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Abstract

One-way functions (OWFs) are central objects of study in cryptography and computational
complexity theory. In a seminal work, Liu and Pass (FOCS 2020) proved that the average-case
hardness of computing time-bounded Kolmogorov complexity is equivalent to the existence of OWFs.
It remained an open problem to establish such an equivalence for the average-case hardness of some
NP-complete problem. In this paper, we make progress on this question by studying a polynomially-
sparse variant of Partial Minimum Circuit Size Problem (Partial MCSP), which we call Sparse Partial
MCSP, as follows.

1. First, we prove that if Sparse Partial MCSP is zero-error average-case hard on a polynomial
fraction of its instances, then there exist OWFs.

2. Then, we observe that Sparse Partial MCSP is NP-complete under polynomial-time deterministic
reductions. That is, there are NP-complete problems whose average-case hardness implies the
existence of OWFs.

3. Finally, we prove that the existence of OWFs implies the nontrivial zero-error average-case
hardness of Sparse Partial MCSP.

Thus the existence of OWFs is inextricably linked to the average-case hardness of this NP-complete
problem.

Keywords. Minimum Circuit Size Problem, MCSP, Partial MCSP, one-way functions, average-case
hardness, pseudorandom generators, pseudorandom functions, distinguishers, learning algorithms, reduc-
tions

1 Introduction

One-way functions (OWFs) —that is, functions that are easy to compute but hard to invert— are objects
of great importance in cryptography and computational complexity. For example, it is known that OWFs
exist if and only if pseudorandom generators exist [HILL99] and, moreover, if OWFs exist, then P 6= NP.

In this paper, we ask the following question: Can the existence of OWFs be based on the average-case
hardness of some NP-complete problem? We take concrete steps toward giving an affirmative answer to
this question, by presenting a candidate problem.

Of course, if there is any problem in NP that is hard on average, it follows that there is an NP-complete
problem that also shares this property; see Proposition A.1. Thus, our main contribution is to present an
NP-complete problem whose average-case complexity is tightly linked to the existence of OWFs.
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1.1 Prior work

An early goal in cryptographic research was to base the existence of cryptographically-secure one-way
functions on the worst-case complexity of some NP-complete problem. This goal remains elusive; it was
shown in [AGGM06] that no black-box argument of this sort can proceed based on non-adaptive reductions.
Non-adaptive worst-case-to-average-case reductions were also studied by Bogdanov and Trevisan [BT06b],
who showed that such reductions to sets in NP exist only for problems in NP/poly ∩ coNP/poly. Recent
work by Nanashima [Nan21] holds open the possibility that the security of OWFs can be based on an
adaptive black-box reduction, by first establishing a non-adaptive black-box reduction basing the existence
of auxiliary input one-way functions on the worst-case complexity of an NP-complete problem, although
this would also require non-relativizing techniques. Instead of worst-case hardness, the focus of our work
is on average-case hardness assumptions. A nice survey on this area, that lays out many of the issues
about one-way functions and average-case complexity, is the one by Bogdanov and Trevisan [BT06a].

Recently, Liu and Pass showed that OWFs exist if and only if computing the time-bounded Kolmogorov
complexity of strings is average-case hard [LP20]. This is an important result, but it falls short of basing
the existence of OWFs on an NP-complete problem, since

1. computing the time-bounded Kolmogorov complexity is not known to be NP-hard, and

2. the computation of this function can be done in polynomial time with an NP-oracle, but it does not
translate directly to the average-case complexity of a language in NP.

Santhanam [San20] showed that a restricted type of hitting-set generator exists if and only if the
Minimum Circuit Size Problem (MCSP) is zero-error average-case hard. Hirahara also proved similar
results connecting the worst-case and the zero-error average-case complexity of problems related to MCSP
and Kolmogorov complexity [Hir18].

More recently, Brzuska and Couteau [BC20] discuss basing OWFs on average-case hardness, noting
that it remains an open question to do this for the general notion of average-case hardness; they do
not consider zero-error average-case hardness as studied by Hirahara and Santhanam [HS17]. They
present some negative results, indicating the difficulty of establishing the existence of fine-grained one-way
functions, based on the existence of average-case hardness, via black-box reductions.

1.2 Our results

We connect the existence of OWFs to the average-case hardness of computing an NP-complete variant of
MCSP.

Initially, we prove that the zero-error average-case hardness of a polynomially-sparse variant of Partial
MCSP, which we term Sparse Partial MCSP, implies the existence of OWFs.

Theorem 1.1 (Informal). OWFs exist if Sparse Partial MCSP is zero-error hard-on-average on a
polynomial fraction of its instances.

Theorem 1.1 should be contrasted to the recent work by Liu and Pass [LP20], where they prove
that the average-case hardness of computing the time-bounded Kolmogorov complexity Kt of a string is
equivalent to the existence of OWFs. Moreover, Theorem 1.1 is complemented by proving that Sparse
Partial MCSP is NP-complete.

Theorem 1.2 (Informal). Sparse Partial MCSP is NP-complete under deterministic polynomial-time
reductions.

Theorem 1.1 and Theorem 1.2 together answer in the affirmative the open question of whether there
exists some NP-complete problem whose average-case hardness implies the existence of OWFs.

Moreover, Theorem 1.1 suggests an approach for excluding Impagliazzo’s Pessiland [Imp95], that is, a
version of our world where there are average-case hard problems in NP and there are no OWFs. This
approach is based on the following observation. If Sparse Partial MCSP is NP-hard under average-case
reductions, then by Theorem 1.1 the existence of an average-case hard problem in NP would imply
the existence of OWFs. Therefore proving that Sparse Partial MCSP is NP-hard under average-case
reductions excludes Pessiland.

Finally, we prove a weak converse of Theorem 1.1.
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Theorem 1.3 (Informal). OWFs exist only if Sparse Partial MCSP is zero-error hard-on-average on an
exponential fraction of its instances.

Theorem 1.3 gives us some evidence that Theorem 1.1 is not a vacuous implication. Moreover,
Theorem 1.1, Theorem 1.2, and Theorem 1.3 almost establish an equivalence between the existence of
OWFs and the average-case hardness of an NP-complete problem.

1.3 Our techniques

Our main results are Theorem 1.1, Theorem 1.2, and Theorem 1.3. Below we provide some intuition
regarding their proofs.

1. Theorem 1.1 is proved by

(a) giving a zero-error average-case decision-to-search reduction for Sparse Partial MCSP (see
Lemma 4.3) and

(b) observing that a recent result by Liu and Pass [LP20], whereby they prove that the average-case
hardness of a search variant of time-bounded Kolmogorov complexity Kt yields OWFs, can be
adjusted to the case of Sparse Partial MCSP as well (see Lemma 4.4).

The only two properties of time-bounded Kolmogorov complexity that are used in the paper
by Liu and Pass, are as follows.

i. One can create a string of low time-bounded Kolmogorov complexity in polynomial
time. This can be done by running a universal Turing machine U on some string, for
polynomially-many steps, and subsequently recording the output of U .

ii. For any string x, the possible values of its Kt complexity are polynomially-many in |x|.
In fact, there is a c > 0 such that, for any function t : N→ N such that t(n) ≥ n for all
n ∈ N, and any string x, the possible values of Kt(x) are at most |x|+ c.

As it turns out, both of these properties are satisfied even when one considers Partial MCSP
with polynomially-many samples; we shall call this feature polynomial sparsity. This is true
for the following reasons.

i. A partial truth table of polynomial sparsity can be created in polynomial time by evaluating
a polynomial-size circuit on polynomially-many inputs.

ii. For every partial truth table of polynomial sparsity, the possible values of its circuit
complexity are at most polynomial in its number of samples. This is so, as one may
hardcode polynomially-many input-output pairs in a polynomial-size circuit, so that the
resulting circuit agrees with all of these pairs.

