
How Limited Interaction Hinders Real Communication

(and What It Means for Proof and Circuit Complexity)∗

Susanna F. de Rezende

Institute of Mathematics of the

Czech Academy of Sciences

Jakob Nordström

University of Copenhagen and

Lund University

Marc Vinyals

Technion

January 18, 2021

Abstract

We obtain the first true size-space trade-offs for the cutting planes proof system, where the upper

bounds hold for size and total space for derivations with constant-size coefficients, and the lower

bounds apply to length and formula space (i.e., number of inequalities in memory) even for derivations

with exponentially large coefficients. These are also the first trade-offs to hold uniformly for resolution,

polynomial calculus and cutting planes, thus capturing the main methods of reasoning used in current

state-of-the-art SAT solvers.

We prove our results by a reduction to communication lower bounds in a round-efficient ver-

sion of the real communication model of [Krajı́ček ’98], drawing on and extending techniques in

[Raz and McKenzie ’99] and [Göös et al. ’15]. Such lower bounds are in turn established by a reduc-

tion to trade-offs between cost and number of rounds in the game of [Dymond and Tompa ’85] played

on directed acyclic graphs.

As a by-product of the techniques developed to show these proof complexity trade-off results,

we also obtain a separation between monotone-ACi−1 and monotone-NCi, and an exponential separa-

tion between monotone-ACi−1 and monotone-ACi, improving exponentially over the superpolynomial

separation in [Raz and McKenzie ’99].

1 Introduction

Ever since the discovery of NP-completeness by Cook and Levin in [Coo71, Lev73], the problem of how

hard it is to decide satisfiability of formulas in propositional logic has played a leading role in theoretical

computer science. Although the conventional wisdom is that SAT should be a very hard problem—to the

extent that the Exponential Time Hypothesis [IP01] concerning its worst-case complexity is a standard

assumption used in many other hardness results—essentially no non-trivial lower bounds on the time

complexity of the SAT problem are known.

A less ambitious goal is to ask for lower bounds if not only the running time but also the memory usage

of the algorithm is restricted. Yet it took until [For00] to rule out a linear-time, logarithmic-space algo-

rithm for SAT. Later research has shown that refuting unsatisfiable formulas on random-access machines

cannot be done non-deterministically in simultaneous time n4
1/3

and space no(1) [DvMW11] and SAT

cannot be decided deterministically in simultaneous time n1.8 and space no(1) [Wil08]. On Turing ma-

chines, no non-deterministic algorithm solving SAT in time T and space s can achieve T ·s = n2/ log3 n
[San01]. (See [vM07] for a good survey of the area with more details on this kind of results.)

For a problem that is believed to require exponential time, the results listed above might not seem very

impressive. Yet they should not necessarily be viewed only as an illustration of the weaknesses of current

techniques for proving lower bounds. It is important to realize that the adversary is formidable—applied

∗A preliminary version [dRNV16] of this work appeared in FOCS 2016.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 6 (2021)

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

research in the last 15–20 years has led to the development of amazingly efficient algorithms, so-called

SAT solvers, that solve many real-world instances with millions of variables, and do so in linear time.

Today, practitioners often think of SAT as an easy problem to reduce to, rather than a hard problem to

reduce from (we refer the reader to [BHvMW09] for more on this fascinating topic).

Virtually the only tool currently available for a rigorous analysis of the performance of such SAT

solvers is proof complexity [CR79], where one studies the methods of reasoning used by the correspond-

ing algorithms. The transcript of the computations made can be viewed as a formal proof applying the

relevant method of reasoning, and proof complexity analyses the resources needed when all computa-

tional choices are made optimally (i.e., non-deterministically). Even though this is quite a challenging

adversarial setting, proof complexity has nevertheless managed to give tight exponential lower bounds on

the worst-case running time for many approaches for SAT used in practice by lower-bounding proof size.

The focus of this paper is on time-space trade-offs in computational models describing current state-

of-the-art SAT solvers. This research is partly driven by SAT solver running time and memory usage—in

practice, space consumption can be almost as much of a bottleneck as running time—but is also motivated

by the fundamental importance of time and space complexity in computational complexity.

1.1 Previous Work on Proof Complexity Trade-offs

In resolution [Bla37], which is arguably the most well-studied proof system in proof complexity, the input

is an unsatisfiable formula in conjunctive normal form (CNF) and new disjunctive clauses are derived from

this formula until an explicit contradiction is reached (in the form of the empty clause without literals).

Resolution is also the method of reasoning underlying the currently most successful SAT solving paradigm

based on so-called conflict-driven clause learning (CDCL) [BS97, MS99, MMZ+01]. The question of

time-space trade-offs for resolution was first raised by Ben-Sasson in 2002 (journal version in [Ben09]),

who also obtained such trade-offs for the restricted subsystem of tree-like resolution. Size-space trade-offs

for general, unrestricted resolution were later shown in [Nor09, BN11, BBI16, BNT13].

In contrast to the trade-off results for random-access and Turing machines reviewed above, in these

more limited models of computation one can obtain exponential lower bounds on proof size (corre-

sponding to running time) for proofs in sublinear but polynomial space [Nor09, BN11], and results in

[BBI16, BNT13] even exhibit trade-offs where size has to be superpolynomial and space has to be su-

perlinear simultaneously. Another difference is that these results are true trade-offs in the sense that it is

actually possible to refute the formulas both in small size and small space, only not simultaneously. A

third nice feature of the trade-offs are that the upper bounds are on proof size and total space, whereas

the (sometimes tightly matching) lower bounds are on length and formula space, meaning that one only

charges one time unit for each derivation step regardless of its complexity, and only one space unit per “for-

mula” (for resolution: per clause) regardless of how large it is. Thus, the upper bounds are algorithmically

achievable, while the lower bounds hold in a significantly stronger model.

A stronger proof system than resolution is polynomial calculus [CEI96, ABRW02], where the clauses

of a formula are translated to multilinear polynomials and calculations inside the ideal generated by

these polynomials (basically corresponding to a Gröbner basis computation) establishes unsatisfiability.

Among other things, polynomial calculus captures CDCL solvers extended with reasoning about systems

of linear equations mod 2. The first size-space trade-offs for polynomial calculus—which were not true

trade-offs in the sense discussed above, however—were obtained in [HN12], and these results were further

improved in [BNT13] to true trade-offs essentially matching the results cited above for resolution except

for a small loss in parameters.

Another proof system that is also stronger than resolution and that has been the focus of much re-

search is cutting planes [CCT87], which formalizes the integer linear programming algorithm in [Gom63,

Chv73] and underlies so-called pseudo-Boolean SAT solvers. In cutting planes the clauses of a CNF for-

mula are translated to linear inequalities, which are then manipulated to derive a contradiction. Thus, the

question of Boolean satisfiability is reduced to the geometry of polytopes over the real numbers. Cutting

planes is much more poorly understood than resolution and polynomial calculus, however, and size-space

trade-offs have proven elusive. The results in [HN12] apply not only to resolution and polynomial calculus

2

1 Introduction

but also to cutting planes, and were improved further in [GP18] to hold for even stronger proof systems,

but unfortunately are not true trade-offs in the sense discussed above.

The problem is that what is shown in [HN12, GP18] is only that proofs in small space for certain

formulas have to be very large, but it is not established that these formulas can be refuted space-efficiently.

In fact, for resolution it can be shown using techniques from [BN08] that such small-space proofs provably

do not exist, and for polynomial calculus there is circumstantial evidence for a similar claim. As discussed

in Section 3, this turns out to be an inherent limitation of the technique used.

In a recent surprising paper [GPT15], it was shown that cutting planes can refute any formula in

constant space if we only count the number of lines or formulas. Plugging this result into [HN12, GP18]

yields a trade-off of sorts, since “small-space” proofs will always exist, but the catch is that such proofs will

have exponentially large coefficients. This means that these trade-offs do not seem very “algorithmically

relevant” in the sense that such proofs could hardly be found in practice, and saying that a proof with

exponential-size coefficients has “constant space” somehow does not feel quite right.

1.2 Our Proof Complexity Contributions

In this paper we report the first true, algorithmically realizable trade-offs for cutting planes, where the

upper bounds hold for proof size and total space and the lower bounds apply to proof length and formula

space (i.e., number of inequalities). The trade-offs also hold for resolution and polynomial calculus, mak-

ing them the first trade-offs that hold for essentially all methods of reasoning used in the most successful

SAT solvers to date.1

Below, we state two examples of the kind of trade-offs we obtain (referring the reader to Section 2 for

the missing formal definitions). In the rest of this section we will focus on cutting planes, since this proof

system is the main target of this work. However, all the lower bounds stated also hold for polynomial

calculus (and for the strictly weaker proof system resolution), and since all our upper bounds are actually

proven in resolution they transfer to both polynomial calculus and cutting planes.

The first result is a “robust trade-off” that holds all the way from polylogarithmic to polynomial space

as stated next.

Theorem 1.1 (Informal). There exists an explicitly constructible family of 6-CNF formulas {FN}
∞
N=1

of size Θ(N) such that:

1. FN can be refuted by cutting planes with constant-size coefficients in sizeO(N) and total space O
(
N2/5

)
.

2. FN can be refuted by cutting planes with constant-size coefficients in total space O(log4N) and

size 2O(log4N).

3. Any cutting planes refutation of FN , even with coefficients of unbounded size, in formula space less

than N1/10−ǫ requires length greater than 2Ω(log2N).

The second trade-off holds over a smaller space range, but causes an exponential and not just super-

polynomial blow-up in proof size.

Theorem 1.2 (Informal). There exists an explicitly constructible family of 6-CNF formulas {FN}
∞
N=1

of size Θ(N) such that:

1. FN can be refuted by cutting planes with constant-size coefficients in sizeO(N) and total space O
(
N2/5

)
.

2. FN can be refuted by cutting planes with constant-size coefficients in total space O
(
N1/40

)
and

size 2O(N1/40).

1We remark that this ignores the issue of formula preprocessing techniques, which are heavily used in most state-of-the-art

SAT solvers, and some of which potentially require the full extended Frege proof system for a complete formal description (but

can also sometimes cause a provable exponential loss in reasoning power). Since in practice SAT solvers fail to solve many of

the combinatorial benchmark formulas that are hard for resolution, polynomial calculus, and cutting planes but easy for (even

non-extended) Frege, however, and since in addition it is usually not hard to come up with formulas that foil any concrete

preprocessing techniques actually used, this seems like a reasonable simplification.

3

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

log4N N1/10 N2/5

N

N logN

N log3N

Space

L
en

g
th

(a) Robust trade-off

log4N N1/40 N1/20 N2/5

N

2N
1/40

Space

L
en

g
th

(b) Exponential trade-off

Figure 1: Pictorial illustrations of trade-offs in Theorems 1.1 and 1.2

3. Any cutting planes refutation of FN , even with coefficients of unbounded size, in formula space less

than N1/20−ǫ requires length greater than 2Ω(N1/40).

See Figure 1 for an illustration of these results, where blue dots denote provable upper bounds on

time-space parameters of cutting planes refutations and the shaded red areas show ranges of parameters

that are impossible to achieve.

1.3 Previous Work in Monotone Circuit Complexity

Since this paper also makes contributions to monotone circuit complexity, we next review some relevant

background in this area. After superpolynomial lower bounds on the size of monotone circuits com-

puting explicit functions were obtained in [Raz85, And85] (see also [BS90]), the first step towards the

natural next goal of establishing a depth hierarchy for monotone circuits was taken in [KW90], proving

that connectivity, which is in monotone-NC2, requires depth Ω(log2 n) for monotone circuits with fan-in

2. This implies a separation between monotone-NC1 and monotone-NC2. The same approach was used

in [RM99] to prove a separation between monotone-NCi−1 and monotone-NCi for every i. This result can

be rephrased as saying that there is a family of Boolean functions
{
f i
}

such that f i can be computed by

monotone circuits of depth logi n, fan-in 2, and polynomial size but cannot be computed by any monotone

circuit of depth o(logi n) and fan-in 2.

Going into more details, the function in [RM99] that witnesses the separation between monotone-NCi−1

and monotone-NCi can be computed by a monotone circuit of depth logi−1 n, polynomial fan-in, and poly-

nomial size, and therefore the separation is between monotone-NCi−1 and monotone-ACi−1. This separa-

tion was later refined in [Joh01] to circuits of semi-unbounded fan-in—i.e., with AND-gates of fan-in 2
and OR-gates of unbounded fan-in—leaving the question of a separation between monotone-ACi−1 and

monotone-NCi open.

We can also view the separation between monotone-NCi and monotone-ACi as a separation between

monotone-ACi−1 and monotone-ACi, since monotone-ACi−1 is contained in monotone-NCi; however, this

separation only guarantees a superpolynomial circuit size lower bound. Furthermore, the function f i only

depends on log40i n variables and so it can be computed by a monotone DNF of size 2log
40i n, i.e., there

is a quasipolynomial upper bound.

We remark that it is not possible to prove more than a quasipolynomial separation between monotone-NCi−1

and monotone-NCi in view of the simple fact that circuits in these classes have quasipolynomial size, and

hence it only makes sense to talk about superpolynomial versus exponential separations in the monotone-AC

hierarchy. It should be noted that exponential separations between monotone circuits of bounded depth

4

1 Introduction

were previously known, but only for depth less than logarithmic. It was shown in [KPPY84] that the

complete tree of depth k, arity n1/k, and size Θ(n), with alternating levels of AND and OR, requires size

2Ω(n1/k/k) to compute with circuits of depth k − 1. This result was later reproven in [NW93] using the

communication complexity of the pointer jumping function (see also [RY20]).

1.4 Our Monotone Circuit Complexity Contributions

We solve the open problem of [Joh01] mentioned above by separating monotone-ACi−1 from monotone-NCi.

Theorem 1.3. For every i ∈ N there is a Boolean function over n variables that can be computed by a

monotone circuit of depth logi n, fan-in 2, and size O(n), but for which every monotone circuit of depth

o(logi n/(log logn)2) requires superpolynomial size.

This result allows us to complete the picture of the three interwoven monotone circuit depth hierar-

chies, which looks like

monotone-NCi−1 (monotone-SACi−1 (monotone-ACi−1 (monotone-NCi , (1.1)

the first non-inclusion being proven in [RM99], the second in [Joh01], and the third in the present work.

We note that in terms of depth our separation is close to optimal. Indeed, it is not hard to see that if a

Boolean function can be computed by a monotone circuit of depth d, fan-in 2 and size s, then it can also

be computed by a monotone circuit of depth d/k, unbounded fan-in and size s ·22
k
. Therefore, in order to

have a superpolynomial separation it must be the case that k ≥ log logn+ ω(1), and the theorem above

holds for any k = ω((log log n)2).

In addition we establish an exponential separation in the monotone-AC hierarchy. More precisely, for

each i ∈ N we exhibit a Boolean function f i that can be computed by monotone circuits of depth logi n

but such that every monotone circuit of depth at most O(logi−1 n) requires size 2n
Ω(1)

(where the hidden

constant in the lower bound depends inversely on that in the upper bound).

Theorem 1.4. For every i ∈ N there is a Boolean function over n variables that can be computed by

a monotone circuit of depth logi n, fan-in n4/5, and size O(n), but for which every monotone circuit of

depth q logi−1 n requires size 2Ω(n1/(10+4ǫ)q).

1.5 Discussion of Techniques

Let us now briefly discuss the techniques we use to establish the above results, focusing for concreteness

on Theorems 1.1 and 1.2. These theorems are proven by a careful chain of reductions as follows.

1. Our first step is to use the connection made explicit in [HN12], and also used in [GP18], that

short and space-efficient proofs for a CNF formula F can be converted to efficient communication

protocols for the falsified clause search problem for F . Going beyond [HN12, GP18], however, we

make the simple but absolutely crucial additional observation that protocols obtained in this way

are also round-efficient. Furthermore, in contrast to [HN12, GP18] we do not study randomized

communication, but instead focus on the real communication model introduced by Krajı́ček [Kra98]

with the purpose of getting a tighter correspondence with cutting planes.

2. We next generalize the communication-to-decision-tree simulation theorem for composed search

problem in the celebrated paper by Göös et al. [GPW18] to the real communication model, and

then extend it further to be able to handle rounds using the parallel decision trees introduced by

Valiant [Val75]. This part is inspired by [BEGJ00], where the simulation theorem in the precur-

sor [RM99] of [GPW18] was proven for real communication but without taking round efficiency

into account.

5

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

3. To leverage this machinery we need a base CNF search problem, and just as in [BN11, GP18,

HN12, BNT13] (and many other papers) the pebbling formulas PebG from [BW01] turn out to

be handy here, provided that they are defined over appropriately chosen directed acyclic graphs G.

These formulas are then lifted (corresponding to composition of search problems) as described

in [BHP10], though the parameters of the lifting are different (and unfortunately significantly worse

than in [HN12]).

4. The following step is the relatively straightforward observation that efficient parallel decision trees

for formulas PebG yield good strategies in the pebble game of Dymond and Tompa [DT85] played

on the underlying graphG. At the same time, this is a somewhat unexpected twist, since in previous

papers such as [BN08, BN11, BNT13] size and space lower bounds for pebbling formulas always

followed from the black-white pebble game [CS76] on G, but we cannot make use of that latter

game here.

5. Since we have to use the Dymond–Tompa game rather than the black-white pebble game, as a

consequence we also have to use different graphs than in [BN11, HN12, BNT13]—in particular,

modifying the construction of graphs with good black-white pebbling trade-offs in [LT82]—and as

a concluding step we prove Dymond–Tompa trade-offs for these graphs.

Putting all these pieces together, we obtain a general theorem saying that graphs with Dymond–Tompa

trade-offs yield explicit 6-CNF formulas with size-space trade-offs for cutting planes (and polynomial

calculus and resolution). Theorem 1.4 follows by a similar chain of reductions.

1.6 Paper Outline

The rest of this paper is organized as follows. In Section 2 we give a more detailed overview of the steps

in the proofs of our main theorems, introducing formal definitions of the concepts discussed above as

need arises. In Section 3 we translate proofs into communication protocols. The heart of the paper is

then in Section 4, where we establish that communication protocols for lifted search problems can be

simulated by decision trees for the original search problems. In Section 5 we show how decision trees for

our search problem for pebbling formulas can be converted to Dymond–Tompa game strategies for the

corresponding graphs, and in Section 6 we show Dymond–Tompa trade-offs. After having established

the upper bounds needed for our proof complexity trade-offs in Section 7, we put all the pieces together in

Section 8. Section 9 then discusses how we can use the same tools to obtain circuit complexity separations.

Finally, we make some concluding remarks in Section 10.

2 Preliminaries and Proof Overview

In this section, we describe which components are needed for our results stated in Section 1 and how they

fit together. Our goal is to give an accessible high-level outline of the proofs, but still make clear what

are the main technical points in the arguments and also indicate some of the challenges that have to be

overcome.

Let us start by reviewing the concepts we need from proof complexity. Throughout this paper all

logarithms are to base 2 unless otherwise specified, and we write [n] to denote the set {1, 2, . . . , n}.

2.1 Proof Complexity Basics and Cutting Planes

For x a Boolean variable, a literal over x is either the variable x itself or its negation, denoted x. It will

also be convenient to use the notation x1 = x and x0 = x. A clause C = a1 ∨ · · · ∨ ak is a disjunction

of literals and a CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. We will think of clauses

and CNF formulas as sets, so that the ordering is inconsequential and there are no repetitions. A k-CNF

formula is a CNF formula consisting of clauses containing at most k literals.

6

2 Preliminaries and Proof Overview

We write α, β to denote truth value assignments, i.e., functions to {0, 1}, where we identify 0 with

false and 1 with true (thus, xb is the literal satisfied by setting x = b). We have the usual semantics that a

clause is true under α, or satisfied by α, if at least one literal in it is true, and a CNF formula is satisfied if

all clauses in it are satisfied. We write ⊥ to denote the empty clause without literals, which is false under

all truth value assignments.

Following [ABRW02, ET01], we view a proof of unsatisifiability of a CNF formula F , or refutation

of F , as a non-deterministic computation, with a special read-only input tape from which the clauses of

the formula F being refuted (which we refer to as axioms) can be downloaded and a working memory

where all derivation steps are made. In a cutting planes (CP) derivation, memory configurations are sets

of linear inequalities
∑

j ajxj ≥ c with aj , c ∈ Z. We translate clauses C to linear inequalities L(C) by

identifying the clause
∨
j x

bj
j with the inequality

∑
j(−1)1−bjxj ≥ 1−

∑
j(1− bj). A CP refutation of

F is a sequence of configurations (L0, . . . ,Lτ) such that L0 = ∅, the inequality 0 ≥ 1 occurs in Lτ , and

for t ∈ [τ] we obtain Lt from Lt−1 by one of the following rules:

Axiom download Lt = Lt−1 ∪ {L} for L being either the encoding L(C) of an axiom clause C ∈ F or

a variable axiom xj ≥ 0 or −xj ≥ −1 for any variable xj .

Inference Lt = Lt−1∪{L} forL inferred by addition

∑
j ajxj ≥ c

∑
j bjxj ≥ d

∑
j(aj + bj)xj ≥ c+ d

, multiplication

∑
j ajxj ≥ c

∑
j kajxj ≥ kc

, or division

∑
j kajxj ≥ c

∑
j ajxj ≥ ⌈c/k⌉

for k ∈ N+.

Erasure Lt = Lt−1 \ {L} for some L ∈ Lt−1.

