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Abstract

In this work we prove that there is a function f ∈ ENP such that, for every sufficiently large
n and d =

√
n/ log n, fn ( f restricted to n-bit inputs) cannot be (1/2 + 2−d)-approximated

by F2-polynomials of degree d. We also observe that a minor improvement (e.g., improving
d to n1/2+ε for any ε > 0) over our result will imply ENP cannot be computed by depth-3
AC0-circuits of 2n1/2+ε

size, which is a notoriously hard open question in complexity theory.
Using the same proof techniques, we are also able to construct extremely rigid matrices

over F2 in PNP. More specifically, we show that for every constant ε ∈ (0, 1), there is a
PNP algorithm which on input 1n outputs an n × n F2-matrix Hn satisfying RHn(2

log1−ε n) ≥
(1/2− exp(− log2/3·ε n)) · n2, for every sufficiently large n. This improves the recent PNP con-
structions of rigid matrices in [Alman and Chen, FOCS 2019] and [Bhangale et al., FOCS 2020],
which only gives Ω(n2) rigidity.

The key ingredient in the proof of our new results is a new derandomized XOR lemma based
on approximate linear sums, which roughly says that given an n-input function f which can-
not be 0.99-approximated by certain linear sum of s many functions in F within `1-distance,
one can construct a new function Amp f with Õ(n) input bits, which cannot be (1/2 + sΩ(1))-
approximated by F -functions. Taking F to be a function collection containing low-degree
F2-polynomials or low-rank F2-matrices, our results are then obtained by first using the algo-
rithmic method to construct a function which is weakly hard against linear sums of F in the
above sense, and then apply the derandomized XOR lemma to f .

We obtain our new derandomized XOR lemma by giving a generalization of the famous
hardcore lemma by Impagliazzo. Our generalization in some sense constructs a non-Boolean
hardcore of a weakly hard function f with respect to F -functions, from the weak inapprox-
imability of f by any linear sum of F with bounded `p-norm. This generalization recovers
the original hardcore lemma by considering the `∞-norm. Surprisingly, when we switch to the
`1-norm, we immediately rediscover Levin’s proof of Yao’s XOR Lemma. That is, these first
two proofs of Yao’s XOR Lemma can be unified with our new perspective. For proving the
correlation bounds, our new derandomized XOR lemma indeed works with the `4/3-norm.
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1 Introduction

1.1 Background

We consider multivariate polynomials over F2. In particular, every n-variable polynomial P : {0, 1}n →
{0, 1} over F2 can be written as

P(x1, . . . , xn) ≡ ∑
S⊆[n]

αS ·∏
i∈S

xi. (mod 2)

The degree of P, denoted as deg(P), is defined as max{|S| : αS 6= 0}.
Understanding the power and limitations of F2-polynomials as a model of computation is of

fundamental interest in complexity theory. We will be particularly interested in exhibiting func-
tions which are hard to be approximated by low-degree F2-polynomials.1 Formally, for any two
functions f , g : {0, 1}n → {0, 1}, we define their correlation as

corr( f , g) =
∣∣∣∣ Pr

x←Un
[ f (x) = g(x)]− Pr

x←Un
[ f (x) 6= g(x)]

∣∣∣∣ .

Let Pd be the collection of F2-polynomials with degree ≤ d. Slightly abuse notation, we also write
corr( f , d) := maxP∈Pd corr( f , P).

The correlation bound against F2-polynomials2, a major question in complexity theory, asks
to find an explicit function (i.e., a function in NP) which cannot be approximated by low-degree
F2-polynomials, that is, to prove upper bounds on corr( f , d) for an explicit function f and various
choices of d.

Since F2-polynomial is such a simple and elegant computational model, this question is clearly
interesting in its own right. It is nonetheless also inherently connected to a variety of other fun-
damental questions in complexity theory. In fact, it was shown that improvements on correlation
bound against F2-polynomials are necessary or sufficient for progress on other major open ques-
tions. We highlight one typical example below (for more connections, we refer to the excellent
exposition by Viola [Vio09]).

1.1.1 Connection to AC0[⊕]-Circuits

AC0[⊕] denotes the class of constant-depth circuits consisting of AND, OR, XOR and NOT gates
of unbounded fan-in. The celebrated polynomial approximation method, which shows lower
bounds for AC0[⊕]-circuits follow from correlation bounds against F2-polynomials, was first es-
tablished by Razborov [Raz87], who applied this connection to prove the first super-polynomial
lower bounds against AC0[⊕], which was later refined and improved by [Smo87, Smo93]. This
connection has since then become the integral tool in the study of the computational power of
AC0[⊕]-circuits, see [RSS18, KS18, CHLT19, OSS19, LSSTV19, Vio20b, CGLLS20] for some recent
work on this direction.

1.1.2 Known Progress on Correlation Bounds for Explicit Functions against F2-Polynomials

The renowned work by Razborov and Smolensky [Raz87, Smo87, Smo93] mentioned above proved
that the majority function MAJ3 satisfies corr(MAJn, d) ≤ O(d/

√
n). Despite nearly 40 years

1We remark that it is not hard to exhibit a function which cannot be exactly computed by F2-polynomials of degree
less than n. An example would be the AND function on n input bits.

2In the Boolean setting, correlation bounds and average-case lower bounds are equivalent, and we will use these
two terms interchangeably in this paper (see Section 3.1).

3The function MAJn : {0, 1}n → {0, 1} outputs 1 if and only if there are more ones than zeros in its input.

1



passed, they remain the strongest correlation bound we known for any explicit functions in NP
against log n-degree F2-polynomials, and no o(1) correlation bounds were known for

√
n-degree

Fn-polynomials. Indeed, even the following questions are still open (see [Vio09] for more in-depth
discussions of these open problems).

Open Problem 1. Is there a function f ∈ NP such that corr( f , log n) ≤ o(1/
√

n)?

Open Problem 2. Is there a function f ∈ NP such that corr( f ,
√

n) ≤ o(1)?

Recall that the Razborov-Smolensky bound showed that corr(MAJn, log n) ≤ O(log n/
√

n)
and corr(MAJn, o(

√
n)) ≤ o(1).4 These two open questions ask to improve the Razborov-Smolensky

bound for the degree log n or
√

n, by even a tiny amount.
For lower degrees (d ≤ o(log n)), stronger correlation bounds were known by [BNS92, Bou05,

GRS05, VW08, CHHLZ20]. It was also proved that very strong inverse exponential correlation
bounds against constant-degree F2-polynomials would improve the state-of-the-art lower bound
against unrestricted Boolean circuits [GKW18].

1.1.3 Recent Progress on Correlation Bounds for “Semi-explicit” Functions against F2-Polynomials

Since the progress on resolving Open Problem 1 and Open Problem 2 for an explicit function in
NP has been lacking for decades, it motivates the interest to exhibit a hard function in some larger
complexity classes first.

In fact, Open Problem 1 was even open for the gigantic classes ENP, until the recent inde-
pendent work by Chen and Ren [CR20] and Viola [Vio20b]. In [CR20], a (1/2 + 2−polylog(n))-
inapproximability bound for NQP5 against ACC0 was proved, which implies that the there is a
function f ∈ NQP such that corr( f , polylog(n)) ≤ 2−polylog(n). In Viola [Vio20b], it is established
that there is a function f ∈ ENP such that corr( f , no(1)) ≤ n−1+ε for any ε > 0.

Later, a recent work by Chen, Lyu and Williams [CLW20] proved that for every constant ε > 0,
there is a function f ∈ ENP such that corr( f , n1/2−ε) ≤ exp(−nΩε(1)), where Ωε(1) is a constant
approaching 0 when ε approaching 0. However, Open Problem 2 still remained open even for ENP.

1.2 Our Results

1.2.1 Strong Correlation Bounds “One Epsilon” Away from a Circuit Lower Bound Break-
through

In this work, we significantly improved upon the correlation bounds from [CLW20].

Theorem 1.1. There is a function f ∈ ENP which, for every sufficiently large n and for any d ≤
o(n/ log n)1/2, it holds that corr( fn, d) ≤ 2−d.

One may wonder whether Theorem 1.1 can be further improved to, say, corr( fn, d) ≤ 2−d

for d = n1/2+ε. We observe that such improvement will imply new depth-3 AC0-circuits lower
bounds.

Theorem 1.2. For any function d(n) : N→N, if there is a function f in ENP such that corr( fn, d(n)) ≤
2−d(n) for infinitely many n ∈N, then there is a function g in ENP that does not admit depth-3 AC0-circuits
of size at most 2o(d(n)).

4These are indeed tight for MAJ, see [Vio20a].
5NQP := NTIME[npolylog(n)] stands for nondeterministic quasi-polynomial time.
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Currently, the best known depth-3 AC0-circuits lower bound is 2Ω(
√

n) [Hås89]. It has been
a notorious open question to prove better lower bounds against depth-3 AC0-circuits, even for
functions in complexity class as large as ENP. Therefore, improving our result, even by an “epsilon
amount” on the exponent, would imply a breakthrough in constant-depth circuit lower bounds.

1.2.2 Better Degree-Error Trade-Off for ENP against F2-Polynomials

Due to some technical obstacles, the proof of Theorem 1.1 does not give any non-trivial correlation
bounds for higher degrees (i.e., d ≥

√
n). Still, using a different proof, we managed to show a

trade-off between error and degree for ENP against degree-d F2-polynomials.

Theorem 1.3. For every β ∈ (0, 1), there is an ENP function f such that, for every sufficiently large n, it
holds that corr( f , nβ/ log n) ≤ exp(−Ω(n

2
3 (1−β))).

Setting β = 0.5, Theorem 1.3 resolved Open Problem 2 for ENP in a very strong way. It gives
an inverse exponential correlation of 2−Ω̃(n1/3) against

√
n-degree F2-polynomials. However, we

remark that this does not match the correlation bound in Theorem 1.1 when β is slightly less than
0.5, and we leave it as an interesting open question to obtain a better trade-off. (We believe that
corr( f , d) ≤ exp(−Ω(n

2
3 (1−β)/ log n)) can be further improved to corr( f , d) ≤ exp(−Ω(n(1−β)/ log n)),

for all β ∈ (0, 1).)

1.2.3 PNP Construction of Extremely Rigid Matrices

In fact, the proof of Theorem 1.3 above builds on the techniques behind the PNP-construction of
rigid matrices [BHPT20, AC19]. More specifically, we rely on the rectangular PCPs constructed
in [BHPT20]. Fully utilizing this technique, we can also construct extremely rigid matrices over F2
in PNP.

We first recall the definition of rigid matrices.

Definition 1.4. For r, n ∈ N and a matrix M ∈ Fn×n
2 , the r-rigidity of M, denoted as RM(r), is the

minimum number of entries one needs to change in M to make its rank over F2 at most r.

Theorem 1.5. For every constant ε ∈ (0, 1), there is a PNP algorithm which on input 1n outputs an n× n
F2-matrix Hn satisfyingRHn(2

log1−ε n) ≥ (1/2− exp(− log2/3·ε n)) · n2, for every sufficiently large n.

The matrix H constructed in Theorem 1.5 is extremely rigid in the sense that evenRHn(1) cannot
be greater than 1/2 · n2 (either the all-zero or the all-one matrix agrees with H on at least 1/2 · n2

entries).

Comparison with previous work. The problem of efficiently constructing rigid matrices is a long-
standing open problem in complexity theory [Val77, Lok09, Raz89].

Alman and Chen [AC19] established a PNP construction of matrices Hn satisfyingRHn(2
log1/4−ε n) ≥

Ω(n2), which was later significantly improved to RHn(2
log1−ε n) ≥ Ω(n2) by Bhangale, Harsha,

Paradise and Tal [BHPT20]. The constructions in both of [AC19] and [BHPT20] are infinitely-often
constructions in the sense that they only work for infinitely many input lengths n. [CLW20] re-
cently improved [BHPT20]’s construction so that it also works almost everywhere, in the sense that
it now construct rigid matrices for every sufficiently large input length n.

Our construction improved upon all the previous work by further showing an almost-everywhere
PNP construction of extremely rigid matrices, still with respect to rank 2log1−ε n.
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Independent Work. Without using our new derandomized XOR lemma, it is possible to com-
bine the known techniques in [CLW20] and [BHPT20] in a very non-trivial way to obtain a weaker
trade-off thatRHn(2

log1−ε n) ≥ (1/2− exp(− log1/2·ε n)) · n2, which would also resolve Open Prob-
lem 2 for ENP. Such a weaker trade-off has been independently proved by Lu [Lu20] and by Huang
and Viola [HV20].6

The common insight in our work and both [Lu20] and [HV20] is that we can apply the classic
XOR Lemma even in the setting of constructing rigid matrices.

1.2.4 Nondeterministic PRGs with Near-Logarithmic Seed-Length from Non-Trivial Algorithms

In [CLW20], it was shown that for a typical circuit class C, a 2n−nε
-time CAPP algorithm7 for 2nε

-
size C-circuits implies an infinite-often non-deterministic PRGs (i.o.-NPRGs)8 for polynomial-size
C with polylog(n) seed length. Combing with the corresponding algorithm for polynomial-size
ACC0 [Wil14], this immediately implies an i.o.-NPRG for ACC0 with polylog(n) seed length.

Naturally, one may wonder whether that seed length can be improved to the optimal O(log n)
if one starts with a 2n−εn-time algorithm instead. We show that this is the case, by proving the
following theorem.

Theorem 1.6 (Informal). Let C be a nice circuit class. If there is an ε > 0 such that, the #SAT (or CAPP)
problem of C ◦ Junta2εn -circuit of size 2εn can be solved in 2(1−ε)n time, then there exists an infinitely often
NPRG which takes O(log n log log2 n) bits seeds, runs in time poly(n) and fools C -circuits of size n.

1.3 Our Techniques

Perhaps more interestingly, our new results are all proved by a new derandomized XOR lemma
based on approximate linear sums, and as far as we know, this is the first application of hardness
amplification in the context of constructing rigid matrices. Before formally stating and discussing
our new derandomized XOR lemma, it is instructive to review the XOR lemma in [CLW20], and
why it cannot be used to prove the strong correlation bounds as in Theorem 1.1.

Notation. From now on, we will always use Boolean functions to denote a function from {0, 1}∗
to {−1, 1}, where −1 and 1 are interpreted as True and False, respectively. This choice will
be particularly convenient for studying and stating correlation bounds or average-case lower
bounds. For two functions f , g : {0, 1}n → {−1, 1}, we will use 〈 f , g〉 to denote their inner product
Ex∈{0,1}n [ f (x) · g(x)].9

For a collection of functions F , we always use Fn to denote the subset of F consisting of n-bit
functions fromF . We will also need to define Sum ◦F -functions: a Sum ◦F -function C : {0, 1}n →
R can be written as C(x) = ∑`

i=1 αi ·Ci(x), where each αi is a real, and each Ci(x) is anFn-function.
Here ` is called the sparsity of C. We also use complexity(C) to denote max(`, ∑`

i=1 |αi|).
6More precisely, [HV20] and [Lu20] stated a more fine-grained result that RHn (ρ) ≥ (1/2− 2−k) · n2 for log ρ ≤

δ log n/k(log log n + k) for a sufficiently small δ > 0. Our results imply the same but for log ρ ≤ δ log n/
√

k(log log n +
k). See Section 7 for more details.

7CAPP stands for Circuit Acceptance Probability Problem, which is complete for promise-BPP and is the canonical
derandomization problem. See Definition 8.2 for its definition.

8See Definition 8.1 for a formal definition.
9See Section 3.1 for more details on notation used in this paper.
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1.3.1 The XOR lemma in [CLW20] and Its Disadvantage

Formally, following Levin’s proof of Yao’s XOR Lemma [Lev87, GNW11], [CLW20] proved the
following lemma.

Lemma 1.7 ([Lev87] and [CLW20, Lemma 3.8]). LetF be a collection of functions closed under negation
and restriction. For n ∈N≥1, δ, ε ∈ (0, 1) and every function f : {0, 1}n → {−1, 1}, if

〈 f , C〉 < (1− δ)

for every Sum ◦ Fn-function C such that complexity(C) ≤ 10 · n/ε2 and ‖C‖∞ ≤ 1, then 〈 f⊕k, C〉 ≤
(1− δ)k + ε/δ for any f ∈ F .10

That is, given a function f which cannot be weakly approximated (say, 0.99-approximated) by
Sum ◦ Fn-functions, one can show that f⊕k is strongly average-case hard for F . The advantage
of Lemma 1.7 above over other versions of XOR lemmas [Yao82, Imp95, GNW11, IW97] is that it
adds minimal computational overhead from the target class F to the starting class Sum ◦ F , which
enables [CR20, CLW20] to apply Williams’ algorithmic method to obtain the required hardness
against Sum ◦ F using algorithms only for F .

Still, to obtain a 2−Ω(
√

n) correlation bound using Lemma 1.7 with a constant δ (say, δ = 0.01),
one has to set ε ≈ 2−

√
n and k ≈

√
n. Applying the algorithmic method, [CLW20] indeed man-

aged to prove that there is an ENP-computable function f : {0, 1}n → {−1, 1} which cannot be
(1 − δ)-approximated by linear sums of 2

√
n many F2-polynomials of degree at most

√
n. Ap-

plying Lemma 1.7, one can obtain a function Amp f := f⊕k such that corr(Amp f ,
√

n) ≤ 2−Ω(
√

n).
However, this is not enough, since Amp f in fact takes m = Θ(n1.5) bits of input, the correlation
bounds deteriorate to corr(Amp f , m1/3) ≤ 2−Ω(m1/3).

1.3.2 A New Derandomized XOR Lemma

To further improve the correlation bounds in [CLW20], we managed to prove a derandomized
XOR lemma based on approximate linear sums. Roughly speaking, we construct a pseudorandom
instances generator G : {0, 1}m → {0, 1}nk that takes a seed of length m = Õ(n), and produces k
instances to the function f . We can show that our generator G is pseudorandom enough to fool
the proof of XOR lemma, and establish the following new derandomized XOR lemma based on
approximate linear sums.

Lemma 1.8 ((Informal)). Let n ∈ N≥1, ε ∈ (0, 1), k = Θ(log ε−1) and F =
⋃

n∈N≥1
Fn be a function

collection satisfying some technical conditions11. There is a polynomial-time generator G : {0, 1}m →
{0, 1}nk with m = Õ(n) such that, for every function f : {0, 1}n → {−1, 1} that cannot be weakly
approximated by Sum ◦ F -functions of complexity at most O(n/ε2), then 〈 f⊕k ◦ G, C〉 ≤ εΩ(1) holds for
every C ∈ Fm.

The proof of our new derandomized XOR lemma is based on a “non-Boolean” generalization
of the concept of hardcore sets, which is thoroughly discussed in Section 2.1.1. Such a generaliza-
tion can also be used to give a completely different and duality-based proof of Lemma 1.7.

Combing Lemma 1.8 with the algorithmic method developed in [Wil13, CW19, CR20, CLW20]
for proving hardness against linear sums of collection of functions which admit efficient circuit-
analysis algorithms, we can then obtain our improved correlation bounds against F2-polynomials
and construction of extremely rigid matrices.

10The function f⊕k : ({0, 1}n)k → {−1, 1} is defined as f⊕k(x1, . . . , xk) = ∏k
i=1 f (xi).

11See Lemma 4.1 for the details.
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2 Technical Overview

In this section we give an overview of the proof ideas behind our new results. In Section 2.1
we define and dicuss the key concept, (ε, δ)`p -witnesses, behind our proofs. In Section 2.2 we
give a duality-based new proof of Lemma 1.7, which can be seen as a warm-up for later proofs.
In Section 2.3 we discuss the intuitions behind our proof of the new derandomization XOR lemma.

Recall that we use Boolean functions to denote functions from {0, 1}∗ to {−1, 1}, where −1
and 1 are interpreted as True and False respectively. We also introduce the concept of Hölder
conjugates below.

For every real p ≥ 1, recall that the `p-norm of f is defined as ‖ f ‖p := (Ex←Un | f (x)|p)1/p, and
the `∞-norm of f is defined as ‖ f ‖∞ := maxx∈{0,1}n | f (x)|. For p, q ∈ R≥1 ∪ {∞}, we say that p
and q are Hölder conjugates of each other, if it holds that 1/p + 1/q = 1.12

2.1 The Dual Witness to Inapproximability by Linear Sums

The first ingredient of our proof is a dual witness for inapproximability of a function f by Sum ◦
Fn-functions.

Definition 2.1. Let f : {0, 1}n → {−1, 1} be a function, let p ∈ R≥1 ∪ {∞}, and let δ > 0, ε > 0 be two
reals. We say that a function h : {0, 1}n → R is a (δ, ε)`p -witness for f against Fn-functions, if ‖h‖p ≤ 1,
‖h‖1 ≤ 1− δ and |〈C, f − h〉| ≤ ε for every C ∈ Fn.

We will often consider the setting where ε is very small and δ is a small constant (e.g., ε ≤ n−ω(1)

and δ = 0.01). That is, a (δ, ε)`p -witness h for f against Fn-functions can be used to perturb f so
that the resulting function f − h is extremely hard for Fn-functions.

If additionally we can also make 1− δ very small (instead of being a constant), then we would
immediately obtain strong average-case lower bounds for f against Fn. Formally, we have the
following remark.

Remark 2.2. If there is a (δ, ε)`p -witness for f against Fn-functions, then |〈C, f 〉| ≤ ε + (1− δ) for every
C ∈ Fn.

By Remark 2.2, to show that a function f is strongly average-case hard against Fn-functions, it
suffices to construct a witness h with very small ε and `1-norm. This will be the approach adopted
in the proofs of this section.

2.1.1 (δ, ε)`p -witnesses and Hardcore Sets

One may notice that the witness defined in Definition 2.1 appears to be very similar to the concept
of hardcore sets13, which are studied extensively in the complexity theory [Imp95, Hol05, RTTV08,
TTV09, BHK09]. The following discussions in this subsection are aimed to provide more intuitions
on Definition 2.1 and its connections to hardcore sets, and may be skipped without affecting the
understanding of the proofs in this paper.

12We use the convention that 1/∞ = 0, so it can be the case that p = 1 and q = ∞ and vice versa.
13Roughly speaking, a hardcore set H for a function f is a subset of {0, 1}n with at least δ · 2n elements such that f is

strongly average-case hard to compute by a certain class of functions with respect to the uniform distribution over H.
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From (δ, ε)`∞ -witnesses to (Boolean) hardcore sets. We remark quickly that when p = ∞, a
(δ, ε)`∞ -witness h is essentially equivalent to an Ω(δ)-dense hardcore set of f . Let Pcore := f − h, since
‖h‖∞ ≤ 1 and f is Boolean, it immediately implies that Pcore(x) either has the same sign with f (x)
or is zero. We can then construct a function fcore by setting each fcore(x) = f (x) independently
with probability |Pcore(x)|, and 0 otherwise.14 Note that for every x, E[ fcore(x)] = Pcore(x).

We can then obtain a hardcore set of f from fcore since with high probability: (1) Since ‖Pcore‖1 ≥
‖ f ‖1−‖h‖1 ≥ δ, at least an Ω(δ)-fraction of fcore(x) are non-zero (either−1 or 1), those are the in-
puts in our hardcore set. (2) 〈 fcore, C〉 will be very close to 〈Pcore, C〉 (by a Chernoff bound), which
is at most ε. This means f is extremely hard on this hardcore set.

(δ, ε)`p -witnesses as “non-Boolean” hardcore sets. When p 6= ∞, a (δ, ε)`p -witness h (or more

accurately, the function P`p
core := f − h obtained by perturbing f with h) can be thought of as a

non-Boolean hardcore set, in the following sense: (1) P`p
core has `1-norm at least ‖ f ‖1− ‖h‖1 ≥ δ, so

P`p
core is still of “δ-density” and (2) P`p

core is still extremely hard against for F -functions.
We cannot construct from P`p

core a Boolean hardcore f `p
core anymore, since many points in P`p

core

can have very large absolute values. Indeed, the norm p controls the Booleanness of f `p
core: the larger

the p is, the closer the f `p
core is to Boolean functions.

We also remark that another way to interpret P`p
core is that it corresponds to a certain hardcore

pseudodistribution instead of a hardcore distribution.15

2.1.2 From Inapproximability by Linear sums to (δ, ε)`p -Witnesses

The following “inapproximability-to-witness” lemma shows that we can construct a non-trivial
witness for f against Fn-function from the weak inapproximability of f by Sum ◦ Fn-function.
This lemma serves as the starting point for our derandomized XOR lemma. Its proof can be found
in Section 4.1.

Lemma 2.3. Let n ∈ N≥1, and let Fn be a collection of n-input functions that is closed under negation.
Let p, q ∈ R≥1 ∪ {∞} be such that p and q are Hölder conjugates of each other. For every function
f : {0, 1}n → {−1, 1} and δ, ε > 0, if we have

〈 f , C〉 < (1− δ)

for every Sum ◦ Fn-function C such that complexity(C) ≤ 10 · n/ε2 and ‖C‖q ≤ 1, then there is a
(δ, ε)`p -witness h for f against Fn-functions.

Moreover, for the case p = ∞ and q = 1, the condition can be replaced by that for every MAJ ◦ F -
function C with top-sparsity bounded by 10n/ε2, it holds that 〈 f , C〉 < 1− 2δ.

