Electronic Colloquium on Computational Complexity, Report No. 8 (2021)

Random walks and forbidden minors III: poly(de~!)-time partition
oracles for minor-free graph classes

Akash Kumar* C. Seshadhrit Andrew Stolman?

Abstract

Consider the family of bounded degree graphs in any minor-closed family (such as planar
graphs). Let d be the degree bound and n be the number of vertices of such a graph. Graphs in
these classes have hyperfinite decompositions, where, for a sufficiently small € > 0, one removes
edn edges to get connected components of size independent of n. An important tool for sublinear
algorithms and property testing for such classes is the partition oracle, introduced by the seminal
work of Hassidim-Kelner-Nguyen-Onak (FOCS 2009). A partition oracle is a local procedure
that gives consistent access to a hyperfinite decomposition, without any preprocessing. Given a
query vertex v, the partition oracle outputs the component containing v in time independent of
n. All the answers are consistent with a single hyperfinite decomposition.

The partition oracle of Hassidim et al. runs in time dP°%¥ (de™") per query. They pose the
open problem of whether poly(ds~!)-time partition oracles exist. Levi-Ron (ICALP 2013) give
a refinement of the previous approach, to get a partition oracle that runs in time dlog(dsfl)—per
query.

In this paper, we resolve this open problem and give poly(de~!)-time partition oracles for
bounded degree graphs in any minor-closed family. Unlike the previous line of work based on
combinatorial methods, we employ techniques from spectral graph theory. We build on a recent
spectral graph theoretical toolkit for minor-closed graph families, introduced by the authors to
develop efficient property testers. A consequence of our result is a poly(de~!)-query tester for
any property of minor-closed families (such as bipartite planar graphs). Our result also gives
poly(de~1)-query algorithms for additive en-approximations for problems such as maximum
matching, minimum vertex cover, maximum independent set, and minimum dominating set for
these graph families.

*Department of Computer Science, EPFL. akash.kumarQ@epfl.ch

TDepartment of Computer Science, University of California, Santa Cruz. sesh@ucsc.edu

tDepartment of Computer Science, University of California, Santa Cruz. astolman@ucsc.edu
CS and AS acknowledge the support of NSF grants CCF-1740850, CCF-1813165, CCF-1909790, CCF-2023495, and
ARO Award W911NF1910294.

ISSN 1433-8092


mailto:akash.kumar@epfl.ch
mailto:sesh@ucsc.edu
mailto:astolman@ucsc.edu

1 Introduction

The algorithmic study of planar graphs is a fundamental direction in theoretical computer science
and graph theory. Classic results like the Kuratowski-Wagner characterization [Kur30, Wag37],
linear time planarity algorithms [HT74], and the Lipton-Tarjan separator theorem underscore
the significance of planar graphs [LT80]. The celebrated theory of Robertson-Seymour give
a grand generalization of planar graphs through minor-closed families [RS95a, RS95b, RS04].
This has led to many deep results in graph algorithms, and an important toolkit is provided by
separator theorems and associated decompositions [AST94].

Over the past decade, there have been many advances in sublinear algorithms for planar
graphs and minor-closed families. We focus on the model of random access to bounded degree
adjacency lists, introduced by Goldreich-Ron [GR02]. Let G = (V, E) be a graph with vertex
set V' = [n| and degree bound d. The graph is accessed through neighbor queries: there is an
oracle that on input v € V and i € [d], returns the ith neighbor of v. (If none exist, it returns
1)

One of the key properties of bounded-degree graphs in minor-closed families is that they
exhibit hyperfinite decompositions. A graph G is hyperfinite if V 0 < € < 1, one can remove
edn edges from G and obtain connected components of size independent of n (we refer to these
as pieces). For minor-closed families, one can remove edn edges and get pieces of size O(¢~2).

The seminal result of Hassidim-Kelner-Nguyen-Onak (HKNO) [HKNOO09] introduced the
notion of partition oracles. This is a local procedure that provides “constant-time” access to a
hyperfinite decomposition. The oracle takes a query vertex v and outputs the piece containing
v. Each piece is of size independent of n, and at most edn edges go between pieces. Further-
more, all the answers are consistent with a single hyperfinite decomposition, despite there being
no preprocessing or explicit coordination. (All queries uses the same random seed, to ensure
consistency.) Partition oracles are extremely powerful as they allow a constant time procedure
to directly access a hyperfinite decomposition. As observed in previous work, partition oracles
lead to a plethora of property testing results and sublinear time approximation algorithms for
minor-closed graph families [HKNOQ09, NS13]. In some sense, one can think of partition ora-
cles as a moral analogue of Szémeredi’s regularity lemma for dense graph property testing: it
is a decomposition tool that immediately yields a litany of constant time (or constant query)
algorithms.

We give a formal definition of partition oracles. (We deviate somewhat from the definition
in Chap. 9.5 of Goldreich’s book [Goll7] by including the running time as a parameter, instead
of the set size.)

Definition 1.1. Let P be a family of graphs with degree bound d and T : (0,1) — N be a function.
A procedure A is an (e,T(g))-partition oracle for P if it satisfies the following properties. The
deterministic procedure takes as input random access to G = (V, E) in P, random access to a
random seed r (of length polynomial in graph size), a proximity parameter ¢ > 0, and a vertex
v of G. (We will think of fizing G,r,e, so we use the notation Ag . All probabilities are
with respect to r.) The procedure Ag ,.(v) outputs a set of vertices and satisfies the following
properties.

1. (Consistency) The sets {Ag r:(v)}, over all v, form a partition of V. Also, these sets
Ag (V) induce connected graphs for allv € V.

2. (Cut bound) With probability (over r) at least 2/3, the number of edges between the sets
Ag r(v) is at most edn.

3. (Running time) For every v, Ag ,.(v) runs in time T'(e).

We stress that there is no explicit “coordination” or sharing of state between calls to Ag ;- (v)

and Ag,,(v') (for v # v'). There is no global preprocessing step once the random seed is fixed.
The consistency guarantee holds with probability 1. Note that the running time T'(¢) is clearly



an upper bound on the size of the sets Ag ,.(v). For minor-closed families, one can convert
any partition oracle to one that output sets of size O(¢~2) with a constant factor increase in
the cut bound. (refer to the end of Sec. 9.5 in [Goll7]).

The challenge in partition oracles is to bound the running time 7'(¢). HKNO gave a partition
oracle with running time (de=1)P°¥(@% ") Levi-Ron [LR15] built on the ideas from HKNO and
dramatically improved the bound to (de’l)log(ds . Yet, for all minor-closed families, one can
(in linear time) remove edn edges to get connected components of size O(e~2). HKNO raise the
natural open question as to whether (e, poly(de~1!))-partition oracles exist.

In this paper, we resolve this open problem.

Theorem 1.2. Let P be the set of d-bounded degree graphs in a minor-closed family. There is
an (g, poly(de~1))-partition oracle for P.

1.1 Consequences

As observed by HKNO and Newman-Sohler [NS13], partition oracles have many consequences
for property testing and sublinear algorithms.

Recall the definition of property testers. Let Q be a property of graphs with degree bound
d. The distance of G to Q is the minimum number of edge additions/removals required to make
G have Q, divided by dn. A property tester for P is a randomized procedure that takes query
access to an input graph G and a proximity parameter, € > 0. If G € P, the tester accepts with
probability at least 2/3. If the distance of G to Q is at least €, the tester rejects with probability
at least 2/3. We often measure the query complexity as well as time complexity of the tester.

A direct consequence of Theorem 1.2 is an “efficient” analogue of a theorem of Newman-
Sohler stating that all properties of hyperfinite graphs are testable.

Theorem 1.3. Let Q be any property of bounded degree graphs of a minor-closed family. There
exists a poly(de=1)-query tester for Q.

If membership in Q can be determined exactly in polynomial (in input size) time, then Q has
poly(de=1)-time testers.

An appealing consequence of Theorem 1.3 is that the property of bipartite planar graphs can
be tested in poly(de~!) time. For any fixed subgraph H, the property of H-free planar graphs
can be tested in the same time. And all of these bounds hold for any minor-closed family.

As observed by Newman-Sohler, partition oracles give sublinear query algorithms for any
graph parameter that is “robust” to edge changes. Again, Theorem 1.2 implies an efficient
version for minor-closed families.

Theorem 1.4. Let f be a real-valued function on graphs that changes by O(1) on edge addi-
tion/removals, and has the property that f(G1 U Ga) = f(G1) + f(G2) for graphs G1,Gs that
are not connected to each other.

For any minor-closed family P, there is a randomized algorithm that, given € > 0 and
G € P, outputs an additive en-approzvimation to f(G) and makes poly(de™1) queries. If f can
be computed exactly in polynomial time, then the above algorithm runs in poly(de—1) time.

The functions captured by Theorem 1.4 are quite general. Functions such as maximum
matching, minimum vertex cover, maximum independent set, minimum dominating set, maxcut,
etc. all have the robustness property. As a compelling application of Theorem 1.4, we can get
(1 + e)-approximations' for the maximum matching in planar (or any minor-closed family)
graphs in poly(de—1) time.

These theorems are easy consequences of Theorem 1.2. Using the partition oracle, an al-
gorithm can essentially assume that the input is a collection of connected components of size

!The maximum matching is Q(n/d) for a connected bounded degree graph. One simply sets ¢ < 1/d in Theo-
rem 1.4.



poly(de~1), and run an exact algorithm on a collection of randomly sampled components. We
give formal proofs in Sec. 8.

1.2 Related work

The subject of property testing and sublinear algorithms in bounded degree graphs is a vast
topic. We refer the reader to Chapters 9 and 10 of Goldreich’s textbook [Goll7]. We focus on
the literature relevant to sublinear algorithms for minor-closed families.

The first step towards a characterization of testable properties in the bounded-degree model
was given by Czumaj-Sohler-Shapira, who showed hereditary properties in non-expanding graphs
are testable [CSS09]. This was an indication that notions like hyperfiniteness are connected to
property testing. Benjamini-Schramm-Shapira achieved a breakthrough by showing that all
minor-closed properties are testable, in time triply-exponential in de=! [BSS08]. Hassidim-
Kelner-Nguyen-Onak introduced partition oracles, and designed one running in time exp(de1).
Levi-Ron improved this bound to quasipolynomial in de~!, using a clever analysis inspired
by algorithms for minimum spanning trees [LR15]. Newman-Sohler built on partition oracles
for minor-close families to show that all properties of hyperfinite graphs are testable [NS13].
Fichtenberger-Peng-Sohler showed any testable property contains a hyperfinite property [FPS19].

There are two dominant combinatorial ideas in this line of work. The first is using subgraph
frequencies in neighborhood of radius poly(¢~1) to characterize properties. This naturally leads
to exponential dependencies in poly(¢~1). The second idea is to use random edge contractions
to reduce the graph size. Recursive applications lead to hyperfinite decompositions, and the
partition oracles of HKNO and Levi-Ron simulate this recursive procedure. This is extremely
non-trivial, and leads to a recursive local procedure with a depth dependent of . Levi-Ron do
a careful simulation, ensuring that the recursion depth is at most log(ds~!), but this simulation
requires looking at neighborhoods of radius log(de~!). Following this approach, there is little
hope of getting a recursion depth independent of &, which is required for a poly(de~1!)-time
procedure.

Much of the driving force behind this work was the quest for a poly(de~!)-time tester for
planarity. This question was resolved recently using a different approach from spectral graph the-
ory, which was itself developed for sublinear time algorithms for finding minors [KSS18, KSS19].
A major inspiration is the random walk based one-sided bipartiteness tester of Goldreich-Ron
[GR99]. This paper is a continuation of that line of work, and is a further demonstration of
the power of spectral techniques for sublinear algorithms. The tools build on local graph par-
titioning techniques pioneered by Spielman-Teng [ST12], which is itself based on classic mixing
time results of Lovdsz-Simonovits [LS90]. In this paper, we develop new diffusion-based local
partitioning tools that form the core of partition oracles.