The length of a CP refutation is the number of linear inequalities L appearing in download and in-

ference steps, counted with repetitions. We obtain the size of a refutation by also summing the sizes

of the coefficients and constant terms in the inequalities, i.e., each inequality
∑

j ajxj ≥ c contributes

log|c|+
∑

j log|aj |. The formula space of a configuration L = {
∑

j ai,jxi,j ≥ ci | i ∈ [s]} is the number

of inequalities s in it, and the total space of L is
∑

i∈[s]

(
log|ci| +

∑
j log|ai,j |

)
. We obtain the formula

space or total space of a refutation by taking the maximum over all configurations in it. Finally, the length,

size, formula space, and total space of refuting a formula F is obtained by taking the minimum over all

CP refutations of the formula with respect to the corresponding complexity measure.

2.2 Composed Search Problems and Lifted CNF Formulas

Informally speaking, the idea behind lifting, or composition, is to take a relation over some domain and

extend it to tuples from the same domain by combining it with an indexing function that determines on

which coordinates from the tuples the relation should be evaluated.

Let S be any relation on the Cartesian product Z ×Q. We will think of S as a search problem with

input domain Z and output range Q, where on any input z ∈ Z the task is to find some q ∈ Q such that

(z, q) ∈ S (assuming that S is such that there always exists at least one solution). With this interpretation

in mind, we write S(z) = {q | (z, q) ∈ S}. Throughout this paper, we will have Z = {0, 1}m for some

m ∈ N+, so for simplicity we fix Z to be such a domain from now on.

For any ℓ ∈ N+, we define the lift of length ℓ of S to be a new search problem Liftℓ(S) ⊆ [ℓ]m ×
{0, 1}m·ℓ × Q with input domain [ℓ]m × {0, 1}m·ℓ and output range Q such that for any x ∈ [ℓ]m, any

bit-vector {yi,j}i∈[m],j∈[ℓ], and any q ∈ Q, it holds that

(x, y, q) ∈ Liftℓ(S) if and only if
(
(y1,x1 , y2,x2 , . . . , ym,xm), q

)
∈ S . (2.1)

In what follows, we will refer to the coordinates of the x-vector as selector variables and those of the

y-vector as main variables, and we will sometimes use the notation

Ind(xi, yi) = yi,xi (2.2)

7

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

to denote the bit in yi indexed by xi. We extend this notation to vectors to write Ind(x, y) = yx =
(y1,x1 , . . . , ym,xm). Observe that

S(Ind(x, y)) = {q : (Ind(x, y), q) ∈ S} = {q : (x, y, q) ∈ Lift (S)} = (Lift (S))(x, y) . (2.3)

As in [HN12, GP18], we obtain our results by studying lifted search problems defined in terms of

CNF formulas and proving communication lower bounds for such problems. Syntactically speaking,

however, these objects are not themselves CNF formulas, which is what we use to feed to our proof

system. Therefore, we need an additional step which translates the lifted search problems back to CNF

as follows.

Definition 2.1 (Lifted formula [BHP10]). Given ℓ ∈ N+ and a CNF formulaF over variablesu1, . . . , un,

the lift of length ℓ ofF , denotedLiftℓ(F), is the formula over variables {xi,j}i∈[n],j∈[ℓ] (selector variables)

and {yi,j}i∈[n],j∈[ℓ] (main variables) containing the following clauses:

• For every i ∈ [n], an auxiliary clause

xi,1 ∨ xi,2 ∨ · · · ∨ xi,ℓ . (2.4a)

• For every clause C ∈ F , where C = ui1 ∨ · · · ∨ uis ∨ uis+1 ∨ · · · ∨ uit for some i1, . . . , it ∈ [n],
and for every tuple (j1, . . . , jt) ∈ [ℓ]t, a main clause

xi1,j1 ∨ yi1,j1 ∨ · · · ∨ xis,js ∨ yis,js ∨ xis+1,js+1 ∨ yis+1,js+1
∨ · · · ∨ xit,jt ∨ yit,jt . (2.4b)

Intuitively, we can think of the selector variables as encoding the vector x ∈ [ℓ]m in the lifted search

problem (2.1). Since xi,j ∨ yi,j is equivalent to the implication xi,j → yi,j , we can rewrite (2.4b) as

(xi1,j1 → yi1,j1) ∨ · · · ∨ (xit,jt → yit,jt) , (2.5)

from which we can see that for every clauseC the auxiliary clauses encode that there is at least one choice

of selector variables xi,j which are all true, and for this choice of selector variables the yi,j-variables in

the lifted main clause will play the role of the ui-variables, giving us back the original clause C. It is

easily verified that F is unsatisfiable if and only ifH = Liftℓ(F) is unsatisfiable, and that if F is a k-CNF

formula with m clauses, then H is a max(2k, ℓ)-CNF formula with at most mℓk + n clauses. A small

technical issue for us compared to [HN12, GP18] is that ℓ ≫ k will not be constant, but we can convert

the wide clauses in (2.4a) to constant width using extension variables, and so we will just ignore this issue

in our proof overview.

2.3 Pebbling Contradictions

An important role in many proof complexity trade-off results is played by so-called pebbling contradic-

tions. For our purposes it suffices to say that they are defined in terms of directed acyclic graphs (DAGs)G,

where for simplicity we assume that all vertices have indegree 0 or 2. We refer to vertices with indegree 0
as sources and assume that there is a unique sink vertex with outdegree 0. What the pebbling contradic-

tion overG says is that the sources are true and that truth propagates from predecessors to successors, but

that the sink is false. The formal definition follows.

Definition 2.2 (Pebbling contradiction [BW01]). Let G be a DAG with sources S and a unique sink t,
and with all non-sources having indegree 2. Then the pebbling contradiction over G, denoted PebG, is

the conjunction of the following clauses over variables {v | v ∈ V (G)}:

• for every source vertex s ∈ S, a unit clause s (source axioms),

• For all non-sources w with immediate predecessors u, v, a clause u ∨ v ∨ w (pebbling axioms),

8

2 Preliminaries and Proof Overview

u6

u4 u5

u1 u2 u3

(a) Pyramid graph Π2 of height 2.

u1

∧ u2

∧ u3

∧ (u1 ∨ u2 ∨ u4)

∧ (u2 ∨ u3 ∨ u5)

∧ (u4 ∨ u5 ∨ u6)

∧ u6

(b) Pebbling contradiction Peb
Π2

.

Figure 2: Example pebbling contradiction for the pyramid of height 2.

• for the sink t, the unit clause t (sink axiom).

If G has n vertices, the formula PebG is an unsatisfiable 3-CNF formula with n + 1 clauses over

n variables. For an example of a pebbling contradiction, see the CNF formula in Figure 2b defined in

terms of the graph in Figure 2a.

To make the connection back to Definition 2.1, in Figure 3 we present the lift of length 2 of the CNF

formula in Figure 2b, with the auxiliary clauses at the top of the left column followed by the main clauses

one by one, listed for all tuples of selector indices. We will refer to the main clauses in Figure 3 as source

axioms, pebbling axioms, and sink axioms, respectively, when they have been obtained by lifting of the

correspondingly named axioms in the pebbling contradiction.

2.4 Real Communication and Falsified Clause Search Problems

For our communication complexity results we study a two-player communication model, referring to the

players as Alice and Bob following tradition. We first briefly discuss the basic deterministic model, and

then explain how we need to extend it, directing the reader to [KN97] for any omitted standard communi-

cation complexity facts.

In the communication problem of solving a relation S ⊆ X × Y ×Q, Alice is given an input x ∈ X ,

Bob is given an input y ∈ Y , and they are required to find some q such that (x, y, q) ∈ S while minimizing

the communication between them. A communication protocol for S (or that solves S) is a binary tree

where Alice and Bob start at the root; every internal node v specifies who is going to speak; the value of

the spoken bit, which determines which child v0 or v1 to move to, is a function of only the node v and

the input x if Alice speaks or y if Bob does; and each leaf is labelled by some q such that for all x, y
that lead to this leaf (x, y, q) ∈ S. The cost of a protocol is the maximum number of bits communicated

on any input, and the number of rounds is the maximum number of alternations between Alice and Bob

speaking.

In order to obtain trade-offs for cutting planes, we need to study the more general real communication

model in [Kra98], where Alice and Bob interact via a referee, and also introduce the concept of rounds in

this model. It is convenient to describe the protocol as a (non-binary) tree, where at node v in the protocol

tree Alice and Bob send kv real numbers φv,1(x), . . . , φv,kv(x) and ψv,1(y), . . . , ψv,kv(y), respectively,

to the referee. The referee announces the results of the comparisons φv,j(x) ≤ ψv,j(y) for j ∈ [kv]
as a kv-bit binary string, after which the players move to the corresponding child of v indexed by the

string. The number of rounds r of a protocol is the depth of the tree and the cost c is the total number

of comparisons made by the referee for any input. It is easy to see that this model can simulate standard

deterministic communication (for instance, if Alice wants to send a message, she sends the complement

of that message to the referee and Bob sends a list of the same length with all entries 1/2) and is in fact

strictly stronger (since equality can be solved with just two bits of communication).

9

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

(x1,1 ∨ x1,2) ∧ (x2,1 ∨ y2,1 ∨ x3,1 ∨ y3,1 ∨ x5,1 ∨ y5,1)

∧ (x2,1 ∨ x2,2) ∧ (x2,1 ∨ y2,1 ∨ x3,1 ∨ y3,1 ∨ x5,2 ∨ y5,2)

∧ (x3,1 ∨ x3,2) ∧ (x2,1 ∨ y2,1 ∨ x3,2 ∨ y3,2 ∨ x5,1 ∨ y5,1)

∧ (x4,1 ∨ x4,2) ∧ (x2,1 ∨ y2,1 ∨ x3,2 ∨ y3,2 ∨ x5,2 ∨ y5,2)

∧ (x5,1 ∨ x5,2) ∧ (x2,2 ∨ y2,2 ∨ x3,1 ∨ y3,1 ∨ x5,1 ∨ y5,1)

∧ (x6,1 ∨ x6,2) ∧ (x2,2 ∨ y2,2 ∨ x3,1 ∨ y3,1 ∨ x5,2 ∨ y5,2)

∧ (x1,1 ∨ y1,1) ∧ (x2,2 ∨ y2,2 ∨ x3,2 ∨ y3,2 ∨ x5,1 ∨ y5,1)

∧ (x1,2 ∨ y1,2) ∧ (x2,2 ∨ y2,2 ∨ x3,2 ∨ y3,2 ∨ x5,2 ∨ y5,2)

∧ (x2,1 ∨ y2,1) ∧ (x4,1 ∨ y4,1 ∨ x5,1 ∨ y5,1 ∨ x6,1 ∨ y6,1)

∧ (x2,2 ∨ y2,2) ∧ (x4,1 ∨ y4,1 ∨ x5,1 ∨ y5,1 ∨ x6,2 ∨ y6,2)

∧ (x3,1 ∨ y3,1) ∧ (x4,1 ∨ y4,1 ∨ x5,2 ∨ y5,2 ∨ x6,1 ∨ y6,1)

∧ (x3,2 ∨ y3,2) ∧ (x4,1 ∨ y4,1 ∨ x5,2 ∨ y5,2 ∨ x6,2 ∨ y6,2)

∧ (x1,1 ∨ y1,1 ∨ x2,1 ∨ y2,1 ∨ x4,1 ∨ y4,1) ∧ (x4,2 ∨ y4,2 ∨ x5,1 ∨ y5,1 ∨ x6,1 ∨ y6,1)

∧ (x1,1 ∨ y1,1 ∨ x2,1 ∨ y2,1 ∨ x4,2 ∨ y4,2) ∧ (x4,2 ∨ y4,2 ∨ x5,1 ∨ y5,1 ∨ x6,2 ∨ y6,2)

∧ (x1,1 ∨ y1,1 ∨ x2,2 ∨ y2,2 ∨ x4,1 ∨ y4,1) ∧ (x4,2 ∨ y4,2 ∨ x5,2 ∨ y5,2 ∨ x6,1 ∨ y6,1)

∧ (x1,1 ∨ y1,1 ∨ x2,2 ∨ y2,2 ∨ x4,2 ∨ y4,2) ∧ (x4,2 ∨ y4,2 ∨ x5,2 ∨ y5,2 ∨ x6,2 ∨ y6,2)

∧ (x1,2 ∨ y1,2 ∨ x2,1 ∨ y2,1 ∨ x4,1 ∨ y4,1) ∧ (x6,1 ∨ y6,1)

∧ (x1,2 ∨ y1,2 ∨ x2,1 ∨ y2,1 ∨ x4,2 ∨ y4,2) ∧ (x6,2 ∨ y6,2)

∧ (x1,2 ∨ y1,2 ∨ x2,2 ∨ y2,2 ∨ x4,1 ∨ y4,1)

∧ (x1,2 ∨ y1,2 ∨ x2,2 ∨ y2,2 ∨ x4,2 ∨ y4,2)

Figure 3: Lifted formula Lift
2

(
Peb

Π2

)
of length 2 obtained from the pebbling contradiction over Π2.

The communication problem that we are interested in is the (falsified) clause search problem. This is

the problem of, given an unsatisfiable CNF formula F and a truth value assignment α, finding a clause

C ∈ F falsified by α. We denote this problem by Search(F). In fact, from a communication complexity

point of view we will be interested in lifts of this search problem Lift (Search(F)), while for our proof

complexity trade-offs the perspective is slightly different in that we need to study the CNF formulaLift (F)
from Definition 2.1 and relate the hardness of this formula to the communication complexity of the falsi-

fied clause search problem Search(Lift (F)). Happily, this distinction does not really matter to us, since

a good communication protocol for Search(Lift (F)) can also be used to solve Lift (Search(F)), and

hence a lower bound for the latter communication problem applies also to the former, as stated formally

in the next observation.

Observation 2.3. Suppose that F is an unsatisfiable CNF formula. Then any two-player real communi-

cation protocol for Search(Lift ℓ(F)) where all selector variables xi,j in the same block are given to the

same player can be adapted to a protocol for Liftℓ(Search(F)) with the same parameters.

We refer to, e.g., [HN12] for the easy proof (which is independent of the concrete communication

model under consideration). Thanks to this observation, we can freely switch perspectives between

Lift ℓ(Search(F)) and Search(Liftℓ(F)) when we want to prove lower bounds for the latter problem.

The reason that such lower bounds are interesting, in turn, is that if a CNF formulaH has a CP refutation

in short length and small space, then such a proof can be used to construct a round- and communication-

efficient protocol for Search(H).

10

2 Preliminaries and Proof Overview

Lemma 2.4. If a CNF formulaH can be refuted by cutting planes in length L and formula space s, then

for any partition of the variables of H between Alice and Bob there is a real communication protocol

solving Search(H) in ⌈logL⌉ rounds with total communication cost at most s · ⌈logL⌉.

Sketching the proof very briefly, given a truth value assignment αAlice and Bob can do binary search

over the refutation (L0 = ∅,L1, . . . ,LL) of H until they find a t ∈ [L] such that Lt evaluates to true

underα butLt−1 evaluates to false. Then the derivation step at time tmust be a download of an axiomC ∈
H falsified by α. For the details we can reuse the proof from [HN12] verbatim, just adding the one simple

but absolutely crucial observation that the protocol obtained in this way is also round-efficient, since all

communication needed to evaluate a particular configuration Lt can be performed in parallel.

It is worth noting that although we state Lemma 2.4 for cutting planes here, there is nothing that

really uses the syntactic properties of the cutting planes refutation. Thus, the proof works equally well

for resolution, polynomial calculus, or any proof system for which configurations can be evaluated by

round-efficient protocols where the communication scales as the space of the configuration.

2.5 Simulations of Protocols by Parallel Decision Trees

A parallel decision tree [Val75] for a search problem S ⊆ {0, 1}m × Q is a tree T such that each

node v is labelled by a set of variables Vv and has exactly one outgoing edge for each of the 2|Vv | possible

assignments to these variables, and such that for every α ∈ {0, 1}m the path from the root of T defined

by the edges consistent with α ends at a leaf labelled by some q ∈ Q such that (α, q) ∈ S (where again

the tacit assumption is that S is such that such a solution always exists). We say such a tree solves the

search problem S. The number of queries of T is the maximal sum of set sizes |Vv| along any path in T ,

and the depth of T is the length of a longest path.

Any decision tree T for a search problem S can be simulated by a communication protocol for the

lifted problem Lift (S) in a straightforward way, where if T wants to query the ith variable Alice and

Bob can communicate to find yi,xi and then walk in T according to this value. Such a walk will end

in a leaf labelled by a q such that
(
(y1,x1 , y2,x2 , . . . , ym,xm), q

)
∈ S, i.e., a solution to the lifted search

problem, and thus the query complexity of the original search problem provides an upper bound on the

communication cost of the lifted problem. If in addition there is a parallel decision tree with small depth,

then a protocol simulating such a tree will also be round-efficient. The main technical result of our paper

is that simulating such a parallel decision tree is essentially the best any round-efficient protocol can do

(provided that the lifting of the search problem is done with appropriate parameters).

Theorem 2.5 (Simulation theorem). Let S be a relation with domain {0, 1}m and let ℓ = m3+ǫ for

some constant ǫ > 0. If there is an r-round real communication protocol in cost c that solves Liftℓ(S),
then there is a parallel decision tree in depth r solving S using O(c/ log ℓ) queries.

We remark that similar simulation theorems have previously been shown for both deterministic com-

munication [RM99, GPW18] and real communication [BEGJ00], but unfortunately they fail to take round

efficiency into account. Our proof of Theorem 2.5 follows the approach in these papers to build a decision

tree for the original problem that simulates the communication protocol for the lifted problem. In order

to obtain an efficient simulation we have to maintain (in an amortized sense) that the decision tree queries

a variable only when a noticeable amount of communication has taken place. To prove that the decision

tree constructed in this way is correct, we need to show that at the end of the simulation there exists a pair

of inputs to Alice and Bob that are compatible both with the transcript and with a lift of the original input.

Towards this end, during the simulation we maintain a set of such compatible inputs, which must not be

allowed to shrink too fast.

In order for the proof to work we need to be able to handle two kinds of events: communication

events, where we simulate the players communicating; and query events, where the decision tree under

construction queries some variable and gets its actual value. Both of these events force us to prune the

set of compatible communication inputs. In the first case we want to choose a communication message

that removes as few inputs as possible, whereas in the second case we have to restrict the communication

11

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

inputs to a subset that is compatible with the value returned by the decision tree query. We make sure to

query a variable only when the transcript “reveals too much information” about Alice’s and Bob’s lifted

input related to that variable, and thanks to this we can argue that query events do not happen too often

and that the amount of communication provides an upper bound on the total number of queries.

Extending these techniques to round-efficient protocols and simulations by parallel decision trees

causes significant additional complications, however. Very briefly, one issue is that we cannot let the

tree query an individual variable as soon as sufficient information has been “revealed” about it during the

simulation, but have to wait until we can issue a whole set of queries corresponding to a single message

of the protocol. This makes it challenging to maintain a set of compatible inputs for variables we have not

yet been allowed to query. Another issue is that, in contrast to deterministic communication protocols,

real protocols do not partition the input domain into combinatorial rectangles. While this is not a big

problem for a single comparison by the referee, it becomes more challenging when we want to handle a

round consisting of many simultaneous comparisons.

2.6 From Decision Trees to Dymond–Tompa Trade-offs

The Dymond–Tompa game [DT85]2 is played in rounds on a DAG G by two players Pebbler and Chal-

lenger. In the first round, Pebbler places pebbles on a non-empty subset of vertices of G including the

unique sink t and Challenger picks some vertex in this set. In all subsequent rounds, Pebbler places peb-

bles on some non-empty subset of vertices not yet containing pebbles, and Challenger either challenges

a vertex in this new set (jumps) or re-challenges the previously chosen vertex (stays). This repeats until

at the end of a round Challenger is standing on a vertex with all immediate predecessors pebbled (or on a

source, for which the condition vacuously holds), at which point the game ends. Intuitively, Challenger is

challenging Pebbler to “catch me if you can” and wants to play for as many rounds as possible, whereas

Pebbler wants to “surround” Challenger as quickly as possible. We say that Pebbler wins the r-round

Dymond–Tompa game onG in cost c if there is a strategy such that Pebbler can always finish the game in

at most r rounds placing a total of at most c pebbles regardless of how Challenger plays.

In order to obtain lower bounds on the query complexity of parallel decision trees of bounded depth,

we use an adversary argument and describe strategies that give as unhelpful answers as possible for vari-

ables queried by the decision trees. If we specialize this to the clause search problem for pebbling contra-

dictions PebG, such adversary strategies are equivalent to Challenger strategies in the Dymond–Tompa

game on G. For standard binary decision trees and the Dymond–Tompa game with unlimited number of

rounds this was proven in [Cha13],3 and we show that this equivalence extends also to our more general

setting where decision trees can issue queries in parallel and we account for the number of rounds in the

Dymond–Tompa game.

Lemma 2.6. If there is a parallel decision tree for Search
(
PebG

)
in depth r using at most c queries, then

Pebbler has a winning strategy in the r-round Dymond–Tompa game on G in cost at most c+ 1.

It follows from this lemma that round-cost trade-offs for Dymond–Tompa pebbling implies depth-

query trade-offs for parallel decision trees. To conclude the proof of the lower bound in our trade-off

results, we need to find a family of graphs for which we can prove lower bounds for the cost of Pebbler

strategies in the Dymond–Tompa game with bounded number of rounds. Towards this end, we establish

that graphs that satisfy a certain connectivity property possess trade-offs between number of rounds and

cost, and then exhibit such graphs. These graphs were inspired by graphs for which black-white pebbling

trade-offs were shown in [LT82], but we need to make some modifications in order to obtain Dymond–

Tompa trade-offs. Round-cost trade-offs have been previously studied in [KS90] but for a different range

of parameters.

Lemma 2.7. For any n, r ∈ N+ there exists an explicitly constructible DAG G(n, r) with O(rn logn)
vertices such that the cost of the r-round Dymond–Tompa game on G(n, r) is at least Ω(n).