Remark 2.4. By the discussions in Section 2.1.1, when (p, q) = (∞, 1), a (δ, ε)`p -witness immediately
implies the existence of an Ω(δ)-dense hardcore set of f against Fn-functions. Thus, the moreover part
of Lemma 2.3 is equivalent to Impagliazzo’s Hardcore Lemma.

2.2 A New Proof of the Original XOR Lemma

As a warm-up, in this section we will first give a new proof of Levin’s XOR Lemma [Lev87],
reformulated by [CLW20, Lemma 3.8].

14If ‖Pcore‖∞ > 1, we can scale Pcore by 1/2, this only reduces its density by a factor of 2.
15see [BCG20, CL20] for more discussions on recent works in derandomization using pseudodistributions.
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Reminder of Lemma 1.7. Let F be a collection of functions closed under negation and restriction. For
n ∈N≥1, δ, ε ∈ (0, 1) and every function f : {0, 1}n → {−1, 1}, if

〈 f , C〉 < (1− δ)

for every Sum ◦ Fn-function C such that complexity(C) ≤ 10 · n/ε2 and ‖C‖∞ ≤ 1, then 〈 f⊕k, C〉 ≤
(1− δ)k + ε/δ for any f ∈ F .

ε-Indistinguishability. For two functions f , g : {0, 1}n → R and a parameter ε > 0, we say that
f and g are ε-indistinguishable by Fn-functions if |〈 f − g, C〉| ≤ ε for every C ∈ Fn.

Proof of Lemma 1.7. Applying Lemma 2.3 with (p, q) = (1, ∞), the condition in the lemma implies
that there is a (δ, ε)`1-witness h for f against Fn-functions. That is:

1. f and h are ε-indistinguishable by F -functions.

2. h has `1-norm at most (1− δ), which is slightly less than 1.

Proof plan. Our proof will be duality-based. That is, to show f⊕k(x) is strongly average-case
hard, we will show that the function h⊕k is a sufficient witness to apply Remark 2.2. That is, we
want to show the following:

1. (Indistinguishability.) f⊕k is (ε/δ)-indistinguishable from h⊕k by F -functions.

2. (Bounded `1-norm.) h⊕k has `1-norm bounded by (1− δ)k.

The second item above is easy to establish, since ‖h⊕k‖1 = ‖h‖k
1 ≤ (1− δ)k. Hence it only

remains to show the first item.

A hybrid argument. We will show the indistinguishability between f⊕k and h⊕k by a hybrid
argument. For every i ∈ {0, . . . , k}, we define a hybrid function Hh, f

i := h⊕i ⊗ f⊕k−i. That is, for
every r = (r1, . . . , rk) ∈ ({0, 1}n)k, we have

Hh, f
i (r) =

i

∏
j=1

h(rj) ·
k

∏
j=i+1

f (rj).

Note that Hh, f
0 and Hh, f

k are just f⊕k and h⊕k, respectively. We will show that Hh, f
0 and Hh, f

k are
indistinguishable by showing that for every i ∈ {0, . . . , k− 1}, the two consecutive functions Hh, f

i

and Hh, f
i+1 are indistinguishable. Formally, we have the following claim.

Claim 2.5. For every i ∈ [k] and every C ∈ Fnk, |〈Hh, f
i−1 − Hh, f

i , C〉| ≤ ε · (1− δ)i−1.

We will prove Claim 2.5 later, but assuming it for now, for every C ∈ Fnk, we have

|〈 f⊕k, C〉| ≤ |〈h⊕k, C〉|+ |〈 f⊕k − h⊕k, C〉|

≤ ‖h‖k
1 +

k

∑
i=1

∣∣∣〈Hh, f
i−1 − Hh, f

i , C〉
∣∣∣ (‖C‖∞ = 1)

≤ (1− δ)k + ε ·
k−1

∑
i=0

(1− δ)i (Claim 2.5 and ‖h‖1 ≤ 1− δ)

≤ (1− δ)k + ε/δ.
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Finally, we prove Claim 2.5.

Proof of Claim 2.5. From the definition of Hh, f
i−1 and Hh, f

i , we have

〈Hh, f
i−1−Hh, f

i , C〉 = E
r←Unk

[
C(r1, . . . , rk) ·

i−1

∏
j=1

h(rj) ·
k

∏
j=i

f (rj)

]
− E

r←Unk

[
C(r1, . . . , rk) ·

i

∏
j=1

h(rj) ·
k

∏
j=i+1

f (rj)

]
.

(1)
We use r−i to denote (r1, . . . , ri−1, ri+1, . . . , rk) ∈ ({0, 1}n)k−1, so that r ∈ {0, 1}nk can be decom-

posed into ri and r−i. Organizing the right side of (1), we have

〈Hh, f
i−1 − Hh, f

i , C〉 = E
r−i←Un(k−1)

i−1

∏
j=1

h(rj) ·
k

∏
j=i+1

f (rj) · E
ri←Un

[C(r1, . . . , rk) · ( fi(ri)− hi(ri))]. (2)

To further bound (2), for each r−i ∈ ({0, 1}n)k−1, we define a function Dr−i : {0, 1}n → {−1, 1}
as

Dr−i(x) := C(r1, . . . , ri−1, x, ri+1, . . . , rk).

It follows that Dr−i ∈ Fn since F is closed under restriction. Therefore, since h is a (δ, ε)`1-witness
for f against Fn-functions, we have

|〈 f − h, Dr−i〉| ≤ ε. (3)

Plugging in (2), we have

|〈Hh, f
i−1 − Hh, f

i , C〉| =
∣∣∣∣∣ E
r−i←Un(k−1)

i−1

∏
j=1

h(rj) ·
k

∏
j=i+1

f (rj) · 〈 f − h, Dr−i〉
∣∣∣∣∣ (4)

≤ ε · E
r−i←Un(k−1)

i−1

∏
j=1
|h(rj)| (by (3) and ‖ f ‖∞ = 1)

≤ ε ·
i−1

∏
j=1

E
rj←Un

|h(rj)| (5)

≤ ε · (1− δ)i−1. (‖h‖1 ≤ 1− δ)

2.3 New Derandomized XOR Lemma

Now we turn to the proof intuitions behind the proof of our new derandomized XOR lemma. We
begin by introducing the concept of pseudorandom instance generator and some useful notation.

Pseudorandom instance generators and notation. For convenience, let F =
⋃

n∈N≥1
Fn be a

collection of functions closed under negation and restriction. We will always use f : {0, 1}n →
{−1, 1} to denote a weakly average-case hard function on which we will apply the hardness am-
plification, and we will always use n to denote the input length of f .

The idea is to use a pseudorandom instance generator G : {0, 1}m → ({0, 1}n)k (m is much less
than nk) to generate inputs to the function f⊕k, similar to the original derandomized XOR lemma
in [IW97]. That is, by directly composing the generator G and f⊕k, one obtain a function Amp f :=
f⊕k ◦ G, which has input length m instead of nk.

9



High-level idea. Our goal would be to construct the desired pseudorandom instance generator
G such that a similar argument as in the proof of Lemma 1.7 still goes through. That is, we wish
to show that Amph := h⊕k ◦ G is a dual-witness showing that Amp f = f⊕k ◦ G is strongly average-
case hard against F -functions (see Remark 2.2). Therefore, we need to establish the following two
statements:

1. (Indistinguishability.) Amp f and Amph are (εΩ(1))-indistinguishable by Fm-functions.

2. (Bounded `1-norm.) Amph has `1-norm at most (1− δ)k.

In the following, we show how to construct a generator meeting the two requirements above.
We will omit some technical details and focus on the key insights in our approach.

2.3.1 Establishing the Indistinguishability

First, our constructed G needs to ensure that Amp f = f⊕k ◦ G and Amph = h⊕k ◦ G are indistin-
guishable. In the following we will try to adapt the proof of Lemma 1.7, and figure out along the
way that which properties G has to satisfy for the adaption to go through.

A new hybrid argument and the difficulty. Again we will try to apply a hybrid argument, recall
that we have defined the hybrid functions Hh, f

i = h⊕i ⊗ f⊕k−i in the proof of Lemma 1.7. To
simplify notation, we let Gh, f

i = Hh, f
i ◦ G to denote our new hybrid functions. Note that Gh, f

0 =

Amp f and Gh, f
k = Amph.

Fix i ∈ [k], our goal is to show that |〈Gh, f
i−1 − G

h, f
i , C〉| is small for every C ∈ Fm. Recall in

the proof of Lemma 1.7, an analogous bound (Claim 2.5) is proved by considering the following
equalities:

|〈Hh, f
i−1 − Hh, f

i , C〉| =
∣∣∣∣∣ E
r←Unk

i−1

∏
j=1

h(rj) ·
k

∏
j=i+1

f (rj) · [C(r1, . . . , rk) · ( fi(ri)− hi(ri))]

∣∣∣∣∣
=

∣∣∣∣∣ E
r−i←Un(k−1)

i−1

∏
j=1

h(rj) ·
k

∏
j=i+1

f (rj) · 〈 f − h, Dr−i〉
∣∣∣∣∣ , (6)

where Dr−i : {0, 1}n → {−1, 1} is obtained by restricting the inputs r1, . . . , ri−1, . . . , ri+1, . . . , rk to
C by r−i. Since F is closed under restriction, it follows that Dri ∈ F , and we can then apply the
bound on |〈 f − h, Dr−i〉|, since f and h are indistinguishable by Fn-functions.

The key intuition in the proof above is that, since the i-th input ri in r = (r1, . . . , rk) is com-
pletely independent to the other k − 1 inputs, one can fix the other inputs first and then apply the
indistinguishability between f and h to replace f by h on ri.

Switching to our new setting. For a seed r ∈ {0, 1}m, we use r̃i to denote G(r)i for simplicity.
Then we can still write

|〈Gh, f
i−1 − G

h, f
i , C〉| = E

r←Um

i−1

∏
j=1

h(r̃j) ·
k

∏
j=i+1

f (r̃j) · [C(r) · ( fi(r̃i)− hi(r̃i))].

But since now all the r̃i are no longer independent (since they are generated from a seed r with
length m much less than nk). We cannot proceed as (6) anymore. That is, if we try to fix r̃−i first,
then it may even completely fix the value of r̃i, and we can no longer obtain a similar function Dr̃−i

on r̃i.
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Partial independence and F -restrictable generators. Inspired by the famous Nisan-wigderson
generator [NW94], and similar to the proof of the original derandomized XOR lemma in [IW97].
Our idea to resolve the issue above is to design the generator G in a way that, for each i, some part
of the seed r directly corresponds to r̃i, yet for all other bits, they are almost independent to r̃i.

More formally, we want a mapping Ti : {0, 1}n × {0, 1}m−n → {0, 1}m, such that: (1) Ti is a
bijection and (2) G(Ti(x, α))i = x for all (x, α) ∈ {0, 1}n × {0, 1}m−n. That is, the first condition
says that Ti is just a “reorganization” of the input space {0, 1}m while the second condition says
that x corresponds directly to r̃i.

Using the mapping Ti, we can write

|〈Gh, f
i−1 − G

h, f
i , C〉| =

∣∣∣∣∣∣∣ E
(x,α)←Um
r=Ti(x,α)

i−1

∏
j=1

h(r̃j) ·
k

∏
j=i+1

f (r̃j) · [C(r) · ( fi(x)− hi(x))]

∣∣∣∣∣∣∣ . (7)

For α ∈ {0, 1}m−n and x ∈ {0, 1}n, we let

Dα(x) :=
i−1

∏
j=1

h(r̃j) ·
k

∏
j=i+1

f (r̃j) · C(Ti(x, α)),

where the r̃j above corresponds to G(Ti(x, α))j (G(r)j if r = Ti(x, α)).
Plugging in the above into (7), it follows that

|〈Gh, f
i−1 − G

h, f
i , C〉| = E

α←Um−n
〈 f − h, Dα〉. (8)

Therefore, if the function Dα above still belongs to Fn, we can then apply the indistinguishabil-
ity between f and h byFn-functions, and proceed just as in the proof of Lemma 1.7. This motivates
our definition of F -restrictable generator as follows.

Definition 2.6 (F -restrictable generators). Given a function collection F and n ∈ N≥1, a generator
G : {0, 1}m → {0, 1}nk is called F -restrictable, if there are k embedding functions T1, . . . , Tk : {0, 1}n ×
{0, 1}m−n → {0, 1}m such that the following hold:

1. All the Ti are bijections.

2. For every i ∈ [k] and (x, α) ∈ {0, 1}n × {0, 1}m−n, G(Ti(x, α))i = x. That is, Ti(x, α) ∈ {0, 1}m

is a seed to G which fixes the i-th instance of G(Ti(x, α)) to be x.

3. For everyFm-function C : {0, 1}m → {−1, 1}, i ∈ [k], α ∈ {0, 1}m−n and functions u1, . . . , uk : {0, 1}n →
{1,−1}, the function D(x) := C(Ti(x, α)) ·∏j∈[k]\{i} uj(G(Ti(x, α))j) belongs to Fn.

In the proof of the original derandomized XOR Lemma by [IW97], a restrictable generator
for small circuits was constructed by directly adapting the Nisan-Wigderson generator [NW94],
which is unfortunately not enough for our applications. So instead, we design two restrictable
generators which are tailored to F2-polynomials and low-rank matrices.

To prove Theorem 1.1, we carefully construct a “star-like” F -restrictable generator for a func-
tion collection F which contains low-degree polynomials as a subset. And similarly, we design a
“bi-coloring” restrictable generator for low-rank matrices to prove Theorem 1.5. We will overview
the high-level ideas behind these constructions in Section 2.4.

If the function h is Boolean as well, then Item (3) of Definition 2.6 tells us Dα ∈ Fn and we
can then bound (3). However, the function h may be non-Boolean, and in fact, it may be even
unbounded. This causes Dα to also be a non-Boolean function, and we can not directly apply the
third condition in Definition 2.6.
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Smooth witnesses come to help. We first observe that the aforementioned issue can be resolved
if h is smooth in a certain sense. Suppose h is [−1, 1]-valued (that is, ‖h‖∞ ≤ 1), we can view Dα(x)
as a probabilistic F -function and apply a similar argument.

In more details, we sample i − 1 independent functions u1 . . . ui−1 : {0, 1}n → {−1, 1} from
certain distributions, in a way that for every x ∈ {0, 1}n, letting r = Ti(x, α), we have

E
uj
[uj(r̃j)] = h(r̃j) for every j ∈ [i− 1]. (9)

We then set

Dα;u1,...,ui−1(x) :=
i−1

∏
j=1

uj(r̃j) ·
k

∏
j=i+1

f (r̃j) · C(Ti(x, α)).

Recall that we have set r = Ti(x, α), and hence r̃j above corresponds to G(Ti(x, α))j.
By Item (3) of Definition 2.6, Dα;u1,...,ui−1 is an Fn-function for every possible (i − 1)-tuples

(u1, . . . , ui−1). Hence, we have

|〈Gh, f
i−1 − G

h, f
i , C〉| = E

α←Um−n
〈 f − h, Dα〉.

= E
α←Um−n

E
u1...ui−1

〈 f − h, Dα;u1...ui−1〉 (by (9))

≤ ε.

When ‖h‖∞ ≤ M, a simple scaling argument (replace h by h/M) can be used to show that
|〈Gh, f

i−1 − G
h, f
i , C〉| ≤ Mi−1 · ε. We refer to Lemma 4.7 for a formal (and more general) proof of the

argument above.

Norms and Smoothness of the witnesses. Setting (p, q) = (∞, 1), Lemma 2.3 shows that if we
can show that f is weakly inapproximable by Sum ◦ Fn-functions of unit `1-norm, then we would
obtain a (δ, ε)`∞ -witness h. And one can then proceed to prove our derandomized XOR lemma.

Unfortunately, due to some inherent limitation of the polynomial method, using the algorith-
mic method, it seems very hard to prove there is a function f ∈ ENP which is weakly inapprox-
imable by Sum ◦ Fn-functions of unit `1-norm.16

By carefully analyzing the approaches in [CW19, CR20, CLW20], we adapt the algorithmic
method to show that f is weakly inapproximable by Sum ◦Fn-functions (think ofFn as low-degree
F2-polynomials) of unit `4-norm. By Lemma 2.3, this gives us a (δ, ε)`4/3-witness h.

The bound on the `4/3-norm of h imposes a smoothness condition on h. Formally, since
Ex←Un [|h(x)|4/3] ≤ 1, for every t ≥ 1, it holds that

E
x←Un

[
|h(x)| · 1h(x)|≥t

]
≤ t−1/3 E

x←Un

[
|h(x)|4/3

]
≤ t−1/3.

That is, the total mass of “heavy points” in h is very small. This inspires us to decompose the
h as the sum of two functions hlight and hheavy, where hlight(x) := h(x) · 1|h(x)|<t and hheavy(x) :=
h(x) · 1|h(x)|≥t. Now, since ‖hlight‖∞ is a most t, one can deal with it with the approach discussed
above. For hheavy, since ‖hheavy‖1 is small, one may try to simply ignore this part.

16Indeed, this is impossible if we relax the condition on the total sum of absolute values of coefficients in C ∈ Sum ◦Fn:
Fixing a function f : {0, 1}n → {−1, 1}, one can always construct a Sum ◦ Fn-function C such that C(0n) = 2n · f (0n)
while C(x) = 0 for every x 6= 0n, by summing only two functions. This C is of sparsity 2, and satisfies ‖C‖1 = 1 and
〈C, f 〉 = 2−n · 2n = 1. On the other hands, the algorithmic method can still be used to show weak-inapproximability
by Sum ◦ Fn with unit `4-norm, even allowing the coefficients to be 2O(n).
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The real execution of the above plan is, however, much more complicated than the above
sounds. For one, after decomposing h into 2 parts, the function

Dα(x) :=
i−1

∏
j=1

h(r̃j) ·
k

∏
j=i+1

f (r̃j) · C(Ti(x, α))

actually breaks into 2i−1 parts. We have to carefully make sure that this exponential blow-up does
not cancel any advantage we gain in the decomposition.

Indeed, a simple two-way decomposition seems not sufficient, and in the real proof (see the
proof of Lemma 4.5), we will actually decompose h into many levels, where the k-th level is de-
fined as hk(x) := h(x) · 1|h(x)|∈(2k−1,2k ] (together with h0(x) := h(x) · 1|h(x)|≤1), and apply a novel
way to partition the exponential parts of Dα(r̃i) into only polynomially many groups, and bound
each of them separately. Our decomposition is somewhat similar to the analysis of the “bounded
independence plus noise” framework for constructing PRGs developed by Haramaty, Lee, and
Viola in [HLV18, LV17], which is later used by Forbes and Kelley to construct PRGs for unordered
branching programs [FK18].17

2.3.2 Bounding the `1-Norm

Finally, let us turn to the second condition we wish to establish for Amph, which requires us to
bound its `1-norm.

Mixing Amph by introducing fresh randomness. Since we essentially have no control over Amph,
if the generator G always “hits” the parts of h with large magnitude, then Amph could have `1-
norm even larger than 1. For example, if for all r ∈ {0, 1}m and i ∈ [k] it holds h(r̃i) ≥ 1, then
clearly ‖Amph‖1 ≥ 1 as well.

We resolve this issue by introducing some new fresh randomness to “mix” different parts of
h. To see the idea, let G be an arbitrary generator. Suppose that we sample k uniformly random
strings from {0, 1}n, denoted by w = (w1, . . . , wk) ∈ ({0, 1}n)k. We then consider the following
generator

Gw(r) := (G(r)1 ⊕ w1, . . . ,G(r)k ⊕ wk).

We can similarly define

Amp f ;w := f⊕k ◦ Gw and Amph;w := h⊕k ◦ Gw.

For any fixed r ∈ {0, 1}m, we have

E
(w1,...,wk)←Unk

|Amph;w(r)| = E
(w1,...,wk)←Unk

k

∏
i=1

h(G(r)i ⊕ wi) = ‖h‖k
1 ≤ (1− δ)k.

The second equality above holds since all the wi are i.i.d., which means the strings {G(r)i ⊕
wi}i∈[k] are i.i.d. as well.

Hence, taking an average over all r ∈ {0, 1}m, we have

E
(w1,...,wk)←Unk

‖Amph;w‖1 = E
(w1,...,wk)←Unk

E
r←Um

|Amph;w(r)| ≤ (1− δ)k.

17In more details, in the analysis of [FK18], they partition all monomials of a polynomial into roughly n groups
depending on when the monomials become “heavy” (see [FK18, Proposition 6.1]). For the exponentially many terms
resulting from decomposing h, we also partition them into roughly n groups depending on when they become “heavy”.
The definitions of “heavy” in our work and [FK18] differ since we are in very different settings.
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With some complications, we will still be able to show that Amph;w and Amp f ;w are indistin-
guishable.18 This is not surprising at all: for every fixed w = (w1, . . . , wk) the overall effect of w to
the generator is simply flipping some input bits to the functions f and h.

Full derandomization by PRGs for space-bounded computation. However, sampling w still
requires nk bits, so it may seem we did not gain anything. Our final proof ingredient is to show
that we can in fact generate “good enough” w by PRGs for space-bounded computation ([Nis92]),
which only require seeds of length O(n log k). We denote this generator as GNisan : {0, 1}O(n log k) →
{0, 1}nk, and take our final generator Gfinal as Gfinal(r1, r2) := G(r1)⊕ GNisan(r2), where ⊕ denotes
the bit-wise XOR. We remark that PRGs for space-bounded computation is also used in the proof
of hardness amplification for NP [HVV06, Lemma 5.7], although the usage there is quite different
from our usage.

2.4 Specific Restriction Generators for F2-Polynomials and Low-Rank Matrices

In this subsection, we give a high-level overview of our restrictable generators for F2-Polynomials
and low-rank matrices. Recall the definition of a F -restrictable generator G : {0, 1}m → {0, 1}nk:
for every i ∈ [k], advice α ∈ {0, 1}m−n, functions u1, u2, . . . , uk : {0, 1}n → {−1, 1} and C ∈ Fm,
the function:

D(x) := C(Ti(x, α)) · ∏
j∈[k]\{i}

uj(G(Ti(x, α))j). (10)

is an Fn-function.

2.4.1 The Star-Like Generator for Correlation Bounds

Roughly speaking, the smaller the function class F , the harder it is to get a restrictable generator
for F . Since low-degree F2-polynomials are not very expressive, it seems extremely hard to obtain
a restrictable generator for them directly. On the other hand, exactly due to the fact that low-degree
F2-polynomials are simple enough to be analyzed non-trivially by algorithms, we can utilize the
algorithmic method to prove lower bounds for them.

We will consider a larger function collection F containing low-degree F2-polynomials as a
subset, such that the following hold: (1) F is still simple enough to be analyzed non-trivially by
algorithms and (2) it is expressive enough so that one can design a near-optimalF -restrictable gen-
erator. Therefore, we can then apply our derandomized XOR Lemma to prove strong average-case
lower bounds against F , which immediately implies correlation bounds against F2-polynomials.

The larger function collection F . Formally, fixing an integer n ∈ N and let d =
√

n. We define
F as the function collection such that F consists of all functions f which has at least n input bits,
and can be written as f (x) = (−1)P(x) · g(x) for x ∈ {0, 1}m, where P is an F2-polynomial with
degree bounded by d and g : {0, 1}m → {−1, 1} is a function that only depends on the (n − d)-
length prefix of its input.

18To be more precise, we will show that Ew∈{0,1}nk corr(Amp f ;w − Amph;w,Fm) is small. See the proof of Lemma 4.5
for details.
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F is algorithmic friendly. We observe that the fast #SAT algorithm for low-degree polynomials
can be extended to Fm-functions naturally. In fact, given a degree-d polynomial P : Fm

2 → F2, we
set ` = n/d. For each (x1, . . . , xm−`) ∈ {0, 1}m−`, we define

s(x1, . . . , xm−`) = ∑
(y1,...,y`)∈{0,1}`

(−1)P(x1,...,xm−`,y1,...,y`),

where the above sum is over Z instead of over F2. Then applying the modulus-amplifying poly-
nomials (see Lemma 6.2 for details), there is an algorithm which can compute the list

(s(x1, . . . , xm−`))(x1,...,xm−`)∈{0,1}m−`

in O(2m−Ω(`)) time. Finally, taking a sum over the list, one can then compute ∑x∈{0,1}m(−1)P(x) in
2m−Ω(`) time.

Now, observing that we have set ` = d =
√

n and noting that g(x) only depends on the first
n− d = n− ` ≤ m− ` bits of x (recall that m ≥ n), we have

∑
x∈{0,1}m

f (x) = ∑
(x1,...,xm−`)∈{0,1}m−`

s(x1, . . . , xm−`) · g(1, . . . , xn−`, 0, . . . , 0),

which allows us to compute ∑x∈{0,1}m f (x) in 2m−Ω(`) time as well.

The star-like generator for F . Since we aim to prove Theorem 1.1, in the following we fix the
number of instances generated by the generator to be k =

√
n. The F -restrictble generator G is

then designed as follows: It has seed length m = (n− d) + kd ≤ 2n (recall that d =
√

n). For a
seed r ∈ {0, 1}m, we write r = α ◦ x1 ◦ · · · ◦ xk where α ∈ {0, 1}n−d and x1, . . . , xk ∈ {0, 1}d. Then
G is defined as follows:

G(r) := (α ◦ x1, . . . , α ◦ xk).