2. Theorem 1.2 is proved by

(a) noting that Sparse Partial MCSP is in NP (see Lemma 2.11) and

(b) showing the NP-hardness of Sparse Partial MCSP (see Corollary 3.5) by outlining a determin-
istic polynomial-time reduction from Partial MCSP, which is NP-hard under deterministic
polynomial-time reductions (see Theorem 2.12), to Sparse Partial MCSP; see Theorem 3.4.
This reduction illustrates a simple padding argument.

3. Theorem 1.3 is proved by giving a proof of its contrapositive statement, as explained by the
numbered items below.

(a) Assume that Sparse Partial MCSP is easy on average under the uniform distribution.

(b) By a corollary of Ilango, Loff, and Oliveira (see Corollary 2.24), for all k > 0, there exists a
learning algorithm for SIZE

[
nk
]

that works for infinitely many n ∈ N; see Lemma 2.25.

(c) By a learner-to-distinguisher reduction (see Lemma 2.33), for every polynomial-time computable
Boolean function family {fy}y∈{0,1}∗ , there is a distinguisher for {fy}y∈{0,1}∗ .

(d) By the correctness of the works by H̊astad, Implagliazzo, Levin, and Luby [HILL99], and
Goldreich, Goldwasser, and Micali [GGM86], there are no OWFs.
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1.4 Open problems

Perhaps the most prominent question that this work leaves open, is the following:

Can we prove that OWFs exist only if Sparse Partial MCSP is zero-error hard-on-average on
a polynomial fraction of its instances?

That would give an equivalence between the existence of OWFs and the zero-error average-case hardness
of Sparse Partial MCSP.

1.5 Paper organization

In Section 2 we give some background knowledge, and useful facts. In Section 3, we prove Theorem 1.2.
Finally, we prove Theorem 1.1 in Section 4 and Theorem 1.3 in Section 5.

2 Preliminaries

2.1 Sets, strings, and projections

We denote the natural numbers by N and the positive reals by R>0. For any n ∈ N, we denote the
set {1, . . . , n} by [n]. Let x = (x1, . . . , xn) ∈ {0, 1}n be a string of length n; we write |x| := n. Let
S = {i1, . . . , ik} be a subset of [n] of 1 ≤ k ≤ n elements, and x as before. Then, the S-projection of x,

denoted x|S , is the string xi1 · · ·xik ∈ {0, 1}
k
.

2.2 Boolean functions and their truth tables

We denote by Fn the class of all Boolean functions on n variables. Let f : {0, 1}n → {0, 1} be a Boolean
function from Fn; we denote by tt(f) its truth table f(0n) f

(
0n−11

)
· · · f(1n) of length 2n.

Given a Boolean function f : {0, 1}n → {0, 1} from Fn, a partial truth table P of f is a multiset of
pairs {(xi, f(xi))}mi=1 in {0, 1}n × {0, 1} for 1 ≤ m ≤ 2n. In this case, we say that the dimension of P is
n, and that the sparsity of P is m. The partial truth table is defined as a multiset, instead of as a set of
pairs, in order to simplify the analysis of average-case complexity. Let m : N→ N be a function. If we
use m to upper bound the sparsity of some partial truth table, then we shall call m a sparsity function.

We identify infinite Boolean functions f : {0, 1}∗ → {0, 1} with collections {fn}n∈N, whereby fn :
{0, 1}n → {0, 1} for all n ∈ N.

2.3 Probability

We will use the following useful facts from probability theory.

Lemma 2.1 (Averaging argument). If X ∈ [0, 1] is a random variable with E[X] = µ, then for all
0 < c < 1 it is the case that

Pr[X ≥ cµ] ≥ (1− c)µ.

Lemma 2.2 (Markov’s inequality). If X is a non-negative random variable with E[X] = µ, then for all
k > 0 it is the case that

Pr[X ≥ kµ] ≤ 1

k
.

Lemma 2.3 (Chernoff bound). Let n ∈ N and X1, . . . , Xn be Boolean random variables that are
independent and identically distributed. Let X :=

∑n
i=1Xi and µ := E[X]. Then, for all 0 ≤ δ ≤ 1, it is

the case that

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ
3 .
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2.4 Circuit complexity

We consider Boolean circuits over the bounded fan-in {∧2,∨2,¬, 0, 1} basis. Given a circuit, its size is
the number of its gates. Let s : N→ N be a function. If we use s to upper bound the size of some circuit,
then we shall call s a size function.

The following result bounds from above the number of small circuits.

Lemma 2.4. Let s : N→ N be a size function such that s(n) ≥ n for all n ∈ N. Then, for all n ∈ N, the
number of circuits with n inputs which are of size at most s(n) is at most 23s(n) log s(n).

Given a Boolean function f : {0, 1}n → {0, 1}, the circuit complexity of f , denoted CC(f), is the
size of a minimum size circuit that computes f . For a size function s : N→ N, we denote by SIZE[s(n)]
the class of Boolean functions f = {fn}n∈N, whereby fn : {0, 1}n → {0, 1} for all n ∈ N, such that
CC(fn) ≤ s(n) for all n ∈ N.

Let n ∈ N and 1 ≤ m ≤ 2n. Let P := {(xi, bi)}mi=1, where (xi, bi) ∈ {0, 1}n × {0, 1} for all 1 ≤ i ≤ m,
be a partial truth table of dimension n and sparsity m, and C a circuit with n inputs. We say that C
agrees with P if, for all 1 ≤ i ≤ m, it is the case that C(xi) = bj , where j is the minimum element of
{k ∈ {1, . . . ,m} | xk = xi}. This guarantees that every partial truth table P agrees with some circuit,
because it is possible that there exists some x ∈ {0, 1}n such that both (x, 0) and (x, 1) are elements
of P . If P is a partial truth table, then the circuit complexity of P , denoted CC(P ), is the size of a
minimum-size circuit that agrees with P .

The following lemma asserts that almost all partial truth tables of polynomial sparsity have high
circuit complexity.

Lemma 2.5. Let n ∈ N be sufficiently large. Let c > 0 be a constant, s := nc, ` := 100c, and m := n`.
Then, it is the case that

Pr
{(xi,bi)}i∈[m]

[
CC
(
{(xi, bi)}i∈[m]

)
≤ s
]
≤ 1

10

where x1, . . . , xm ∈ {0, 1}n and b1, . . . , bm ∈ {0, 1} are independent and uniformly random.

Proof. Let N := n` (n+ 1) be the representation size of {(xi, bi)}i∈[m]. By Lemma 2.4, we have that

Pr
{(xi,bi)}i∈[m]

[
CC
(
{(xi, bi)}i∈[m]

)
≤ s
]
≤ (2n)

n` · 23nc lognc

2N
,

where the factor (2n)
n`

comes from the fact that each circuit may agree with at most (2n)
n`

partial truth
tables of dimension n and sparsity n`. Continuing, we have

Pr
{(xi,bi)}i∈[m]

[
CC
(
{(xi, bi)}i∈[m]

)
≤ s
]
≤ 2n

`+1 · 2O(nc logn)

2n`(n+1)

=
2O(nc logn)

2n`

=
2O(nc logn)

2n100c

≤ 1

2n50c

≤ 1

10
.

We also require the following helpful lemmas about Boolean circuits.

Lemma 2.6. For all n ∈ N, there exists a circuit of size O(n) that on input x, y ∈ {0, 1}n outputs 1 if
and only if x = y.

Lemma 2.7. For all n ∈ N, there exists a circuit of size O(n) that on input x = (x1, . . . , xn) ∈ {0, 1}n
outputs

∨n
i=1 xi.
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Lemma 2.8. For all large n ∈ N, if P = {(xi, bi)}mi=1 is a multiset of 1 ≤ m ≤ 2n pairs from
{0, 1}n × {0, 1}, then, there exists some circuit with n inputs and size at most m · n2 that agrees with P .