2We give a slightly different, but essentially equivalent, description of the Dymond–Tompa game that is closer to recent

papers such as [Cha13, CLNV15].
3This game on decision trees is called the Raz–McKenzie game in [Cha13].

12

3 From Proofs to Communication Protocols

The graph G(n, r) is structured in r + 1 layers and we obtain the lemma by designing a strategy for

Challenger such that as long as Pebbler does not place too many pebbles, Challenger can make sure that in

the ith round the challenged pebble is above the ith layer. Hence, the game does not end within r rounds.

2.7 Proofs of Main Theorems

Combining all the components discussed above we can now prove the following trade-off lower bound.

Theorem 2.8. LetG be a DAG overm vertices such that any winning strategy for Pebbler in the r-round

Dymond–Tompa game on G has cost Ω(c), and let ǫ > 0 and ℓ = m3+ǫ. Then Liftℓ
(
PebG

)
is a 6-CNF

formula overΘ(m4+ǫ) variables andN = Θ(m10+3ǫ) clauses such that any cutting planes refutation of it

in formula space less than c
r logN , even with coefficients of unbounded size, requires length at least 2Ω(r).

Proof. Suppose for the sake of contradiction that there is a cutting planes refutation of Liftℓ
(
PebG

)

in length 2o(r) and formula space less than c
r logN . By Lemma 2.4 this implies that there is a real

communication protocol that solvesLiftℓ
(
Search(PebG)

)
in o(r) rounds and total cost o(c logN). Using

Theorem 2.5 we obtain a parallel decision tree solving Search(PebG) using o(c) queries and depth o(r).
But if so, by Lemma 2.6 Pebbler wins the o(r)-round Dymond–Tompa game on G in cost o(c), which

contradicts the assumption of the theorem.

In order to attain our trade-off results we also need upper bounds on refutations of these formulas.

Small-size upper bounds follow by essentially the same approach of lifting black pebbling upper bounds

as in [BN11, HN12], although more care is needed since our lifts are of non-constant length. For the

small-space refutations, this technique does not work because the space loss due to the large lift length is

larger than the upper bound we are aiming for. Luckily, we can instead prove upper bounds in the Dymond–

Tompa game with unlimited rounds and then convert them into refutations in small space. Theorems 1.1

and 1.2 then follow from Theorem 2.8 applied to an appropriate family of graphs that exhibit Dymond–

Tompa trade-offs as in Lemma 2.7.

The tools we have developed also allow us to prove the monotone circuit separation in Theorem 1.4.

The function that witnesses the separation is inspired by the PYRAMID-GEN function of [RM99] adapted

to the graphs in Lemma 2.7. Then we translate the Dymond–Tompa trade-off into a lower bound for

deterministic communication protocols with few rounds, which we then transform into a lower bound for

circuits of small depth via the Karchmer–Wigderson game [KW90].

3 From Proofs to Communication Protocols

As mentioned in the preliminaries, length space trade-offs for a given proof system can be obtained via

reduction to the falsified clause search problem. Exactly which communication model to consider for the

search problem depends on the proof system. Given a sequential proof system P and a communication

model M, let cP,M and rP,M be the maximum cost and the maximum number of rounds, respectively,

required to evaluate a line/formula of any configuration.

The idea behind the reduction is to, given a refutation as a sequence of configurations, do a binary

search in this sequence in order to find two consecutive configurations such that the first is evaluated

to true and the second to false. Since the proof system is sound, this false configuration must be due

to an axiom download and this axiom must be falsified. Finally, observing that each line/formula of a

configuration can be evaluated in parallel, we get the following lemma.

Lemma 3.1. Let π be a refutation in a sequential proof system P of a CNF formula F in length L
and formula space s. Then, in any (deterministic) communication model M and for any partition of

the variables of F between Alice and Bob there is a communication protocol that solves Search(F) in

rP,M · ⌈logL⌉ rounds with total communication cost at most s · cP,M · ⌈logL⌉.

13

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

Proof. Suppose Alice and Bob are each given a part of an assignment α to F . Fix a P-refutation π =
{D0,D1, . . . ,DL} of F as in the statement of the lemma. By definition of refutation, it must be the case

that D0 = ∅ and ⊥ ∈ DL.

Alice and Bob consider the configuration DL/2 in the refutation at time L/2 and with joint efforts

(involving some communication, which we will discuss shortly) evaluate the truth value ofDL/2 under the

assignmentα. IfDL/2 is true underα, they continue their search in the subderivation {DL/2,D1, . . . ,DL}.

IfDL/2 is false, the search continues in the first half of the refutation {D0,D1, . . . ,DL/2}Note thatD0 = ∅
is vacuously true under any assignment, and since ⊥ ∈ DL this last configuration evaluates to false under

any assignment. The binary search is carried out so as to maintain that the first configuration in the

current subderivation under consideration evaluates to true and the last one evaluates to false under the

given assignment α. Hence, after at most ⌈logL⌉ steps Alice and Bob find a t ∈ [L] such that Dt−1 is

true under α but Dt is false. Since the proof system is sound, the derivation step to get from Dt−1 to Dt
cannot have been an inference or erasure, but must be a download of some axiom clause C ∈ H . This

clause C must be false under α, and so Alice and Bob give C as their answer.

Now all that remains is to discuss how much communication is needed to evaluate a configuration

in the refutation. Every line/formula in the configuration can be evaluated with cost at most cP,M and

in at most rP,M rounds. Moreover, the rP,M rounds to evaluate each line can be done in parallel by

simply concatenating, at each round i, all the ith messages of the protocol for evaluating each line of the

configuration. Since each configuration has at most s lines, it can be evaluated with cost at most s · cP,M
and in at most rP,M rounds.

We note that, for randomized communication models (which we do not use in this paper, but are

used for example in [HN12, GP18]), the above theorem holds if cP,M and rP,M are defined to be the

maximum cost and the maximum number of rounds, respectively, required to evaluate a line/formula of

any configuration with high enough probability of success so that the union bound of the probability of

error over all the evaluations of configurations is small enough.

Ideally, given a proof system P we want a communication model M such that rP,M and cP,M are

constants, or at least a slow growing function. We only consider semantic versions of proof systems,

where we specify the format of proof lines and use the fact that derivation rules, whichever they are, are

semantically sound (as defined in [ABRW02]).

For example, if P is resolution, where lines are clauses of the form
∨
j x

bj
j , then Alice and Bob can

evaluate a line in two rounds and two bits of communication in the deterministic communication model.

If we consider polynomial calculus over any fieldF, where lines are polynomials of the form
∑

m

∏
j am,jxj

but the space measure is the number of monomials, Alice and Bob first check that the assignment is {0, 1}-

valued—and immediately output a falsified axiom otherwise—and then run the binary search protocol,

where they can evaluate a monomial in two rounds and two bits of communication in the deterministic

communication model.

For cutting planes with bounded coefficients, Alice and Bob can evaluate a line in two rounds and

either O(logN) bits of communication in the deterministic communication model if the bound is a poly-

nomial in the size of the formula or O(logL) bits if the bound is a polynomial in the size of the refutation.

For unrestricted cutting planes, Alice and Bob can evaluate a line in one round and one comparison

in the real communication model.

The small but key difference from previous papers [HN12, GP18] is that we explicitly consider rounds.

The theorem states that if there exists a refutation in small space and small length, then there is a commu-

nication protocol that solves the falsified clause search problem not only with small communication cost,

but also in few rounds.

It seems unlikely that the techniques used so far (without rounds) would yield true trade-offs; let us

discuss why. For a trade-off of the form s · logL ≥ x to be a true trade-off there must exist a refutation

in small space and another one in small length. The formulas for which trade-offs have been proven are

lifted versions of pebbling formulas, which have refutations in small (linear) length, but not necessarily

small space: the black-white pebbling number is a lower bound for resolution space, as proven in [BN11].

14

4 From Real Communication to Parallel Decision Trees

For the pyramid graphs studied in [HN12, GP18], the black-white pebbling number is asymptotically

equal to the Dymond–Tompa price, which in turn is an upper bound for the communication complexity,

as we argued in Section 2. Therefore, for the resolution proof system, the apparent trade-off is actually

s · logL = Ω(s), giving only an uninformative length lower bound for the feasible range of space, and so

the formula properties are better described by a space lower bound rather than a trade-off.

It seems plausible that the black-white pebbling number is also a lower bound for polynomial calculus

space and cutting planes total space, and thus the “trade-offs” between PC-space or CP-total space and

length, might also turn out to be unconditional space lower bounds.

Even if we consider other graph families, the best separation between black-white pebbling number

and Dymond–Tompa price so far is logarithmic in the size of the graph [CLNV15], which still does not

give meaningful results for resolution. It seems more promising to search for trade-offs in graphs where

the black-white pebbling number is small but nonetheless have trade-offs in resolution, established by

some means other than communication complexity.

To keep the discussion short and focused we only mention that trade-offs have been proven for stacks of

superconcentrators [BN11] and Carlson–Savage graphs [Nor12]. Yet in both cases the Dymond–Tompa

price is too small to give meaningful trade-offs: in the first case, it is enough to note that the Dymond–

Tompa price is at most the depth, and a stack of superconcentrators has small depth; for Carlson–Savage

graphs, the proof is similar, but the depth argument is not enough.

To sum up, we showed that the graphs for which the previous techniques yield trade-offs are likely

to have unconditional space lower bounds (but we cannot prove it), and that for graph families that may

have trade-offs—and indeed we prove that this is the case for a special family of superconcentrators—the

previous techniques cannot prove them.

4 From Real Communication to Parallel Decision Trees

We have reached the heart of the reduction. This is by far the most intriguing and also the most difficult part

of the paper. The reader that first wishes to have an overview of the whole proof should skip Sections 4.1

and 4.2.

To prove Theorem 2.5 we use the same high-level approach of [RM99, BEGJ00, GPW18]: we build a

decision tree that simulates a protocol solving the composed search problem Lift (S) and it only queries

a variable when, in a certain sense, the transcript reveals too much information about the index for that

variable.

More precisely, we keep two sets of inputs A and B that are compatible with the communication so

far and that are large enough. Additionally for A we enforce that for each coordinate i that we have not

queried yet, if we fix every other coordinate to some value, there are still many choices for what to set the

index xi to.

To maintain the invariant, we need to handle two kinds of events: communication events where we

guess a message and restrict A and B to the new compatible inputs, with some additional cleanup, and

query events, where some coordinate i becomes too dependent on other coordinates. Since for each

coordinate there are more choices for yi than Bob can expect to communicate, we will be able to find an

input for the players such that Ind(xi, yi) agrees with zi, and then restrict A and B appropriately.

At the end of the protocol, if we were to query the remaining variables, we would have a pair of

inputs (x, y) that are compatible with the transcript, therefore the protocol answers correctly, and such

that Ind(xi, yi) = zi in every coordinate, therefore the answer is also correct for the decision tree.

To argue that we do not make too many queries we keep a density function that measures how many

choices we have for Alice’s input over not queried coordinates. This function increases on communication,

decreases after a query, and is nonnegative, which gives us a bound on the number of queries in terms of

communication.

The description up to this point is common to all flavours of the simulation theorem, with or with-

out rounds and with deterministic or real communication. The differences will surface once we try to

implement it.

15

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

The first challenge we encounter is when exactly should we query a variable. If we do not have any

bound on depth, then we can do that as soon as we detect that the invariant is broken and we need to

restore it. Since we want to measure the effect of rounds, however, this exact approach will not work for

us, because we might need to query a variable mid-message. Indeed, if Alice sends the message x1x2,
we would first simulate sending some bits of x1, then query z1 and restrict the inputs to those such that

Ind(x1, y1) = z1, keep simulating sending bits of x1 and x2, then query z2 and restrict the inputs, and

finish sending bits. We had to use two rounds of queries in a single round of communication.

It seems natural to delay querying the variables until the end of the message, but now we have another

problem. Assume that Bob had sent that the 0-th bit of y1 is a 0, and that Alice’s message is x1. If we

guess that the message is x1 = 0 but after we query z1 we get that z1 = 1, then the inputs compatible

with the communication stop being compatible with the Ind gadget.

Our solution is to indeed delay querying the variables until the end of the message but still restrict

the inputs as soon as the invariant breaks, in a way that, after fixing x1, Ind(x1, y1) can take any value.

During the interval of communication between the restriction and the query we keep a set C that acts as

a proxy for B over the coordinates that we have not queried (and do not intend to). This is a harder task,

but still feasible because only Alice speaks during this time, so we do not need to know B precisely.

The second challenge is to adapt the simulation to a real communication protocol. As opposed to

deterministic protocols, the set of compatible inputs does not necessarily form a rectangle. However,

as observed by [Joh98], the result of one comparison splits the matrix of inputs in such a way that one

quadrant—thus a rectangle—is monochromatic, and [BEGJ00] uses this fact to decide the outcome of

each comparison.

Since we want to query variables only at the end of each round we might not know what B is at

the time we want to extract a rectangle from a comparison matrix, and unfortunately the proxy does not

help. Therefore we need to extract rectangles from the input when we do know B, that is before we start

simulating the message. We could easily extract a rectangle of size a 2−k × 2−k-fraction of the inputs,

where k is the size of the message, but that would be equivalent to simulating the message in one go,

which we argued does not work in the deterministic case.

Our solution is to extract a rectangle of size a 1/4× 2−k log k-fraction of the inputs. Even though this

is equivalent to simulating a long Bob message at once, it has the advantage that the equivalent message

for Alice is very short, so we can still use the very same techniques to recover the invariants as in the

deterministic case.

4.1 Simulation of Deterministic Communication Protocols by Decision Trees

We begin by proving the simulation theorem for the more common deterministic communication model.

Throughout this section we assume that the arity of the Ind function is ℓ = m3+ǫ for some small constant

ǫ > 0, where m is the size of the input.

Theorem 4.1. If there is a deterministic communication protocol solving Lift (S) using communication

c and r rounds, then there is a parallel decision tree solving S using O(c/ log ℓ) queries and depth r.

We mention in Section 2 that we have to use a lift of polynomial length as opposed to constant length;

this is needed for the simulation theorem to apply. In [GPW18] and [RM99] the lift is of size m20,

while in [BEGJ00] the lift is of size m14, and a more careful analysis shows that m4+ǫ is enough. Using

a combinatorial approach to the analysis we can lower the lift length to m3+ǫ, but getting beyond this

requires new techniques.

To be able to prove Theorem 4.1 we need to introduce some notation. Let γ = 1/(3 + ǫ), δ, λ, µ be

numbers strictly between 0 and 1 such that the inequalities

λ− γ > µ (4.1a)

µ+ δ − 1 > γ (4.1b)

γ + δ < 1 (4.1c)

16

4 From Real Communication to Parallel Decision Trees

hold. Note that a solution exists iff γ < 1/3. For concreteness, we can think of γ = 1/3− 2ξ, λ = 1− ξ,
µ = 2/3, and δ = 2/3 for some ξ > 0.

Let Π be an r-round deterministic communication protocol solving Lift (S) in cost c. Let Xv and

Y v be the sets of inputs to Alice and Bob, respectively, that are compatible with node v of the protocol

tree. We are going to keep two sets A ⊆ [ℓ]m and B ⊆ {0, 1}ℓm of inputs that are compatible with the

communication so far, that is A ⊆ Xv and B ⊆ Y v, but that have been “cleaned up”.

We are often interested in the coordinates that the decision tree has not yet queried, which we denote

I ⊆ [m]. We denote vectors and sets of vectors with coordinates in I with a subscript I to indicate their

type. For two disjoint sets of coordinates I and J , we denote by xI ·xJ the vector with coordinates in

I ∪ J obtained from the concatenation of xI and xJ . The projection of a vector xJ to the coordinates

in I ⊆ J , denoted by πI(xJ), is the vector xI such that xJ = xI ·xJ\I for some vector xJ\I . We

generalize this to sets of vectors and denote the projection of a set SJ to the coordinates in I ⊆ J by

πI(SJ) = {πI(xJ) : xJ ∈ SJ}.

In order to formalize the property of having little information about a coordinate, we defineGraphi(AI)
as the bipartite graph where left vertices x{i} are elements of [ℓ], right vertices xI\{i} are elements of

[ℓ]|I|−1, and there is an edge between two vertices if xI\{i}·x{i} ∈ AI . Analogously, let Graphi(BI) be

the bipartite graph where left vertices y{i} are elements of {0, 1}ℓ, right vertices yI\{i} are elements of

{0, 1}ℓ(|I|−1), and there is an edge between two vertices if yI\{i}·y{i} ∈ BI . Now let MinDeg i(AI) and

AvgDeg i(AI) be the minimum and average right degree ofGraphi(AI), both taken over the set of vertices

of positive degree. We consider that we do not know too much about a coordinate i if AvgDeg i(AI) ≥ ℓλ.

Moreover, we sayAI is thick ifMinDeg i(AI) ≥ ℓµ for all i ∈ I , a property we make sure to keep through-

out the simulation. Observe that, since |AI | is the number of edges in Graphi(AI) and |πI\{i}(AI)| is

the number of right vertices with positive degree, the definition of average degree is equivalent to

AvgDeg i(AI) =
|AI |

|πI\{i}(AI)|
, (4.2)

which is more convenient to work with.

A useful observation is that minimum degree (and therefore thickness) is monotone with respect to

projections.

Observation 4.2 ([RM99]). MinDegj(πI\{i}(A)) ≥ MinDegj(πI(A)) for all j ∈ I \ {i}.

Proof. For each index j ∈ I \ {i}, if there is an edge between xI\{j} and x{j} in Graphj(AI), then there

is also an edge between xI\{i,j} = πI\{i,j}(xI\{j}) and x{j} in Graphj(πI\{i}(AI)). Formally, we have

that the set Nj(xI\{i,j}) of neighbours of a vertex xI\{i,j} in Graphj(πI\{i}(AI)) is

Nj(xI\{i,j}) = {x{j} ∈ [ℓ] : xI\{i,j}·x{j} ∈ πI\{i}(A)} (4.3)

= {x{j} ∈ [ℓ] : ∃x{i} ∈ [ℓ] s.t. xI\{i,j}·x{i}·x{j} ∈ πI(A)} (4.4)

=
⋃

x{i}∈[ℓ]

{x{j} ∈ [ℓ] : xI\{i,j}·x{i}·x{j} ∈ πI(A)} (4.5)

=
⋃

x{i}∈[ℓ]

Nj(xI\{i,j}·x{i}) , (4.6)

whereNj(xI\{i,j}·x{i}) is the set of neighbours of the vertex xI\{i,j}·x{i} in Graphj(AI). Therefore, for

any x{i} such that xI\{i,j}·x{i} has positive degree we have that |Nj(xI\{i,j})| ≥ |Nj(xI\{i,j}·x{i})| ≥
MinDegj(πI(A)).

Finally, we define two density loss measures for inputs over non-queried coordinates. ForAI ⊆ [ℓ]|I|,

let α(AI) = − log |AI |
ℓ|I|

= |I| log ℓ − log|AI | measure how many inputs on I coordinates Alice has lost

out of the ℓ|I| possibles. Analogously, for BI ⊆ {0, 1}ℓ|I|, let β(BI) = − log |BI |
2ℓ|I|

= |I|ℓ− log|BI |. We

17

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

make sure to keep these measures small, so that at any point there are many inputs compatible with the

communication so far.

While the absolute number of choices decreases with projections, density actually increases (and so

the loss of density decreases).

Observation 4.3 ([GPW18]). α(πI\{i}(A)) = α(πI(A))− log ℓ+ logAvgDeg i(πI(A))

Proof. By definition of α, this is equivalent to |πI\{i}(A)| = |πI(A)|/AvgDeg i(πI(A)), which follows

from the definition of average degree (4.2).

The decision tree that witnesses Theorem 4.1 is Algorithm 4. In order to describe this algorithm,

we have two auxiliary procedures: prune and project. For now, we state the properties that these

procedures satisfy and defer their description and the proof that they indeed satisfy the properties claimed

to after the proof of Theorem 4.1. Procedure prune is used to restore the thickness ofA after Alice speaks

and satisfies the following.

Lemma 4.4 (Thickness Lemma [RM99]). If AvgDeg i(πI(A)) ≥ ℓλ/4 for all i ∈ I , then the return

value A′ of prune(A, I) satisfies

1. πI(A
′) is thick;

2. α(πI(A
′)) ≤ α(πI(A)) + 1.

The auxiliary procedure project is used to pick the appropriate U after we make a query to coordi-

nate i in order to recover the density ofA with respect to the remaining coordinates. To restrict the inputs

of A on one coordinate i to a set U ⊆ [ℓ] we write ρi,U (A) = {x ∈ A : xi ∈ U}, and similarly to restrict

B on coordinate i to a set V ⊆ {0, 1}ℓ, we have ρi,V (B) = {y ∈ B : yi ∈ V }.

Note that in the description of Algorithm 4 we employ setsCI that act as a proxy for πI(B). Moreover,

we denote by V b(U) = {w ∈ {0, 1}ℓ : ∀j ∈ U wj = b} the set of b-monochromatic colourings of U and

denote byCI\{i}
(b)(U) = πI\{i}(ρi,V b(U)(CI)) the projection to I \ {i} of the inputs ofCI that in the ith

coordinate are b-monochromatic colourings of U . Procedure project satisfies the following properties.

Lemma 4.5 (Projection Lemma). If πI(A) is thick, and β(CI) ≤ 2ℓγ log2 ℓ, then the return value U of

project(A,CI , I, i) satisfies

1. πI\{i}(ρi,U (A)) is thick ;

2. α(πI\{i}(ρi,U (A))) ≤ α(πI(A))− log ℓ+ logAvgDeg i(πI(A)) ;

3. β(CI\{i}
(0)(U) ∩ CI\{i}

(1)(U)) ≤ β(CI) + 1.

