atypical for the encoding where they came from, hence, this extra randomization

step.

3 Models and Formal Problem Definition

3.1 Noisy Copies

Let ε ∈ [0, 1/2) be a noise parameter and k ∈ N. An ε-noise bit is a {0, 1}-valued random

variable that takes value 1 with probability exactly ε. An ε-noise k-vector N is a sequence

of k independent ε-noise bits. For a bit-vector x ∈ {0, 1}k, an ε-noisy copy of x is a random

variable of the form x⊕N , where ⊕ denotes the bitwise XOR, and N is an ε-noise k-vector.

More generally, if X is any random variable taking values in {0, 1}k an ε-noisy copy of X is

a random variable of the form X ⊕N , where N is an ε-noise k-vector chosen independently

from X.

3.2 The Noisy Broadcast Model

The (statistical) noisy broadcast model considers n parties P1, · · · , Pn. Let X and Y be sets.

The input is a vector x ∈ X n, and each of the parties Pi initially has coordinate xi ∈ X .

The goal is for party Pi to evaluate a function f i : X n → Y at x, i.e., output yi = f i(x).

This goal is to be accomplished by a noisy broadcast protocol.

The specification of a (deterministic) protocol over the noisy broadcast model with noise

rate exactly ε consists of:

1. The number s ∈ {0} ∪ N of broadcasts used in the protocol.

2. A sequence i1, · · · , is ∈ [n] of indices of parties (with repetitions allowed).

3. A sequence g1, · · · , gs of broadcast functions, where gj : X × {0, 1}j−1 → {0, 1}.

4. For all i, an output function hi : X × {0, 1}s → Y for Pi.

Running a protocol. The execution of a noisy broadcast protocol Π depends on the

input x, and on a noise vector N . We will think of N as a concatenation of s independent

ε-noise n-vectors N1, · · · , Ns. Let j ∈ [s]. In the jth step of the execution of Π, party Pij
broadcasts a bit bj and all the parties i ∈ [n], receive bij = bj ⊕Nj[i], an independent noisy

copy of bj. Formally, the bit broadcast by Pij at step j is bj = gj(x
ij , b

ij
1 , b

ij
2 , · · · , b

ij
j−1), that

is, the value of gj on the input of Pij and the j − 1 bits received by Pij during the first j − 1

rounds. The output of Pi is yi = hi(xi, bi1, · · · , bis), that is, the value of hi on the input of Pi
and the s-vector of bits received by Pi.

Note that the assumed model is non-adaptive or oblivious: the sequence of parties

who broadcast is fixed in advance and does not depend on the execution. Without this

14

requirement, the noise could lead to several parties speaking at the same time (a collision).

Moreover, this problem will be more serious when we introduce malicious parties, who may

decide to speak all the time causing collisions in every round. Finally, note that the model

rules out communication by silence: when it is the turn of a party to speak, it must speak.

3.3 The Noisy Broadcast Model with Malicious Parties

So far, we assumed that all participating parties are collaborating and following the protocol.

We now consider the model where a subset Mal ⊂ [n] of the parties, called the malicious

parties, are controlled by an adversary and may not follow the protocol. The set of malicious

parties is determined prior to the execution of the protocol and is unchanged throughout

the duration of the execution. We consider randomized protocols in this malicious setting

and allow parties to use both private randomness (known to a single party) and public

randomness (known to all parties). Observe that in the standard (non-malicious) setting,

public randomness can always be used in lieu of private randomness. This is no longer

possible in our malicious setting, as will be apparent next.

The adversary controlling the malicious parties is assumed to know the inputs of all

the parties, the shared random string, and the private random strings of the parties in

Mal. In addition, in round j ∈ [s], the adversary knows the channel’s prior noise vectors

N1, N2, · · · , Nj−1, and thus also knows all the bits that were sent and received by all the

parties in all the previous rounds. (Note that the adversary does not know either the private

random strings of the honest parties or the noise in the channel in future rounds). The parties

in [n] \Mal are still assumed to be following the protocol and are called honest parties.

Computing functions. Let x ∈ X n be an input for the parties and let Mal be the set of

malicious parties. We say that the input x′ ∈ X n is consistent with x and Mal if x′i = xi for

every i ∈ [n] \Mal.

Let θ ∈ [0, 1/2) and assume that n is a sufficiently large function of θ. Let δ ≥ 0. We

say that a randomized protocol Π over the noisy broadcast channel with noise rate exactly ε

computes the functions {f i}i∈[n] in the presence of θ-fraction of malicious parties with error

δ if whenever the set of malicious parties Mal satisfies |Mal| ≤ θn, then for every x ∈ X n,

with probability at least 1 − δ, the following holds: For every i ∈ [n] \ Mal, there exists

x̂ ∈ X n that is consistent with x and Mal, such that the output of Pi in Π is yi = f i(x̂).

Here, the probability is over the private and public randomness and the noise in the channel.

We say that a randomized protocol Π over the noisy broadcast channel with noise rate

exactly ε computes the identity function in the presence of θ-fraction of malicious parties

with error δ if X = {0, 1} and Y = {0, 1}n and Π computes the functions {f i}i∈[n] in the

presence of θ-fraction of malicious parties with error δ, where f i : {0, 1}n → {0, 1}n is

given by f i(x) = x. Simplified for the identity function, the above means that whenever

|Mal| ≤ θn, then, for every input x, with probability at least 1− δ, the following holds: For

15

all i ∈ [n], Pi outputs a vectors yi = (x̃i1, x̃
i
2, · · · , x̃in), where if i, i′ ∈ [n] \Mal, then x̃ii′ = xi

′

(otherwise, x̃ii′ can be arbitrary), as suggested by (*).

4 Preliminaries

4.1 Concentration Inequalities

Lemma 4.1 (Multiplicative Chernoff bound). Suppose X1, · · · , Xn are independent random

variables taking values in [0, 1]. Let X denote their sum and let µ = E[X] denote the sum’s

expected value. Then,

Pr (X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ , ∀0 ≤ δ,

Pr (X ≤ (1− δ)µ) ≤ e−
δ2µ

2 , ∀0 ≤ δ ≤ 1.

In particular, we have that:

Pr (X ≥ (1 + δ)µ) ≤ e−
δµ
3
·min(δ,1), ∀0 ≤ δ,

Pr (|X − µ| ≥ δµ) ≤ 2 · e−
δ2µ

3 , ∀0 ≤ δ ≤ 1.

We derive a couple of corollaries of Lemma 4.1, that will be convenient for us to use.

Corollary 4.2. Suppose X1, · · · , Xn are independent random variables taking values in [0, 1].

Let X denote their sum and let µ = E[X] denote the sum’s expected value. Then, for all

∆ ≥ 2µ, we have:

Pr(X ≥ ∆) ≤ e−
∆
6 .

Proof. As ∆ ≥ 2µ, we have ∆ = (1 + δ)µ for some δ ≥ 1. Applying Lemma 4.1 with this δ,

we get Pr(X ≥ ∆) ≤ e−
∆−µ

3 ≤ e−
∆
6 , as desired.

Corollary 4.3. Suppose X1, · · · , Xn are independent random variables taking values in

[−1, 1] such that E[Xi] = 0 for all i ∈ [n]. If X =
∑n

i=1Xi denotes their sum, then,

for all 0 ≤ δ ≤ 1, we have

Pr(|X| ≥ δn) ≤ 2 · e−
δ2n

6 .

Proof. Apply Lemma 4.1 on the variables Xi+1
2

.