Now we can justify why we call it the star-like generator: the k instances generated by G
form a star with their common intersection α as the center. For a string α ∈ {0, 1}m−n, we write
α = α1 ◦ · · · ◦ αk−1 where αi ∈ {0, 1}d for every i ∈ [k − 1]. For each i ∈ [k], we define the
embedding function Ti as

Ti(x, α) = (x≤n−d, α1, . . . , αi−1, x>n−d, αi, . . . , αk−1).

That is, Ti uses α to fill in the length-d suffix for all instances except for the i-th one, and use x to
fill in the i-th instance. It is straightforward to verify that G satisfies the first two requirements
of Definition 2.6.

To show that G satisfies the third requirement of Definition 2.6, we have to argue that for every
C ∈ Fm, (10) is still in Fn. Observe that for every j ∈ [k] \ {i}, uj(G(Ti(x, α))j) only depends on
x≤n−d, hence it belongs to Fn. It is also easy to verify that C(Ti(x, α)) ∈ Fn. Since Fn is closed
under multiplication, we can conclude that (10) belongs to Fn as well, which completes the proof.
(See the proof of Lemma 6.3 for more details.)

2.4.2 The Bi-coloring Generator for Constructing Rigid Matrices

Now we turn to the generator for low-rank matrices, which will be used to construct the extremely
rigid matrices in Theorem 1.5. First we define the class of “low-rank matrices”. For every even
n ≥ 1, we can view a function f : {0, 1}n as a 2n/2× 2n/2 matrix, denoted by M f , where M f (x, y) =
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f (x, y) for every x, y ∈ {0, 1}n/2. We call the first and last n/2-bits of inputs as the row index and
the column index, respectively. Letting r(n) ≥ nω(1) be the rank parameter, we letMn denote the
class of functions f whose matrix representation M f satisfies rank(M f ) ≤ r(n).

We will construct an M-restrictable generator with seed length n
√

k, which improves upon
the trivial seed length of nk. More precisely, assuming

√
k is an integer for simplicity, and letting

t =
√

k and m = nt, we choose an arbitrary but fixed injective mapping ρ : [k]→ [t]× [t], denoted
by ρ(i) = (ρ(i)u, ρ(i)v). For every z ∈ {0, 1}m, we write z = x1 ◦ · · · ◦ xt ◦ y1 ◦ · · · ◦ yt where
|xi| = |yj| = n/2 for every i, j ∈ [t]. Our generator G is then defined as

G(z) := (xρ(1)u ◦ yρ(1)v , . . . , xρ(k)u ◦ yρ(k)v).

It is then straightforward to construct the required mappings Ti: given x ∈ {0, 1}n and α ∈
{0, 1}n(t−1), we simply set xρ(i)u to x≤n/2 and yρ(i)v to x>n/2, and use α to fill the rest of z. It is easy
to verify that G satisfies the first two requirements of Definition 2.6.

Intuitively, one can interpret the above construction by thinking about a bipartite graph, where
the left and right side have t vertices each, and the seed z as a labeling of all vertices by strings
in {0, 1}n/2(i.e., the strings x1, . . . , xt and y1, . . . , yt). For every (i, j) ∈ [t] × [t], we add an edge
between the i-th vertex on the left side and the j-th vertex on the right side, and label this edge
with the concatenation of the two n/2-bit strings on its endpoints (i.e. xi ◦ yj).

Each edge can then be viewed as an instance generated by the seed z (so there are t2 ≥ k
instances in total. Now we argue why G satisfies the third requirement of Definition 2.6. The
crucial property is that every two distinct edges can only share at most one common points. Hence,
fixing i ∈ [k] and α ∈ {0, 1}n(t−1), then for j 6= i, either ρ(j)u 6= ρ(i)u or ρ(j)v 6= ρ(i)v.

We can now observe that, for fixed α ∈ {0, 1}n(t−1) and every function uj : {0, 1}n → {−1, 1},
uj(G(Ti(x, α))j) either only depends on x≤n/2, or only depends on x>n/2, which means it is a
matrix of rank at most 1. Taking an XOR (multiplication over the {−1, 1} basis is equivalent to
XOR over the Boolean basis) of k − 1 such matrices resulting in a matrix of rank at most k − 1.
Moreover, one can also observe that for a low-rank matrix C, C(Ti(x, α)) has the same rank as of
C. Therefore, (10) has low rank too, which completes the argument. (See the proof of Lemma 7.5.)

3 Preliminaries

3.1 Notation

We use N to denote the set of all non-negative integers and N≥1 to denote N \ {0}. For every
n ∈ N≥1, we let Un denote the uniform distribution over {0, 1}n. By Boolean functions we mean
functions that take binary strings {0, 1}∗ and output {−1, 1}, where −1 and 1 are interpreted as
True and False respectively.

For a predicate P, we use 1P to denote its corresponding Boolean value. That is, 1P = 1 if P is
true, and 0 otherwise. For a real v, we define sign(v) := (−1) · 1v<0 + 1 · 1v≥0.

For two strings α, β ∈ {0, 1}∗, we write α ◦ β to denote the concatenation of α and β. For
a string α ∈ {0, 1}m of length m and k ∈ [1, m], let α≤k and α>k denote the length-k prefix and
length-(n− k) suffix of α respectively.

For two functions f : A → B, g : B → C, we write g ◦ f to denote the composition of g with
f . (Therefore, g ◦ f is a function mapping from the set A to the set C.) Note that we are using the
notion ◦ in two completely different contexts. It would not introduce any ambiguity.
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Collections of functions. For n ∈ N≥1, an n-input function collection Fn is a subset of all n-input
Boolean functions. A function collection F =

⋃
n∈N≥1

Fn is a subset of all Boolean functions, where
Fn is an n-input function collection. We say f is an Fn-function (resp. F -function) if f ∈ Fn (resp.
f ∈ F ).

By probabilistic F -function we mean a distributionD over F -functions of same input length. For
every n-bit input probabilisticF -functionD, we define the expectation function ofD as PD : {0, 1}n →
R, where PD(x) = ED←D [D(x)].

We say a function collection F is a typical function collection, if it is closed under negation,
and flipping a subset of input bits. (That is, for f ∈ Fn and every w ∈ {0, 1}n, the function
g(x) := f (x⊕ w) and − f both belong to F as well.)

Correlation and approximation. For a Boolean function f : {0, 1}m → {−1, 1} and a function
collection F , we define the (maximum) correlation between f and F -functions as

corr( f ,F ) := max
C∈Fm

〈 f , C〉.

Slightly abusing the notation, we also use corr( f , d) to denote corr( f ,Pd), where Pd is the col-
lection of all degree-2 F2-polynomials. Note that this is consistent with the definition of corr( f , d)
in Section 1.1.

For two functions f : {0, 1}n → {−1, 1} and a function collection Fn, we say that f cannot be
γ-approximated by Fn if Prx←Un [ f (x) = g(x)] < γ for every g ∈ Fn. By a standard connection,
corr( f ,Fn) < ε if and only if f cannot be (1/2 + ε/2)-approximated by Fn.

Arithmetization. We will crucially exploit multi-linear extension of Boolean functions of the fol-
lowing form. For every function f : {−1, 1}n → {0, 1}19, we use f̃ : R → R to denote the multi-
linear extension of f . That is, we define

f̃ (x) := ∑
y∈{−1,1}n

f (y) ·
n

∏
j=1

(
yi ·

xi + yi

2

)
.

One can verify that f̃ (x) is multi-linear and is indeed an extension of f . Moreover, one can observe
that the absolute value of the coefficient of each monomial in f̃ is at most 2n.

3.2 Norms and Inner Products

For two functions f , g : {0, 1}n → R, we define their inner product as

〈 f , g〉 := E
x←Un

[ f (x) · g(x)].

For every real p ≥ 1, recall that the `p-norm of f is defined as

‖ f ‖p :=
(

E
x←Un

| f (x)|p
)1/p

.

We also define the `∞-norm of f as

‖ f ‖∞ := max
x∈{0,1}n

| f (x)|.

19Note that the input of f is from {−1, 1}n, while the output is in {0, 1}. We will use this form of arithmetization in
both Section 5 and Section 7. Check Section 5.1 and Section 7.1 for corresponding discussions.
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We need the concept of duality between `p-norms for different choices of p. We first recall the
definition of Hölder conjugates.

Definition 3.1. Let p, q ∈ R≥1 ∪ {∞}. We say that p and q are Hölder conjugates of each other, if it holds
that 1/p + 1/q = 1. (In particular, it can be the case that p = 1 and q = ∞ and vice versa.)

The following inequality is useful for us.

Lemma 3.2 (Hölder’s inequality). Let p, q ∈ R≥1 ∪ {∞} be such that p and q are Hölder conjugates of
each other. Let f , g : {0, 1}n → R. Then it holds that

〈 f , g〉 ≤ ‖ f ‖p‖g‖q.

In particular, when p = q = 2, we get the Cauchy-Schwarz inequality 〈 f , g〉 ≤ ‖ f ‖2‖g‖2.

Based on Lemma 3.2, the following lemmas can be established.

Lemma 3.3. For every function f and p, q ∈ R∪ {∞} such that 1 ≤ p ≤ q, it holds that ‖ f ‖p ≤ ‖ f ‖q.

Lemma 3.4 (Duality between `p spaces). Let n ∈N≥1. Let p, q ∈ R≥1 ∪ {∞} be such that p and q are
Hölder conjugates of each other. For every function f : {0, 1}n → R, it holds that

max
h:‖h‖q=1

{〈 f , h〉} = ‖ f ‖p.

3.3 Hardness Amplification

We also need the standard worst-case to strong average-case hardness amplification. We refer to
[STV01] for an excellent exposition.

Theorem 3.5 ([STV01]). There is a constant c ≥ 1 such that, for any time-constructible function S(n)
and every f : {0, 1}n → {−1, 1} that does not have (general) circuits of size S(n). There is a function
g : {0, 1}O(n) → {−1, 1} that cannot be (1/2 + S(n)−1/c)-approximated by circuits of size S(n)1/c.
Furthermore, given the 2n-length truth table of f , the truth table of g can be constructed in 2O(n) time.

4 Derandomized XOR Lemma

In this section we prove our derandomized XOR lemma, which is stated formally as below.
Throughout this section, for every p ∈ R>1, we set ck

p ∈ (0, 1) to be a small universal constant
such that

Hb(ck
p/(1 + ck

p))(1 + ck
p) <

1
p
(1− ck

p),

where Hb(q) := −q log2 q− (1− q) log2(1− q) is the binary entropy function. Recall that we say
a function collection F is typical, if it is closed under negation and flipping a subset of input bits.

Lemma 4.1 (Derandomized XOR lemma). Let δ ∈ (0, 0.1) and p ∈ R>1 be three constants. For every
sufficiently large n ∈ N, every ε ∈ [2−n, 1) and every function f : {0, 1}n → {−1, 1}.20 Let F be a
typical function collection, and k =

⌈
ck

p · log ε−1/5
⌉

. Suppose the following two conditions hold:

20By Lemma 1.7, the original XOR Lemma takes O(n log 1/ε) bits of inputs. Therefore, we mainly focus on the case
that ε is sufficiently small.
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1. (Weak inapproximability by Sum ◦ Fn.) 〈 f , C〉 < (1− δ) for every Sum ◦ Fn-function C such
that complexity(C) ≤ 10 · n/ε2 and ‖C‖p ≤ 1.

2. (Existence of an F-restrictable generator.) There is an F -restrictable generator Gres : {0, 1}m →
{0, 1}nk with seed length m ≥ n, which is computable in poly(m) time.

Then there is a polynomial-time computable generator G : {0, 1}m+` → {0, 1}nk such that

corr( f⊕k ◦ G,F ) ≤ εΩ(δ),

where ` ≤ O(m log m).
Moreover, if ε ≥ 2−n1−c

for some constant c ∈ (0, 0.1), then this bound on ` can be further improved to
` ≤ Oc(m).

Our proof of Lemma 4.1 will follow the proof outline in Section 2.3: In Section 4.1, we show
how to construct (δ, ε)`p -witnesses from weak inapproximability against Sum ◦ Fn-functions, and
formally prove Lemma 2.3. In Section 4.2, we first establish a partially derandomized XOR lemma,
which is captured by Lemma 4.2. In Section 4.3, we apply PRGs for space-bounded computation
to finish the proof of Lemma 4.1.

The “moreover” part says that if ε is slightly sub-exponential (i.e. ε ≥ 2−n1−Ω(1)
), then we can

obtain an optimal linear-seed generator.

4.1 The Existence of (δ, ε)-Witnesses from Hardness Against Linear Sum of Functions

In this section, we prove Lemma 2.3 (restated below).

Reminder of Lemma 2.3. Let n ∈ N≥1, and let Fn be a collection of n-input functions that is closed
under negation. Let p, q ∈ R≥1 ∪ {∞} be such that p and q are Hölder conjugates of each other. For every
function f : {0, 1}n → {−1, 1} and δ, ε > 0, if we have

〈 f , C〉 < (1− δ)

for every Sum ◦ Fn-function C such that complexity(C) ≤ 10 · n/ε2 and ‖C‖q ≤ 1, then there is a
(δ, ε)`p -witness h for f against Fn-functions.

Moreover, for the case p = ∞ and q = 1, the condition can be replaced by that for every MAJ ◦ F -
function C with top-sparsity bounded by 10n/ε2, it holds that 〈 f , C〉 < 1− 2δ.

Proof. For the general case, we argue as follows.

The Challenger-Distinguisher game. We consider the following two-player zero-sum game:

1. The Max-Player (Distinguisher) chooses anFn-probabilistic functionD on n-bit inputs. (That
is, D is a distribution over Fn-functions.) Recall that we use PD : {0, 1}n → R to denote the
expectation function of D. It is defined as PD(x) = ED←D [D(x)] for every x ∈ {0, 1}n.

2. The Min-Player (Challenger) chooses a function h : {0, 1}n → R such that ‖h‖p ≤ 1 and
‖h‖1 ≤ 1− δ. (i.e., h satisfies the norm conditions for being a (δ, ε)`p -witness.)

3. The payoff of game is 〈PD, f − h〉. (Note that f : {0, 1}n → {−1, 1} is a fixed function.) The
Min-Player (resp. Max-Player) wants to minimize (resp. maximize) the payoff.
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Note that the strategy spaces of both players are compact convex sets and the payoff has a
bilinear form. Therefore, by the minimax theorem, the game has a unique equilibrium payoff
Vgame when both players play optimally. We claim that Vgame ≤ ε.

Indeed, suppose on the contrary that Vgame > ε. This implies that the Max-Player has a strategy
D, which is a probabilistic Fn-function, such that for every Min-Player strategy h, it holds that

〈PD, f − h〉 > ε. (11)

Next, we sample t = 10 · n/ε2 independent functions from D, denoted by D1, . . . , Dt. By a
Chernoff bound, for every x ∈ {0, 1}n, it holds that

Pr
D1,...,Dt

[∣∣∣∣PD(x)− E
i←[t]

Di(x)
∣∣∣∣ ≥ ε

2

]
≤ 2−n−1.

Then we can fix a set of functions {Di}i∈[t] such that∣∣∣∣PD(x)− E
i←[t]

Di(x)
∣∣∣∣ ≤ ε/2 holds for every x ∈ {0, 1}n. (12)

We now construct a Sum ◦ Fn-function D′ as

D′(x) :=
t

∑
i=1

1
t
· Di(x).

Note that D′ has sparsity bounded by t = 10 · n/ε2. For every strategy h of Min-Player, it
follows that

〈D′, f − h〉 = 〈PD, f − h〉 − 〈PD − D′, f − h〉
> ε− ‖D′ − PD‖∞‖ f − h‖1 ((11) and Lemma 3.2)

≥ ε− ε

2
(1 + ‖h‖1) ((12) and ‖ f ‖1 ≤ ‖ f ‖∞ = 1)

≥ 0, (13)

where the last inequality follows from ‖h‖1 ≤ 1 − δ ≤ 1. By Lemma 3.4 and the assumption
that p and q are Hölder conjugates of each other, the Min-Player can choose a strategy h such that
‖h‖p ≤ 1− δ and 〈D′, h〉 = (1− δ) · ‖D′‖q. Note that ‖h‖1 ≤ ‖h‖p ≤ 1− δ as well, so h is a valid
strategy. Therefore, (13) in particular implies that

〈D′, f 〉 = 〈D′, h〉+ 〈D′, f − h〉
> (1− δ)‖D′‖q.

Next, we give a lower bound on ‖D′‖q. Choosing h ≡ 0, (11) implies that ‖PD‖1 ≥ ε. Therefore,
‖D′‖q ≥ ‖D′‖1 ≥ ‖PD‖1 − ε

2 ≥ ε/2.
Letting C = D′/‖D′‖q, we have 〈C, f 〉 > 1− δ, ‖C‖q = 1 and complexity(C) ≤ max(t, 1/‖D‖q) ≤

10 · n/ε2. This contradicts the assumption of the lemma.
Finally, given that Vgame ≤ ε, it is straightforward to verify that an optimal strategy h of the

Min-Player satisfies the requirement of being a (δ, ε)`p -witness: First, we have that ‖h‖1 ≤ 1− δ
and ‖h‖p ≤ 1. Second, for every C ∈ F it holds that 〈C, f − h〉 ≤ ε. Since F is closed under
negation, it in turn implies that |〈C, f − h〉| ≤ ε.
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Impagliazzo’s hardcore lemma. In the following we prove the “moreover” part in the statement
of Lemma 2.3. We consider the same Challenger-Distinguisher game as before with p = ∞. (i.e.,
the Min-Player chooses a function h with ‖h‖1 ≤ 1− δ and ‖h‖∞ ≤ 1.)

Again by the minimax theorem, this game has a unique payoff Vgame when both players play
optimally. We claim Vgame ≤ ε.

Suppose that Vgame > ε, then there is a probabilistic Fn-function D such that for every strategy
h by the Min-Player, it holds that

〈PD, f − h〉 > ε. (14)

Call an input x ∈ {0, 1}n bad if | f (x)− PD(x)| > (1− ε). Let B be the set of bad inputs.
We claim that (14) implies |B| ≤ δ2n. Otherwise, suppose that |B| > δ2n. We define a function

hB as hB(x) = 1x/∈B · f (x), and observe that ‖hB‖1 ≤ 1− δ. Then we have

〈PD, f − hB〉 = E
x←Un

[1x∈B · PD(x) · f (x)] ≤ |B|
2n ε ≤ ε,

which contradicts to (14). The penultimate inequality above follows from the fact that when x ∈ B
and | f (x)− PD(x)| > (1− ε), we have f (x) · PD(x) ≤ ε since PD(x) ∈ [−1, 1].

Now, given |B| ≤ δ2n, we can use a Sum ◦ Fn function C with complexity(C) ≤ 10n/ε2 to point-
wise approximate PD within an additive error of ε/2. It follows that for every x /∈ B, we have
f (x) = sign(C(x)). Therefore, we can convert C to a MAJ ◦ Fn-function C′ such that C′(x) = f (x)
for every x /∈ B. Since |B| ≤ δ2n, we have

〈C′, f 〉 ≥ 1− 2|B|
2n ≥ 1− 2δ.

this is a contradiction. So it must be the case that Vgame ≤ ε.
Finally, similar to the general case above, given that Vgame ≤ ε, it is straightforward to verify

that an optimal strategy h of the Min-Player satisfies the requirement of being a (δ, ε)`p -witness,
which completes the proof of the moreover part.

The above is essentially identical to Nisan’s proof of the hardcore lemma.

4.2 Partial Derandomization Using F -Restrictable Generators

Following our proof overview, in this subsection, we first recall the concept of F -restrictable gen-
erators and then prove a partially derandomized XOR lemma (Lemma 4.2).

Reminder of Definition 2.6. Given a function collection F and n ∈ N≥1, a generator G : {0, 1}m →
{0, 1}nk is called F -restrictable, if there are k embedding functions T1, . . . , Tk : {0, 1}n × {0, 1}m−n →
{0, 1}m such that the following hold:

1. All the Ti are bijections.

2. For every i ∈ [k] and (x, α) ∈ {0, 1}n × {0, 1}m−n, G(Ti(x, α))i = x. That is, Ti(x, α) ∈ {0, 1}m

is a seed to G which fixes the i-th instance of G(Ti(x, α)) to be x.

3. For everyFm-function C : {0, 1}m → {−1, 1}, i ∈ [k], α ∈ {0, 1}m−n and functions u1, . . . , uk : {0, 1}n →
{−1, 1}, the function

D(x) := C(Ti(x, α)) · ∏
j∈[k]\{i}

uj(G(Ti(x, α))j)

belongs to Fn.
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The following lemma gives a partially derandomized XOR lemma, modulo the need of nk
fresh random bits w.

Lemma 4.2. Let δ ∈ (0, 0.1) and p ∈ R>1 be two constants. For every sufficiently large n ∈ N,
every ε ∈ [2−n, 1) and every function f : {0, 1}n → {−1, 1}. Let F be a typical function collection and
k =

⌈
ck

p · log ε−1/5
⌉

. Suppose the following two conditions hold:

1. (Weak inapproximability by Sum ◦ Fn.) 〈 f , C〉 < (1− δ) for every Sum ◦ Fn-function C such
that complexity(C) ≤ 10 · n/ε2 and ‖C‖p ≤ 1.

2. (Existence of an F-restrictable generator.) There is an F -restrictable generator Gres : {0, 1}m →
{0, 1}nk with seed length m ≥ n, which is computable in poly(m) time.

For every sequence w = (w1, . . . , wk) ∈ ({0, 1}n)k, we define a function gw : {0, 1}m → {−1, 1} as

gw(r) :=
k

∏
i=1

f (Gres(r)i ⊕ wi).

Then we have
E

w←Unk
[corr(gw,F )] ≤ εΩ(δ).

The rest of this subsection is devoted to the proof of Lemma 4.2.

4.2.1 Notation and Construction of the Hybrids

We begin by introducing some notation, which will be used throughout Section 4.2 and Section 4.3.
We set a parameter τ as

⌈ 1
5 log ε−1⌉ so that

k =
⌈

ck
p · log ε−1/5

⌉
≤ ck

p ·
⌈

1
5

log ε−1
⌉
≤ ck

p · τ.

For a seed r ∈ {0, 1}m to the generator Gres, we use the same notation as in Section 2.3 and
write

r̃j = Gres(r)j for every j ∈ [k].

The witness h. First, we observe that by Lemma 2.3 and the first condition of Lemma 4.2, there
is a (δ, ε)`p/(p−1)

-witness h′ for f against Fn functions. That is:

1. (Indistinguishability.) corr( f − h′,Fn) ≤ ε.

2. (Bounded `1-norm) h′ has `1-norm at most 1− δ (i.e., Ex←Un [|h′(x)|] ≤ 1− δ).

3. (Bounded `p/(p−1)-norm.) h′ has `p/(p−1)-norm at most 1.

It would be convenient to have an `∞-norm bound on the witness. To achieve this, we define from
h′ another function h as

h(x) := sign(h′(x)) ·min(|h′(x)|, ε1−p).

We observe that (see also (15)) ∥∥∥h′(x) · 1|h′(x)|>ε1−p

∥∥∥
1
≤ ε.

Therefore, ‖h′ − h‖1 ≤ ε. Also, since ‖h‖p/(p−1) ≤ ‖h′‖p/(p−1) and ‖h‖1 ≤ ‖h′‖1 ≤ 1, it turns out
that h is a (δ, 2ε)`p/(p−1)

-witness for f against Fn-functions, which has `∞-norm bounded above by
ε1−p. This witness h will play the pivotal role in the derandomization of the XOR lemma.
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The decomposition of the witness h. Letting σ = min(n,
⌈
log ε1−p⌉), as discussed in Section 2.3,

we decompose the witness h into σ + 1 components as follows. For ` ∈ [σ], we define the function

h=`(x) := h(x) · 1|h(x)|∈(2`−1,2`].

And we also define
h=0(x) := h(x) · 1|h(x)|≤1.

Since ‖h‖∞ ≤ 2σ, it follows that h = ∑σ
`=0 h=`. We collect the following two important proper-

ties of the functions h=`.

Claim 4.3. For all ` ∈ {0, 1, . . . , σ}, the following hold:

1. ‖h=`‖1 ≤ 2−(`−1)/(p−1),

2. ‖h=`‖∞ ≤ 2`.

In other words, in the decomposition, the higher the absolute values in h=` are, the smaller the
`1-norm of h` is. This observation is the key for our new derandomized XOR lemma.

Proof. The second claim just follows from the definition of the h=`.
For every t ≥ 1, we have

E
x←Un

[
|h(x)| · 1|h(x)|≥t

]
≤ t−1/(p−1) E

x←Un

[
|h(x)|p/(p−1)

]
≤ t−1/(p−1). (15)

If ` = 0, then clearly ‖h=0‖1 ≤ ‖h‖1 ≤ 1 ≤ 2−(`−1)/(p−1). For ` ∈N≥1, applying (15), it follows
that

‖h=`(x)‖1 ≤ E
x←Un

[
|h(x)| · 1|h(x)|≥2`−1

]
≤ 2−(`−1)/(p−1).

Hybrid functions and their decompositions. Following the outline in Section 2.3, we will ap-
ply a hybrid argument. Recall that we have defined the hybrid functions Hh, f

i = h⊕i ⊗ f⊕k−i

in Section 2.2, which was later upgraded to Gh, f
i = Hh, f

i ◦ Gres in Section 2.3.
Here we will also need to define the hybrid functions with respect to the sequence w =

(w1, . . . , wk). We use Gw
res to denote the generator

Gw
res(r) := (r̃1 ⊕ w1, . . . , r̃k ⊕ wk) for every r ∈ {0, 1}m.