Proof. Let En be a circuit of size O(n) that on inputs x, y ∈ {0, 1}n outputs 1 if and only if x = y.
Such a circuit exists by Lemma 2.6. For all 1 ≤ i ≤ m, let zi : {0, 1}n → {0, 1} be a function such
that zi(y) := En(y, xi) ∧2 bi for all y ∈ {0, 1}n. Note that zi(y) = 1 if and only if y = xi and bi = 1,
and zi can be computed by a circuit of size O(n). Let Dm be a circuit of size O(m) that on input
z = (z1, . . . , zm) ∈ {0, 1}m outputs

∨m
i=1 zi. Such a circuit exists by Lemma 2.7. Define now a circuit C

to be such that

C(y) := Dm(z1(y) , . . . , zm(y)) =

m∨
i=1

zi(y) ,

for all y ∈ {0, 1}n. Then, C agrees with P and has size m ·O(n) +O(m) ≤ m · n2.

2.5 Uniform complexity

The following lemma upper bounds the circuit complexity of uniform computations.

Lemma 2.9 ([PF79]). Let T : N → N be time-constructible. Let n ∈ N and f : {0, 1}n → {0, 1}
be a function computable by a Turing machine in time O(T (n)). Then, there exists a circuit of size
O(T (n) log T (n)) that computes f .

In this work, we do not distinguish between Turing machines and algorithms. We say that an algorithm
A is a PPT algorithm if A is a probabilistic polynomial-time algorithm. If A is a PPT algorithm that
runs in time p(n) for a polynomial p, then we denote by A(x; r) the output of A on input x ∈ {0, 1}∗

using random bits r ∈ {0, 1}p(|x|). We say that an algorithm A is a PPT oracle algorithm if A is a PPT
algorithm that has access to some oracle. If A is a PPT oracle algorithm that runs in time p(n) for a
polynomial p and has access to an oracle for a language L ⊆ {0, 1}∗, then we denote by AL(x; r) the

output of AL on input x ∈ {0, 1}∗ using random bits r ∈ {0, 1}p(|x|).

2.6 Partial MCSP, and variants

Below, we provide the definitions of the main problems that we will encounter in this work.

2.6.1 Decision problems

Definition 2.10. Let m : N → N be a sparsity function such that 1 ≤ m(n) ≤ 2n for all n ∈ N. The
m(n)-Sparse Partial Minimum Circuit Size Problem of dimension n (m-Sparse Partial MCSP of dimension
n) is defined as follows.

• Input: A partial truth table P = {(xi, bi)}m(n)
i=1 , where (xi, bi) ∈ {0, 1}n×{0, 1} for all 1 ≤ i ≤ m(n),

and a size parameter 0 ≤ k ≤ m(n) · n2 − 1 in binary.

• Question: Is there a circuit of size at most k that agrees with P?

When choosing the size parameter k of Definition 2.10 to be such that 0 ≤ k ≤ m(n) · n2 − 1, we had
in mind Lemma 2.8.

The following result is a standard observation [KC00].

Lemma 2.11. For all sparsity functions m : N→ N, it is the case that m-Sparse Partial MCSP is in
NP.

Moreover, there is a choice for the sparsity function m : N→ N that makes m-Sparse Partial MCSP
NP-hard.

Theorem 2.12 ([HJLT96, ABF+08]; see also Ilango, Loff, and Oliveira [ILO20]). There exists a sparsity
function m : N→ N such that m-Sparse Partial MCSP is NP-hard under deterministic polynomial-time
reductions.
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2.6.2 Search problems

We shall also require the following search variant of m-Sparse Partial MCSP.

Definition 2.13. Let m : N → N be a sparsity function such that 1 ≤ m(n) ≤ 2n for all n ∈ N. The
search variant of m(n)-Sparse Partial Minimum Circuit Size Problem of dimension n (Search m-Sparse
Partial MCSP of dimension n) is defined as follows.

• Input: A partial truth table P = {(xi, bi)}m(n)
i=1 , where (xi, bi) ∈ {0, 1}n×{0, 1} for all 1 ≤ i ≤ m(n).

• Output: A description of a minimum-size circuit that agrees with P .

2.7 One-way functions

In the following, a function µ is said to be negligible if for every polynomial p there exists a n0 ∈ N such
that for all naturals n > n0 it is the case that µ(n) ≤ 1/p(n).

Definition 2.14. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. We say that f is
a one-way function (OWF) if for every PPT algorithm A there exists a negligible function µ such that for
all n ∈ N it is the case that

Pr
x∼{0,1}n,r

[
A(1n, f(x) ; r) ∈ f−1(f(x))

]
< µ(n)

where the size of r is equal to the running time of A.

We will also employ the following weaker notion of OWFs.

Definition 2.15. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. We say that f is
an α-weak one-way function (α-weak OWF) if for every PPT algorithm A and all sufficiently large n ∈ N
it is the case that

Pr
x∼{0,1}n,r

[
A(1n, f(x) ; r) ∈ f−1(f(x))

]
< 1− α(n)

where the size of r is equal to the running time of A. We say that f is a weak one-way function (weak
OWF) if there exists some polynomial q > 0 such that f is a (1/q)-weak OWF.

Yao [Yao82] proved that the existence of weak OWFs implies the existence of OWFs.

Theorem 2.16 ([Yao82]). Assume that there exists a weak one-way function. Then there exists a one-way
function.

2.8 Average-case hardness/easiness

2.8.1 Decision problems

A heuristic H is a PPT algorithm that, on input any x ∈ {0, 1}n, outputs a value in {0, 1} along each
computation path.

Definition 2.17 (Average-case hardness). Let α : N→ [0, 1] be a failure parameter function. We say that
a function f : {0, 1}n → {0, 1} is α-hard-on-average (α-HoA) if for all heuristics H and all sufficiently
large n ∈ N it is the case that

Pr
x∼{0,1}n,r

[H(x; r) = f(x)] ≤ 1− α(n)

where the size of r is equal to the running time of H.

Definition 2.18 (Average-case easiness). Let α : N → [0, 1] be a success parameter function. We say
that a function f : {0, 1}n → {0, 1} is α-easy-on-average (α-EoA) if f is not (1− α)-hard-on-average.

Let f : {0, 1}n → {0, 1} be a Boolean function. A zero-error heuristic H for f is a PPT algorithm
that on input any x ∈ {0, 1}n outputs a value in {0, 1} ∪ {?}, along each computation path, that is either
equal to f(x) or ?.
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Definition 2.19 (Zero-error average-case hardness; following Hirahara and Santhanam [HS17]). Let
α : N→ [0, 1] be a failure parameter function. We say that a function f : {0, 1}n → {0, 1} is zero-error
α-hard-on-average (zero-error α-HoA) if for all zero-error heuristics H for f and all sufficiently large
n ∈ N it is the case that

Pr
x∼{0,1}n,r

[H(x; r) = ?] ≥ α(n)

where the size of r is equal to the running time of H.

Definition 2.20 (Zero-error average-case easiness; following Hirahara and Santhanam [HS17]). Let
α : N→ [0, 1] be a success parameter function. We say that a function f : {0, 1}n → {0, 1} is zero-error
α-easy-on-average (zero-error α-EoA) if f is not zero-error (1− α)-hard-on-average.

2.8.2 Search problems

Let R ⊆ {0, 1}n × {0, 1}∗ be a search problem. A heuristic H is a PPT algorithm that, on input any
x ∈ {0, 1}n, outputs a value in {0, 1}∗ along each computation path.

The notions of average-case hardness and easiness for search problems are defined in a fashion similar
to that of decision problems; see Definition 2.17 and Definition 2.18.

2.8.3 Average-case easiness of Sparse Partial MCSP, with advantage

We require the following definition by Ilango, Loff, and Oliveira [ILO20].

Definition 2.21 ([ILO20]). A randomized algorithm B solves m-Sparse Partial MCSP with advantage γ
for a size parameter s if, for every f : {0, 1}n → {0, 1} with CC(f) ≤ s, it is the case that∣∣∣∣∣ Pr

{xi}i∈[m],r
[B(1n, {(x1, f(x1)) , . . . , (xm, f(xm))} ; r) = 1]

− Pr
{(xi,bi)}i∈[m],r

[B(1n, {(x1, b1) , . . . , (xm, bm)} ; r) = 1]

∣∣∣∣∣ ≥ γ(n)

where x1, . . . , xm ∈ {0, 1}n and b1, . . . , bm ∈ {0, 1} are independent and uniformly random, and r has size
equal to the running time of B. In this case, we may also say that Sparse Partial MCSP is easy-on-average
with advantage γ (EoA with advantage γ).