We shall also use the following version of Chernoff bound for negatively correlated random

variables:

Definition 4.4 (Negatively Correlated Random Variables). For n > 0, let X1, · · · , Xn be

random variables that take values in {0, 1}. We say that the random variables X1, · · · , Xn are

negatively correlated if for all subsets S ⊆ [n], we have Pr(∀i ∈ S : Xi = 1) ≤
∏

i∈S Pr(Xi =

1).

16

Lemma 4.5 (Generalized Chernoff Bound; cf. [PS97]). For n > 0, let X1, · · · , Xn be

negatively correlated random variables that take values in {0, 1}. Let X denote their sum

and let µ = E[X] denote the sum’s expected value. Then, for any δ ≥ 0, we have:

Pr (X > (1 + δ) · µ) ≤ e−
δ2µ
2+δ .

In particular, we have that:

Pr (X > (1 + δ)µ) ≤ e−
δµ
3
·min(δ,1), ∀δ ≥ 0.

4.2 Results From Coding Theory

We use the following standard result for error-correcting codes, and include a proof for

completeness.

Lemma 4.6. Let δ > 0 and define K0 = d10/δ2e. For all n > 0, there exists a function

ECCn,δ : {0, 1}n → {0, 1}K0n such that for all s 6= t ∈ {0, 1}n, we have

∆(ECCn,δ(s),ECCn,δ(t)) >

(
1

2
− δ
)
·K0n.

Proof. We show that a random function satisfies the property in the lemma with non-zero

probability. For a random function f : {0, 1}n → {0, 1}K0n, we have

Pr

(
∃s 6= t ∈ {0, 1}n : ∆(f(s), f(t)) ≤

(
1

2
− δ
)
·K0n

)
≤

∑
s 6=t∈{0,1}n

Pr

(
∆(f(s), f(t)) ≤

(
1

2
− δ
)
·K0n

)
(Union bound)

=
∑

s 6=t∈{0,1}n
Pr

(
K0n∑
i=1

1(fi(s) 6= fi(t)) ≤
(

1

2
− δ
)
·K0n

)
.

We now analyze the right hand side term by term. Let s 6= t ∈ {0, 1}n. For i ∈ [K0n],

consider the indicator random variable Xi = 1(fi(s) 6= fi(t)). As f is a random function,

the variable Xi are mutually independent and satisfy E[Xi] = 1
2

for all i ∈ [K0n]. We have:

Pr

(
K0n∑
i=1

1(fi(s) 6= fi(t)) ≤
(

1

2
− δ
)
·K0n

)
≤ Pr

(
K0n∑
i=1

Xi ≤
(

1

2
− δ
)
·K0n

)
≤ exp

(
−δ2K0n

)
(Lemma 4.1)

≤ 1

23n
. (As K0 = d10/δ2e)

Plugging into the previous derivation, we get:

Pr

(
∃s 6= t ∈ {0, 1}n : ∆(f(s), f(t)) ≤

(
1

2
− δ
)
·K0n

)
≤

∑
s 6=t∈{0,1}n

1

23n
< 1,

17

finishing the proof.

5 Locality Sensitive Error Correcting Codes

Let n > 0 and x, y ∈ Zn be vectors. For z ∈ Z, define

sepz(x, y) = {i ∈ [n] | |xi − yi| > z}.

Observe that |sep0(·)| is simply the Hamming distance between the vectors x and y, and is

therefore, a metric. For general z ∈ Z however, the function |sepz(·)| may not be a metric.

In this paper, we work with the following generalization of the function sep(·).

Definition 5.1. Let n, L > 0 and x, y ∈
(
ZL
)n

be vectors. For z ∈ Z, define

sepz(x, y) = {i ∈ [n] | ∃l ∈ [L] : |xi,l − yi,l| > z}.

Lemma 5.2. Let n, L > 0 and x1, x2, y ∈
(
ZL
)n

be vectors. For z1, z2 ∈ Z, we have

sepz1(x1, y) = ∅ ∧ sepz1+z2(x2, y) 6= ∅ =⇒ sepz2(x1, x2) 6= ∅.

Proof. Let i ∈ sepz1+z2(x2, y). We have:

∃l ∈ [L] : |x2,i,l − yi,l| > z1 + z2 =⇒ ∃l ∈ [L] : |x2,i,l − x1,i,l|+ |x1,i,l − yi,l| > z1 + z2
(Triangle inequality: |x|+ |y| ≥ |x+ y|)

=⇒ ∃l ∈ [L] : |x2,i,l − x1,i,l| > z2 (As sepz1(x1, y) = ∅)
=⇒ i ∈ sepz2(x1, x2)

=⇒ sepz2(x1, x2) 6= ∅.

5.1 Definition

We now define locality sensitive error correcting codes. Throughout this section and the

next, we fix integers m, k > 100.

Definition 5.3. Let n, L > 0 and C : ({0} ∪ [m])k →
(
ZL
)n

. Let α, α′, β, µ, µ′ > 0 be

parameters. We say that the function C is an (n, L, α, α′, β, µ, µ′)-locality sensitive error

correcting code if it has the following two properties:

• (α, β, µ)-locality sensitive: For all x, y ∈ ({0} ∪ [m])k, we have:

sepα(x, y) = ∅ =⇒
∣∣sepβ(C(x),C(y))

∣∣ ≤ (1− µ)n.

• (α′, β, µ′)-error correcting: For all x, y ∈ ({0} ∪ [m])k, we have:

sepα′(x, y) 6= ∅ =⇒
∣∣sepβ(C(x),C(y))

∣∣ ≥ µ′n.

18

We sometimes say C is a locality sensitive error correcting code or C is an (n, L)-locality

sensitive error correcting code if we do not wish to emphasize the other parameters. Our

protocol requires C to have a short representation as stated below:

Definition 5.4 (Representation Length). Let n, L > 0 and C be an (n, L)-locality sensitive

error correcting code. Define:

‖C‖ = max
x∈({0}∪[m])k

max
i∈[n]

max
l∈[L]

|Ci,l(x)|.

Observe that for all x ∈ ({0} ∪ [m])k, the value of C(x), can be encoded using

10·log(10 · ‖C‖+ 10) bits. We shall use this to show that our protocol does not communicate

a lot of bits.

5.2 Proof of Existence

In this section, we show the following theorem:

Theorem 5.5. Let θ < 1
2

and n ≥
(

100
1−2θ

)3 · k logm. There exists a locality sensitive error

correcting code C with parameters:(
n, 10 · log

10

1− 2θ
, 4
√
m log k, β, β,

199 + 2θ

200
,
199 + 2θ

200

)
,

where β = 24
√
mk · log k · log 10

1−2θ . Moreover, C satisfies ‖C‖ ≤ mk and C can be computed

in time polynomial in (m, k, n, L)12

Proof. For brevity sake, we define L = 10 · log 10
1−2θ and α = 4

√
m log k. The centerpiece of

this proof is the following result, which gives a locality sensitive error correcting code with

slightly different parameters.

Lemma 5.6. There exists a locality sensitive error correcting code C′ with parameters:(
n, 1, α, β, β, 1− (1− 2θ)2

40000
,
1

3

)
.

Moreover, C′ satisfies ‖C′‖ ≤ mk and C′ can be computed in time polynomial in (m, k, n).

We defer proving Lemma 5.6 to later and use it here to finish the proof of Theorem 5.5.

For a matrix Z = {zi,j}i∈[n],j∈[L], where zi,j ∈ [n], define the function CZ : ({0} ∪ [m])k →(
ZL
)n

such that, for all x ∈ ({0} ∪ [m])k and i ∈ [n], we have

CZi (x) =
(
C′zi,1(x),C′zi,2(x), · · · ,C′zi,L(x)

)
. (1)

12In fact, as C will only encode messages of logarithmic length in our protocol, the running time of our
protocol will be almost-linear even if encoding C took sub-exponential time.