The difference between Algorithm 4 and the algorithm in [RM99, GPW18] is that, when we need to

restrict the setsA andB, instead of making a query we consider both possible outcomes for Bob. We can

delay committing to either outcome until the moment before Bob starts to speak, at which point we make

all queries at once. We assume that Q is a queue, that is, its elements are sorted in insertion order. We

also assume that argmax decides arbitrarily in case of tie, and observe that if b = argmax|πI(A∩Xvb)|,
then α(πI(A ∩Xvb)) ≤ α(πI(A)) + 1.

Lemma 4.6 (Main Lemma). If Π is a protocol that solves Lift (S) using communication c < m
2 (1 −

λ) log ℓ and r rounds, then eval solves S using at most 2c/(1− λ) log ℓ queries and depth r.

Observe that Theorem 4.1 follows from this lemma, since if c ≥ m
2 (1−λ) log ℓ then a parallel decision

tree that queries all variables in depth 1, satisfies the theorem. Before proving Lemma 4.6, let us consider

some possible protocols and what Algorithm 4 does in each case.

Consider the trivial protocol where Alice in one round sends all of her input to Bob, who outputs the

answer. To be fair, this is a bit too much communication for Lemma 4.6 to apply, but let us look over this

fact and try to get an intuition of what happens. While Alice is speaking, the algorithm has to commit to

18

4 From Real Communication to Parallel Decision Trees

1 let A = [ℓ]m, B = {0, 1}ℓm, I = [m], v be the root of Π
2 while v not a leaf do

3 let Q = ∅, CI = πI(B)
4 while v is a node where Alice speaks do

5 while ∃i ∈ I such that AvgDeg i(πI(A)) < ℓλ do

6 let Ui = project (A, CI , I , i)

7 let A = ρi,Ui(A), CI\{i} = CI\{i}
(0)(Ui) ∩ CI\{i}

(1)(Ui),

I = I \ {i}, Q = Q ∪ {i}

8 let b = argmax|πI(A ∩Xvb)|
9 let A = prune(A ∩Xvb , I), v = vb

10 query coordinates Q to get string zQ
11 for i ∈ Q do

12 let B = ρi,V (B), where V = V zi(Ui)

13 while v is a node where Bob speaks do

14 let b = argmax|πI(B ∩ Y vb)|
15 let B = B ∩ Y vb , v = vb

16 return the answer at v

Figure 4: Procedure eval(Π,z)

the values of her coordinates, and therefore, for all coordinates i, AvgDeg i(πI(A)) eventually becomes

too small and i is marked to be queried. After she finishes speaking the algorithm queries all coordinates

and restricts Bob’s input to be compatible with the queries and with Alice’s message, i.e., it only keeps

inputs that have the queried value on the corresponding position. Finally, the algorithm answers what

Bob would output for any of the compatible inputs. Note that the decision tree in this case is the depth-1
decision tree that queries all coordinates at once and answers accordingly.

Another possible protocol is the one that follows a parallel decision tree T , as explained in Section 2:

Alice and Bob communicate to find the value of the coordinates queried on each node and then continue

on T according to these values. For this protocol, Algorithm 4 marks to be queried all the coordinates

Alice and Bob talk about because the corresponding average degree gets too low. Note that the final

decision tree is exactly the same as the one Alice and Bob were following.

Now we consider what happens in a more extreme case. Suppose the protocol is very unbalanced in

the sense that Alice’s first bit is a 0 if her first coordinate is 42, and otherwise is a 1. In this case, when at

line 8 the algorithm chooses a bit for Alice to speak, it will always choose 1 since it is compatible with

the most inputs.

Proof of Lemma 4.6. Let Rv be the rectangle of inputs compatible with node v, and let cAv (resp. cBv) be

the number of bits sent by Alice (resp. Bob) up to node v. We show that the following invariants hold

throughout the algorithm:

1. πI(A) is thick;

2. A×B ⊆ Rv;

3. m− |I| ≤ 2cAv /(1− λ) log ℓ;

4. β(CI) ≤ m− |I|+ cBv ;

and that the following invariants hold at the beginning of each round:

5. β(πI(B)) ≤ m− |I|+ cBv ;

19

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

6. Ind(xi, yi) = zi for all (x, y) ∈ A×B and i /∈ I .

All six invariants are true at the beginning of the algorithm. We assume invariants 1 through 4 are

true up to the current point of the algorithm, and invariants 5 and 6 are true at the beginning of the current

round. We then show that, after executing the next line, 1 through 4 still hold and, at the beginning of the

next round, 5 and 6 still hold.

To see that invariant 1 holds, we note that the set A is modified only at lines 7 and 9. For line 7 it

is enough to argue that the assumptions of Lemma 4.5 hold, since Lemma 4.5 guarantees that πI(A) is

thick. This is indeed the case, since we assume invariant 1 holds before this point, and since invariants 3

and 4 together with the assumption of Lemma 4.6 that cAv + cBv ≤ m log ℓ = ℓγ log ℓ imply that

β(CI) ≤ m− |I|+ cBv ≤ 2cAv /(1− λ) log ℓ+ cBv ≤ cAv + cBv ≤ ℓγ log ℓ . (4.7)

Similarly, for line 9 it is enough to argue that the assumption of Lemma 4.4 applies. Indeed it does, since

we have that, before line 9,

AvgDeg i(πI(A ∩Xvb)) =
|πI(A ∩Xvb)|

|πI\{i}(A ∩Xvb)|
≥

1
2 |πI(A)|

|πI\{i}(A)|
=

1

2
AvgDeg i(πI(A)) ≥

ℓλ

2
, (4.8)

where for the last inequality we are using the assumption that invariant 1 holds before this line. We note

that the conditions for Lemmas 4.4 and 4.5 to apply are more relaxed than what we prove. This is so

because we will apply the same lemmas when dealing with real communication and there we will need

this extra slack.

For invariant 2, first note that A and B never increase. Moreover, the rectangle of compatible inputs

Rv changes when v is modified at lines 9 and 15, and in both cases we restrict A (resp. B) to a subset of

Xv (resp. Y v).

To prove invariant 3, we show that

α(πI(A)) ≤ 2cAv − (m− |I|)(1− λ) log ℓ (4.9)

holds at all times. The invariant then follows since α(AI) ≥ 0 by definition. First note that at the

beginning of the algorithm α(πI(A)) = 0. Intuitively, we want to show that α(πI(A)) increases by at

most 2 with every bit sent by Alice and decreases by at least (1−λ) log ℓwith every query. More formally,

to see why (4.9) is true, we argue that every time I decreases (by 1) at line 7, α(πI(A)) decreases by at

least (1− λ) log ℓ, and every time cAv increases (by 1) at line 9, α(πI(A)) increases by at most 2. This is

indeed sufficient since A, I and cAv are only modified at these two lines. At line 7, Lemma 4.5 guarantees

that α(πI(A)) decreases by at least (1− λ) log ℓ since the average degree (before updating A and I) was

AvgDeg i(πI(A)) < ℓλ. At line 8, b is chosen so that α(πI(A ∩ Xvb)) ≤ α(πI(A)) + 1 and thus, by

Lemma 4.4, α(πI(A)) increases by at most 2 at line 9. Therefore, we conclude that (4.9) holds.

As for invariant 4, first note that CI is only updated at lines 3 and 7. At line 3, invariant 4 holds

because invariant 5 is true at the beginning of a round. At line 7, Lemma 4.5 guarantees that β(CI\{i}) =

β(CI\{i}
(0)(U) ∩ CI\{i}

(1)(U)) ≤ β(CI) + 1. Note that it is possible to apply Lemma 4.5 as argued

before. Therefore, invariant 4 follows.

To prove that invariant 5 holds at the end of a round we distinguish between Alice speaking and Bob

speaking. If Bob speaks, B is updated at line 15 and the invariant clearly holds since each bit b that Bob

says is chosen such that β(πI(B ∩ Y vb)) increases by at most 1.

If Alice speaks,B is updated at line 12. LetQ = {i1, . . . , i|Q|}. Let I0 be the non-queried coordinates

at the beginning of the round and Iη = Iη−1 \ {iη}, for η ∈ [|Q|]. Moreover, let B0 be the value of B at

the beginning of the round and Bη = ρi,V (Bη−1), for η ∈ [|Q|] and i = iη. We prove by induction over

η that πIη(Bη) ⊇ CIη . Recall that CIη is a set whose elements are vectors with coordinates in Iη and is

not the projection of a set C to Iη. Therefore, the subscript serves not only as a reminder of the form of

its elements, but also as an identifier of the set. At the beginning of the round πI0(B0) = CI0 . At each

20

4 From Real Communication to Parallel Decision Trees

iteration,

πIη(Bη) = πIη(ρi,V (Bη−1)) ⊇ πIη(ρi,V (πIη−1(Bη−1))) (4.10)

⊇ πIη(ρi,V (CIη−1)) = CIη−1
(zi)(Ui) ⊇ CIη , (4.11)

so at the end of the round, that is, when I = I|Q| and B = B|Q|, it holds that β(πI(B)) ≤ β(CI) ≤

m− |I|+ cBv , where this last inequality follows from invariant 4.

For invariant 6, recall thatA andB never increase. Furthermore, each time I is modified at line 7, we

add to Q the coordinate i for which invariant 6 no longer holds (since the element i was removed from I
and it has not been queried yet). Then we restore the invariant before the next iteration by restricting B
at line 12. Indeed, if (x, y) ∈ A× B, then xi ∈ Ui and yi ∈ V zi(Ui), so by definition of V it holds that

Ind(xi, yi) = zi.

We have finished proving the invariants. From now on we assume that the algorithm ended and

reached a leaf v. It is clear that the decision tree has depth r and the total number of queries is at most

2c/(1 − λ) log ℓ < m by invariant 3. It remains to prove correctness, that is, that for any z ∈ {0, 1}m,

the decision tree answers eval(Π, z) ∈ S(z).

In order to prove this, we show that there exists an input (x, y) ∈ Rv such that Ind(x, y) = z, which

implies eval(Π, z) = Π(x, y) ∈ (Lift (S))(x, y) = S(Ind(x, y)) = S(z). This is done by restricting A
and B to A′ and B′ so that any input in A′ and any input in B′ are compatible with z and finally arguing

that A′ and B′ are non-empty. For every queried coordinate i, we have already restricted A and B so that

for any x ∈ A and any y ∈ B, Ind(xi, yi) = zi; thus we are left to deal with the non-queried coordinates.

Note that Graphi(π{i}(A)) has only one vertex on the right with label ∅, and an edge from this vertex

to an element x{i} ∈ [ℓ] if x{i} ∈ π{i}(A). Although Graphi(π∅(A)) is not defined (which is the reason

why below we apply Claims 4.7 and 4.8 directly and not Lemma 4.5), the projection π∅(A) is well-defined

and it is either the empty set, in which case A is empty, or it is the singleton set containing the empty

string, in which case there exists at least one element x ∈ A. The same holds forB, π∅(B) is either empty

or it is the singleton set containing the empty string. Therefore, by the definition of α and β, if α(π∅(A))
(resp. β(π∅(B))) is finite, then A (resp. B) is non-empty.

We start withA′ = A, B′ = B and I ′ = I , and therefore we have that πI′(A
′) is thick, β(πI′(B

′)) ≤
m − |I| + cBv ≤ ℓγ log ℓ and I ′ is non-empty since we queried less than m coordinates. While I ′ is

not empty, we choose i ∈ I ′ and apply Claims 4.7 and 4.8 to get a set U such that πI′\{i}(ρi,U (A
′)) =

πI′\{i}(A
′) and β(πI′\{i}(B

′)(0)(U) ∩ πI′\{i}(B
′)(1)(U)) ≤ β(πI(B

′)) + 1. We then set A′ = ρi,U (A
′)

and B′ = ρi,V (B
′), where V = V zi(U), and thus, by definition of V , for all x ∈ A′ and y ∈ B′ it

holds that Ind(yi, xi) = zi. Finally we set I ′ = I ′ \ {i} and repeat. Note that these claims can indeed

be applied while I ′ is not empty, since the fact that thickness is monotone (Observation 4.2) implies that

πI′(A
′) is thick, and since β(πI′(B

′)) ≤ cBv + (m − |I|) + (|I| − |I ′|) ≤ c +m < 2ℓγ log ℓ because

β(πI′(B
′)) increases by at most 1 for each i ∈ I \ I ′.

At the end of this process, the set B′ is such that β(πI′(B
′)) ≤ 2ℓγ log ℓ < ∞, and thus B′ is non-

empty. Moreover, we have that π∅(A
′) = π∅(A), and since A is non-empty (because α(πI(A)) ≤ 2cAv),

π∅(A
′) is the singleton set containing the empty string and, therefore, A′ is non-empty.

Now we explain the auxiliary procedures and argue that they satisfy Lemmas 4.4 and 4.5. Procedure

prune just removes vertices with too small degree. Thus, we only need to argue that it does not remove

too many vertices, that is, that α(πI(A
′)) ≤ α(πI(A)) + 1.

Proof of Lemma 4.4. Let A′
I = πI(A

′). A′
I is thick by construction. By definition of α, showing that

α(A′
I) ≤ α(πI(A)) + 1 is equivalent to showing that |A′

I | ≥ |πI(A)|/2. For each coordinate i ∈ I
we observe that, by the definition of average degree, there are at most |πI(A)|/AvgDeg i(πI(A)) right

vertices of positive degree in Graphi(πI(A)), and since Graphi(A
′
I) ⊆ Graphi(πI(A)), there are at

most |πI(A)|/AvgDeg i(πI(A)) right vertices of positive degree in Graphi(A
′
I). This is an upper bound

on the number of iterations of procedure prune for coordinate i, since every iteration removes a right

vertex of positive degree. Since AvgDeg i(πI(A)) ≥ ℓλ/4 for all i ∈ I , the total number of iterations

21

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

1 let AI = πI(A)
2 while ∃i such that MinDeg i(AI) < ℓµ do

3 let xI\{i} ∈ V (Graphi(AI)) be a right vertex of degree less than ℓµ

4 let AI = {xI ∈ AI : πI\{i}(xI) 6= xI\{i}}

5 return {x ∈ A : πI(x) ∈ AI}

Figure 5: Procedure prune(A, I)

1 let U ⊆ [ℓ] be a set such that

2 πI\{i}(ρi,U (A)) = πI\{i}(A)

3 β(CI\{i}
(0)(U) ∩ CI\{i}

(1)(U)) ≥ β(CI) + 1

4 return U

Figure 6: Procedure project(A, CI , I , i)

for each coordinate is at most |πI(A)|/AvgDeg i(πI(A)) ≤ 4|πI(A)|/ℓ
λ, which makes a total of at most

4|I||πI(A)|/ℓ
λ ≤ 4ℓγ−λ|πI(A)| iterations overall. Each iteration removes deg(X ′

I\{i}) < ℓµ elements

fromA′
I , for a total of at most 4ℓγ+µ−λ|πI(A)| ≤ |πI(A)|/2 elements removed. The last inequality holds

because of assumption (4.1a). Thus, at least |πI(A)|/2 elements remain.

Our Lemma 4.5 is slightly stronger than the projection lemmas in [RM99, GPW18] because it needs

to handle both outcomes of the query to zi, so we care not only about each of ρi,V b(U)(B) separately

but aboutB(0)(U)∩B(1)(U). Nonetheless, essentially the same proof of [RM99] using the probabilistic

method works—but not that of [GPW18], where the probabilities are too small for us. Procedure project,

therefore, just asserts the existence of a return value U with the required properties.

The claims below show that with high probability a set U chosen at random satisfies Lemma 4.5. The

probabilities in the claims are with respect to U picked uniformly among all subsets of [ℓ] of size ℓδ.

Claim 4.7 ([RM99]). If A is thick, then πI\{i}(ρi,U (A)) = πI\{i}(A) with probability 1− o(1).

Claim 4.8. If β(CI) ≤ 2ℓγ log ℓ, then β(CI\{i}
(0)(U) ∩ CI\{i}

(1)(U)) ≤ β(CI) + 1 with probability

1− o(1).

Given these claims we can easily prove Lemma 4.5.

Proof of Lemma 4.5. By union bound there exists a set that satisfies both Claim 4.7 and Claim 4.8. Let

U be such a set. Item 3 holds since U satisfies Claim 4.8 and, since U satisfies Claim 4.7, item 1 follows

from Observation 4.2 and item 2 from Observation 4.3.

We now proceed to prove Claim 4.7 and Claim 4.8.

Proof of Claim 4.7. We observe that the equality holds if every right vertex of Graphi(πI(A)) with pos-

itive degree has an edge into U . Since MinDeg i(πI(A)) ≥ ℓµ, the probability that U is contained within

the non-neighbours of any right vertex xI\{i} is

(ℓ−|Ni(xI\{i})|

ℓδ

)
(
ℓ
ℓδ

) ≤

(
ℓ−ℓµ

ℓδ

)
(
ℓ
ℓδ

) ≤ (1− ℓµ−1)ℓ
δ
≤ e−ℓ

µ+δ−1
. (4.12)

By a union bound over all right vertices, the probability of the equality not holding is at most

ℓ|I|−1e−ℓ
µ+δ−1

< e|I| log ℓ−ℓ
µ+δ−1

≤ eℓ
γ log ℓ−ℓµ+δ−1

= o(1) . (4.13)

The last equality holds because of assumption (4.1b).

22

4 From Real Communication to Parallel Decision Trees

yi yI\{i}

V 0

V 1

C
(0)
I\{i}

C
(1)
I\{i}

C
(∗)
I\{i}

ĈI\{i}

Figure 7: Sets used in the proof of Claim 4.8

The proof of Claim 4.8 follows [RM99] except that our version of Claim 4.9 stated below is stronger

and we apply it twice.

Claim 4.9. Let W ⊆ {0, 1}ℓ be any set of size at least 2−φℓ
γ
· 2ℓ, where φ is any function of ℓ such

that log φ = o(log ℓ). Let U be a uniformly random subset of [ℓ] of size ℓδ. Then, for any b ∈ {0, 1},

{b}|U | ∈ πU (W) with probability at least 1− o(1).

For the proof of Claim 4.8 we also use the following easy observation.

Observation 4.10. Let T be a set and S a set-valued random variable. If Pr[s ∈ S] ≥ p for every s ∈ T ,

then Pr[|S| ≥ q|T |] ≥ (p− q)/(1− q).

Proof. Let x = Pr[|S| ≥ q|T |]. Then

p ≤ Pr[s ∈ S] (4.14)

= Pr[s ∈ S : |S| ≥ q|T |] · Pr[|S| ≥ q|T |] + Pr[s ∈ S : |S| < q|T |] · Pr[|S| < q|T |] (4.15)

≤ 1 · x+ q · (1− x) , (4.16)

from which the observation follows.

Proof of Claim 4.8. We begin by observing that CI\{i}
(b)(U), the set of right vertices that can be com-

pleted to b over U , is equal to Nj(V
b(U)) (see Figure 7). We want to prove that the set C

(∗)
I\{i}(U) =

CI\{i}
(0)(U)∩CI\{i}

(1)(U) of right vertices that can be completed to any colour over U is large, namely

that |C
(∗)
I\{i}|/2

ℓ(|I|−1) ≥ ψ/2 where ψ = |CI |/2
ℓ|I| = 2−β(CI).

Right vertices of degree larger than 2ℓψ/4 can be completed to any colour with high probability.

Indeed, |Ni(yI\{i})| ≥ 2ℓ · ψ/4 = 2ℓ · 2−β(C)/4 ≥ 2ℓ · 2−2ℓγ log2 ℓ/4 ≥ 2ℓ · 2−3ℓγ log2 ℓ, so for each

b ∈ {0, 1}we can apply Claim 4.9 with φ = 3 log2 ℓ to show thatNi(yI\{i})∩V
b(U) 6= ∅with probability

1− o(1). Taking a union bound, we can assume that Ni(yI\{i}) ∩ V
b(U) 6= ∅ holds for both b ∈ {0, 1}

except with probability o(1). In other words, yI\{i} ∈ C
(b)
I\{i} for b ∈ {0, 1}, so yI\{i} ∈ C

(∗)
I\{i}.

Let ĈI\{i} = {yI\{i} : deg(yI\{i}) ≥ 2ℓψ/4}. We have shown that for every yI\{i} ∈ ĈI\{i} it holds

that yI\{i} ∈ C
(∗)
I\{i} with probability 1− o(1). By Observation 4.10, with probability 1− o(1),

|C
(∗)
I\{i}| ≥ 2/3 · |ĈI\{i}| . (4.17)

In fact, 2/3 can be chosen to be any arbitrary number strictly smaller than 1, and the statement would still

hold.

23

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

Therefore it is enough to prove that the set ĈI\{i} of right vertices with large degree is large. Indeed,

we have

2ℓ|I|ψ = |CI | ≤ |ĈI\{i}| · 2
ℓ + |{0, 1}ℓ(|I|−1) \ ĈI\{i}| · 2

ℓ · ψ/4 (4.18)

≤ |ĈI\{i}| · 2
ℓ + 2ℓ(|I|−1) · 2ℓ · ψ/4 = |ĈI\{i}| · 2

ℓ + 2ℓ|I| · ψ/4 , (4.19)

from where

|ĈI\{i}| ≥ 3/4 · ψ · 2ℓ(|I|−1) . (4.20)

and the claim follows by combining equations (4.17) and (4.20). We observe that the 1/4 in the definition

of right vertices with large degree can be any arbitrarily small constant.

For the proof of Claim 4.9, we think of W ⊆ {0, 1}ℓ as a set of binary colourings of [ℓ] and de-

note by πU (W) the projection of W to a subset U ⊆ [ℓ], i.e. πU (W) = {wU ∈ {0, 1}U : w ∈
W for some w[ℓ]\U ∈ {0, 1}[ℓ]\I}. Note that this is the same operation as πI(A), except they apply to

different domains.