We also mention other key results in the context of sublinear algorithms for minor-closed fam-
ilies, notably the Czumaj et al [CGR™ 14] upper bound of O(y/n) for testing cycle minor-freeness,
the Fichtenberger et al [FLVW17] upper bound of O(n?/3) for testing K> ,-minor-freeness, and
poly(de~1) testers for outerplanarity and bounded treewidth graphs [YI15, EHNO11].

2 Main Ideas

The starting point for this work are the spectral methods used in [KSS18, KSS19]. These
methods discover cut properties within a neighborhood of radius poly(de~1), without explicitly
constructing the entire neighborhood.

One of the key tools used in these results in a local partitioning algorithm, based on tech-
niques of Spielman-Teng [ST12]. The algorithm takes a seed vertex s, performs a diffusion from
s (equivalently, performs many random walks) of length poly(de~!), and tracks the diffusion
vector to detect a low conductance cut around s in poly(de™!) time. We will use the term



diffusions, instead of random walks, because we prefer the deterministic picture of a unit of
“ink” spreading through the graph. A key lemma in previous results states that, for graphs in
minor-closed families, this procedure succeeds from more than (1 —e&)n seed vertices. This yields
a global algorithm to construct a hyperfinite decomposition with components of poly(de~?!) size.
Pick a vertex s at random, run the local partitioning procedure to get a low conductance cut,
remove and recurse. Can there be a local implementation of this algorithm?

Let us introduce some setup. We will think of a global algorithm that processes seed ver-
tices in some order. Given each seed vertex s, a local partitioning algorithm generates a low
conductance set C(s) containing s (this is called a cluster). The final output is the collection of
these clusters. For any vertex v, let the anchor of v be the vertex s such that v € C(s). A local
implementation boils down to finding the anchor of query vertex v.

Observe that at any point of the global procedure, some vertices have been clustered, while
the remaining are still free. The global procedure described above seems hopeless for a local
implementation. The cluster C(s) is generated by diffusion in some subgraph G’ of G, which was
the set of free vertices when seed s was processed. Consider a local procedure trying to discover
the anchor of v. It would need to figure out the free set corresponding to every potential anchor
s, so that it can faithfully simulate the diffusion used to cluster v. From an implementation
standpoint, it seems that the natural local algorithm is to use diffusions from v in G to discover
the anchor. But diffusion in a subgraph G’ is markedly different from G and difficult to simulate
locally. Our first goal is to design a partitioning method using diffusions directly in G.

Finding low conductance cuts in subsets, by diffusion in supersets: Let us now
modify the global algorithm with this constraint in mind. At some stage of the global algorithm,
there is a set I’ of free vertices. We need to find a low conductance cut contained in F', while
running random walks in G. Note that we must be able to deal with F' as small as O(en). Thus,
random walks (even starting from F') will leave F' quite often; so how can these walks/diffusions
find cuts in F'?

One of our main insights is that these challenges can be dealt with, even for diffusions of
poly(de~1) length. We show that, for a uniform random vertex s € F, a spectral partitioning
algorithm that performs diffusion from s in G can detect low conductance cuts contained in F.
Diffusion in the superset (all of V') provides information about the subset F'. This is a technical
and non-trivial result, and crucially uses the spectral properties of minor-closed families. Note
that diffusions from F' can spread very rapidly in short random walks, even in planar graphs.
Consider a graph G, where F is a path on en vertices, and there is a tree of size 1/¢ rooted at
every vertex of F. Diffusions from any vertex in F' will initially be dominated by the trees, and
one has to diffuse for at least 1/e timesteps before structure within F' can be detected. Thus,
the proof of our theorem has to look at average behavior over a sufficiently large time horizon
before low conductance cuts in F' are “visible”. Remarkably, it suffices to look at poly(de—!)
timesteps to find structure in F', because of the behavior of diffusions in minor-closed families.

The main technical tool used is the Lovdsz-Simonovits curve technique [LS90], whose use
was pioneered by Spielman-Teng [ST12]. We also use the truncated probability vector technique
from Spielman-Teng to give cleaner implementations and proofs. A benefit of using diffusion
(instead of random walks) on truncated vectors is that the clustering becomes deterministic.

The problem of ordering the seeds: With one technical hurdle out of the way, we end
up at another gnarly problem. The above procedure only succeeds if the seed is in F'. Quite
naturally, one does not expect to get any cuts in F' by diffusing from a random vertex in G.
From the perspective of the global algorithm, this means that we need some careful ordering
of the seeds, so that low conductance cuts are discovered. Unfortunately, we also need local
implementations of this ordering. The authors struggled with carrying out this approach, but
to no avail.

To rid ourselves of the ordering problem, let us consider the following, almost naive global
algorithm. First, order the vertices according to a uniform random permutation. At any stage,



there is a free set F'. We process the next seed vertex s by running some spectral partitioning
procedure, to get a low conductance cut C(s). Simply output C(s) N F (instead of C(s)) as the
new cluster, and update F to F'\ C(s). It is easy to locally implement this procedure. To find
the anchor of v, perform a diffusion of poly(¢~!) timesteps from v. For every vertex s with high
enough value in the diffusion vector, determine if C(s) 3 v. The vertex s that is lowest according
to the random ordering is the anchor of v. Unfortunately, there is little hope of bounding the
number of edges cut by the clustering. When s is processed, it may be that s ¢ F, and there
is no guarantee of C(s) N F. Can we modify the procedure to bound the number of cut edges,
but still maintain its ease of local implementability?

The amortization argument: Consider the scenario when F' = O(en). Most of the
subsequent seeds processed are not in F' and there is no guarantee on the cluster conductance.
But every ©(1/¢) seeds (in expectation), we will get a “good” seed s contained in F', such that
C(s)NF is a low conductance set. (This is promised by the diffusion algorithm that we develop
in this paper, as discussed earlier.) Our aim is to perform some amortization, to argue that
|C'(s) N F| is so large, that we can “charge” away the edges cut by the previous ©(1/¢) seeds.

This amortization is possible because our spectral tools give us much flexibility in the (low)
conductances obtained. Put differently, we essentially prove that existence of many cuts of
extremely low conductance, and show that it is “easy” for a diffusion-based algorithm to find such
cuts. (This is connected to the spectral behavior of minor-closed families.) As a consequence,
we can actually pre-specify the size of the low conductance cuts obtained. We show that as
long as |F| = Q(en), we can find a size threshold k = poly(¢~1) such that for at least (e?n)
vertices s € F, a spectral partitioning procedure seeded at s can find a cut of size ©(k) and
conductance at most €°. Moreover, this cut is guaranteed to contain at least e’k vertices in F ,
despite the procedure being oblivious to F. The parameter ¢ can be easily tuned, so we can
increase c arbitrarily while keeping ¢’ fixed, at the cost of polynomial increases in running time.
This tunability is crucial to our amortization argument. We also show that given query access
to F, a size threshold k can be computed in poly(de~1) time.

So when the global algorithm processes seed s, it runs the above spectral procedure to try
to obtain a set of size ©(k) with conductance at most €. (If the procedure fails, the global
algorithm simply set C(s) = {s}.) Thus, we cut O(ckd) edges for each seed processed. But
after every O(1/e) seeds, we choose a “good” seed such that |C(s)NF| > e k. The total number
of edges cut is O(ekd x e71) = O(¢°"1kd). The total number of new vertices clustered is at
least £ k. Because we can tune parameters with much flexibility, we can set ¢ > ¢. So the total
number of edges cut is O(Ec_cl_ld) times the number of vertices clustered, where c— ¢’ —1 > 1.
Overall, we will cut only O(end) edges.

Making it work through phases: Unfortunately, as the process described above contin-
ues, F' shrinks. Thus, the original choice of k& might not work, and the guarantees on |C(s) N F|
for good seeds no longer hold. So we need to periodically recompute the value of k. In a
careful analysis, we show that this recomputation is only required poly(¢~!) times. Formally,
we implement the recomputation through phases. Each vertex is independently assigned to
one of poly(e~!) phases. (Technically, we choose the phase of a vertex by sampling an inde-
pendent geometric random variable. We heavily use the memoryless property of the geometric
distribution.)

For each phase, the value of k is fixed. The local partition oracle will compute these size
thresholds for all phases, as a poly(de~!) time preprocessing step. The oracle (for v) runs
a diffusion from v to get a collection of candidate anchors. For each candidate s, the oracle
determines its phase, runs the spectral partitioning algorithm with correct phase parameters,
and determines if the candidate’s low conductance cut contains v. The anchor is simply such a
candidate of minimum phase, with ties broken by vertex id.



2.1 Outline of sections

The algorithm description and proof has many moving parts, encapsulated by different sec-
tions. Sec. 3 begins by discussing the truncated diffusion process, the main algorithmic tool for
partitioning. We then describe the global partitioning algorithm globalPartition (modulo a
preprocessing step called findr), which is far more convenient to analyze. It will be readily
apparent that this global procedure outputs a partition of G into connected components; the
main challenge is to bound the number of edges cut.

Within Sec. 3, we discuss how to implement globalPartition by a local procedure. By
ensuring that the output of the local procedure is identical to globalPartition, we prove the
consistency property of Definition 1.1. We then perform a fairly straightforward running time
analysis, which proves the running time property of Definition 1.1.

The real heavy lifting begins in Sec. 4, where we describe the procedure findr that computes
the size thresholds. This section is devoted to proving salient properties of the size thresholds
output by findr. The analysis hinges on the diffusion and cut properties stated in Theorem 4.1,
which is the main tool connecting minor-freeness, diffusions, and local partitioning. Sec. 5 uses all
these tools to prove the cut bound of globalPartition. At this stage, the complete description
and guarantees of the partition oracle are complete, modulo the proof of Theorem 4.1.

The proof of Theorem4.1 is split into sections. In Sec.6, we use the hyperfiniteness of
minor-closed families to prove properties of truncated diffusions on minor-free families. Sec.7
has the key spectral calculations, where the Lovasz-Simonovits curve technique is used to find
low conductance cuts. This section has the crucial insights that allow for partitioning in the
free set, using diffusions in the overall graph.

Sec. 8 has short proofs of the applications Theorem 1.3 and Theorem 1.4. These are provided
for completeness, since identical calculations appear in the proof of Theorem 9.28 in [Goll7].

3 Global partitioning and its local implementation

There are a number of parameters that are used in the algorithm. We list them out here for
reference. It is convenient to fix the value of € in advance, so that all the values of the following
parameters are fixed. Note that all these parameters are polynomial is . We will express all
running times as polynomials in these parameters, ensuring all running time are poly(s~1).

o p=d%0g3900; Minimum probability for truncation.
o (= d%3% Maximum random walk length.
e (3 =¢/10: Unclustered fraction cutoff.

o § =d70£3100; Phase probability.
4/3

et
300,000 * Heavy bucket parameter.

o X =

e ¢ = ¢'%: Conductance parameter.

3.1 Truncated diffusion

The main process used to find sets of the partition is a truncated diffusion. We assume that
the input graph G is connected, has n vertices, and degree bound d. Define the symmetric
random walk matrix M as follows. For every edge (u,v), My, = M,, = 1/2d. For every
vertex v, M, , = 1—d(v)/2d, where d(v) is the degree of v. The matrix M is doubly stochastic,
symmetric, and the (unique) stationary distribution is the uniform distribution.

Given a vector Z € (R*)™, diffusion is the evolution M'Z. We define a truncated version,
where after every step, small values are removed. For any vector &, let supp(Z) denote the
support of the vector.



Definition 3.1. Define the operator M : (R*)" — (R)" as follows. For & € (R*)™, the vector
Mz is obtained by zeroing out all coordinates in M T whose value is at most p.
__Fort > 1, the operator M? is the t-step truncated diffusion, and is recursively defined as
M(M*™1E).

Define D, (w) to be the coordinate corresponding to vertex w in the t-step truncated diffusion
starting from vertezr v.

We stress that the t-step truncated diffusion is obtained from a standard diffusion by trun-
cating low values at every step of the diffusion. Note that as the truncated diffusion progresses,
the l;-norm of the vector may decrease at each step. Importantly, for any distribution vector 7,
supp(M'Z) has size at most p~!. We heavily use this property in our running time analysis.