19

Observe that, for all matrices Z, the fact that ‖C′‖ ≤ mk implies that
∥∥CZ∥∥ ≤ mk. Thus,

Theorem 5.5 follows if we show that, when the matrix Z is chosen uniformly at random,

then with non-zero probability, the function CZ is a locality sensitive error correcting code

with the parameters in the theorem statement.

To this end, let Near be the set of all pairs (x, y) ∈ ({0} ∪ [m])k × ({0} ∪ [m])k such that

sepα(x, y) = ∅ and Far be the set of all pairs (x, y) ∈ ({0} ∪ [m])k × ({0} ∪ [m])k such that

sepβ(x, y) 6= ∅. In order to show that CZ is a locality sensitive error correcting code, we need

to show that Definition 5.3 is satisfied with non-zero probability or equivalently that

Pr
Z

(
∃(x, y) ∈ Near :

∣∣sepβ(CZ(x),CZ(y))
∣∣ > (1− 2θ

200

)
n

)
+ Pr

Z

(
∃(x, y) ∈ Far :

∣∣sepβ(CZ(x),CZ(y))
∣∣ < (199 + 2θ

200

)
n

)
< 1.

Because of a union bound, it is sufficient to show that:∑
(x,y)∈Near

Pr
Z

(∣∣sepβ(CZ(x),CZ(y))
∣∣ > (1− 2θ

200

)
n

)

+
∑

(x,y)∈Far

Pr
Z

(∣∣sepβ(CZ(x),CZ(y))
∣∣ < (199 + 2θ

200

)
n

)
< 1.

Next, for x, y ∈ ({0} ∪ [m])k, define the indicator random variable Xx,y,i that is 1 if

and only if i ∈ sepβ(CZ(x),CZ(y)), or equivalently using Definition 5.1, if and only if

∃l ∈ [L] :
∣∣CZi,l(x)− CZi,l(y)

∣∣ > β. Due to Equation 1, the random variable Xx,y,i depends only

on the randomness in {zi,j}j∈[L], and consequently, the random variables Xx,y,i are mutually

independent. Using this notation, it is sufficient to show that:∑
(x,y)∈Near

Pr

(
n∑
i=1

Xx,y,i >

(
1− 2θ

200

)
n

)
+

∑
(x,y)∈Far

Pr

(
n∑
i=1

Xx,y,i <

(
199 + 2θ

200

)
n

)
< 1.

This follows from Claim 5.7 and Claim 5.8 below and the fact that |Near|, |Far| ≤
(m+ 1)2k < m3k.

Claim 5.7. For all (x, y) ∈ Near, we have

Pr

(
n∑
i=1

Xx,y,i >

(
1− 2θ

200

)
n

)
≤ 1

10 ·m3k
.

Proof. For all i ∈ [n], we have:

E[Xx,y,i] = Pr(Xx,y,i = 1)

= Pr
(
∃l ∈ [L] :

∣∣CZi,l(x)− CZi,l(y)
∣∣ > β

)
= Pr

(
∃l ∈ [L] :

∣∣∣C′zi,l(x)− C′zi,l(y)
∣∣∣ > β

)
(Equation 1)

20

≤
L∑
l=1

Pr
(∣∣∣C′zi,l(x)− C′zi,l(y)

∣∣∣ > β
)

(Union bound)

=
1

n
·

L∑
l=1

n∑
z=1

1(|C′z(x)− C′z(y)| > β) (zi,j ∈ [n] is sampled uniformly)

=
1

n
·

L∑
l=1

∣∣sepβ(C′(x),C′(y))
∣∣ (Definition 5.1)

≤
L∑
l=1

(1− 2θ)2

40000
(Lemma 5.6 and (x, y) ∈ Near)

≤ 1− 2θ

400
. (L = 10 · log 10

1−2θ)

By linearity of expectation, it follows that
∑n

i=1 E[Xx,y,i] ≤ 1−2θ
400
· n and we derive:

Pr

(
n∑
i=1

Xx,y,i >

(
1− 2θ

200

)
n

)
≤ exp

(
−1− 2θ

1200
· n
)

(Corollary 4.2 and
∑n

i=1 E[Xi] ≤ 1−2θ
400
· n)

≤ 1

10 ·m3k
. (As n ≥

(
100
1−2θ

)3 · k logm)

Claim 5.8. For all (x, y) ∈ Far, we have

Pr

(
n∑
i=1

Xx,y,i <

(
199 + 2θ

200

)
n

)
≤ 1

10 ·m3k
.

Proof. For all i ∈ [n], we have:

E[Xx,y,i] = Pr(Xx,y,i = 1)

= Pr
(
∃l ∈ [L] :

∣∣CZi,l(x)− CZi,l(y)
∣∣ > β

)
= Pr

(
∃l ∈ [L] :

∣∣∣C′zi,l(x)− C′zi,l(y)
∣∣∣ > β

)
(Equation 1)

= 1− Pr
(
∀l ∈ [L] :

∣∣∣C′zi,l(x)− C′zi,l(y)
∣∣∣ ≤ β

)
= 1−

L∏
l=1

Pr
(∣∣∣C′zi,l(x)− C′zi,l(y)

∣∣∣ ≤ β
)

(Independence of {zi,j}j∈[L])

= 1−
L∏
l=1

(
1

n
·

n∑
z=1

1(|C′z(x)− C′z(y)| ≤ β)

)
(zi,j ∈ [n] is sampled uniformly)

= 1−
L∏
l=1

(
1

n
·
(
n−

∣∣sepβ(C′(x),C′(y))
∣∣)) (Definition 5.1)

21

≥ 1−
L∏
l=1

2

3
(Lemma 5.6 and (x, y) ∈ Far)

≥ 1− 1− 2θ

103
. (L = 10 · log 10

1−2θ)

By linearity of expectation, it follows that
∑n

i=1 E[Xx,y,i] ≥
(
1− 1−2θ

103

)
· n and we derive:

Pr

(
n∑
i=1

Xx,y,i <

(
199 + 2θ

200

)
n

)
= Pr

(
n∑
i=1

(1−Xx,y,i) >

(
1− 2θ

200

)
n

)

≤ exp

(
−1− 2θ

1200
· n
)

(Corollary 4.2 and
∑n

i=1 E[Xx,y,i] ≥
(
1− 1−2θ

103

)
· n)

≤ 1

10 ·m3k
. (As n ≥

(
100
1−2θ

)3 · k logm)

Below, we finish the proof of Theorem 5.5 by showing Lemma 5.6.

Proof of Lemma 5.6. For a matrix Z = {zi,j}i∈[n],j∈[k] such that zi,j ∈ {−1, 1}. define the

function C′Z : ({0} ∪ [m])k → Zn such that, for all x ∈ ({0} ∪ [m])k and i ∈ [n], we have

C′Zi (x) =
k∑
j=1

zi,jxj. (2)

Observe that for all matrices Z, we have
∥∥C′Z∥∥ ≤ mk and in order to show Lemma 5.6, it

is sufficient to show that, when the matrix Z is sampled uniformly at random, then, with

non-zero probability, we have that C′Z is a locality sensitive error correcting code with the

parameters in the lemma statement.