In the original paper [RM99] the constants are set to γ = 2/20, δ = 5/20, and the same probabilistic

argument works for any choice of constants such that γ + 3δ/2 < 1. We present a combinatorial proof

that works for any constants such that γ + δ < 1, and in particular holds for γ = 1/3 − ξ and δ = 2/3,

for any ξ > 0. We use the following corollary of the Kruskal–Katona Theorem, which we prove later on.

Claim 4.11. Let U be any family of subsets of [ℓ], where everyU ∈ U is of size u. If |U| ≥
∑t

i=0

(
ℓ−1−i
ℓ−u−i

)

and if W ⊆ {0, 1}ℓ is such that {b}|U | 6∈ πU (W) for every U ∈ U , then it holds that |W | ≤ 2ℓ −∑ℓ−u
j=0

∑t
i=0

(
ℓ−1−i

ℓ−u−i−j

)
.

Proof of Claim 4.9. We prove the following equivalent statement: if PrU [{b}
|U | 6∈ πU (W)] ≥ q (for, say,

q = φ/ log ℓ), then |W | ≤ 2ℓ−φℓ
γ
. We only use the fact that γ + δ < 1+

log q
φ

log ℓ (for q = φ/ log ℓ this says

that γ + δ < 1− log log ℓ
log ℓ).

Let U be the set of all U ⊂ [ℓ] of size ℓδ such that {b}|U | 6∈ πU (W). We have that

|U|(
ℓ
ℓδ

) = Pr
U
[{b}|U | 6∈ πU (W)] ≥ q . (4.21)

Hence we get

|U| ≥ q

(
ℓ

ℓδ

)
= q

ℓ

ℓδ

(
ℓ− 1

ℓδ − 1

)
≥

q ℓ

ℓδ∑

i=0

(
ℓ− 1− i

ℓδ − 1

)
=

q ℓ

ℓδ∑

i=0

(
ℓ− 1− i

ℓ− ℓδ − i

)
. (4.22)

We can therefore apply Claim 4.11 with u = ℓδ and t = q ℓ
ℓδ

to get

|W | ≤ 2ℓ −
ℓ−ℓδ∑

j=0

q ℓ

ℓδ∑

i=0

(
ℓ− 1− i

ℓ− ℓδ − i− j

)
≤ 2

ℓ−q ℓ

ℓδ
+1

+ 2ℓ
δ log ℓ ≤ 2ℓ−φℓ

γ
, (4.23)

where the second inequality is a straightforward calculation that we prove in Claim 4.15; and the last

inequality follows from γ + δ < 1 +
log q

φ

log ℓ .

To prove Claim 4.11 we need to introduce some notation from extremal combinatorics. We use the

following terminology from [Juk11]. If w is a binary colouring of [ℓ] (i.e. a binary vector of length ℓ),
we say a neighbour of a w is a colouring which can be obtained from w by flipping one of its 1-entries to

0. A shadow of a set A ⊆ {0, 1}ℓ of binary colourings is the set ∂(A) of all its neighbours. A set A is k-

regular if every colouring inA colours exactly k elements 1. Note that in this case ∂(A) is (k−1)-regular.

The best possible lower bounds for the size of ∂(A) were obtained independently by Kruskal [Kru63] and

Katona [Kat68].

24

4 From Real Communication to Parallel Decision Trees

Theorem 4.12 (Kruskal–Katona Theorem). If A ⊆ {0, 1}ℓ is k-regular, and if

|A| =

(
ak
k

)
+

(
ak−1

k − 1

)
+ . . .+

(
as
s

)

then

|∂(A)| ≥

(
ak
k − 1

)
+

(
ak−1

k − 2

)
+ . . .+

(
as
s− 1

)
.

Let P(S) denote the power set of S. In [Fra84] it is proven that there exists an explicit compression

function C : P({0, 1}ℓ) → P({0, 1}ℓ) such that, given a k-regular set A ⊆ {0, 1}ℓ, C(A) is k-regular,

|C(A)| = |A| and |∂(C(A))| matches the lower bound in Theorem 4.12, and, furthermore, the following

proposition holds.

Proposition 4.13. ∂(C(A)) ⊆ C(∂(A)).

Although this follows directly from the proposition in Section 2 of [Fra84], the formulation above is

from [And87].

We define the iterated shadow of a k-regular setA ⊆ {0, 1}ℓ to be ∂≤k(A) = ∪kj=0Aj , whereA0 = A
and Aj = ∂(Aj−1) for 0 < j ≤ k. The following corollary follows immediately from Theorem 4.12 and

Proposition 4.13.

Corollary 4.14. If A ⊆ {0, 1}ℓ is k-regular, and if

|A| =

(
ak
k

)
+

(
ak−1

k − 1

)
+ . . .+

(
as
s

)

then

|∂≤k(A)| ≥
k∑

j=0

(
ak
k − j

)
+

(
ak−1

k − 1− j

)
+ . . .+

(
as
s− j

)
.

We are now ready to prove Claim 4.11.

Proof of Claim 4.11. Given U , define WU to be the largest set of colourings {0, 1}ℓ such that {b}|U | 6∈
πU (W) for allU ∈ U . For simplicity, we consider b = 0, i.e. WU is the set that contains all the colourings

of [ℓ] that do not colour any U ∈ U completely 0.

Let U ′ ⊆ U be a set of size exactly
∑t

i=0

(
ℓ−1−i
ℓ−u−i

)
. Obviously, WU ′ is at least as large as WU .

Let 1UC ∈ {0, 1}ℓ be the indicator functions for the complement of a set U , i.e. 1UC = 1− 1U . Let

A be the set of 1UC ∈ {0, 1}ℓ for U ∈ U ′. Note that A is (ℓ− u)-regular and that the iterated shadow of

A is exactly the set of colourings that are not in WU ′ . Applying Corollary 4.14 to A, we get

|∂≤k(A)| ≥
k∑

j=0

t∑

i=0

(
ℓ− 1− i

k − i− j

)
=

ℓ−u∑

j=0

t∑

i=0

(
ℓ− 1− i

ℓ− u− i− j

)
.

Therefore, |WU | ≤ |WU ′ | = 2ℓ − |∂≤k(A)| ≤ 2ℓ −
∑ℓ−u

j=0

∑t
i=0

(
ℓ−1−i

ℓ−u−i−j

)
.

For completeness we include the calculations needed in Claim 4.9.

Claim 4.15. It holds that

ℓ−u∑

j=0

t∑

i=0

(
ℓ− 1− i

ℓ− u− i− j

)
≥ 2ℓ − 2ℓ−t+1 + 2u log ℓ .

25

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

Proof. The claim follows from the following sequence of elementary calculations

ℓ−u∑

j=0

t∑

i=0

(
ℓ− 1− i

ℓ− u− i− j

)

=
ℓ−u∑

j=0

t∑

i=0

(
ℓ− 1− i

ℓ− 1− j

)
(∗)

=
ℓ−u∑

j=0

(
ℓ−1∑

i=0

(
i

ℓ− 1− j

)
−

ℓ−t∑

i=0

(
i

ℓ− 1− j

))

=
ℓ−u∑

j=0

((
ℓ

ℓ− j

)
−

(
ℓ− t+ 1

ℓ− j

))
(∗∗)

=
ℓ−u∑

j=0

(
ℓ

j

)
−
ℓ−u−t+1∑

j=0

(
ℓ− t+ 1

j

)
(∗)

= 2ℓ −
ℓ∑

j=ℓ−u+1

(
ℓ

j

)
− 2ℓ−t+1 +

ℓ−t+1∑

j=ℓ−u−t+2

(
ℓ− t+ 1

j

)

≥ 2ℓ − 2ℓ−t+1 +
u−1∑

j=0

(
ℓ

j

)

≥ 2ℓ − 2ℓ−t+1 + ℓu = 2ℓ − 2ℓ−t+1 + 2u log ℓ ,

where the equalities in (∗) follow from renaming of variables and the fact that
(
n
k

)
=
(
n

n−k

)
; and the

equality in (∗∗) follows from
∑n−1

i=0

(
i

k−1

)
=
(
n
k

)
.

4.2 Simulation of Real Communication Protocols by Decision Trees

In this section we show how to adapt the simulation theorem to real communication.

Theorem 4.16. If there is a real communication protocol solving Lift (S) using communication c and r
rounds, then there is a parallel decision tree solving S using O(c/ log ℓ) queries and depth r.

The proof follows the same strategy as in the deterministic case, that is, we are going to construct a

decision tree by simulating a real communication protocol and only querying the coordinates where the

communication protocol would have too much information on xi.
The major difference in analyzing real communication protocols as opposed to deterministic ones is

that the set of compatible inputs is not a rectangle, but a monotone set as defined next.

Definition 4.17. A Boolean matrix M is monotone if Mi1j1 ≤ Mi2j2 for all pairs of entries such that

i1 ≤ i2 and j1 ≤ j2. A set is monotone if it is the monochromatic set of some monotone matrix.

Recall that each communication step is a comparison φ(x) ≤ ψ(y) and that we restrict our attention to

inputs in a setA×B. We lay out the results of the comparison in the matrix (Jφ(x) ≤ ψ(y)K)x,y indexed

by x ∈ A, y ∈ B, with rows sorted decreasingly according to φ and columns increasingly according to

ψ. Note that we use the Iverson bracket notation

JZK =

{
1 if the Boolean expression Z is true;

0 otherwise.
(4.24)

The comparison matrix (Jφ(x) ≤ ψ(y)K)x,y is monotone: if x1 ≤ x2 and y1 ≤ y2 according to our order,

that is φ(x1) ≥ φ(x2) and ψ(y1) ≤ ψ(y2), and if Mx1,y1 = 1, then φ(x2) ≤ φ(x1) ≤ ψ(y1) ≤ ψ(y2),
and thus Mx2,y2 = 1.

26

4 From Real Communication to Parallel Decision Trees

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 8: Monotone matrix partitioned in 5× 5 blocks; the 3rd block-column has 4 monochromatic blocks.

The fact that the set of compatible inputs is not a rectangle can be circumvented, since as observed

in [Joh98] in every monotone Boolean matrix there exists one quadrant—hence a large rectangle—that

is monochromatic. Therefore, when we want to choose the outcome of a comparison, it is possible to

restrict the set of compatible inputs to a quadrant as done in [BEGJ00].

This simple solution, however, is not enough for us. Since we want to query variables only at the end of

each round of k = kv comparisons and since after using procedure projectwe no longer know whatB is,

we need to restrict the inputs to rectangles beforehand. If we did so by picking a monochromatic quadrant

for each comparison, the size of the set A would decrease by a factor 2k, and potentially so would its

average degree. The problem is that the thickness lemma only works with a constant decrease in average

degree. We could tweak the thickness lemma to handle up to a polynomial decrease, corresponding to

revealing a constant fraction of information about an index, but not an exponential decrease.

Our solution to avoid A shrinking too much is to partition the matrix into (k + 1) × (k + 1) blocks

of size |A|/(k + 1)× |B|/(k + 1) and then restrict Bob’s input to one of the (k + 1) block-columns, so

that Alice’s input forms a rectangle in k out of the k+1 block-rows (see Figure 8). Formally, we have the

following lemma.

Lemma 4.18. Let M be a monotone matrix partitioned into (k + 1)× (k + 1) blocks. There is a block-

column such that k of its blocks are monochromatic.

Proof. Consider a non-monochromatic block Mi,j = M[i,i+|A|/(k+1))×[j,j+|B|/(k+1)). Since its bottom-

right corner has value 1, all blocks {Mi′,j′ | i
′ > i and j′ > j} strictly below and to the right of Mi,j are

1-blocks.

Now consider all non-monochromatic blocks sorted in a sequence left-to-right, ties broken down-to-

up, and fix two consecutive blocks Mi,j and Mi′,j′ in this sequence. If j′ = j then i′ < i by the choice

of ordering; otherwise j′ > j and, since all blocks with i′ > i and j′ > j are 1-blocks, it must hold that

i′ ≤ i. This implies that the quantity j′ − i′ is strictly increasing and, since it ranges between −k and

k, that there are at most 2k + 1 non-monochromatic blocks overall. By the pigeonhole principle, at least

one of the column-blocks contains at most one non-monochromatic block.

We take advantage of this lemma with the following construction. Given two sets A ⊆ [ℓ]m and

B ⊆ {0, 1}ℓm, we define the b-monochromatic part of A with respect to B as A[b, B]φ,ψ = {x ∈ A :
∀y ∈ B, Jφ(x) ≤ ψ(y)K = b}.

In order to measure the size of πI(A) directly from A we would like each element in πI(A) to have

a unique completion to A. Since that is not true in general, we use in place of A a new set σI(A) that

has that property. We define σI(A) = {x ∈ A : ∀x′ ∈ A if πI(x
′) = πI(x) then x < x′}, where the

order is, say, the lexicographic order. In other words, each element of σI(A) is the minimum among all

elements of A that share the same I coordinates. Observe that πI(A) = πI(σI(A)). We define σI(B)
analogously.

We have all the ingredients to explain the simulation procedure eval. Note that for each node v, we

are considering the comparisons done at v twice: once at line 4 to extract rectangles from monotone sets

27

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

1 let A = [ℓ]m, B = {0, 1}ℓm, I = [m], v be the root of Π, s = ∅ be a string

2 while v is not a leaf do

3 let A′ = σI(A), B = σI(B)
4 foreach comparison φv,j vs ψv,j at v do

5 let B = argmaxB′⊂B:|B′|=|B|/(kv+1)|A
′[0, B′]φv,j ,ψv,j ∪A

′[1, B′]φv,j ,ψv,j |

6 let A′ = A′[0, B]φv,j ,ψv,j ∪A
′[1, B]φv,j ,ψv,j

7 let A = prune(A′, I)
8 let Q = ∅, CI = πI(B)
9 foreach comparison φv,j vs ψv,j at v do

10 while ∃i ∈ I such that AvgDeg i(πI(A)) < ℓλ do

11 let Ui = project (A, CI , I , i)

12 let A = ρi,Ui(A), CI\{i} = CI\{i}
(0)(Ui) ∩ CI\{i}

(1)(Ui),

I = I \ {i}, Q = Q ∪ {i}

13 let b = argmaxb|πI(A[b, B]φv,j ,ψv,j)|

14 let A = prune(A[b, B]φv,j ,ψv,j , I), s = sb

15 query coordinates Q to get string zQ
16 for i ∈ Q do

17 let B = ρi,V (B), where V = V zi(Ui)

18 let v = vs, s = ∅

19 return the answer at v

Figure 9: Procedure eval(Π,z)

of inputs, and then again at line 9, which is similar to how we handled Alice speaking in the deterministic

case. The operation sb at line 14 simply appends the bit b to the string s. The simulation theorem

(Theorem 4.16) follows from the next lemma.

Lemma 4.19 (Main Lemma). If Π is a real protocol that solves Lift (S) using communication c <
m
2 (1− λ) log ℓ and r rounds, then eval solves S using 5c/(1− λ) log ℓ queries and depth r.

Proof. The proof is very similar to the proof of Lemma 4.6. LetRv be the set (not necessarily a rectangle)

of inputs compatible with node v. Let cv (resp. rv) be the amount of communication (resp. rounds) up to

node v, and recall that kv is the number of comparisons at node v. We show that the following invariants

hold throughout the algorithm:

1. πI(A) is thick;

2. A×B ⊆ Rv;

3. m− |I| ≤ (2(cv + |s|) + 3rv)/(1− λ) log ℓ;

4. β(CI) ≤ cv log(cv + 1) + kv log(kv + 1) +m− |I|;

and that the following invariants hold at the beginning of each round:

5. β(πI(B)) ≤ cv log(cv + 1) +m− |I|;

6. Ind(xi, yi) = zi for all (x, y) ∈ A×B and i /∈ I .

All six invariants are true at the beginning of the algorithm. As before, we assume invariants 1

through 4 are true up to the current point of the algorithm, and invariants 5 and 6 are true at the be-

ginning of the current round. We then show that, after executing the next line, 1 through 4 still hold and,

at the beginning of the next round, 5 and 6 still hold.

28

4 From Real Communication to Parallel Decision Trees

The main difference from the proof of Lemma 4.6 is in proving that invariant 1 holds. This is because

in Algorithm 9 we modify A not only at lines 12 and 14 (analogous to lines 7 and 9 in Algorithm 4), but

also at line 7. For line 12, it is enough to argue that the assumption of Lemma 4.5 applies since Lemma 4.5

guarantees that πI(A) is thick. This is indeed the case, since we assume invariant 1 holds before this point

and since invariants 4 and 3 together with the assumption of Lemma 4.19 that cv+kv ≤
m
2 log ℓ = ℓγ

2 log ℓ
imply that

β(CI) ≤ (cv + kv) · log(cv + 1) +
2(cv + |s|) + 3rv
(1− λ) log ℓ

≤ (cv + kv)(2 logm+ 5) ≤ 2ℓγ log2 ℓ . (4.25)

For lines 7 and 14, it is enough to argue that the assumption of Lemma 4.4 applies in each case. For

line 14 the argument is the same as that in the proof of Lemma 4.6: by the choice of bwe have that, before

line 14,

|πI(A[b, B]φv,j ,ψv,j)| ≥
1

2
|πI(A)| (4.26)

and therefore,

AvgDeg i(πI(A[b, B]φv,j ,ψv,j)) ≥
1

2
AvgDeg i(πI(A)) ≥

ℓλ

2
, (4.27)

where we again use the assumption that invariant 1 holds before modifying A.

We now prove that the assumption of Lemma 4.4 holds at line 7. Denote by A′′ the set A′ at line 3.

We begin by observing that AvgDeg i(πI(A
′′)) ≥ ℓλ, since, at line 3, πI(A

′′) = πI(A) by definition of

σI(A) and πI(A) is thick by invariant 1. It is enough to argue that, at line 7,

πI(A
′) ≥

1

4
πI(A

′′) (4.28)

since this would imply that

AvgDeg i(πI(A
′)) =

|πI(A
′)|

|πI\{i}(A′)|
≥

1
4 |πI(A

′′)|

|πI\{i}(A′′)|
=

1

4
AvgDeg i(πI(A

′′)) ≥
ℓλ

4
. (4.29)

In order to do so, note that at line 6, the size ofA′ decreases by at most a 1− 1/(kv+1) factor. Indeed, if

we divide the comparison matrix (Jφ(x) ≤ ψ(y)K)x,y into (kv + 1)× (kv + 1) blocks of size |A′|/(kv +
1)× |B|/(kv +1), by Lemma 4.18 at least one of the column-blocks contains kv monochromatic blocks,

i.e., a 1− 1/(kv+1) fraction is monochromatic. Since we have at most kv comparisons, the size of A′ at

line 7 is at least a (1 − 1/(kv + 1))kv ≥ 1/4 fraction of the size of A′′. By definition of σI(A), there is

a bijection between A′′ and πI(A
′′) and this bijection is maintained until line 7, so |A′′| = |πI(A

′′)| and

|A′| = |πI(A
′)| and, therefore, (4.28) indeed holds.

For invariant 2, first note that A and B never increase. Moreover, the set of compatible inputs Rv

only changes when v is modified at line 18, and, before this, A is restricted at line 14 so that for each

comparison φv,j vs ψv,j it holds that Jφv,j(x) ≤ ψv,j(y)K = b for every x ∈ A and y ∈ B; in other words,

the restriction guarantees that A × B ⊆ Rvs , therefore invariant 2 holds. Note that we can only restrict

A in this manner because we had already restricted B at line 5.

To see that invariant 3 holds we show that

α(πI(A)) ≤ (2(cv + |s|) + 3rv)− (m− |I|)(1− λ) log ℓ , (4.30)

and the invariant follows by the nonnegativity ofα. The RHS of (4.30) only decreases when I is updated in

line 12 after a call to project, which in turn, by Lemma 4.5, decreases α(πI(A)) by at least (1−λ) log ℓ
(since, before updating A and I , AvgDeg i(AI) < ℓλ). Meanwhile, α(πI(A)) only increases at line 14,

i.e., once per comparison, and at line 7, i.e., once per round: by Lemma 4.4 and recalling (4.26) and (4.28),

at line 14 the increase is of at most 2, which 2(cv + |s|) accounts for; and at line 7 of at most 3, which

3rv accounts for.

To prove invariant 4, first note that CI is updated only at lines 8 and 12. To show the invariant holds

after line 8, we use the assumption that item 5 holds at the beginning of the round. Note that, since

29

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

πI(B) = πI(σI(B)), item 5 still holds after line 3. Now, after the kv executions of line 5, B decreases in

size by a factor of (kv + 1)kv . Since, by definition of σI(B), there is a bijection between B and πI(B),
it holds that πI(B) also decreases by a factor of (kv + 1)kv , so β(πI(B)) increases by kv · log(kv + 1).
Therefore, at line 8, β(CI) = β(πI(B)) ≤ cv log(cv + 1) + kv log(kv + 1) +m − |I| and invariant 4

holds. At line 12, invariant 4 holds since Lemma 4.5 guarantees that β(CI\{i}) ≤ β(CI) + 1.

As for invariant 5, by the exact same argument as in the proof of of Lemma 4.6 we conclude that at the

end of a round β(πI(B)) ≤ β(CI). Invariant 4 implies β(CI) ≤ cv log(cv+1)+kv log(kv+1)+m−|I|
and, since cv is updated to cv + kv when v is updated at line 18, invariant 5 holds at the beginning of the

next round.

For invariant 6, recall that A and B never increase. Moreover, each time I is modified at line 12, we

add the coordinate i for which invariant 6 possibly breaks to Q. Then we restore the invariant before the

next iteration by restricting B at line 17. Indeed, if (x, y) ∈ A×B, then xi ∈ U and yi ∈ V zi(U), so by

definition of V zi(U) it holds that Ind(xi, yi) = zi.