2.9 Learning algorithms and applications

2.9.1 Learning algorithms

For a Boolean function f : {0, 1}n → {0, 1}, an example oracle for f , denoted EX(f), is a procedure that
when invoked returns a pair (x, f(x)) where x ∼ {0, 1}n.

Let 0 < ε < 1. We say that a circuit C with n inputs is ε-close to a function f : {0, 1}n → {0, 1} if

Pr
x∼{0,1}n

[C(x) 6= f(x)] ≤ ε.

We recall the following intuitive notion of learning by Valiant [Val84].

Definition 2.22 ([Val84]). A randomized algorithm learns a class of Boolean functions F with accuracy
error ε and confidence error δ if, for all f ∈ F of the form f = {fn}n∈N, whereby fn : {0, 1}n → {0, 1}
for all n ∈ N, when A is given access to example oracle EX(fn) it is the case that

Pr
EX(fn),r

[
AEX(fn)(1n; r) outputs a description of a circuit that is ε(n)-close to fn

]
≥ 1− δ(n) ,

for all n ∈ N, where the size of r is equal to the running time of A.

We will use the following result by Ilango, Loff, and Oliveira [ILO20].
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Theorem 2.23 ([ILO20, Theorem 36, Item (2)]). If for every c ∈ N there exists ` ∈ N such that for
all n the problem n`-Sparse Partial MCSP of dimension n can be solved on average in polynomial time
with advantage 1/10 and size parameter s, then for every a ∈ N and all n ∈ N the class SIZE[na] can be
learned in polynomial time with accuracy error 1/n and confidence error 1/n.

By examining the proof of Theorem 2.23, we get the following corollary.

Corollary 2.24. If for every c ∈ N there exists ` ∈ N such that for infinitely many n the problem
n`-Sparse Partial MCSP of dimension n can be solved on average in polynomial time with advantage 1/10
and size parameter s, then for every a > 0 and infinitely many n ∈ N the class SIZE[na] can be learned in
polynomial time with accuracy error 1/n and confidence error 1/n.

2.9.2 Applications

We will require the following result, which asserts that heuristics with good average-case performance
guarantees can be used to design learning algorithms.

Lemma 2.25. If for all ` > 0 n`-Sparse Partial MCSP is zero-error (1− 1/h)-EoA, for a function
h : N → R>0 such that h(N) := 2N/100 for all N ∈ N, then for every a > 0 and infinitely many n ∈ N
the class SIZE[na] can be learned in polynomial time with accuracy error ε = 1/n and confidence error
δ = 1/n.

Proof. We will apply Corollary 2.24, by proving that if, for all ` > 0, n`-Sparse Partial MCSP is zero-error
(1− 1/h)-EoA, then, for all ` > 0, n`-Sparse Partial MCSP is EoA with advantage 1/10, according to
Definition 2.21. The desired result will then follow from Corollary 2.24.

To this end, assume that for all ` > 0, n`-Sparse Partial MCSP is zero-error (1− 1/h)-EoA. In
what follows, let N := n` (n+ 1) + (`+ 2) log n be the size of the n`-Sparse Partial MCSP instances of
dimension n; see Definition 2.10.

Let c > 0 be arbitrary, and ` := 100c. Let H be the heuristic that witnesses the fact that n`-Sparse
Partial MCSP is zero-error (1− 1/h)-EoA, and assume that H runs in time q(N) for some polynomial
q. Let n ∈ N be sufficiently large and such that H satisfies its average-case performance guarantees
on inputs of size n; see Definition 2.18. Let s := nc. Let H∗ be a probabilistic algorithm such that,

for all partial truth tables P of dimension n and sparsity n` and all random strings r ∈ {0, 1}q(N)
,

H∗(1n, P ; r) := H(P, s; r).
Let f : {0, 1}n → {0, 1} be such that CC(f) ≤ s. Then, by the definition of H∗, we have that the

first term of the LHS of the inequality of Definition 2.21 is

Pr
{xi}i∈[m],r

[H∗(1n, {(x1, f(x1)) , . . . , (xm, f(xm))} ; r) = 1]

= Pr
{xi}i∈[m],r

[H({(x1, f(x1)) , . . . , (xm, f(xm))} , s; r) = 1] .

We claim that this probability is sufficiently large.

Claim 2.26. It is the case that

Pr
{xi}i∈[m],r

[H({(x1, f(x1)) , . . . , (xm, f(xm))} , s; r) = 1] ≥ 1

5
.

Proof. Towards a contradiction, assume that

Pr
{xi}i∈[m],r

[H({(x1, f(x1)) , . . . , (xm, f(xm))} , s; r) = 1] <
1

5
.

Then, the number of inputs to H that make H output “?” is greater than

K := 2n
`·n · 2q(N) ·

(
1− 1

5

)
= 2n

`·n+q(N) · 4

5
.

However, K < 2N+q(N)/h(N), by our assumption on the average-case performance of H. So

2n
`·n+q(N) · 4

5
<

1

h(N)
· 2N+q(N) =

1

2N/100
· 2n

`·(n+1)+(`+2) logn+q(N)

9



or
4

5
<

1

2N/100
· 2n

`+(`+2) logn ≤ 1

2n`+1/100
· 2100n

`

≤ 1

2200n`
· 2100n

`

=
1

2100n`
<

4

500
;

this yields a contradiction. (Claim 2.26) �

We now turn to the second term of the LHS of the inequality of Definition 2.21. To this end, we have

Pr
{(xi,bi)}i∈[m],r

[H∗(1n, {(x1, b1) , . . . , (xm, bm)} ; r) = 1]

= Pr
{(xi,bi)}i∈[m],r

[H({(x1, b1) , . . . , (xm, bm)} , s; r) = 1]

≤ Pr
{(xi,bi)}i∈[m],r

[
H({(x1, b1) , . . . , (xm, bm)} , s; r) = 1 | CC

(
{(xi, bi)}i∈[m]

)
> s
]

+ Pr
{(xi,bi)}i∈[m]

[
CC
(
{(xi, bi)}i∈[m]

)
≤ s
]

= 0 + Pr
{(xi,bi)}i∈[m]

[
CC
(
{(xi, bi)}i∈[m]

)
≤ s
]
,

as H is zero-error, or

≤ 1

10
,

by Lemma 2.5.
Therefore, by Claim 2.26 and the discussion above,∣∣∣∣∣ Pr

{xi}i∈[m],r
[H∗(1n, {(x1, f(x1)) , . . . , (xm, f(xm))} ; r) = 1]

− Pr
{(xi,bi)}i∈[m],r

[H∗(1n, {(x1, b1) , . . . , (xm, bm)} ; r) = 1]

∣∣∣∣∣
≥ 1

5
− 1

10

=
1

10
,

as desired.

2.10 Pseudorandom generators

We recount the notion of fooling a PPT algorithm.

Definition 2.27. Let `, n ∈ N, such that ` < n, and G : {0, 1}` → {0, 1}n be a function. Let A be a
PPT algorithm, and 0 < ε < 1. We say that G is a function that ε-fools A, if∣∣∣∣ Pr

x∼{0,1}n
[A(x) = 1]− Pr

y∼{0,1}`
[A(G(y)) = 1]

∣∣∣∣ < ε.

The notion of fooling is used in the definition of a pseudorandom generator (PRG). We will make use
of PRGs {Gn}n∈N for which there exists a function ` : N→ N that satisfies `(n) < n for all n ∈ N, such

that Gn : {0, 1}`(n) → {0, 1}n for all n ∈ N and the following holds: For every PPT algorithm A there
exists a function ε : N→ [0, 1] such that for all n ∈ N it is the case that Gn is a function that ε(n)-fools
A.

H̊astad, Impagliazzo, Levin, Luby [HILL99] have shown that the existence of OWFs implies the
existence of PRGs.