To this end, define the set Near to be the set of all pairs (x, y) ∈ ({0} ∪ [m])k×({0} ∪ [m])k

such that sepα(x, y) = ∅ and the set Far to be the set of all pairs (x, y) ∈ ({0} ∪ [m])k ×
({0} ∪ [m])k such that sepβ(x, y) 6= ∅. In order to show that C′Z is a locality sensitive error

correcting code with non-zero probability, it is sufficient to show that:

Pr
Z

(
∃(x, y) ∈ Near :

∣∣sepβ(C′Z(x),C′Z(y))
∣∣ > (1− 2θ)2

40000
· n

)
+ Pr

Z

(
∃(x, y) ∈ Far :

∣∣sepβ(C′Z(x),C′Z(y))
∣∣ < n

3

)
< 1.

Because of a union bound, it is sufficient to show that∑
(x,y)∈Near

Pr
Z

(∣∣sepβ(C′Z(x),C′Z(y))
∣∣ > (1− 2θ)2

40000
· n

)

22

+
∑

(x,y)∈Far

Pr
Z

(∣∣sepβ(C′Z(x),C′Z(y))
∣∣ < n

3

)
< 1.

Next, for x, y ∈ ({0} ∪ [m])k, define the indicator random variable Xx,y,i that is 1 if

and only if i ∈ sepβ(C′Z(x),C′Z(y)), or equivalently using Definition 5.1, if and only if∣∣C′Zi (x)− C′Zi (y)
∣∣ > β. Due to Equation 2, we have that the variable Xx,y,i is determined

by the randomness in {zi,j}j∈[k], and consequently, that the variables Xx,y,i are mutually

independent. Using this notation, it is sufficient to show that:∑
(x,y)∈Near

Pr

(
n∑
i=1

Xx,y,i >
(1− 2θ)2

40000
· n

)
+

∑
(x,y)∈Far

Pr

(
n∑
i=1

Xx,y,i <
n

3

)
< 1.

This follows from Claim 5.9 and Claim 5.10 below and the fact that |Near|, |Far| ≤
(m+ 1)2k < m3k.

Claim 5.9. For all (x, y) ∈ Near, we have:

Pr

(
n∑
i=1

Xx,y,i >
(1− 2θ)2

40000
· n

)
≤ 1

10 ·m3k
.

Proof. For all i ∈ [n], we have:

E[Xx,y,i] = Pr(Xx,y,i = 1)

= Pr
(∣∣C′Zi (x)− C′Zi (y)

∣∣ > β
)

= Pr

(∣∣∣∣∣
k∑
j=1

zi,j(xj − yj)

∣∣∣∣∣ > β

)
(Equation 2)

= Pr

(∣∣∣∣∣
k∑
j=1

zi,j ·
xj − yj
α

∣∣∣∣∣ > β

α

)
.

For j ∈ [k], define the random variable Yi,j = zi,j · xj−yjα
. As Yi,j is determined by zi,j, we

have that the variables Yi,j are mutually independent, and as (x, y) ∈ Near, we have that

Yi,j ∈ [−1, 1]. Also, as zi,j is sampled uniformly from {−1, 1}, we have E[Yi,j] = 0. This

gives:

E[Xx,y,i] = Pr

(∣∣∣∣∣
k∑
j=1

Yi,j

∣∣∣∣∣ > β

α

)

≤ 2 · exp

(
− β2

6α2 · k

)
(Corollary 4.3)

≤
(

1− 2θ

10

)5

. (As β = 24
√
mk · log k · log 10

1−2θ = 6α ·
√
k · log 10

1−2θ)

23

By linearity of expectation, it follows that
∑n

i=1 E[Xx,y,i] ≤
(
1−2θ
10

)5 · n and we derive:

Pr

(
n∑
i=1

Xx,y,i >
(1− 2θ)2

40000
· n

)
≤ exp

(
−(1− 2θ)2

25 · 104
· n

)
(Corollary 4.2)

≤ 1

10 ·m3k
. (As n ≥

(
100
1−2θ

)3 · k logm)

Claim 5.10. For all (x, y) ∈ Far, we have:

Pr

(
n∑
i=1

Xx,y,i <
n

3

)
≤ 1

10 ·m3k
.

Proof. For all i ∈ [n], we have:

E[Xx,y,i] = Pr(Xx,y,i = 1) = Pr
(∣∣C′Zi (x)− C′Zi (y)

∣∣ > β
)

= Pr

(∣∣∣∣∣
k∑
j=1

zi,j(xj − yj)

∣∣∣∣∣ > β

)
.

As (x, y) ∈ Far, we have j∗ ∈ [k] such that |xj∗ − yj∗| > β. By direct calculation, we get:

E[Xx,y,i] =
1

2k

∑
z∗1 ,z

∗
2 ,··· ,z∗k∈{−1,1}

1

(∣∣∣∣∣
k∑
j=1

z∗j (xj − yj)

∣∣∣∣∣ > β

)

=
1

2k

∑
z∗1 ,··· ,z∗j∗−1

,z∗
j∗+1

,··· ,z∗k∈{−1,1}

∑
z∗
j∗∈{−1,1}

1

(∣∣∣∣∣
k∑
j=1

z∗j (xj − yj)

∣∣∣∣∣ > β

)

≥ 1

2k

∑
z∗1 ,··· ,z∗j∗−1

,z∗
j∗+1

,··· ,z∗k∈{−1,1}

1

(
∃z∗j∗ ∈ {−1, 1} :

∣∣∣∣∣
k∑
j=1

z∗j (xj − yj)

∣∣∣∣∣ > β

)

≥ 1

2k

∑
z∗1 ,··· ,z∗j∗−1

,z∗
j∗+1

,··· ,z∗k∈{−1,1}

1

 ∑
z∗
j∗∈{−1,1}

∣∣∣∣∣
k∑
j=1

z∗j (xj − yj)

∣∣∣∣∣ > 2β

≥ 1

2k

∑
z∗1 ,··· ,z∗j∗−1

,z∗
j∗+1

,··· ,z∗k∈{−1,1}

1(|xj∗ − yj∗| > β)

(Triangle inequality: |x|+ |y| ≥ |x− y|)

≥ 1

2k

∑
z∗1 ,··· ,z∗j∗−1

,z∗
j∗+1

,··· ,z∗k∈{−1,1}

1

≥ 1

2
.

24

By linearity of expectation, it follows that
∑n

i=1 E[Xx,y,i] ≥ n
2

and we derive:

Pr

(
n∑
i=1

Xx,y,i <
n

3

)
≤ Pr

(
n∑
i=1

Xx,y,i <
2

3
·

n∑
i=1

E[Xx,y,i]

)
(As

∑n
i=1 E[Xi] ≥ n

2
)

≤ exp

(
− 1

20
·

n∑
i=1

E[Xx,y,i]

)
(Lemma 4.1)

≤ exp
(
− n

50

)
(As

∑n
i=1 E[Xi] ≥ n

2
)

≤ 1

10 ·m3k
. (As n ≥

(
100
1−2θ

)3 · k logm)

6 Mixability of Codewords

We show that the encodings of similar (but not identical) inputs under a locality sensitive

error correcting code can be “mixed” together while maintaining properties similar to the

original codewords. In order to formalize this, we first generalize the function sep(·) from

Definition 5.1.

Definition 6.1. Let n, L > 0, x ∈
(
ZL
)n

, and z ∈ Z. For n′ > 0 and a vector of pairs

y ∈
(
[n]×

(
ZL
))n′

, define

sep-mixz(x, y) =
{
i ∈ [n′] | ∃l ∈ [L] :

∣∣xyi,1,l − (yi,2)l
∣∣ > z

}
.

Intuitively, every coordinate in y has two components, the first points to a coordinate

in x and the second one is a value in ZL (a symbol in the code’s alphabet). The function

sep-mixz(·) compares each coordinate in y to the coordinate it points to in x and checks if

they ‘differ’ by more than z.