For each i ∈ {0, . . . , k} and w ∈ ({0, 1}n)k, we define a hybrid function Gh, f ;w
i := Hh, f

i ◦ Gw
res.

That is, for every r ∈ {0, 1}m, we have

Gh, f ;w
i (r) =

i

∏
j=1

h(r̃j ⊕ wj) ·
k

∏
j=i+1

f (r̃j ⊕ wj).

Now we decompose the h functions in Gh, f ;w
i using the decomposition of the function h. For

an i-tuple (`1, . . . , `i) ∈ {0, 1, . . . , σ}i, we define

Gh, f ;w
i;(`1,...,`i)

(r) =
i

∏
j=1

h=`j(r̃j ⊕ wj) ·
k

∏
j=i+1

f (r̃j ⊕ wj).

That is, for each j ∈ [i], for the j-th h-function in the product defining Gh, f ;w
i , we take the `j-th

component h=`j of h.
As discussed in Section 2.3, such a decomposition gives us a very fine-grained trade-off between

`∞-norm and the `∞-norm of the h-functions in Gh, f ;w
i;(`1,...,`i)

. This will be very helpful for implement-
ing our hybrid argument later.
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Final hybrid functions. Now we are ready to define our hybrid functions. For i ∈ [k], we let Li
be a set of i-tuples defined as

Li :=

{
(`1, . . . , `i) : (`1, . . . , `i) ∈ {0, 1, . . . , σ}i and

i

∑
j=1

`j ≤ τ

}
.

We will use ε to denote the empty tuple, and then we define L0 := {ε}. We now define

Wh, f ;w
i := ∑

(`1,...,`i)∈Li

Gh, f ;w
i;(`1,...,`i)

.

Note that when i = 0, since Gh, f ;w
i has no h-component to be decomposed, we will let Gh, f ;w

0;ε :=

Gh, f ;w
0 and hence we haveWh, f ;w

0 = Gh, f ;w
0 = f⊕k ◦ Gw

res, which is simply gw.
For every i ∈ [k], we also letRi be a set of i-tuples defined as

Ri :=

{
(`1, . . . , `i) : (`1, . . . , `i) ∈ {0, 1, . . . , σ}i and

i

∑
j=1

`j > τ and
i−1

∑
j=1

`j ≤ τ

}
.

The following upper bounds on the size of sets Li andRi will be useful for us.

Claim 4.4 (Upper bounds on |Li| and |Ri|). For every i ∈ {0, 1, . . . , k}, it holds that |Li| = (τ+i
i ). For

every i ∈ {1, . . . , k}, it holds that |Ri| ≤ |Li−1|(σ + 1).

4.2.2 Implementing the Hybrid Argument

Note that Lemma 4.2 is then asking us to bound

E
w

[
max
C∈F
〈C,Wh, f ;w

0 〉
]

.

We will now apply a standard hybrid argument with respect to the following list of hybrids:

gw =Wh, f ;w
0 , Wh, f ;w

1 , . . . , Wh, f ;w
k .

The following lemma implement the hybrid argument.

Lemma 4.5 (Wh, f ;w
i andWh, f ;w

i+1 are indistinguishable by Fm-functions). For every i ∈ {0, 1, . . . , k−
1}, it holds that

E
w←Unk

[
max
C∈Fm

∣∣∣〈C,Wh, f ;w
i 〉 − 〈C,Wh, f ;w

i+1 〉
∣∣∣] ≤ εΩ(1).

Lemma 4.6 (Wh, f ;w
k has small `1-norm). It holds that

E
w←Unk

∥∥∥Wh, f ;w
k

∥∥∥
1
≤ εΩ(δ).

Assuming the two lemmas above, we can derive Lemma 4.2 as shown below.
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Proof of Lemma 4.2. We have

E
w←Unk

[corr(gw,F )]

= E
w←Unk

[
max
C∈F
{〈C,Wh, f ;w

0 〉}
]

(by definition)

= E
w←Unk

[
max
C∈F

{
〈C,Wh, f ;w

k 〉+
k−1

∑
i=0

(
〈C,Wh, f ;w

i 〉 − 〈C,Wh, f ;w
i+1 〉

)}]

≤ E
w←Unk

[
max
C∈F
{〈C,Wh, f ;w

k 〉}
]
+ k · εΩ(δ) (by Lemma 4.5)

≤ E
w←Unk

∥∥∥Wh, f ;w
k

∥∥∥
1
+ εΩ(δ) (‖C‖∞ = 1 and k ≤ O(log ε−1))

≤ εΩ(δ). (by Lemma 4.6)
(16)

4.2.3 Proofs of Lemma 4.5 and Lemma 4.6

We begin with the proof of Lemma 4.6, which is the simple one.

Proof of Lemma 4.6. Recall that k ≥ Ω(log ε−1), we have

E
w←Unk

‖Wh, f ;w
k ‖1 ≤ E

w←Unk
‖Gh, f ;w

k ‖1 ≤ E
w←Unk

E
r←Um

[∣∣∣∣∣ k

∏
j=1

h(r̃j ⊕ wj)

∣∣∣∣∣
]

≤ E
r←Um

‖h‖k
1

≤ (1− δ)k

≤ εΩ(δ).

The following lemma will be useful for the proof of Lemma 4.5. Its proof is based on some
simple but lengthy manipulations, we defer its proof to the end of this subsection.

Lemma 4.7. For every j ∈ [k], C ∈ Fm and functions q1, . . . , qj−1 : {0, 1}n → R, it holds that

E
r←Um

[
C(r) ·

j−1

∏
i=1

qi(r̃i) ·
k

∏
i=j

f (r̃i ⊕ wi)

]
− E

r←Um

[
C(r) · h(r̃j ⊕ wj) ·

j−1

∏
i=1

qi(r̃i) ·
k

∏
i=j+1

f (r̃i ⊕ wi)

]

≤ 2ε ·
j−1

∏
i=1
‖qi‖∞.

Next we prove Lemma 4.5.

Proof of Lemma 4.5. For every i ∈ {0, . . . , k}, recall thatLi is the set of i-tuples (`1, . . . , `i) ∈ {0, 1, . . . , σ}i

such that ∑i
j=1 `j ≤ τ, and Ri is the set of i-tuples (`1, . . . , `i) ∈ {0, 1, . . . , σ}i such that ∑i

j=1 `j > τ

and ∑i−1
j=1 `j ≤ τ.
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By Claim 4.4, |Li| = (τ+i
i ). For each tuple (`1, . . . , `i) in Li, we define

Qi(`1, . . . , `i) := 〈C,Gh, f ;w
i;(`1,...,`i)

〉

= E
r←Um

[
C(r) ·

i

∏
j=1

h=`j(r̃j ⊕ wj) ·
k

∏
j=i+1

f (r̃j ⊕ wj)

]
,

Ri(`1, . . . , `i) := E
r←Um

[
C(r) · h(r̃i+1 ⊕ wi+1) ·

i

∏
j=1

h=`j(r̃j ⊕ wj) ·
k

∏
j=i+2

f (r̃j ⊕ wj)

]
.

Applying Lemma 4.7, for each (`1, . . . , `i) ∈ Li, we have

|Qi(`1, . . . , `i)− Ri(`1, . . . , `i)| ≤ ε ·
i

∏
j=1
‖h=`j‖∞.

≤ ε · 2∑i
j=1 `j (Item (2) of Claim 4.3)

≤ ε · 2τ. (
i

∑
j=1

`j ≤ τ) (17)

From the definition ofWh, f ;w
i , it follows that

〈C,Wh, f ;w
i 〉 =

〈
C, ∑

(`1,...,`i)∈Li

Gh, f ;w
i;(`1,...,`i)

〉
= ∑

(`1,...,`i)∈Li

〈C,Gh, f ;w
i;(`1,...,`i)

〉 (18)

= ∑
(`1,...,`i)∈Li

Qi(`1, . . . , `i). (19)

Similarly, from the definition ofWh, f ;w
i+1 , we have

〈C,Wh, f ;w
i+1 〉 =

〈
C, ∑

(`1,...,`i+1)∈Li+1

Gh, f ;w
i+1;(`1,...,`i+1)

〉

= ∑
(`1,...,`i)∈Li

Ri(`1, . . . , `i)−
〈

C, ∑
(`1,...,`i+1)∈Ri+1

Gh, f ;w
i+1;(`1,...,`i+1)

〉
(20)

To proceed, we need the following bound on (τ+k
k ).

Claim 4.8. For every i ∈ {0, 1, . . . , k}(
τ + i

i

)
≤
(

τ + k
k

)
≤ 2(τ−k)/p

Now we first prove Claim 4.8. It suffices to bound (τ+k
k ) by monotonicity of the (τ+i

i ).
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We have(
τ + k

k

)
≤ 2Hb(k/(k+τ))·(k+τ) ((n

m) ≤ 2Hb(m/n)·n)

≤ 2Hb(ck
p/(1+ck

p))·(1+ck
p)τ (k ≤ ck

p · τ)

≤ 21/p·(1−ck
p)·τ (Hb(ck

p/(1 + ck
p))(1 + ck

p) <
1
p (1− ck

p) from our choice of ck
p)

≤ 2(τ−k)/p, (k ≤ ck
p · τ)

which completes the proof of Claim 4.8.
Finally, combining (17), (19) and (20), it follows that∣∣∣〈C,Wh, f ;w

i 〉 − 〈C,Wh, f ;w
i+1 〉

∣∣∣
≤ ∑

(`1,...,`i)∈Li

|Ri(`1, . . . , `i)−Qi(`1, . . . , `i)|+
∣∣∣∣∣
〈

C, ∑
(`1,...,`i+1)∈Ri+1

Gh, f ;w
i+1;(`1,...,`i+1)

〉∣∣∣∣∣
≤ ε · 2τ ·

(
τ + i

i

)
+

∥∥∥∥∥ ∑
(`1,...,`i+1)∈Ri+1

Gh, f ;w
i+1;(`1,...,`i+1)

∥∥∥∥∥
1

(‖C‖∞ = 1)

≤ εΩ(1) +

∥∥∥∥∥ ∑
(`1,...,`i+1)∈Ri+1

Gh, f ;w
i+1;(`1,...,`i+1)

∥∥∥∥∥
1

, (21)

where the last inequality follows from Claim 4.8 and the fact that 1/ε > 8τ (recall that τ =
d 1

5 log ε−1e).
Now it remains to bound

E
w←Unk

∥∥∥∥∥ ∑
(`1,...,`i+1)∈Ri+1

Gh, f ;w
i+1;(`1,...,`i+1)

∥∥∥∥∥
1

,

which is itself bounded by

∑
(`1,...,`i+1)∈Ri+1

E
w←Unk

∥∥∥Gh, f ;w
i+1;(`1,...,`i+1)

∥∥∥
1

.

We now fix an (i + 1)-tuple (`1, . . . , `i+1) ∈ Ri+1. From the definition of Ri+1, it holds that
∑i+1

j=1 `j > τ.
Therefore,

E
w←Unk

∥∥∥Gh, f ;w
i+1;(`1,...,`i+1)

∥∥∥
1
≤ E

r←Um
E

w←Unk

∣∣∣∣∣i+1

∏
j=1

h=`j(r̃j ⊕ wj) ·
k

∏
j=i+2

f (r̃j ⊕ wj)

∣∣∣∣∣ (‖ f ‖∞ = 1)

= E
w←U(i+1)k

E
r←Um

∣∣∣∣∣i+1

∏
j=1

h=`j(r̃j ⊕ wj)

∣∣∣∣∣
=

i+1

∏
j=1
‖h=`j‖1

≤
i+1

∏
j=1

2−(`j−1)/(p−1) (Item (1) of Claim 4.3)

≤ 2−(τ−k)/(p−1). (∑i+1
j=1 `j > τ and i ∈ {0, 1, . . . , k− 1})
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Finally, putting everything together, we have

∑
(`1,...,`i+1)∈Ri+1

E
w←Unk

∥∥∥Gh, f ;w
i+1;(`1,...,`i+1)

∥∥∥
1
≤ 2−(τ−k)/(p−1)|Ri+1|

≤
(

τ + k
k

)
(σ + 1)2−(τ−k)/(p−1) (Claim 4.4)

≤ (σ + 1) · 2(τ−k)/p · 2−(τ−k)/(p−1). (Claim 4.8)

≤ 2−Ω(k) · (σ + 1) (p > 1)

≤ εΩ(1). (k = Ω(τ) = Ω(log ε−1) and σ = O(log ε1−p))

This completes the proof of Lemma 4.5.

In the following remark, we record two very useful facts from the proof of Lemma 4.5, which
will be very helpful for the next section.

Remark 4.9. For every i ∈ {0, 1, . . . , k− 1}, the following hold:

1. For every w ∈ {0, 1}nk,

max
C∈Fm

∣∣∣〈C,Wh, f ;w
i 〉 − 〈C,Wh, f ;w

i+1 〉
∣∣∣ ≤ εΩ(1) + ∑

(`1,...,`i+1)∈Ri+1

∥∥∥Gh, f ;w
i+1;(`1,...,`i+1)

∥∥∥
1

.

2.
∑

(`1,...,`i+1)∈Ri+1

E
w←Unk

∥∥∥Gh, f ;w
i+1;(`1,...,`i+1)

∥∥∥
1
≤ εΩ(1).

4.2.4 Proof of Lemma 4.7

Finally, we finish this subsection by proving Lemma 4.7 (restated below).

Reminder of Lemma 4.7. For every j ∈ [k], C ∈ Fm and functions q1, . . . , qj−1 : {0, 1}n → R, it holds
that

E
r←Um

[
C(r) ·

j−1

∏
i=1

qi(r̃i) ·
k

∏
i=j

f (r̃i ⊕ wi)

]
− E

r←Um

[
C(r) · h(r̃j ⊕ wj) ·

j−1

∏
i=1

qi(r̃i) ·
k

∏
i=j+1

f (r̃i ⊕ wi)

]

≤ 2ε ·
j−1

∏
i=1
‖qi‖∞.

Proof of Lemma 4.7. For every i ∈ [j− 1], we let Mi = ‖qi‖∞ = maxx∈{0,1}n {|qi(x)|}. Recall that for
r ∈ {0, 1}m, we use r̃i to denote Gres(r)i for every i ∈ [k].

We claim that, for every j ∈ [k] and α ∈ {0, 1}m−n, the following holds

E
x←Un

r=Tj(x,α)

[
C(r) ·

j−1

∏
i=1

qi(r̃i) ·
k

∏
i=j

f (r̃i ⊕ wi)

]
− E

x←Un
r=Tj(x,α)

[
C(r) ·

j−1

∏
i=1

qi(r̃i) · h(r̃j ⊕ wj) ·
k

∏
i=j+1

f (r̃i ⊕ wi)

]

≤ 2ε ·
j−1

∏
i=1

Mi (22)
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We will prove (22) shortly, but assuming it holds now. The lemma follows directly by taking an
expectation over all α ∈ {0, 1}m−n (Note that here we used the condition that Tj(?) is a bijection).

In the rest of the proof we prove (22). Now we fix j ∈ [k] and α ∈ {0, 1}m−n. We consider a
probabilistic algorithm A specified as follows: A first samples functions u1 . . . uj−1 by the follow-
ing rule. For every i ∈ [j− 1] and y ∈ {0, 1}n, we independently set ui(y) as

ui(y) =


1 with probability

1 + qi(y)
2 ·Mi

,

− 1 with probability
1− qi(y)

2 ·Mi
,

a uniform random bit in {−1, 1} otherwise.

We can verify that

E
ui
[ui(y)] =

qi(y)
Mi

for each i ∈ [j− 1],

where the expectation is taken over the sample distribution of ui. Then, for an input x ∈ {0, 1}n,
letting r = Tj(x, α), A outputs

C(Tj(x, α)) ·
j−1

∏
i=1

ui(r̃i) ·
k

∏
i=j+1

f (r̃i ⊕ wi). (23)

By Definition 2.6, the formula (23) is an Fn-function with input x for every sampled (u1, . . . , ui−1)
(recall that α is fixed). Therefore, A can be implemented by a probabilistic Fn-function D. Let PD
be the expectation function of D. For x ∈ {0, 1}n, again letting r = Tj(x, α), we have

PD(x) =
1

∏
j−1
i=1 Mi

· C(Tj(x, α)) ·
j−1

∏
i=1

qi(r̃i) ·
k

∏
i=j+1

f (r̃i ⊕ wi).

We construct another probabilistic F -function D′ such that PD′(x) = PD(x ⊕ wj) (this step uses
the assumption that F is typical, and hence it is closed under flipping a subset of inputs). Since h
is a (δ, 2ε)`p/(p−1)

-witness, we have

〈 f − h, PD′〉 ≤ 2ε. (24)

Now, it follows from (24) that

E
x←Un

[ f (x⊕ wj) · PD(x)]− E
x←Un

[h(x⊕ wj) · PD(x)] ≤ 2ε.

This is equivalent to (22) after scaling both sides by ∏
j−1
i=1 Mi: since Gres(Tj(x, α))j = x, it follows

that f (r̃j ⊕ wj) = f (x⊕ wj) and h(r̃j ⊕ wj) = h(x⊕ wj). This finishes the proof of (22).

4.3 Full Derandomization by PRGs for Space-Bounded Computation

Lemma 4.2 tells us that for a randomly chosen (w1, . . . , wk), the function gw(r) is hard with high
probability. However, it requires nk bits to describe a list of good wi. In this section, we will further
derandomize Lemma 4.2 using PRGs for space-bounded computation.
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Branching programs and PRGs for them. We first define read-once branching programs, which
captures space-bounded computation.

Definition 4.10. A (probabilistic, read-once, and oblivious) branching program of size s with block size n
is a finite state machine with s states, over the alphabet {0, 1}n (with a fixed start state, and an arbitrary
number of accepting states). Each edge is labeled with a symbol in {0, 1}n. For every state s and a symbol
α ∈ {0, 1}n, the edges leaving a and labelled with α is assigned a probability distribution. The computation
proceeds as follows. The input is read sequentially, one block of n bits at a time. If the machine is in state x
and it reads α, then it chooses an edge leaving x and labeled with α according to its probability, and moves
along it.

From now on, for breivity, we will always use branching programs to refer to read-once and
oblivious branching programs. Next we define pseudorandom generators for branching pro-
grams.

Definition 4.11. A generator G : {0, 1}` → {0, 1}nk is ε-pseudorandom for branching programs of size s
and block size n if for every branching program B of size s and block size n, it holds that

|Pr[B(G(U`)) = 1]− Pr[B(Unk) = 1]| ≤ ε.

Nisan’s PRG. We need the well-known construction of Nisan’s PRGs fooling branching pro-
grams [Nis92].

Theorem 4.12 ([Nis92]). For every n and k ≤ 2n, there exists a generator

GNisan
n,k : {0, 1}` → {0, 1}nk

such that the following hold:

• GNisan
n,k is 2−3n-pseudorandom for branching programs of size 23n and block size n.

• GNisan
n,k has seed length ` = O(n log k).

• GNisan
n,k can be computed in poly(n, k) time.

Fully derandomized XOR lemma. Now we are prove our fully derandomized XOR lemma ex-
cept the “moreover” part.

Reminder of “Moreover” of Lemma 4.1. Let δ ∈ (0, 0.1) and p ∈ R>1 be two constants. For every
sufficiently large n ∈ N, every ε ∈ [2−n, 1) and every function f : {0, 1}n → {−1, 1}.21 Let F be a
typical function collection, and k =

⌈
ck

p · log ε−1/5
⌉

. Suppose the following two conditions hold:

1. (Weak inapproximability by Sum ◦ Fn.) 〈 f , C〉 < (1− δ) for every Sum ◦ Fn-function C such
that complexity(C) ≤ 10 · n/ε2 and ‖C‖p ≤ 1.

2. (Existence of an F-restrictable generator.) There is an F -restrictable generator Gres : {0, 1}m →
{0, 1}nk with seed length m ≥ n, which is computable in poly(m) time.

21By Lemma 1.7, the original XOR Lemma takes O(n log 1/ε) bits of inputs. Therefore, we mainly focus on the case
that ε is sufficiently small.
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Then there is a polynomial-time computable generator G : {0, 1}m+` → {0, 1}nk such that

corr( f⊕k ◦ G,F ) ≤ εΩ(δ),

where ` ≤ O(m log m).

Proof of Lemma 4.1. We let GNisan
m,k : {0, 1}` → {0, 1}mk be the PRG from Theorem 4.12, which fools

every branching program of size at most 23m within error 2−3m. By Theorem 4.12 we know that ` =
O(m log k). We construct from GNisan

m,k a generator G2 : {0, 1}` → {0, 1}nk by only keeping the first
n-bits of each block of GNisan

m,k (r). We construct the final generator as G(r1, r2) := Gres(r1)⊕ G2(r2).
Now we show that the above generator G satisfies the requirement of Lemma 4.1. For this

purpose we need to prove result analogous to Lemma 4.2. Recall that gw is defined as gw(r) =

∏k
i=1 f (Gres(r)i ⊕ wi), and Lemma 4.2 says that for a randomly chosen w ∈ {0, 1}nk, it holds that

E
w←Unk

[corr(gw,F )] ≤ εΩ(δ).

We will prove a derandomized version of Lemma 4.2.

Lemma 4.13. It holds that

E
w←G2(U`)

[corr(gw,F )] ≤ εΩ(δ). (25)

We will prove Lemma 4.13 shortly. Assuming Lemma 4.13 and noting that F is closed under
restriction, for every C ∈ F we have

E
r←Um+`

[( f⊕k ◦ G)(r) · C(r)] = E
r2←U`

E
r1←Um

[gG2(r2)(r1) · C(r1, r2)]

= E
w←G2(U`)

〈gw(r1), C(·, r2)〉

≤ E
w←G2(U`)

[corr(gw,F )] ≤ εΩ(δ).

This establishes the hardness of f⊕k ◦ G as desired.

Now we prove Lemma 4.13.

Proof of Lemma 4.13. Throughout the proof we will use the same notation as in the proof of Lemma 4.2.
In particular, the witness function h will play a key role in the proof. We will also follow the struc-
ture of its proof structure.

We first recall the following crucial bounds.

Reminder of Lemma 4.5. For every i ∈ {0, 1, . . . , k− 1}, it holds that

E
w←Unk

[
max
C∈Fm

∣∣∣〈C,Wh, f ;w
i 〉 − 〈C,Wh, f ;w

i+1 〉
∣∣∣] ≤ εΩ(1).

Reminder of Lemma 4.6. It holds that

E
w←Unk

∥∥∥Wh, f ;w
k

∥∥∥
1
≤ εΩ(δ).

We will derandomize Lemma 4.5 and Lemma 4.6 by proving the following two lemmas.
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Lemma 4.14 (Wh, f ;w
i andWh, f ;w

i+1 are indistinguishable by Fm-functions, derandomized). For every
i ∈ {0, 1, . . . , k− 1}, it holds that

E
w←G2(U`)

[
max
C∈Fm

∣∣∣〈C,Wh, f ;w
i 〉 − 〈C,Wh, f ;w

i+1 〉
∣∣∣] ≤ εΩ(1).

Lemma 4.15 (Wh, f ;w
k has small `1-norm, derandomized). It holds that

E
w←G2(U`)

∥∥∥Wh, f ;w
k

∥∥∥
1
≤ εΩ(δ).

We can then proceed almost identically as in the proof of Lemma 4.2:

E
w←G2(U`)

[corr(gw,F )]

= E
w←G2(U`)

[
max
C∈F
{〈C,Wh, f ;w

0 〉}
]

(by definition)

= E
w←G2(U`)

[
max
C∈F

{
〈C,Wh, f ;w

k 〉+
k−1

∑
i=0

(
〈C,Wh, f ;w

i 〉 − 〈C,Wh, f ;w
i+1 〉

)}]

≤ E
w←G2(U`)

[
max
C∈F
{〈C,Wh, f ;w

k 〉}
]
+ k · εΩ(1) (by Lemma 4.14)

≤ E
w←G2(U`)

∥∥∥Wh, f ;w
k

∥∥∥
1
+ εΩ(1) (‖C‖∞ = 1 and k = O(log 1/ε))

≤ εΩ(δ). (by Lemma 4.15)

To prove Lemma 4.14 and Lemma 4.15, we need the following lemma, showing that G2 can be
used to derandomize certain computation.

Lemma 4.16. Let q1, . . . , qk : {0, 1}n → [0, 2n] be k functions such that:

• ‖qi‖1 ≤ 1 for every i ∈ [k], and

• ∏k
i=1 ‖qi‖∞ ≤ 22n.

For every w ∈ ({0, 1}n)k, let µw : {0, 1}m → R be such that

µw(r) =
k

∏
i=1

qi(r̃i ⊕ wi).

Then, it holds that

E
w←G2(U`)

‖µw(r)‖1 ≤ 2−m + E
w←Unk

‖µw(r)‖1 = 2−m +
k

∏
i=1
‖qi‖1.

We will prove Lemma 4.16 later, but assuming it for now, we finish the proofs of Lemma 4.14
and Lemma 4.15.

We begin by the proof of Lemma 4.15.
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Proof of Lemma 4.15. We recall the decomposition ofWh, f ;w
k :

Wh, f ;w
k := ∑

(`1,...,`k)∈Lk

Gh, f ;w
k;(`1,...,`k)

.