We define level sets, a standard concept in spectral partitioning algorithms. Somewhat
abusing notation, for vertex v € V', we use ¥ to denote the unit vector in (R™)" corresponding
to the vertex v. (We never use to vector notation for any other kind of vectors.)

Definition 3.2. For vertez v € V, length t, and threshold k, let L+ be the set of vertices

corresponding to the k largest coordinates in Mty (ties are broken by verter id).
For any set S of vertices, the conductance of S is ®(S) := E(S,5)/[2min(|S|,[S])d]. (We
use E(S,S) to denote the number of edges between S and its complement.)

We describe the key subroutine that finds low conductance cuts. It performs a sweep cut
over the truncated diffusion vector.

cluster(v,t, k)
1. Determine M'%
2. For all k' € [k, 2k] calculate ®(L, ¢ ).
3. Find the largest k' € [k, 2k] (if any) with the following properties: ®(L, ;4 U{v}) < ¢ and
Lu,t,k/ € SUPp(]\/Ztﬁ).
4. If such a k' exists, set C':= Ly U {v}, else C := {v}.
5. Return C.

Claim 3.3. The procedure cluster(v,t,k) runs in time O(p~'tdlog(p~'td) + kdlogk). The
output set C' has the following properties. (i) v € C. (it) If C is not a singleton, then |C| €
[k, 2k], ®(C) < ¢, and C C supp(M 7).

Proof. The latter properties are apparent from the description of cluster.

We analyze the running time. The convenience of the truncated diffusion is that it can
computed exactly by a deterministic process. First, for any b > 1, we show that the running
time to compute M@ is O(p~'bd). Note that for any ¢, supp(M%) has size at most p~!, since
M is a stochastic matrix and all non-zero entries in M"7 have value at least p. Given the
vector M7, the vector M*T'¥ can be computed by determining M M"% and then zeroing out
coordinates that are less than p. This process can be done in O(d|supp(M®%)|) = O(p~1d). By
summing this running time over all timesteps, we get that the total time is O(p~1bd).

Thus, M can be computed exactly in O(p~'td) time. To compute the level sets, one
can sort the coordinates of this vector (breaking ties by id), and process them in decreasing
order. One can iteratively store L, in a dictionary data structure. Given ®(L, ), one can
compute ®(L, ; x+1) by O(d) lookups into the dictionary. The total running time of this step is
O(kdlogk). O

3.2 The global partitioning procedure

The global partitioning procedure globalPartition will output a partition of the vertices
satisfying the conditions in Definition 1.1. This global procedure will run in linear time. In the



next subsection, we show how the output of the global procedure can be generated locally in
poly(e~1) time, thereby giving us the desired partition oracle. It will be significantly easier to
understand and analyze the partition properties of the global procedure.

The key ingredient in globalPartition that allows for a local implementation is a prepro-
cessing step. The preprocessing allows for the “coordination” required for consistency of various
local partitioning steps. All the randomness is used in the preprocessing, after which the actual
partitioning is deterministic. The job of the preprocessing is to find the following sets of values,
which are used for two goals: (i) ordering vertices, (ii) setting parameters for calls to cluster.

The preprocessing generates, for all vertices v, the following values.

e h,: The phase of v.

e k,: The size threshold of v.

e t,: The walk length of v.

Before giving the procedure description, we explain how these values are generated.

Phases: For each v, h, is set to max(X, h), where X is independently sampled from Geo(5),
the geometric distribution with parameter . Moreover h := 26~ !log(d~!), so the maximum
phase value is capped.

Size thresholds: The computation of these thresholds is the most complex part of our algo-
rithm (and analysis), and is the “magic ingredient” that makes the partition oracle possible.
We first run a procedure findr that runs in poly(¢~!) time and outputs a set of phase size
thresholds ki, kg, ..., k. All the thresholds have value at most p~! and ki will be zero. The
(involved) description of findr and its properties are in Sec.4. For now, it suffices to say that
its running time is poly(¢~1), and that it outputs phase size thresholds. The size threshold for
a vertex v is simply kp,, corresponding to the phase it belongs to.

Walk lengths: These are simply chosen independently and uniformly in [1, £].

The analysis is more transparent when we assume that all the randomness used by the
algorithm is in a random seed R, of O(n - poly(¢~!)) length. The seed R is passed as an
argument to the partitioning procedure, which uses R to generate all the values described
above. (For convenience, we will assume random access to the adjacency list of G, without
passing the graph as a parameter.)

It is convenient to define an ordering on the vertices, given these values. For cleaner notation,
we drop the dependence on R.

Definition 3.4. For vertex u,v € V, we say that uw < v if: hy < hy or if hy = hy, the id of v
is less than that of v.

globalPartition(R)
Preprocessing:

1. For every v € V:
(a) Use R to set h, := max(X,h) (X ~ Geo(?)).
(b) Use R to set t, uniform random in [1,¢].
2. Call findr(R) to generate values k1, ka, ..., k;. For every v € V, set k, = kj, .
Partitioning:
1. Initialize the partition P as an empty collection. Initialize the free set F := V.
2. For all vertices in V in increasing order of <:
(a) Compute C' = cluster(v,ty, ky).
(b) Add the connected components of C' N F' to the partition P.
(¢c) Reset FF'=F\C.
3. Output P.

Since all of our subsequent discussions are about globalPartition, we abuse notation as-
suming that the preprocessing is fixed. We refer to cluster(v) to denote cluster(v,t,, ky).



These are the only calls to cluster that are ever discussed, so it is convenient to just parametrize
by the vertex argument. Furthermore, for ease of notation, we sometimes refer to the output of
the procedure as cluster(v).

We observe that the output P is indeed a partition of V' into connected components. At any
intermediate step, the free set F' is precisely the set of vertices that have not been assigned to
a cluster. Note that cluster(v) always contains v (Claim 3.3), so all vertices eventually enter
(the sets of) P.

We note that v might not be in F' when cluster(v) is called. This may lead to new
components in P that do not involve v, which may actually not be low conductance cuts.
This may seem like an oversight: why initiate diffusion clusters from vertices that are already
partitioned? Many challenges in our analysis arise from such clusters. On the other hand, such
an “oblivious” partitioning scheme leads to a simple local implementation.

3.3 The local implementation

A useful definition in the local implementation is that of anchors of vertices. As mentioned
earlier, we fix the output of the preprocessing (which is equivalent to fixing R).

Definition 3.5. Consider the running of globalPartition(R). The anchor of w is the
(unique) vertex w such that the component in P containing v was created by the call to cluster(v).

Suppose we label every vertex by its anchor. We can easily determine the sets of P locally.

Claim 3.6. The sets of P are exactly the maximal connected components of vertices with the
same anchor.

Proof. We prove by induction over the < ordering of vertices. The base case is vacuously true.
Suppose, just before v is considered, all current sets in P are maximal connected components
with the same anchor, which cannot be v. No vertex in F' can have an anchor yet; otherwise,
it would be clustered and part of (a set in) P. All the new vertices clustered have v as anchor.
Moreover, the sets added to P are precisely the maximal connected components with v as
anchor. O

We come to a critical definition that allows for searching for anchors. We define the “inverse
ball” of a vertex: this is the set of all vertices that reach v through truncated diffusions. We
note that reachability is not symmetric, because the diffusion is truncated at every step.

Definition 3.7. For v €V, let IB(v) = {w | 3t € [0, £],v € supp(M")}.
Claim 3.8. |IB(v)| < {p~1.

Proof. All vertices w € IB(v) have the property that (for some ¢ < £) py, +(v) # 0. That implies
that py,(v) > p. By the symmetry of the random walk, p,,(w) > p. For any fixed ¢, there are
at most p~! such vertices w. Overall, there can be at most £p~! vertices in IB(v). O

Now we have a simple characterization of the anchor that allows for local implementations.

Lemma 3.9. The anchor of v is the smallest vertex (according to <) in the set {s|s € IB(v) andv €
cluster(s)}.

Proof. Let the anchor of v be the vertex u. We first argue that u in the given set. Clearly,
v € cluster(u). If u = v, then u = v € IB(v) and we are done. Suppsoe u # v. Then
cluster(u) is not a singleton (since it contains v). By Claim 3.3, cluster(u) is contained in
the support of Mt i, implying that v € supp(]\/l\t”ﬁ). Thus, v € IB(v) and the anchor u is
present in the given set.



It remains to argue that u is the smallest such vertex. Suppose there exists v’ < u in this
set. In globalPartition, cluster(u’) is called before cluster(u). At the end of this call, v is
partitioned and would have u’ as its anchor. Contradiction. O

We are set for the local implementation. For a vertex v, we compute IB(v) and run
cluster(u) for all u € I B(v). By Lemma 3.9, we can compute the anchor of v, and by Claim 3.6,
we can perform a BFS to find all connected vertices with the same anchor.

We begin by a procedure that computes IB(v). Since the truncated diffusion is not sym-
metric, this requires a little care. We use N(u) to denote the neighborhood of vertex u.

findIB(v)
1. Initialize S = {v}.
2. Foreveryt=1,...,¢: . .
(a) For every w € S U N(S), compute M. If v € supp(M'@), add v to S.
3. Return S.

Claim 3.10. The output of £indIB(v) is IB(v). The running time is O(d*¢3p~2).

Proof. We prove by induction on ¢, that after ¢ iterations of the loop, S is the set {w | 3t’ €
[0,t],v € supp(]\//ft'w)}. The base case t = 0 holds because S is initialized to {v}. Now for the
induction. Consider some w such that v € supp(M*+14). This means that (1—d(w)/2d)p.(v)+
(1/2d) 3 e N(w) Purt(v) = p. Since the LHS is an average, for some w’ € N(w)N{w}, pur1(v) =

p. Hence, v € supp(J/\éf\ttE’), and by induction w’ € S at the beginning of the (¢ + 1)th iteration.
The inner loop will consider w (as it is either w’ or a neighbor of w’), correctly determine that
v E supp(]/w\t“‘lw)7 and add it to S. By construction, every (new) vertex w added to S has the
property that v € supp(]\/f\ t+145). This completes the induction and the output property.

For the running time, observe that for all iterations, S C IB(v). By Claim 3.8, |S| < £p~1.
Hence, |S U N(S)| has size O(d¢p~!). The computation of each M@ can be done in O(dtp=1)
time, since the distribution vector after each step has support size at most p~'. The total
running time of each iteration is O(d?¢?p=2). There are at most ¢ iterations, leading to a total
running time of O(d?¢3p~2).

O

We can now describe the local partitioning oracle (modulo the description of findr).

findAnchor(v, R)

1. Run findr(R) to get the set K = {ki, ko, ..., k;}.
2. Run £indIB(v) to compute IB(v).
3. Initialize A = 0.
4. For every s € IB(v):
(a) Using R determine hg,t;. Using K, determine k.
(b) Compute C' = cluster(s,ts, ks).
(¢) If C > v, then add s to A.
5. Output the smallest vertex according to < in A.

findPartition(v, R)
1. Call findAnchor(v, R) to get the anchor s.
2. Perform BFS from v. For every vertex w encountered, first call findAnchor(w, R). If the

anchor is s, add w to the BFS queue (else, ignore w).
3. Output the set of vertices that entered the BFS queue.

The following claim is a direct consequence of Lemma 3.9 and Claim 3.10.

10



Claim 3.11. The procedure £indAnchor (v, R) outputs the anchor of v and runs in time O((dlp~1)3)
plus the running time of £indr.

Proof. Observe that findAnchor(v, R) finds I B(v), computes cluster(s) for each s € IB(v),
and outputs the smallest (by <) s such that v € cluster(s). By Lemma 3.9, the output is the
anchor of v.

By Claim 3.10, the running time of £indIB(v) is O(d?¢3p~2). The number of calls to cluster
is |[IB(v)|, which is at most £p~! (Claim 3.8). Each call to cluster runs in time O(d¢p—?), by
Claim 3.3 and the fact that ks < p~!). Ignoring the call to findr, the total running time is
O(d?03p~3). O

Theorem 3.12. The output of findPartition(v, R) is precisely the set in P containing v,
where P is the partition output by globalPartition(R). The running time of findPartition(v, R)
is O((dlp=1)*) plus the running time of £indr.