An easy corollary of the above definition is the following where for a set S ⊆ [n′], we use

the notation y|S to denote the vector y restricted to the coordinates in S.

Corollary 6.2. Let n, L > 0, x ∈
(
ZL
)n

, and z ∈ Z. Also, let n′ > 0 and y ∈
(
[n]×

(
ZL
))n′

.

We have for all S ⊆ [n′] that:

sep-mixz(x, y) ∩ S = sep-mixz(x, y|S).

Fix an (n, L, α, α′, β, µ, µ′)-locality sensitive error correcting code C for the rest of this

section. We show that:

Lemma 6.3. Let x ∈ ({0} ∪ [m])k and n′ > 0. For i′ ∈ [n′], let yi′ ∈ ({0} ∪ [m])k be given.

If, for j1, j2, · · · , jn′ ∈ [n], we have

Y (j1, j2, · · · , jn′) =
(
(j1,Cj1(y1)), (j2,Cj2(y2)), · · · , (jn′ ,Cjn′ (yn′))

)
,

25

then, when j1, j2, · · · , jn′ are sampled uniformly at random, we have for all ∆1 ≥ 2 ·(
n′ − n′

n
·mini′∈[n′]

∣∣sepβ(C(x),C(yi′))
∣∣) that:

Pr
(
n′ −

∣∣sep-mixβ(C(x), Y (j1, j2, · · · , jn′))
∣∣ ≥ ∆1

)
≤ exp

(
−∆1

6

)
.

We also have, for all ∆2 ≥ 2 · n′
n
·maxi′∈[n′]

∣∣sepβ(C(x),C(yi′))
∣∣ that

Pr
(∣∣sep-mixβ(C(x), Y (j1, j2, · · · , jn′))

∣∣ ≥ ∆2

)
≤ exp

(
−∆2

6

)
.

Proof. For i′ ∈ [n′], define the indicator random variable Xi′ to be 1 if and only if

i′ ∈ sep-mixβ(C(x), Y (j1, j2, · · · , jn′)), or equivalently, by Definition 6.1, if and only if

∃l ∈ [L] :
∣∣Cji′ ,l(x)− Cji′ ,l(yi′)

∣∣ > β. As the variable Xi′ is determined by the randomness in

ji′ , the variables Xi are mutually independent. Using this notation, Claim 6.4 and Claim 6.5

below show the lemma.

In both the claims, we use the fact that, for all i′ ∈ [n′]

E[Xi′] = Pr
(
∃l ∈ [L] :

∣∣Cji′ ,l(x)− Cji′ ,l(yi′)
∣∣ > β

)
=

1

n
·
∣∣sepβ(C(x),C(yi′))

∣∣, (3)

by Definition 5.1.

Claim 6.4. It holds that:

Pr

∑
i′∈[n′]

(1−Xi′) ≥ ∆1

 ≤ exp

(
−∆1

6

)
.

Proof. Using linearity of expectation, Equation 3 implies that
∑n′

i′=1 E[1 − Xi′] ≤ n′ − n′

n
·

mini′∈[n′]
∣∣sepβ(C(x),C(yi′))

∣∣ and the claim follows from Corollary 4.2.

Claim 6.5. It holds that:

Pr

∑
i′∈[n′]

Xi′ ≥ ∆2

 ≤ exp

(
−∆2

6

)
.

Proof. Using linearity of expectation, Equation 3 implies that
∑n′

i′=1 E[Xi′] ≤ n′

n
·

maxi′∈[n′]
∣∣sepβ(C(x),C(yi′))

∣∣ and the claim follows from Corollary 4.2.

26

7 Our Protocol

We are now ready to state our protocol. Recall that there are n parties amongst which at

most θn are malicious. The following hold:

θ <
1

2
, ε =

1

10
, n > 100100

100
1−2θ

. (4)

We define the following parameters:

k =

√
log n(

1
2
− θ
)2 · 1(

log 10
1−2θ

)2 , m = 50000k ·
(

log
10

1− 2θ

)2

· log log n,

α = 4
√
m log k, β = 24

√
mk · log k · log

10

1− 2θ
<
m

6
,

L = 10 · log
10

1− 2θ
, A = 1020 · log n(

1
2
− θ
)3 · 4θ

min(4θ, 1− 2θ)
,

` = 1010 · log

(
log n
1
2
− θ

)
.

(5)

For the rest of this paper, we reserve C : ({0} ∪ [m])k →
(
ZL
)A

to be a locality sensitive

error correcting code with parameters:(
A,L, α, β, β,

199 + 2θ

200
,
199 + 2θ

200

)
.

Such a code is promised by Theorem 5.5. We have by Definition 5.3 that, for all x, y ∈ [m]k,

sepα(x, y) = ∅ =⇒
∣∣sepβ(C(x),C(y))

∣∣ ≤ A ·
(

1− 2θ

200

)
.

sepβ(x, y) 6= ∅ =⇒
∣∣sepβ(C(x),C(y))

∣∣ ≥ A ·
(

199 + 2θ

200

)
.

(6)

Additionally, we reserve ECC to be the one promised by Lemma 4.6 for n← ` and δ ← 1
10

.

By Lemma 4.6, we have s 6= t ∈ {0, 1}` that:

∆(ECC(s),ECC(t)) >
2

5
· 1000` = 400`. (7)

7.1 Partitioning the Parties

The n parties are randomly divided into n/A families of A parties each. Each family is

further divided into A/k groups of k parties each. Formally, this division is performed using

the following random process: First, sample a permutation σ uniformly at random from the

set Sn of permutations on [n]. Then, for a ∈ [n/A], family a is the set of parties

Fa = {σ(A(a− 1) + 1), σ(A(a− 1) + 2), · · · , σ(A(a− 1) + A)}.

27

For b ∈ [A/k], group b in family Fa is the set of parties

Ga,b = {σ(A(a− 1) + k(b− 1) + 1), · · · , σ(A(a− 1) + k(b− 1) + k)}

As the families are chosen randomly, no family has a lot of malicious parties with high

probability. Formally,

Lemma 7.1. It holds that:

Pr
σ∼Sn

(
∃a ∈ [n/A] : |Fa ∩Mal| ≥ A · 1 + 2θ

4

)
≤ 1

n30
.

Proof. For i ∈ [n], denote by Xi the indicator random variable that is 1 if and only if

σ(i) ∈ Mal. Observe first that:

Claim 7.2. We have for all i ∈ [n] that Pr(Xi = 1) = |Mal|
n

. Moreover, the random variables

Xi, for i ∈ [n], are negatively correlated.

Proof. The first part is a simple calculation. For the “moreover” part, we show that the

conditions in Definition 4.4 are satisfied. Note that, for any subset S ⊆ [n] such that

|S| > |Mal|, we have

Pr(∀i ∈ S : Xi = 1) = Pr(∀i ∈ S : σ(i) ∈ Mal) = 0 ≤
∏
i∈S

Pr(Xi = 1).

Also, for any subset S ⊆ [n] such that |S| ≤ |Mal|, we have by explicit calculation that:

Pr(∀i ∈ S : Xi = 1) = Pr(∀i ∈ S : σ(i) ∈ Mal)

=
|Mal|!

(|Mal| − |S|)!
· (n− |S|)!

n!

≤
(
|Mal|
n

)|S|
≤
∏
i∈S

Pr(Xi = 1).

Thus, Definition 4.4 is satisfied in either case and we are done.

