
Junta Distance Approximation with Sub-Exponential Queries

Vishnu Iyer∗ Avishay Tal† Michael Whitmeyer‡

January 10, 2021

Abstract

Leveraging tools of De, Mossel, and Neeman [FOCS, 2019], we show two different results
pertaining to the tolerant testing of juntas. Given black-box access to a Boolean function
f : {±1}n → {±1}:

1. We give a poly(k, 1ε) query algorithm that distinguishes between functions that are γ-close

to k-juntas and (γ + ε)-far from k′-juntas, where k′ = O(k
ε2).

2. In the non-relaxed setting, we extend our ideas to give a 2Õ(
√
k/ε) (adaptive) query

algorithm that distinguishes between functions that are γ-close to k-juntas and (γ+ ε)-far
from k-juntas. To the best of our knowledge, this is the first subexponential-in-k query
algorithm for approximating the distance of f to being a k-junta (previous results of Blais,
Canonne, Eden, Levi, and Ron [SODA, 2018] and De, Mossel, and Neeman [FOCS, 2019]
required exponentially many queries in k).

Our techniques are Fourier analytical and introduce the new notion of “normalized influences”
that might be of independent interest.

1 Introduction

The study of property testing, initiated by Blum, Luby, and Rubinfeld in their seminal work on
linearity testing [BLR90], is concerned with making fast decisions about a global object having
some global property, while only accessing (or “querying”) parts of it. We focus on properties of
Boolean functions, i.e., f : {±1}n → {±1}. First, we state the definition of a property testing
algorithm A. Given ε > 0 and a class of functions C, we say that A is a property tester for C if it
satisfies the following two conditions:

1. if f ∈ C, then A accepts f with probability at least 2/3;

2. if dist(f, g) ≥ ε for all g ∈ C, then A rejects with probability at least 2/3.

In the above definition, dist(f, g) = Pr[f(x) 6= g(x)] is the fraction of inputs on which f and g
disagree under the uniform distribution. The primary measure of efficiency for such property testing
algorithms is the algorithms query complexity, or the number of times it must use its black box
access to f . Such query algorithms can be adaptive in that the coordinates on which they query f
depend on previous answers, or they can be nonadaptive in that the algorithm always queries f in
a predetermined manner.

∗UC Berkeley. Email: vishnu.iyer@berkeley.edu
†UC Berkeley. Email: atal@berkeley.edu
‡UC Berkeley. Email: mwhitmeyer@berkeley.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 4 (2021)

In this writeup, our algorithms will be adaptive, and we will focus on testing the particular
class of functions known as k-juntas. Juntas comprise a simple and natural class of functions: those
that depend only on a smaller subset of their input variables. More precisely, a Boolean function
f : {±1}n → {±1} is said to be a k-junta if there exists k coordinates i1, . . . , ik ∈ [n] such that f(x)
only depends on xi1 , . . . , xik . In essence, juntas capture the existence of many irrelevant variables,
and arise naturally in the context of feature selection in machine learning and many computational
biology problems. A canonical example is the problem of determining the relationship between
genes and phenotypes; for example, one might wish to test whether a particular physical trait is a
function of many genes or only a small number.

The fundamental problem of learning and/or testing juntas has been given much attention
in recent years. We refer the reader to the works of Mossel, O’Donnell, and Servedio [MOS03]
and Valiant [Val12] for the most recent work on learning k-juntas. In this paper, we focus on
the problem of testing juntas. Testing 1-juntas (aka dictators) and related functions had initial
theoretical interest in the context of long-code testing in PCPs [H̊as01, BGS98], and was first
formally explored in [PRS01], which gave algorithms for testing dictators, monomials, and monotone
DNFs. The more general problem of testing k-juntas was first studied by Fischer et. al. [FKR+04],
where they exhibited a k-junta tester with query complexity Õ(k2) queries to f . Crucially, their
upper bound lacked any dependence on the ambient dimension n. More recently, it was shown in
[Bla09] that O(k log k+ k/ε) adaptive queries suffice to test k-juntas, and this is tight for constant
ε [Sag18, CG04]. There has also been recent interest in the distribution free setting for junta
testing (wherein the distribution on inputs is not assumed to be uniform). Liu et al. [LCS+19]
initially gave a Õ(k2/ε)-query algorithm with one-sided error, which was quickly followed up by
the works of Bshouty [Bsh19] and Zhang [Zha19] who gave Õ(k/ε)-query algorithms with two-sided
and one-sided error, respectively. In this work, we only consider the uniform distribution.

1.1 Tolerant Junta Testing

Tolerant testing, a notion first introduced by Parnas, Ron, and Rubinfeld [PRR04], generalizes
the notion of standard property testing. Normal property testing entails distinguishing between
functions that exactly satisfy a certain property, and functions that are ε-far from satisfying said
property. This is somewhat restrictive, and the tolerant testing problem seeks to more generally
distinguish functions that are c` close to having the desired property, and those that are at least
cu far from having the property, for some 0 < c` < cu < 1. We also note that the notion of
tolerant testing is closely related to the notion of distance approximation – indeed, if one can
estimate dist(f, C) up to additive error (cu−c`)/2 with probability at least 2/3, then one has solved
the tolerant testing problem for that class. In general, tolerant testing (and therefore distance
approximation), is much more challenging than traditional property testing. Figure 1 provides
a visualization of the tolerant testing problem. For the case of k-juntas, we have the following
(relaxed) definition of a tolerant tester. In the following we denote by Jn,k the class of k-juntas,
and for a class of functions C, we denote dist(f, C) := ming∈C dist(f, g).

Definition 1.1. For constants 0 < c` < cu < 1/2 and a given k′, k ∈ N with k′ ≥ k, a (k, k′, c`, cu)
tolerant junta tester is an algorithm that, given oracle access to f : {±1}n → {±1},

1. if dist(f,Jn,k) ≤ c` accepts with probability 2/3;

2. if dist(f,Jn,k′) ≥ cu rejects with probability 2/3.

Our definition is a relaxed version of the normal notion of tolerant property testing when
k′ 6= k. (We note that in the above definition we upper bound cu < 1/2 since k-juntas are closed

2

Π

cu

c`

Figure 1: A visualization of the tolerant property testing paradigm. Assuming the outermost oval
represents all functions f : {±1}n → {±1} and the property at hand is represented by a class of
functions Π, the goal is to distinguish between the light grey (at most c` close to a function in Π)
and the dark grey (at least cu far from all functions in Π) regions.

under complements, meaning if g ∈ Jn,k, then −g ∈ Jn,k.) Parnas, Ron, and Rubinfeld in their
seminal work [PRR04] showed that while standard property testers, when querying uniformly, are
weakly tolerant, entirely new algorithms are usually needed to tolerant test with better parameters.
Tolerant junta testing was first considered by Diakonikolas et al. [DLM+07] which used the
aforementioned observation from [PRR04] to show that a standard tester from [FKR+04] actually
gave a (k, k, poly(γk), γ) tolerant tester. Chakraborty et al. [CFGM12] subsequently showed that a
similar analysis to that of Blais [Bla09] gave a (k, k, γ/C, γ) tolerant junta tester (for some constant
C) using exp(k/γ) queries.

More recently, Blais et al. [BCE+19, Theorem 1.2] showed a tradeoff between query complexity
and the amount of tolerance. In particular, they gave an algorithm which, given k, γ, and ρ ∈ (0, 1),

is a (k, k, ργ/16, γ) tolerant junta tester. The query complexity of the algorithm is O
(

k log k
γρ(1−ρ)k

)
.

In particular, note that when ρ is a constant bounded away from zero, this yields an exp(k) query
algorithm, but when ρ = 1/k this yields a poly(k) query algorithm. We also note that there is an
undesirable multiplicative “gap” between cu and c` that precludes one from tolerantly testing for
arbitrary close values of cu and c` (i.e., in [BCE+19], cu ≥ 16c` for all choices of ρ). The recent work
of [DMN19] addressed this, giving an algorithm for any arbitrary γ, ε > 0 that required 2kpoly(k, 1

ε)
queries and was a (k, k, γ, γ + ε) tolerant junta tester.

In the relaxed setting (when k′ 6= k), [BCE+19, Theorem 1.1] also gave an algorithm which
used poly(k, 1

γ) queries to f and was a (k, 4k, γ/16, γ) tolerant junta tester. This once again posed
the issue of not allowing for arbitrary cu and c` values, which was resolved by [DMN19, Corollary
1.6], which gave a (k,O(k2/ε2), γ, γ + ε) tolerant junta tester with query complexity poly(k, 1

ε).
It is interesting to note that the techniques used to obtain the results from [BCE+19]

and [DMN19] are actually quite different, and yield results that are qualitatively similar but
quantitatively incomparable. The results from [BCE+19] extend the techniques of [Bla09], which
partition the n input coordinates into poly(k) disjoint sets or “parts”. It is immediate that any
k-junta is a k-part junta, but in [Bla09] it was shown that with high probability a function that is
far from being a k-junta is also far from being a “k-part junta” (for a definition of this and more
details we refer the reader to [Bla09]). The results of [BCE+19] extend the idea of considering the
relationship between k-juntas and k-part juntas in the context of tolerant testing.

3

The techniques in [DMN19] suggest a new way of attacking the problem of tolerant k-junta
testing. The core idea in [DMN19] was to get access to “oracles” to coordinates of f which have large
low-degree influence. These coordinate oracles are obtained with high probability via a combination
of random restrictions and noise operators to the original function, and once obtained, can be used
to search, in a brute force manner, for the nearest k-junta.

In terms of lower bounds for tolerant testing of juntas, two recent works addressed the non-
adaptive case. Levi and Waingarten [LW19] demonstrated that there exists 0 < ε1 < ε2 < 1/2 such
that any (k, k, ε1, ε2) tolerant junta tester requires Ω̃(k2) non-adaptive queries to f . In particular,
this result demonstrated that the tolerant testing regime is quantitatively harder than the standard
testing regime, in which a Õ(k3/2)-query non-adaptive query algorithm is known [Bla08] (and indeed
optimal due to [CST+18]). Subsequently, Pallavoor, Raskhodnikova, and Waingarten [PRW20]
demonstrated that there exists 0 < ε1 < ε2 < 1/2 (with ε1 = O(1/k1−η) and ε2 = Ω(1/

√
k)) such

that every nonadaptive (k, k, ε1, ε2)-tolerant junta tester requires at least 2k
η

queries to f , for any
0 < η < 1/2.1

1.2 Our Results

Our first result is a subexponential-in-k query tolerant junta tester in the standard (non-relaxed)
setting. In fact, we obtain an ε-accurate estimate of the distance of f to the class of k-juntas.

Theorem 1.2. Given a Boolean function f : {±1}n → {±1}, it is possible to estimate the distance

of f from the class of k-juntas to within additive error ε with probability 2/3 using 2Õ(
√
k/ε) adaptive

queries to f . In particular, when ε is constant, this yields a 2Õ(
√
k)-query algorithm. However, the

algorithm still requires exp(k/ε) time.

A simple corollary of the above theorem is that for any 0 < c` < cu < 1/2, we have a (cu, c`, k, k)
tolerant junta tester with the same query complexity as in Theorem 1.2, where ε = (cu − c`)/2.
This is an improvement of the results of [DMN19, BCE+19], whose tolerant junta testers when
k′ = k required exponential query complexity in k in the worst case. We note that although we
obtain this improvement, our algorithm still requires exp(k) time.

In the relaxed setting when k′ 6= k, we give a polynomial-in-k query tolerant junta tester that is
valid for any setting of cu and c`, and reduces k′ dependence on k to be linear instead of quadratic
due to the result of [DMN19, Corollary 1.6].

Theorem 1.3. For any γ, ε > 0 and k ∈ N, there is an algorithm with query complexity poly(k, 1/ε)
that is a (k,O(k/ε2), γ, γ + ε)-tolerant junta tester.

Theorem 1.3 is a simple corollary of the following theorem we prove.

Theorem 1.4. Let ε > 0, k ∈ N, and k′ = O(k/ε2). Then, there exists an algorithm that given
parameters k, ε and oracle access to f makes at most poly(k, 1/ε) queries to f and returns a number
α such that with high probability (at least 0.99)

1. α ≤ dist(f,Jn,k) + ε

2. α ≥ dist(f,Jn,k′)− ε
1We note that this lower bound does not necessarily rule out poly(k) exp(1/ε) nonadaptive query (k, k, ε1, ε2)

(where ε = ε2 − ε1) tolerant junta testers due to the setting of ε1 and ε2 in their hard instance.

4

Indeed, to solve the problem in Theorem 1.3 we can apply the algorithm from Theorem 1.4 with
ε = (cu− c`)/3 and accept if and only if α < 1

2(cu + c`). If dist(f,Jn,k) ≤ c` we have that with high
probability α ≤ c` + ε < 1

2(cu + c`) and we will accept. On the other hand, if dist(f,Jn,k′) ≥ cu we
have that with high probability α ≥ cu − ε > 1

2(cu + c`) and we will reject.
Both of the algorithms used to prove Theorem 1.2 and Theorem 1.4 rely on the fact that we

can get approximate oracle access to influential coordinates of f using techniques from [DMN19].
From there, we analyze the Fourier coefficients of f after a series of random restrictions in order
gain more information about the relevant coordinates of f at different Fourier levels. Along the
way, we give an algorithm which provides us with oracle access to a junta in the following sense:

Theorem 1.5 (Informal). Let f : {±1}n → {±1}, D = {g1, . . . , gk′} be a set of functions giving
oracle access to a certain set of coordinates. Let g be a function from {±1}k′ → [−1, 1] defined by
g(x) = E[f(y)|g1(y) = x1, . . . , gk′(y) = xk′]. Then g can be computed by a randomized algorithm
that runs in expected time poly(k′).

