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Abstract

One-way functions (OWFs) are central objects of study in cryptography and computational
complexity theory. In a seminal work, Liu and Pass (FOCS 2020) proved that the average-case
hardness of computing time-bounded Kolmogorov complexity is equivalent to the existence of OWFs.
It remained an open problem to establish such an equivalence for the average-case hardness of some
natural NP-complete problem. In this paper, we make progress on this question by studying a
conditional variant of the Minimum KT-complexity Problem (MKTP), which we call McKTP, as
follows.

1. First, we prove that if McKTP is average-case hard on a polynomial fraction of its instances,
then there exist OWFs.

2. Then, we observe that McKTP is NP-complete under polynomial-time randomized reductions.

3. Finally, we prove that the existence of OWFs implies the nontrivial average-case hardness of
McKTP.

Thus the existence of OWFs is inextricably linked to the average-case hardness of this NP-complete
problem. In fact, building on recent results of Ren and Santhanam (CCC 2021), we show that McKTP
is hard-on-average if and only if there are logspace-computable OWFs.

1 Introduction

One-way functions (OWFs) —that is, functions that are easy to compute but hard to invert— are objects
of great importance in cryptography and computational complexity. For example, it is known that OWFs
exist if and only if pseudorandom generators exist [HILL99] and, moreover, if OWFs exist, then P 6= NP.

In this paper, we ask the following question:

Can the existence of OWFs be shown to be equivalent to the average-case hardness of some
NP-complete problem?

We take concrete steps toward giving an affirmative answer to this question, by presenting a candidate
problem. Note that by Impagliazzo and Naor [IN96] it is known that there exists some NP-complete
problem (Subset Sum) whose average-case hardness implies the existence of OWFs. However, what we
attempt to do is different: We want to make concrete progress in characterizing OWFs by the average-case
hardness of an NP-complete problem.

The importance of NP stems mainly from the fact that, for thousands of important naturally-occurring
computational problems, their worst-case computational complexity is best explained by knowing that they
are NP-complete. However, NP-completeness has not been as relevant for the concerns of cryptographers,
who require one-way functions, which in turn require problems in NP that are hard-on-average. Liu and
Pass [LP20] gave what is arguably the first “natural” example of a problem in NP that is hard-on-average
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if and only if one-way functions exist; but this problem (computing time-bounded Kolmogorov complexity,
Kt) is not known to be NP-complete. Although it is not hard to modify their language to obtain an
artificial NP-complete problem with the same average-case complexity (see Proposition A.1), there had
been no “natural” example of an NP-complete problem whose average-case complexity had been connected
directly to the existence of one-way functions. Our main contribution is to present such an example.

There are different ways to define time-bounded Kolmogorov complexity; the measure KT (defined
in [ABK+06]) has the property that KT(x) is approximately the same as the circuit complexity of
the function that has x as its truth table. Thus the problem MKTP = {(x, i) | KT(x) ≤ i} has been
useful [ABK+06] in studying the Minimum Circuit Size Problem MCSP = {(f, i) | CC(f) ≤ i}, which
has been the subject of much recent work. As with most other Kolmogorov complexity measures, KT(x)
is defined in [ABK+06] as a special case of the conditional KT-complexity KT(x | y), where y is the
empty string. Our results concern the decision problem McKTP = {(x, y, i) | KT(x | y) ≤ i}. We show
the following.

1. If McKTP is hard-on-average, then one-way functions exist (Theorem 1.1).

2. McKTP is NP-complete under randomized reductions (Theorem 1.2).

3. If one-way functions exist, then McKTP is (somewhat) hard-on-average (Theorem 1.4).

4. In fact, McKTP is hard-on-average if and only if logspace-computable one-way functions exist
(Theorem 1.3 and Theorem 1.5).

There has been a flurry of recent activity on this topic, and it may be helpful to present the following
timeline:

1. [LP20] is posted by Liu and Pass, proving an equivalence between the existence of OWFs and the
average-case hardness of Kt complexity.

2. [ACM+21b] is posted by Allender, Cheraghchi, Myrisiotis, Tirumala, and Volkovich, claiming to
characterize the existence of OWFs by the average-case complexity of an NP-complete problem
called Sparse Partial MCSP. This paper was retracted.

3. [ACM+21a] is posted by Allender, Cheraghchi, Myrisiotis, Tirumala, and Volkovich, presenting the
proofs of Item 1 through Item 3 above.

4. [LP21a] is posted by Liu and Pass, whereby they prove that subexponentially-hard OWFs exist if and
only if MKtP (a decision problem based on Kt complexity) is average-case hard for sublinear-time
non-uniform heuristics.

5. [LP21d] is posted by Liu and Pass, showing that one-way functions exist if and only if the EXP-
complete language MKtP is hard-on-average1 and that logspace-computable one-way functions exist
if and only if the PSPACE-complete language MKSP is hard-on-average.