Proof. By Claim 3.11, findAnchor correctly outputs the anchor. By Claim 3.6, the set S in P
containing v is exactly the maximal connected component of vertices sharing the same anchor (as
v). The set S in P is generated in globalPartition(R) by a call to cluster, whose output is a
set of size at most p~!. The total number of calls to findAnchor made by findPartition(v, R)
is at most dp~!, since a call is made to either a vertex in the set S or a neighbor of S. Overall,
the total running time is O((d¢p~—1)®) plus the running time of findr. (Instead of calling findr
in each call to findAnchor, one can simply store its output.) O]

4 Coordination through the size thresholds: the proce-
dure findr

We now come to the heart of our algorithm; coordination through findr. This section gives
the crucial ingredient in arguing that the partitioning scheme does not cut too many edges.
The ordering of vertices (to form clusters) is chosen independent of the graph structure. It is
highly likely that, as the partitioning proceeds, newer cluster(v) sets overlap heavily with the
existing partition. Such clusters may cut many new edges, without clustering enough vertices.
Note that cluster(v) is a low conductance cut only in the original graph; it might have high
conductance restricted to F' (the current free set).

To deal with such “bad” clusters, we need to prove that every so often, cluster(v) will
successfully partition enough new vertices. Such “good” clusters allow the partitioning scheme to
suffer many bad clusters. This argument is finally carried about by a careful charging argument.
First, we need to argue that such good clusters exist. The key tool is given by the following
theorem, which is proved using spectral graph theoretic methods. We state the theorem as an
independent statement.

Theorem 4.1. Let G be a bounded degree graph in a minor-closed family. Let F' be an arbitrary
set of vertices of size at least Bn. There exists a size threshold k < p~! such that the following
holds. For at least (8%/log® B~ )n vertices s € F, there are at least (8/log® B~ ) timestepst < {
such that: there exists k' € [k,2k] such that (i) Lsyp C supp(l\/ft(?), (i1) ®(Ls i U{s}) < ¢,
and (iii) |Ls ¢ N F| > B3k.

The proof of this theorem is deferred to Sec.7. In this section, we apply this theorem to
complete the description of the partition oracle and prove its guarantees.

We discuss the significance of this theorem. The diffusion used to define L, ; 5 occurs in G,
but we are promised a low conductance cut with non-trivial intersection with F (since ¢ < 32).
Moreover, such cuts are obtained for a non-trivial fraction of timesteps, so we can choice one

11



uar. Given oracle access to membership in F, it is fairly easy to find such a size threshold by
random sampling.

The importance of phases: Recall the global partitioning procedure globalPartition. We
can think of the partitioning process as divided into phases, where the hth phase involves calling
cluster(v, ¢y, k) for all vertices v whose phase value is h. Consider the free set at the beginning
of a phase h, denoting it F}. We apply Theorem4.1 to determine the size threshold kj,. Since
all k, values in this phases are precisely kj, this size threshold “coordinates” all clusters in this
phase. As the phase proceeds, the free set shrinks, and the size threshold kj stops satisfying
the properties of Theorem 4.1. Roughly speaking, at this point, we start a new phase h+ 1, and
recompute the size threshold. The frequency of recomputation is chosen carefully to ensure that
the total running time remains poly(e~1).

We now discuss the randomness involved in selecting phases and why geometric random
variables are used. Recall that h, is independently (for all v) set to be min(X,h), where
X ~ Geo(§). We first introduce some notation regarding phases.

Definition 4.2. The phase h seeds, denoted V},, are the vertices whose phase value is h. For-
mally, Vi, = {v | hy = h}. We use Voy, to denote U, ;, V. (We analogously define V<p, V)
The free set at phase h, denoted F},, is the free set F' in globalPartition, just before the

first phase h vertex is processed. Formally, F, =V \ U,cy._, cluster(v).

One can think of the Vjs being generated iteratively. Assume that we have fixed the vertices
in Vi,...,Vh—1. All other vertices are in V>, implying that h, > h for such vertices. By the
properties of the geometric random variables, Pr[h, = h + 1|h, > h] = §. Thus, we can imagine
that Vj,41 is generated by independently sampling each element in V>, with 6 probability. We
restate this observation as Claim 4.4. Claim 4.5 is a simple Chernoff bound argument.

Before proceeding, we state some standard Chernoff bounds (Theorem 1.1 of [DP09]).

Theorem 4.3. Let X1, Xs,..., X, be independent variables in [0,1]. Let p := E[Y_, X;].
o Pr[X >3u/2] <exp(—p/12).
o Pr[X < /2] < exp(—pu/8).
e Fort>6u, PrX >1t] <27°.

Claim 4.4. For allv eV and 1 <h <h, Prlv €V, | v € Vsp] = 6.

Claim 4.5. Let h < h. Condition on the randomness used to specify Vi,Va, ..., Va_1. Let S be
an arbitrary subset of V. With probability at least 1 — 2 exp(—4§|S|/12) over the choice of Vj,
|S NVl € [8]51/2,26]S]].

Proof. For every s € S, let X be the indicator random variable for s € V;,. By Claim 4.4 and
independent phase choices for each vertex, the X, are independent Bernoullis with § proba-
bility. By the Chernoff lower tail of Theorem4.3, Pr[}_ .o X, < 0[S]/2] < exp(—4|S5|/8) and
Pr}° cq Xs > 260|S|] < exp(d[S[/12). A union bound completes the proof. O

Claim 4.6. With probability at least 1 — 27", V| < on.

Proof. Recall that h is the last phase and h = 26! log(6~!). The probability that X ~ Geo(§)
is at least 26~ log(6~1) is (1 — §)20 108" )=1 < 5/6. Hence, the probability that any vertex
lies in V4 is at most 0/6 and the expectation of V4 is at most dn/6. . By the Chernoff bound of
Theorem 4.3, Pr[|V5| > én] < 279 O

With this preamble, we proceed to the description of findr and the main properties of its
output.

12



4.1 The procedure findr

It is convenient to assume that for all v, h, and ¢, have been chosen. These quantities are chosen
independently for each vertex using simple distributions, so we will not carry as arguments the
randomness used to decide these quantities. Recall that the output of findr is the set of
size thresholds {ki,ka,...,k;}. It is convenient to use Kj to denote {ki,k2,...,kx}. Before
describing findr, we define a procedure that is a membership oracle for Fj,.

IsFree(u,h, Kp—1)
1. If h =1, output YES.
2. Run findIB(u) to determine IB(u). Let C be IB(u) N Vep,.
3. Using K} _1, determine k,, for all v € C.
4. For all v € C, compute cluster(v,t,, k,). If the union contains u, output NO. Else, output
YES.

Claim 4.7. Assume that K1 is provided correctly. Then IsFree(v, h, K1) outputs YES iff
v € Fy,. The running time is O((dép~1)3).

Proof. If h = 1, then all vertices are free (this is the free set before globalPartition begins
any partitioning). Assume i > 1. So Fj =V \U,¢y._, cluster(v).

If w ¢ Fj, then there exists v € V.j, such that u € cluster(v). By construction cluster(v)
is contained in supp(]\//.th')') for some ¢t < ¢. Thus, v € IB(u) and h, < h. Hence, v will be
considered in Step 4 and the union will contain u. The output is NO. For the converse, observe
that if the output is NO, then there is a v € Vj, such that u € cluster(v). Hence, u ¢ F},.

Now for the running time analysis. The running time of £indIB(v) is O(d?¢3p~?) (Claim 3.10)
and |C| < ¢p~! (Claim 3.8). Each call to cluster takes O(d¢p~—2) (Claim 3.3). The total running
time is O((dlp=1)3).

O

We have the necessary tools to define the procedure findr. We will need the following
definition in our description and analysis of findr.

Definition 4.8. Assume Fj, > fn. A vertex s € V>, is called (h, k)-viable if C' := cluster(s,ts, k)
is not a singleton and |C N Fy| > B3k. (If Fy, < Bn, no vertex is (h, k)-viable.)

Let us motivate this definition. When C := cluster(s,ts, k) is not a singleton, it is a low
conductance cut of ©(k) vertices. The vertex s is (h, k)-viable if C contains a non-trivial fraction
of free vertices available in the hth phase. The viable vertices are those from which clustering
will make significant “progress” in the hth phase. For each h, the procedure findr searches for
values of k that lead to many (h, k)-viable vertices. In the next section, we prove that having
sufficiently many clusters come from viable vertices ensures the cut bound of Definition 1.1.

13



findr(R)
1. For h =1 to h:
(a) Sample 3719 uar vertices independently. Let S} be the multiset of sampled vertices
that are in phase > h.
(b) If |Sk| < B79/2, set k;, = 0 and continue for loop. Else, reset S;, to the multiset of
the first 378 vertices sampled.
(c) For k € [p~!] and for every s € Sp:
i. Compute C := cluster(s,ts, k).
ii. For all u € C, call IsFree(u, h, Kp_1) to determine if u € Fp_;.
iii. If C is not a singleton and |C' N F},_1| > %k, mark s as being (h, k)-viable.
(d) If there exists some k such that there are at least 12345} (h, k)-viable vertices, assign
an arbitrary such k as k. Else, assign kj;, := 0.
2. Output Ky = {kyi,ko,... kz}.

Claim 4.9. The running time of £indr is O((d¢5—1p=1)®).

Proof. There are h = 26! log(6~!) iterations. We compute the running time of each iteration.
There are at most p~ 1378 calls to cluster, each of which takes O(d¢p~—2) time by Claim 3.3.
For each call to cluster, there are at most p~! calls to IsFree. Each call to IsFree takes
O((dép=1)3) time (Claim 4.7). The running time of each iteration is O(871° + dép=35~8 +
d303p=°378). By the parameter settings, since £? > 230 > (¢/10)~8 = 378, the running time
of each iteration O((d¢p=1)%). The total running time is O((dl5—1p=1)%). O

The following theorem gives the main guarantee of findr. The proof is a fairly straight-
forward Chernoff bound on top of an application of Theorem4.1. Quite simply, the proof just
says the following. Theorem 4.1 shows the existence of (h, k) pairs for which many vertices are
viable. The findr procedure finds such pairs by random sampling.

Theorem 4.10. The following property of the values K5 of findr(R) and the preprocessing
choices holds with probability at least 1 — exp(—1/¢) over all the randomness in R. For all
h < h, if |Fy| > Bn, at least B56n vertices in Vi, are (h, ky,)-viable.

Proof. The proof has two parts. In the first part, we argue that whp, if |F},| > fSn, then a
non-zero ky, is output. This part is an application of Theorem4.1. In the second part, we prove
that (whp), if a non-zero kj, is output, then it satisfies the desired properties. This part is proven
using a simple Chernoff bound argument.

Fix an h. Condition on any choice of Vi,Vs,...,V,_1 such that |F}| > Sn. Note that
Vsp D Fy, since all vertices in Vi, are necessarily clustered by the hth phase. (Recall that
cluster(v) always contains v.) Hence, |V>p| > fn. There will be numerous low probability
“bad” events that we need to track. We will describe these bad events, and refer to their
probabilities as “Error 17, “Error 27, etc.

Error 1, exp(—37%). The probability that a uar vertex is in V55 is at least 3, and the
expected size of S}, is at least 3 x 3710 = 379, By the Chernoff bound of Theorem 4.3, Pr[|S),| <
B72/2] < exp(—B77/12) < exp(—B~%). Thus, with probability at least 1 — exp(—3~%), Step lc
is reached and Sy, is a multiset of iid uar S~ elements in Vsp,.

Let us assume that S}, is such a multiset, and prove that a non-zero kj is output whp. We
bring out the main tool, Theorem4.1. Since |F}| > fn, there exists a size threshold k < p
such that the following holds. For at least (82/log? 3~!)n vertices s € F},, there are at least
(8/log® B~1)¢ timesteps t such that: there exists &’ € [k, 2k] such that (i) L C supp(]\/it‘?),
(ii) ®(Lsp U {s}) < ¢, and (iii) |Ls¢p N F| > B3k. For any such (s, ¢, k) triple, consider a
call to cluster(s,t, k). Observe that the call will output the largest level set of size in [k, 2k]
satisfying (i) and (ii). Hence, it will output (non-singleton) L ; x» such that &’ < k" < 2k and

14



(i) and (ii) hold. Note that Ls;p» 2 Lg ¢k, so the third item will also hold. Thus, if t5 is set
to one of these (8/log? B~1){ timesteps t, then s will be (h, k)-viable.