We note that one can view this as an oracle access to the junta, without even figuring out the
coordinates on which the junta depends. More details on the ideas behind both algorithms can be
found in Section 3.

1.3 Structure of this Paper

Section 2 surveys some necessary preliminaries. Section 3 gives high level overviews of the techniques
and ideas that go into the proofs of Theorem 1.4 and Theorem 1.2. Section 4 first describes how to
get obtain “oracle access” to a junta (see Theorem 1.5) using only oracles for relevant coordinates
of the junta, and then provides all the details of the algorithm and proof for Theorem 1.4. Finally,
Section 5 provides all the details of the algorithm and proof for Theorem 1.2.

2 Preliminaries

Throughout the paper we adopt certain notation conventions. For a positive integer n, we denote
by [n] the set {1, . . . , n}. For a distribution D, we denote that a random variable x is sampled
according to D by x ∼ D. In the case that x is sampled uniformly at random from a set S, we will
abuse notation slightly and write x ∼ S.

The binomial distribution with n trials and probability p per trial will be denoted Bin(n, p).
We denote the set {−1, 1} with the shorthand {±1}. For functions f, g from {±1}n to {±1} we
define dist(f, g) = Prx∼{±1}n [f(x) 6= g(x)]: that is, the fraction of inputs on which f and g differ.

For a set S ⊆ [n] we will denote by {±1}S the set of possible assignments to the variables {xi}i∈S .

2.1 Probability

We recall the following Chernoff/Hoeffding bounds.

Fact 2.1. If X1, . . . , XN are independent random variables bounded in [0, 1] and X̄ := 1
N

∑N
i=1Xi,

then we have
Pr[|X̄ −E[X̄]| ≥ η] ≤ 2 exp(−2Nη2),

Furthermore, denoting by p = E[X̄], we have

Pr[X̄ ≤ p− η] ≤ exp(−2Nη2),

Pr[X̄ ≤ (1− η)p] ≤
(

e−η

(1− η)1−η

)pN
≤ exp

(
−η

2pN

2

)
.

5

2.2 Boolean Functions

In this section we recall some tools in the analysis of Boolean functions. For a more thorough
introduction to the field, we refer the reader to [O’D14]. For every subset S ⊆ [n], we define
the parity function on the bits in S, denoted by χS : {±1}n → {±1} as χS(x) =

∏
i∈S xi. It is

a well-known fact that we can express uniquely any f : {±1}n → R as a linear combination of
{χS}S⊆[n]:

f(x) =
∑
S⊆[n]

f̂(S)χS(x).

The coefficients {f̂(S)}S⊆[n] are referred to as the Fourier coefficients of f , and can be calculated

by f̂(S) = E[f(x)χS(x)].
Given a function f : {±1}n → {±1} and a coordinate i ∈ [n], we define the influence of the

i-th coordinate on f to be
Inf i[f] = Pr

x∼{±1}n
[f(x) 6= f(xi)].

It is a well-known fact (see, e.g., [O’D14, Theorem 2.20]) that Inf i[f] =
∑

S3i f̂(S)2. The latter
definition naturally extends to functions f : {±1}n → R. We naturally extend this notion and
define the low-degree influence (up to level k) of coordinate i on f as

Inf≤ki [f] =
∑

S3i,|S|≤k

f̂(S)2.

For a set T ⊆ [n] we define the projection of the function f to T , denoted f⊆T , as the
partial Fourier expansion restricted to sets contained in T , i.e., f⊆T (x) =

∑
S:S⊆T f̂(S)χS(x).

We observe that f⊆T depends only on coordinates in T and that it can be alternatively defined as
f⊆T (x) = Ey∼{±1}n [f(y)|yT = xT]. As suggested by the last identity, we also denote f⊆T by favg,T .

In the regime of property testing, we will need a notion of “closeness” of functions.

Definition 2.2. For functions f, g : {±1}n → {±1} and a set of functions G, all from {±1}n →
{±1} we say that

1. f is ν-close to g if dist(f, g) ≤ ν;

2. f is ν-close to G if ming∈G dist(f, g) ≤ ν;

3. f and g are c-correlated if Ex∈{±1}n [f(x)g(x)] = c;

4. f and G are c-correlated (denoted corr(f,G) = c) if maxg∈G Ex∈{±1}n [f(x)g(x)] = c.

In the paper, we will occasionally abbreviate the correlation between f and g as E[fg]
when the domain is implied. Observe that when f and g are Boolean-valued (in ±1) we have
E[fg] = 1− 2dist(f, g).

Fact 2.3. For functions f, g : {±1}n → R, we have Plancheral’s identity:

E
x∼{±1}n

[f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S) .

When f = g, this fact is known as Parseval’s identity.

6

Definition 2.4. For a function f : {±1}n → R we define:

W≤k[f] =
∑
|S|≤k

f̂(S)2 .

The definitions of W≥k[f], W=k[f], and similar follow from a natural extension. Now, we define
some classes of Boolean functions with properties that will be useful to us.

Definition 2.5 (Junta). Let T ⊆ [n]. A function f : {±1}n → R is called a junta on T if f depends
only on coordinates in T . I.e., there exists a function g : {±1}T → R such that f(x) = g(xT). A
function is called a k-junta if it is a junta on T for some T ⊆ [n] of size k. Following the notation
of [DMN19], we denote the class of k-juntas on n inputs as Jn,k. We also denote JU,k as the set
of k-juntas with inputs inside of U , and when |U | = k then we often denote JU := JU,k for brevity.

Definition 2.6 (Dictator, Anti-Dictator). The i-th dictator function is given by Dicti(x) = xi, for
x ∈ {±1}n. The i-th antidictator function is simply the negation −Dicti(x).

Claim 2.7 (Nearest k-junta on a Subset). For a function f : {±1}n → [−1, 1] and a subset T ⊆ [n],
the Boolean-valued junta-on-T most correlated with f is given by

sgn(favg,T (x)) = sgn

(
E

y∈{±1}n
[f(y)|yT = xT]

)
.

Furthermore, the correlation between f and sgn(favg,T (x)) is simply Ex∼{±1}n [|favg,T (x)|].
Proof. Let g : {±1}n → [−1, 1] be any junta-on-T . It suffices to show that Ex[f(x)g(x)] ≤
E[f(x)sgn(favg,T (x))], as we do next. Indeed, for any g(x) that is a junta-on-T we have g(x) =
g′(xT) for some g′ : {±1}T → [−1, 1]. Thus, we have

E
x∼{±1}n

[f(x)g(x)] = E
x∼{±1}n

[f(x)g′(xT)]

= E
x∼{±1}n

[
g′(xT) · E

y∼{±1}n
[f(y)|xT = yT]

]
= E

x∼{±1}n
[g′(xT)favg,T (x)]

≤ E
x∼{±1}n

[|favg,T (x)|]

= E
x∼{±1}n

[sgn(favg,T (x)) · favg,T (x)]

= E
x∼{±1}n

[f(x)sgn(favg,T (x))].

A useful tool in Boolean Function Analysis is the noise operator Tρ. For a vector x ∈ {±1}n
we denote by Nρ(x) the distribution over vectors y ∈ {±1}n such that for each coordinate i ∈ [n]
independently yi = xi with probability (1+ρ)/2 and yi = −xi otherwise (alternatively, E[xiyi] = ρ).
For a function f : {±1}n → R we denote by Tρf : {±1}n → R the function defined by

Tρf(x) = E
y∼Nρ(x)

[f(y)]

There’s also a nice Fourier expression for the function Tρf given by Tρf(x) =
∑

S⊆[n] f̂(S)ρ|S|. We
will need a simple fact about the noise operator.

Fact 2.8. For any function f : {±1}n → R and any ρ ∈ [−1, 1] we have that E[|Tρf |] ≤ E[|f |].
Proof.

E
x∼{±1}n

[|Tρf(x)|] = E
x∼{±1}n

[| E
y∼Nρ(x)

[f(y)]|] ≤ E
x∼{±1}n

[E
y∼Nρ(x)

|f(y)|] = E
y∼{±1}n

[|f(y)|].

7

2.3 Estimating Fourier Coefficients

The following claim is a standard tool in many learning algorithms. It establishes that estimating
Fourier coefficients of a Boolean function f can be done with a few queries to f .

Claim 2.9. Suppose f : {±1}n → {±1} and S ⊆ [n] then there exists an algorithm that estimates
f̂(S) up to additive error ε with probability at least 1− δ that makes O((1/ε2) · log(1/δ)) samples.

Proof Sketch. Estimate f̂(S) by sampling m = O((1/ε2) · log(1/δ)) uniformly random inputs
x(1), . . . ,x(m) and taking the empirical mean of 1

m

∑m
i=1 f(x(i)) · χS(x(i)). The claim follows from

Fact 2.1.

The next claim generalizes the claim to a bounded function f : {±1}n → [−1, 1]. For that
generalization, we need the definition of a randomized algorithm computing a bounded function f .

Definition 2.10 (Randomized Algorithm for a Bounded Function). Let f : {±1}n → [−1, 1] be a
bounded function. We say that algorithm A is a randomized algorithm for f if on any fixed input
x algorithm A outputs a random bit y ∈ {±1} with E[y] = f(x).

Claim 2.11. Let f : {±1}n → [−1, 1], and let A be a randomized algorithm for f . Then, there
exists an algorithm making O((1/ε2) · log(1/δ)) calls to A that estimates f̂(S) up to additive error
ε with probability at least 1− δ.

Proof Sketch. We estimate f̂(S) by sampling m = O((1/ε2) · log(1/δ)) uniformly random inputs
x(1), . . . ,x(m), applying A to each of them to get random bits (y1,y2, . . . ,ym), and taking the
empirical mean of 1

m

∑m
i=1 yi · χS(x(i)). Note that for each i ∈ [m] we have that yi · χS(x(i)) is a

{±1} random variable with expectation

E
x(i),yi

[yi · χS(x(i))] = E
x(i)

[
E
yi

[yi|x(i)] · χS(x(i))

]
= E

x(i)
[f(x(i)) · χS(x(i))] = f̂(S).

The claim follows from Fact 2.1.

2.4 Random Restrictions

Definition 2.12 (Restriction). Consider the class of functions on {±1}n. A restriction is a pair

(J, z) where J ⊆ [n], and z ∈ {±1}J . Given a function f : {±1}n → R, and a restriction (J, z),
the restricted function fT→z : {±1}T → R is defined by fT→z(x) = f(y) where yT = x and yT = z.

Definition 2.13 (δ-Random Restriction). For δ ∈ [0, 1] we say that J is a δ-random subset of S if
it is formed by including each element independently with probability δ, which we denote as J ⊆δ S.
A δ-random restriction, denoted (J, z) ∼ Rδ, is sampled by taking J to be a δ-random subset J on

[n], and taking z to be a uniformly random string in {±1}J .

Occasionally, we will abuse notation and think of fT→z as a function from {±1}n to {±1} that
ignores bits outside T . For example, fT→z : {±1}n → {±1} is given by fT→z(x) = f(xT , zT).
Finally, we will use the following fact on random restrictions:

Fact 2.14. For a function f : {±1}n → R and sets S ⊆ J ⊆ [n] we have

E
z∈{±1}J

[f̂J→z(S)2] =
∑

R⊆[n],R∩J=S

f̂(R)2.

8

3 Overview of Techniques

Both of our algorithms rely on only having to consider a subset of influential coordinates, rather
than all n input variables. This is obtained using results from [DMN19], and is discussed further
in Section 4. For now, we simply assume that we are only dealing with poly(k, 1/ε) coordinates
S. For simplicity of presentation, we ignore dependence on ε, and focus only the dependence on k.
Thus, in this section, assume that ε is a small universal constant, e.g., ε = 0.01.

3.1 Techniques for Establishing Theorem 1.4

Our first result shows how to further reduce the number of coordinates we need to consider down to
O(k/ε2), while only losing at most ε amount of correlation with the maximally correlated k-junta.
In establishing Theorem 1.4, we first develop intuition behind a new notion of normalized influence
that we introduce next:

Definition 3.1 (Normalized Influence). Let f : {±1}n → R. We define the normalized influence
of coordinate i on f as

NInf i[f] =
∑
S3i

f̂(S)2

|S|
.

We also naturally define the normalized influence below level k:

NInf≤ki [f] :=
∑
|S|≤k
S3i

f̂(S)2

|S|
.

The next claim states that the sum of normalized influences of f equals its variance.

Claim 3.2. For any function f : {±1}n → R, we have that
∑

i NInf i[f] = Var[f].

Proof. We have that

∑
i∈[n]

NInf i[f] =
∑
i∈[n]

∑
S3i

f̂(S)2

|S|
=
∑
S⊆[n]
S 6=∅

∑
i∈S

f̂(S)2

|S|
=
∑
S⊆[n]
S 6=∅

|S| f̂(S)2

|S|
=
∑
S⊆[n]
S 6=∅

f̂(S)2 = Var[f],

where the last equality follows from Parseval’s identity.

Remark 3.3. We note that for a balanced Boolean function f (that is, one where Ex[f(x)] = 0) the
normalized influences form a probability distribution on the coordinates i.

The idea behind establishing Theorem 1.4 begins with the observation the these normalized
influences can be thought of as defining a sub-probability distribution over the input coordinates
of f , since these are non-negative numbers whose sum is at most 1. The weight assigned to
coordinate i, similar to the regular influence, captures how important i is to f , but assigns a higher
relative weight to the coordinates with Fourier mass coming from the lower levels of the Fourier
decomposition.