For each (`1, . . . , `k) ∈ Lk, we have

Gh, f ;w
k;(`1,...,`k)

(r) =
k

∏
i=1

h=`i(r̃i ⊕ wi).

From the definition of Lk and Item (2) of Claim 4.3, we have ∏k
i=1 ‖h`=i‖∞ ≤ 22n. Also, note

that ‖h=`i‖1 ≤ 1 for every i ∈ [k]. Setting qi as h=`i for each i ∈ [k] and applying Lemma 4.16, we
have

E
w←G2(U`)

‖Gh, f ;w
k;(`1,...,`k)

‖ ≤ E
w←Unk

‖Gh, f ;w
k;(`1,...,`k)

‖+ 2−m.

Recall that ε ≥ 2−n and |Lk| ≤ (τ+k
k ) ≤ ε−1/2 since τ = d 1

5 · log ε−1e. Taking a summation over
all tuples in |Lk| completes the proof, since

2−m · |Lk| ≤ εΩ(1)

and
∑

(`1,...,`k)∈Lki
E

w←Unk
‖Gh, f ;w

k;(`1,...,`k)
‖ ≤ E

w←Unk
‖Gh, f ;w

k ‖ ≤ εΩ(δ),

where the last inequality follows from Lemma 4.6.

Next we prove Lemma 4.14.

Proof of Lemma 4.14. From Item (1) of Remark 4.9, it suffices to bound

∑
(`1,...,`i+1)∈Ri+1

E
w←G2(U`)

∥∥∥Gh, f ;w
i+1;(`1,...,`i+1)

∥∥∥
1

.

Fix an (i + 1)-tuple (`1, . . . , `i+1) ∈ Ri+1, for every r ∈ {0, 1}m, we have

Gh, f ;w
i+1;(`1,...,`i+1)

(r) =
i+1

∏
j=1

h=`j(r̃j ⊕ wj) ·
k

∏
j=i+2

f (r̃j ⊕ wj).

Now, for each j ∈ [i + 1], we set qj = h=`j and for each j ∈ {i + 2, . . . , k}, we set qj = f .
It is straightforward to verify that the functions q1, . . . , qj satisfy the requirement of Lemma 4.16.
Applying Lemma 4.16, we have

E
w←G2(U`)

‖Gh, f ;w
i+1;(`1,...,`i+1)

(r)‖1 ≤ 2−m + E
w←Unk

‖Gh, f ;w
i+1;(`1,...,`i+1)

(r)‖1.

Recall that |Ri+1| ≤ (τ+i
i ) · (σ + 1) by Claim 4.4, summing up for all (`1, . . . , `i+1) ∈ Ri+1 and

applying Item (2) of Remark 4.9 completes the proof.
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4.3.1 Proof of Lemma 4.16

Proof of Lemma 4.16. For every j ∈ [k], let Mj = ‖qj‖∞, it follows that ∏k
j=1 Mj ≤ 22n. Let us

consider the following (probabilisitc) branching program, denoted by B.

1. First, sample r ← Um.

2. Read k blocks w1, . . . , wk in sequence. For every i ∈ [k], after reading wi, reject immediately

with probability 1− qj(wj⊕r̃j)
Mj

.

3. After reading k blocks without rejection, accept.

Note that B can be implemented by a probabilisitc branching program of size at most 23m.
Now, associate with B an expectation function QB, where QB(w1, . . . , wk) denotes the probability
of B outputting “accept” on input (w1, . . . , wk). By definition, we have

E
w←Unk

[QB(w)] =
1

∏j∈[k] Mj
E

w←Unk
‖µw‖1. (26)

By Theorem 4.12, it follows that∣∣∣∣ E
w←G2(U`)

[QB(w)]− E
w←Unk

[QB(w)]

∣∣∣∣ ≤ 2−3m. (27)

Also, observe that

E
w←G2(U`)

[QB(w)] =
1

∏j∈[k] Mj
E

w←G2(U`)
‖µw‖1. (28)

We combine (26), (27) and (28) together and note that ∏j∈[k] Mj ≤ 22n ≤ 22m. This completes the
proof.

4.3.2 Achieving Linear Seed-Length in Slightly Sub-Exponential Error Regime

In the case that ε ≥ 2−n1−c
for a Aconstant c > 0, it is possible to use a linear-length PRG for

space-bounded computation, so that we can reduce the seed length of the pseudorandom instance
generator to be linear in n.

The Nisan-Zuckerman PRG. For this purpose, we will need the following PRG for space-bounded
computation by Nisan and Zuckerman.

Theorem 4.17 ([NZ96]). For every c > 0, the following is true. For every n ∈ N and k ≤ O(n), there is
a generator

GNZ
n,k : {0, 1}` → {0, 1}nk

such that the following hold:

• GNZ
n,k is 2−3n1−c

-pseudorandom for branching programs of size 23n and block size n.

• GNZ
n,k has seed length ` = Oc(n).

• GNZ
n,k can be computed in poly(n, k) time.
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Fully derandomized XOR lemma with linear seed length. We now prove the linear-length seed
generators. (i.e. the “moreover” part in Lemma 4.1.)

Reminder of The “moreover” part of Lemma 4.1. Let δ, c ∈ (0, 0.1) and p ∈ R>1 be three constants.
For every sufficiently large n ∈N, every ε ∈ [2−n1−c

, 1) and every function f : {0, 1}n → {−1, 1}. Let F
be a typical function collection and let k =

⌈
ck

p · log ε−1/5
⌉

. Suppose the following two conditions hold:

1. (Weak inapproximability by Sum ◦ Fn.) 〈 f , C〉 < (1− δ) for every Sum ◦ Fn-function C such
that complexity(C) ≤ 10 · n/ε2 and ‖C‖p ≤ 1.

2. (Existence of an F-restrictable generator.) There is an F -restrictable generator Gres : {0, 1}m →
{0, 1}nk with seed length m ≥ n, which is computable in poly(m) time.

Then there is a polynomial-time computable generator G : {0, 1}m+` → {0, 1}nk such that

corr( f⊕k ◦ G,F ) ≤ εΩ(δ),

where ` ≤ Oc(m).

Proof Sketch. We let G2 : {0, 1}` → {0, 1}nk be the PRG from Theorem 4.17, which can fool every
branching program of size at most 23m within error 2−3m1−c

. It follows that ` ≤ Oc(m). We con-
struct the final generator as G(r1, r2) := Gres(r1)⊕ G2(r2). To show that G works, we use a similar
argument as in the proof of Lemma 4.1 except one difference: when applying the full derandom-
ization based on the partial derandomization, we use the following lemma to replace Lemma 4.16.

Lemma 4.18 (A variant of Lemma 4.16). Let q1, . . . , qk : {0, 1}n → [0, 2n] be k functions such that

• ‖qi‖1 ≤ 1 for every i ∈ [k], and

• ∏k
i=1 ‖qi‖∞ ≤ ε−p.

For every w ∈ ({0, 1}n)k, let µw : {0, 1}m → R be such that

µw(r) =
k

∏
i=1

qi(r̃i ⊕ wi).

Then, it holds that

E
w←G2(U`)

‖µw(r)‖1 ≤ 2−m1−c
+ E

w←Unk
‖µw(r)‖1 = 2−m1−c

+
k

∏
i=1
‖qi‖1.

The proof of Lemma 4.18 is also analogous to Lemma 4.16.

5 Weak-inapproximability by Linear Sums from Non-Trivial Circuit-
Analysis Algorithms

In this section we show that for a function collection F which admits a sufficient circuit-analysis
algorithm, one can use Williams’ algorithmic method [Wil13, Wil18, CW19, CLW20] to construct a
hard function f which cannot be weak-approximated by Sum ◦ F -functions. In later sections, this
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will be combined with our new derandomized XOR lemma to construct strong average-case hard
functions against F .

Our connection works for every typical function collections. We first summarize the necessary
requirements for the target function collection below.

Definition 5.1 (Applicable function collections). Let S(n) ≥ nω(1) be a non-decreasing time-constructible
function, and F =

⋃
n∈N≥1

Fn be a function collection. We say that F is S(n)-applicable, if the following
hold:

1. There is a #SAT algorithm for AND4 ◦ Fn-functions that runs in O(2n/S(n)) time, where AND4 ◦
Fn denotes the subset of functions which can be computed by taking an AND of four Fn-functions.

2. For every n ∈ N≥1 and S ⊆ [n], the function χS(x) := ∏i∈S(−1)xi is in Fn. In other words, F
contains all the parities.

3. F is closed under negation.

Now we state the main theorem of this section, which claims that for every S(n)-applicable
function collection F , one can construct an ENP function f , that is weakly-inapproxiamble by F -
functions. We also remark that the following theorem is the only result in this section which is
used outside, so reader not interested in its proof details may skip this section entirely and jump
to the later sections.

Theorem 5.2. There are absolute constants α, δ ∈ (0, 1) and K ≥ 1 such that the following hold. Let F
be an S(n)-applicable collection. There is an ENP machine which, for every sufficiently large n, on input
1n, outputs in 2O(n) time a Boolean function f : {0, 1}` → {−1, 1} where ` ∈ [n, Kn] such that one of the
following holds.

1. f cannot be computed by S(`)α-size general circuits.

2. f is hard in the following sense: for every Sum ◦ F`-functions H such that complexity(H) ≤ S(`)3α

and ‖H‖4 ≤ 1, it holds that
〈 f , H〉 < (1− δ).

The rest of this section is devoted to the proof of Theorem 5.2 and is organized as follows:
In Section 5.1 we introduced some previous results which will be crucial to our proof of Theo-
rem 5.2. In Section 5.2 we design a “cheating algorithm” Acheat which attempts to break a certain
NTIME hierarchy theorem, this part is very similar to the proof of [CLW20, Theorem 1.2], and is
also crucial to our proof of Theorem 5.2. In Section 5.3, we analyze Acheat and conclude the proof
of Theorem 5.2.

5.1 Preliminaries

We will need some technical ingredients from the literature.

Robustly-often NTIME hiearchy theorem and PNP refuter for it. We start with the following
robustly-often hard NTIME[T(n)] language with a corresponding refuter algorithm for it.

Theorem 5.3 (Robustly-often NTIME hierarchy [FS17]). For every polynomial T(n) = nK and for
some constant k ≥ 1, there exists a language L ∈ NTIME[T(n)] such that, for any L′ ∈ NTIME[o(T(n))],
for all but finitely many n, there exists m ∈ [n, n + T(n)] such that L and L′ cannot agree on all inputs of
length m.
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Theorem 5.4 (Refuter for the robustly-often NTIME hierarchy [CLW20, Theorem 4.8]). For every
polynomial T(n) = nK for some constant k ≥ 1, there is an NTIME[T(n)] machine AT

FS and a PNP

algorithmRT such that:

1. Input. The input for RT is a pair (M, 1n) with the promise that M is nondeterministic Turing
machine runs in o(T(n)) time.

2. Output. For every fixed M and all large enough n, RT(M, 1n) outputs a string x such that |x| ∈
[n, n + T(n)] andRT(x) 6= M(x).

We remark that the original theorems in [FS17] and [CLW20] apply to a large class of functions
T(n), but here we will just state them for the special case that T(n) = nK, since this is all we need
in the proofs.

Efficient Construction of PCPs. We recall the following Probabilistically Checkable Proofs (PCP)
systems and PCP of Proximity systems, which are also used in [CR20] and [CLW20].

Theorem 5.5 ([BV14]). Let M be an algorithm running in time T = T(n) ≥ n on inputs of the form (x, y)
where |x| = n. Given x ∈ {0, 1}n, one can output in poly(n, log T) time circuits Q : {0, 1}r → {0, 1}rt

for t = poly(r) and R : {−1, 1}t → {0, 1} such that:

• Proof length. 2r ≤ T · polylogT.

• Completeness. If there is a y ∈ {0, 1}T(n) such that M(x, y) accepts then there is a map π : {0, 1}r →
{−1, 1} such that for all z ∈ {0, 1}r, R(π(q1), . . . , π(qt)) = 1 where (q1, . . . , qt) = Q(z).

• Soundness. If no y ∈ {0, 1}T(n) causes M(x, y) to accept, then for every map π : {0, 1}r →
{−1, 1}, at most 2r

n10 distinct z ∈ {0, 1}r have R(π(q1), . . . , π(qt)) = 1 where (q1, . . . , qt) = Q(z).

• Complexity. Q is a projection, i.e., each output bit of Q is a bit of input, the negation of a bit, or a
constant. R is a 3CNF.

Note that this is an extremely efficient PCP, where the 3CNF R and the projection Q collectively
form the verifier for the PCP. The following lemma from [CW19, VW20] is a slight modification of
the probabilistically checkable proof of proximity (PCPP) system in [BGHSV06].

Theorem 5.6 ([CW19, VW20]). There are constants 0 < spcpp < cpcpp < 1 and a polynomial-time
transformation that, given a circuit D on n inputs of size m ≥ n, outputs a 2-SAT instance F on the
variable set Y ∪ Z where |Y| ≤ poly(n), |Z| ≤ poly(m), and the following hold for all x ∈ {0, 1}n:

• If D(x) = 1, then F
∣∣
Y=Enc(x) on variable set Z has a satisfying assignment Zx such that at least

cpcpp-fraction of the clauses are satisfied. Furthermore, there is a poly(m) time algorithm that given
x outputs Zx.

• If D(x) = 0, then there is no assignment to the Z variables in F
∣∣
Y=Enc(x) satisfies more than spcpp-

fraction of the clauses.

Moreover, the number of clauses in the 2-SAT instance F is a power of 2, and for each i ∈ [|Y|], Enci(x) is
a parity function depending on at most n/2 bits of x.
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Arithmetization. In the following, we will frequently apply arithmetization to these PCP veri-
fiers. For input Boolean values to PCP verifier, we always interpret Boolean True and False as real
−1 and 1 respectively. This is consistent with the proof fed into it (recall that PCP verifiers get
oracle Boolean functions as proof.). For output of PCP verifiers, we always interpret Boolean True
and False (Accept and Reject) as real 1 and 0 respectively. By doing so, the expectation of output
of PCP verifier is naturally its probability of acceptance. See also Section 3.1 for more details of
the arithmetization.

5.2 Description of the Cheating Algorithm Acheat

Now, we first describe a nondeterministic algorithm Acheat to speed up the computation AT
FS(x),

whereAT
FS is defined in Theorem 5.4. We will borrow most notation from [CLW20]. Our algorithm

Acheat is basically the same as the algorithm APCPP used in the proof of [CLW20, Theorem 1.2].

Set up. The algorithm Acheat is parameterized by two sufficiently small constants α, δ ∈ (0, 1)
and a sufficiently large constant K ≥ 1 specifying the time bound T(n) = nK. We assume that K is
large enough so that the PCP construction in Theorem 5.5 can be done in poly(n) ≤ nK/2 time.

Using PCP first. On an input z of length n, Acheat applies the PCP from Theorem 5.5 to the
computationAT

FS(x), and obtains an oracle circuit VPCPz. Recall that both of VPCPz and its oracle
take inputs of length ` = `(n) = log(T(n)) +O(log log T(n)). Theorem 5.5 implies the following.

Claim 5.7. The following statements hold.

1. If AT
FS(z) = 1, then there an oracle O such that VPCPOz (x) = 1 for every x ∈ {0, 1}`.

2. It AT
FS(z) = 0, then for every oracle O, it holds that Prx∈{0,1}` [VPCP

O
z (x) = 1] ≤ 1

n10 ≤ 1
`10 .

Then Acheat guesses a general circuit C : {0, 1}` → {−1, 1} of size at most S(`)α as the oracle
for VPCPz. Feeding C into VPCPz, it obtains the circuit VPCPC

z , with circuit size bounded above
by poly(|C|) = S(`)O(α). By Claim 5.7, the algorithm Acheat needs to distinguish between the
following two cases:

1. VPCPC
z : {0, 1}` → {0, 1} is a tautology.

2. VPCPC
z accepts at most 2`/`10 many inputs.

The PCPP construction and notation. Acheat then applies the PCPP from Theorem 5.6 to the
circuit VPCPC

z . It produces a 2SAT instance Φ with m = poly(|C|) = S(`)O(α) many clauses over
the variable set Y ∪Z , as well as an encoding function Enc : {0, 1}` → {0, 1}|Y|. For (s, t) ∈ [|Y|]×
[|Z|], we use Ys and Zt to denote the s-th variable in Y and the t-th variable in Z , respectively.

Recall by Theorem 5.6 that s is a power of two. For brevity, we set r = `+ 1 + log m.
To elegantly discuss the algorithm and its analysis, we introduce some useful notation. Let the

clauses of Φ be (Consi)
m
i=1, where each of Consi involves 2 variables from Y ∪ Z . For each clause

Consi, it extends to a degree-2 polynomial, denoted by C̃onsi.22 For every i ∈ [m] and j ∈ [2], we
set an indicator Ti,j ∈ Y ∪ Z to indicate the j-th variable in Consi.

22For inputs to C̃onsi, we identify Boolean False and True as real 1 and −1 respectively. For outputs of C̃onsi, we
identify Boolean False and True as real 0 and 1 respectively.
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1. By a “real-valued proof” we mean a pair of two lists of proof functions (Y, Z) for PCPP,
where Y = (Ys)s∈[|Y|], Z = (Zt)t∈[|Z|] and each of Ys and Zt is a function from {0, 1}` to R.
Based on (Y, Z), we define the following terminologies:

• Recall that each clause Consi involves two variables. We define indicators T(Y,Z)
i1 and

T(Y,Z)
i2 to indicate the corresponding functions in (Y, Z).

• Recall that each clause Consi extends to a polynomial C̃onsi. We define F(Y,Z)
i := C̃onsi(T

(Y,Z)
i1 , T(Y,Z)

i2 ).

Note that these objects all depend on the given proof (Y, Z), when the context is clear, we
also omit the superscript, and simply write them as Tij and Fi.

2. By a “Boolean-valued proof” we mean a pair of two lists of proof functions (Ŷ = Enc(x), Ẑ)
where Ŷs(x) = Encs(x) for every x ∈ {0, 1}` and s ∈ [|Y|], Ẑ = (Ẑt)t∈[|Z|], and each Ẑt is a
function from {0, 1}` → {−1, 1}. Recall that Enc : {0, 1}` → {−1, 1}|Y| is the corresponding
function in Theorem 5.6. Similar to the case of real-valued proofs, the proof (Ŷ = Enc(x), Ẑ)

induces T̂(Ŷ,Ẑ)
ij and F̂(Ŷ,Ẑ)

i . When the context is clear, we omit the superscript and write them

as T̂ij and F̂i.

To clarify, we always use (Y, Z) to denote a real-valued proof, and (Ŷ, Ẑ) to denote a Boolean-
valued proof. We summarize the properties of the PCPP construction in the following claim.
Recall that spcpp and cpcpp are the soundness and completeness parameters in Theorem 5.6.

Claim 5.8. The following statements hold.

1. If VPCPz
C is a tautology, then there is a Boolean proof (Ŷ = Enc(x), Ẑ) such that

E
x←U`

E
i∈[m]

F̂i(x) ≥ cpcpp.

2. If VPCPz
C(x) = 1 for at most a 1

`10 ≤ o(1) fraction of x, then for every sufficiently large n, for every
Boolean proof (Ŷ = Enc(x), Ẑ), we have

E
x←U`

E
i∈[m]

F̂i(x) < cpcpp −
9
10

(cpcpp − spcpp).

Guess proof function for PCPP. Next,Acheat guesses a Sum ◦Fr-functions of complexity at most
S(r)3α, denoted by H : {0, 1}log m × {0, 1}1 × {0, 1}` → R. We identify the first log m bits of inputs
as an index in [m], so that the first log m + 1 bits can identify a variable Ti,j. Based on H, we
construct a real-valued proof (Y, Z) as

Ys(x) := E
i,j:Tij=Ys

H(i, j, x) for s ∈ [|Y|],

Zt(x) := E
i,j:Tij=Zt

H(i, j, x) for t ∈ [|Z|].

Recall that we defined Ti,j ∈ Y ∪ Z as the circuit corresponds to variable Ti,j ∈ Y ∪ Z . We
define

Pij(x) =

{
(1 + Tij(x))2(1− Tij(x))2, if Tij ∈ Z,
(Encs(x)− Tij(x))2, if Tij ∈ Y.

(29)
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Verification. Finally, let Acheat verify the following:

E
i,j∈[m]×[2]

E
x←U`

Pi,j(x) ≤ δ, (30)

E
i,j∈[m]×[2]

E
x←U`

H(i, j, x)2 ≤ 1, (31)

E
i∈[m]

E
x←U`

Fi(x) ≥ cpcpp −
1
2
(cpcpp − spcpp). (32)

Acheat accepts if and only if all of the conditions above hold. Note that each of those summations
above can reduce to solving S(`)O(α) many #SAT tasks for AND4 ◦ F -functions23.

Running time of Acheat. We verify that the algorithm Acheat runs in NTIME[o(T(n))] for small
enough α: the construction of VPCPz requires poly(n) < T(n)1/2 time for sufficiently large con-
stant K; the PCPP construction runs in S(`)O(1) time; the guess and verification run in 2r/S(r) ·
S(r)O(α) ≤ 2`/S(`)Ω(1) ≤ o(T(n)) time for small enough α. (Recall that r = `+ O(α log S(`)), and
S(`) ≥ `ω(1).) This completes the description of algorithm.

5.3 Proof of Theorem 5.2

We state two crucial properties of Acheat below. First, we observe that the algorithm Acheat only
makes one-sided error.

Lemma 5.9. For every small enough constants α, δ ∈ (0, 1) and for every sufficiently large constant K ≥ 1,
the following holds: Acheat(z) ≤ AT

FS(z) for all but finitely many inputs z.

The proof of Lemma 5.9 can be found in Appendix B.
Combining Lemma 5.9 with Theorem 5.4. We conclude that for every sufficiently large n, one

can apply the refuter RT to find an input z of length |z| ∈ [n, nK + n] such that Acheat(z) = 0 and
AT

FS(z) = 1. Considering one such z, by AT
FS(z) = 1 and Item (1) of Claim 5.7 we know that there

is an oracle O such that VPCPOz is a tautology. If there is no circuit C of size at most S(`)α such
that VPCPC

z is a tautology, then in particular it implies that this O cannot be computed by circuits
of size at most S(`)α. This proves the Case (1) in Theorem 5.2 assuming that no circuit C of size at
most S(`)α can make VPCPC

z a tautology.
In the following, we will show Case (2) in Theorem 5.2 holds if there is a circuit C of size at

most S(`)α such that VPCPC
z is a tautology. This will finish the proof of Theorem 5.2 as at least one

of Case (1) or Case (2) holds regardless of such a circuit C exists or not.

Lemma 5.10. For every small enough constants α, δ ∈ (0, 1) and for every sufficiently large constant
K ≥ 1, the following holds: Suppose for some input z of length n such that Acheat(z) = 0, there is
a circuit of size at most S(`)α such that VPCPC

z is a tautology with (Ŷ = Enc(x), Ẑ) being its correct
Boolean-valued proof. Then the function HŶ,Ẑ defined by

HŶ,Ẑ : {0, 1}log(m)+1+` → {−1, 1}
(i, j, x) 7→ T̂ij(x)

(33)

is hard in the following sense: letting r = log(m) + 1 + `, for every Sum ◦ Fr-functions H such that
complexity(H) ≤ S(r)3α and ‖H‖4 ≤ 1, it holds that

〈HŶ,Ẑ, H〉 < (1− δ/5). (34)
23This is the same as the algorithm used in [CLW20]. We refer interested readers to [CLW20, Theorem 4.8] for the

details about how this works.
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The proof of Lemma 5.10 can be found in Appendix B.
We are finally ready to prove Theorem 5.2.

Proof of Theorem 5.2. We design the ENP algorithm Ahard as follows. Let n be a sufficiently large
input length. On an input 1n, Ahard sets m = 2n/K. By Theorem 5.4, Ahard can find in poly(m) ≤
2O(n) time (with access to an NP oracle) an input z of length |z| ∈ [m, m+mK] such thatAT

FS(z) = 1
and Acheat(z) = 0.

Consider the PCP system VPCPz. Since AT
FS(z) = 1, by Item (1) of Claim 5.7, there is an oracle

O : {0, 1}` → {0, 1} for ` = K log |z|+ O(log log |z|) such that VPCPOz is a tautology. Recall that
m = 2n/K and |z| ∈ [m, m + mK], it follows that n ≤ ` ≤ n(K + 1). Ahard then construct the
lexicographically first such oracle, still denoted by O for convenience, which can be found with
the help of an NP oracle in poly(m) ≤ 2O(n) time. Depending on whether O can be computed by
small circuits or not, we have the following two cases:

1. (O is hard.) That is, O cannot be computed by a (general) circuit of size at most S(`)α. In
this case, O induces a hard function on `-bit inputs, and Case (1) of Theorem 5.2 holds. We
let Ahard output O.

2. (O is easy.) That is, O can be computed by a (general) circuit of size at most S(`)α. In
this case, Ahard first constructs the lexicographically first such circuit C (with access to an
NP oracle in 2O(n) time). Feeding C into the oracle circuit VPCPz, Ahard then obtains a circuit
VPCPC

z . Consider the PCP of Proximity proof (the 2SAT instance) Φ for VPCPC
z over variables

(Y ,Z). Since VPCPC
z is a tautology, we have a list of proof functions (Ŷ = Enc(x), Ẑ) such

that for every x ∈ {0, 1}`, at least cpcpp-fraction of clauses are satisfied by the assignment
(Y ,Z) = (Ŷ(x) = Enc(x), Ẑ(x)). Now, given thatAcheat(z) = 0, it follows from Lemma 5.10
that the function HŶ,Ẑ defined by

HŶ,Ẑ(i, j, x) := T̂ij(x)

satisfies Case (2) of Theorem 5.2 statement24. We let Ahard output HŶ,Ẑ.