Error 2, exp(—(371). Let us fix a size threshold k promised by Theorem 4.1. The probability
that a uar element on V>, is marked as (k, h)-viable is at least the product of probability of
choosing an appropriate s with the probability that ts is chosen appropriately. Thus, the
probability of find an (h, k)-viable vertex is at least (32/log® =) x (8/log® B~1) = 5%/ log* B~ 1.
This probability is independent for all vertices in V>j. By the Chernoff bound in Theorem 4.3,
with probability at least 1—exp(—34|Sx|/12), at least 53|Sy|/2log* 5~ > 1258%|S}| (h, k)-viable
vertices are discovered in findr. In this case, in Step 1d, kj is set to a non-zero value. The
probability of this event happening is at least 1 —exp(—3~%) —exp(—3%|S4|/8) > 1 —exp(5~1).
(Recall that whp S}, is a multiset of iid uar 58 vertices. In the union bound above, the first
“bad event” is Sj, not having 378 vertices and the second “bad event” is discovering too few
viable vertices.) We have concluded that whp, if |F| > f8n, then kj, is non-zero.

We move to the second part of the proof, which asserts that (with high probability), an output
non-zero kj, has the desired properties. Condition on any choice of the preprocessing. Note that
the randomness is only over the choice of Sj,. Fix any k < p~!. Suppose that the number of
(h, k)-viable vertices in V5, is at most 23°n. Then, the expected number of such vertices in Sy,
is at most 28°n/|Vsp| x | S| < 284[Sn|. (We use the lower bound |Vsy| > |F,| > Bn.)

Error 3, 2712/ . Let X, denote the random variable of the number of (h, k)-viable vertices
in Sp. Since X}, is distributed as a binomial, by the Chernoff bound of Theorem 4.3, Pr[X; >
12848, < 27126%154] . Note than when Xj, < 128%|S,], then kj, cannot be k. All in all, for any
h, any choice of the t,s, and any choice of k, if Step 1c is reached and the number of (h, k)-viable
vertices in Vs, is at most 23°n, then kj, # k with probability at least 1 — 271287 Taking the
contrapositive, if kp # 0 (Step lc must have been reached), then the number of (h, kp,)-viable
vertices in Vs, is at least 28°n.

Error 4, 2exp(—63°n/12). Suppose the number of (h, k)-viable vertices in Vs, is at least
263°n . By Claim 4.5 applied on the set of (h, kp)-viable vertices in Vsp,, with probability at
least 1 — 2exp(—33°n/12), the number of such viable vertices in V}, is at least §3°n.

We take a union bound over the 26! log(6~1) values of h, the p~! values of k, and all errors
encountered thus far. The total error probability is at most 26! log(d~1) - p~!(exp(—8~%) +
exp(B~1) 4271287 L 2exp(—63°n/12)). Note that 26~ log(61), 8, p~! are poly(e~?), and thus
the total error probability is at most exp(—e~!). With the remaining probability, the following
holds. For all phases h, if |Fj,| > 8n, a non-zero kj, is output. If a non-zero ky, is output, the
number of (h, ky)-viable vertices in V}, is at least 63°n. O

5 Proving the cut bound: the amortization argument

We come to the final piece of proving the guarantees of Theorem 1.2. We need to prove that
the number of edges cut by the partition of globalPartition is at most end. This requires
an amortization argument explained below. For the sake of exposition, we will ignore constant
factors in this high-level description. One of the important takeaways is how various parameters
are chosen to prove the cut bound.

Consider phase h where |F}| > fOn. Let us upper bound the number of edges cut by the
clustering done on this phase. Roughly speaking, |V},| = dn, so there are dn clusters created
in this phase. Each cluster in this phase has at most 2k; vertices. The number of edges cut
by each such cluster is at most 2¢k,d (since cluster outputs a low conductance cut; ignore
singleton outputs). So the total number of edges cut is at most 2¢dkpnd.

Let us now lower bound the number of new vertices that are partitioned in phase h; this is
the set Fj,11 \ Fj,. For each (h, kp,)-viable v in V},, cluster(v) contains at least 33kj, vertices in
Fj,. These will be newly partitioned vertices. Here comes the primary difficulty: the clusters for

15



the different such v might not be disjoint. We need to lower bound the union of the clustered
vertices in F}. An alternate description of the challenge is as follows. We are only guaranteed
that clusters from viable vertices v contains many vertices in Fj,, the free set at the beginning of
phase h. What we really need is for the cluster from v to contain many free vertices at the time
that v is processed. Phases were introduced to solve this problem. By reducing d, we can limit
the size of V},, thereby limiting the intersection between the clusters produced in this phase.

We now explain the math behind this argument. Consider some w € F}, and let ¢, be the
number of vertices in V5, that cluster v (call these seeds). Thus, ¢, = [{s | s € Vop,v €
cluster(s)}. The vertex w is clustered in phase h iff one of these ¢, seeds is selected in V},. By
Claim 4.4, each such seed is independently selected in V}, with probability §. The probability
that w is clustered in this phases is precisely 1 — (1 — ). Crucially, ¢, < [IB(w)| < ¢p~!. We
chose 6 < €p~1, 50 1 — (1 —§) a2 dcy,.

Thus, the expected number of newly clustered vertices is at least ), F, 0Cw. By rearranging
summations, >, cp Cw = ),y [cluster(v) N Fy|. For every (h,ky)-viable vertex v in Vs,
|cluster(v) N F),| > B3k,. The arguments in the proof of Theorem 4.10 shows that there are
B°n such vertices in V), whp. Hence, we can lower bound (in expectation) the new number of
newly clustered vertices as follows:

> bew =6 (8°n) - (B%kn) = 68%knn

weFy,

We upper bounded the number of edges cut by 2¢dk,nd. The ratio of edges cut to vertices
clustered is 8¢5 ~8d. The parameters are set to ensure that 8¢3~8 < ¢, so the total number of
edges cut is end.

The formal analysis requires some care to deal with conditional probabilities and dependen-
cies between various phases. Also, Theorem 4.10 talks about V}, and not V>, which necessitates
some changes. But the essence of the argument is the same.

Our main theorem is a cut bound for globalPartition.

Theorem 5.1. The expected number of edges cut by the partitioning of globalPartition(R)
is at most end.

We will break up the proof into two technical claims. Somewhat abusing notation, we say a
vertex in V>, is h-viable if it is (h, kp)-viable.

Claim 5.2.

E[# edges cut by globalPartition(R)] < 32¢3 8d> ( Z E| Z |cluster(v) N Fhm) +20nd
h<h VEVR

Proof. The proof goes phase by phase. We call a phase significant if |F},| > fn. Edges cut in
a significant phase are also called significant. Observe that the total number of edges cut is at
most the number of significant edges cut plus Snd. (This contributes to the extra additive term
in the claim statement.) Below, we will bound the total number of significant edges cut.

By Claim 4.6, with probability at least 1 — 27" |V4| < dn. Note that |F,| < Vo7 = |V5].
(The equality is because this is the last phase.) Since dn < fn, the expected number of significant
edges cut in the last phase is at most 27°"nd < 1.

Now assume that h < h. Consider the edges cut in the hth phase. Consider any choice of
Vi,Va, ..., Va1 and ki, ka,..., kn. If |Fp| < fn, no significant edges are cut. Let us assume
that |Fp| > fn. Each set cluster(v) output in this phase is either a singleton or a set of size
at most 2k;, and conductance at most ¢. In either case, the number of edges cut by removing
cluster(v) N F' (in globalPartition) is at most 2¢kpd + d. Note that 2¢k,d > 1 (otherwise,
by the connectedness of G, there can never be a set of size at most 2k, of conductance < ¢).
Hence, the number of significant edges cut by a single cluster is at most 2¢ky, (d + d?) < 4¢k;d>.

16



Note that |V>p| > |Fp| > Bn and |V>p| is obviously at most n. By Claim 4.5 with S = Vs,
with probability at least 1 — 2 exp(—d/3n/12) over the choice of V},, |V,,| < 26n. Hence, the total
number of significant edges cut is at most 4¢k,d? x 20n = 8¢Sk, d?n.

By Theorem 4.10, with probability at least 1 — exp(e~1), if |F},| > fn, at least 3°dn vertices
in V}, are h-viable. Call this event £. For every h-viable vertex in Vj,, |cluster(v) N Ey| > 83k,.
For convenience, let X, :=3_ . |cluster(v)NF}|). Conditioned on &, Xj > B8(6kpn). Recall
that with probability at least 1 — 2 exp(—d§8n/12), the number of significant edges cut in this
phase is at most 8¢d?(dkyn). If € occurs, we can apply the bound 378X), > dk,n and upper
bound the number of significant edges cut in this phase by 8¢8 8d%2 X},

Thus, with probability at least 1 — exp(e™!) — 2exp(—3d3n/12), the number of significant
edges cut in phase h is at most (8¢3~8d?)X}. In other words, there is an event F, conditioned
on which the above bound happens, and Pr[F,] > 1 — exp(e~!) — 2exp(—§8n/12). In the
calculation below, we break into conditional expectations and use the fact that § = poly(e),
B = O(e), and that the number of phases is at most 2671 log(671). We also use the fact that
X}, is non-negative.

Z E[# significant edges cut in phase h] < Z(Pr[]—']E[XhU:] + Pr[F|nd) (1)
h h
< Y E[Xp]+26 " log(d ") (exp(e ") + 2exp(—68n/12))nd < > E[X,] + fnd/2 (2)
h h

To this bound, we add the expected number of edges cut in the last phase (at most 1) and the
number of non-significant edges cut (at most Sn). This completes the proof. O

Claim 5.3.
Z E| Z |cluster(v) N Fy|)] < 4n

h<h VEVH

Proof. We will apply the following charging argument. When a vertex v is processed in globalPartition(R),
we will add one unit of charge to every vertex in cluster(v) N Fj. Note that the total amount
of charge is exactly the quantity we wish to bound. Crucially, note that any vertex w receives
charge in at most one phase; the phase where it leaves the free set.

We will prove that the expected charge that any vertex receives is at most 4 units, which
will prove the claim. Fix a vertex w. Let x be the random variable denoting the charge that
w receives, and &, be the event that w receives charge in phase h. Since w receives charge in
exactly one phase, E[x| = >, E[x|&] Pr[€,]. We will prove that, for all h, E[x|,] < 4, which
implies that E[x] < 4 as desired.

To analyze E[x|&y], first condition on a setting of V7, Va, ..., V41 (such that w € F}) and all
other preprocessing for all vertices. We refer to this setting as the event C. The randomness for
specifying V}, has not been set. The event &, occurs if there is a v € V}, such that w € cluster(v).
The charge x is the number of vertices v € V}, such that w € cluster(v). Let ¢ be the number
of such vertices in Vsp,. Note that v € IB(w), and by Claim 3.8, ¢ < £p~ 1.

By Claim 4.4, every vertex in Vs, is in V}, with probability 6. Hence, Pr[&,|C] = 1—(1—4)°.
Note that dc < §lp~1 = (d=T0F6+603100. 30 2=3000 1 /2 Hence (1 — )¢ < 1 —de+ (d¢)? <
1 — 6¢/2 and Pr[&,|C] > d¢/2. Note that E[x|C] = > ;. (5)6° < 3. 0(6c)” < 26c. Observe
that B[(x|€,)IC] < (260)/(5¢/2) = 4.

Note that the event &, can be partitioned according to the different C events. Hence
E[x|&n] = > "¢ E[(x|€r)|C] Pr[C] < 4. Thus, the proof is completed. O

Theorem 5.1 follows by a direct application of these claims and plugging in the parameter
values.

17



Proof. (of Theorem5.1) By Claim 5.2 and Claim 5.3, the expected number of edges cut by
globalPartition(R) is at most 128¢3~8d-nd+2Bnd. Plugging in the parameters ¢ = d~'el?,
B = ¢/10, and noting that ¢ is sufficiently small, the expectation is at most end. O

We can now wrap up the proof of Theorem 1.2, showing the existence of (g, poly(de™1))-
partition oracles for minor-closed families.