The second important observation for us is that for any set T of size at most k we can write

∑
i∈T

NInf≤ki [f] =
∑
i∈T

∑
|S|≤k
∅6=S3i

f̂(S)2

|S|
≥
∑
i∈T

∑
S⊆T
S3i

f̂(S)2

|S|
=

∑
∅6=S⊆T

f̂(S)2. (1)

9

Intuitively, this shows that if some set of coordinates captures large amount of Fourier mass, then
this same subset of coordinates also is very likely to be sampled by our sub-probability distribution
defined by the normalized influences. Our idea follows this line of thought – we get decent estimates
for all of the normalized influences, and sample coordinates from this estimated distribution. Let
T be the “target set” of size k, i.e., the one for which the closest k-junta to f is a junta on T .
Without loss of generality we can assume that T captures constant fraction of the Fourier mass,
meaning

∑
∅6=S⊆T f̂(S)2 ≥ Ω(1). Otherwise, the best correlation of f with a k-junta is o(1) < ε

and the task of ε-accurately estimating the distance to k becomes trivial. Assuming T captures
constant fraction of the Fourier mass, Equation (1) tells us that we will sample i ∈ T with constant
probability mass. Thus, sampling from this distribution O(k) times means we will have seen most
of T up to a small loss in correlation.

To actually estimate these normalized influences, we apply a series of log 10k random restrictions
to our function f (first take 1-random restrictions, then 1/2-random restrictions, then 1/4-random

restrictions, and so on), and then show that summing f̂J̄→z({i})2 for each of these restrictions is
sandwiched between NInf≤ki [f] and NInf i[f]:

1

2
NInf≤ki [f] ≤

log 10k∑
i=0

E
(J,z)∼R2−i

[
f̂J̄→z({i})2

]
≤ 2NInf i[f].

This would allow us to effectively sample from a proxy distribution that still samples i ∈ T with
constant probability.

We repeat the process iteratively, sampling coordinates one at a time, until we either sampled
all of T or sampled a subset T ′ ⊆ T for which we have that the best junta on T ′ is almost
as correlated with f as the best junta on T . Since the process samples a coordinate in T with
constant probability in each round, after O(k) iterations we are likely to succeed, giving us a set U
of O(k) coordinates that contains either T or T ′ (as above). Finally, we show we can estimate, up
to a small additive error, the best correlation of a junta-on-U with f , given only approximate oracle
access to the coordinates in S. By the above discussion the estimate we get is lower bounded by
the best correlation with a k-junta up to a small additive error. It is also upper bounded (trivially)
with the best correlation of f with a O(k)-junta, since |U | = O(k).

3.2 Techniques for Theorem 1.2

A limitation of the algorithm we described in the previous subsection is that it only samples one
coordinate at a time. In particular, suppose we want to find T exactly, instead of a superset U of
T . Then, the naive algorithm would need to consider all subsets of U of size k, estimating the best
correlation with a junta on each of them. This gives a exp(O(k))-query algorithm. It would be nicer
if we can devise a sampling algorithm that outputs, with constant probability, many coordinates
of T at a time. Such a sampling algorithm would reduce the number of possibilities for T in the
second stage. In particular, consider the case that the nearest k-junta to f had significant amount
of Fourier mass on higher levels, say at level ≈ k or maybe ≈

√
k. In this case it would be nice to

be able to sample from the Fourier distribution of f , that would give us a large subset of T with
constant probability. We note that sampling from the Fourier distribution of a Boolean function is
easy for a quantum algorithm but hard for a randomized algorithm. Nevertheless, the (classical)
algorithm we describe in this section takes inspiration from this, and samples subsets of size

√
k

according to the Fourier mass of f above level
√
k of each subset, in time and query complexity

exp(Õ(
√
k)).

10

We will start with the preliminary that we have reduced to the case of only having to consider the
coordinates in S ⊆ [n] with |S| ≤ O(k/ε2), using our aforementioned algorithm from the previous
section, incurring only a small additive loss in correlation with the closest k-junta. We start with the
following definition that generalizes normalized influences of coordinates to normalized influences
of sets of coordinates.

Definition 3.4. For a given subset U ⊆ [n], we define its normalized influence as follows:

NInfU [f] :=
∑

S:U⊆S

f̂(S)2(|S|
|U |
) .

We also have the natural extension of NInf≤kU [f] =
∑

S: |S|≤k,U⊆S
f̂(S)2

(|S||U|)
, analogous to Definition 3.1.

This is a direct generalization of the quantity in Definition 3.1. In particular, we consider taking

|U | =
√
k. Note there are 2Õ(

√
k) such U within the coordinates in S, and we can think of these

normalized influences as once again defining a sub-probability distribution over subsets of size
√
k.

It likely does not sum to 1, but rather sums to W≥
√
k

S [f] ≤ 1. We show that these normalized

influences at exactly level
√
k can once again be approximated to within a constant factor via a

sequence of random restrictions to f :

1

2
NInf≤kU [f] ≤

2
√
k log 10k∑
i=0

E
(J,z)∼Rpi

[
f̂J̄→z(U)2

]
≤ 3NInfU [f],

where p =
(

1− 1
2
√
k

)
. For more details on this statement, see Theorem 5.1.

We are now ready to outline the overall algorithm in Section 5. Suppose T ⊆ S is the subset
on which the nearest k-junta (within S) is defined. Our algorithm can then be broken down into
two phases:

Phase 1. We get a proxy for NInfU for all |U | =
√
k. This is achieved by performing a series of random

restrictions to f .

We consider these proxies as a distribution, and sample a constant (this constant is actually
dependent on ε, see Section 5 for details) number of subsets of size

√
k. With high probability,

one of these is in our set of interest T , provided T has a non-negligible amount of Fourier
mass above level

√
k.

We don’t know which of the subsets we sample are actually in T , so we start a branching
process. For each subset we sampled, we restrict f ’s values in that subset, and recursively
sample from sets of size

√
k using the steps described above. Our branching process will have

depth at most
√
k since at each level we sample

√
k new coordinates, and T can have at most

k relevant coordinates. This phase of our algorithm produces 2Õ(
√
k) possible subsets of our

target set T .

Phase 2. With high probability, one of the branches in the above process will have captured most of
the coefficients of T that are relevant above level

√
k on the Fourier spectrum. Each branch

of this process represents a different possibility for what T may be, so for each branch we
randomly restrict f so that the coordinates sampled in that branch are fixed, which effectively
moves most of the mass of T to levels below

√
k. We then estimate all the Fourier coefficients

of this restricted f below level
√
k, allowing us to get an estimate for the closest k-junta on

11

any subset using these estimated coefficients. Each estimation of a Fourier coefficient requires

2Õ(
√
k)-queries to estimate to the desired accuracy, and there are 2Õ(

√
k) Fourier coefficients to

estimate, so overall we make at most 2Õ(
√
k) queries. From there, for each possible subset of

B ⊆ T outputted by phase one, we brute force over all possible subsets of size k containing B,
estimating the correlation f has with the closest k-junta on that subset using our estimated
Fourier coefficients. This last step takes exponential time in k. We emphasize that while our
runtime is exponential in k, our query complexity is only exponential in Õ(

√
k).

In the entire above explanation, we have eliminated the dependence on ε for simplicity. We also
only consider T for conceptual and analytic simplicity – in reality, we have no idea what T is, and
indeed it is exactly what we are looking for. Therefore, more work must be done in order to show
that we do not accidentally pick the wrong set, for which our estimates may be inaccurate. To get
around this subtle issue, we further apply a noise operator in order to ensure that the significant
parts of f lie below level roughly

√
k. We discuss this further in Section 5.2.

4 Finding a Small(er) Set of Influential Coordinate Oracles

In this section, we detail the process of constructing oracles to coordinates with large low-degree
influence. We expand upon the techniques in [DMN19], reducing the number of coordinates one
needs to consider to produce a highly correlated k-junta (assuming one exists).

4.1 Approximate Oracles to Influential Coordinates

In this subsection we outline and generalize the methods used by [DMN19] to achieve oracle access
to coordinates with large low-degree infuence in f . We start with the following definitions from
their paper, repeated here for clarity:

Definition 4.1 ([DMN19, Def. 3.1]). Let D be a set of functions mapping {±1}n to {±1}. We say
that D is an oracle for the coordinates in S if

• for every g ∈ D, there is some i ∈ S such that g = ±Dicti; and

• for every i ∈ S, there is some g ∈ D such that g = ±Dicti.

In other words, D is an oracle for S if D = {Dicti : i ∈ S} “up to sign”.

However, it is not tractable to achieve perfect access to such oracles, so we have to settle for
the following weaker notion of approximate oracles:

Definition 4.2 ([DMN19, Def. 3.2]). Let D be a set of functions mapping {±1}n to {±1}. We say
that D is an ν-oracle for the coordinates in S if

• for every g ∈ D, there is some i ∈ S such that g is ν-close to ±Dicti; and

• for every i ∈ S, there is exactly one g ∈ D such that g is ν-close to ±Dicti; and

• For every g ∈ D, and δ > 0, there is a randomized algorithm that compute g(x) correctly on
any x ∈ {±1}n with probability at least 1− δ, using poly(k, log 1

δ) queries to f .

Lemma 3.6 in [DMN19] establishes that we can achieve access to a set D of approximate oracles
to S ⊇ {i : Inf≤ki [f] ≥ ε2/k} of bounded size.

More specifically, we have the following corollary:

12

Corollary 4.3 ([DMN19, Lemma 3.6]). With poly(k, 1
ε , log 1

δ) · 1
ν queries to f , we can gain access

to an approximate oracle set D in the sense that for every coordinate i such that Inf≤ki [f] ≥ ε2

k ,
there exists a g ∈ D such that g is ν-close to ±Dicti with probability at least 1 − δ. Furthermore,
|D| ≤ poly(k, 1

ε , log(1/δ)).

For our purposes, we take ν = 0.1 and δ = 2−poly(k, 1
ε

) in all our algorithms. Since we will make
much fewer than 2poly(k/ε)-many queries to the coordinate oracles, we can assume that all of our
oracles are indeed ν = 0.1 close to dictators/anti-dictators, since by a union bound this is true with
high probability.

It is important to note that we do not have a description of which coordinates are influential:
from an information theoretic standpoint this would require query complexity dependent on n.
What we do have is oracle access to these coordinates in the sense that for all i such that
Inf≤ki [f] ≥ ε2/k, there exists gi ∈ D such that gi(x) ≈ ±Dicti(x), that is, D contains dictators or
anti-dictators to every influential coordinate. Using simple techniques of local correction we can
simplify this: we need only consider dictators to each coordinate in the oracle. Also, we can convert
closeness on average x to high probability correctness for all x (i.e., a worst-case guarantee).

Lemma 4.4. Suppose f is ν-close to ±Dicti. For any x ∈ {±1}n, LocalCorrect(f, x) samples a
random y ∼ {±1}n and outputs f(y)f(x · y), where x · y is pointwise multiplication. Then,

∀x : Pr
y∼{±1}n

[LocalCorrect(f, x) 6= Dicti(x)] ≤ 2ν.

Proof. Suppose that f is ν close to Dicti. Then we have Pry∼{±1}n [f(y) 6= Dicti(y)] ≤ ν,
and since x · y has the same distribution as y, Pry∼{±1}n [f(x · y) 6= Dicti(x · y)] ≤ ν. Let
A be the event that f(y) 6= Dicti(y) and let B be the event that f(x · y) 6= Dicti(x · y).
Clearly if LocalCorrect(f, x) 6= Dicti(x) then at least one of A and B must have occurred (since
Dicti(x) = Dicti(x · y) · Dicti(y)). Thus, by the union bound, we have

Pr
y∼{±1}n

[LocalCorrect(f, x) 6= Dicti(x)] ≤ Pr[A ∪B] ≤ Pr[A] + Pr[B] ≤ 2ν

A similar argument shows that if f is ν close to −Dicti, then LocalCorrect(f, x) is not equal to
(−Dicti(y))(−Dicti(x · y)) = Dicti(y)Dicti(x · y) = Dicti(x) with probability at most 2ν.

Given a noisy black box computing h which is ν-close to g = ±Dicti, local correction will
compute Dicti with high probability, on every input x. Critically, we can treat potentially faulty
±Dicti oracles as correct Dicti oracles provided suitably many repetitions.

Corollary 4.5. If f is ν-close to ±Dicti for ν = 0.1, then repeating LocalCorrect(f, x) independently
poly(k, 1/ε) times and taking the majority outcome results in an incorrect value for Dicti(x) with
probability at most 2−poly(k,1/ε).

Proof. Clear from applying the first bound in Fact 2.1 with N = O(poly(k/ε)) and η =
(1− 2ν − 0.5) = 0.3 in this case.

We also show that restricting our attention to S we have not lost more than ε in the best
correlation of f with a k-junta. This is proved in the following claim.

Claim 4.6. Let f : {±1}n → {±1} and let g : {±1}n → {±1} be a k-junta on U . Let τ > 0. Take

S =
{
i ∈ U

∣∣∣ Inf≤ki [f] ≥ τ2

k

}
Then, there is a junta on S with correlation at least E[fg]− τ with f .