Theorem 2.28 (OWFs imply PRGs; see H̊astad, Impagliazzo, Levin, Luby [HILL99]). If there exists a

OWF, then for every c > 0 there exists a function {Gn}n∈N, whereby Gn : {0, 1}n
1/c

→ {0, 1}n for all
n ∈ N, such that for every PPT algorithm A there is a negligible function ε : N→ [0, 1] such that for all
n ∈ N it is the case that Gn is a function that ε(n)-fools A.

10



2.11 Pseudorandom functions and applications

2.11.1 Pseudorandom functions

We will also require the notions of pseudorandom function families and distinguishers for function families.

Definition 2.29. Let {fy}y∈{0,1}∗ be a family of functions such that fy : {0, 1}|y| → {0, 1} for all

y ∈ {0, 1}∗, and there is a polynomial-time algorithm that computes fy(x) given y and x ∈ {0, 1}|y|. We
say that the function family {fy}y∈{0,1}∗ is a pseudorandom function family (PRF family) if for all PPT

oracle algorithms A there is a negligible function ε : N→ [0, 1] such that for all sufficiently large n ∈ N it
is the case that ∣∣∣∣ Pr

y∼{0,1}n,r

[
Afy (1n; r) = 1

]
− Pr

g∼Fn,r
[Ag(1n; r) = 1]

∣∣∣∣ < ε(n)

where the size of r is equal to the running time of A.

Definition 2.30. Let {fy}y∈{0,1}∗ be a family of functions such that fy : {0, 1}|y| → {0, 1} for all

y ∈ {0, 1}∗, and there is a polynomial-time algorithm that computes fy(x) given y and x ∈ {0, 1}|y|.
We say that a PPT oracle algorithm A is a distinguisher for {fy}y∈{0,1}∗ if for all negligible functions

ε : N→ [0, 1] and infinitely many n ∈ N it is the case that∣∣∣∣ Pr
y∼{0,1}n,r

[
Afy (1n; r) = 1

]
− Pr

g∼Fn,r
[Ag(1n; r) = 1]

∣∣∣∣ ≥ ε(n)

where the size of r is equal to the running time of A.

Note how a distinguisher violates the guarantees of a PRF family. Below, we present a result by
Goldreich, Goldwasser, and Micali [GGM86], where they proved that the existence of PRGs implies the
existence of PRFs.

Theorem 2.31 (PRGs imply PRFs; see Goldreich, Goldwasser, and Micali [GGM86]). If there exists a

function {Gn}n∈N, whereby Gn : {0, 1}n/2 → {0, 1}n for all n ∈ N, such that for every PPT algorithm A
there is a negligible function ε : N→ [0, 1] such that for all n ∈ N it is the case that Gn is a function that
ε(n)-fools A, then there exists a PRF family.

Theorem 2.28 and Theorem 2.31 yield the following corollary.

Corollary 2.32 (OWFs imply PRFs). If there exists a OWF, then there exists a PRF family.

Proof. Assume that there exists a OWF. Then, by Theorem 2.28 and c := 2, there exists a function

{Γn}n∈N, whereby Γn : {0, 1}n
1/2

→ {0, 1}n for all n ∈ N, such that for every PPT algorithm A there is a
negligible function ε : N→ [0, 1] such that for all n ∈ N it is the case that Γn is a function that ε(n)-fools

A. For all n ∈ N, let Gn : {0, 1}n/2 → {0, 1}n be such that for all x ∈ {0, 1}n/2 it is the case that

Gn(x) := Γn

(
x|[n1/2]

)
.

We claim that {Gn}n∈N is such that for every PPT algorithm A there is a negligible function ε : N→ [0, 1]
such that for all n ∈ N it is the case that Gn is a function that ε(n)-fools A.

To this end, fix an arbitrary PPT algorithm A. Then, for all n ∈ N, it is the case that∣∣∣∣∣ Pr
x∼{0,1}n

[A(x) = 1]− Pr
y∼{0,1}n/2

[A(Gn(y)) = 1]

∣∣∣∣∣
=

∣∣∣∣∣ Pr
x∼{0,1}n

[A(x) = 1]− Pr
y∼{0,1}n/2

[
A
(

Γn

(
y|[n1/2]

))
= 1
]∣∣∣∣∣

=

∣∣∣∣∣∣ Pr
x∼{0,1}n

[A(x) = 1]−

∣∣∣{y ∈ {0, 1}n/2 | A(Γn

(
y|[n1/2]

))
= 1
}∣∣∣

2n/2

∣∣∣∣∣∣
11



=

∣∣∣∣∣∣ Pr
x∼{0,1}n

[A(x) = 1]−
2n/2−n

1/2
∣∣∣{z ∈ {0, 1}n1/2

| A(Γn(z)) = 1
}∣∣∣

2n/2

∣∣∣∣∣∣
=

∣∣∣∣∣ Pr
x∼{0,1}n

[A(x) = 1]− Pr
z∼{0,1}n1/2

[A(Γn(z)) = 1]

∣∣∣∣∣
< ε(n) ,

by the correctness of Γn. The result now follows by Theorem 2.31.

2.11.2 Applications

An important observation is that a learning algorithm for polynomial-size circuits may be used to create
distinguishers for polynomial-time computable function families.

Lemma 2.33 (See also Oliveira and Santhanam [OS17, Theorem 8]). Assume that for every a > 0 and
infinitely many n ∈ N the class SIZE[na] can be learned in polynomial time with accuracy error ε = 1/n

and confidence error δ = 1/n. Then, for all function families {fy}y∈{0,1}∗ such that fy : {0, 1}|y| → {0, 1}
for all y ∈ {0, 1}∗, and there is a polynomial-time algorithm that computes fy(x) given y and x ∈ {0, 1}|y|,
there is a distinguisher for {fy}y∈{0,1}∗ .

Proof. Let {fy}y∈{0,1}∗ be a function family such that fy : {0, 1}|y| → {0, 1} for all y ∈ {0, 1}∗, and

there is a polynomial-time algorithm that computes fy(x) given y and x ∈ {0, 1}|y|. In particular, for

all y ∈ {0, 1}∗ it is the case that fy : {0, 1}|y| → {0, 1} is computable in time |y|k/2 for some k > 0. By

Lemma 2.9, for all y ∈ {0, 1}∗ it is the case that fy : {0, 1}|y| → {0, 1} is computable by some circuit of
size

O
(
|y|k/2 log |y|

)
≤ |y|k .

Let A be the PPT learning algorithm for SIZE
[
nk
]

that works for infinitely many n ∈ N, and that runs
in time q(n) for some polynomial q, as guaranteed to exist by our assumption. In particular, let n ∈ N be
sufficiently large and such that A satisfies its learning guarantees on inputs of size n. Now let t := n100

and define D to be a probabilistic oracle algorithm as follows.

On input 1n, random bits r := (r′, r′′) ∈ {0, 1}O(q(n)) × {0, 1}t·n, and given oracle access
to some function g : {0, 1}n → {0, 1}, the algorithm D runs A on 1n using random bits

r′ ∈ {0, 1}O(q(n))
to get a hypothesis h for g, whereby simulating calls to EX(g) by using the

oracle for g. Then, D samples t strings x1, . . . , xt from {0, 1}n using random bits r′′ ∈ {0, 1}t·n
and uses the oracle for g to compute

α :=
|{i ∈ [t] | h(xi) = g(xi)}|

t
.

Finally, if α ≥ 2/3, then D outputs 1; else, D outputs 0.

Note that D runs in time polynomial in n. We will now prove that D is a distinguisher for {fy}y∈{0,1}∗ .
To this end, we will show that D satisfies Definition 2.30.