Proof. (of Theorem 1.2) The procedure for the partition oracle is findPartition(v, R). Let us
prove each property of Definition 1.1.

Consistency: By Theorem 3.12, the partition created by calls to findPartition(v, R) is
precisely the same as the partition created by globalPartition(R).

Cut bound: By Theorem 5.1, the expected number of edges cut is at most end.

Running time: The running time of findPartition(v, R) is O((d¢p~1)®) plus the running
time of findr. The running time of findr is O((d¢5~1p~1)%), by Claim 4.9. By the parameter
settings, ¢,671, p~! are all poly(de~!). Hence, the total running time of findPartition(v, R)
is also poly(de™1). O

6 Diffusion Behavior on Minor-Free Families

In this section, we state and prove the main theorem about diffusions on minor-free graph classes.
This is the (only) part of the paper where the property minor-freeness makes an appearance.
Theorem 6.1 is used in the proof of Sec.7. For convenience, we recall the parameters involved.
o p=d%0£390; Minimum probability for truncation.
o (= d%3% Maximum random walk length.
B = &/10: Unclustered fraction cutoff.
o § =d 793100 Phase probability.

4/3

— £
® &= 330,000

: Heavy bucket parameter.

e ¢ = ¢'%: Conductance parameter.

Theorem 6.1. Let G be a bounded degree graph in minor-closed family. Let F be an arbitrary
subset of at least fn vertices. There are at least 3°n/8 vertices s € F such that: for at least

Be/8 timesteps t € [(], M'S(F) > B/16.

We note that this theorem holds for all graphs, if we replace the truncated walk M by the
standard random walk M. The main insight is that, for G in a minor-closed family, “polynomial”
truncation of the walk distribution does not significantly affect the behavior.

The main property of bounded degree minor-free graphs we require is hyperfiniteness, as
expressed by Proposition 4.1 of [AST90] (also used as Lemma 3.3 of [KSS19]).

Theorem 6.2. There is an absolute constant v such that the following holds. Let H be a graph
on r vertices. Suppose G is an H-minor-free graph. Then, for all b € N, there exists a set of at
most 'yr?’/zn/\/g vertices whose removal leaves G with all connected components of size at most

k.

The key stepping stone to proving Theorem 6.1 is Lemma 6.4, which shows that truncation
does not affect walk distributions from many vertices. Let us first state a simple fact on l1-norms.

Fact 6.3. Let & and § be vectors with non-negative entries, such that for all coordinates i,
Z(i) 2 §(i). Then ||Z — glly = [|Z]lx — |71l

Proof. |7 =gl = 32, [2(i) — g(0)] = 22, (Z(0) — §(8) = €] — 111 O

18



This fact bears relevance for us, since truncations of walk distribution vectors only reduce
coordinates.

Lemma 6.4. For at least (1 — p'/®)n wertices v, the following holds. For everyt < {, | M*¥ —
M|, < £p'/0.

Proof. Let H be an arbitrary forbidden minor for the minor-closed family of interest. We first
apply Theorem 6.2 with k = [1/,/p]. There exists a set C of at most vr®/2p/*dn edges who
removal leads to connected components of size at most [1/,/p] < 2/,/p. For convenience, set

3/2

the constant 7’ := yr3/2. We will need the following claim.

Claim 6.5. For at least (1 — pl/s)n vertices v, the probability that an f-length random walk
encounters an edge of R is at most v'{p/®.

Proof. The proof is a Markov bound argument. Suppose not; so there exist strictly more
than p'/8n vertices v such that an f-length random walk encounters an edge of C' with at
least 7/¢p'/® probability. Consider an f-length random walk that starts from the uniform (also
stationary) distribution. The above assumption implies that the expected number of C edges
encountered is > p'/8 . 4lp'/8 = ~fp'/*. On the other hand, since the walk remains in the
stationary distribution, for all ¢ < ¢, the probability of encountering an edge in C' at the tth
step is precisely |C|/2dn. (Recall that the lazy random walk has 1/2dn of taking any edge.) By
linearity of expectation, the expected number of C edges encountered is £|C|/2dn. By the bound
of Theorem 6.2, £|C|/2dn < v'¢p'/* contradicting the bound obtained from the assumption. [

Consider such a vertex v, as promised by the previous paragraph. Let S be the connected
component over vertices that contains v, after removing the edge cut C'. Let ¢; be the probability
that the walk from v leaves S at the tth step; by the property of the previous parameter,
D<ot < v'4p'/®. Let Mg be the transition matrix of the random walk M restricted to S.

Note that MS is not necessarily stochastic. We will use the truncated walk MS Observe that
1M1l > (ML R B

Since all coordinates of M'% are at most those of M'v, by Fact6.3, |[M'o — M'v||; =
| Mty — ||M*5];. Since |M'5||; = 1 = ||#]; and ||M'5]; > ||ML#]]1, we can upper bound as
follows by a telescoping sum.

M~

IMts - M < 3 (I8l — A7) 3)

=1

Il
MH

(132581l — 1M DI 0l + | MsDTE 5 — IBE0)  (4)

=1

The quantity HMé Ll - HMles 3|1 is exactly the probability that a single step (according
to M) from Mé ¥ leaves S. Since all coordinates in Mé 1% are at most those of M'~17, this
probability is at most ¢;. The quantity ||MgM l Yl - ||M L)1 is the probability mass lost by
truncation of MgM é . We apply the terlal bound p|S|. This is where the hyperfiniteness
plays a role; since S| < 2/,/p, ||]\75£l_1 — MsZ_1||1 < p-/2\/p =2,/p.

We sum all the these bounds over | < ¢, and plug into (4). We bound || M'v — M\tﬁHl <
> <11+ 2ty /p. By the properties of v, this is at most Y lp'/® + 20\/p < Lp'/? (for sufficiently
small p). O

We are now ready to prove Theorem 6.1. We will need the following simple “reverse Markov”
inequality for bounded random variables.

19



Fact 6.6. Let X be a random variable taking values in [0, 1] such that E[X] > 6. Then Pr[X >
5/2] > 46/2.

Proof. Let p be the probability that Pr[X > §/2].

§ <E[X] = Pr[X >6/2E[X|X >6/2] + Pr[X < §/2]E[X|X < 6/2]
< p+(1-p)(6/2) <p+/2

O

Proof. (of Theorem 6.1) Define 6, ; as follows. For s € F and ¢t € [¢]: if ¢ is odd, 05, = 0. If ¢ is
even, then 0, ; is the probability that the t-length random walk starting from s ends in F.

Let us pick a uar source vertex in s € F, pick a uar length ¢ € [¢]. We use the fact that M
is a symmetric matrix. We use 1 to denote the all 1s vector on F'.

0/2
E. 0] = 15> (M*/0)(1p/|F|) = ((F])™" Y 15M*1p = ((|F)~" > [[M1p]3  (5)
i=1 i<e/2 i<0/2

Note that |[M‘1g||; = |F|, so by Jensen’s inequality, |M1p|5 > |F|*/n. Plugging in (5),
Es1[0s:] > €71 x (¢/2)|F|/n > B/2. For any s, E;[fs:] < 1. By Fact6.6, there are at least
B|F|/4 vertices s € F such that E[f,,] > §/4. Again applying Fact 6.6, for at least 5|F|/4
vertices s € F, there are at least 5¢/8 timesteps ¢ € [¢] such that 65, > £/8, implying that
Mts(F) > /8.

By Lemma 6.4, there are at least (1—p'/®)n vertices s such that for all ¢ < ¢, ||Mt§—J\//.7t§H1 <
Lp'/Y = (6-60/9,=30+3000/9 < 3/16. By the parameters settings, p'/% < £3900/8 < g|F|/8.
Invoking the bound from the previous paragraph, there are at least 8| F'|/8 satisfying the property
of Lemma6.4 and the condition at the end of the previous paragraph. For all such vertices s,
for all t < ¢, M'5 S(F) = M's(F) — 3/16. Thus, for all such s, there are at least 3¢/8 timesteps
t € [] such that M!3(F) > B/16.

O

7 The proof of Theorem 4.10: local partitioning within F

We repeat the parameter values for convenience.

o p = d%0¢3000; Minimum probability for truncation.
o (= d%3%: Maximum random walk length.
e [ =¢/10: Unclustered fraction cutoff.

o § =d "9¢3100; Phase probability.

£4/3

¢ a= 300 000

Heavy bucket parameter.
o ¢ =% Conductance parameter.

Recall that Theorem 4.1 shows that there are many s € F' from which (level sets of ) diffusions
in G discover low conductances cuts in F'. We use the Lovasz-Simonovits curve to represent the
truncated diffusion vector, and keep track of the vertices of F' wrt to the curve. This is done
via a careful adaptation of Lovasz-Simonovits method, as presented in Lemma 7.4.

The main technical tool which we will use in our analysis is the Lovdsz-Simonovits method,
defined in [LS90], whose use for clustering was pioneered by [ST12].

20



Definition 7.1. For a non-negative vector p over V, the function I : R™ X [n] — [0, 1] is defined

as
I(p,z) = ng)f]n Z p(u)w(u)
ZW(?l):xueV

This is equivalent to summing over the x heaviest elements of p when x is an integer, and
linearly interpolating between these points otherwise.
For notational convenience, we define:

I (x) = I(M'5, z).

Note that I, ; is a concave curve.

7.1 The Lovasz-Simonovits lemma

The fundamental lemma of Lovédsz-Simonovits is the following (Lemma 1.4 of [1.S90], also refer
to Theorem 7.3.3 of Lecture 7 of [Spi]).

Lemma 7.2. Let T = min(z,n—x). Consider any non-negative vector p, and let S, denote the
level set of Mp with x vertices.

I(Mp,z) < (1/2)(1(p, x — 22®(S.)) + (P, — 2T(S2)))

The concavity of the curves implies monotonicity, I(Mp) < I(p). The application of this
lemma to our setting leads to the following statement.

Lemma 7.3. For allt </ and x < 1/p,
Lie(2) < (1/2)(Ls,i-1(x(1 — ©(Lsyt,2)) + Ls,e—1(z(1 + ©(Lst.2))))

Let fiw,y be the straight line between the points (w, I, (w)) and (y, Is+(y)).

Lemma 7.4. Let ty < t1 < ... <ty be time steps. Suppose Vi < h and x € [w,y|: Lst, o C
supp(M'S) = ®(Ls+, o) > . Then, Vi < h,Vz € [w,y]

L, (2) < fop-tang(@) + V/min(e — w,y — )(1 - 42 /128)'

Proof. For convenience, let A, = min(z —w,y — z). We prove by induction over i.

For showing the base case take i = 0. Now consider the following cases.

e Suppose £ = w or x = y. By monotonicity, I (x) < Is,—1(z). Since z € {w,y}, the
latter is exactly fiyw.y(2).

e Suppose z € [w+ 1,y —1]. Then A, > 1 and I, 4, (z) <1 <+V/A,.

e Suppose = € (w,w + 1). Note that A, = w — x < 1. By the definition of the LS curve,
Ly () = Loy (1) (=) (Lo g (0 + 1) = Ly 10 (1)) < Lotg1 () 30— < frp 10y (@) + /B

e Suppose z € (y — 1,y). An identical argument to the above holds.

Now for the induction. Suppose the premise holds at step t;. Namely for € [w, y], for all
level sets L 1, , contained inside supp(]\//?té'), ®(Lsy, ) > ¢ > 1. We would like to upperbound
I, ., (z). To this end, let us consider some z € [w,y]. By Lemma7.3,

Is1, () (1/2) st 1 ((1 = ©(Ls t.2))) + Lot -1 (2(1 + (L 1;.2)))] (6)

(1/2) sty (2(1 = ©(Lst, 2)) + Loty (01 + (Lt 2)))] (7)
The second inequality follows by monotonicity, since ¢;—; < ¢; — 1. Note that A, = min(z —

w,y —x) < z for all z € [w,y]. Claim 7.5 (which we prove after the current lemma) shows the
following.