13

Proof. To prove this claim, we define a function on the set S such that the loss in correlation is at
most τ . Consider:

g′(x) = gavg,S(x) = E
y

[g(y)|yS = xS]

First, we note g′ is a function over only the variables in S. Second, it is bounded in [−1, 1], so it
is not quite Boolean, but it can be randomized rounded to a Boolean function, with the expected
correlation with f equaling E[fg′]. Thus, it suffices to show that E[fg′] ≥ E[fg]− τ to deduce that
there exists a randomize rounding of g′ to a Boolean function g′′ with E[fg′′] ≥ E[fg]− τ . We also
recall that

ĝ′(T) =

{
ĝ(T) if T ⊆ S
0 otherwise

We thus have:∣∣E[fg]−E[fg′]
∣∣ =

∣∣∣∣ ∑
T*S
T⊆U

f̂(T)ĝ(T)

∣∣∣∣ ≤√√√√∑
T*S
T⊆U

f̂(T)2 ≤
√√√√ ∑

i∈U\S

∑
T3i
T⊆U

f̂(T)2

≤
√ ∑
i∈U\S

Inf≤ki (f) ≤
√
k · τ

2

k
= τ

Finally, the below corollary summarizes what we have achieved in this section.

Corollary 4.7. With poly(k, 1
ε , log 1

δ) queries to f , we can gain access to an approximate oracle

set D for a set of coordinates {i : Inf≤ki ≥
ε2

k } ⊆ S ⊆ [n]. Moreover, these coordinates and oracles
satisfy the following properties.

• For every coordinate i ∈ S, there exists a g ∈ D such that g is 0.1-close to Dicti with probability
at least 1− δ.

• dist(f,J”JuntaDistanceApproximationwithSub−exponentialQueries”n,k)− dist(f,JS,k) ≤ ε.

• |S| ≤ poly(k, 1/ε, log(1/δ)).

• For any algorithm A that uses at most q queries to D, we can use LocalCorrect from
Lemma 4.4 with error δ/q to assume that we actually have perfect access to each coordinate
oracle, up to an additive loss of δ in confidence and a multiplicative overhead of poly(log(q/δ))
in query complexity.

Proof. The first and the third bullet point follow from Corollary 4.3. The second bullet point follows
from Claim 4.6. To achieve the last point, we can use Corollary 4.5 every time we make a “query” to
an oracle in our algorithm. Thus every “query” to an oracle g ≈ ±Dicti at x involves poly(log(q/δ))
many repetitions of LocalCorrect(g, x), which results in an incorrect value with probability at most
δ/2q, as noted above. Recall that Corollary 4.3 guarantees that we can output g(x) correctly with
probability 1− δ/2q with only a poly(k, log(q/δ)) queries to f . Since we only ever make at most q
queries to our coordinate oracles, we can assume that LocalCorrect(g, x) = Dicti(x) in all queries.
This happens with probability at least 1− δ by the union bound.

Therefore, for the rest of this paper, we will assume that we have oracle access to exact dictators.

14

4.2 Implicit Access to an Underlying Junta

An important consequence of having coordinate oracles is that it allows us to reduce the input
size of the function dramatically. Suppose f : {±1}n → {±1} and we have D = {g1, . . . , gk′} are
randomized algorithms that for any x ∈ {±1}n output gi(x) = Dictji(x) = xji . We have that
j1, . . . , jk′ ∈ [n] are a set of k′ distinct coordinates.

Let U = {j1, . . . , jk′}. We want to get access to the following function: g(x1, . . . , xk′) =
E[f(y)|yj1 = x1, yj2 = x2, . . . , yjk′ = xk′]. More precisely, given x1, . . . , xk′ we want to sample
uniformly from all y ∈ {±1}n that satisfy yj1 = x1, yj2 = x2, . . . , yjk′ = xk′ and apply f on this y.

The following algorithm that runs in poly(k, log(1/δ)) time samples y from such a distribution.

Algorithm 1: Sampling a uniformly random input consistent with the oracles’ values

Input: f (target function), D = {g1, . . . , gk′} (coordinate oracles), (x1, . . . , xk′) ∈ {±1}k′

Output: A vector y ∈ {±1}n with (g1(y), . . . , gk′(y)) = (x1, . . . , xk′)
1 Sample y ∼ {±1}n and let z ∈ {±1}k′ be the vector of evaluations of {g1, . . . , gk′} on y;
2 while z 6= x do
3 repeat
4 Let y′ be a copy of y, but flip each bit independently with probability 1

k′ ;
5 Let z′ be the vector of evaluations of {g1, . . . , gk′} on y′;

6 until dist(x, z′) < dist(x, z)
7 y = y′;
8 z = z′;

9 return y

Theorem 4.8. Algorithm 1 with probability 1− δ runs in time poly(k′, log(1/δ)).

Proof. We focus on the number of iterations of the inner repeat loop. Given (y, z) with z 6= x we
analyze the time it takes to find a (y′, z′) with dist(z′, x) < dist(z, x). Since x 6= z without loss
of generality we can assume that x1 6= z1. To get (y′, z′) with dist(z′, x) < dist(z, x), it suffices
to sample a vector y′ with y′j1 = x1 and y′j2 = yj2 , y

′
j3

= yj3 , . . . , y
′
jk′

= yjk′ . Indeed, since we

are flipping each coordinate with probability 1/k′ the probability of sampling such a y′ is exactly
1/k′ · (1 − 1/k′)k

′−1 ≥ 1/(ek′). Thus, we get that the runtime of the repeat loop is stochastically
dominated by a geometric random variable with success probability 1/(ek′). Thus with probability
at least 1− δ/k′, it finishes after O(k′ · log(k′/δ)) iterations. We run the inner repeat loop at most
k′-times, thus by union bound, with probability at least 1− δ the entire process end after at most
O(k′2 · log(k′/δ)) executions of line 5. We note that execution line 5 actually requires k′ queries to
g1, . . . , gk′ , each of them takes poly(k) = poly(k′) time. thus overall, with probability at least 1− δ,
our algorithm run in time poly(k′, log(1/δ)).

Theorem 4.9. Algorithm 1 samples uniformly from the set of inputs {y′ : (g1(y′), . . . , gk′(y
′)) =

(x1, . . . , xk′))}.

Proof. Let U = {j1, . . . , jk′} be the set of coordinates for which {g1, . . . , gk′} are oracles to.
Algorithm 1 certainly samples a vector y with yj1 = x1, . . . , yjk′ = xk′ . We want to show additionally
that Algorithm 1 samples yU uniformly at random. In fact, at any point in the algorithm the
distribution over yU is uniform. This is clearly true in the first step where y ∼ {±1}n, and remains
true along the algorithm as we apply independent noise to coordinates in U and decide whether to
apply the noise or not according to the value of yU which is independent of yU .

15

We will consider algorithms computing non-Boolean function like g = favg,S for some subset
S ⊆ [n]. Note that g is a function whose range in [−1, 1], but not necessarily a Boolean function.

Theorem 4.10 (Formal version of Theorem 1.5). Let f : {±1}n → {±1}, D = {g1, . . . , gk′} be a set
of coordinate oracles. Let g be a function from {±1}k′ → [−1, 1] defined by g(x) = E[f(y)|g1(y) =
x1, . . . , gk′(y) = xk′]. Then g has a randomized algorithm in the sense of Definition 2.10 computing
it that runs in expected time poly(k′).

Proof. Given x = (x1, . . . , xk′) apply Algorithm 1 on f , D and x to get a vector y ∈ {±1}n. Return
f(y). It is clear that since y is a uniform input subject to g1(y) = x1, . . . , gk′(y) = xk′ that our
algorithm is a randomized algorithm for g.

4.3 Influential Coordinate Oracles

As above, denote as S the superset of the low-degree influential coordinates of f , and D as the set of
approximate oracles to said coordinates, obtained via Corollary 4.3 with parameter ν = 0.1. As we
discussed in Section 4.1, we assume (with a small loss in error probability, and a small multiplicative
factor on query complexity) that we have exact access to dictators for each influential coordinate.
We work towards proving the following improved version of a corollary that appeared in [DMN19]:

The idea will be to take D, a set of k′ = poly
(
k, 1

ε

)
coordinate oracles, and somehow “prune” it

down to a set D′ of at most O(k
ε2

) coordinate oracles, such that that the loss in the most correlated
junta on this smaller set of coordinates is at most ε

max
g∈JD,k

E[fg]− max
g∈JD′,k

E[fg] ≤ ε.

4.4 Reducing the Number of Oracles to Consider

Starting with a set of poly(k/ε) set of oracles D for a set S containing the influential coordinates of
f , our goal in this section is to prune the number of oracles to O(k/ε2) in a way that incurs only
a small loss in correlation with the nearest k-junta. [DMN19] achieved their theorem by noting
that applying a standard noise operator to f did not affect its proximity to the nearest k-junta
significantly, while also guaranteeing that at most k2

ε2
coordinates could have large influence. They

then were able to estimate the influence of every coordinate in D despite only having (approximate)
oracle access to the influential coordinates, and thus were able to determine which oracles were
actually oracles to influential coordinates, of which there were less than k2/ε2.

Our approach, as explained at a high level in Section 3, is to estimate the normalized influence
of each coordinate in S, which is done via a sequence of random restrictions to f . In words, the

below algorithm estimates for each coordinate i ∈ S the quantity λ≈2d
i = E(J,z)∼R

2−d
[f̂J̄→z({i})2],

where (J, z) ∼ R2−d parameterize a 2−d-random restriction to f . Then, λi is defined to be sum

over a series of random restrictions d = 0, ..., log 10k of λ≈2d
i . The core idea of our algorithm is

that this sum over Fourier coefficients on the first level of restricted versions of f is a proxy for
NInf i[f]. In other words, we have the following theorem:

Theorem 4.11. Let f : {±1}k′ → R, where k′ = |D|. Let i ∈ [k′]. Let

λi[f] =

log(10k)∑
m=0

λ≈2m

i [f], where λ≈2m

i [f] = E
(J,z)∼R2−m

[f̂J̄→z({i})2].

Then, 1
2NInf≤ki [f] ≤ λi[f] ≤ 2NInf i[f].

16

We postpone the proof of Theorem 4.11 to Section 4.5. The definition of λi naturally gives
rise to an algorithm for estimating λi that we present next. The algorithm would return for each
i ∈ [k′] an estimate λ̃i that would be close to λi with high probability.

Algorithm 2: Estimating λi

Input: f : {±1}k′ → [−1, 1] along with randomized algorithm A computing f (recall
Def. 2.10). Parameters 1− δ (confidence), ε (additive error) and k.

Output: Estimates (λ̃1, . . . , λ̃k′) for (λ1, . . . , λk′).
1 Let m = poly(k, k′, 1/ε, log(1/δ))

2 Initialize λ̃i = 0 for all i ∈ [k′];
3 for d = 0 to log 10k do

4 Initialize λ̃≈2d
i = 0 for all i ∈ [k′];

5 repeat m times
6 Let (J, z) ∼ R2−d be a 2−d-random restriction.

7 Estimate f̂J̄→z({j}) for all j ∈ J up to additive error ε
6 log(10k) with probability

1− δ/poly(k, k′,m) using Claim 2.11 and algorithm A.

8 Denote by f̃J̄→z({j}) the estimated Fourier coefficient.

9 Update λ̃≈2d
j = λ̃≈2d

j + f̃J̄→z({j})2 for all j ∈ J .

10 Let λ̃≈2d
i = λ̃≈2d

i /m for all i ∈ [k′];

11 Let λ̃i =
∑

d λ̃
≈2d
i ;

12 return (λ̃1, λ̃2, . . . , λ̃k′)

Lemma 4.12. With probability at least 1− δ we have that for all i ∈ [k′] it holds that |λ̃i−λi| ≤ ε.

Proof. If j /∈ J the Fourier coefficient of f̂J̄→z is 0 and so our estimate is correct in that case.
In the case j ∈ J , each estimation of the Fourier coefficient is correct up to additive error

η = ε/6 log(10k) with probability at least 1 − δ/poly(k, k′,m). Thus, we get that f̃J̄→z({j})2 =

(f̂J̄→z({j}) ± η)2 = f̂J̄→z({j})2 ± 2η|f̂J̄→z({j})| ± η2 = f̂J̄→z({j})2 ± 3η. Furthermore, we

have that E(J,z)∼R
2−d

[f̂J̄→z({j})2] = λ≈2d
j , thus by Fact 2.1 we have that the empirical mean of

m = poly(1/ε, log(k), log(k′), log(1/δ)) copies of f̃J̄→z({j})2 is within additive error ε/(2 log(10k))

from λ≈2d
j with probability at least 1 − δ/(k′ log(10k)). By union bound, all these estimates are

within the error bound, and we get that |λ̃≈2d
j −λ≈2d

j | ≤ 3η+ε/(2 log(10k)) ≤ ε/(log(10k)). Overall,

we get that |λ̃j − λj | ≤ ε for all j ∈ [k′] with probability at least 1− δ.

17

With Algorithm 2 in hand, we are ready to present the pruning procedure.

Algorithm 3: Reduce Number of Oracles

Input: f (target function), D (influential coordinate oracles, where D are oracles for S).
Parameters ε and δ.

Output: A subset D′ ⊆ D of size O(k
ε2

) such that we lose at most ε in correlation with f .
1 Initialize D′ = ∅;
2 Let m = O((k + log(1/δ))/ε2)
3 repeat m times
4 Let {g1, . . . , gk′} = D −D′, and {gk′+1, . . . , g|D|} = D′

5 Sample z ∈ {±1}|D′|. Let f ′ : {±1}k′ → R be the function defined by

f ′(x1, . . . , xk′) = E
y∼{±1}n

[f(y)|g1(y) = x1, . . . , gk′(y) = xk′ , gk′+1(y) = z1, . . . , gk′+|D′|(y) = z|D′|].

and let A be the randomized algorithm for f ′ from Theorem 4.10.
6 Apply Algorithm 2 on f ′ using the randomized algorithm A for f ′ with confidence

1− δ
2m and accuracy ε2

48·|S| =⇒ λ̃ = (λ̃1, . . . , λ̃k′).