The first term of the LHS of the inequality of Definition 2.30 is

Pr
y∼{0,1}n,r

[
Dfy (1n; r) = 1

]
= Pr

y,r

[
α ≥ 2

3

]
= Pr

y,r

[
|{i ∈ [t] | h(xi) = fy(xi)}|

t
≥ 2

3

]
≥ Pr

y,r

[
|{i ∈ [t] | h(xi) = fy(xi)}|

t
≥ 3

4

(
1− 1

n

)]
= Pr

y,r

[
|{i ∈ [t] | h(xi) = fy(xi)}|

t
≥ 3

4
(1− ε)

]

12



≥ Pr
y,r

[
|{i ∈ [t] | h(xi) = fy(xi)}|

t
≥ 3

4
(1− ε) | h is ε-close to fy

]
·Pr
y,r

[h is ε-close to fy] .

For all 1 ≤ i ≤ t, let Xi be a Boolean variable such that Xi := 1 if and only if h(xi) = fy(xi). Then,

Pr
y,r

[
Dfy (1n; r) = 1

]
≥ Pr

y,r

[∑t
i=1Xi

t
≥ 3

4
(1− ε) | h is ε-close to fy

]
·Pr
y,r

[h is ε-close to fy]

≥ Pr
y,r

[∑t
i=1Xi

t
≥ 3

4
E
y,r

[∑t
i=1Xi

t

]]
(1− δ) ,

as CC(fy) ≤ |y|k = nk, or

≥ 1

4
E
y,r

[∑t
i=1Xi

t

]
(1− δ) ,

by Lemma 2.1, or

≥ 1

4
(1− ε) (1− δ)

=
1

4

(
1− 1

n

)(
1− 1

n

)
≥ 1

4
− 1

8

=
1

8
.

We now turn to the second term of the LHS of the inequality of Definition 2.30. To this end, we have

Pr
g∼Fn,r

[Dg(1n; r) = 1] = Pr
g,r

[
α ≥ 2

3

]
= Pr

g,r

[
|{i ∈ [t] | h(xi) = g(xi)}|

t
≥ 2

3

]
≤ Pr

g,r

[
|{i ∈ [t] | h(xi) = g(xi)}|

t
≥ 2

3
| {xi}ti=1 are distinct

]
+ Pr

[
{xi}ti=1 are not distinct

]
= Pr

b,r

[
|{i ∈ [t] | h(xi) = bi}| ≥

2t

3
| {xi}ti=1 are distinct

]
+ Pr

[
{xi}ti=1 are not distinct

]
,

where b1, . . . , bt ∈ {0, 1} are independent and uniformly random, and b := (b1, . . . , bt).
Similarly as above, for all 1 ≤ i ≤ t, let Xi be a Boolean variable such that Xi := 1 if and only if

h(xi) = bi. Let Y be the event that all of the xi are distinct. Then,

Pr
g∼Fn,r

[Dg(1n; r) = 1] ≤ Pr
b,r

[∑
i=1

Xi ≥
2t

3
| Y

]
+ Pr

[
{xi}ti=1 are not distinct

]
= Pr

b,r

[∑
i=1

Xi ≥
4

3
· t

2
| Y

]
+ Pr[∃i, j ∈ [t] : i 6= j and xi = xj ]

≤ Pr
b,r

[∑
i=1

Xi ≥
4

3
· t

2
| Y

]
+

(
t

2

)
2−n,
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by a union bound, or

= Pr
b,r

[
t∑

i=1

Xi ≥
(

1 +
1

3

)
E
b,r

[
t∑

i=1

Xi | Y

]
| Y

]
+

(
n100

2

)
2−n

≤
(
e−

1/9
3

)Eb,r[∑t
i=1 Xi|Y ]

+
n200

2n
,

by Lemma 2.3, or

≤
(
e−1/27

)t/2
+

1

32

= e−t/54 +
1

32

= e−n
100/54 +

1

32

≤ 1

32
+

1

32

=
1

16
.

Therefore, ∣∣∣∣ Pr
y∼{0,1}n,r

[
Dfy (1n; r) = 1

]
− Pr

g∼Fn,r
[Dg(1n; r) = 1]

∣∣∣∣ ≥ 1

8
− 1

16
=

1

16
= Ω(1)

and as every negligible function ε : N → [0, 1] is such that ε(n) = o(1) < Ω(1), the desired result
follows.

3 Sparse Partial MCSP is NP-complete

In this section, we prove Theorem 1.2. By Theorem 2.12, the NP-hardness of Sparse Partial MCSP
would follow by giving a reduction from m-Sparse Partial MCSP to n`-Sparse Partial MCSP for all ` > 0.
This is what we do in Lemma 3.2 and Lemma 3.3 below, by taking cases depending on whether m is
superpolynomial in n or not. A proof of Theorem 1.2 would then follow by Lemma 2.11.

Remark 3.1. We acknowledge that a proof of the NP-hardness of Sparse Partial MCSP is implicit in
the work by Ilango, Loff, and Oliveira [ILO20]. However, the reduction they provide is randomized, while
ours is deterministic.

Continuing, we first consider the case where m is superpolynomial in n.

Lemma 3.2. For all superpolynomial sparsity functions m : N→ N, all ` > 0, and all n ∈ N, it is the
case that m-Sparse Partial MCSP of dimension n is polynomial-time reducible to (n′)

`
-Sparse Partial

MCSP of dimension n′, where n′ := m(n)
1/`

.

Proof. Fix an arbitrary superpolynomial sparsity function m : N → N, a n ∈ N, and let m := m(n).
The claimed reduction R works as follows. On input a list of pairs P = {(xi, bi)}mi=1, where (xi, bi) ∈
{0, 1}n × {0, 1} for all 1 ≤ i ≤ m, and a number 0 ≤ k ≤ m · n2 − 1 in binary the function R outputs

P ′ := {(x′i, bi)}
m
i=1, where x′i := xi0

n′−n ∈ {0, 1}n
′

for all 1 ≤ i ≤ m, and k. Note that n′ ≥ n for all
sufficiently large n ∈ N, as m is a superpolynomial function on n.

Let A denote m-Sparse Partial MCSP of dimension n and B denote (n′)
`
-Sparse Partial MCSP of

dimension n′. We will now prove the correctness of R.
Consider a YES instance of A, namely (P, k); we will prove that R(P, k) = (P ′, k) is a YES instance

of B. By our assumption, there is a circuit C of size k that agrees with P . Let C ′ be a circuit on n′ ≥ n
inputs such that C ′(x′) := C

(
x′|[n]

)
for all x′ ∈ {0, 1}n

′
. Then, for all 1 ≤ i ≤ m,

C ′(x′i) = C ′
(
xi0

n′−n
)

= C

(
xi0

n′−n
∣∣∣
[n]

)
= C(xi) = bi;
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that is, C ′ agrees with P ′. As the size of C ′ is at most |C| ≤ k, we get that R(P, k) is a YES instance of
B, as desired.

Consider now a NO instance of A, namely (P, k); we will prove that R(P, k) = (P ′, k) is a NO instance
of B. Towards a contradiction, assume that (P ′, k) is a YES instance of B. By our assumption, there is a

circuit C ′ of size k that agrees with P ′. Let C be a circuit on n ≤ n′ inputs such that C(x) := C ′
(
x0n

′−n
)

for all x ∈ {0, 1}n. Then, for all 1 ≤ i ≤ m,

C(xi) = C ′
(
xi0

n′−n
)

= C ′(x′i) = bi;

that is, C agrees with P . As the size of C is at most |C ′| ≤ k, we get a contradiction and therefore
R(P, k) is a NO instance of B, as desired. This concludes the proof of the correctness of R.

What is left is to upper bound the running time of R by some polynomial in its input size. By
inspecting R, we see that an upper bound on its running time is

m ·O((n′ − n)) + log
(
m · n2

)
≤ O(m · n′) = O

(
m1+1/`

)
≤ O

(
m2
)
≤ O

((
m · (n+ 1) + log

(
m · n2

))2)
.

As the input size of R is m · (n+ 1) + log
(
m · n2

)
, we get that the running time of R is polynomial in its

input size, as desired.

We now turn to the case where m is polynomial in n.