6 Strong Correlation Bounds Against F2-Polynomials

In this section, we apply Theorem 5.4 to prove Theorem 1.1 (the strong correlation bound against
F2-polynomials). For an F2-polynomial P : Fn

2 → F2, we will consider its corresponding Boolean
function (recall that we take Boolean functions to be functions from {0, 1}∗ to {−1, 1}) defined by
BP(x) := (−1)P(x) for every x ∈ {0, 1}n.

6.1 Special Collections of Functions Extending F2-Polynomials

We will work with two special collections of functions, which contains low-degree F2-polynomials
as a sub-collection. We give their definitions below.

24Note that the inapproximability parameter here is (1− δ/5) instead of (1− δ). This is OK since Theorem 5.2 only
claims the existence of one such δ > 0.
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Definition 6.1. For every n, d, p ∈ N≥1 such that d, p ≤ n, we define the n-bit function collection Hd,p
n

as the set of all functions C : {0, 1}n → {−1, 1} that can be written as

C(x) = (−1)P(x) ·Q(x≤n−p),

where P : Fn
2 → F2 is an F2-polynomial of degree at most d and Q is an arbitrary function from {0, 1}n−p

to {−1, 1} (recall that x≤n−p is the length-(n − p) prefix of x). For convenience, we say that P(x) and
Q(x) are the polynomial part and the free part of C, respectively.

We also define a function collection

F n,d,p :=
∞⋃

q=n
Hd,(q−n)+p

q .

Clearly, Hd,p
n and F n,d,p are closed under XOR (which is multiplication over {−1, 1}). In the

following, we will state and prove the following two crucial properties of the collections:

1. Hd,p
n admits a non-trivial #SAT algorithm, as shown in Lemma 6.2.

2. There are F n,d,p-restrictable generators with relatively short seeds, as shown in Lemma 6.3.

Lemma 6.2. For every n, d, p ∈ N≥1 such that d, p ≤ n, there is an algorithm which given any Hd,p
n -

function C can evaluate25 ∑x∈{0,1}n C(x) in 2n−Ω(min(n/d,p))+O(log(n)) time.

Lemma 6.3. For every n, d, p ∈ N≥1 such that d, p ≤ n and for every k ∈ N≥1, there is an F n,d,p-
restrictable generator G : {0, 1}m → {0, 1}nk with seed length m = n + (k− 1)p.

In the rest of this subsection we prove Lemma 6.2 and Lemma 6.3 separately.

Proof of Lemma 6.2. The new algorithm is a slight adaptation of the algorithm from [Wil18, Theo-
rem 6.1]. It is instructive to describe the original algorithm here. Given a degree-d F2-polynomial
P, the algorithm from [Wil18] computes the sum ∑x∈{0,1}n P(x) over integers as follows:

1. Choose K to be a sufficiently large constant and let δ = 1
K·d . Let ` = bδnc. We will work with

the ring Z2` . Recall that there is a modulus-amplifying polynomial ([Yao90, BT94]) V(x) of
degree 2`− 1 such that the following hold: (1) if x ≡ 0 (mod 2) then V(x) ≡ 0 (mod 2`);
(2) if x ≡ 1 (mod 2) then V(x) ≡ 1 (mod 2`).

2. By the modulus-amplifying property of V, for every (x1, . . . , xn−`+1) ∈ {0, 1}n−`+1, it holds
that

∑
(xn−`+2,...,xn)∈{0,1}`−1

P(x1, . . . , xn) ≡ ∑
(xn−`+2,...,xn)∈{0,1}`−1

V(P(x1, . . . , xn)) (mod 2`).

Note that in above, the two sums on both sides of the equality are taken over integers and
not F2.

25That is, the algorithm is given a description of the polynomial part P of C by listing all coefficients in P, and a
description of the free part Q of C by giving the truth-table of Q. Such description takes roughly ∑d

i=0 (
n
i ) + 2n−p bits.
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3. We construct an (n− `+ 1)-variable polynomial P′ over Z2` as

P′(x1, . . . , xn−`+1) := ∑
(xn−`+2,...,xn)∈{0,1}`−1

V(P(x1, . . . , xn)).

Since P′ is a Z2`-polynomial, the sum on the right side above is taken over Z2` (not F2).

For the sufficiently large K, the number of non-zero coefficients in the polynomial P′ is
bounded by 20.01n. Fix one such K. We can first compute the description of the polyno-
mial P(x)i (that is, a list of all its coefficients) for i ∈ [2` − 1], and then compute the de-
scription of the polynomial V(P(x)) as well. Last, we enumerate all possible assignments
to last ` − 1 input bits and then take a sum to compute the description of P′. This takes
20.02n · poly(n) + 20.01n+` ≤ 20.1n time.

4. By the modulus-amplifying property of V, we know that P′(x1, . . . , xn−`+1) is exactly the
number of (xn−`+2, . . . , xn) such that P(x1, . . . , xn) = 1. Using dynamic programming, we
can then produce the table (P′(x1, . . . , xn−`+1))x1,...,xn−`+1 in O(2n−` · poly(n)) ≤ O(2n−n/Kd)
time. We take a summation over the table and report the answer, which completes the de-
scription of algorithm.

Our adaptation modifies the Step (4). Recall that we want to evaluate ∑x(−1)P(x) · Q(x≤n−p),
where Q is an arbitrary Boolean function depending only on the length-(n− p) prefix. Observe
that Q just applies a ”global XOR” to all the inputs sharing the same (n− p)-length prefix, which
can fit perfectly in Step (3) of the algorithm above.

More precisely, note that in Step (4), entries of the table (P′(x1, . . . , xn−`+1))x1,...,xn−`+1 corre-
spond to disjoint sets of inputs. For ease of presentation, we say that an entry “contains” its
corresponding inputs. A crucial observation is, as long as ` − 1 ≤ p 26, the effect of Q is the
same on every inputs in one entry, since all inputs in a single entry share the same (n − ` + 1)-
prefix. Therefore, we can easily handle the effect of Q to the summation after producing the table
in Step (4) for the polynomial P: If Q(x≤n−p) = 1, then the contribution from the entry does not
change. Otherwise, all outputs in this entry should change the sign. In conclusion, the evaluation
of the summation can be done in 2n−Ω(min(n/d,p))+O(log n) time.

Proof of Lemma 6.3. For a given input r ∈ {0, 1}m to the generator G, we write r = y ◦ s1 ◦ · · · ◦ sk,
where |y| = n− p and |si| = p for each i ∈ [k] (recall that m = n + (k− 1)p). We simply define

G(r) = (y ◦ s1, . . . , y ◦ sk).

That is, all the generated instances share the same (n− p)-length prefix, and each of them holds
an independent p-length suffix.

We now verify that this is an F n,d,p-restrictable generator. According to Definition 2.6, we need
to define the functions Ti and verify the three items of Definition 2.6. For every (m− n)-bit string
α, we write α = α1 ◦ · · · ◦ αk−1 where each of αi has length p. For every i ∈ [k], set

Ti(x, α) = x≤n−p ◦ α1 ◦ · · · ◦ αi−1 ◦ x>n−p ◦ αi ◦ · · · ◦ αk.

Here recall that x≤n−p and x>n−p denote the length-(n− p) prefix and length-p suffix of x, respec-
tively.

26we can assume that this condition holds. Otherwise, we apply the algorithm for a larger degree parameter d′ =
Θ(n/p)
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It is straightforward to verify that Item (1) and (2) of Definition 2.6 hold. We establish Item
(3) below. For every list of functions (uj : {0, 1}n → {−1, 1})j∈[k]\{i}, α ∈ {0, 1}m−n and C ∈
Hd,(m−n)+p

m , we consider the function

D(x) := C(Ti(x, α)) · ∏
j∈[k]\{i}

uj(G(Ti(x, α))j).

Clearly C(Ti(x, α)) is an Hd,p
n -function in x: the polynomial part of C does not increase its degree

in a restriction, and the free part of C only depends on the length-(n− p) prefix of its input, which
is also the length-(n− p) prefix of x in computing C(Ti(x, α)). Moreover, for every j ∈ [k] \ {i},
the function uj(G(Ti(x, α))j) only depends on the (n− p)-length prefix of x, which is also anHd,p

n -

function. Since Hd,p
n is closed under XOR (that is, multiplication over {−1, 1}), the function D(x)

is inHd,p
n . This completes the proof.

6.2 Applying the New XOR Lemma

Let β > 0 be a sufficiently enough constant. We will consider the function collection

Fpoly =
⋃

n≥1

Hβ
√

n/ log n,
√

n log n/β
n .

Also let S(n) := 2β
√

n log n. By Lemma 6.2, there exists β > 0 such that Fpoly is S(n)-applicable:

Fpoly is closed under negation; there is a 2n−Ω(
√

n log n/β) ≤ 2n/S(n)-time algorithm solving #SAT
for AND4 ◦ Fpoly (which can reduce to solving 16 #SAT tasks for XOR4 ◦ Fpoly by standard Fourier
analysis); Fpoly contains all parity functions, which are just polynomials of degree 1. Applying
Theorem 5.2 to Fpoly, we obtain the following.

Corollary 6.4. There are constants α, δ > 0 and K ≥ 1 such that the following hold. There is an
ENP machine which, for all sufficiently large n, on input 1n, outputs in 2O(n) time a Boolean function
f : {0, 1}` → {−1, 1} where ` ∈ [n, Kn] such that one of the following holds.

1. f cannot be computed by 2α
√

` log `-size general circuits.

2. For every Sum ◦ Fpoly
` -function H : {0, 1}` → R such that complexity(H) ≤ 23α

√
` log ` and

‖H‖4 ≤ 1 it holds that
〈 f , H〉 < (1− δ).

Using the algorithm of Corollary 6.4 we can construct in 2O(n) time a function f that meets one
of two conditions above. Now we apply hardness amplification on the function f , depending on
which case in Corollary 6.4 holds.

Case 1: f is worst-case hard against general circuits. In this case, we apply Theorem 3.5 to
the function f`. In 2O(n) time we can get an s = Θ(`)-bit function g′s such that g′s cannot be(

1
2 + 2−o(

√
n/ log n)

)
-approximated by (general) circuits of size 2o(

√
n log n). Since every n-variable

F2-polynomial of degree at most b can be simulated by a circuit of size 2O(b log n). It follows that g′s
cannot be

(
1
2 + 2−o(

√
n/ log n)

)
-approximated by F2-polynomials of degree at most o(

√
n/ log n).
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Case 2: f is weakly average-case hard against Sum ◦ Fpoly
` . In this case, note that

Hβ
√

`/ log `,
√

` log `/β

` ⊆ Fpoly ∩ F `,β
√

`/ log `,
√

` log `/β.

We apply Lemma 4.1 to the function f` withF `,β
√

`/ log `,
√

` log `/β-restrictable generator of Lemma 6.3,

where we set the inapproximability parameter as ε = 2−α
√

`/ log `. Let the number of instances
generated in applying Lemma 4.1 be k = Θ(log ε−1) = Θ(α

√
`/ log `). Also let the instance

generator be G : {0, 1}s → {0, 1}nk. Since the seed length to the restrictable generator is m =
` + k

√
` log `/α ≤ O(`), it follows from Lemma 4.1 that s ≤ O(m) = O(`). Now, we de-

fine a function g′s : {0, 1}s → {−1, 1} as g′s := f⊕k ◦ G. By Lemma 4.1, it follows that g′s can-
not be

(
1
2 + 2−o(k)

)
-approximated by Fpoly-functions. We have in particular that g′s cannot be(

1
2 + 2−o(

√
n/ log n)

)
-approximated by F2-polynomials of degree at most β

√
n/ log n.

Padding. In both cases, given n, we can find in 2O(n) time a Boolean function g′s : {0, 1}s →
{−1, 1}with s = Θ(n), such that g′s cannot be

(
1
2 + 2−o(

√
n/ log n)

)
-approximated by F2-polynomials

of degree at most o(
√

n/ log n). Now we choose a large enough constant C so that s ≤ Cn for all
sufficiently large n.

Design of the ENP function. We design the final ENP algorithm A as follows. Given an input z,
A sets n = |z|/C and finds the function g′s as described before. Since s ≤ nC ≤ |z|, we just let A
output g′s(z≤s). If follows that for sufficiently large input length m, A on m-bit inputs computes a

function that cannot be
(

1
2 + 2−o(

√
m/ log m)

)
-approximated by F2-polynomials of degree at most

o(
√

m/ log m). This completes the proof of Theorem 1.1.

7 Better Degree-Error Trade-off against F2-Polynomials and PNP Con-
struction of Extremely Rigid Matrices

In this section, we prove degree-error trade-off for ENP against F2-polynomials (Theorem 1.3) and
present PNP construction of extremely rigid matrices (Theorem 1.5).

Before we proceed, we remark that one can already combine known techniques from [CLW20]
and [BHPT20] to prove the following (which is also independently utilized by [Lu20] and [HV20]).

Theorem 7.1. For every β ∈ (0, 1), there is an ENP function f such that, for every sufficiently large n, it
holds that corr( f , nβ/ log n) ≤ exp(−Ω(n

1
2 (1−β))).

Using our new derandomized XOR lemma, we can substantially improve the correlation pa-
rameters from Theorem 7.1 to those stated in Theorem 1.3 and Theorem 1.5 (restated below).

Reminder of Theorem 1.3. For every β ∈ (0, 1), there is an ENP function f such that, for every
sufficiently large n, it holds that corr( f , nβ/ log n) ≤ exp(−Ω(n

2
3 (1−β))).

Reminder of Theorem 1.5. For every constant ε ∈ (0, 1), there is a PNP algorithm which on input
1n outputs an n× n F2-matrix Hn satisfying RHn(2

log1−ε n) ≥ (1/2− exp(− log2/3·ε n)) · n2, for every
sufficiently large n.
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In fact, [HV20] and [Lu20] stated a more fine-grained trade-off: for every n, ρ, k ∈ N≥1 such
that log ρ ≤ δ log n/k(log log n + k) for a sufficiently small δ > 0, they constructed an n× n matrix
Hn ∈ Fn×n

2 such thatRHn(ρ) ≥ (1/2− 2−k) · n2. Through a more careful calculation, our approach
(which is based on the derandomized XOR Lemma) can recover their results and indeed applies
to a wider regime log ρ ≤ δ log n/

√
k(log log n + k). For the sake of a clearer exposition, in this

section we will only focus on the case where ρ, the rank parameter, is set to 2nβ
for a constant

β ∈ (0, 1).
Now, let us formally define the function collection we will work with.

Definition 7.2 (Collection of low-rank functions). For every n, r ∈N such that r ≤ 2n, letMr
2n denote

the collection of functions such that, for every f ∈ M, there is a 2n × 2n matrix M over F2 of rank at most
r such that f (x, y) = (−1)M(x,y) for every (x, y) ∈ {0, 1}2n. Typically, we describe anMr

2n-function by
giving the low-rank decomposition of the matrix M := A · BT where A, B ∈ F2n×r, which only requires
O(2n · r) bits. We also letMr

2n+1 be an empty collection for every n ∈N.

In this section, we will frequently view a 2n-bit input function as a 2n × 2n matrix and vice
versa. For convenience, for every n ∈ N≥1 and every 2n-bit function f : {0, 1}2n → {−1, 1}, for
every input x to f , we call the first n bits of x (i.e., x≤n) as the row index, and the last n bits of x (i.e.,
x>n) as the column index.

We will prove the following theorem, which implies Theorem 1.5 and Theorem 1.3.

Theorem 7.3. For every β ∈ (0, 1), there is an ENP function f such that, for every sufficiently large n, f2n

is a function that cannot be
(

1
2 + 2−o(n

2
3 (1−β))

)
-approximated byM22nβ

2n -functions.

We sketch how we obtain Theorem 1.3 and Theorem 1.5 from Theorem 7.3,

Proof of Theorem 1.3. We show that Mr
2n contains all degree-d F2-polynomials on 2n variables,

given that ∑d
i=0 (

2n
i ) ≤ r. In fact, for every F2-polynomial P(x1, . . . , xn, y1, . . . , yn) of degree at

most d, if we write the truth-table of P as a 2n × 2n matrix, then each monomial corresponds to a
rank-1 matrix, and the matrix is a sum of at most ∑2n

i=0 (
2n
i ) ≤ r rank-1 matrix (i.e., the monimials).

We consider the function f constructed in Theorem 7.3, given that f2n cannot be
(

1
2 + 2−o(n

2
3 (1−β))

)
-

approximated byM22nβ

2n -functions, it follows naturally that corr( f2n, nβ/ log n) ≤ exp(−Ω(n
2
3 (1−β))).

To handle the odd input lengths, we simply define f2n+1(x) := f2n(x≤2n) for every x ∈ {0, 1}2n+1,
and this completes the proof.

Proof of Theorem 1.5. Let ε ∈ (0, 1) be a constant. First, we set β = 1− ε and let f be the function
constructed in Theorem 7.3 with parameter β.

We will use a padding argument. Given a sufficiently large integer n ≥ 1, we set ` =
⌈
log
√

n
⌉
.

Consider the function f2` constructed in Theorem 7.3. We view f2` as a 2`× 2` matrix A, and “pad”
it into a larger matrix. We set k =

⌊
n
2`

⌋
and defining a (k2`)× (k2`) matrix M′ := 1k ⊗ A where 1k

denotes all-ones k× k matrix and ⊗ denotes the Kronecker product of matrices. We then further
pad the (k2`)× (k2`) matrix M′ to an n× n matrix M by filling zeros in the empty entries.

The rigidity of M′ follows from the fact that R1k⊗A(r) = RA(r) · k2 (see, e.g., [AC19, Lemma
2.7]). The rigidity of M follows from the rigidity of M′, and the observation that we only add
O(n
√

n) ≤ n2 · exp
(
− log

2
3 (1−β)(n)

)
zeros in M.
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7.1 Technical Ingredients

We collect some crucial technical ingredients required by the proof of this section. First, we need
a fast #SAT-algorithm forMr

n-functions.

Lemma 7.4 ([AC19, CW16]). For every even integer n ≥ 1 and r ≤ 2o(n), there is a 2n−Ω(n/ log r)-time
deterministic algorithm for solving #SAT problem forMr

n-functions.

Second, we introduce a restrictable generator forM-functions with seed length shorter than
nk.

Lemma 7.5. For every n, r, k ∈N≥1 such that r ≤ 2n and 2 ≤ k ≤ r, we define

N 2n,r,k :=Mr
2n ∪Mr−k

2nd
√

ke.

There is an N 2n,r,k-restrictable generator G : {0, 1}m → {0, 1}nk with seed length m = 2n
⌈√

k
⌉

.

Proof. For brevity, let t =
⌈√

k
⌉

. We choose an arbitrary but fixed injective mapping ρ : [k]→ [t]×
[t], denoted by ρ(i) = (ρ(i)u, ρ(i)v). For every z ∈ {0, 1}m, we write z = x1 ◦ · · · ◦ xt ◦ y1 ◦ · · · ◦ yt
where |xi| = |yj| = n for every i, j ∈ [t]. We design our generator as

G(z) := (xρ(1)u ◦ yρ(1)v , . . . , xρ(k)u ◦ yρ(k)v).

For every α ∈ {0, 1}m−2n, write α = α1 ◦ · · · ◦ α2t−2 where |αj| = n for each j ∈ [2t− 2]. For every
i ∈ [k], x ∈ {0, 1}2n and α ∈ {0, 1}m−2n, we construct the embedding function as

Ti(x, α) := (α1, . . . , αρ(i)u−1, x≤n, . . . , αt−1) ◦ (αt, . . . , αt+ρ(i)v−2, x>n, . . . , α2t−2).

It is easy to verify that Item (1) and (2) of Definition 2.6 both hold. We establish Item (3) below. For
every list of functions (uj : {0, 1}2n → {−1, 1})j∈[k]\{i}, α ∈ {0, 1}m−2n and C ∈ Mr−k

m , we consider
the function

D(x) := C(Ti(x, α)) · ∏
j∈[k]\{i}

uj(G(Ti(x, α))j).

By the design of Ti, the first and last n bits of x occur in the first and last m/2 bits of Ti(x, α)
respectively, and consequently we have C(Ti(x, α)) is anMr−k

2n -function in x. Moreover, for every
j ∈ [k] \ {i}, the function uj(G(Ti(x, α))j) only depends on either x≤n or x>n, so it is an M1

2n-

function. Therefore, the function D(x) is inMr−k+(k−1)
2n ⊂Mr

2n, which completes the proof.

We also need the rectangular PCP of [BHPT20], stated below.

Theorem 7.6 ([BHPT20, Theorem 8.2 and Remark 8.3]). Let M be an algorithm running in time T =
T(n) ≥ n on inputs of the form (z, y) where |z| = n. For any odd constant integer m ∈ N such that
T(n)1/m ≥ n, given z ∈ {0, 1}n one can output in time poly(n, T1/m) a PCP verifier VrecPCPz with
proof length 2`, randomness γ, completeness 1 and soundness s ∈ (0, 1) such that the following hold.

• Shortness. T(n) ≤ 2` ≤ 2γ ≤ T · polylog(T), and ` is even.

• Query complexity. There is a constant q such that VrecPCPz makes only q queries to the proof.
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• Rectangular. The randomness r ∈ {0, 1}γ can be split into three parts r = (rrow, rcol, rshared) such
that |rrow| = |rcol| ≥ m−6

2m log T(n). For a given proof π : {0, 1}` → {−1, 1} and fixed rshared,
we write VrecPCPπ

z (rrow, rcol, rshared) to denote the output of VrecPCPz given (rrow, rcol, rshared) as
randomness.

For every i ∈ [q], the row index of the i-th query of VrecPCPz only depends on the pair (rshared, rrow),
and the column index of the i-th query of VrecPCPz only depends on (rshared, rcol). After reading the
proof, the decision of VrecPCPz only depends on rshared, the q queried bits, and p parity check bits
over (rrow, rcol), where the specification of each parity check is determined only by rshared and z. Here
p is a constant.

• Completeness. If there is a y such that M(z, y) accepts, then there is a proof H such that

Pr
r←Uγ

[VrecPCPH
z (r) = 1] = 1.

• Soundness. If no y causes M(z, y) to accept, then for every proof H, we have

Pr
r←Uγ

[VrecPCPH
z (r) = 1] ≤ s.

• Smoothness. For every p ∈ {0, 1}`, the quantity∣∣{(r, i) : VrecPCPH
z (r) makes the i-th query to H(p)}

∣∣
is the same.

Arithmetization. By the rectangular property, fixing rshared, the output of VrecPCPz depends only
on the q queried bits and p parity check bits over (rrow, rcol). For each rshared, and j ∈ [p], we
define a function Crshared

j : {0, 1}|rrow|+|rcol| → {−1, 1} which maps the random bits (rrow, rcol) to

its parity check result. Note that Crshared
j can be written as Crshared

j (rrow, rcol) = (−1)Parrshared
j (rrow,rcol)

where Parrshared
j (rrow, rcol) computes an affine function over (rrow, rcol). Hence Parrshared

j (rrow, rcol) can
be written as a rank-2 matrix27, and Crshared

j ∈ M2
|rrow,rcol|.

Now, given a randomness r = (rshared, rrow, rcol), we can write the output of VrecPCPz as a
multi-linear polynomial (over R) of the query answers (v1, . . . , vq) and the parity check (c1, . . . , cp),
denoted by Qrshared

: Rq+p → R, which maps (v1, . . . , vq, c1, . . . , cp) to a bit from {0, 1}. Moreover,
for every r = (rshared, rrow, rcol), we can write the decision as a multi-linear polynomial of queried
bits, denoted by Pr : Rq → R (see Section 3.1 for details). Since both of Pr and Qrshared

are multi-
linear polynomials, we have

Pr(v1, . . . , vq) = Qrshared
(v1, . . . , vq, Crshared

1 (rrow, rcol), . . . , Crshared
p (rrow, rcol)). (35)

Then we can define an “arithmetized verifier”, denoted by ˜VrecPCPz, which takes a real-valued
function H : {0, 1}` → R as proof. ˜VrecPCPz samples a random string (rrow, rcol, rshared) ← Uγ,
reads some values (v1, . . . , vq) from H according to the randomness, and outputs Pr(v1, . . . , vq).

Intuitively, for a given real-valued function H : {0, 1}` → R as a proof to ˜VrecPCPz, as long as H

27Note that every affine function over only rrow or rcol can be written as a rank-1 matrix. Therefore, being an XOR
over two such affine functions, Parrshared

j (rrow, rcol) can be written as a rank-2 matrix.
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is close to some Boolean function H′ : {0, 1}` → {−1, 1}, we will have that Er

[
˜VrecPCPH

z (r)
]
≈

Er

[
VrecPCPH′

z (r)
]
.

In fact, by the smoothness of VrecPCPz, we have the following lemma.

Lemma 7.7. For two functions H : {0, 1}` → R and H′ : {0, 1}` → {−1, 1}, it holds that

E
r←Uγ

∣∣∣∣ ˜VrecPCPH
z (r)− VrecPCPH′

z (r)
∣∣∣∣ ≤ 2q · q ·

(
2 + q1/(2q−2)‖H‖2q−2

)2q−2
‖H − H′‖2.