IAIA

21



Claim 7.5. For all1 <i < h, for all x € [w,y], the following holds

L) < (1/2)Lspiy (& = Dath/4)) + Lot (2 + Batp/4))] (8)

Now, let z;, = x — Ay¢/4 and xg = © + A, /4. Using Claim 7.5 we get

Li(z) < (1/2)[frorwy(@r) + /Ay (1 —9%/128)1
"’fto—l,w,y(mR) + AwR(l - ¢2/128)i_1] (9)
= (1/2)[fro-1,wy(@L) + fro-1,0y(zR)]
+(1/2)[V A )1 = 92/8) ! 4+ /Ay (1 — 4 /128) 7] (10)

Here, (10) follows from the induction hypothesis. Since fyj—1.,, is a linear function, the first
term is exactly fio—1,w,y(z). We analyze the second term.
We first assume that A, = 2 — w (instead of y — x).

Ay, = min(z —YAL/4 —w,y —x +PA,[4) (11)
= min((1 —¢/4)As,y —x +1/44;) < (1 —/4) A, (12)
Analogously,
Ay, = min(z+ YA, /4—w,y—x—9PA,/4) (13)
= min((1+¢/4)As,y —z — A /4) < (1+9/4)A, (14)

Thus, the second term of (10) is at most (1/2)(1 —%2/128)" /A, (/1 — ¢/4 + /1 + /4).
Now, we consider A, =y — x.

A, = min(z — YA, /4 —w,y —x + YA, /4) (15)
= min(z— ¢AL/4— w, (1+B/9A,) < (1+ /94, (16)
Analogously,
Ay, = min(z+yYAL/4—w,y—x— A, /1) (17)
= min(z+ 9AL/4— w, (1 - $/A,) < (1 - /A, (18)

In this case as well, the second term of (10) is at most (1/2)(1 — ¥?/128)""1/A,(1/1 — /4 +

V1+19/4).

In both cases, we can upper bound (10) as follows. (We use the inequality
1—22/8.

VIi—ztVitz
2 _—

i 1—9/44+/1+/4 i
I () < fto—l,w,y(x)"'(l_wz/lQS) ! VAL \/ v/ ) \/ / < fto—l,w,y(x)+(1_¢2/128) VA
O
Now, we establish Claim 7.5, the missing piece in the above proof.

Proof. (of Claim 7.5) Suppose Zmqe € [w,y] is the maximum value of z € [w, y] for which L4, ,
is still inside the support of the truncated diffusion at the ¢;-th step. We split into three cases:
T < Tomazy T € (Tmaz, Tmaz + Da,, . V/2], T > Tmax + Ay, /2. Note that in the latter two
cases, Ls 1, » is not contained in supp(]\/it@).

Case 1, & < Zyq,: Note that (8) holds by concavity of the Lovdsz-Simonovits curve when

Lst,.z C supp(]\/z ti5) (because then this level set has conductance at least ).

22



Case 2, € (Tmaz, Tmaz + Du,,,,0/2]: Let S = Lgy, 4, andlet T = Ly 4, . Observe that

_|B(T,T)| O |E(S,S)| —¢/2-d|S| @ ¢d|S|/2 _ ¢
)= =0T 2 dsitope-ds| = 28] 21

(19)

Here, (1) follows because 1" could contain at most ¢|S|/2 neighbors of S which could cost
us at most ¥d|S|/2 edges in the cut (5,5). (2) follows by upperbounding 1 by 1. Again the
claim in (8) follows by concavity of the Lovazs-Simonovits curve.

Case 3, © > Tpar + Dy, %0/2: Now let 2, = Tpax + Dy, /2. Write © = Zpasr +
Ay, /24 s Recall Ay = min(z — w,y — ). We claim that © — Ay1p/4 > Ty, First let us
see how to establish (8) assuming this claim holds. Assuming this claim, we have

Is,ti (ZC - Aa:1/)/4) = Ist; (xmaac) = Is,t,- (Q? + Am¢/4) = ||]/\/7t1§”1

And therefore,

Is,ti (I’) = . [Is,ti (93 - AT¢/4) + Is,ti, (1' + AT¢/4)]

[N ORI

S : [Is,ti_l (IE - Am¢/4) + I37t7',—1 (LE + A$¢/4):|

Now, all that remains to establish (8) is to show & — A,9/4 > xya.. For simplicity, write
An,=A Now consider two cases depending on the value of A,

1. Case 1 A,, = Tyas — W.

Tmax*

In this case note that

T — A /4 = Tiaz + Aptp/2+ 5 — (x —w)tp /4
> Zmae + Am/2+ 5 — (Zmae + Apmt/2+ 5 — w)Y /4
> Zmaz + Dmth /4 — A /8 + 5 — 510 /4
> Taw + AP /8 + (1 =Y /4) > Timaa

which establishes the claim above as desired.

2. Case 2 A, =Y — Tinagz-
In this case note that

m_Azw/4:$mam+Amw/2+S_(y_m)w/4
> Tmaz + BAmP/2+ 8 — (Y — Tmaz — Amtp/2 — 5)1p /4
Z xma/l' + A"”/w/4 + A'f}'l/¢2/8 + S + Sw/4

Z xmaw

Thus, in both cases, the claim from above holds. This means that (8) holds as long as the
premise holds for the t;-th step. O
7.2 From leaking timesteps to the dropping of the LS curve

We fix a source vertex s, and consider the evolution of M3, Therefore, we drop the dependence
of s from much of the notation.
We use p; to denote Mt5. We begin with a few definitions.

23



Definition 7.6. A timestep t is called leaking for source s if, for all k < p=*: if Ls4p C
supp(M*5) and |Lgyx N F| > a2k/400, then ®(Ly, 1) > 1/d0*/3.

If timestep t is not leaking for s, there exists k < p=' such that Lg ¢ C Supp(]\/i\téj, |Ls 5N
F| > a2k/400, and ¢(Lsx) < 1/d0Y3. Such a k is denoted as an (s,t)-certificate of non-
leakiness.

We set o = £%/3 /300, 000.
Following the construction of the LS curve I, we will order each vector p; in decreasing
order, breaking ties by id. The rank of a vertex is its position in (the sorted version of) p;.

Definition 7.7. Let the bucket By, denote the set of vertices whose rank in Dy is in the range
[27, 271,

A bucket By is called heavy if Y7 cp pDi(v) > a. (The bucket restricted to I has large
probability.)

The following lemma says that if there are many leaking timesteps, then the LS curve drops
at heavy buckets.

Lemma 7.8. Fizr > 0. Suppose for some s € F, there exist {' > B3(/8 leaking timesteps to <
t1 < ... <ty such that for all 0 <i < (', By, , is heavy. Then, I,;, (2" ') < Iy (27T1) — /4.

The main tool used in our proof is our adaptation of Lovédsz-Simonovits lemma done in
Lemma 7.4. We first make a definition.

Definition 7.9. Fiz r > 0, a source s and a timestep t. A vertez w € 27,27 is called a
balanced split for t if |Lyw NF| = a2"/3 and 3_,cp, \r, ., Pe(v) = o/3.

We will first prove the following claim which essentially follows by averaging arguments.

Claim 7.10. Fizr > 0 and suppose for some source vertex s € F, there exist {' leaking timesteps
to < t1 < ...<ty such that for all0 <i <, By, , is heavy. Then, there exists a vertex w that
is a balanced split for at least an «/3-fraction of timesteps in T = {tg,t1,...te}.

Proof. Since By, , is heavy, Is,(2") < 1. Since the support of p; is at most p~!, this implies
that 2" < p~! and r < —lgp (and this holds by the choice of parameters).

For all v € By, pr(v) < 1/2". Since ZveanFﬁt(v) > a, |Byr N F| > a2

For convenince, let T' = {to,t1,...ty}. Pick w uar in [2",2"F1). Let X; be the indicator for
w being a balanced split for ¢;. Recall that |By, , N F| > a2". Sort the vertices of By, , N F
by increasing rank and consider the vertices in positions a2"/3 and 2a2"/3]. Let the rank
corresponding to these vertices by u; and uy. We first argue that any rank w € [uj,ug] is a
balanced split. We have |L; , N F| > a2"/3 because w > w;. For all v € By, ., py, (v) < 1/27.
Thus, ZUeLti,uszti,T Dr,(v) < (1/27)(2a27/3) = 2a/3. Note that ZUEBti,r pr(v) > «, since the
bucket is heavy Hence, for any w <wug, -, cp, \z1,, Pt(v) =2 a —2a/3 =a/3.

As a consequence, for any t;, there are at least 2" /3 values of w that are balanced splits.
In other words, E[X;] > /3. By linearity of expectation, E[> ", , X;] > af’/3. Thus, there
must exist some w € [27,2"*1) that is a balanced split for at least af’/3 timesteps. O

Next, we show the following claim which essentially uses leakiness of a timestep ¢ € T and
the balanced split vertex w promised by Claim 7.10 to spell out a set with enough free vertices
with large conductance.

Claim 7.11. Fiz r > 0 and let w € [27,2"TY) be a split vertex as promised by Claim 7.10
and let t;; < t;, < ... < biner /s denote the timesteps for which w is a balanced split. Let
y = min(2rt6+180/1 »=1) " Then, for all x € [w,y] and for all t € {t;  ti,, - ’tine//3}7
whenever Ly 5, C supp(M*35), then O(Lyy) > 1/der/3.

24



Proof. Take x € [w,y] and a leaking timestep ¢ € {t;,,t,, - ,ti_, . }- Note that z <y < pt
clearly holds. Now, to establish the lower bound on conductance claimed, we first unpack
what it means for ¢ to be a leaking timestep Definition 7.6. It says: If L;, C supp(M'S) and
|L;.» N F| > a?k/400, then it better hold that ¢(L; ) > 1/d¢*/3.

Note that y < 2r+6+Me(/a)] ¢ [27(64/a), 271 (64/a)]. Since r < —lgp, y < 128(pa)~ 1.

Note that for all ¢ € {t;,,ti,, -+ ,ti,, ,} and x € [w,y], L, contains at least a2"/3 vertices
of F. Thus, at least a (a27/3)/(2" ! - 64/a) > a?/400-fraction of L; , is in F. Now note that
since ¢ is leaking, we see that one of the following will hold. Either

e L;, Csupp(M'3) and ®(L;,) > 1/d¢*/3, Or

o Ly, & supp(M'3).

And this establishes the claim. O

Now, we have all the ingredients to prove Lemma7.8. The key step which remains is an
application of Lemma 7.4.

Proof. (Of Lemma7.8) Suppose w € [27,271) is a balanced split at af’ /3 timesteps as promised
by Claim 7.10. Let y = min(?”ﬁﬂlg(l/o‘ﬂ,p*l) and as observed in Claim 7.11, note that for

z € [w,y] if Ly, C supp(]\/it?), it holds that ¢(L; ) > 1/d¢*/3. Now, we apply Lemma 7.4. For
all z € [w,y], we have I, (z) < I, s () < ft, 1wy (@) V21— 1/1284d202/3)2¢' /3 By the

premise, £/ > 33//8 and therefore we have

p2/3, aB31/3

(1—1/128d202/3)24' /3 < (1-1/128d2¢2/3)*B°t/3 = (1-1/128d2¢%/3)' 7" 555 < exp(—1/a)
which holds because, for sufficiently small € > 0, we have

él/B—d—Q> d?-10% d?
Tl =TT T a3

Further, by the monotonicity of LS curves, I5y, (¥) < fi, 1 wy(®) +exp(=1/a) < fi, wy(z) +
exp(—1/a). Specifically, we get

Lo, (27Y) < fro g (2771) + exp(—1/a). (20)

Since w is a good split, Ly, (2rt1) > Is i, (w) +a/3. Note that

I+, — L4,
Frgann @) = Lo, () + (27— w) ( oW~ Loty (“’))
y—w
< Lop, (w) +27/(9/2) (21)
2
< T, (w) + 27 X (QT 0‘64> = L, (w) +a/16 (22)

The first inequality above follows by upper bounding I+, (y) — Is,, (w) by 1, dropping the
negative term and noting that y —w > y/2 for a sufficiently small o. Together with (20), we get

Lo, (2"Y) < frigwy(@ 1Y) Hexp(=1/a) < Ly, (w) + /16 + exp(~1/a)
< Lo, (271 —a/3+ a/16 + exp(—1/a) (23)

By monotonicity of the LS curve, I, (2"T1) < I 4, (27) — a/4.
O

25



Now, we state a key lemma. It says that a fixed bucket (parameterized by r) satisfies the
following at most timesteps: (i) either it does not contain enough free vertices, or (ii) if it
contains many free vertices at a particular timestep, then most of the corresponding timesteps
are not leaky:.