7 Let our distribution P be defined by λ̃, normalized appropriately.
8 Sample i ∼ P , and add gi to D′.
9 return D′

Lemma 4.13. With probability at least 1 − δ, Algorithm 3 returns a set of oracles D′ to a subset
of coordinates S ′ ⊆ S, such that

max
g∈JS,k

E[fg]− max
g∈JS′,k

E[fg] ≤ ε.

To prove Lemma 4.13, which tells us our algorithm succeeds and directly implies Theorem 1.4,
we will need a few more lemmas.

We denote the event E that in the entire execution of Algorithm 3 all λ̃i were ε2/(48 · |S|) close
to the real λi. We note that by union bound this event happens with probability at least 1− δ/2.

Suppose T is the (unknown) set of k oracles for which the best-k junta approximating f is a
junta on T . We want to show that our algorithm either samples all the coordinates in T , or it
samples a subset T ′ of T that captures all but ε2/4 of the Fourier mass of f on T .

Claim 4.14. Assume the event E happens. Then, with probability at least 1−δ/2, after m iterations,
we will have either:

1. sampled i for all i ∈ T , our target set;

2. sampled i for all i ∈ T ′ ⊆ T , where
∑

S⊆T ′ f̂(S)2 ≥
∑

S⊆T f̂(S)2 − ε2/4.

Proof. In each iteration, assume we have not yet satisfied either items. Let V be the subset of
coordinates in T that we have not yet sampled. Let T ′ = T \ V . By assumption,

ε2/4 <
∑
S⊆T

f̂(S)2 −
∑
S⊆T ′

f̂(S)2 =
∑

S⊆T :S∩V 6=∅

f̂(S)2.

Let S ′′ = S \ S ′. We have that |S ′′| = k′. Now note that up to relabeling of coordinates f ′

from Algorithm 3 is the same as (favg,S)S′→z, where z was randomly chosen. For brevity, denote by

18

fz = (favg,S)S′→z. Note that for any fixed z, fz is a function that depends only on the coordinates
in S ′′.

By Fact 2.14, we have

E
z

 ∑
∅6=S⊆V

f̂z(S)2

 =
∑

R:∅6=(R∩S′′)⊆V

f̂avg,S(R)2 =
∑
R⊆S:

∅6=(R∩S′′)⊆V

f̂(R)2 ≥
∑

R⊆T :R∩V 6=∅

f̂(R)2

> ε2/4. (2)

Next, by applying Theorem 4.11, for any fixed z, we have∑
i∈V

λi[fz] ≥
1

2

∑
i∈V

NInf≤ki [fz] ≥
1

2

∑
∅6=S⊆V

f̂z(S)2.

By the assumption that E happens, the λ̃i are ε2

48·|S| -accurate, and we get that

∑
i∈V

λ̃i[fz] ≥
1

2

∑
∅6=S⊆V

f̂z(S)2 − ε2

48 · |S|
· |V | ≥ 1

2

∑
∅6=S⊆V

f̂z(S)2 − ε2

48
.

On the other hand by applying Theorem 4.11 again we see that∑
i∈S′′

λi[fz] ≤ 2 ·
∑
i∈S′′

NInf i[fz] = 2 ·Var[fz] ≤ 2

and thus
∑

i∈S′′ λ̃i[f] ≤ 2 +k′ · ε2

48·|S| ≤ 2 + ε2

48 ≤ 3 (under the assumption that E happens). Overall,
the probability to sample an element from V is at least

1

3
·

1

2

∑
∅6=S⊆V

f̂z(S)2 − ε2

48

 =
1

6

∑
∅6=S⊆V

f̂z(S)2 − ε2

3 · 48

By taking expectation over z, and using Equation (2) we see that the probability to sample an
element from V overall is at least

E
z

1

6

∑
∅6=S⊆V

f̂z(S)2 − ε2

3 · 48

 ≥ 1

6
· ε

2

4
− ε2

3 · 48
>
ε2

30
.

We get that in each iteration as long as we don’t satisfy Items (1) and (2) above, we sample

an element from i ∈ T with probability at least ε2/30. By repeating the process m = O(k+log(1/δ)
ε2

)
times we would sample all of T , or get stuck at some T ′ satisfying Item (2), with probability at
least 1− δ/2, using Fact 2.1.

Next, we show that finding T ′ is almost as good as finding T in the sense that the best correlation
by juntas-on-T ′ with f is up to small additive error the best correlation by juntas-on-T with f .

Lemma 4.15. Suppose we have some subset T such that
∑

S⊆T f̂(S)2 = c, and we then identified

a subset T ′ ⊆ T such that
∑

S⊆T ′ f̂(S)2 ≥ c− ε2

4 . Then∣∣∣∣∣ max
g∈JT,k

E[fg]− max
g∈JT ′,k

E[fg]

∣∣∣∣∣ ≤ ε
19

Proof. We know that argmaxg∈JT,kE[fg] = sgn(favg,T) and similarly argmaxg∈JT ′,kE[fg] =

sgn(favg,T ′). Then we have that∣∣∣∣∣ max
g∈JT,k

E[fg]− max
g∈JT ′,k

E[fg]

∣∣∣∣∣ = E[f(x)(sgn(favg,T (xT))− sgn(favg,T ′(xT ′))]

= E
xT

[
E
xT

[f(xT , xT)]
(
sgn(favg,T (xT))− sgn(favg,T ′(xT ′)

)]
= E

xT

[
favg,T (xT)

(
sgn(favg,T (xT))− sgn(favg,T ′(xT ′)

)]
≤ 2 E

xT

[∣∣favg,T (xT)− favg,T ′(xT ′)
∣∣]

(Since z(sgn(z)− sgn(z′)) ≤ 2|z − z′| for all z, z′ ∈ R)

≤ 2

√
E
xT

[(
favg,T (xT)− favg,T ′(xT ′)

)2]
= 2

√∑
S⊆T

f̂(S)2 − 2
∑
S⊆T ′

f̂(S)2 +
∑
S⊆T ′

f̂(S)2

≤ 2

√
ε2

4
= ε .

Proof of Lemma 4.13. Let g be the k-junta that maximizes E[fg] among all k-juntas on S. Let T
be the set of variables on which g depends. By Claim 4.14 we either sample oracles to all of T or
to a subset T ′ for which ∑

S⊆T ′
f̂(S)2 ≥

∑
S⊆T

f̂(S)2 − ε2/4.

In the second case, by Lemma 4.15, we incur a loss in correlation of at most ε with our nearest
k-junta. In the first case, we lose no correlation with the closest k-junta, and by a union bound our
probability of failure is at most δ.

The above concludes the proof of Lemma 4.13. Finally, Theorem 1.4 is implied by Lemma 4.13,
as shown below.

Theorem 4.16 (Theorem 1.4, restated). Let ε > 0, k ∈ N, and k′ = C(k/ε2) for some universal
constant C. Then, there exists an algorithm that given f, k, ε makes at most poly(k, 1/ε) queries
to f and returns a number α such that with probability at least 0.99

1. α ≤ maxg∈Jn,k′ E[fg] +O(ε)

2. α ≥ maxg∈Jn,k E[fg]−O(ε)

Proof. Set δ = 2−poly(k,1/ε). We first apply Corollary 4.3 from [DMN19]. This gives us
poly(k, 1

ε , log(1/δ)) = poly(k/ε) coordinate oracles D to coordinates S that includes all coordinates

i with Inf≤ki [f] ≥ ε2

k . By Claim 4.6 we see that

max
g∈JS,k

E[fg] ≥ max
g∈Jn,k

E[fg]− ε

Next, we apply Algorithm 3 to get a subset D′ ⊆ D to coordinates S ′ ⊆ S such that with high
probability

max
g∈JS′,k

E[fg] ≥ max
g∈JS,k

E[fg]− ε

20

We take α to be the estimation of the correlation of the best junta on S ′ with f . By Claim 2.7 we
have that maxg∈JS′ E[fg] = E[|favg,S′(x)|]. To estimate the latter, we use a randomized algorithm
that computes favg,S′ given by Theorem 4.10. We randomly sample O(1/ε2) many values for x and
estimate for each of them |favg,S′(x)| up to additive error ε/2 via the randomized algorithm with
expected value favg,S′(x).

Assume that α is a ε-additive approximation to maxg∈JS′ E[fg]. In this case, we claim that α
satisfies both items from the theorem’s statement. Indeed,

1. α ≤ maxg∈JS′ E[fg] + ε ≤ maxg∈Jn,k′ E[fg] + ε.

2. α ≥ maxg∈JS′ E[fg]−ε ≥ maxg∈JS′,k E[fg]−ε ≥ maxg∈JS,k E[fg]−2ε ≥ maxg∈Jn,k E[fg]−3ε.

Next, we analyze the number of queries of our algorithm. Obtaining the initial set of coordinate
oracles D takes poly(k, 1/ε, log(1/δ)) = poly(k, 1/ε) queries. Then, we go on to run Algorithm 3
that makes m = O((k + log(1/δ))/ε2) iterations, each making poly(k, 1/ε, log(1/δ)) queries. Next,
to estimate E[|favg,S′(x)|] we require poly(1/ε) samples from randomized algorithm for favg,S′(x)
each such sample translate to poly(k, 1/ε) samples to f . Finally, we note that each “query” to
an oracle incurs an overhead of poly(log(k, 1/ε)) queries to f along with an o(1) additive loss in
confidence by Corollary 4.7. Overall, we make poly(k, 1/ε) queries.

4.5 Proof of Theorem 4.11

We now present the proof of Theorem 4.11.

Proof of Theorem 4.11. We express λi in terms of the Fourier spectrum of f . Using Fact 2.14,

λi =

log(10k)∑
m=0

∑
S:S3i

f̂(S)2 · Pr
J⊆2−m [k′]

[S ∩ J = {i}]

=

log(10k)∑
m=0

∑
S:S3i

f̂(S)2 · Pr
J⊆2−m [k′]

[|S ∩ J | = 1] · 1

|S|

=
∑
S:S3i

f̂(S)2

|S|
·

log(10k)∑
m=0

Pr
J⊆2−m [k′]

[|S ∩ J | = 1]

It therefore suffices to show that for any non-empty set S such that |S| ≤ k it holds that

1

2
≤

log(10k)∑
m=0

Pr
J(m)⊆2−m [k′]

[|S ∩ J (m)| = 1] ≤ 2 . (3)

From which it is clear that λi ≤ 2 ·
∑

S:S3i
f̂(S)2

|S| = 2 ·NInf i[f] and similarly λi ≥ 1
2

∑
S3i,
|S|≤k

f̂(S)2

|S| =

1
2NInf≤ki [f].

We move to prove Equation (3). The first observation is that an equivalent way to sample

J (m) ⊆2−m [k′] is to sample m independent set J
(m)
1 , . . . , J

(m)
m ⊆1/2 [k′] and take their intersection

J (m) = J
(m)
1 ∩ · · · ∩ J (m)

m . Furthermore, by linearity of expectation

∞∑
m=0

Pr
J(m)⊆2−m [k′]

[|S∩J | = 1] =
∞∑
m=0

E
J
(m)
1 ⊆1/2[k′],

J
(m)
2 ⊆1/2[k′],

...

[
1|S∩J(m)

1 ∩···∩J(m)
m |=1

]
= E

J1⊆1/2[k′],

J2⊆1/2[k′],
...

[∞∑
m=0

1|S∩J1∩···∩Jm|=1

]

21

which in essence means that the choices for J
(1)
1 , J

(2)
1 , . . . can be the same set J1, and similarly for

any Ji.
To analyze the latter expectation, we note that it can be described as the expected value of the

following random process:

1 X ← 0
2 for i = 1, 2, . . . , log(10k) do
3 if S = ∅ then
4 halt!;

5 if |S| = 1 then
6 increment X;

7 Sample Ji ⊆1/2 [k′];

8 S ← S ∩ Ji;

It therefore suffices to show that the expected value of the above random process is bounded
in [1/2, 2]. In the analysis, we consider also the infinite horizon process that keeps on going until
S = ∅. We observe that the expected values of both processes depend only on the size of the initial
S from symmetry. For any t ∈ {0, 1, . . . , k′}, denote by Ft the expected value of the infinite horizon
process starting with a set S of size t. For the finite horizon process with i iterations, we let the

expected value be denoted by F
(i)
t . We observe that F0 = 0, and furthermore that F1 = 2 since

starting from a set of size 1 the random variable X would behave like geometric random variable

with p = 1/2. Similarly, F
(i)
1 = 2− 1

2i−1 as it is the minimum of i and a geometric random variable
with p = 1/2.

Furthermore, for the infinite horizon process, we observe that we have the following recurrence

Ft =

t∑
a=0

(
t
a

)
2t
· Fa,

for t ≥ 2 or equivalently

Ft · (1− 2−t) =
t−1∑
a=0

(
t
a

)
2t
· Fa.

We show by induction that 1/2 < F
(log 10k)
t ≤ 2 for t ≥ 1. The base case t = 1 was discussed above.

Applying the induction hypothesis we have

Ft · (1− 2−t) =
t−1∑
a=0

(
t
a

)
2t
· Fa ≤

t−1∑
a=0

(
t
a

)
2t
· 2 ≤ (1− 2−t) · 2.