Lemma 3.3. For all sparsity functions m : N→ N such that m(n) < nc for some c > 0 and all n ∈ N,
all ` > 0, and all n ∈ N, it is the case that m-Sparse Partial MCSP of dimension n is polynomial-time
reducible to (n′)

`
-Sparse Partial MCSP of dimension n′, where n′ := nc/` if ` < c and n′ := n if ` ≥ c.

Proof. Fix an arbitrary sparsity function m : N → N such that m(n) < nc for some c > 0 and all
n ∈ N, and a n ∈ N. We first claim that m-Sparse Partial MCSP of dimension n is polynomial-time
reducible to n`-Sparse Partial MCSP of dimension n for all ` ≥ c. The reduction R that establishes

this fact maps (P, k) =
(
{(xi, bi)}m(n)

i=1 , k
)

, where (xi, bi) ∈ {0, 1}n × {0, 1} for all 1 ≤ i ≤ m(n) and

0 ≤ k ≤ m(n) · n2 − 1, to

R(P, k) := (P ′, k) where P ′ := {(xi, bi)}m(n)
i=1 ∪ {(x1, y1)}n

`

i=m(n)+1 .

The correctness of R follows from the fact that P and P ′ have the same circuit complexity and the same

dimension. The running time of R is O
(
n` (n+ 1)

)
+log

(
m(n) · n2

)
≤
(
m(n) (n+ 1) + log

(
m(n) · n2

))50`
,

that is, polynomial in its input size.
What is left is to show a reduction from nc-Sparse Partial MCSP of dimension n to (n′)

`
-Sparse

Partial MCSP of dimension n′ := (nc)
1/`

for all ` < c. By the discussion above, this is sufficient in order

to reduce m-Sparse Partial MCSP of dimension n to (n′)
`
-Sparse Partial MCSP of dimension n′ for all

` < c. However, a proof of this fact follows from the proof of Lemma 3.2, as in this case n′ ≥ n for all
sufficiently large n ∈ N.

Lemma 3.2 and Lemma 3.3 yield the following theorem.

Theorem 3.4. For all sparsity functions m : N→ N, all ` > 0, and all n ∈ N, there exists a n′ ∈ N such
that m-Sparse Partial MCSP of dimension n is polynomial-time reducible to (n′)

`
-Sparse Partial MCSP

of dimension n′.

Theorem 2.12 and Theorem 3.4 yield the following corollary, because the function m from Theorem 2.12
is either superpolynomial or polynomial in n.

Corollary 3.5. For all ` > 0, n`-Sparse Partial MCSP is NP-hard under deterministic polynomial-time
reductions.

Finally, by combining Lemma 2.11 and Corollary 3.5 we get a proof of Theorem 1.2.

Corollary 3.6 (Theorem 1.2, restated). For all ` > 0, n`-Sparse Partial MCSP is NP-complete under
deterministic polynomial-time reductions.
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4 OWFs from zero-error average-case hardness of Sparse Par-
tial MCSP

In this section, we prove the following result.

Theorem 4.1. Assume that, for some ` > 0, n`-Sparse Partial MCSP is zero-error (1/p)-HoA for some
polynomial p. Then, there exists some weak OWF.

By Theorem 4.1 and Theorem 2.16, we get the following corollary.

Corollary 4.2 (Theorem 1.1, restated). Assume that, for some ` > 0, n`-Sparse Partial MCSP is
zero-error (1/p)-HoA for some polynomial p. Then, there exists some OWF.

4.1 Proof of Theorem 4.1

We will first require the following two lemmas.

Lemma 4.3. For all sparsity functions m : N→ N, if m-Sparse Partial MCSP is zero-error (1/p)-HoA
for some polynomial p, then Search m-Sparse Partial MCSP is

(
1/p2

)
-HoA.

Proof. We will prove the contrapositive. That is, we will prove that if Search m-Sparse Partial MCSP is(
1− 1/p2

)
-EoA, then m-Sparse Partial MCSP is zero-error (1− 1/p)-EoA.

Let N ′ := |P | = m(n) (n+ 1) be the input size of Search m-Sparse Partial MCSP of dimension n.
Assume that Search m-Sparse Partial MCSP is

(
1− 1/p2

)
-EoA. That is, assume that there exists some

heuristic H ′ that on input a random partial truth table P outputs with probability 1 − 1/p(N ′)
2

a
description of a minimum-size circuit that agrees with P .

Given H ′, a zero-error heuristic H for m-Sparse Partial MCSP of dimension n and input size
N := |(P, k)| = m(n) (n+ 1) + log

(
m(n) · n2

)
works as follows:

On input a partial truth table P and a size parameter k, run H ′ on P to get a circuit C. If C
agrees with P and the size of C is at most k, then return YES. Otherwise, return ?.

The success probability of H over a random instance (P, k) and random bits r is

Pr
P,k,r

[H(P, k; r) = m-Sparse Partial MCSP(P, k)]

≥ Pr
P,k,r

[H(P, k; r) = m-Sparse Partial MCSP(P, k) | H ′(P ; r) = Search m-Sparse Partial MCSP(P )]

·Pr
P,r

[H ′(P ; r) = Search m-Sparse Partial MCSP(P )]

> 1 ·

(
1− 1

p(N ′)
2

)

= 1− 1

p(N − log(m(n) · n2))
2

≥ 1− 1

p(N)
,

since p
(
N − log

(
m(n) · n2

))2 ≥ p(N) for all sufficiently large n ∈ N, as desired.
The running time of H is polynomial in N , for reasons outlined below. The running time of H ′ is

polynomial in N ′ ≤ N , any circuit C of size |C| = |H ′(P ; r)| = poly(N ′) ≤ poly(N) may be checked
for agreement with P in time O(m(n) |C|) ≤ O(N · poly(N)) ≤ poly(N), computing the size of C may
be done in time polynomial in |H ′(P ; r)| ≤ poly(N) and comparing |C| and k can be done in time
O(max{log |C| , log k}) ≤ O(max{log poly(N) , n}) ≤ O(max{n, n}) ≤ O(n) ≤ O(N).

Therefore, m-Sparse Partial MCSP is zero-error (1− 1/p)-EoA as witnessed by H.

The following is an elaboration on the seminal work by Liu and Pass [LP20].

Lemma 4.4 (Following Liu and Pass [LP20]). Assume that, for some ` > 0, n`-Search Sparse Partial
MCSP is (1/p)-HoA for some polynomial p. Then, there exists some weak OWF.
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Proof. Consider the function f : {0, 1}∗ → {0, 1}∗ defined by the mapping rule

(s, x1, . . . , xm, C) 7→ (s, (x1, C(x1)) , . . . , (xm, C(xm))) ,

where C is a circuit with n inputs, s is the size of C, m := n`, and x1, . . . , xm ∈ {0, 1}n. Note that C
may always be replaced by a circuit of size at most nc for some c = c(`) > 0, by Lemma 2.8, in the sense
that for some c > 0 size nc is enough for a circuit to agree with a partial truth table of sparsity m. For

that matter, f is a function from {0, 1}O(logn+mn+nc logn)
to {0, 1}O(logn+mn+m)

and is computable in
polynomial time, as one can evaluate a polynomial-size circuit on polynomially-many inputs in polynomial
time.

Let N be the number of inputs of f ; observe that N ≥ m · n = n`+1 ≥ n. Observe also that the
function f is only defined over infinitely many input lengths. However, by a padding trick, f can be
transformed into another function f ′ that is defined over all input lengths, and such that f ′ is a weak
one-way function, given that f is [LP20].

We now claim that if Search n`-Sparse Partial MCSP is (1/p)-HoA, then f is a (1/q)-weak OWF,

where q is a polynomial such that q(n) := 4ncp(n)
3

for all n ∈ N. Towards a contradiction, assume that
there exists a PPT algorithm A that inverts f with probability at least 1− 1/q(N) ≥ 1− 1/q(n).