Lemma 7.12. Fiz r > 0 and take any s € F. There are at most 33(/a leaking timesteps t
(with respect to s) where By, is heavy.

Proof. We prove by contradiction. Suppose there are more than 32¢/a leaking timesteps ¢t where
B, is heavy. We break these up into 4/a contiguous blocks of 32(/4 leaking timesteps. By
Lemma 7.8, after every such block of timesteps, I5+(2"!) reduces by more than a/4. Note that
I 0(2"1) < 1, and thus, after 4/ blocks, I, +(2"T!) becomes negative. Contradiction to the
non-negativity of I ;(2"1). O

7.3 Proof of Theorem4.1

We finally prove Theorem 4.1. In particular, recall that this theorem claims that for an arbitrary
set F' C V with |F| > pn, there exists a size threshold k such that one can find enough source
vertices s € F such that (-step diffusions from s contain enough non-leaky timesteps. Moreover,
these non-leaky timesteps can be used to obtain a low conductance cut restricted to F. We
begin by showing that indeed many sources s € F' have the desired behavior.

Lemma 7.13. There are at least 3%n/8 vertices s € F, such that: there are at least {/16
timesteps t in [€] that are not leaking for s.

Proof. We fix any vertex s satisfying the conditions of Theorem6.1. Let us recall what this
means. This means that for at least 3¢/8 timesteps ¢, it holds that M!S(F) > $/16. We will
show that conclusion in Lemma 7.13 above holds for s which will establish the lemma. We prove
by contradiction.

To this end, let us suppose for any vertex s satisfying the conditions of Theorem 6.1, there
are at most 3¢/16 non-leaky timesteps. There are at least 5¢/8—5¢/16 = 8£/16 timesteps ¢ that
are leaking for s, such that M'5(F) > 3/16. Fix any such timestep ¢ and consider the buckets
By . There are at most —1g p buckets with non-zero probability mass, and by averaging, there
exists r < —1g p such that

€ 64/3

> =
160 - 30001g(1/¢) = 300,000

> Bilv) = B/(—16lgp) =

veEFNDBy

where the last step holds for sufficiently small € and therefore, B; , is heavy.

Thus, for each of the 5¢/16 leaking timesteps ¢ above, there exists some r < —lg p such that
By, is heavy. By averaging, there exists some r < —Ilgp such that for 8¢/(—161gp) leaking
timesteps ¢, B;, is heavy. However, for sufficiently small € (¢ < 273°), we have

b _ el > 10005-/3¢ > B
—161gp  160-3000log(1/e) — T«
which contradicts Lemma 7.12. O

Lemma 7.14. Let |F| > fBn. There exists a v < lg(1/p) such that for > 5%n/(81g%(p~1))
vertices s € F, the following holds. For at least Bt/(1g*(p™")) timesteps t, there exists k €
[27,27H1] that is an (s,t)-certificate of non-leakiness.

26



Proof. This is an averaging argument. Apply Lemma 7.13. For each of the 3%n/8 vertices s € F,
there are at least 3¢/16 timesteps ¢ that are not leaking for s. Thus, for every such (s,t) pair,
there exists ks ; < p~! that is an (s, t)-certificate of non-leakiness. We basically bin the logarithm
of the certificates. Thus, to every pair (s,t) (of the above form), we associate rs; = |1gks+|. By
averaging, for each relevant s, there is a value 74 such that for at least 5¢/(161g(p~1)) timesteps
t, there is an (s, t)-certificate in [2",2"<1]. Again, by averaging there exists r < lg(p—1) such
that there are at least 32n/(81g(p~")) > B?n/(1g?(p~")) vertices s € F for which there exist
at least B¢/(161g(p~1)) > B¢/1g*(p~') timesteps ¢, such that there is an (s, t)-certificate for
non-leakiness in [27,27F1]. O

Theorem 4.1 follows as a corollary of Lemma 7.14. We now present the proof.

Proof. (Of Theorem4.1) As seen from Lemma7.14, there exists some r < —Ig(p) such that

there are at least Q(32/1g(871)) - n vertices s € F each of which in turn has (s, t)-certificates of

non-leakiness for at least Q(8/161g*(8~")) - £ different values of t. We simply choose k = 2.
Let S C F denote the collection of these relevant sources. And for s € S, define

Cs = {t < {: there exists a (s,t) — certificate of non-leakiness}.

Take s € S, t € Cs. We will show that there exists k' = k(s,t) € [k, 2k] such that the level set
L, ; j satisfies the following.

e L1 C supp(]\/ité’).

o ¢(Lsip U{s}) <1/04/3,

(] |Ls,t,k’ N F| > 042]6//400 > ﬁSk‘

The first item above follows from the conclusion of Lemma 7.14, Definition 7.6 and taking
contrapositive in Lemma 7.4. Unpacking, this means that since ¢t € C; is a non-leaking timestep
for s, it follows that there exists k' = k'(s,t) € [k, 2k] for which Lg s C supp(M'S). The last
item above holds for this choice of k' from the conclusion of Lemma7.14. For item 2 above,
again note that our choice of ¥ and Lemma 7.14 imply that

510
O(Lap) <10 =1/d- = = '/d* = ¢/d’

and therefore ¢(Ls ;1 U {s}) < ¢ also follows as by (possibly) including a single vertex in the
set, the number of cut-edges can only increase by d. O

8 Proofs of applications

The proofs here are quite straightforward and appear (in some form) in previous work. We sketch
the proofs, and do not give out the specifics of the Chernoff bound calculations. Specifically, we
mention Theorem 9.28 and its proof in [Goll7], which contains these calculations.

Proof. (of Theorem 1.3) For input graph G, we set up the partition oracle. Note that we
can estimate the number of edges cut by random sampling. We pick a vertex u uniformly at
random, pick a uar neighbor v, and call the partition oracle on u and v. If these lie in different
components, the edge (u,v) is cut. By sampling O(1/¢), we can determine with high probability
if more than end edges are cut by the partitioning (Chernoff bound). If so, we simply reject,
since G is far from being in a minor-closed family.

Otherwise, we sample poly(¢~!) uar vertices, and determine the component that each vertex
belongs to. For each component, we directly determine if it belongs to Q. (If there is an
efficient algorithm, we can run that algorithm.) By a Chernoff bound, if G was e-far from Q,
with high probability, one of the components would not be in Q. Overall, the query complexity
is poly(de~1). O

27



Proof. (of Theorem 1.4) As with the previous proof, we set up the partition oracle. With high
probability, at most edn/c edges are cut by the partitioning given by the oracle, where c¢ is
the largest amount by which an edge addition/deletion changes f. We sample poly(de~!) uar
vertices and determine the component that each vertex belongs to. For each component, we
compute f exactly. We take the sum of f-values, and rescale appropriately to get an additive

end estimate for f. O
References
[AST90] Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for nonplanar

[ASTO4]

[BSS08]

[CGR*14]

[CSS09]

[DP09]

[EHNOL11]

[FLVW17]

[FPS19]

[Goll17]
[GR99]
[GRO2|

[HKNOO9]

[HT74]

[KSS18]

graphs. Journal of the American Mathematical Society, 3(4):801-808, 1990. 18

Noga Alon, Paul D. Seymour, and Robin Thomas. Planar separators. SIAM J.
Discrete Math., 7(2):184-193, 1994. 1

I. Benjamini, O. Schramm, and A. Shapira. Every minor-closed property of sparse
graphs is testable. In Symposium on the Theory of Computing (STOC), pages 393—
402, 2008. 3

Artur Czumaj, Oded Goldreich, Dana Ron, C Seshadhri, Asaf Shapira, and Chris-
tian Sohler. Finding cycles and trees in sublinear time. Random Structures &
Algorithms, 45(2):139-184, 2014. 3

Artur Czumaj, Asaf Shapira, and Christian Sohler. Testing hereditary properties of

nonexpanding bounded-degree graphs. SIAM Journal on Computing, 38(6):2499—
2510, 2009. 3

D. P. Dubhashi and A. Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge, 2009. 12

Alan Edelman, Avinatan Hassidim, Huy N. Nguyen, and Krzysztof Onak. An effi-
cient partitioning oracle for bounded-treewidth graphs. In Workshop on Random-
ization and Computation (RANDOM), pages 530-541, 2011. 3

Hendrik Fichtenberger, Reut Levi, Yadu Vasudev, and Maximilian Woétzel. On
testing minor-freeness in bounded degree graphs with one-sided error. CoRR,
abs/1707.06126, 2017. 3

H. Fichtenberger, P. Peng, and C. Sohler. Every testable (infinite) property of
bounded-degree graphs contains an infinite hyperfinite subproperty,. In Symposium
on Discrete Algorithms (SODA), page 714-726, 2019. 3

O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
1,2, 3,6, 27

O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs.
Combinatorica, 19(3):335-373, 1999. 3

0. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302-343, 2002. 1

A. Hassidim, J. Kelner, H. Nguyen, and K. Onak. Local graph partitions for ap-
proximation and testing. In Foundations of Computer Science (FOCS), pages 22-31,
2009. 1

John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the ACM
(JACM), 21(4):549-568, 1974. 1

Akash Kumar, C. Seshadhri, and Andrew Stolman. Finding forbidden minors in
sublinear time: A o(nl/ 2+ 0(1))—query one-sided tester for minor closed properties

on bounded degree graphs. In Foundations of Computer Science (FOCS), pages
509-520, 2018. 3

28



[KSS19]  Akash Kumar, C. Seshadhri, and Andrew Stolman. Random walks and forbidden

minors II: a poly(d e'l)—query tester for minor-closed properties of bounded degree
graphs. In STOC 2019, Phoenix, AZ, USA, June 23-26, 2019., pages 559-567, 2019.

3, 18

[Kur30] K. Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta
Mathematica, 15:271-283, 1930. 1

[LR15] Reut Levi and Dana Ron. A quasi-polynomial time partition oracle for graphs with
an excluded minor. ACM Transactions on Algorithms (TALG), 11(3):24, 2015. 2, 3

[LS90] Laszl6 Lovéasz and Mikldés Simonovits. The mixing rate of markov chains, an isoperi-

metric inequality, and computing the volume. In Foundations of Computer Science
(FOCS), pages 346-354, 1990. 3, 4, 20, 21

[LT80] Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator
theorem. SIAM J. Comput., 9(3):615-627, 1980. 1

[NS13] Ilan Newman and Christian Sohler. Every property of hyperfinite graphs is testable.
SIAM Journal on Computing, 42(3):1095-1112, 2013. 1, 2, 3

[RS95a]  N. Robertson and P. D. Seymour. Graph minors. XII. Distance on a surface. Journal

of Combinatorial Theory Series B, 64(2):240-272, 1995. 1

[RS95b]  N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory Series B, 63(1):65-110, 1995. 1

[RS04] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal
of Combinatorial Theory Series B, 92(1):325-357, 2004. 1
[Spi] D. Spielman. Lecture notes on spectral graph theory.

http://www.cs.yale.edu/homes/spielman /eigs/. 21

[ST12] D. Spielman and S.-H. Teng. A local clustering algorithm for massive graphs and its
application to nearly-linear time graph partitioning. SIAM Journal on Computing,
42(1):1-26, 2012. 3, 4, 20

[Wag37] K. Wagner. Uber eine eigenschaft der ebenen komplexe. Mathematische Annalen,
114:570-590, 1937. 1

[YI15] Yuichi Yoshida and Hiro Ito. Testing outerplanarity of bounded degree graphs.
Algorithmica, 73(1):1-20, 2015. 3

29

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il