Owing to Claim 7.2, we can conclude that, for all a ∈ [n/A], the random variables

XA(a−1)+1, XA(a−1)+2, · · · , XA(a−1)+A are negatively correlated and satisfy E[XA(a−1)+j] =

Pr
(
XA(a−1)+j = 1

)
= |Mal|

n
for all j ∈ [A]. Using this, we get:

Pr
σ∼Sn

(
∃a ∈ [n/A] : |Fa ∩Mal| ≥ A · 1 + 2θ

4

)
≤

n/A∑
a=1

Pr
σ∼Sn

(
|Fa ∩Mal| ≥ A · 1 + 2θ

4

)
(Union bound)

≤
n/A∑
a=1

Pr

(
k∑
j=1

XA(a−1)+j ≥ A · 1 + 2θ

4

)

28

≤
n/A∑
a=1

exp

(
−1

3
· A · 1− 2θ

16θ
·min(1− 2θ, 4θ)

)
(Lemma 4.5 as |Mal| ≤ θn)

≤
n/A∑
a=1

1

n100
(Equation 5)

≤ 1

n30
. (Equation 5)

7.2 Our Protocol

For the rest of this section and the analysis, fix a partition of the parties into families such

that no family has more that 1+2θ
4

fraction of malicious parties. Due to Lemma 7.1, this

happens except with probability at most 1
n30 . We note that this partition allows us to denote

a party i ∈ [n] using either (a, j) ∈ [n/A]× [A], emphasizing its family and index within the

family, or (a, b, c) ∈ [n/A]×[A/k]×[k], emphasizing its family, its group, and the index within

the groups. These ways to denote a party i are equivalent and we use them interchangeably.

Our protocol is symmetric for all the parties and is described in Algorithm 1 from the

perspective of party i. In the algorithm, we sometimes use ‘partial indexing’, e.g., we write

qa,b′ to mean the concatenation of the values qa,b′,c′ for all possible values of c′.

Algorithm 1 Our protocol from the perspective of party i = (a, j) = (a, b, c).

Stage Broadcast:

1: Broadcast input xi a total of m times.
2: For b′ ∈ [A/k] and c′ ∈ [k], let qa,b′,c′ ← number of 1s received from party (a, b′, c′).

Stage Boost:

3: For b′ ∈ [A/k], sample za,b′ privately and uniformly from [A]. Let va,b′ ← Cza,b′ (qa,b′).
Broadcast ECC((za,b′ , va,b′)) (note that ` bits suffice to encode (za,b′ , va,b′)).

4: For a′ ∈ [n/A], j′ ∈ [A], and b′′ ∈ [A/k], decode the b′′th value received from party (a′, j′)
to get C̃a′,b′′,j′ = (z̃a′,b′′,j′ , ṽa′,b′′,j′).

Stage Guess:

5: For a′ ∈ [n/A] and b′ ∈ [A/k], p̃a′,b′ ← arg minp′∈({0}∪[m])k

∣∣∣sep-mixβ(C(p′), C̃a′,b′)
∣∣∣.

6: For i′ = (a′, b′, c′) ∈ [n], output x̃i′ = 1
(
p̃a′,b′,c′ ≥ m

2

)
.

29

8 Our Analysis

For a variable var and i ∈ [n], we denote by vari the value of var in party i’s execution of

Algorithm 1. We use p̂i ∈ {0} ∪ [m] to denote the number of times party i broadcasts 1 in

Line 1 of Algorithm 1. Observe that p̂i ∈ {0,m} for all parties i /∈ Mal. Define:

pi = p̂i(1− ε) + (m− p̂i)ε. (8)

Observe that, for all i = (a, b, c) and i′ ∈ Fa, we have pi = E[qi
′

a,b,c]. For a ∈ [n/A] and

b ∈ [A/k], we shall use pa,b to denote the k-dimensional vector whose cth coordinate, for

c ∈ [k], is pa,b,c.

8.1 Analyzing Stage Broadcast

Lemma 8.1. Let i = (a, b, c) ∈ [n]. For all b′ ∈ [A/k], we have

Pr
(
sepα

(
qia,b′ , pa,b′

)
6= ∅
)
≤ 1

k3
.

where the probability is over the noise in bits received by party i in Stage Broadcast.

Proof. Note from Line 1 of Algorithm 1 that all parties broadcast in m rounds in Stage

Broadcast. For c′ ∈ [k] and z ∈ [m], denote by Xc′,z the indicator random variable that is

the bit received by party i when party (a, b′, c′) broadcasts for the zth time. We have:

qia,b′,c′ =
m∑
z=1

Xc′,z and E[qia,b′,c′] = pa,b′,c′ .

We derive:

Pr
(
sepα

(
qia,b′ , pa,b′

)
6= ∅
)

= Pr
(
∃c′ ∈ [k] :

∣∣qia,b′,c′ − pa,b′,c′∣∣ > α
)

(Definition 5.1)

≤
k∑

c′=1

Pr
(∣∣qia,b′,c′ − pa,b′,c′∣∣ > α

)
(Union bound)

≤ 2 ·
k∑

c′=1

exp

(
− α2

3 · pa,b′,c′

)
. (Lemma 4.1)

Now, note from Equation 8, that mε ≤ pa,b′,c′ < m for all c′ ∈ [k]. This gives:

Pr
(
sepα

(
qia,b′ , pa,b′

)
6= ∅
)
≤ 2 ·

k∑
c′=1

exp

(
− α

2

3m

)
≤ 2k · exp

(
− α

2

3m

)
.

By Equation 5, this gives

Pr
(
sepα

(
qia,b′ , pa,b′

)
6= ∅
)
≤ 1

k3
.

30

8.2 Analyzing Stage Boost

Lemma 8.2. For all i, i′ = (a′, j′) ∈ [n] \Mal and b′′ ∈ [A/k], we have:

Pr
(
C̃ia′,b′′,j′ 6=

(
zi
′

a′,b′′ , v
i′

a′,b′′

))
≤
(1

2
− θ

10 · log n

)10

,

where the probability is over the noise in bits sent by party i′ in Stage Boost.

Proof. Recall that ECC : {0, 1}` → {0, 1}1000` and therefore party i′ broadcasts

ECC
(
(zi
′

a′,b′′ , v
i′

a′,b′′)
)

over 1000` rounds in Line 3. We let Xz, for z ∈ [1000`], be the indicator

random variable that is 1 if and only if zth value received by party i is corrupted. By

definition, we have that the variablesXz are mutually independent and satisfy E[Xz] = ε = 1
10

(Equation 4). Due to Equation 7, we have that:

Pr
(
C̃ia′,b′′,j′ 6= (zi

′

a′,b′′ , v
i′

a′,b′′)
)
≤ Pr

(
1000`∑
z=1

Xz ≥ 200`

)

≤ exp

(
−200`

6

)
(Corollary 4.2)

≤
(1

2
− θ

10 · log n

)10

. (Equation 5)

Definition 8.3. For i ∈ [n], a′ ∈ [n/A], and b′′ ∈ [A/k], define the set Badia′,b′′ ⊆ Fa′ of

parties i′ = (a′, j′) that satisfy at least one of the following:

1. i′ ∈ Mal.

2. C̃ia′,b′′,j′ 6=
(
zi
′

a′,b′′ , v
i′

a′,b′′

)
.

3. sepα
(
qi
′

a′,b′′ , pa′,b′′
)
6= ∅.

We also define the set Goodia′,b′′ = Fa′ \ Badia′,b′′.

Intuitively, a party i′ ∈ Badia′,b′′ if the coordinate sent by party i′ should be ignored

by the other parties while decoding (either because i′ is malicious or received the prior

communication incorrectly).

Lemma 8.4. For i ∈ [n], a′ ∈ [n/A], and b′′ ∈ [A/k], it holds that:

Pr

(∣∣Badia′,b′′∣∣ ≥ A · 9 + 2θ

20

)
≤ 1

n25
.