Except for a fraction 1/ (2p(n)) of random tapes r for A, the deterministic machine Ar, given by
Ar(z) := A(z; r) for all z ∈ {0, 1}∗, fails to invert f with probability at most 2p(n) /q(n) over a uniformly
random input z. This is so, as

Pr
r

[
Pr
z

[Ar(z) fails] >
2p(n)

q(n)

]
≤ Pr

r

[
Pr
z

[Ar(z) fails] ≥ 2p(n) ·Pr
z,r

[Ar(z) fails]

]
= Pr

r

[
Pr
z

[A(z; r) fails] ≥ 2p(n) ·E
r

[
Pr
z

[A(z; r) fails]
]]

≤ 1

2p(n)
,

by Lemma 2.2. Henceforth, we will call such a random tape good ; otherwise, we will call a random tape
bad. Therefore, we have

Pr
i,P,r

[A(i, P ; r) fails | r is good] = Pr
i,P,r

[Ar(i, P ) fails | r is good] ≤ 2p(n)

q(n)
.

We propose the following heuristic H for Search n`-Sparse Partial MCSP:

On input P of dimension n and sparsity n`, and using random bits r ∈ {0, 1}O(logn+mn+m)
, the

algorithm H runs A(i, P ; r) for all i ∈ [nc]. For each i ∈ [nc], the algorithm A(i, P ; r) returns
a tuple (i, x1, . . . , xm, Ci). Then, H(P ; r) returns a minimum-size circuit from {Ci}i∈[nc] that
agrees with P .

We will now analyze the average-case performance of H. The probability that A(i, P ; r) fails, given that
the random tape r is good, is

Pr
i∼[nc],P,r

[A(i, P ; r) fails | r is good]

≥ Pr
i,P,r

[A(i, P ; r) fails | H(P ; r) fails and r is good] ·Pr
P,r

[H(P ; r) fails | r is good]

= Pr
i,P,r

[A(i, P ; r) fails | A(CC(P ) , P ; r) fails and r is good] ·Pr
P,r

[H(P ; r) fails | r is good] ,

since H(P ; r) fails if and only if A(CC(P ) , P ; r) fails, by the definition of H. Continuing, we have that

Pr
i,P,r

[A(i, P ; r) fails | r is good]

≥ Pr
i,P,r

[A(i, P ; r) fails | A(CC(P ) , P ; r) fails and r is good] ·Pr
P,r

[H(P ; r) fails | r is good]

≥ Pr
i,P,r

[(i, P ) = (CC(P ) , P ) | A(CC(P ) , P ; r) fails and r is good] ·Pr
P,r

[H(P ; r) fails | r is good]

= Pr
i,P

[i = CC(P )] ·Pr
P,r

[H(P ; r) fails | r is good]
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=

 ∑
j∈[nc]

Pr
i,P

[i = j and CC(P ) = j]

 ·Pr
P,r

[H(P ; r) fails | r is good]

=

 ∑
j∈[nc]

Pr
i

[i = j] ·Pr
P

[CC(P ) = j]

 ·Pr
P,r

[H(P ; r) fails | r is good]

=
1

nc
·

 ∑
j∈[nc]

Pr
P

[CC(P ) = j]

 ·Pr
P,r

[H(P ; r) fails | r is good]

=
1

nc
·Pr
P,r

[H(P ; r) fails | r is good] ,

by Lemma 2.8, the sparsity of P , and the choice of c, or

1

nc
·Pr
P,r

[H(P ; r) fails | r is good] ≤ Pr
i,P,r

[A(i, P ; r) fails | r is good] ≤ 2p(n)

q(n)
,

by the discussion above, or

Pr
P,r

[H(P ; r) fails | r is good] ≤ 2ncp(n)

q(n)
=

2ncp(n)

4ncp(n)
3 =

1

2p(n)
2 <

1

2p(n)
.

Therefore, the heuristic H fails with probability at most

Pr
P,r

[H(P ; r) fails | r is good] + Pr
r

[r is bad] <
1

2p(n)
+

1

2p(n)
=

1

p(n)
;

this yields a contradiction.

We now turn to the proof of Theorem 4.1.

Proof of Theorem 4.1. Immediate; by Lemma 4.3 and Lemma 4.4, since if p is a polynomial, then p2 is a
polynomial too.

5 Zero-error average-case hardness of Sparse Partial MCSP
from OWFs

In this section, we prove the following result, which is a partial converse to Theorem 4.1.

Theorem 5.1 (Theorem 1.3, restated). Assume that there exists a OWF. Then, there exists some
` > 0 such that n`-Sparse Partial MCSP is zero-error (1/h)-HoA, for a function h : N→ R>0 such that
h(N) := 2N/100 for all N ∈ N.

Proof. We will prove the contrapositive. To this end, assume that for all ` > 0, n`-Sparse Partial MCSP is
(1− 1/h)-EoA, for a function h : N→ R>0 such that h(N) := 2N/100 for all N ∈ N. By Lemma 2.25, for
all k > 0, we get a learning algorithm for SIZE

[
nk
]

that works for infinitely many n ∈ N. By Lemma 2.33,

for every function family {fy}y∈{0,1}∗ such that fy : {0, 1}|y| → {0, 1} for all y ∈ {0, 1}∗, and there is

a polynomial-time algorithm that computes fy(x) given y and x ∈ {0, 1}|y|, there is a distinguisher for
{fy}y∈{0,1}∗ . By Corollary 2.32, there are no OWFs.
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A Hard-on-average problems in NP

We first introduce some useful notations. For a language L ⊆ {0, 1}∗ we define its characteristic function,
namely fL : {0, 1}∗ → {0, 1}, to be a function given by

fL(x) :=

{
1, if x ∈ L,
0, otherwise

for all x ∈ {0, 1}∗.
For sets K,L ⊆ {0, 1}∗, the disjoint union of K and L, denoted K ] L, is the set {0x | x ∈ K} ∪

{1x | x ∈ L}.
For a failure parameter function α : N→ [0, 1], we say that a language L is α-hard-on-average (α-HoA)

if its characteristic function fL is α-HoA. Similarly we define average-case easiness for languages.
We prove the following.

Proposition A.1. Let L be a language in NP that is α-HoA for some failure parameter function
α : N→ [0, 1]. Then, the language L∗ := L] SAT is NP-complete and α∗-HoA, where α∗ : N→ [0, 1] is a
failure parameter function such that α∗(n) := α(n− 1)− 1/2 for all naturals n ≥ 2.

Before we prove Proposition A.1, we recount the following basic observation.

Lemma A.2. NP is closed under disjoint union.

We now turn to the proof of Proposition A.1.

Proof of Proposition A.1. By Lemma A.2, the language L∗ is in NP since L∗ is the disjoint union of
L ∈ NP and SAT ∈ NP.
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We will now show that L∗ is NP-hard, by giving a polynomial-time reduction R from SAT to L∗. For
all x ∈ {0, 1}∗, let R(x) := 1x ∈ {0, 1}∗. We see that R is polynomial-time computable. Moreover, if
x ∈ SAT, then R(x) = 1x ∈ L∗, and if R(x) ∈ L∗, then 1x ∈ L∗ and so x ∈ SAT.

What is left is to prove that L∗ is α∗-HoA, where α∗ : N→ [0, 1] is such that α∗(n) := α(n− 1)− 1/2
for all naturals n ≥ 2. Towards a contradiction, assume that L∗ is (1− α∗)-EoA and let H∗ be a heuristic
that witnesses this phenomenon. We will give a heuristic H that witnesses the fact that L is (1− α)-EoA,
whereby establishing the desired contradiction. To this end, let

H(x) := H∗(0x)

for all x ∈ {0, 1}∗. We will show that H has the desired average-case performance. That is,

Pr
x∼{0,1}n

[H(x) = fL(x)] = Pr
x∼{0,1}n

[H∗(0x) = fL∗(0x)]

= Pr
y∼{0,1}n+1

[H∗(y) = fL∗(y) | y1 = 0]

≥ Pr
y∼{0,1}n+1

[H∗(y) = fL∗(y)]− Pr
y∼{0,1}n+1

[y1 = 1]

≥ 1− α∗(n+ 1)− 1

2

= 1−
(
α((n+ 1)− 1)− 1

2

)
− 1

2

= 1− α(n) .

21

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