It is clear that the decision tree has depth r and, by invariant 3, that the total number of queries is at

most 5c/(1− λ) log ℓ. The proof of correctness is identical to that of Lemma 4.6.

5 From Parallel Decision Trees to Dymond–Tompa Games

In this section we prove that the adversary argument on a parallel decision tree for the falsified search

problem of a pebbling contradiction gives a Pebbler strategy for the Dymond–Tompa game.

It is more convenient to work with the Dymond–Tompa game when there is a challenged pebble at all

times. Therefore in this and the following section we use an alternative but equivalent definition. Initially

the unique sink has a pebble and it is challenged, and then the game starts without a special first round.

The number of rounds is the number of actual rounds, not counting the setup, and the cost is the total

number of pebbles, including the initial pebble on the sink.

Lemma 2.6 (Restated). If there is a parallel decision tree for Search
(
PebG

)
in depth r using at most

c queries, then Pebbler has a winning strategy in the r-round Dymond–Tompa game onG in cost at most

c+ 1.

We prove that, in fact, the parallel decision tree complexity of the falsified clause search problem of a

pebbling contradiction is equivalent to the Dymond–Tompa game on the graph with an extra sink on top.

Formally, we define Ĝ as a graph with vertices V (G) ∪ {t′} and edges E(G) ∪ {(t, t′)}, where t is the

unique sink of G. Clearly the game on Ĝ needs as many pebbles as G, and one more pebble is enough,

so Lemma 2.6 follows from Lemma 5.1.

Lemma 5.1. There is a parallel decision tree for Search
(
PebG

)
in depth r using c queries if and only if

Pebbler has a winning strategy in the r-round Dymond–Tompa game on Ĝ in cost c+ 1.

Proof. Assume there is a parallel decision tree for Search
(
PebG

)
in depth r using c queries. We construct

a strategy for Pebbler in r rounds and c + 1 pebbles. We say that a vertex u reaches a vertex v if there

is a (possibly empty) path from u to v where all intermediate vertices are not queried. We keep these

invariants.

1. The challenged pebble in the Dymond–Tompa game is false.

2. A false vertex is reachable from another false vertex if and only if it is not challenged in the Dymond–

Tompa game.

3. In the subtree of the challenged pebble a vertex has a pebble if and only if it has been queried.

When it is Pebbler’s turn, Pebbler looks at the decision tree and places pebbles in those vertices being

queried that can reach the challenged pebble. After Challenger’s turn, Pebbler follows the branch in the

30

6 Dymond–Tompa Trade-offs

decision tree in which the challenged pebble is false and other vertices are false if they are reachable from

a false vertex or true otherwise.

Dymond–Tompa moves are valid and the invariants are kept. When we reach a leaf in the decision

tree we made at most c queries in r rounds by assumption, therefore Pebbler also used at most c pebbles on

vertices ofG plus one pebble on the extra sink and r rounds. It remains to show that the Dymond–Tompa

game also ended. The decision tree points to a falsified clause, which is not the sink axiom because the

sink is always false. Therefore we have a false vertex whose predecessors are true. By item 2, that false

pebble is challenged, and by item 3 all of its predecessors have pebbles, therefore the Dymond–Tompa

game also ended.

To prove the opposite direction, assume there is a Pebbler strategy in r rounds and c+1 pebbles. We

construct a parallel decision tree for Search
(
PebG

)
in depth r using c queries by keeping the same three

invariants as before.

We look at the strategy for Pebbler and add a node to the decision tree that queries the variables

corresponding to vertices being pebbled that can reach the challenged pebble. Each branch can be viewed

as a true-false colouring of the queried vertices. For each branch, we simulate a Challenger move. We

consider the set of new vertices coloured false and that are not reachable by any false vertex other than

itself. If this set is empty, then Challenger stays. Otherwise Challenger jumps to any of these vertices.

Dymond–Tompa moves are valid and the invariants are kept. When the Dymond–Tompa game ends,

Pebbler has used at most c+ 1 pebbles in r rounds by assumption, one of which outside G, therefore the

decision tree also made at most c queries in r rounds. It remains to show that we can label the leaves of the

decision tree in such a way that the assignment induced by the decision tree falsifies a clause. At the end

of the Dymond–Tompa game, all of the predecessors of the challenged pebble have pebbles. By item 1

the challenged vertex is false, and by item 3 its predecessors are queried. By item 2, its predecessors are

true, therefore we can label the leaf with the clause claiming that if the predecessors of the challenged

vertex are true then the challenged vertex is true.

6 Dymond–Tompa Trade-offs

In this section we prove upper and lower bounds for the Dymond–Tompa game on graphs of a given

family. The lower bounds are the final missing piece in order to get length-space trade-offs for cutting

plane proofs, and the upper bounds will be used to obtain space-efficient proofs, as explained in Section 7.

Our goal is to prove the following lemma.

Lemma 6.1. For any n, d ∈ N+ such that n is a power of 2, there exists an explicitly constructible DAG

G(n, d) of depth d with O(dn) vertices and indegree at most 2 such that:

1. for any r ≤ d, the cost of an r-round DT game is at most min{r2(2⌈d/r⌉ − 1), rn⌈d1/r − 1⌉};

2. for any r ≤ d, the cost of an r-round DT game is at least min{ r2
d/r

8 , n8 }.

We first define a family of graphs for which we will prove the lemma.

Definition 6.2 (Butterfly graph). A k-dimensional butterfly graph G is a DAG with vertices labelled by

pairs (w, i) for 0 ≤ w ≤ 2k − 1 and 0 ≤ i ≤ k, and with edges from vertex (w, i) to (w′, i + 1) if the

binary representations of w and w′ are equal except for possibly in the (i+1)st most significant bit. Note

that G has (2k + 1)k vertices, has 2k sources and 2k sinks, and that all vertices that are not sources have

indegree two.

Moreover, if H is a graph with n sinks and n sources, we say a graph is a stack of s Hs, if it consists

of s copies ofH such that sources on level i are identified with sinks on level i+1 for i ∈ {1, . . . , s− 1}.

For any n, d ∈ N such that n is a power of 2, the graph G(n, d) we will consider for the Dymond–

Tompa game consists of a (possibly fractional) stack of butterfly graphs of dimension log n, with an

attached binary tree on top such that the depth of this graph is exactly d (see Figure 10a). Note that if d is

31

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

(a) Stacks of graphs with binary tree on top (dashed lines

represent vertex identification)

(b) 3-dimensional butterfly graphs

Figure 10: Stack of butterflies

a multiple of log n, then this graph has exactly d/ log n blocks (the 1st block is a binary tree). Moreover,

if d ≤ log n, then G(n, d) is just a binary tree of depth d. Observe that, if d ≥ log n, G(n, d) has

(d− log n)n+ 2n− 1 vertices.

6.1 Upper Bounds for the Cost of the Dymond–Tompa Game on Butterfly Graphs

To prove item 1 of Lemma 6.1 we describe two Pebbler strategies, one that is efficient when many rounds

are available and that we use as part of building a space-efficient refutation, and one that is efficient when

we only have few rounds and that we include for completeness.

The first strategy is to chase the challenged pebble down the graph.

Lemma 6.3. Every graph of depth d and indegree 2 has an r-round Pebbler strategy of price at most

r2(2⌈d/r⌉ − 1)).

Proof. Let k = ⌈d/r⌉. At each round Pebbler pebbles all the ancestors at distance at most k of the

challenged vertex.

The strategy lasts for at most r rounds: if Challenger stays or jumps to a vertex at distance less than k
the game ends immediately, hence we can assume that Challenger jumps to a vertex at distance exactly k
from the challenged vertex. After r rounds the new challenged vertex would be at distance rk ≥ d from

the root, hence either it does not exist or it is a source, and in both cases the game ends.

The number of pebbles used in each round is at most the number of vertices in a binary tree of depth

k, except for the root, that is 2k+1 − 2.

Corollary 6.4. Every graph of depth d and indegree 2 has a d-round Pebbler strategy of price at most 2d.

The second strategy is essentially a binary (or rather
⌈
d1/r

⌉
-ary) search.

Lemma 6.5. There is an r-round Pebbler strategy for the graph G(n, d) of price at most rn
⌈
d1/r − 1

⌉
.

32

6 Dymond–Tompa Trade-offs

Proof. Throughout the game Pebbler keeps in mind a subgraph H , isomorphic to a stack of butterflies,

with the invariant that the root ofH is challenged and the predecessors (inG) of the sources ofH , if they

exist, are pebbled. Initially H = G.

Let k =
⌈
d1/r

⌉
. Each round Pebbler chooses k − 1 equally-spaced layers in H (up to rounding) and

places pebbles on every vertex in these layers. This divides the graph into k parts, where part 0 spans the

challenged pebble up to the layer before the first pebbled layer, and part i spans the i-th pebbled layer up

to the layer before the i + 1-st pebbled layer. If Challenger stays then Pebbler updates H to be the 0-th

part, while if Challenger jumps to a vertex on the i-th pebbled layer then Pebbler chooses the i-th part

restricted to ancestors of the challenged vertex.

After r rounds, H has depth ⌈d/kr⌉ = 1, hence the challenged pebble is its only vertex. Since by

construction all predecessors of sources of H are pebbled, the game ends. Because G(n, d) has at most

n vertices per row, the total cost of the strategy is rn(k − 1).

We can view the strategy of Lemma 6.3 as an example of a more general meta-strategy to reduce the

number of rounds of another strategy. We can divide the number of rounds by ℓ by looking ℓ levels deep

into the strategy tree at each round, then playing the union of all possible placed pebbles at once.

If we start with the strategy from Corollary 6.4 where we just pebble the two predecessors of the

challenged pebble, applying this meta-strategy results in pebbling the 2ℓ+1 − 2 vertices at distance ℓ, as

in Lemma 6.3.

If we apply the round-reducing meta-strategy to a binary search, then we obtain a 2ℓ-ary search, which

coincides with the strategy of Lemma 6.5 when k is a power of 2. Note that since many branches of the

strategy tree overlap—because the strategy depends on which layer the challenged pebble is in, but not

on which column—the number of pebbles per round goes from n to only 2ℓn instead of the worst case of

nℓ.

6.2 Lower Bounds for the Cost of the Dymond–Tompa Game on Butterfly Graphs

Now we would like to show that the strategies described in the previous subsection are essentially the

best Pebbler can do. As a warm up, and to give some intuition on the strategy, we prove a special case of

Lemma 6.1. In order to keep the proof simple, we use the alternative definition of the Dymond–Tompa

game and consider a stack of butterflies with an extra vertex on top, Ĝ, as defined in Section 5.

Lemma 6.6. For any n, r ∈ N+ such that n is a power of 2, there exists an explicitly constructible DAG

Ĝ(n, r log n) of depth r logn + 1 with O(nr log n) vertices and indegree at most 2 such that for any

r ≤ d, the cost of an r-round DT game is at least n4 .

This lemma holds not only for stacks of butterfly graphs, but also for stacks of other kinds of graphs

as long as they have a strong version of the grate property [Val77].

Definition 6.7. A graph with n sources and sinks is an α-uniform grate if after removing α vertices, there

still are at least n/2 + 1 sources, each of which can reach n/2 + 1 sinks.

Throughout the Dymond–Tompa game, we say a vertex t is reachable from s if there is a path from

s to t with no pebbles neither on internal vertices of the path nor on the vertex s (but t may be pebbled).

We say a sink at level ℓ is good if it is unpebbled and is reachable by at least n/2 + 1 sources at level ℓ.
Furthermore, we say a source s is disconnected from a sink t if there is no completely (including end

points) unpebbled path from s to t, and we consider the number of source-sink disconnections in a graph

as the number of pairs (t, s) such that s is disconnected from t.

Observation 6.8. Butterfly graphs are (n/4− 1)-uniform grates.

Proof. If there are less than n/2 + 1 good sink-vertices, then the number of source-sink disconnections

is at least n/2 · n/2 (at least n/2 non-good sinks are not reached by at least n/2 sources). Note that any

vertex in a butterfly graph is in exactly n distinct source-sink paths. So if α is the number of vertices

removed, then there are at most αn source-sink disconnections. This implies that α ≥ n/4.

33

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

We can now proceed to the proof of the warm-up lemma.

Proof of Lemma 6.6. We give a strategy for Challenger in the Dymond–Tompa game over the graph

Ĝ(n, r log n) defined above so that, assuming Pebbler has at most n/4−1 pebbles, the game will not end

within r rounds.

At a high level, Challenger’s strategy will be to keep in mind, before every round, a good sink that

can reach the challenged vertex; more precisely, before round ℓ + 1 Challenger will have a good sink at

level ℓ in mind, say tℓ. After the Pebbler places pebbles on the graph, Challenger chooses a good sink at

level ℓ+ 1 that is reachable from tℓ and decides to have that in mind. He will then check if there are any

new pebbles that are causing the challenged vertex to be unreachable from tℓ, and if so, challenges one

that is reachable from tℓ.

The proof goes as follows. We maintain the invariant that before round ℓ, Challenger’s chosen vertex

tℓ is a good sink at level ℓ and reaches the challenged vertex. Before the first rounds, the challenged

vertex is the sink of Ĝ (the vertex that is not in G) and Challenger’s chosen vertex is the original sink of

G, t1, which clearly is a good sink at level 1 (it is unpebbled and reachable from all sources at level 1)

and reaches the challenged vertex.

Suppose that the invariant was true until round ℓ, i.e. suppose that before Pebbler’s (ℓ − 1)st move,

Challenger’s chosen vertex tℓ−1 is a good sink at level ℓ− 1 and reaches the challenged vertex. At round

ℓ− 1, Pebbler places some pebbles. Since Pebbler has at most n/4− 1 pebbles in total, we can conclude

by the uniform grate property that there are at least n/2 + 1 good sinks at level ℓ. Since tℓ−1 was a

good sink before round ℓ− 1, there must be a good sink at level ℓ, say tℓ, which was reachable from tℓ−1

before round ℓ − 1. Challenger decides tℓ will be the next chosen vertex. Since before round ℓ − 1, tℓ
reached tℓ−1 and tℓ−1 reached the challenged vertex, the only possible pebbles that are disconnecting tℓ
from the challenged vertex are the newly put pebbles. If there are no such blocking pebbles, i.e., if tℓ
reaches the challenged vertex, Challenger stays. If there are newly put pebbles that block all paths from

tℓ to the challenged vertex, Challenger challenges one that is reachable from tℓ. Thus, before round ℓ,
Challenger’s chosen vertex tℓ is a good sink at level ℓ and reaches the challenged vertex, and the invariant

is maintained.

We conclude that before round (r+1), Challenger’s chosen vertex tr+1 is an unpebbled vertex global

source (which would have been a good sink at level r + 1, if such a level had existed) that reaches the

challenged vertex, and hence the game has not ended.

Now to prove the lower bound in Lemma 6.1 in its full generality, we must allow any number of rounds

(at most the depth) and still get a good bound on the cost of the game. We again describe a strategy for

Challenger; the difference is that Challenger cannot afford to jump log n rows every round. Intuitively,

we do not think of the graph as a stack of blocks, but as a continuous stream such that any consecutive

log n rows is isomorphic to a butterfly graph.

Note that given any vertex v ∈ V (G(n, d)) at distance d′ from the set of sources, the subgraph

induced by all vertices that reach v is isomorphic to G(n, d′). We therefore refer to the top binary tree

of the subgraph G(n, d′) as the tree induced by the vertices that reach v and are at distance at most log n
from v.

We give a more general definition of a good vertex and define a partially good vertex. Let T be a

complete directed binary tree rooted at v. We say v (or T) is good if v can be reached by strictly more

than half of the leaves. If T has n leaves this is equivalent to requiring that, for any h′ ≤ logn, v can be

reached by strictly more than 2h
′
/2 vertices at distance h′ from v. Given a vertex u ∈ V (T) at distance

h from the leaves, we say u (or the subtree of T rooted at u) is T -partially good if, for any h′ ≤ h, u can

be reached by strictly more than 2h
′
/2 vertices at distance h′ from u. When T is clear from the context,

we just say u is partially good.

We are now ready to prove the lower bound.

Proof of Lemma 6.1, item 2. We actually prove something stronger: we allow Pebbler to place some peb-

bles before the game begins, provided that the top binary tree remains good. We charge only for the

34

6 Dymond–Tompa Trade-offs

pebbles placed outside the binary tree. Challenger is not allowed to challenge any pebble that was placed

in this initial stage. We denote this game DT*.

Formally, we prove the following claim. Given a graph G and a challenged vertex on this graph, if

there is a vertex v inG that reaches the challenged vertex and that is the sink of a graphG(n, d), then the

cost of the r-round DT* game on G is at least min{γ2
d/γ

8 , n8 }, where γ = min{d, r}.

We prove this claim by induction on γ. For γ = 1, either d > r = 1 or d = 1. If d > r = 1, G(n, d)
consists of at least a binary tree of depth d′ = min{d, log n} with 2d

′+1 − 1 vertices and such that the

sink reaches the challenged vertex. Since after Pebbler places the initial pebbles the binary tree must be

a good tree, at least half of the tree reaches the challenged vertex (actually, strictly more than half of the

pebbles in every row must reach the challenged vertex, which makes a total of at least 2d
′
+ d′ vertices

that reach the challenged vertex). Clearly Pebbler must pebble all the vertices that reach the challenged

vertex in order to finish the game in one round, therefore the cost is more than min{2d

8 ,
n
8 }. If d = 1, then

clearly at least 1 pebble is needed and 1 ≥ 1/4 = γ2d/γ/8, so the base case holds.

Now suppose γ ≥ 2 and that Pebbler has placed some initial pebbles on the graph, but maintaining

the top binary tree good. Pebbler then starts the first round by placing some pebbles. Let x ≥ 1 be the

number of pebbles Pebbler placed in the top binary tree in the first round (note we are not counting the

initial pebbles placed before the game began). If d ≤ ⌈log 4x⌉ (i.e., if the graph is shallow or if Pebbler

placed too many pebbles), the claim holds since this implies x ≥ 2d

8 and clearly 2d

8 ≥ 2d/γ+log γ

8 = γ2d/γ

8 ,

for any γ and d that satisfy 2 ≤ γ ≤ d. We thus assume d > ⌈log 4x⌉.

Note that the row that is at distance ⌈log 4x⌉ from the root of the top binary tree has exactly y =
2⌈log 4x⌉ ≥ 4x vertices. Before the first round, at least y/2 of these vertices were partially good (with

respect to the top binary tree). Since x ≤ y/4 pebbles were placed, at least y/4 of these partially good

trees were untouched at this round. We will show that, provided that there are less than n/8 pebbles in

the graph, then at least one of these partially good trees is totally good.

Fix a set of y/4 partially good trees that were untouched at this round. If d ≤ log n, then the partially

good trees are all totally good. If d > log n, we consider the set S of all the (pebbled or unpebbled)

vertices at distance log n from the root of the top binary tree that are in one of these y/4 partially good

trees. Since these trees are disjoint there are at least y/4 · (n/y) = n/4 such vertices. Consider the block

consisting of vertices at distance at most log y from S. Note that the number of source-sinks paths in this

block is at least n/4 · y and any vertex in this block is in at most y such paths. Therefore, if there are

less than n/8 pebbles, then there are more than ny/8 unpebbled source-sink paths in this block. This

means that at least one of the y/4 partially good tree has more than n/2 unpebbled source-sink paths in

this block, which implies that it is a totally good tree.

Let v be the root of this totally good tree. We know that v reached the challenged vertex before this

rounds. This implies that if v no longer reaches the challenged vertex then there are newly placed pebbles

blocking a path between v and the challenged vertex. If this is the case, Challenger challenges a newly

placed pebble that is in such a path and that is closest to v (i.e., is reachable from v). The graph induced

by all vertices that reach v satisfies the invariants and has depth d− log y ≥ d− log 8x. We observe that,

the x pebbles we account for at this round were placed on the binary tree, and therefore are not counted

again when applying the induction hypothesis.

In order to apply the induction hypothesis to the (r − 1)-round DT* game on the subgraph induced

by all vertices that reach v, we consider two cases, depending on whether the number of rounds left is

greater or less than the depth of the remaining subgraph. If the number of rounds left is at most the depth

of the remaining subgraph, that is, if r − 1 ≤ d − log y (which implies r ≤ d and γ = r), then by the

induction hypothesis we have that the cost of the (r − 1)-round DT* game on the remaining subgraph is

at least min{ (r−1)2(d−log 8x)/(r−1)

8 , n8 }. Therefore, it suffices to show that

(r − 1)2(d−log 8x)/(r−1) + 8x ≥ r2d/r .

35

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

Let a = d
r −

d−log 8x
r−1 , so that 8x = 2d/r+a(r−1). Rewriting the equation above we have

(r − 1)2(d−log 8x)/(r−1) + 8x = (r − 1)2d/r−a + 2d/r+a(r−1) = r2d/r

(
(r − 1)2−a

r
+

2a(r−1)

r

)
.

Note that, for any r ≥ 1, (r − 1)2−a + 2a(r−1) ≥ r. Indeed, for any fixed r ≥ 1, a straightforward

calculation shows that the real function f(a) = (r − 1)2−a + 2a(r−1) − r is minimized at a = 0 and

f(0) = 0.

We are left with the case in which the number of rounds remaining is larger than the depth of the

subgraph, that is, r − 1 > d− log y. We first argue that if r < d/2, then the claim follows even without

applying the induction hypothesis. This is because the number of pebbles placed in this one round has

to be large in order to reduce the depth of the remaining subgraph by so much. Indeed, if r < d/2 then

log y > d/2+1 and thus 8x ≥ y > 2d/2+1. Moreover, γ = min{r, d} = r < d/2 and since d/γ+log γ
is a monotone decreasing function for γ ∈ [2, d/2], we have that 8x > 2d/2+1 ≥ 2d/γ+log γ and the claim

follows.