Proof. Due to Lemma 7.1, it is sufficient to show that
∣∣Badia′,b′′ \Mal

∣∣ ≤ A · 1−2θ
5

except with

probability at most 1
n30 . For i′ = (a′, j′) ∈ Fa′ \ Mal, define the indicator random variable

Xi′ that is 1 if and only if i′ ∈ Badia′,b′′ \ Mal. As Xi′ is determined by the noise in bits

31

received by party i′ in Stage Broadcast and the noise in the bits sent by party i′ in Stage

Boost (Lemma 8.1 and Lemma 8.2), the variable Xi′ are mutually independent. We also

have:

E[Xi′] = Pr(Xi′ = 1)

≤ Pr
(
C̃ia′,b′′,j′ 6=

(
zi
′

a′,b′′ , v
i′

a′,b′′

))
+ Pr

(
sepα

(
qi
′

a′,b′′ , pa′,b′′
)
6= ∅
)

(Definition 8.3)

≤ Pr
(
C̃ia′,b′′,j′ 6=

(
zi
′

a′,b′′ , v
i′

a′,b′′

))
+

1

k3
(Lemma 8.1)

≤
(1

2
− θ

10 · log n

)10

+
1

k3
(Lemma 8.2)

≤
(1

2
− θ
10

)2

. (Equation 5)

By linearity of expectation, it follows that
∑

i′∈Fa′\Mal E[Xi′] ≤ A ·
(

1
2
−θ
10

)2
and we have:

Pr

 ∑
i′∈Fa′\Mal

Xi′ ≥ A · 1− 2θ

5

 ≤ exp

(
−A · 1− 2θ

30

)
(Corollary 4.2 as

∑
i′∈Fa′\Mal E[Xi′] ≤ A ·

(
1
2
−θ
10

)2
)

≤ 1

n30
. (Equation 5)

finishing the proof.

Lemma 8.5. Let i ∈ [n], a′ ∈ [n/A], and b′′ ∈ [A/k] be fixed.

1. It holds that:

Pr

(∣∣∣sep-mixβ(C(pa′,b′′), C̃
i
a′,b′′)

∣∣∣ ≥ A

2

)
≤ 1

n20
.

2. For all p′ ∈ ({0} ∪ [m])k such that sepα+β(p′, pa′,b′′) 6= ∅, it holds that:

Pr

(∣∣∣sep-mixβ(C(p′), C̃ia′,b′′)
∣∣∣ ≤ A

2

)
≤ 1

n20
.

Proof. Throughout this proof, we assume that
∣∣Badia′,b′′∣∣ < A · 9+2θ

20
. By Lemma 8.4,

this holds except with probability at most 1
n25 . Next, note by Definition 8.3 that for

i′ = (a′, j′) ∈ Goodia′,b′′ , we have by item 2 of Definition 8.3 and Line 3 that

C̃ia′,b′′,j′ =
(
zi
′

a′,b′′ , v
i′

a′,b′′

)
=
(
zi
′

a′,b′′ ,Czi′
a′,b′′

(qi
′

a′,b′′)
)
. (9)

We also have by item 3 of Definition 8.3 that

sepα

(
qi
′

a′,b′′ , pa′,b′′
)

= ∅. (10)

32

Recall that, for a set S ⊆ [n] and an n-dimensional vector v, we use the notation v|S to

denote the vector v restricted to the coordinates in S. We prove each part in turn.

1. We have:

Pr

(∣∣∣sep-mixβ(C(pa′,b′′), C̃
i
a′,b′′)

∣∣∣ ≥ A

2

)
≤ Pr

(∣∣∣sep-mixβ

(
C(pa′,b′′), C̃

i
a′,b′′ |Goodi

a′,b′′

)∣∣∣ ≥ A

2
−
∣∣Badia′,b′′∣∣) (Corollary 6.2)

≤ Pr

(∣∣∣sep-mixβ

(
C(pa′,b′′), C̃

i
a′,b′′ |Goodi

a′,b′′

)∣∣∣ ≥ A · 1− 2θ

20

)
(As

∣∣Badia′,b′′∣∣ < A · 9+2θ
20

)

≤ Pr

(∣∣∣∣sep-mixβ

(
C(pa′,b′′),

{
C̃ia′,b′′,j′

}
i′=(a′,j′)∈Goodi

a′,b′′

)∣∣∣∣ ≥ A · 1− 2θ

20

)

To continue, we note that C̃ia′,b′′,j′ =
(
zi
′

a′,b′′ ,Czi′
a′,b′′

(qi
′

a′,b′′)
)

for all i′ = (a′, j′) ∈
Goodia′,b′′ and apply Lemma 6.3. Note that due to Equation 10 and Equation 6,

we have maxi′=(a′,j′)∈Goodi
a′,b′′

∣∣sepβ(C(pa′,b′′),C(qi
′

a′,b′′))
∣∣ ≤ A ·

(
1−2θ
200

)
. It follows that

A · 1−2θ
20
≥ 2 · |

Goodi
a′,b′′ |
A

·maxi′=(a′,j′)∈Goodi
a′,b′′

∣∣sepβ(C(pa′,b′′),C(qi
′

a′,b′′))
∣∣ and the conditions

of Lemma 6.3 are satisfied. We get:

Pr

(∣∣∣sep-mixβ(C(pa′,b′′), C̃
i
a′,b′′)

∣∣∣ ≥ A

2

)
≤ exp

(
−A · 1− 2θ

120

)
≤ 1

n25
, (Equation 5)

implying the result.

2. Note from Equation 10 and the fact that sepα+β(p′, pa′,b′′) 6= ∅ that we have from

Lemma 5.2 that:

sepβ

(
qi
′

a′,b′′ , p
′
)
6= ∅. (11)

We have:

Pr

(∣∣∣sep-mixβ

(
C(p′), C̃ia′,b′′

)∣∣∣ ≤ A

2

)
= Pr

(∣∣∣Fa′ \ sep-mixβ

(
C(p′), C̃ia′,b′′

)∣∣∣ ≥ A

2

)
≤ Pr

(∣∣∣Goodia′,b′′ \ sep-mixβ

(
C(p′), C̃ia′,b′′|Goodi

a′,b′′

)∣∣∣ ≥ A

2
−
∣∣Badia′,b′′∣∣)

(Corollary 6.2)

≤ Pr

(∣∣∣Goodia′,b′′ \ sep-mixβ

(
C(p′), C̃ia′,b′′|Goodi

a′,b′′

)∣∣∣ ≥ A · 1− 2θ

20

)
(As

∣∣Badia′,b′′∣∣ < A · 9+2θ
20

)

33

≤ Pr

(∣∣∣∣Goodia′,b′′ \ sep-mixβ

(
C(p′),

{
C̃ia′,b′′,j′

}
i′=(a′,j′)∈Goodi

a′,b′′

)∣∣∣∣ ≥ A · 1− 2θ

20

)
.

(Equation 9)

To continue, we note that C̃ia′,b′′,j′ =
(
zi
′

a′,b′′ ,Czi′
a′,b′′

(qi
′

a′,b′′)
)

for all i′ = (a′, j′) ∈ Goodia′,b′′

and apply Lemma 6.3. Note that due to Equation 11 and Equation 6, we have

mini′=(a′,j′)∈Goodi
a′,b′′

∣∣sepβ(C(p′),C(qi
′

a′,b′′))
∣∣ ≥ A ·

(
199+2θ
200

)
. It follows that

A · 1− 2θ

20
≥ 2 ·

(∣∣Goodia′,b′′∣∣− ∣∣Goodia′,b′′∣∣A
· min
i′=(a′,j′)∈Goodi

a′,b′′

∣∣∣sepβ(C(p′),C(qi
′

a′,b′′))
∣∣∣),

and the conditions of Lemma 6.3 are satisfied. We get:

Pr

(∣∣∣sep-mixβ

(
C(p′), C̃ia′,b′′

)∣∣∣ ≤ A

2

)
≤ exp

(
−A · 1− 2θ

120

)
≤ 1

n25
, (Equation 5)

implying the result.