6. [RS21] is posted by Ren and Santhanam, showing that MKTP is hard-on-average if and only if
logspace-computable one-way functions exist. This allows us to prove Item 4 above.

7. [LP21c] is posted by Liu and Pass (which is inspired by and in part a response to [ACM+21b]),
showing that a conditional variant of Kt complexity is NP-complete, and is hard-on-average if and
only if one-way functions exist.

8. [IRS21] is posted by Ilango, Ren, and Santhanam, showing that one-way functions exist if and only
if the undecidable problem MKP (i.e., a decision problem based on Kolmogorov complexity) is
hard-on-average under a samplable distribution, and if and only if MCSP is hard-on-average under
a locally-sampleable distribution.

9. [LP21b] is posted by Liu and Pass, generalizing the results of Ilango, Ren, and Santhanam [IRS21],
whereby they show that there exists some sparse language L such that OWFs exist if and only if L
is average-case hard with respect to some efficiently sampleable “high-entropy” distribution.

1This is also proved in [RS21], and was posted to ECCC one day later.
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1.1 Prior work

An early goal in cryptographic research was to base the existence of cryptographically secure one-way
functions on the worst-case complexity of some NP-complete problem. This goal remains elusive; it was
shown in [AGGM06] that no black-box argument of this sort can proceed based on non-adaptive reductions.
Non-adaptive worst-case-to-average-case reductions were also studied by Bogdanov and Trevisan [BT06b],
who showed that such reductions to sets in NP exist only for problems in NP/poly ∩ coNP/poly. Recent
work by Nanashima [Nan21] holds open the possibility that the security of OWFs can be based on an
adaptive black-box reduction, by first establishing a non-adaptive black-box reduction basing the existence
of auxiliary input one-way functions on the worst-case complexity of an NP-complete problem, although
this would also require non-relativizing techniques. Instead of worst-case hardness, the focus of our work
is on average-case hardness assumptions. A nice survey on this area, that lays out many of the issues
about one-way functions and average-case complexity, is the one by Bogdanov and Trevisan [BT06a].

Hirahara and Santhanam have discussed zero-error average-case complexity of problems related
to MKTP [HS17]. Santhanam [San20] showed that a restricted type of hitting-set generator exists if
and only if MCSP is zero-error average-case hard. Hirahara also proved similar results connecting the
worst-case and the zero-error average-case complexity of problems related to MCSP and Kolmogorov
complexity [Hir18].

More recently, Brzuska and Couteau [BC20] discuss basing OWFs on average-case hardness, stating
that it remains an open question to do this for the general notion of average-case hardness. They
present some negative results, indicating the difficulty of establishing the existence of fine-grained one-way
functions, based on the existence of average-case hardness, via black-box reductions.

There is also an important line of work (including Ajtai [Ajt96] and Micciancio and Regev [MR07])
basing the existence of OWFs on the worst-case complexity of certain problems in NP (including
problems that are closely related to NP-complete problems, although they are not themselves known to
be NP-complete).

1.2 Our results

In this work, we connect the existence of OWFs to the average-case hardness of computing a conditional
(and NP-complete) variant of MKTP, which we term McKTP.

Initially, we prove that the average-case hardness of McKTP implies the existence of OWFs.

Theorem 1.1 (Informal). OWFs exist if McKTP is hard-on-average on a polynomial fraction of its
instances.

We also show that McKTP is NP-complete under randomized reductions.

Theorem 1.2 (Informal). McKTP is NP-complete under polynomial-time one-sided-error randomized
reductions.

Moreover, Theorem 1.1 suggests an approach for excluding Impagliazzo’s Pessiland [Imp95], that is, a
version of our world where there are average-case hard problems in NP and there are no OWFs. This
approach is based on the following observation. If McKTP is NP-hard under average-case reductions,
then by Theorem 1.1 the existence of an average-case hard problem in NP would imply the existence of
OWFs. Therefore proving that McKTP is NP-hard under average-case reductions excludes Pessiland.

We are able to prove a stronger version of Theorem 1.1, building on the work of Ren and San-
thanam [RS21].

Theorem 1.3 (Informal). Logspace-computable OWFs exist if McKTP is hard-on-average on a polynomial
fraction of its instances.

Finally, we prove a weak converse of Theorem 1.1, and a strong converse of Theorem 1.3.

Theorem 1.4 (Informal). OWFs exist only if McKTP is hard-on-average on an exponential fraction of
its instances.

Theorem 1.5 (Informal). Logspace-computable OWFs exist only if McKTP is hard-on-average on an
polynomial fraction of its instances.

By Theorem 1.3 and Theorem 1.5, we get the following corollary.

Corollary 1.6. McKTP is hard-on-average if and only if logspace-computable OWFs exist.
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1.2.1 How significant are our results?