Dividing both sides by (1− 2−t) gives the inequality Ft ≤ 2, which implies that F
(log 10k)
t ≤ 2.

For the lower bound, we consider the indicator random variable Y
(i)
t , where t = |S|, which

equals 1 if |S| = 1 at some point during the above process before iteration i. We note that Y
(log 10k)
t

is a lower bound for the value of X in the finite horizon process, and Yt is a lower bound for the
value of X at the end of the infinite horizon process. First, we claim that E[Yt] = Pr[Yt = 1] ≥ 2/3
for all t ≥ 1. The base case of t = 1 is certainly true, and we also have, similar to before, that

E[Yt] · (1− 2−t) =
t−1∑
a=0

(
t
a

)
2t

E[Ya]

22

≥ 0 · 1

2t
+ 1 · t

2t
+

2

3
·
t−1∑
a=2

(
t
a

)
2t︸ ︷︷ ︸

1− 2+t
2t

=
2

3
+
t− 2

3(2 + t)

2t
≥ 2

3
+
t/3− 4/3

2t
≥ 2

3
− 2/3

2t
=

2

3
· (1− 2−t)

which holds for all t ≥ 2, and thus Pr[Yt = 1] ≥ 2/3. However, this only holds for the infinite
horizon random process. Let A be the event that S = ∅ by iteration log 10k, and note that

Pr[A] = Pr[Bin(|S|, 1
10k) = 0] ≥ Pr[Bin(k, 1

10k) = 0] =
(
1− 1

10k

)k ≥ 1 − k
10k = 0.9. Finally, we

claim that for all t ≥ 2 we have that Pr[Y
(log 10t)
t] ≥ 1/2. Note that for Yt to happen, it must be

the case that either A happens or Y
(log 10t)
t happens. Thus, by a union bound

2
3 ≤ Pr[Yt = 1] ≤ Pr[Y

(log 10t)
t = 1] + Pr[A] ≤ Pr[Y

(log 10t)
t = 1] + 0.1 ,

which implies Pr[Y
(log 10t)
t = 1] > 1/2. Finally, F

(log 10t)
t ≥ Pr[Y

(log 10t)
t = 1] > 1/2 as desired.

5 A 2Õ(
√
k)-query Tolerant Junta Tester

In this section, we prove Theorem 1.2. Throughout this section, we assume that we already applied
Algorithm 3 to reduce the number of coordinate oracles to O(k/ε2). We denote by D the set of
oracles we get, and by S ⊆ [n] the set of coordinate to which they are oracles to.

Suppose that the best k-junta approximation of f is a junta-on-T , for a set T ⊆ S of size k.
We call T the “target set”. Note that T is unknown to the algorithm, and in fact, identifying T
(or a close approximation to T) from all subsets of size k of S is the crux of the problem.

We start with the observation that if we were somehow able to identify all of the variables of T
that capture most of the Fourier mass above level

√
k, then we could simply restrict f by randomly

fixing these variables, leaving us with the task of identifying the best k-junta approximation of f ,
given that we know the best k-junta has most its Fourier mass below level

√
k. For the latter case,

there are only 2Õ(
√
k) Fourier coefficients to estimate, and estimating these to sufficient accuracy

allows one to estimate the the correlation f has with any subset U ⊆ S such that |U | ≤ k.
We are now ready to present the details of the algorithm. The algorithm can be broken down

into two main steps. First, we find, with high probability, a set B ⊆ T that captures almost all
Fourier mass of T above level

√
k. This first step, which we call “phase one”, closely resembles the

techniques in Section 4 in that we utilize a series of random restrictions to estimate normalized
influences. The main difference is that rather than considering normalized influences of individual
coordinates, we now consider normalized influences of sets of size

√
k. The goal of phase one is to

produce at least one subset B of our target set T which effectively captures most of the Fourier mass
within T above level

√
k. Once we have done that, we have reduced to the scenario of the closest

k-junta to f having most of its Fourier mass below level
√
k, which can be solved via estimating

all of the Fourier coefficients below level
√
k.

5.1 Phase One: The Higher Levels

First, we prove an analogous theorem to Theorem 4.11, which relates λU [f] to NInfU [f] for all U :

23

Theorem 5.1. Let f : {±1}` → R. Let U ⊆ [`], where ` = |D|. Let

λU [f] =

2|U | log(10k)∑
m=0

λ≈p
−m

U [f], where λ≈p
−m

U [f] = E
(J,z)∼Rpm

[f̂J̄→z(U)2]

for p = 1− 1
2|U | . Then, 1

2 ·NInf≤kU [f] ≤ λU [f] ≤ 3 ·NInfU [f].

Again, we postpone the proof of this to the end of this section in Section 5.3.
The definition of λU [f] is naturally algorithmic, and therefore we can design the following

algorithm to approximate the values of λU [f] for all sets U of size
√
k.

Algorithm 4: Estimating λU ’s

Input: f : {±1}k′ → [−1, 1] along with a randomized algorithm A computing f (recall
Def. 2.10). Parameters 1− δ (confidence), ε (additive error) and k.

Output: Estimates {λ̃U}|U |=√k for {λU}|U |=√k.
1 Let m = poly(k, k′, 1/ε, log(1/δ))

2 Initialize λ̃U = 0 for all U ⊆ [k′], |U | =
√
k

3 Let p =
(

1− 1
2
√
k

)
4 for d = 0 to 2

√
k log 10k do

5 Initialize λ̃≈p
−d

U = 0 for all U ⊆ [k′] such that |U | =
√
k

6 repeat m times
7 Let (J, z) ∼ Rpd be a pd-random restriction.

8 Estimate f̂J̄→z(U) for all U ⊆ J of size
√
k up to additive error ε

12
√
k log(10k)

with

probability 1− δ

(k
′√
k)m·2

√
k log(10k)

using Claim 2.11 and algorithm A. Denote by

f̃J̄→z(U) the estimated Fourier coefficient.

9 Update λ̃≈p
−d

U = λ̃≈p
−d

U + f̃J̄→z(U)2 for all U ⊆ J of size
√
k.

10 Let λ̃≈p
−d

U = λ̃≈p
−d

U /m for all U ⊆ J of size
√
k;

11 Let λ̃U =
∑

d λ̃
≈p−d
U ;

12 return {λ̃U}|U |=√k

Lemma 5.2. With probability at least 1 − δ we have that for all U ⊆ [k′] of size
√
k it holds that

|λ̃U − λU [f]| ≤ ε.

Proof. This proof closely follows that of Lemma 4.12. If U 6⊆ J the Fourier coefficient of f̂J̄→z(U)
is 0 and so our estimate is correct in that case. In the case U ⊆ J , each estimation of the
Fourier coefficient is correct up to additive error η = ε/(12

√
k log(10k)) with probability at least

1−δ/ exp(k, k′,m). Thus, we get that f̃J̄→z(U)2 = (f̂J̄→z(U)±η)2 = f̂J̄→z(U)2±2η|f̂J̄→z(U)|±η2 =

f̂J̄→z(U)2 ± 3η. Furthermore, we have that E(J,z)∼R
pd

[f̂J̄→z(U)2] = λ≈p
−d

U , thus by Fact 2.1 we

have that the empirical mean of m = poly(1/ε, poly(k), poly(k′), log(1/δ)) copies of f̃J̄→z(U)2 is

within additive error ε/(4
√
k log(10k)) from λ≈p

−d

U with probability at least 1 − δ

(k
′√
k)m·2

√
k log(10k)

.

By union bound, all these estimates are within the error bound, and we get that∣∣∣λ̃≈p−dU − λ≈p
−d

U

∣∣∣ ≤ 3η + ε/(4
√
k log(10k)) ≤ ε/(2

√
k log(10k)).

Overall, we get that |λ̃U − λU [f]| ≤ ε for all |U | =
√
k with probability at least 1− δ.

24

Algorithm 5: Branching Process

Input: f (target function), D (where D are coordinate oracles for S) a current depth t, a
current subset D′ ⊆ D of coordinate oracles, ε, δ

Output: Return collection of subsets of D of size at most k.

1 Let r = O(1/ε2) and ` = 2(r + 1)3
√
k+log(2/δ)

/* r + 1 is the branching factor, and ` is an upper bound on the number of

nodes in the branching process (the process depth is 3
√
k + log(2/δ)). */

2 if t = 3
√
k + log(2/δ) or |D′| > k −

√
k then

3 return {D′}
4 Let {g1, ..., gk′} = D −D′ and {gk′+1, ..., g|D|} where k′ = |D| − |D′|
5 Sample z ∈ {±1}|D′|. Let f ′ : {±1}k′ → R be the function defined by

f ′(x1, . . . , xk′) = E
y∼{±1}n

[f(y)|g1(y) = x1, . . . , gk′(y) = xk′ , gk′+1(y) = z1, . . . , g|D|(y) = z|D′|],

and let A be the randomized algorithm for f ′ from Theorem 4.10.
6 Apply Algorithm 4 on f ′ using the randomized algorithm A for f ′ with confidence 1− δ

2`

and accuracy ε2

48·(|D|√
k
)

=⇒ λ̃ = {λ̃U}|U |=√k.

7 Let our distribution P be defined by λ̃, normalized appropriately

8 Sample M1, ...,Mr ∼ λ̃
9 Let L = {}.

10 for M = ∅,M1, ...,Mr do
11 L = L ∪ BranchingProcess(f,D, t+ 1,D′ ∪ {gi : i ∈M}, ε, δ)
12 return L

Lemma 5.3. With probability at least 1 − δ, at least one of the subsets Algorithm 5 returns is a
set of coordinate oracles to B ⊆ T such that

E
z

[∑
S⊆T\B
|S|>
√
k

f̂B→z(S)2

]
≤ ε2/4. (4)

The reason for Equation (4) becomes clear in Section 5.2, where we show that assuming the
equation, we lose at most an additive error of ε/2 to the nearest k-junta if we ignore the Fourier
mass above level

√
k after restricting B. As before, in order to prove the above lemma, we prove a

claim capturing the algorithm’s progress towards satisfying Equation (4).

We denote the event E that in the entire execution of Algorithm 5 all of the λ̃U were ε2/48 ·
(|D|√

k

)
close to the real λU . We note that by a union bound, this happens with probability at least 1−δ/2.

Suppose again that T is the (unknown) set of k coordinates for which the best k-junta
approximating f is a junta on T . If T has Fourier mass less than ε2/4 above level

√
k then one

of the subsets that Algorithm 5 will return is the empty set, which satisfies the claim. Therefore,
henceforth we assume that T has at least ε2/4 Fourier mass above level

√
k. We show that in such

a case, each Mi for i = 1, . . . , r will be a subset of T with probability at least Ω(ε2).

25

Claim 5.4. Assume D′ are coordinate oracles to S ′ ⊆ T . Suppose also that

E
z

[∑
S⊆T\S′
|S|>
√
k

f̂S′→z(S)2

]
> ε2/4.

Then, conditioned on E, when running the Branching Process on D′, each Mi will be with probability
at least ε2/40 a collection of

√
k new coordinate oracles to coordinates in T .

Proof. Similar to the proof of Claim 4.14, denote by fz = (favg,S)S′→z, and note that f ′ is up to
relabeling of coordinates the same function as fz. Denote V ⊆ T as the part of the target set we
have not yet sampled, so V = T \ S ′. Then, using our assumption, we have that

ε2/4 < E
z

[∑
S⊆V
|S|>
√
k

f̂S′→z(S)2

]

=
∑
S⊆V
|S|>
√
k

∑
R⊆[n]:

R∩S′=S

f̂(R)2 (Fact 2.14)

=
∑
S⊆V
|S|>
√
k

∑
R⊆S:

R∩S′=S

f̂(R)2 (if R 6⊆ S then R ∩ S ′ 6= S)

=
∑
S⊆V
|S|>
√
k

∑
R⊆S:

R∩S′=S

f̂avg,S(R)2

= E
z

[∑
S⊆V
|S|>
√
k

f̂z(S)2

]
.

Next, by applying Theorem 5.1, we have that

∑
U⊆V
|U |=

√
k

λU [fz] ≥
1

2

∑
U⊆V

NInf≤kU [fz] ≥
1

2

∑
U⊆V :|U |=

√
k

∑
S:U⊆S⊆V

f̂z(S)2(|S|
|U |
) =

1

2

∑
|S|>
√
k

S⊆V

f̂z(S)2

Then, using the assumption that E happens, the λ̃U are ε2

48·(|S|√
k
)
-accurate, and we get that

∑
U⊆V
|U |=

√
k

λ̃U [fz] ≥
1

2

∑
|S|>
√
k

S⊆V

f̂z(S)2 − ε2

48 ·
(|S|√

k

) · (k√
k

)
≥ 1

2

∑
|S|>
√
k

S⊆V

f̂z(S)2 − ε2

48
.

On the other hand, again by applying Theorem 5.1, we have that∑
U⊆S
|U |=

√
k

λU [fz] ≤ 3
∑
U⊆S
|U |=

√
k

NInfU [fz] ≤ 3W≥
√
k[fz] ≤ 3.

26

This implies that
∑

U λ̃U ≤ 3 + ε2

48·(|S|√
k
)
·
(|S|√

k

)
≤ 4. Overall, the probability to sample U ⊆ V is at

least

1

4

1

2

∑
|S|>
√
k

S⊆V

f̂z(S)2 − ε2

48

 =
1

8

∑
|S|>
√
k

S⊆V

f̂z(S)2 − ε2

4 · 48
.