We prove Lemma 7.7 in Appendix C.

7.2 Proof of Theorem 7.3 via the Algorithmic Method

Now we try to prove Theorem 7.3 by the algorithmic method. First, we choose a constant K and set
T(n) = nK. We also choose a proper parameter m for Theorem 7.6. We choose K and m properly
so that the construction of VrecPCP of Theorem 7.6 can be done in T(n)1/2 time.

We prove the trade-off for every β ∈ (0, 1). We first set c = 1−β
1+β/2 . We let α, δ > 0 be two

small enough constants and set τ ≥ 1 to be a large enough constant. For the algorithm AT
FS defined

in Theorem 5.4, we design a cheating algorithm Amatrix to speed up the computation of AT
FS as

follows:

• Given an input z ∈ {0, 1}n, Amatrix applies the rectangular PCP of Theorem 7.6 (with the
constant m set to 13) to AT

FS(z) and obtains VrecPCPz. Let the proof length to VrecPCPz be
2`. Note that 2` = T(n) · polylog(T(n)).

• Then Amatrix guesses a Sum ◦M2τ`1−c

` -function of complexity at most 2α`c
, denoted by H, as

the proof. It then applies the following tests:

E
(x,y)←U`

(1− H(x, y))2(1 + H(x, y))2 ≤ δ, (36)

E
(x,y)←U`

H(x, y)2q−2 ≤ 1, (37)

E
r←Uγ

[
˜VrecPCPH

z (r)]
]
≥ 1 + s

2
. (38)

It accepts the proof H if all the above three tests pass, and reject otherwise. We will show in
Lemma 7.8 (its proof is deferred to Appendix C) that for fixed τ ≥ 1, each of these tests can
be done in o(nK)-time for sufficiently small α. This completes the design of Amatrix.

Lemma 7.8. For every constant τ ≥ 1, there is a sufficiently small α > 0 such that the following is true.

For every z ∈ {0, 1}∗ and H being a Sum ◦M2τ`1−c

` -function with complexity(H) ≤ 2α`c
, evaluations of

the left-hand sides of (36)-(38) can be done in 2`−Ω(`c/α) ≤ o(nK) time.

Useful Lemmas. The tests (36)-(38) play a role that is similar to that of the tests (30)-(32) in the
proof of Theorem 5.2. Analogously, the following lemmas can be established, and we defer their
proofs to Appendix C.

First, we can verify that the algorithm Amatrix only makes one-sided error.

Lemma 7.9. For every sufficiently small δ > 0, it holds that Amatrix(z) ≤ AT
FS(z) for every z ∈ {0, 1}∗.
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Second, for every z ∈ {0, 1}∗ such that AT
FS(z) = 1 and Amatrix(z) = 0, the correct proof for

VrecPCPz is rigid in the following sense. (We say a proof H is correct for VrecPCPz if it makes
VrecPCPz always accepts.)

Lemma 7.10. For every sufficiently small α > 0, the following is true. For every z such thatAmatrix(z) = 0
andAT

FS(z) = 1, every correct proof for VrecPCPz is a function H′ : {0, 1}` → {−1, 1} such that, for every

Sum ◦M2τ`1−c

` -function H with complexity(H) ≤ 2α`c
, it holds that 〈H, H′〉 ≤ (1− δ/5)‖H‖2(q−1).

Applying the derandomized XOR lemma. In the following we will combine the derandomized
XOR lemma Lemma 4.1 and Lemma 7.10 to finish the proof of Theorem 7.3. First, we show that
there is a constant C ≥ 1 and an ENP algorithm Axor such that, for every sufficiently large n,

Axor constructs a function g : {0, 1}s → {−1, 1} that cannot be
(

1
2 + 2−o(s

2
3 (1−β))

)
-approximated

byM2o(sβ)

s -functions, where s ∈ [n, Cn] is an even integer.
Given n ∈ N≥1, Axor sets n′ = n2/(2+c) and m = 2n′/K (for simplicity, we ignore the rounding

issue here and pretend both n′ and m are integers). By Theorem 5.4, Axor can find in poly(m) ≤
2O(n) time an input z of length |z| ∈ [m, m + mK] such that AT

FS(z) = 1 and Amatrix(z) = 0. We
consider the rectangular PCP system VrecPCPz. Let N1

2 be the proof length of VrecPCPz. It holds
that N1 ≤ O(|z|K/2) ≤ 2O(n′). Also let ` = 2 log N1 ≤ O(n′).

Since AT
FS(z) = 1, there exists a function H′ : {0, 1}` → {−1, 1} being a correct proof for

VrecPCPz. i.e., VrecPCPH′
z is a tautology. Using an NP oracle, Axor can find the lexicographically

first such H′ in poly(m) ≤ 2O(n) time. By Lemma 7.10, it follows that for every Sum ◦M2τ`1−c

2` -
function C with complexity bounded by 2α`c

, we have 〈H′, C〉 ≤ (1− δ/5)‖C‖2q−2.
We will apply the derandomized XOR Lemma (Lemma 4.1) with the restrictable generator

given by Lemma 7.5. We set the inapproximability parameter as ε = 2−
α
3 `

c
. Then we let k =

Θ(log ε−1) = Θ(`c) be the number of instances given by Lemma 4.1. Consider the function col-

lectionN 2`,2τ`1−c
,k. We let Axor apply Lemma 4.1 to the function H′ with theN 2`,2τ`1−c

,k-restrictable
generator of Lemma 7.5. Axor obtains from H′ a function g : {0, 1}s → {−1, 1}where s = Θ(n

√
k) =

Θ(`1+c/2), such that g cannot be
(

1
2 + 2−o(`c)

)
-approximated byM2τ′`1−c

s -functions for some τ′ ≥
Ω(τ).

Note that ` = Θ(n′), s = Θ(`1+c/2) = Θ(n) and β = 2−2c
2+c . So we have that `c = Θ(s

2
3 (1−β))

and `1−c = Θ(sβ). Hence, it follows that g cannot be
(

1
2 + 2−o(s

2
3 (1−β))

)
-approximated byM2τ′′sβ

s -

functions for some τ′′ ≥ Ω(τ′). Since s ≤ O(n), there is a constant C ≥ 1 such that s ≤ Cn holds
for every sufficiently large n.

Padding. Now we design the final ENP algorithm A. On an input x, A sets n = |x|/C and
invokes Axor to find a function g : {0, 1}s → {−1, 1} as shown before. Since s ≤ Cn ≤ |x|, A just
outputs g(x≤s/2, x>n−s/2). For every sufficiently large n, A on 2n-bit inputs computes a function

that cannot be
(

1
2 + 2−o(n

2
3 (1−β))

)
-approximated byM2τ(3)nβ

2n -functions for τ(3) ≥ Ω(τ′′) ≥ Ω(τ).

Choice of parameters. Finally, we specify our choice of the parameters, and which completes
the proof. We first choose τ such that τ(3) ≥ 1. Then we choose α accordingly such that Amatrix

runs in time o(T(n)). We also choose δ such that Lemma 7.9 and Lemma 7.10 hold.
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8 A Conditional Construction of Nondeterministic PRGs

In this section, we give a construction of nondeterministic PRGs fooling a circuit C , given that a
sufficiently efficient CAPP algorithm for C exists.

We first recall the definition of nondeterministic pseudorandom generators (NPRGs), bor-
rowed from [CLW20, Definition 3.4].

Definition 8.1. Let S, ` : N→ N and ε : N→ (0, 1) be functions, and C be a circuit class. Let M(x, y)
be a deterministic Turing machine. We say M is a nondeterministic pseudo-random generator (NPRG)
with seed length `(n) that ε-fools C -circuits of size S if following holds:

1. On every input x ∈ {0, 1}`(n) and y ∈ {0, 1}2O(`(n))
, M(x, y) either rejects or outputs a string, and

whether M(x, y) rejects depends only on |x| and y (but not on x).

2. If M(x, y) does not reject, then there is a function Gy : {0, 1}`(n) → {0, 1}n such that for every C
circuit C of size S, ∣∣∣∣∣ Pr

x∈{0,1}`(n)
[C(Gy(x)) = 1]− Pr

z∈{0,1}n
[C(z) = 1]

∣∣∣∣∣ < ε(n),

and M(x, y) outputs Gy(x) in nondeterministic 2O(`(n)) time.

3. There is at least one input y such that M(x, y) does not reject.

If the above conditions only hold for infinitely many integers n, then we say M is an infinitely often NPRG
(i.o.-NPRG).

We define CAPP (Circuit Acceptance Probability Problem) formally.

Definition 8.2. In the CAPP problem, one is given a circuit C : {0, 1}n → {−1, 1} of size S(n), and is
asked to estimate Prx←{0,1}n [C(x) = 1] within an additive error of 1/S(n).

We use Juntak to denote the family of k-juntas, i.e., functions that only depend on k input bits.
The main claim of this section is the following.

Theorem 8.3. Let C be a nice circuit class28. If there is an ε > 0 such that, the #SAT (or CAPP) problem
of C ◦ Junta2εn -circuit of size 2εn can be solved in deterministic 2(1−ε)n time, then there exists an infinitely
often NPRG which takes O(log n log log2 n) bits seeds, runs in time poly(n) and fools C -circuits of size
n.

8.1 Technical Ingredients

Before proving Theorem 8.3, we collect some necessary technical ingredients. The first one is the
NTIME hierarchy theorem for unary language.

Theorem 8.4 ([Žák83]). There is a unary language L ∈ NTIME[2n] \NTIME[2n/n].

The second one is the well-known Nisan-Wigderson construction of PRGs from hard functions.

28By nice, we mean the circuit class C is closed under projections and negations. Also, given k circuits
C1, . . . , Ck : {0, 1}n → {−1, 1}, the circuit C(x) := ∏k

i=1 Ci(x) is also a C -circuit of size poly(n, k) ·∑k
i=1 size(Ci). (i.e., C

is closed under XOR.)
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Lemma 8.5 ([NW94]). Let m, `, a be integers such that a ≤ `, and t = O(`2 · m1/a/a). Let C be a
nice circuit class. There is a function G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that the following hold. For
any function Y : {0, 1}` → {0, 1} represented as a length-2` truth table, if Y cannot be (1/2 + ε/m)-
approximated by C ◦ Juntaa-circuits (where the top C circuit has size S), then G(Y,Ut) ε-fools every C
circuit (of size S). That is, for any C circuit C (of size S),∣∣∣∣ Pr

s∈{0,1}t
[C(G(Y, s)) = 1]− Pr

x∈{0,1}m
[C(x) = 1]

∣∣∣∣ ≤ ε.

Moreover, the function G is computable in poly(m, 2t) time.

The third one is the Nisan-Wigderson combinatorial design, which, in our language, is a re-
strictable generator for C ◦ Junta2εn -circuits. For a C ◦ Juntaa circuit C, we define its size as the
number of bottom Juntaa gates.

Lemma 8.6 ([NW94]). For every sufficiently small constant ε > 0, the following is true. For every
n ∈ N≥1 and k ≤ O(n), there is an integer m = O(n) such that the following holds. Let C1 denote the
class of C ◦ Junta2εn -circuits on n-bit inputs of size at most 2εn, also let C2 denote the class of C ◦ Junta2εn -
circuit on m-bit inputs of size at most 2εn/2. There is a generator G : {0, 1}m → {0, 1}nk that can be
computed in poly(m) time and is (C1 ∪ C2)-restrictable.

The last one is the standard PRG construction for the general circuit class.

Lemma 8.7 ([Uma03]). There is a universal constant g ∈ (0, 1) and a function G : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ such that, for every s and Y : {0, 1}` → {0, 1}, if Y cannot be computed by (general) circuits of size
sg, then G(Y,Ug`) 1/s-fools (general) circuits of size s. That is, for all circuits C of size at most s, it holds:∣∣∣∣∣ Pr

x∈{0,1}`g

[
C(Y, x) = 1]− Pr

x∼{0,1}s

[
C(x) = 1

]∣∣∣∣∣ ≤ 1
s

.

Furthermore, G is computable in poly(|Y|) time.

8.2 The Construction of NPRG

Now we prove Theorem 8.3. The proof is similar to the proof of [CLW20, Theorem 7.1]. We let
AZak be the NTIME[2n] algorithm computing the unary language of Theorem 8.4. Let α > 0 be a
small enough constant. We design another algorithm Afast trying to speed up AZak as follows:

1. Afast rejects all non-unary inputs. On input z = 1n, Afast applies PCP from Lemma 5.5 first,
obtaining an oracle circuit VPCP1n . For brevity, we just write it as VPCP(n) from now on.
Recall that VPCP(n) and its oracle take input of length ` = `(n) = n + O(log n).

2. Then Afast guesses a 2α`-size general circuit C : {0, 1}` → {−1, 1}. Feeding C into VPCP(n),
Afast obtains a circuit VPCPC

(n).

3. Afast applies the PCPP from Lemma 5.6, and gets a 2SAT instance over m = 2O(α`) clauses.
It then guesses a Sum ◦ C ◦ Junta2α`-circuit H : {0, 1}log m+`+1 → R with complexity(H) ≤ 2α`

as the proof for PCPP. Afast runs the tests that are similar to the tests used by Acheat in proof
of Theorem 5.2 ((30)-(32)) and accepts if and only if all tests are passed.
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Applying the assumed CAPP algorithm, for a sufficiently small α > 0, it holds that Afast ∈
NTIME[2n/n].29 Also, we can show that Afast only makes one-sided error as we had done in
Lemma 5.9. Therefore, for infinitely many n, we have Afast(1n) = 0 and AZak(1n) = 1. Let S
be the set of all such positive integers n: S = {n ∈ N≥1 : Afast(1n) = 0 and AZak(1n) = 1}.
Depending on whether there is a succinct circuit for VPCP(n) as a correct oracle (meaning that
VPCPC

(n)(r) = 1 for all r), we use two different constructions.

Case 1. There are infinitely many n ∈ S such that, there is no circuit C of size 2α` such that
VPCPC

(n) is a tautology.
In the following we only consider these n, as there are infinitely many of them. Then we

use nondeterminism to find an oracle O : {0, 1}` → {−1, 1} such that VPCPO(n) is a tautology

in 2O(`) = 2O(n) time. It follows that for infinitely many n, O cannot be computed by 2o(`)-size
(general) circuits. Then we can apply the standard PRG construction of Lemma 8.7.

Case 2. For all but finitely many n ∈ S , there exists a 2α`-size circuit C such that VPCPC
(n) is a

tautology. Again we only consider these n as |S| is infinite.
On these n, it must be the case that Afast does not accept any Sum ◦ C ◦ Junta2α`-circuit with

complexity bounded by 2α`. Hence, the correct proof H : {0, 1}O(`) → {−1, 1} for the PCPP of
VPCPC

(n) cannot be approximated by any Sum ◦C ◦ Junta2α`-circuit with small complexity (i.e., less
than 2α`).

We can then apply the derandomized XOR Lemma to H with the restrictable generator of
Lemma 8.6, and obtain a function g with input length O(` log `) which cannot be

( 1
2 + 2−γ`

)
-

approximated by C ◦ Junta2α`-functions of size at most 2γ`, where γ > 0 is a sufficiently small
constant. Finally, we use the function g to apply Lemma 4.14, and obtain a PRG which produces
m pseudorandom bits that can fool C -circuits of size at most m = 2Ω(γ`) with seed length being
O((`2 log2 `)/(α`)) = O(` log2 `) = O(log m log log2 m).

9 Open Problems and Discussions

There are several interesting open questions stemmed from our work, we highlight some of them
below.

1. One interesting open question is whether we can improve the seed length of our new deran-
domized XOR lemma to be O(n), even for ε = 2−Ω(n). Using the Nisan-Zuckerman PRG,
we managed to get the optimal seed length O(n) when ε ≥ 2−n1−Ω(1)

(the moreover part
of Lemma 4.1).

To derandomize the proof of Lemma 4.2, we observe that one can also apply a low-error
PRG for combinatorial rectangles (see the proof of Lemma 4.16). However, directly applying
the best PRGs for combinatorial rectangles does not seem to improve our seed length here.

2. As we already discussed in Section 1, the degree-to-error trade off in Theorem 1.3 does not
match Theorem 1.1 when d = n0.49. We believe the following conjecture can be proved.

29Our proofs in Section 5 assumed the strong #SAT algorithms, but one can observe that CAPP algorithms also
suffices. Similarly arguments can be found in [CLW20, Section 6].
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Conjecture 9.1. For every β ∈ (0, 1), there is an ENP function f such that, for every sufficiently
large n, it holds that corr( f , nβ) ≤ exp(−Ω(n(1−β)/ log n)).

We believe such a better trade for β > 1/2 can be achieved by a better structured PCP.

For β < 1/2, the bottleneck becomes our restriction generator Lemma 6.3. In this case,
we hope to prove correlation bounds of 2−n1−β

, and thus have to set k = n1−β >
√

n,
but Lemma 6.3 only works when k ≤

√
n.

The generator in Lemma 6.3 appears to be optimal for the particular function collection
we considered (i.e., Fpoly), so one probably has to consider a different super class H of nβ-
degree F2-polynomials which admits a better restrictable-generator. Moreover, in order to
prove a 2−n1−β

correlation bound, our method has to solve CAPP for a linear sum of 2O(n1−β)

H functions, meaning that CAPP for a single function in H should admit an algorithm with
running time at most 2n−n1−β

. This is a stringent restriction on H and we do not have a
candidate function collection yet.

3. Can we also improve the rank-error-tradeoff in Theorem 1.5? We believe it can also be
strengthened as follows.

Conjecture 9.2. For every constant ε ∈ (0, 1), there is a PNP algorithm which on input 1n out-
puts an n × n F2-matrix Hn satisfying RHn(2

log1−ε n) ≥ (1/2 − exp(− logε n)) · n2, for every
sufficiently large n.

One potential approach to the conjecture above is to design a better restriction generator for
low-rank matrices (i.e., improve the parameters in Lemma 7.5).
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A Connections to Depth-3 Circuits Lower Bound

In this section, we prove Theorem 1.2 (restated below). For ease of presentation, we will assume
that Boolean functions have image {0, 1} instead of {−1, 1} throughout this section.

Reminder of Theorem 1.2. For any function d(n) : N → N, if there is a function f in ENP such that
corr( fn, d(n)) ≤ 2−d(n) for infinitely many n ∈ N, then there is a function g in ENP that does not admit
depth-3 AC0-circuits of size at most 2o(d(n)).

In the following, we will use AC0
3 to denote depth-3 AC0-circuits.

We will need ε-biased sets in this section. We first recall its definition below.

Definition A.1. A set S ⊆ {0, 1}n is called ε-biased if, for all non-zero x ∈ {0, 1}n, it holds that∣∣∣∣ E
y←S

(−1)〈y,x〉
∣∣∣∣ ≤ ε.

It can be shown by the probabilistic method that ε-biased sets of size poly(n, 1/ε) exists.

Theorem A.2. For every n ∈N≥1 and ε ∈ (0, 1), there is an ε-biased set S ⊆ {0, 1}n of size O(n/ε2).

First, we show that every AC0
3-circuit with bounded bottom fan-in can be slightly approxi-

mated by F2-polynomials.

Theorem A.3. For every n, τ ∈N≥1 such that τ ≥ log n, every AC0
3-circuit C : {0, 1}n → {0, 1} of size

at most 2τ and with bottom fan-in at most τ can be
(

1/2 + 2−O(τ)
)

-approximated by F2-polynomials of
degree τ.

Proof. We can assume without loss of generality that C is an AND ◦ OR ◦ AND-circuit. If not, we
can proceed with the negation of C. We will show that such a circuit C is equivalent to a MAJ ◦
XOR ◦ AND-circuit D with top gate fan-in bounded by 2O(τ) and bottom fan-in bounded by τ.

First, we write C as C =
∧m1

i=1 Ci where Ci is the enumeration of medium layer OR ◦ AND sub-
circuits. We additionally write Ci as Ci =

∨m2
i=1 Ci,j, here we assume each of Ci has the same fan-in

m2 ≤ 2τ. The general case can be handled similarly.
We set ε = 2−3τ and choose an ε-biased set S ⊆ {0, 1}m2 such that |S| ≤ 2O(τ), given by

Theorem A.2. Then for each Ci, we consider the formula

Fi(x) := ∑
y∈S

⊕
j:yj=1

Ci,j(x).

We have the following observations:

1. If Ci(x) = 0 (that is, none of Ci,j(x) evaluates to 1), then Fi(x) = 0.

2. If Ci(x) = 1 (that is, at least one of Ci,j(x) evaluates to 1), then it follows from the definition
of ε-biased sets that

Fi(x) ∈
[
|S| · 1− ε

2
, |S| · 1 + ε

2

]
.

We then consider the formula

F(x) :=
m1

∑
i=1

Fi(x).

The following hold:
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1. If C(x) = 1 (that is, none of Ci(x) evaluates to 0), then F(x) ≥ |S| ·m1 · 1−ε
2 .

2. If C(x) = 0 (that is, at least one of Ci(x) evaluates to 0), then F(x) ≤ |S| · (m1 − 1) · 1+ε
2 .

By the choice of ε, we know ε ≤ m−3
1 and hence |S| ·m1 · 1−ε

2 > |S| · (m1 − 1) · 1+ε
2 . Therefore,

we can set a threshold T such that C(x) can be computed by checking whether F(x) ≥ T. Observe
that F(x) is a (unweighted) sum of at most 2O(τ) XOR ◦ AND-circuits, where the bottom fan-in of
AND gates are at most τ. We can then write 1F(x)≥T as a MAJ ◦ XOR ◦ AND-circuit, denoted as D.

D can be seen as a majority over at most 2O(τ) F2-polynomials of degree τ. Therefore, at least
one of these polynomials agrees with C(x) on more than a 1/2 + 2−O(τ)-fraction of inputs. This
completes the proof.

Remark A.4. One might wonder whether it is possible to use the original polynomial method of Razborov-
Smolensky to prove Theorem A.3 directly. In fact, from that it can be showed that for every size-s depth-3
AC0 circuit C, there is a probabilistic polynomial P of degree O(log2 s) that computes C with a constant
error. However, for our setting (i.e., s ≥ 2Ω(

√
n)), this bound becomes trivial as log2 s ≥ n, so it is not

enough for showing Theorem A.3.

We also observe that the restriction on the bottom fan-in in Theorem A.3 is not essential.

Lemma A.5. For any function b(n) : N → N, suppose there is a function f : {0, 1}n → {0, 1} which
cannot be computed by AC0

3-circuits of size at most 2b(n) and with bottom fan-in bounded by b(n). Then
the function g : {0, 1}2n → {0, 1} defined by g(x, y) := f (x1 ⊕ y1, . . . , xn ⊕ yn) for every x, y ∈ {0, 1}n

cannot be computed by AC0
3-circuits of size at most 2o(b(n)).

Proof Sketch. Suppose on the contrary that g can be computed by an AC0
3-circuit C of size at most

s(n) = 2o(b(n)). We consider a random restriction ρ← D specified as follows: for every i ∈ [n], we
randomly select vi ∈ {xi, yi} and fix vi to a uniform bit in {0, 1}. After the restriction, each bottom
gate in C of fan-in larger than b(n) is killed with probability 2−Ω(b(n)).

Given that s(n) = 2o(b(n)), by a union bound, we know that there exists a restriction ρ ∈ D
such that g

∣∣
ρ

can be computed by an AC0
3-circuit of size at most 2b(n) with bottom fan-in bounded

by b(n). Also, note that for every ρ ∈ D, the restricted function g
∣∣
ρ

is equivalent to f (x⊕ wρ) for
some wρ ∈ {0, 1}n. This is a contradiction and we are done.

Finally, we sketch the proof of Theorem 1.2.

Proof of Theorem 1.2. By Theorem A.3, f being inapproximable by low-degree F2-polynomials im-
plies that f cannot be computed by small AC0

3-circuits with bounded bottom fan-in. We apply the
gadget of Lemma A.5 to construct from f a function g that cannot be computed by small AC0

3-
circuits.

B Missing Proofs in Section 5

B.1 A Useful Lemma

Before we proceed, we state and prove the following useful lemma. It will be used frequently in
this section and Appendix C.
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Lemma B.1. Let S be a set. Let P : S ×Rd → R be such that, for every x ∈ S , P(x, ?) is a multi-linear
polynomial with absolute values of coefficients bounded by M. Let f1, . . . , fd : S → R and g1, . . . , gd : S →
R be two list of functions. Then, it holds that

E
x←S
|P(x, f1(x), . . . , fd(x))− P(x, g1(x), . . . , gd(x))|

≤ M ·
d

∏
j=1

(
‖gj‖2(d−1) + ‖ f j‖2(d−1) + 1

)
·

d

∑
i=1
‖ fi − gi‖2 .

To prove Lemma B.1, the following inequality will be used. It can be proved by iteratively
applying Hölder’s inequality.

Claim B.2. Let h1, . . . , hk : S → R be k functions, it holds that
∥∥∥∏k

i=1 hi

∥∥∥
2
≤ ∏k

i=1 ‖hi‖2k.

Proof. Use induction on k. For k = 1, the statement is trivial. Assuming it is true for k− 1, we have∥∥∥∥∥ k

∏
i=1

hi

∥∥∥∥∥
2

≤
∥∥∥∥∥k−1

∏
i=1

hi

∥∥∥∥∥
2k/(k−1)

· ‖hk‖2k (Hölder’s inequality with (p, q) = (2k/(k− 1), 2k))

≤
k

∏
i=1
‖hi‖2k. (induction hypothesis)

Then we prove Lemma B.1.