8.3 Analyzing Stage Guess

We now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Observe from the parameters in Equation 5 that the number of rounds

in Algorithm 1 is n · Õ(
√

log n). We derive:

Pr
(
∃i, i′ = (a′, b′, c′) ∈ [n] \Mal : x̃ii′ 6= xi

′
)
≤

∑
i,i′=(a′,b′,c′)∈[n]\Mal

Pr
(
x̃ii′ 6= xi

′
)
.

(Union bound)

Observe from Line 1 and Equation 8 that, we have xi
′

= 0 ⇐⇒ pi′ = mε and

xi
′

= 1 ⇐⇒ pi′ = m(1 − ε). As ε = 1
10

(Equation 4), we can conclude from Line 6

that x̃ii′ 6= xi
′

=⇒ 1
(
p̃ia′,b′,c′ ≥ m

2

)
6= xi

′
=⇒

∣∣p̃ia′,b′,c′ − pi′∣∣ > m
3

. Plugging in, we get:

Pr
(
∃i, i′ = (a′, b′, c′) ∈ [n] \Mal : x̃ii′ 6= xi

′
)
≤

∑
i,i′=(a′,b′,c′)∈[n]\Mal

Pr
(∣∣p̃ia′,b′,c′ − pi′∣∣ > m

3

)
≤

∑
i,i′=(a′,b′,c′)∈[n]\Mal

Pr
(∣∣p̃ia′,b′,c′ − pa′,b′,c′∣∣ > m

3

)
≤

∑
i,i′=(a′,b′,c′)∈[n]\Mal

Pr
(
sepm

3

(
p̃ia′,b′ , pa′,b′

)
6= ∅
)

(Definition 5.1)

34

≤
∑

i,i′=(a′,b′,c′)∈[n]\Mal

Pr
(
sepα+β

(
p̃ia′,b′ , pa′,b′

)
6= ∅
)
.

(Equation 5)

Let S be the set of all p′ ∈ ({0} ∪ [m])k such that sepα+β(p′, pa′,b′) 6= ∅. We get:

Pr
(
∃i, i′ = (a′, b′, c′) ∈ [n] \Mal : x̃ii′ 6= xi

′
)

≤
∑

i,i′=(a′,b′,c′)∈[n]\Mal

(∑
p′∈S

Pr
(
p̃ia′,b′ = p′

))
(Union bound)

≤
∑

i,i′=(a′,b′,c′)∈[n]\Mal

(∑
p′∈S

Pr
(∣∣∣sep-mixβ(C(p′), C̃ia′,b′)

∣∣∣ ≤ ∣∣∣sep-mixβ(C(pa′,b′), C̃
i
a′,b′)

∣∣∣)).
(Line 5)

Next, note that
∣∣∣sep-mixβ(C(p′), C̃ia′,b′)

∣∣∣ ≤ ∣∣∣sep-mixβ(C(pa′,b′), C̃
i
a′,b′)

∣∣∣ is not possible unless

either
∣∣∣sep-mixβ(C(p′), C̃ia′,b′)

∣∣∣ ≤ A
2

or
∣∣∣sep-mixβ(C(pa′,b′), C̃

i
a′,b′)

∣∣∣ ≥ A
2
. Using Lemma 8.5, the

probability of one of the latter occurring is at most 1
n19 . We get:

Pr
(
∃i, i′ = (a′, b′, c′) ∈ [n] \Mal : x̃ii′ 6= xi

′
)
≤

∑
i,i′=(a′,b′,c′)∈[n]\Mal

(∑
p′∈S

1

n19

)

≤ n2 · (m+ 1)2k · 1

n19

≤ n2 ·m3k · 1

n19

≤ 1

n10
. (Equation 5)

Acknowledgements

We thank Huacheng Yu for helpful discussions, and also thank the anonymous reviewers for

their helpful comments.

References

[ABE+16] Noga Alon, Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard

Haeupler. Reliable communication over highly connected noisy networks. In

Symposium on Principles of Distributed Computing (DISC), pages 165–173.

ACM, 2016. 1

35

[AI08] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. Commun. ACM, 51(1):117–

122, 2008. 4

[AIR18] Alexandr Andoni, Piotr Indyk, and Ilya P. Razenshteyn. Approximate nearest

neighbor search in high dimensions. CoRR, abs/1806.09823, 2018. 4

[BEGH16] Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler.

Constant-rate coding for multiparty interactive communication is impossible. In

Symposium on Theory of Computing (STOC), pages 999–1010. ACM, 2016. 1

[EKS18] Klim Efremenko, Gillat Kol, and Raghuvansh Saxena. Interactive coding over

the noisy broadcast channel. In Symposium on Theory of Computing (STOC),

pages 507–520. ACM, 2018. 1

[FK00] Uriel Feige and Joe Kilian. Finding OR in a noisy broadcast network. Information

Processing Letters, 73(1-2):69–75, 2000. 1

[Gal88] Robert G. Gallager. Finding parity in a simple broadcast network. IEEE

Transactions on Information Theory, 34(2):176–180, 1988. 1, 2, 7

[Gam87] Abbas El Gamal. Open problems presented at the 1984 workshop on specific

problems in communication and computation sponsored by bell communication

research. “Open Problems in Communication and Computation”, by Thomas M.

Cover and B. Gopinath (editors). Springer-Verlag, 1987. 2

[GKS08] Navin Goyal, Guy Kindler, and Michael Saks. Lower bounds for the noisy

broadcast problem. SIAM Journal on Computing, 37(6):1806–1841, 2008. 2,

4, 7

[GSW15] Ran Gelles, Amit Sahai, and Akshay Wadia. Private interactive communication

across an adversarial channel. IEEE Trans. Inf. Theory, 61(12):6860–6875, 2015.

4

[HMP20] Kokouvi Hounkanli, Avery Miller, and Andrzej Pelc. Global synchronization

and consensus using beeps in a fault-prone multiple access channel. Theoretical

Computer Science, 806:567–576, 2020. 5

[KM98] Eyal Kushilevitz and Yishay Mansour. An ω(d log(n/d)) lower bound for

broadcast in radio networks. SIAM J. Comput., 27(3):702–712, 1998. 1, 3

[New04] Ilan Newman. Computing in fault tolerance broadcast networks. In

Computational Complexity Conference (CCC), pages 113–122, 2004. 1, 3

36

[PS97] Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge

coloring via an extension of the chernoff-hoeffding bounds. SIAM J. Comput.,

26(2):350–368, 1997. 17

[RS94] Sridhar Rajagopalan and Leonard J. Schulman. A coding theorem for distributed

computation. In Symposium on the Theory of Computing (STOC), pages 790–

799, 1994. 1

[Sch92] Leonard J Schulman. Communication on noisy channels: A coding theorem

for computation. In Foundations of Computer Science (FOCS), pages 724–733.

IEEE, 1992. 1

[Sch93] Leonard J Schulman. Deterministic coding for interactive communication. In

Symposium on Theory of computing (STOC), pages 747–756. ACM, 1993. 1

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions

on Information Theory, 42(6):1745–1756, 1996. 1

37
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