Taking an expectation over z, we see that the probability to sample a subset of V is at least

E
z

[
1

8

∑
|S|>
√
k

S⊆V

f̂z(S)2 − ε2

4 · 48

]
≥ 1

8
· ε

2

4
− ε2

4 · 48
≥ ε2

40
.

We are now ready to prove Lemma 5.3.

Proof of Lemma 5.3. By Claim 5.4, if our special set T has at least ε2/4 mass on the levels above√
k, then if we sample according to our distribution λ̃ = {λ̃U}|U |=√k, we will see U ⊆ T with

probability at least ε2/40. Then, if we sample r = O(ε−2) subsets in Algorithm 5, applying the
multiplicative Chernoff bound in Fact 2.1, we see at least one subset of T with probability at least
p ≥ 0.9 each time we sample M1, ...,Mr in Algorithm 5. In order for Algorithm 5 to successfully
find Bi with the desired property, it suffices to have sampled from T at least

√
k times in our

branching process. Therefore, we can treat our N := (3
√
k + log(2/δ)) depth branching process as

a X = Bin(N, p) random variable. Applying a standard Chernoff bound (second case in Fact 2.1),
we have that our probability of failure is

Pr[X <
√
k] = Pr[X <

√
k
N]

= Pr[X < 0.9− (0.9−
√
k
N)]

≤ exp(−2N(0.9−
√
k
N)2) (Using Fact 2.1)

≤ exp(−2N(0.81− 2
√
k
N))

≤ exp(−1.5N + 4
√
k)

≤ exp(− log(2/δ)) = δ/2.

This shows that, by a union bound with event E , one of the branches of our algorithm find’s a Bi
satisfying Equation (4) with probability at least 1− δ.

Claim 5.5. The query complexity of phase one of the algorithm for constant δ (failure probability)

is 2Õ(
√
k log(1/ε)).

Proof. All of our queries to f in phase one come from estimating fourier coefficients using using
Claim 2.11 in Algorithm 4. We require that the estimated Fourier coefficients be accurate to within

2−Ω̃(
√
k log(1/ε)) with confidence 1 − O(1/`) = 1 − 2−Ω̃(

√
k log(1/ε)), which is possible via Fact 2.1

with the desired query complexity. Moreover, we do this O(`) = 2Õ(
√
k log(1/ε)) times during the

branching process, which yields the desired final overall query complexity.

27

5.2 Phase Two: The Lower Levels

Now, we are ready to use Algorithm 5. Our strategy will be to take the subsets outputted from
Algorithm 5 one at time, randomly fixing those coordinates, and then treating this restricted version
of f as if all its Fourier mass were below level

√
k. Let T be the target set of size k on which there

exists a k-junta which best approximates f . Assume that the first part of the algorithm is successful
in yielding at least one B ⊆ T such that:

E
z∈{±1}B

[∑
S⊆T\B
|S|>
√
k

f̂B→z(S)2
]
≤ ε2/4. (5)

Let g be the maximizer of maxg′∈JT E[fg′]. Recall that by Claim 2.7 we have that g = sgn(favg,T)
and

corr(f,JT) = E[fg] = E
y∈{±1}T

[|favg,T (y)|] = E
z∈{±1}B

E
x∈{±1}T\B

∣∣∣∣(favg,T)B→z(x)

∣∣∣∣ (6)

= E
z∈{±1}B

E
x∈{±1}T\B

∣∣∣∣ ∑
S⊆T\B

f̂B→z(S)χS(x)

∣∣∣∣ (7)

Furthermore, using the assumption in Eq. (5) it is an easy calculation to show that (7) equals

E
z∈{±1}B

E
x∈{±1}T\B

∣∣∣∣ ∑
S⊆T\B,|S|≤

√
k

f̂B→z(S)χS(x)

∣∣∣∣± ε/2.
Similarly, for any set U ⊆ S of size k containing B (think of U as a candidate for T) we have

that the best correlation between a junta-on-U and f is

corr(f,JU) = E
z∈{±1}B

E
x∈{±1}U\B

∣∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)

∣∣∣∣. (8)

Now, however, the right hand side in Eq. (8) is not necessarily approximated by the low-degree
counterpart as above for T . Indeed, we would like to estimate Eq. (8) for all candidates U ⊆ S of
size k containing B, and pick the set with best estimated correlation. Based on our assumption on

T , we can replace
∑

S⊆U\B f̂B→z(S)χS(x) with its low-degree part
∑

S⊆U\B,|S|≤
√
k f̂B→z(S)χS(x)

for U = T , but its not clear whether we can do it in general.
In particular, if U satisfies

E
z∈{±1}B

[∑
S⊆U\B,
|S|>
√
k

f̂B→z(S)2
]
> ε2/4, (9)

then taking the low-degree part can give an overestimate to the correlation with the best junta
on U .2 We settle for an estimate that is ε-accurate for the target set T assuming it satisfies
Equation (5), and is not overestimating by more than ε for any other set U ⊇ B of size k. Towards
this goal, we first apply a noise operator that would essentially eliminate most of the contribution

from sets larger than
√
k
ε log(1/ε) regardless of whether U satisfies Eq. (9) or not. This is captured

by the following claim.

2To see a simple example of how this can happen, consider f(x, y) = 1 − x − y + xy. Then one can verify that
E[|f(x, y)|] = 1 < 1.5 = E[|1− x− y|].

28

Claim 5.6. Let ρ = 1 − ε/
√
k, z ∈ {±1}B and denote by h = fB→z and hlow = h≤(

√
k/ε)·log(1/ε)

(i.e., hlow is the truncated Fourier expansion of h that zeroes out all Fourier coefficients above level
(
√
k/ε) · log(1/ε)). For any U : B ⊆ U ⊆ S it holds that∣∣∣∣corr (Tρh,JU)− corr

(
Tρh

low,JU
) ∣∣∣∣ ≤ ε.

Proof. We have∣∣∣∣corr (Tρh,JU)− corr
(
Tρh

low,JU
) ∣∣∣∣

=

∣∣∣∣∣ E
x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

ĥ(S)χS(x)ρS
∣∣∣ − E

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B,

|S|≤(
√
k/ε)·log(1/ε)

ĥ(S)χS(x)ρS
∣∣∣∣∣∣∣∣

≤ E
x∈{±1}U\B

∣∣∣∣∣ ∑
S⊆U\B,

|S|>(
√
k/ε)·log(1/ε)

ĥ(S)χS(x)ρ|S|

∣∣∣∣∣
≤

√√√√√√ E
x∈{±1}U\B

(∑
S⊆U\B,

|S|>(
√
k/ε)·log(1/ε)

ĥ(S)χS(x)ρ|S|

)2

=

√√√√√
∑

S⊆U\B,
|S|>(

√
k/ε)·log(1/ε)

ĥ(S)2ρ2|S| ≤
√
ρ2(
√
k/ε)·log(1/ε) ≤ ε.

Next, we show that applying a noise operator to f does not affect its correlation with a set
U of size k, under the condition that most of the Fourier mass of fB→z falls on the lower levels,

i.e., Ez

[∑
S⊆U\B,|S|≥

√
k
f̂B→z(S)2

]
≤ ε2/4. Recall that this is what was guaranteed with high

probability from the output of Algorithm 5 for our target set T .

Claim 5.7. Let ρ = 1− ε/
√
k. Given U : B ⊆ U ⊆ S such that Ez

[∑
S⊆U\B,
|S|≥
√
k

f̂B→z(S)2
]
≤ ε2/4,

we have that ∣∣∣E
z
corr(Tρ(fB→z),JU)−E

z
corr(fB→z,JU)

∣∣∣ ≤ 1.2ε.

Proof. Similar to the proof of Claim 5.6, we have∣∣∣∣∣ E
z∈{±1}B
x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)
∣∣∣ − E

z∈{±1}B
x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x) · ρ|S|
∣∣∣∣∣∣∣∣

≤ E
z∈{±1}B
x∈{±1}U\B

∣∣∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)(1− ρ|S|)

∣∣∣∣∣
≤

√√√√√√ E
z∈{±1}B
x∈{±1}U\B

 ∑
S⊆U\B

f̂B→z(S)χS(x)(1− ρ|S|)

2

29

=

√√√√ E
z∈{±1}B

[∑
S⊆U\B

f̂B→z(S)2 · (1− ρ|S|)2

]

≤

√√√√√ E
z∈{±1}B

[∑
S⊆U\B:|S|≤

√
k

f̂B→z(S)2 · (1− ρ|S|)2 +
∑

S⊆U\B:|S|>
√
k

f̂B→z(S)2 · (1− ρ|S|)2

]

≤
√

(1− ρ
√
k)2 + ε2/4 ≤

√
ε2 + ε2/4 ≤ 1.2 · ε.

The next lemma gives an algorithm that on any B, satisfying Equation (5), outputs U : B ⊆
U ⊆ S with corr(f,JU) ≥ corr(f,JT)−O(ε), with high probability.

Lemma 5.8 (Algorithm and Analysis for Phase-Two). Let ε, δ > 0. There’s an algorithm that
with probability at least 1− δ, gives ε-accurate estimates c̃U to

cU = E
z∈{±1}B

E
x∈{±1}T\B

∣∣∣∣ ∑
S⊆U\B:|S|≤

√
k/ε·log(1/ε)

f̂B→z(S)χS(x)ρ|S|
∣∣∣∣

for all U : B ⊆ U ⊆ S of size k simultaneously. We return (U, c̃U) for the set U with maximal c̃U .

Complexity The procedure uses log(1/δ)2Õ(
√
k/ε) queries and runs in time log(1/δ)2k·Õ(1/ε).

Correctness In the case where all estimates are ε-accurate, the following holds. If B ⊆ T satisfies
Equation (5), the above procedure would return (U, c̃U) with c̃U ≥ corr(f,JT)−3.2ε. Moreover,
regardless of whether T and B satisfy Equation (5), we have c̃U ≤ corr(f,JU) + 2ε.

Proof. First we show that we can estimate all cU up to error ε simultaneously with high probability
using the aforementioned query complexity and running time. We sample t = O(log(1/δ)/ε2)

different z ∈ {±1}B, and estimate for each value of z the Fourier coefficients of f̂B→z(S) of all sets

S ⊆ S of size at most d =
√
k
ε · log(2

ε) up to additive error ε/
(
k
≤d
)

= 2−Ω̃(
√
k/ε) with probability

1 − δ

t·(k
≤d)

, which is possible via Fact 2.1 with log(1/δ)2Õ(
√
k/ε) queries. Fact 2.1 guarantees that

with probability 1− δ for all sampled z, all estimated low-degree Fourier coefficients are within the
additive error bound, in which case we have estimates for all cU up to error ε simultaneously with
probability 1− δ.

Next, we show the correctness of the procedure. On the one hand, in the assumed case, i.e.,

that T satisfies Ez

[∑
S⊆T\B,|S|≥

√
k
f̂B→z(S)2

]
≤ ε2

4 , we will have by Claim 5.6 and Claim 5.7 that

cT ≥ corr(f,JT)− 2.2ε (10)

Since we output the set U with maximal c̃U , and since all estimates are correct up to ε we know
that we output U with

c̃U ≥ c̃T ≥ cT − ε. (11)

Combining Equations (10) and (11) together we get

c̃U ≥ cT − ε ≥ corr(f,JT)− 3.2ε.

30

We move to prove the furthermore part, i.e., that c̃U ≤ corr(f,JU) + 2ε regardless of whether
T and B satisfy Equation (5). We start by showing that for any set U (whatsoever) we have that
corr(f,JU) ≥ cU − ε. Indeed, by Claim 5.6 we have

cU ≈ε E
z∈{±1}B
x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)ρ|S|
∣∣∣

and since the noise operator can only reduce `1-norm (see Fact 2.8), we see that for all z ∈ {±1}B
it holds that

E
x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)ρ|S|
∣∣∣ ≤ E

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)
∣∣∣

Thus,

cU ≤ ε+ E
z∈{±1}B
x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)ρ|S|
∣∣∣

≤ ε+ E
z∈{±1}B
x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)
∣∣∣ = ε+ corr(f,JU)

Since |cU − c̃U | ≤ ε, we get that c̃U ≤ cU + ε ≤ corr(f,JU) + 2ε.

After phase one, we can apply Lemma 5.8 to each B from phase one, and get a set UB : B ⊆
UB ⊆ S of size k, along with an estimate of the correlation of f to JUB . This leads to the proof of
Theorem 1.2 which we restate next.

Theorem 5.9. Given a Boolean function f : {±1}n → {±1}, it is possible to estimate the distance

of f from the class of k-juntas to within additive error ε with probability 2/3 using 2Õ(
√
k/ε) adaptive

queries to f . In particular, when ε is constant, this yields a 2Õ(
√
k)-query algorithm. However, the

algorithm still requires exp(k/ε) time.

Proof. Let ε0 = ε/6

1. We first apply the result of [DMN19] to reduce the down to only poly(k, 1/ε0) coordinates.
This incurs a loss in correlation of at most ε0, and fails with probability at most δ1, which
we can set to be 1/20, by Corollary 4.3.

2. Next, we apply our Theorem 1.4, which reduces the number of oracles we have to consider
down to O(k/ε2

0), incurs an additive loss in correlation of at most ε0, and fails with probability
at most δ2 = 1/20.

3. Then, we run phase 1 of our algorithm, which fails with probability at most δ3 = 1/20 by
Lemma 5.3.

4. Finally, we apply Lemma 5.8 to every B outputted by Algorithm 5 to get a set UB and an
estimate C̃UB for the correlation of f with JUB We iterate on all sets B returned by phase-1
and return UB with the highest estimate of correlation.