We can therefore assume that d/2 ≤ r. The intuition as to why the claim is true in this case is that what

we need to prove is not so strong. Indeed, note that d/2 ≤ r implies that d/2 ≤ γ = min{r, d} ≤ d, and

thus 2d/γ+log γ ≤ 2d, so it is enough to show that at least 2d/8 pebbles are needed. Applying the induction

hypothesis on the subgraph induced by all vertices that reach v we have that the cost of this subgraph is at

least min{2(d−log y)
8 , n8 }. The claim follows by noting that 8x+2(d− log y) ≥ 2d+8x− 2 log 8x ≥ 2d,

where the last inequality holds since x ≥ 1. This concludes the proof.

To conclude this section, we prove that Lemma 6.6 also applies to stacks of a more general class of

previously studied graphs.

Definition 6.9 (Grate). An (α, β)-grate is a DAG such that after removing any α vertices, at least β pairs

of a source and a sink are connected.

It is straightforward to verify that an (α, n2 − (n/2 + 1)2)-grate is an α-uniform grate—in fact, this

is what we noted in the proof of Observation 6.8—hence Lemma 6.6 holds for stacks of grates. In the

converse direction, an α-uniform grate is an (α, (n/2 + 1)2)-grate. By Proposition 6.2 in [Val77], any

(Ω(n),Ω(n1+ǫ))-grate of logarithmic depth needs to have superlinear size, so butterfly graphs are close

to optimal.

Other than butterfly graphs, an example of Ω(n)-uniform grates are supergrates [KS90]. Supergrates

are of linear size, but they are too deep for the strategy of Lemma 6.3 to give meaningful upper bounds.

Another example are connector graphs, as we proceed to show. Connector graphs can be shallow but

require Ω(n log n) edges [PV76].

Definition 6.10 (Connector). An n-connector is a DAG with n sources S and n sinks T , and that satisfies

the following property: for any subsets S′ ⊆ S of sources and T ′ ⊆ T of sinks of size |S′| = |T ′| and

for any specification M of which source in S′ should be connected to which sink in T ′ (one-to-one

correspondence), it holds that there are |S′| vertex-disjoint paths between S′ and T ′ satisfying M .

Proposition 6.11. An n-connector is an (α, n2 − αn)-grate.

Proof. We prove that an n-connector satisfies the following two properties:

1. any source can reach any sink;

2. the removal of any set of α vertices causes at most αn source-sink disconnections, i.e., the sum

over all sinks v of the number of sources that cannot reach v is at most αn.

LetG be a n-connector. ObviouslyG satisfies property 1. Let A be any set of vertices inG. Let α =
|A|. We will show that the removal of A causes at most αn source-sink disconnections, thus concluding

that G also satisfies property 2. Let G′ be the graph that results from G after the removal of A.

36

7 Upper Bounds for Size and Space

Let H = ((S, T), E) be a bipartite graph, where S correspond to the sources in G and T to the

sinks, and there is an edge (s, t) if source s does not reach sink t in G′. Let q be the size of a maximum

matching inH . This implies thatH has a vertex cover of size q (Kőnig’s theorem). Since every vertex in

H has degree at most n, we conclude that H has at most qn edges, which means that A caused at most

qn source-sink disconnections.

Suppose q > α, and let M = {(s1, t1), (s2, t2), . . . , (sα+1, tα+1)} be a matching of size α+ 1 in H .

Given the set S′ = {s1, s2, . . . , sα+1} of sources, the set T ′ = {t1, t2, . . . , tα+1} of sinks and M as the

specification of which source should be connected to which sink, we have that inG there are α+1 disjoint

paths connecting S′ to T ′ according toM . But this is a contradiction, since all paths must contain a vertex

inA. Therefore, we conclude that q ≤ α andA caused at most qn ≤ αn source-sink disconnections.

Interestingly, butterfly graphs and connectors also relate in that connecting two k-dimensional butter-

fly graphs in a certain back-to-back fashion gives a 2k-connector. A description of this construction and

a proof of this fact can be found, e.g., in [Nor20].

7 Upper Bounds for Size and Space

We build two separate refutations, one with small size in Lemma 7.3 of Section 7.1, and another with

small space in Lemma 7.7 of Section 7.2. Both refutations are more convenient to describe in terms

of the weaker resolution proof system. A resolution configuration C is a set of disjunctive clauses. A

resolution refutation of a CNF formula F is a sequence of configurations C0, . . . ,Cτ such that C0 = ∅,

the empty clause ⊥ ∈ Cτ , and for t ∈ [τ] we obtain Ct from Ct−1 by one of the following steps:

Axiom download Ct = Ct−1 ∪ {C}, for C ∈ F .

Inference Ct = Ct−1 ∪ {C ∨D}, where C ∨D is inferred by the resolution rule
C ∨ x D ∨ x

C ∨D
.

Erasure Ct = Ct−1 \ {C}, for some C ∈ Ct−1.

The length of a refutation is the number of axiom downloads and inferences. The line space of a

configuration is the number of clauses, and the total space is the number of literals. The (line/total) space

of a refutation is the maximum over all configurations.

It is easy to see that cutting planes can simulate the resolution rule using at most w additions and one

division, where w is the width of the shortest clause being resolved, and therefore a resolution refutation

of length L, width w and space s gives a cutting planes refutation of length O(wL), size O(w2L) and

space s+1 where the largest coefficient is 2. We note that the refutation that we construct in Lemma 7.2

is of constant width, so cutting planes can simulate it with constant overhead, and that in Lemma 7.7 is

not, but this only gives a polynomial factor overhead in length.

7.1 Upper Bound for Size

To build a refutation with small size we simulate a black pebbling in resolution and then lift that refutation,

as done in for instance [BN11].

The black pebble game is played by a single player on a DAG. The allowed moves are to place a

pebble on a vertex if its predecessors have pebbles and to remove a pebble from any vertex. A pebbling is

a sequence of moves that begin with the empty graph and end with a pebble on the sink. The number of

moves of a pebbling is called the time, and the maximum number of pebbles on the graph at the same time

the space. An excellent survey of pebbling up to ca 1980 is [Pip80], and some more recent developments

are covered in the upcoming survey [Nor20].

Lemma 7.1. If there is a black pebbling for an indegree 2 graph G in space s and time τ , then there is a

resolution refutation of PebG of length O(τ), width 3, and total space O(s).

37

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

x1,u1 ∨ y1,u1 ∨B x1,u1 ∨ y1,u1
x1,u1 ∨B x1,u1 ∨ s2,u1

s2,u1 ∨B

x2,u1 ∨ y2,u1 ∨B x2,u1 ∨ y2,u1
x2,u1 ∨B s2,u1 ∨ x2,u1 ∨ s3,u1

s2,u1 ∨ s3,u1 ∨B

s3,u1 ∨B

...

sℓ,u1 ∨B

...

sℓ,u1 ∨B

B

Figure 11: Simulation of a pebbling step

Proof. We build a refutation π of PebG by keeping in memory the unit clause v for every vertex v that

has a pebble. This is trivial for sources because these clauses are already axioms. For a vertex v with

predecessors u1 and u2, when we place a pebble over v its predecessors have pebbles, therefore the clauses

u1 and u2 are in memory. We download the axiom u1 ∨ u2 ∨ v, resolve it with u1 and u2 to obtain the

clause v, and then delete intermediate clauses.

We can use a generic procedure to transform any refutation into a refutation for the corresponding

lifted formula (see Lemma 4.3 in the ECCC version of [BN11]). However, we obtain better upper bounds

if we take the structure of the refutation into account.

Lemma 7.2. Let G be a graph of indegree 2 with a black pebbling in space s and time τ . Then there is

a cutting planes refutation of Liftℓ(PebG) in size O(τ · ℓ3) and total space O(s · ℓ).

Proof. Let π be the resolution refutation of PebG given by Lemma 7.1. We build a resolution refutation

π′ of Lift (F) by deriving, for each unit clause v, the ℓ clauses Lift (v). This is trivial in the axiom

download and erasure cases, and we are left with inference. The only inference steps we need to deal with

are of the form
u1 ∨ u2 ∨ v u1

u2 ∨ v u2
v

(7.1)

and we handle both inference steps at once.

Recall that for a lifted formula to have constant width we have to split the wide auxiliary clauses

(2.4a), introducing extension variables, but we were not explicit about how to do that. We split the clause∨ℓ
a=1 xa,u into a clause x1,u∨ s2,u, ℓ−2 clauses of the form sa,u∨xa+1,u∨ sa,u, and a clause sℓ,u∨xℓ,u.

First we fix a clause C ∈ Lift (v) that we want to derive. Then we fix a clause B ∈ Lift (u2 ∨ v)
that contains C as a subclause. We can derive B by resolving the clauses xa,u1 ∨ ya,u1 ∨ B, which are

actual axioms of Lift (PebG), first with xa,u1 ∨ ya,u1 , which are in memory by hypothesis, and then with

the axioms sa,u1 ∨ xa,u1 ∨ sa+1,u1 that result of breaking
∨ℓ
a=1 xa,u1 into clauses of constant width. See

Figure 11 for details. Such a derivation requires O(ℓ) steps and constant space.

We repeat this procedure for all of the ℓ clauses in B ∈ Lift (u2 ∨ v) that contain C as a subclause,

using at most O(ℓ2) steps and space ℓ + O(1). Now we have all the clauses required to derive C by

repeating the above procedure with the clauses Lift (u2)∨C that we just derived, the clauses xa,u1∨ya,u1 ,

which are also in memory by hypothesis, and the axioms sa,u1∨xa,u1∨sa+1,u1 . Such a derivation requires

an additional O(ℓ) steps and constant additional space, for a total of O(ℓ2) steps and space ℓ + O(1).
Finally we repeat the whole procedure ℓ times, once for each clause C ∈ Lift (v), for a total of O(ℓ3)
steps and space 2ℓ+O(1).

Observe that all clauses are of constant width, so the size and total space are also, respectively, O(ℓ3)
and O(ℓ), and furthermore we can simulate the resolution proof in cutting planes with constant overhead.

If we only care about optimizing size, then a strategy that places pebbles in topological order and

never removes a pebble is a valid pebbling of any graph of order m in time m and space m, which by

38

7 Upper Bounds for Size and Space

Lemma 7.2 gives a short refutation of the lifted pebbling formula in size O(mℓ3) and space O(mℓ), as

stated next.

Lemma 7.3. Let G be a graph of order m and indegree 2. For any ℓ ≥ m3 there is a cutting planes

refutation of Liftℓ(PebG) in size O(N) and total space O(N2/5), where N = Θ(mℓ3) is the size of

Lift ℓ
(
PebG

)
.

7.2 Upper Bound for Space

In terms of space, even the most space-efficient pebbling strategy would give a refutation in space O(ℓ),
which is too weak. Therefore to obtain good space upper bounds we go through the Dymond–Tompa

game and search depth instead of black pebbling.

The search depth of a formula F is the minimum number of queries of a decision tree for the search

problem of F . As observed in [LNNW95, BIW04], a search tree for the falsified clause search problem is

equivalent to a tree-like resolution refutation. We can construct a refutation essentially by replacing each

internal node labelled with a variable x in the search tree with the result of resolving its two children over

the variable x. It is straightforward to check that this is indeed a valid resolution refutation.

Lemma 7.4 ([ET01]). If a CNF formula has search depth d, then it has a resolution refutation of length

2d, width d, and space d simultaneously.

Proof. Consider the refutation tree T equivalent to a minimal depth search tree. Traversing the refutation

tree in depth-first order it is straightforward to reconstruct a tree-like refutation of length |V (T)| ≤ 2d,
width d, and space d.

The following lemma follows from Lemma 5.1 and was first proved in [Cha13].

Lemma 7.5 ([Cha13]). If there is a Dymond–Tompa pebbling strategy for a graphG in space s, then the

formula PebG has search depth s.

If we lay out the extension variables so that their indices form an ordered binary tree and attach two

nodes labelled xa,u and xa+1,u to each leaf sa,u we get a search tree that finds a selector variable set to

true by any assignment that respects auxiliary clauses. We can use this tree to build search trees for a

lifted formula.

Lemma 7.6. Given a CNF formula F of search depth d, the lifted formula Liftℓ(F) has search depth

d log ℓ.

Proof. Given a decision tree T1 for the falsified clause search problem on F of depth d and a decision

tree T2 that finds a selector variable set to true of depth log ℓ, we build a decision tree T3 for the falsified

clause search problem on Liftℓ(F) of depth d log ℓ by composing the trees as follows.

First we modify T2. We reinterpret the leaves as queries to selector variables xa,u, and we attach

two new nodes to every selector variable query. We label the 0-leaf of xa,u with the falsified clause

sa,u ∨ xa,u ∨ sa+1,u, and we label the 1-node with the main variable ya,u. We add two unlabelled leaves

to the ya,u node: a 0-leaf and a 1-leaf.

Then, starting at the root of T1, we apply the following recursive procedure. If the root is an inner

vertex labelled with a variable u, then we add a copy of T2 that queries variables corresponding to u. To

each unlabelled 0-leaf we attach the result of this procedure on the 0-subtree of T1, and to each unlabelled

1-leaf we attach the result of this procedure on the 1-subtree.

Finally, for each leaf of T3 that we did not label yet, there is a corresponding leaf in T1 labelled with

a clause C. C is falsified by the assignment α induced by the branch leading to C. By construction, the

assignment β induced by the branch in T3 respects auxiliary clauses and, for every variable u ∈ Vars(C)
it sets xa,u = 1 and ya,u = α(u) for some a ∈ [ℓ]. Therefore we can label the leaf of T3 with the main

clause
∨
u∈Vars(C) xa,u ∨ y

1−α(u)
a,u .

39

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

The space upper bound follows immediately from Lemmas 7.5, 7.6, and 7.4.

Lemma 7.7. LetG be a graph of orderm and indegree 2 with Dymond–Tompa price s. For any ℓ ≥ m3

there is a cutting planes refutation of Lift ℓ
(
PebG

)
of size 2O(s logN) and space O(s logN), where N =

Θ(mℓ3) is the size of Lift ℓ
(
PebG

)
.

8 Putting the Pieces Together

By the technical result proved in Section 2, Theorem 2.8, we know that if G is a graph over m vertices

such that the r-round Dymond–Tompa game on G costs Ω(c), then for ℓ = m3+ǫ, Liftℓ
(
PebG

)
is a

6-CNF formula over Θ(m4+ǫ) variables and N = Θ(m10+3ǫ) clauses such that for any CP refutation of

Lift ℓ
(
PebG

)
even with coefficients of unbounded size in formula space less than c

r logN requires length

greater than 2Ω(r). This fact together with the lower and upper bounds proven in Sections 6 and 7 yield

the following theorem.

Theorem 8.1. There is an explicitly constructible two-parameter family of unsatisfiable 6-CNF formulas

F (n, d), for n, d ∈ N+, of size N = Θ((dn)10+ǫ) such that:

1. F (n, d) can be refuted by CP with small coefficients in size O(N) and total space O(N2/5).

2. F (n, d) can be refuted by CP with small coefficients in total space O(d logN) and size 2O(d logN).

3. For any r ≤ d, any CP refutation even with coefficients of unbounded size of F (n, d) in formula

space less than min{2d/r logN
8 , n logN

8r } requires length greater than 2Ω(r).

Proof. Let G be a stack of depth d of butterfly graphs of dimension log n which has a total of Θ(dn)
vertices. Let F (n, d) = Liftℓ(PebG).

Item 1 follows directly from Lemma 7.3. Item 2 follows from combining Corollary 6.4 with Lemma 7.7.

By Lemma 6.1 we get that for any r ≤ d, the r-round Dymond–Tompa game played on G has cost at

least at least min{ r2
d/r

8 , n8 }. Thus, by Theorem 2.8, we get item 3.

Choosing the right values for d and r in Theorem 8.1, we get the following to corollaries. These are

generalizations of Theorems 1.1 and 1.2.

Corollary 8.2. For any positive constant K, there exists a family of 6-CNF formulas {FN}
∞
N=1 of size

Θ(N) such that:

1. FN can be refuted by CP with small coefficients in size O(N) and total space O(N2/5).

2. FN can be refuted by CP with small coefficients in total space O(logK+2N) and size 2O(logK+2N).

3. Any CP refutation even with coefficients of unbounded size of FN in formula space less than

N1/10−ǫ requires length greater than 2Ω(logK N), for any constant ǫ > 0.

Proof. The proof follows from setting d = logK+1 n and r = d/ log n in Theorem 8.1 and for every N ,

choosing n to be a power of 2 such that N is at most a factor off from (nd)10+ǫ.
We note that logN = Θ(log n), so 2 holds. Moreover, N = o

(
(nd)10+2ǫ

)
, thus N1/10−ǫ =

o
(
(nd)1−9ǫ

)
and

(nd)1−9ǫ ≤
nd

8 log2K n
≤

n

8r
logN,

and therefore 3 also holds.

Corollary 8.3. For any positive constant K, there exists a family of 6-CNF formulas {FN}
∞
N=1 of size

Θ(N) such that:

40

9 Exponential Separation of the Monotone AC Hierarchy

1. FN can be refuted by CP with small coefficients in size O(N) and total space O(N2/5).

2. FN can be refuted by CP with small coefficients in total spaceO
(
N

1
10(K+1)

)
and size 2O

(
N

1
10(K+1)

)
.

3. Any CP refutation even with coefficients of unbounded size of FN in formula space less than

N
K−1

10(K+1)
−ǫ

requires length greater than 2Ω
(
N

1
10(K+1)

)
, for any constant ǫ > 0.

Proof. The proof follows from setting d = n1/K log n and r = d/ log n in Theorem 8.1 and for everyN ,

choosing n to be a power of 2 such that N is at most a factor off from (nd)10+ǫ.

We note that N
1

10(K+1) = Θ((nd)
10+ǫ

10(K+1)) and (nd)
10+ǫ

10(K+1) > d logN , hence 2 holds. Moreover,

N = o
(
(nd)10+2ǫ

)
, thus N

K−1
10(K+1)

−ǫ
= o
(
(nd)

K−1
K+1

−9ǫ)
and

(nd)
K−1
K+1

−9ǫ = n
K−1
K · (log n)

K−1
K+1 · (nd)−9ǫ <

n
K−1
K

8
logN =

n

8r
logN,

and, therefore 3 also holds.

9 Exponential Separation of the Monotone AC Hierarchy

Unsurprisingly, we follow the same approach as [RM99]. Our function is a restriction of the GEN function,

except that instead of restricting the valid instances to pyramid graphs, which are unconditionally hard, we

restrict the valid instances to the graphs from Section 6 that exhibit round-space trade-offs. We then use

our round-aware simulation theorem to lift the trade-off to communication complexity and the Karchmer–

Wigderson game to translate it to a trade-off for monotone circuits.

Definition 9.1. The Karchmer–Wigderson game [KW90] is the following communication problem: given

a monotone function f , Alice gets an input x such that f(x) = 1 and Bob gets an input y such that

f(y) = 0. Their task is to find a coordinate i such that xi = 1 and yi = 0

Theorem 9.2 ([KW90]). If there is a monotone circuit for f of fan-in 2c and depth r, then there is a

protocol for the Karchmer–Wigderson game with cost rc and r rounds.

Proof. The proof is a simple induction on the depth of the circuit. If the circuit has no gates, the players

just return the index of the output variable. Otherwise, if the output gate is an OR-gate, i.e., f =
∨
gi,

then it must be the case that gi(y) = 0 for all i and that there exists an index i such that gi(x) = 1. Alice

sends such an index i to Bob, which costs at most c, and we apply the induction hypothesis on the function

gi and a circuit of smaller depth. If the output gate is an AND-gate, Bob acts analogously.

Informally, the G-GEN function computes whether a subset of the lifted pebbling formula on a

graph G is unsatisfiable given the indicator vector of such subset. It can be further generalized to CSP-

SAT as in [GP18], but we give a definition specialized to pebbling formulas that already suggests a circuit

to compute it.

Definition 9.3. Given a graph G of indegree 2 and ℓ ∈ N, the G-GEN Boolean function is defined as

follows. There is a variable (v, a) for every source v ∈ V (G) and index a ∈ [ℓ]. There is a variable

(v ∨ u1 ∨ u2, a, b, c) for every non-source vertex v ∈ V (G) with predecessors u1 and u2 and triple

(a, b, c) ∈ [ℓ]3. There is a variable (t, a) for every index a ∈ [ℓ]. A pair (v, a) is reachable if v is a source

and (v, a) is 1, or, if v has predecessors u1 and u2, if there exist (b, c) ∈ [ℓ]2 such that (v∨u1∨u2, a, b, c)
is 1, (u1, b) is reachable, and (u2, c) is reachable. The value of G-GEN is 1 if there exists some index

a ∈ [ℓ] such that (t, a) is reachable and (t, a) is 1.

Lemma 9.4. There is a monotone circuit that computes G-GEN in depth 2d, fan-in ℓ2, and size O(mℓ3),
where d is the depth of G.

41

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

Proof. The circuit computes, for every v ∈ V (G) and every a ∈ [ℓ], whether the pairs (v, a) is reachable.

This is done in topological order. For a source v, the pair (v, a) is a variable. For a non-source v with

predecessors u1 and u2, the circuit has for each pair (b, c) ∈ [ℓ]2 an AND-gate of fan-in 3 that receives as

inputs the gate that computes (u1, b), the gate that computes (u2, c), and the variable (v∨u1∨u2, a, b, c).
These ℓ2 gates are the inputs of an OR-gate that indeed computes whether (v, a) is reachable.

Finally, the output gate of the circuit is an OR-gate of fan-in ℓ that receives as input, for every a ∈ [ℓ],
an AND-gate of fan-in 2 with inputs the gate that computes (t, a) and the variable (t, a).

It remains to give a reduction from the Karchmer–Wigderson game on G-GEN to the communica-

tion game for which we proved lower bounds, and this follows straightforwardly from the corresponding

reduction in [RM99].