Proof of Lemma B.1. We write

P(x, v1, . . . , vd) = ∑
T⊆[d]

αx,T ∏
i∈T

vi,

where |αx,T| ≤ M for each T ⊆ [d]. Fixing an T ⊆ [d], we consider

E
x←S
|αx,T| ·

∣∣∣∣∣∏i∈T
fi(x)−∏

i∈T
gi(x)

∣∣∣∣∣ .

It follows that

E
x←S
|αx,T|

∣∣∣∣∣∏i∈T
fi(x)−∏

i∈T
gi(x)

∣∣∣∣∣
≤ M · E

x←S

∣∣∣∣∣∑i∈T

[
( fi(x)− gi(x))

(
∏

j:j∈T,j<i
f j(x) ∏

j:j∈T,j>i
gj(x)

)]∣∣∣∣∣
≤ M ·∑

i∈T

〈
fi − gi, ∏

j:j∈T,j<i
f j ∏

j:j∈T,j>i
gj

〉

≤ M ·∑
i∈T
‖ fi − gi‖2 ·

∥∥∥∥∥ ∏
j:j∈T,j<i

f j ∏
j:j∈T,j>i

gj

∥∥∥∥∥
2

(By Cauchy-Schwartz)

≤ M ·∑
i∈T
‖ fi − gi‖2

[
∏

j∈T,j<i
‖ f j‖2(|T|−1) ∏

j∈T,j>i
‖gj‖2(|T|−1)

]
(By Claim B.2)

≤ M ·∑
i∈T
‖ fi − gi‖2

[
∏

j∈T,j<i
‖ f j‖2(d−1) ∏

j∈T,j>i
‖gj‖2(d−1)

]
. (By ‖ f ‖2(|T|−1) ≤ ‖ f ‖2(d−1))
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Finally, taking a summation over T ⊆ [d] proves the lemma.

B.2 Acheat Makes Only One-sided Error

In this subsection, we verify Lemma 5.9.

Reminder of Lemma 5.9. For every small enough constants α, δ ∈ (0, 1) and for every sufficiently large
constant K ≥ 1, the following holds: Acheat(z) ≤ AT

FS(z) for all but finitely many inputs z.

Proof of Lemma 5.9. Suppose that AT
FS(z) = 0. We consider the execution of Acheat(z). Let ` =

log T(n) + O(log log T(n)). By Item 2 of Claim 5.7, for every circuit C : {0, 1}` → {−1, 1} fed to
VPCPz, the circuit VPCPC

z : {0, 1}` → {0, 1} evaluates to 1 on at most 2`/poly(n) many inputs.
Recall in the verification of Acheat, it applies the following tests(rewriting (30) - (32)):

E
i,j∈[m]×[2]

E
x←U`

Pi,j(x) ≤ δ, (39)

E
i,j∈[m]×[2]

E
x←U`

H(i, j, x)2 ≤ 1, (40)

E
i∈[m]

E
x←U`

Fi(x) ≥ cpcpp −
1
2
(cpcpp − spcpp), (41)

where Pij is defined as

Pij(x) =

{
(1 + Tij(x))2(1− Tij(x))2, if Tij ∈ Z,
(Encs(x)− Tij(x))2, if Tij ∈ Y.

Now suppose that there is a Sum ◦ F function H(i, j, x) which can pass the tests above. We will
derive a contradiction.

Let (Y, Z) be the real-valued proof constructed by Acheat. We define from (Y, Z) a list of
Boolean valued proof circuits (Ŷ, Ẑ) as follows. First, let Ŷi := Enci(x). For each Zi, let Ẑi(x) :=
sign(Zi(x)). We can then analogously define T̂ij ∈ (Ŷ, Ẑ) and F̂i(x) := C̃onsi(T̂i,1, T̂i,2). Note that
since AT

FS(z) = 0, we have

E
i∈[m]

E
x←U`

F̂i(x) ≤ (1− 1/poly(n)) · spcpp + cpcpp/poly(n) ≤ cpcpp −
9

10
· (cpcpp − spcpp) (42)

by properties of PCP and PCPP. Also note from (41) that Ei∈[m] Ex←U`
Fi(x) is bounded below by

cpcpp+spcpp

2 .
In the following, we further bound Ei∈[m] Ex←U`

[F̂i(x)− Fi(x)], which will lead to a contradic-
tion.

We will apply Lemma B.1. We let S be [m]× {0, 1}`, and define a function PF : [m]× {0, 1}` ×
R2 → R as PF(i, x, v1, v2) := C̃onsi(v1, v2). For j ∈ {1, 2}, we set function f j : [m]× {0, 1}` → R as
f j(i, x) := Tij(x), and function gj as gj(i, x) := T̂ij(x).
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Applying Lemma B.1 with the function PF, the set S and two list of functions ( f1, f2), (g1, g2),
it follows that30

E
x←S
|PF(x, f1(x), f2(x))− PF(x, g1(x), g2(x))|

≤ 4 ·
2

∏
j=1

(
‖gj‖2 + ‖ f j‖2 + 1

)
·max

j∈[2]

{
‖ f j − gj‖2

}
. (43)

By definition, we have:

E
x←S
|PF(x, f1(x), f2(x))− PF(x, g1(x), g2(x))| = E

i∈[m]
E

x←U`

|F̂i(x)− Fi(x)|,

max
j∈[2]

{
‖ f j − gj‖2

}
≤ ∑

j∈[2]

((
E

i∈[m]
‖Tij − T̂ij‖2

2

)1/2
)

,

‖ f j‖2 =

(
E

i∈[m]
‖Tij‖2

2

)1/2

,

‖gj‖2 = 1.

Therefore, (43) translates to

E
i∈[m]

E
x←U`

|F̂i(x)− Fi(x)|

≤ 4 · ∑
j∈[2]

((
E

i∈[m]
‖Tij − T̂ij‖2

2

)1/2
)
· ∏

j∈[2]

((
E

i∈[m]
‖Tij‖2

2

)1/2

+ 2

)
. (44)

Now, we make two observations. First, we have

∑
j∈[2]

((
E

i∈[m]
‖Tij − T̂ij‖2

2

)1/2
)
≤ 2

(
E

i,j∈[m]×[2]
‖Tij − T̂ij‖2

2

)1/2

≤ 2
(

E
i,j∈[m]×[2]

E
x←U`

Pij(x)
)1/2

,

(45)

where the first step is due to
√

a+
√

b ≤ 2
√

a+b
2 , and the second step follows from (1−Tij(x))2(1+

Tij(x))2 ≥ (Tij(x)− T̂ij(x))2. We also have

∏
j∈[2]

((
E

i∈[m]
‖Tij‖2

2

)1/2

+ 2

)
≤
((

2 E
ij∈[m]×[2]

‖Tij‖2
2

)1/2

+ 2

)2

, (46)

since (
√

a + 2)(
√

b + 2) ≤ (
√

a +
√

b + 2)2. Finally, combining (44)-(46) with the conditions (39)-
(40), it follows that

E
i∈[m]

E
x←U`

|F̂i(x)− Fi(x)| ≤ 200
√

δ. (47)

Now, it is clear that for δ <
√

cpcpp−spcpp

1000 , combining (41), (42) and (47) leads to a contradiction.
This completes the proof.

30Recall that for each x ∈ S, PF is the multi-linear extension of some Boolean function. So its coefficients are bounded
by 4 (see Section 3.1).
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B.3 Extract Hardness

Now we prove Lemma 5.10.
Recall that for an input z of length n, we let ` = log T(n) +O(log log T(n)) be the input length

to VPCPC
z and its oracle. For a circuit C, we apply a PCPP construction to VPCPC

z and use m =
poly(|VPCPC

z |) to denote the number of clauses.

Reminder of Lemma 5.10. For every small enough constants α, δ ∈ (0, 1) and for every sufficiently
large constant K ≥ 1, the following holds: Suppose for some input z of length n such that Acheat(z) = 0,
there is a circuit C of size at most S(`)α such that VPCPC

z is a tautology with (Ŷ = Enc(x), Ẑ) being its
correct Boolean-valued proof. Then the function HŶ,Ẑ defined by

HŶ,Ẑ : {0, 1}log(m)+1+` → {−1, 1}
(i, j, x) 7→ T̂ij(x)

(48)

is hard in the following sense: letting r = log(m) + 1 + `, for every Sum ◦ Fr-functions H such that
complexity(H) ≤ S(r)3α and ‖H‖4 ≤ 1, it holds that

〈HŶ,Ẑ, H〉 < (1− δ/5). (49)

Proof of Lemma 5.10. Suppose on the contrary that there exists a Sum ◦ Fr-function H : {0, 1}r → R

with complexity(H) ≤ S(r)3α and ‖H‖4 ≤ 1 such that (49) does not hold. We show that the
algorithm Acheat can pass the final verification given H being the guessed function, and this con-
tradicts to the assumption. We assume without loss of generality that ‖H‖4 = 1. (If not, just do
some scaling.)

Recall that for every s ∈ [|Y|] and t ∈ [|Z|], Acheat constructed the following functions.

Ys(x) := E
i,j s.t. Tij=Ys

H(i, j, x),

Zt(x) := E
i,j s.t. Tij=Zt

H(i, j, x).
(50)

Recall that Tij ∈ (Y ∪ Z) denotes the proof function corresponding to the variable Tij ∈ Y ∪ Z
and Fi = C̃onsi(Ti1, Ti2). Also recall that we defined T̂ and F̂ for (Ŷ, Ẑ) similarly.

To show that H can pass the verification, we need to verify the following (rewriting (30) - (32)):

E
i,j∈[m]×[2]

E
x←U`

Pi,j(x) ≤ δ, (51)

E
i,j∈[m]×[2]

E
x←U`

H(i, j, x)2 ≤ 1, (52)

E
i∈[m]

E
x←U`

Fi(x) ≥ cpcpp −
1
2
(cpcpp − spcpp). (53)

Here Pij(x) is defined as

Pij(x) =

{
(1− Tij(x)2)2, if Tij ∈ Z,
(Encs(x)− Tij(x))2, if Tij ∈ Y.
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(52) clearly holds since ‖H‖4 ≤ 1. (51) is a little bit tricky. First, by definition (50) we observe
that

E
i,j∈[m]×[2]

E
x←U`

[Ti,j(x) · T̂i,j(x)] = 〈HŶ,Ẑ, H〉 ≥ (1− δ/5). (54)

E
i,j∈[m]×[2]

E
x←U`

|Tij(x)|2 ≥
(

E
i,j

E
x←U`

|Tij(x)|
)2

(by Jensen’s inequality)

≥
(

E
i,j

E
x←U`

[Ti,j(x) · T̂i,j(x)]
)2

(T̂i,j(x) ∈ {−1, 1})

≥ (1− 2δ/5). (55)

By definition of Pij, we have

E
ij∈[m]×[2]

E
x←U`

Pij(x) ≤ E
ij

E
x←U`

(
(1− Tij(x)2)2 + (Tij(x)− T̂ij(x))2

)
≤ E

ij
E

x←U`

(
Tij(x)4 + 2− 2 · Tij(x) · T̂ij(x)− Tij(x)2

)
≤ ‖H‖4

4 + 2−E
ij

E
x←U`

(
2 · Tij(x) · T̂ij(x) + Tij(x)2

)
≤ 1 + 2− (2(1− δ/5) + (1− 2δ/5)) (by (54) and (55))
≤ δ.

Finally we verify (53). We note that

E
i,j∈[m]×[2]

‖Tij‖2
2 ≤ ‖H‖2

2 ≤ 1. (56)

Combining this fact with (54), we have

E
i,j∈[m]×[2]

‖Tij − T̂ij‖2
2 = E

i,j∈[m]×[2]
E

x←U`

(Tij(x)− T̂ij(x))2

= E
i,j∈[m]×[2]

(
‖Tij‖2

2 + ‖T̂ij‖2
2 − 2〈Tij, T̂ij〉

)
≤ 1 + 1− 2(1− δ/5) (by (54) and (56))

≤ 2
5

δ. (57)

Now, given (52) and (57), we can bound Ei∈[m] Ex←U`
|Fi − F̂i| by utilizing Lemma B.1. This step

is very similar to the application of Lemma B.1 in the proof of Lemma 5.9. In particular, we can
show that

E
i∈[m]

E
x←U`

[|Fi(x)− F̂i(x)|] ≤ 200
√

δ.

Since (Ŷ, Ẑ) is the correct proof to VPCPC
z , it follows that

E
i∈[m]

E
x←U`

[F̂i(x)] ≥ cpcpp.

Hence, for sufficiently small δ > 0, it holds that

E
i∈[m]

E
x←U`

[Fi(x)] ≥ cpcpp −
1
2
(cpcpp − spcpp).

In conclusion, we showed thatAcheat on the PCPP of VPCPC
z accepts H as a proof, andAcheat(z) =

1. This contradicts to our assumption.
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C Missing Proofs in Section 7

C.1 The Proof of Lemma 7.7

Reminder of Lemma 7.7. For two matrices H ∈ RN1×N1 and H′ ∈ {−1, 1}N1×N1 , it holds that

E
r←Uγ

∣∣∣∣ ˜VrecPCPH
z (r)− VrecPCPH′

z (r)
∣∣∣∣ ≤ 2q · q ·

(
2 + q1/(2q−2)‖H‖2q−2

)2q−2
‖H − H′‖2.

Proof. For every r ∈ {0, 1}γ and i ∈ [q], let the index of the i-th query to the proof be (xr,i, yr,i).
Then we define q functions H1, . . . , Hq : {0, 1}γ → R by Hi(r) := H(xr,i, yr,i) for every i ∈ [q]. We
also define q Boolean functions H′1, . . . , H′q : {0, 1}γ → {−1, 1} by H′i (r) = H′(xr,i, yr,i) for every i.

By the smoothness property of VrecPCPz (Theorem 7.6), we have

E
i←[q]
‖Hi‖

2q−2
2q−2 = ‖H‖2q−2

2q−2,

E
i←[q]
‖Hi − H′i‖2

2 = ‖H − H′‖2
2.

Hence, for every i ∈ [q], it holds that

‖Hi − H′i‖2 ≤ q · ‖H − H′‖2, (58)

‖Hi‖2(q−1) ≤ q1/(2q−2)‖H‖2(q−1). (59)

Recall that ˜VrecPCPH
z is the natural arithmetization of VrecPCP: for each r = (rrow, rcol, rshared),

˜VrecPCPH
z reads q values from the proof H, which are H1(r), . . . , Hq(r) by definition, and outputs

Pr(H1(r), . . . , Hq(r)) where Pr : Rq → R is the polynomial mapping the query answers to the
decision. Observe that Pr is the multi-linear extension of a Boolean function31. So its coefficients
are bounded by 2q.

Therefore, we can apply Lemma B.1 to the function ˜VrecPCPz, with the set S := {0, 1}γ and
two lists of functions (H1, . . . , Hq) and (H′1, . . . , H′q). This completes the proof.

C.2 The Proof of Lemma 7.8

Reminder of Lemma 7.8. For every τ ≥ 1, there is a sufficiently small α > 0 such that the follow-

ing is true. For every z ∈ {0, 1}∗ and H being a Sum ◦M2τ`1−c

` -function with complexity(H) ≤ 2α`c
,

evaluations of the left-hand sides of (36)-(38) can be done in 2`−Ω(`c/α) ≤ o(nK) time.
Before we proceed, we introduce the following lemma. It will be proved in the end of this

subsection.

Lemma C.1. For every n, d, r, t ∈N≥1, let P : Rd → R be a multi-linear polynomial. Let H1, . . . , Hd : {0, 1}n →
R be a list of Sum ◦Mr

n-functions with complexity(Hi) ≤ t for every i ∈ [d]. Then the evaluation

E
x←Un

P(H1(x), . . . , Hd(x))

reduces to at most (2t)d-many #SAT tasks forMdr
n -functions. The reduction can be computed in O((2t)d ·

2n/2 · d · r) time.
31Check Section 3.1 for the relevant discussion.
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Proof of Lemma 7.8. First, we recall the left-hand sides of (36)-(38):

E
(x,y)←U`

(1− H(x, y))2(1 + H(x, y))2 (60)

E
(x,y)←U`

H(x, y)2q−2 (61)

E
r←Uγ

[
˜VrecPCPH

z (r)]
]

(62)

Note that for (60) and (61), we have to calculate expectations of constant-degree polynomials
(over R) of H.

For (62), we introduce some notation. For every r = (rrow, rcol, rshared) and for i ∈ [q], let xr,i, yr,i
be the row index and column index of the i-th query given randomness r. Recall that we wrote the
output of VrecPCPz as a multi-linear polynomial (over R) of the query answers (v1, . . . , vq) and
the parity check (c1, . . . , cp), denoted by Qrshared

: Rq+p → R, which maps (v1, . . . , vq, c1, . . . , cp) to
a bit in {0, 1}. Moreover, for every r = (rshared, rrow, rcol), we wrote the decision as a multi-linear
polynomial of queried bits, denoted by Pr : Rq → R.

Now, fixing rshared, for every i ∈ [q], we define a function Hrshared
i as

Hrshared
i (rrow, rcol) := H(xr,i, yr,i).

Since xr,i (resp. yr,i) only depends on rrow (resp. rcol), we conclude that Hrshared
i ∈ Sum ◦M2τ`1−c

|rrow|+|rcol|
with complexity(Hrshared

i ) ≤ 2α`c
, and the description of Hrshared

i can be computed in Õ(2`/2) time.
Also recall that for every j ∈ [p] and (rrow, rcol), we defined Crshared

j (rrow, rcol) to be the result of the
j-th parity check given randomness r. Note that we have Crshared

j ∈ M2
|rrow|+|rcol|. What we want to

compute can be written as

E
(rrow,rcol)

[Pr(Hrshared
1 , . . . , Hrshared

q )] = E
(rrow,rcol)

[Qrshared
(Hrshared

1 , . . . , Hrshared
q , Crshared

1 , . . . , Crshared
p )]. (63)

Fixing τ ≥ 1, we can choose α > 0 being sufficiently small constant such that the following
argument holds. First, assuming Lemma C.1 and given complexity(Hi) ≤ 2α`c

, the evaluations of

(60) and (61) reduce to solving 2O(α`c) #SAT tasks forM2q2τ`1−c

` -functions, which can be done in

2`−Ω(`c/τ)+O(α`c) = 2`−Ω(`c/τ) ≤ o(nK)

time, by Lemma 7.4.
For (62), note that its evaluation reduces to calculating for each rshared the right-hand side

of (63). For every fixed rshared, by Lemma C.1, the evaluation of (63) reduces to solving 2O(α`c)

#SAT tasks for M(q+1)2τ`1−c

|rrow|+|rcol| -functions (since p and q are constants). Since |rrow| ≥ Ω(`), again
by Lemma 7.4, evaluating (63) can be done in

2|rrow|+|rcol|−Ω(`c/τ)+O(α`c)

time. Enumerating rshared, the evaluation of (62) can be done in

2|rshared|+|rrow|+|rcol|−Ω(`c/τ)+O(α`c) = 2γ−Ω(`c/τ) ≤ o(nK)

time, which completes the proof.
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Now we prove Lemma C.1.

Proof of Lemma C.1. We first show that for the special case when P(v1, . . . , vd) = ∏d
i=1 vi, the de-

sired evaluation in the lemma can be reduced to solving td #SAT tasks. The general case can be
handled by considering monomials in P one by one (there are at most 2d monomials in a multi-
linear polynomials on d variables). First, for each i ∈ [q], we write

Hi(x) =
t

∑
j=1

αi,jHi,j(x).

Note that here we assume without loss of generality that all of Hi(x) have sparsity exactly t. Then
we have

E
x←Un

d

∏
i=1

Hi(x) = ∑
(`1,...,`d)∈[t]d

[
∏
i∈[d]

αi,`i

(
E

x←Un

d

∏
i=1

Hi,`i(x)

)]
.

For two functions f , g ∈ Mr
n, we define two matrices M f , Mg ∈ F2r/2×2r/2

2 such that f (x, y) =

(−1)M f (x,y) and g(x, y) = (−1)Mg(x,y) for (x, y) ∈ {0, 1}n. Then we have f (x, y) · g(x, y) =

(−1)M f (x,y)+Mg(x,y), where the addition of M f and Mg is over F2. It follows that f · g ∈ M2r
n .

Moreover, if we have the descriptions of f and g, denoted by M f = A f · BT
f and Mg = Ag · BT

g ,
then the description of f (x, y) · g(x, y) is just (A f , Ag) · (B f , Bg)T, where we use (A f , Ag), (B f , Bg)
to denote the concatenations of matrices with same number of rows.

Hence, for every tuple (`1, . . . , `d) ∈ [nd], the function ∏d
i=1 Hi,`i(x) is inMdr

n , and its descrip-
tion can be computed in O(2n/2 · r · d) time. This completes the proof.

C.3 The Proof of Lemma 7.9

Reminder of Lemma 7.9. For every sufficiently small δ > 0, it holds that Amatrix(z) ≤ AT
FS(z).

Proof of Lemma 7.9. Suppose on the contrary that there exists z ∈ {0, 1}∗ such that AT
FS(z) = 0 but

Amatrix(z) = 1. We show a contradiction. By Amatrix(z) = 1 we know that there is a function
H : {0, 1}` → R such that the following hold (rewriting (36) - (38)):

E
(x,y)←U`

(1− H(x, y))2(1 + H(x, y))2 ≤ δ, (64)

E
(x,y)←U`

H(x, y)2q−2 ≤ 1, (65)

E
r←Uγ

[
˜VrecPCPH

z (r)]
]
≥ 1 + s

2
. (66)

We define from H a Boolean function H′ as H′(x, y) = sign(H(x, y)). It follows from (64) that
‖H − H′‖2 ≤ ‖(1− H)(1 + H)‖2 ≤

√
δ.

Using Lemma 7.7, it follows from (65) that

E
r←Uγ

∣∣∣∣ ˜VrecPCPH
z (r)− VrecPCPH′

z (r)
∣∣∣∣ ≤ 2q · q ·

(
2 + q1/(2q−2)‖H‖2q−2

)2q−2
‖H − H′‖2 ≤ 2O(q)

√
δ.

(67)
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Since AT
FS(z) = 0, by the soundness property of Theorem 7.6, it follows that

E
r←Uγ

[
VrecPCPH′

z (r)
]
< s. (68)

Note that for sufficiently small δ (δ � (1− s)), combining (66)-(68) leads to a contradiction. This
completes the proof.

C.4 The Proof of Lemma 7.10

Reminder of Lemma 7.10. For every sufficiently small α > 0, the following is true. For every z such that
Amatrix(z) = 0 and AT

FS(z) = 1, every correct proof for VrecPCPz is a function H′ : {0, 1}` → {−1, 1}
such that, for every Sum ◦ M2τ`1−c

` -function H with complexity(H) ≤ 2α`c
, it holds that 〈H, H′〉 ≤

(1− δ/5)‖H‖2(q−1).

Proof. Suppose on the contrary that there exists an H : {0, 1}` → R guessed byAmatrix(z) that vio-
lates the lemma statement. In the following, we assume without loss of generality that ‖H‖2(q−1) =
1. (If not, just do a scaling.) We show that Amatrix(z) accepts H as a proof, which contradicts the
assumption that Amatrix(z) = 0.

We verify that after guessing H, Amatrix(z) can pass the following tests (rewriting (36)-(38)):

E
(x,y)←U`

(1− H(x, y))2(1 + H(x, y))2 ≤ δ, (69)

E
(x,y)←U`

H(x, y)2q−2 ≤ 1, (70)

E
r←Uγ

[
˜VrecPCPH

z (r)]
]
≥ 1 + s

2
. (71)

In the following, we assume that q ≥ 3. If it is not the case, we can construct an equivalent
PCP which issues some additional queries to proof and ignore the answer.

First, (70) holds since we have assumed that ‖H‖2q−2 = 1. For (71), we observe that

‖H‖2
2 ≤ ‖H‖2

2q−2 ≤ 1

and
〈H, H′〉 > (1− δ/5)‖H‖2q−2 ≥ 1− δ/5.

Therefore, we have that

‖H − H′‖2
2 = ‖H‖2

2 + ‖H′‖2
2 − 2〈H, H′〉 ≤ 2

5
δ. (72)

Note that δ measures the distance between H and H′. The less δ is, the closer H is to H′. Hence,
for sufficiently small δ, it follows from Lemma 7.7, (70) and (72) that

E
r←Uγ

[
˜VrecPCPH

z (r)
]
≥ E

r←Uγ

[
VrecPCPH′

z (r)
]
− 2O(q) · δ ≥ 1 + s

2
.
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Lastly, we verify (69). Note that ‖H‖2 ≥ ‖H‖1 ≥ 〈H, H′〉 ≥ 1− δ/5. It follows that

‖(H + 1)(H − 1)‖2
2 = ‖1− H2‖2

2

= E
(x,y)←U`

[
H(x, y)4 + 1− 2H(x, y)2

]
= ‖H‖4

4 + 1− 2‖H‖2
2

≤ 2− 2(1− 2δ/5) (‖H‖4 ≤ ‖H‖2q−2 = 1)
≤ δ.

This shows that H can pass the tests and consequently Amatrix(z) = 1, a contradiction.
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