There are ` = O(1
ε20

)3
√
k+log(2/δ3) = 2Õ(

√
k log(1/ε0)) branches, and thus if we apply the algorithm

from lemma 5.8 with δ = 1/(20`), we get that all this step fail with probability at most 1/20
by a union bound.

31

By a union bound, each of these steps succeeds with probability at least 1− 4/20 ≥ 2/3. In the
case all steps succeeds, we return a set U with c̃U ≥ corr(f,Jn,k)−5.2ε0. In addition, the moreover
part in Lemma 5.8 guarantees that c̃U ≤ corr(f,JU) + 2ε0 ≤ corr(f,Jn,k) + 2ε0. We get that the

returned value is within 5.2ε0 < ε of corr(f,Jn,k). Finally, since dist(f,Jn,k) =
1+corr(f,Jn,k)

2 we get

that 1+c̃U
2 is an ε/2-accurate approximation of dist(f,Jn,k).

5.3 Proof of Theorem 5.1

We now present the proof of Theorem 5.1.

Proof of Theorem 5.1. The proof is very similar to the previous proof of Theorem 4.11, so we
explain how to modify it to this case.

We express λU in terms of the Fourier spectrum of f .

λU =

2|U | log(10k)∑
m=0

∑
S:S⊇U

f̂(S)2 · Pr
J⊆pm [`]

[S ∩ J = U]

=

2|U | log(10k)∑
m=0

∑
S:S⊇U

f̂(S)2 · Pr
J⊆pm [`]

[|S ∩ J | = |U |] · 1(|S|
|U |
)

=
∑
S:S⊇U

f̂(S)2(|S|
|U |
) · 2|U | log(10k)∑

m=0

Pr
J⊆pm [`]

[|S ∩ J | = |U |]

It suffices to show that for any non-empty set S of size at least |U | and at most k it holds that

2|U | log(10k)∑
m=0

Pr
J⊆pm [`]

[|S ∩ J | = |U |] ∈ [1/2, 3] . (12)

Again, we can analyze the sum on the left hand side of Equation (12) as the expected final value
of X in the following random process:

1 X ← 0
2 for i = 1, 2, . . . , 2|U | log(10k) do
3 if |S| < |U | then
4 halt!

5 if |S| = |U | then
6 increase X

7 Sample Ji ⊆p [`]
8 S ← S ∩ Ji

By symmetry the expected value depends only on the size of the initial set S. As before, we

denote by Ft its expected value starting with a set S of size t with an infinite horizon, and F
(i)
t as

the expected value of X at the end of the above process with finite horizon i. We start by analyzing
F|U |. In this case, X is a geometric random variable with stopping probability 1 − p|U |. Thus, its
expectation is

F|U | = 1/(1− p|U |) = 1/(1− (1− 1/2|U |)|U |) ∈ [2, 3].

32

This implies that F
(2|U | log(10k))
|U | ≤ F|U | ≤ 3. For t > |U | in the infinite horizon case we have the

recurrence

Ft =

t∑
a=0

Fa ·Pr[Bin(t, p) = a] =

t−1∑
a=|U |

Fa ·Pr[Bin(t, p) = a] + Ft ·Pr[Bin(t, p) = t] (13)

or equivalently

Ft ·Pr[Bin(t, p) < t] =
t−1∑
a=|U |

Fa ·Pr[Bin(t, p) = a] (14)

We prove by induction that for t ≥ |U | it holds that Ft ≤ F|U |. The claim clearly holds for
t = |U |. For t > |U | we can apply induction and get

Ft ·Pr[Bin(t, p) < t] ≤
t−1∑
a=|U |

F|U | ·Pr[Bin(t, p) = a] ≤ F|U | ·Pr[Bin(t, p) < t],

and thus Ft ≤ F|U |. This immediately implies that F
(2|U | log(10k))
t ≤ Ft ≤ 3. On the other hand we

prove that F
(2|U | log(10k))
t ≥ 1/2 as long as t ≤ k. To do so, we once again introduce the indicator

random variable Y
(i)
t , where t = |S|, and which equals 1 if |S| = |U | at some point during the

above process before iteration i. We note that Y
(2|U | log(10k))
t is a lower bound for the value of X

in the above process, and Yt is a lower bound for the value of X at the end of the infinite horizon
process. We note that the case |U | = 1 was already lower bounded in Section 4.5, where it was

shown that E[Y
(log(10k))
t] ≥ 1/2, and therefore E[Y

(2|U | log(10k))
t] ≥ 1/2. It remains to show that the

E[Y
(2|U | log(10k))
t] ≥ 1/2 is true for any set |U | ≥ 2.
First, we show that Pr[Bin(t, p) < |U |] ≤ 1

2 Pr[Bin(t, p) = |U |]. Towards this goal, it would
suffice to prove that 3 ≤ Pr[Bin(t, p) = i + 1]/Pr[Bin(t, p) = i] for i < |U | and t ≥ |U | + 1. This
would suffice since in this case

|U |−1∑
i=0

Pr[Bin(t, p) = i] ≤
|U |−1∑
i=0

3i

3|U |
Pr[Bin(t, p) = |U |] ≤ 1

2
·Pr[Bin(t, p) = |U |].

Indeed, The ratio between the two aforementioned probabilities is

Pr[Bin(t, p) = i+ 1]

Pr[Bin(t, p) = i]
=

(
t
i+1

)(
t
i

) · pi+1(1− p)t−(i+1)

pi(1− p)t−i
=
t− i
i+ 1

· p

1− p
≥ 2

|U |
· 1− 1/2|U |

1/2|U |
=

2− 1/|U |
1/2

≥ 3

as needed. Now, we claim that E[Yt] = Pr[Yt = 1] ≥ 2/3 for all t ≥ 1. The base case of t = 1 is
certainly true. Assuming we have Pr[Bin(t, p) < |U |] ≤ 1

2 Pr[Bin(t, p) = |U |] we have

E[Yt] ·Pr[Bin(t, p) < t] =
t−1∑
a=|U |

E[Ya] · Pr[Bin(t, p) = a]

≥ Pr[Bin(t, p) = |U |] +
t−1∑

a=|U |+1

Pr[Bin(t, p) = a] E[Ya]

≥ Pr[Bin(t, p) = |U |] +
2

3
Pr[Bin(t, p) ∈ [|U |+ 1, t− 1]]

33

=
2

3
Pr[Bin(t, p) < t]− 2

3
Pr[Bin(t, p) < |U |] +

1

3
Pr[Bin(t, p) = |U |]

≥ 2

3
Pr[Bin(t, p) < t]

which implies that E[Yt] ≥ 2/3. Finally, let A be the event that S = ∅ by iteration 2|U | log(10k),
and note that

Pr[A] = Pr[Bin(|S|, (1− 1
2|U |)

2|U | log(10k)) = 0]

≥ Pr[Bin(k, e− log(10k)) = 0] = Pr[Bin(k, 1
10k) = 0] ≥ 0.9

as was shown in the proof for Theorem 4.11 in Section 4.5. Finally, we claim that for all t ≥ 2 we

have that Pr[Y
(2|U | log 10k)
t] ≥ 1/2. Indeed, we have that

Pr[Y
(2|U | log 10k))
t = 1] ≥ Pr[Yt = 1]−Pr[A] ≥ 2

3 − 0.1 ≥ 1
2 .

as desired, provided |S| ≤ k.

6 Conclusions and Open Problems

We conclude by mentioning some future research directions. First, we believe some of the techniques
discussed in this paper could lead to other interesting work in property testing, learning theory, or
Boolean function analysis in general. In particular, the procedure in Algorithm 1 makes use of a
random process to get access to an underlying junta, a subprocedure that could be useful in other
learning or testing algorithms. In addition, we are able to approximate the quantities NInf i and
NInfU , that serve as key steps in our algorithms. These quantities seems natural on their own, and
would likely find further applications in Analysis of Boolean functions. In particular, they seem to
capture more accurately the intuition that “influences measures the importance of coordinates”.
While the total influence of a Boolean function can be any number between Var[f] and n ·Var[f]
the total normalized influence equals exactly Var[f], and thus normalized influences can be seen
as a distribution of the variance among the coordinates.

Interestingly, our algorithms strongly resemble certain quantum algorithms. In particular, the
sampling of coordinates is done through the Fourier distribution, a process which can be done much
more efficiently with a quantum algorithm (querying f in superposition, applying the Hadamard
transform, and measuring). This idea was leveraged in [ABRdW16] to provide fast quantum
algorithms for testing juntas in the standard property testing regime. Indeed, if the nearest k-junta
to f has its mass on higher levels (say above

√
k or even k/2), then Fourier sampling is extremely

effective and provides a cleaner way of sampling subsets according to the Fourier distribution than
the related classical technique we provided in Section 5. However, the issue arises when the nearest
k-junta has Fourier mass on lower levels (below log k or even a constant, for example). In this case,
it is not clear to us how quantum algorithms provide any advantage over classical ones. An open
question is whether quantum Fourier sampling techniques can be applied in a more clever way to
give faster algorithms in the tolerant testing paradigm.

Finally, a clear open question is how good of a lower bound one can prove on the query
complexity of the tolerant junta testing problem. Our main result Theorem 1.2, rules out strictly
exponential-in-k query lower bounds for k-junta distance approximation. [PRW20] proved a non-
adaptive query complexity lower bound of 2k

η
for (k, k, ε1, ε2)-tolerant junta testing (given a

particular choice of 0 < ε1 < ε2 < 1/2), for any 0 < η < 1/2. While this is quite close to our

upper bound of 2Õ(
√
k), our algorithm is highly adaptive, while the lower bound due to [PRW20]

34

applies only to nonadaptive algorithms. Therefore, another interesting direction would be to explore
whether any nontrivial lower bounds apply to adaptive algorithms for tolerant (junta) testing and
distance approximation.

Acknowledgements

We thank Anindya De, Shafi Goldwasser, Amit Levi, and Orr Paradise for very helpful discussions.

References

[ABRdW16] Andris Ambainis, Aleksandrs Belovs, Oded Regev, and Ronald de Wolf. Efficient
quantum algorithms for (gapped) group testing and junta testing. In SODA, pages
903–922. SIAM, 2016.

[BCE+19] Eric Blais, Clément L. Canonne, Talya Eden, Amit Levi, and Dana Ron.
Tolerant junta testing and the connection to submodular optimization and function
isomorphism. ACM Trans. Comput. Theory, 11(4):24:1–24:33, 2019.

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps, and
nonapproximability-towards tight results. SIAM J. Comput., 27(3):804–915, 1998.

[Bla08] Eric Blais. Improved bounds for testing juntas. In APPROX-RANDOM, volume 5171
of Lecture Notes in Computer Science, pages 317–330. Springer, 2008.

[Bla09] Eric Blais. Testing juntas nearly optimally. In STOC, pages 151–158. ACM, 2009.

[BLR90] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. In STOC, pages 73–83. ACM, 1990.

[Bsh19] Nader H. Bshouty. Almost optimal distribution-free junta testing. In Computational
Complexity Conference, volume 137 of LIPIcs, pages 2:1–2:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[CFGM12] Sourav Chakraborty, Eldar Fischer, David Garćıa-Soriano, and Arie Matsliah. Junto-
symmetric functions, hypergraph isomorphism and crunching. In Computational
Complexity Conference, pages 148–158. IEEE Computer Society, 2012.

[CG04] Hana Chockler and Dan Gutfreund. A lower bound for testing juntas. Inf. Process.
Lett., 90(6):301–305, 2004.

[CST+18] Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie. Settling
the query complexity of non-adaptive junta testing. J. ACM, 65(6):40:1–40:18, 2018.

[DLM+07] Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld,
Rocco A. Servedio, and Andrew Wan. Testing for concise representations. In FOCS,
pages 549–558. IEEE Computer Society, 2007.

[DMN19] Anindya De, Elchanan Mossel, and Joe Neeman. Junta correlation is testable. In
FOCS, pages 1549–1563. IEEE Computer Society, 2019.

[FKR+04] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky.
Testing juntas. J. Comput. Syst. Sci., 68(4):753–787, 2004.

35

[H̊as01] Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

[LCS+19] Zhengyang Liu, Xi Chen, Rocco A. Servedio, Ying Sheng, and Jinyu Xie. Distribution-
free junta testing. ACM Trans. Algorithms, 15(1):1:1–1:23, 2019.

[LW19] Amit Levi and Erik Waingarten. Lower bounds for tolerant junta and unateness
testing via rejection sampling of graphs. In ITCS, volume 124 of LIPIcs, pages 52:1–
52:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[MOS03] Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning juntas. In STOC,
pages 206–212. ACM, 2003.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[PRR04] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and
distance approximation. Electron. Colloquium Comput. Complex., (010), 2004.

[PRS01] Michal Parnas, Dana Ron, and Alex Samorodnitsky. Proclaiming dictators and juntas
or testing boolean formulae. In RANDOM-APPROX, volume 2129 of Lecture Notes
in Computer Science, pages 273–284. Springer, 2001.

[PRW20] Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Erik Waingarten.
Approximating the distance to monotonicity of boolean functions. In SODA, pages
1995–2009. SIAM, 2020.

[Sag18] Mert Saglam. Near log-convexity of measured heat in (discrete) time and
consequences. In FOCS, pages 967–978. IEEE Computer Society, 2018.

[Val12] Gregory Valiant. Finding correlations in subquadratic time, with applications to
learning parities and juntas. In FOCS, pages 11–20. IEEE Computer Society, 2012.

[Zha19] Xiaojin Zhang. Near-optimal algorithm for distribution-free junta testing. CoRR,
abs/1911.10833, 2019.

36
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