Lemma 9.5. If there is a deterministic communication protocol for the Karchmer–Wigderson game onG-

GEN with cost c and r rounds, then there is a deterministic communication protocol forLift (Search(PebG))
with cost c and r rounds.

Proof. Let (x, y) be an input to Lift (Search(PebG)), that is, x is a vector of indices and y is a vector of

binary strings such that Ind(xv, yv) is an assignment to a variable v of PebG.

Alice builds her input for the Karchmer–Wigderson game onG-GEN as follows. For every source v ∈
V (G), Alice sets the variable (v, xv) to 1, and for every non-source vertex v ∈ V (G) with predecessors

u1 and u2, Alice sets the variable (v ∨ u1 ∨ u2, xv, xu1 , xu2) to 1. Finally, Alice sets (t, xt) to 1 and all

the remaining variables to 0. Note that the value of G-GEN on this input is 1.

Bob builds his input as follows. For every source v ∈ V (G), Bob sets the variable (v, a) to Ind(a, yv),
and for every non-source vertex v ∈ V (G), Bob sets the variable (v∨u1∨u2, a, b, c) to 0 if Ind(a, yv) = 0,

Ind(b, yu1) = 1, and Ind(c, yu2) = 1, and to 1 otherwise. Bob sets (t, a) to 1− Ind(a, yt). Observe that,

in Bob’s input, if a pair (v, a) is reachable, then Ind(a, yv) = 1. For the sink, this means that if (t, a) is

reachable then (t, a) = 1− Ind(a, yt) = 0 and therefore the value of G-GEN on Bob’s input is 0.

Both players then simulate the protocol for the Karchmer–Wigderson game and find a variable that is

set to 1 on Alice’s input and to 0 on Bob’s. We analyse the different possibilities for such a variable and

show that in all cases they identify a falsified clause of PebG. If it is a variable (v, xv) (for some source

v), then since Bob sets this variable to 0 it must be that Ind(xv, yv) = 0, and therefore the unit clause v
is falsified. If it is a variable (v ∨ u1 ∨ u2, xv, xu1 , xu2), then Ind(xv, yv) = 0, Ind(xu1 , yu1) = 1, and

Ind(xu2 , yu2) = 1, and thus the axiom v ∨ u1 ∨ u2 is falsified. If it is (t, xv), then Ind(xv, yv) = 1, so

axiom t is falsified.

We have all the ingredients to prove the two main theorems of this section.

Theorem 1.3 (Restated). For every i ∈ N there is a Boolean function over n variables that can be

computed by a monotone circuit of depth logi n, fan-in 2, and size O(n), but for which every monotone

circuit of depth o(logi n/(log log n)2) requires superpolynomial size.

Proof. Let G = G(log2i n, logi n/40i log logn) be the graph given by Lemma 6.1, that is a stack of but-

terflies with w = log2i n sources and depth d = logi n/40i log log n, hence size m < log3i n. Consider

the Boolean function G-GEN for ℓ = m3+ǫ < log10i n.

By Lemma 9.4 there is a monotone circuit of depth 2d, fan-in ℓ2, and size O(mℓ3) that computes

G-GEN, which we can expand into a circuit of depth 4d log ℓ < logi n, fan-in 2, and size O(mℓ4) =
O(log43i n).

The lower bound follows by combining the links in the chain of the reductions. Let C be a circuit

of fan-in 2c and depth r ≤ d/ log logn = O(logi n/(log logn)2) that computes G-GEN. By Theo-

rem 9.2 there is a protocol for the Karchmer–Wigderson game with cost rc and r rounds. This implies,

by Lemma 9.5, that there is a deterministic communication protocol for Lift (Search(PebG)) with cost

rc and r rounds. By Theorem 4.1 (the simulation theorem), there is a parallel decision tree solving

Search(PebG) using O(rc/ log ℓ) queries and depth r and by Lemma 2.6 Pebbler has a winning strategy

42

10 Concluding Remarks

in the r-round Dymond–Tompa game onG in cost at most O(rc/ log ℓ). Finally, by Lemma 6.1, we have

that rc/ log ℓ = Ω
(
min{r2d/r, w}

)
≥ Ω

(
r log n

)
and therefore the circuit C requires size at least

2c = 2Ω(logn·log ℓ) = nΩ(log log n) , (9.1)

which is superpolynomial.

Note that the function G-GEN above only depends on a polylogarithmic number of variables, with

the remaining being padding, so that we can use a small enough gadget to keep the function in NCi. This

implies that we can only obtain a superpolynomial lower bound. We show next that if we are willing to

forfeit the function belonging in NCi then we can achieve an exponential lower bound.

Theorem 1.4 (Restated). For every i ∈ N there is a Boolean function over n variables that can be

computed by a monotone circuit of depth logi n, fan-in n4/5, and size O(n), but for which every monotone

circuit of depth q logi−1 n requires size 2Ω(n1/(10+4ǫ)q).

Proof. Let G = G(n1/(10+3ǫ)/(logi n), logi n/(10 + 3ǫ)) be the graph given by Lemma 6.1, that is a

stack of butterflies with w = n1/(10+3ǫ)/(logi n) sources and depth d = logi n/(10 + 3ǫ), hence size

m ≤ n1/(10+3ǫ). Consider the function G-GEN for ℓ = m3+ǫ ≤ n(3+ǫ)/(10+3ǫ). Note that the number of

variables of G-GEN is indeed at most mℓ3 ≤ n.

By Lemma 9.4 there is a monotone circuit of depth 2d ≤ logi n, fan-in ℓ2 ≤ n4/5, and size O(n) that

computes G-GEN. As for the lower bound, by the exact same chain of reductions described in the proof

of Theorem 1.3 above, that is, by combining Theorem 9.2, Lemma 9.5, Theorem 4.1, Lemma 2.6, and

Lemma 6.1, we conclude that ifC is a circuit of fan-in 2c and depth r = q logi−1 n that computesG-GEN,

then rc/ log ℓ = Ω
(
min{r2d/r, w}

)
= Ω

(
min{rn1/(10+3ǫ)q, n1/(10+3ǫ)/ logi n}

)
≥ Ω

(
rn1/(10+4ǫ)q

)
,

where the inequality holds for n large enough. Therefore C requires size at least

2c = 2Ω
(
n1/(10+4ǫ)q log ℓ

)
≥ 2Ω

(
n1/(10+4ǫ)q

)
, (9.2)

as we wanted to show.

A simulation theorem with a smaller gadget would allow us to obtain a stronger separation between

monotone-ACi−1 and monotone-NCi, as we remark in the next section.

10 Concluding Remarks

In this paper we report the first true size-space trade-offs for cutting planes, exhibiting CNF formulas

which have small-size and small-space proofs with constant-size coefficients but for which any short

proofs must use a lot of memory, even when using exponentially large coefficients and even when we

measure just the number of lines (i.e., inequalities) rather than total size. Furthermore, these results also

hold for resolution and polynomial calculus, and are thus the first trade-offs to uniformly capture the proof

systems underlying the currently best SAT solvers.

The main technical component in our proof is a reduction to communication complexity as in [HN12,

GP18], but with the crucial difference that we reduce to round-efficient protocols in the real communi-

cation model of [Kra98]. Extending the techniques in [RM99, GPW18, BEGJ00] to this more general

setting, and combining them with new trade-off results for Dymond–Tompa pebbling [DT85], yields our

results. Using the same approach we are also able to obtain a separation between monotone-ACi−1 and

monotone-NCi, and an exponential separation between monotone-ACi−1 and monotone-ACi, improving

on the superpolynomial separation in [RM99].

An interesting challenge would be to extend our reduction to stronger communication models such as

two-party randomized or multi-party real communication, which would yield trade-offs for stronger proof

systems. A recent result in this direction is [GLM+16], but unfortunately it seems hard to incorporate

round-efficiency in this framework.

43

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

Another question concerns the size of the lifting gadget we need to construct formulas exhibiting

trade-offs. Our gadget has a CNF representation of more than cubic size, which incurs a substantial loss

in the results. The (CNF) gadget size has been subsequently improved to almost quadratic [CKLM19] and

almost linear [LMZ20, LMM+20], but it would be nice to construct constant-size gadgets, which could

lead to tighter trade-off results.

A further consequence of having a constant-size gadget is that we would obtain an exponential separa-

tion between monotone-ACi−1 and monotone-NCi, combining the best parts of our two results. Moreover,

we could also construct a function witnessing a superpolynomial separation between monotone-ACi−1

and monotone-NCi that is also computable by superpolynomial monotone-NCi−1 circuits.

Many proof complexity trade-offs have been obtained by reducing to the black-white pebble game [CS76],

but in this paper we use the Dymond–Tompa game. It would be desirable to obtain a better understanding

of the role of these games and what kind of trade-offs can be obtained from them.

Finally, from a proof complexity perspective we have very few examples of formula families that

exhibit size-space trade-offs. Apart from the pebbling formulas studied in this work, the only natural ex-

amples4 are the Tseitin contradictions over long, narrow grids in [BBI16, BNT13]. It would be interesting

to prove size-space trade-offs for the latter formulas also in cutting planes, or to find other formulas with

size-space trade-offs for this or other proof systems.

Acknowledgements

The authors wish to acknowledge Mladen Mikša, who participated in the initial stages of this work and has

kept contributing helpful remarks throughout the project, Massimo Lauria, with whom we have had many

fruitful discussions on time-space trade-offs and other topics in proof complexity, and Arkadev Chattopadhyay

for suggesting us to look into the monotone-ACi−1 vs monotone-NCi problem as well as general discus-

sions on communication and circuit complexity. We want to thank Siu Man Chan for introducing us to

the wonderful world of Dymond–Tompa pebbling. Different subsets of the authors are grateful for de-

tailed and very helpful discussions on communication complexity with Joshua Brody, Prahladh Harsha,

Johan Håstad, Troy Lee, Jaikumar Radakrishnan, and Anup Rao. Finally, we are thankful to Dieter van

Melkebeek and Ryan Williams for help with references for general SAT time-space trade-offs.

The authors performed this work while at KTH Royal Institute of Technology and were funded by the

European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013) /

ERC grant agreement no. 279611 as well as by the Swedish Research Council grant 621-2012-5645. The

first author has also received support from the Knut and Alice Wallenberg grant KAW 2018.0371, the

second author from the Swedish Research Council grant 2016-00782 and from the Independent Research

Fund Denmark grant 9040-00389B, and the third author from the European Union’s Horizon 2020 re-

search and innovation programme under grant agreement № 802020.

References

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space

complexity in propositional calculus. SIAM Journal on Computing, 31(4):1184–1211,

April 2002. Preliminary version in STOC ’00.

[And85] A. E. Andreev. On a method for obtaining lower bounds for the complexity of individual

monotone functions. Soviet Mathematics Doklady, 31(3):530–534, 1985. English transla-

tion of a paper in Doklady Akademii Nauk SSSR.

[And87] Ian Anderson. Combinatorics of Finite Sets. Oxford University Press, 1987.

4Ignoring trade-offs obtained in [Nor09] by gluing together disjoint copies of unrelated formulas.

44

References

[BBI16] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space tradeoffs in resolution:

Superpolynomial lower bounds for superlinear space. SIAM Journal on Computing,

45(4):1612–1645, August 2016. Preliminary version in STOC ’12.

[BEGJ00] Marı́a Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On the relative

complexity of resolution refinements and cutting planes proof systems. SIAM Journal on

Computing, 30(5):1462–1484, 2000. Preliminary version in FOCS ’98.

[Ben09] Eli Ben-Sasson. Size-space tradeoffs for resolution. SIAM Journal on Computing,

38(6):2511–2525, May 2009. Preliminary version in STOC ’02.

[BHP10] Paul Beame, Trinh Huynh, and Toniann Pitassi. Hardness amplification in proof com-

plexity. In Proceedings of the 42nd Annual ACM Symposium on Theory of Computing

(STOC ’10), pages 87–96, June 2010.

[BHvMW09] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook

of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS

Press, February 2009.

[BIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of

tree-like and general resolution. Combinatorica, 24(4):585–603, September 2004.

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of

Chicago, 1937.

[BN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal separa-

tion of space and length in resolution. In Proceedings of the 49th Annual IEEE Symposium

on Foundations of Computer Science (FOCS ’08), pages 709–718, October 2008.

[BN11] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity: Separa-

tions and trade-offs via substitutions. In Proceedings of the 2nd Symposium on Innovations

in Computer Science (ICS ’11), pages 401–416, January 2011.

[BNT13] Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for polynomial

calculus. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing

(STOC ’13), pages 813–822, May 2013.

[BS90] Ravi B. Boppana and Michael Sipser. The complexity of finite functions. In J. van

Leeuwen, editor, Handbook of Theoretical Computer Science. Volume A: Algorithms and

Complexity, pages 757–804. MIT Press, 1990.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-

world SAT instances. In Proceedings of the 14th National Conference on Artificial Intelli-

gence (AAAI ’97), pages 203–208, July 1997.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.

Journal of the ACM, 48(2):149–169, March 2001. Preliminary version in STOC ’99.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-

plane proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis

algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Sym-

posium on Theory of Computing (STOC ’96), pages 174–183, May 1996.

[Cha13] Siu Man Chan. Just a pebble game. In Proceedings of the 28th Annual IEEE Conference

on Computational Complexity (CCC ’13), pages 133–143, June 2013.

45

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

[Chv73] Vašek Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete

Mathematics, 4(1):305–337, 1973.

[CKLM19] Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Simula-

tion theorems via pseudo-random properties. Computational Complexity, 28(4):617–659,

2019.

[CLNV15] Siu Man Chan, Massimo Lauria, Jakob Nordström, and Marc Vinyals. Hardness of ap-

proximation in PSPACE and separation results for pebble games (Extended abstract). In

Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science

(FOCS ’15), pages 466–485, October 2015.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the

3rd Annual ACM Symposium on Theory of Computing (STOC ’71), pages 151–158, May

1971.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof

systems. Journal of Symbolic Logic, 44(1):36–50, March 1979. Preliminary version in

STOC ’74.

[CS76] Stephen A. Cook and Ravi Sethi. Storage requirements for deterministic polynomial time

recognizable languages. Journal of Computer and System Sciences, 13(1):25–37, 1976.

Preliminary version in STOC ’74.

[dRNV16] Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction

hinders real communication (and what it means for proof and circuit complexity). In

Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science

(FOCS ’16), pages 295–304, October 2016.

[DT85] Patrick W. Dymond and Martin Tompa. Speedups of deterministic machines by syn-

chronous parallel machines. Journal of Computer and System Sciences, 30(2):149–161,

April 1985. Preliminary version in STOC ’83.

[DvMW11] Scott Diehl, Dieter van Melkebeek, and Ryan Williams. An improved time-space lower

bound for tautologies. Journal of Combinatorial Optimization, 22(3):325–338, October

2011. Preliminary version in COCOON ’09.

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and Com-

putation, 171(1):84–97, 2001. Preliminary versions of these results appeared in STACS ’99

and CSL ’99.

[For00] Lance Fortnow. Time-space tradeoffs for satisfiability. Journal of Computer and System

Sciences, 60(2):337–353, April 2000. Preliminary version in CCC ’97.

[Fra84] Péter Frankl. A new short proof for the Kruskal–Katona theorem. Discrete Mathematics,

48(2):327–329, February 1984.

[GLM+16] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rect-

angles are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869, October

2016. Preliminary version in STOC ’15.

[Gom63] Ralph E. Gomory. An algorithm for integer solutions of linear programs. In R.L. Graves

and P. Wolfe, editors, Recent Advances in Mathematical Programming, pages 269–302.

McGraw-Hill, New York, 1963.

46

References

[GP18] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity.

SIAM Journal on Computing, 47(5):1778–1806, October 2018. Preliminary version in

STOC ’14.

[GPT15] Nicola Galesi, Pavel Pudlák, and Neil Thapen. The space complexity of cutting planes

refutations. In Proceedings of the 30th Annual Computational Complexity Conference

(CCC ’15), volume 33 of Leibniz International Proceedings in Informatics (LIPIcs), pages

433–447, June 2015.

[GPW18] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. parti-

tion number. SIAM Journal on Computing, 47(6):2435–2450, 2018. Preliminary version

in FOCS ’15.

[HN12] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplifying com-

munication complexity hardness to time-space trade-offs in proof complexity (Extended

abstract). In Proceedings of the 44th Annual ACM Symposium on Theory of Computing

(STOC ’12), pages 233–248, May 2012.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal

of Computer and System Sciences, 62(2):367–375, March 2001. Preliminary version in

CCC ’99.

[Joh98] Jan Johannsen. Lower bounds for monotone real circuit depth and formula size and tree-

like cutting planes. Information Processing Letters, 67(1):37–41, July 1998.

[Joh01] Jan Johannsen. Depth lower bounds for monotone semi-unbounded fan-in circuits. RAIRO-

Theoretical Informatics and Applications, 35(3):277–286, 2001.

[Juk11] Stasys Jukna. Extremal Combinatorics with Applications in Computer Science. Springer,

2nd edition, 2011.

[Kat68] Gyula O. H. Katona. A theorem of finite sets. In Theory of Graphs, pages 187–207.

Akadémiai Kiadó, 1968.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University

Press, 1997.

[KPPY84] Maria Klawe, Wolfgang J. Paul, Nicholas Pippenger, and Mihalis Yannakakis. On mono-

tone formulae with restricted depth. In Proceedings of the 16th Annual ACM Symposium

on Theory of Computing (STOC ’84), pages 480–487, 1984.

[Kra98] Jan Krajı́ček. Interpolation by a game. Mathematical Logic Quarterly, 44(4):450–458,

1998.

[Kru63] Joseph B. Kruskal. The number of simplices in a complex. In Richard Bellman, edi-

tor, Mathematical Optimization Techniques, pages 251–278. University of California Press,

1963.

[KS90] Bala Kalyanasundaram and Georg Schnitger. Rounds versus time for the two person pebble

game. Information and Computation, 88(1):1–17, September 1990. Preliminary version

in STACS ’89.

[KW90] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-

logarithmic depth. SIAM Journal on Discrete Mathematics, 3(2):255–265, 1990. Prelimi-

nary version in STOC ’88.

47

HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

[Lev73] Leonid A. Levin. Universal sequential search problems. Problemy peredachi informatsii,

9(3):115–116, 1973. In Russian. Available at http://mi.mathnet.ru/ppi914.

[LMM+20] Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang. Lifting

with sunflowers. Technical Report TR20-111, Electronic Colloquium on Computational

Complexity (ECCC), November 2020.

[LMZ20] Shachar Lovett, Raghu Meka, and Jiapeng Zhang. Improved lifting theorems via robust

sunflowers. Technical Report TR20-48, Electronic Colloquium on Computational Com-

plexity (ECCC), April 2020.

[LNNW95] László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in the

decision tree model. SIAM Journal on Discrete Mathematics, 8(1):119–132, 1995. Pre-

liminary version in FOCS ’91.

[LT82] Thomas Lengauer and Robert Endre Tarjan. Asymptotically tight bounds on time-space

trade-offs in a pebble game. Journal of the ACM, 29(4):1087–1130, October 1982. Pre-

liminary version in STOC ’79.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.

Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation

Conference (DAC ’01), pages 530–535, June 2001.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for proposi-

tional satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999. Prelim-

inary version in ICCAD ’96.

[Nor09] Jakob Nordström. A simplified way of proving trade-off results for resolution. Information

Processing Letters, 109(18):1030–1035, August 2009.

[Nor12] Jakob Nordström. On the relative strength of pebbling and resolution. ACM Transactions

on Computational Logic, 13(2):16:1–16:43, April 2012. Preliminary version in CCC ’10.

[Nor20] Jakob Nordström. New wine into old wineskins: A survey of some pebbling clas-

sics with supplemental results. Manuscript in preparation. To appear in Founda-

tions and Trends in Theoretical Computer Science. Current draft version available at

http://www.csc.kth.se/˜jakobn/research/, 2020.

[NW93] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SIAM

Journal on Computing, 22(1):211–219, February 1993. Preliminary version in STOC ’91.

[Pip80] Nicholas Pippenger. Pebbling. Technical Report RC8258, IBM Watson Research Cen-

ter, 1980. In Proceedings of the 5th IBM Symposium on Mathematical Foundations of

Computer Science.

[PV76] Nicholas Pippenger and Leslie G. Valiant. Shifting graphs and their applications. Journal

of the ACM, 23(3):423–432, July 1976.

[Raz85] Alexander A. Razborov. Lower bounds for the monotone complexity of some Boolean

functions. Soviet Mathematics Doklady, 31(2):354–357, 1985. English translation of a

paper in Doklady Akademii Nauk SSSR.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,

19(3):403–435, March 1999. Preliminary version in FOCS ’97.

[RY20] Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cam-

bridge University Press, 2020.

48

http://mi.mathnet.ru/ppi914
http://www.csc.kth.se/~jakobn/research/

References

[San01] Rahul Santhanam. Lower bounds on the complexity of recognizing SAT by Turing ma-

chines. Information Processing Letters, 79(5):243–247, September 2001.

[Val75] Leslie G. Valiant. Parallelism in comparison problems. SIAM Journal on Computing,

4(3):348–355, March 1975.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Proceedings

of the 6th International Symposium on Mathematical Foundations of Computer Science

(MFCS ’77), volume 53 of Lecture Notes in Computer Science, pages 162–176. Springer,

September 1977.

[vM07] Dieter van Melkebeek. A survey of lower bounds for satisfiability and related problems.

Foundations and Trends in Theoretical Computer Science, 2(3):197–303, October 2007.

[Wil08] Ryan Williams. Time-space tradeoffs for counting NP solutions modulo integers. Compu-

tational Complexity, 17(2):179–219, May 2008. Preliminary version in CCC ’07.

49

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