The reader may wonder whether the hypothesis of Theorem 1.1 is overly strong. Is there perhaps some
trivial heuristic that succeeds well on average for this NP-complete decision problem?

The input to the problem consists of a triple (x, y, θ), where the question is whether KT(x | y) ≤ θ,
where θ is a number bounded by |x|+O(log |x|). A simple heuristic is to accept if θ is at the high end of
this range, and reject otherwise; one can augment this to accept for slightly lower values of θ if x has
certain hallmarks of low complexity (such as starting or ending with a logarithmic number of zeros, or
agreeing with y on those substrings). However, when inputs are chosen at random, this heuristic still
seems likely to fail with constant probability if θ is close to the boundary between where the heuristic
accepts and rejects. In particular, it is far from clear how to design a heuristic that would have failure
probability less than, say 1/s2, where θ ranges over a domain of size s. In particular, it seems quite
plausible that there is a constant k for which no heuristic can achieve failure probability less than 1/sk,
which is precisely the hypothesis of Theorem 1.1, and is sufficient for the existence of OWFs.

Moreover, by Theorem 1.5, this hypothesis is in fact equivalent to the existence of logspace-computable
OWFs, which is widely believed to hold.

By the same token, the conclusion of Theorem 1.4 gives a much weaker, but still non-trivial, average-
case hardness condition for McKTP.

1.3 Our techniques

Our main results are Theorem 1.1, Theorem 1.2, and Theorem 1.4. Below we provide some intuition
regarding their proofs.

1. Theorem 1.1 is proved by

(a) giving an average-case decision-to-search reduction for McKTP (see Lemma 3.3) and

(b) observing that a recent result by Liu and Pass [LP20], whereby they prove that the average-case
hardness of a search variant of time-bounded Kolmogorov complexity Kt yields OWFs, can be
adjusted to the case of McKTP as well (see Lemma 3.4).

The three properties of time-bounded Kolmogorov complexity Kt, for some t : N→ N where
t(n) ≥ n for all n ∈ N, that are used by Liu and Pass, are as follows.

i. One can create a string of low time-bounded Kolmogorov complexity in polynomial
time. This can be done by running a universal Turing machine U on some string, for
polynomially-many steps, and subsequently recording the output of U .

ii. For any string x, the possible values of its Kt complexity are polynomially-many in |x|.
In fact, there is a c > 0 such that, for any function t : N→ N such that t(n) ≥ n for all
n ∈ N, and any string x, the possible values of Kt(x) are at most |x|+ c.

iii. The following domination property holds. Let x∗ ∈ {0, 1}n be a string, and c > 0 be as in
Item 1(b)ii. Then,

Pr
Π∼{0,1}n+c

[
U
(

Π, 1t(n)
)

= x∗
]
≥ 1

2n+c
=

2−n

2c
≥

Prx∼{0,1}n [x = x∗]

poly(n)
.

As it turns out, all of these properties are satisfied even when one considers McKTP. This is
true for the following reasons.

iv. One can create a string of low conditional KT complexity in polynomial time. As above,
this can be done by running a universal oracle Turing machine U , given oracle access to a
program Π and an auxiliary string y, on a string x for t ≤ poly(|x|) steps, and subsequently
recording the output of UΠ,y.

v. For any string x, the possible values of its KT complexity given any string y are
polynomially-many in |x|. In fact, there is a c > 0 such that for any string x, the
possible values of the conditional KT complexity of (x, y) are at most |x|+ c log |x|.

vi. The following domination property holds (for KT and conditional KT complexity). Let
x∗ ∈ {0, 1}n be a string, c > 0 be as in Item 1(b)v, and nc := n + c log n. Then, for all
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y ∈ {0, 1}∗, it is the case that

Pr
Π∼{0,1}nc , t∼[nc]:

|Π|+t≤nc

[
for all 1 ≤ i ≤ n, UΠ,y

(
i, 1t

)
= x∗i

]
≥ 1

2nc+lognc

=
2−n

nc (n+ c log n)

=
Prx∼{0,1}n [x = x∗]

poly(n)
.

2. Theorem 1.3 is proved by use of the techniques of [RS21]. In particular, the proof of Theorem 1.1
shows that the following function is one-way, if McKTP is hard-on-average:

Given (s, t, y,Π), output the string obtained by running U on y and the length-s prefix
of Π for t steps.

Ren and Santhanam observe that this function is logspace-computable if we restrict t to be O(log n).
Then, crucially, they show that for most strings in the range of this function, s+ t is minimized
when t = O(log n). These insights, combined with the the proof of the preceding theorem, suffice.

3. Theorem 1.2 is proved by

(a) noting that McKTP is in NP (see Lemma 2.14) and

(b) showing the NP-hardness of McKTP (see Corollary B.9). This is done by giving a polynomial-
time randomized reduction from Set Cover, which is NP-hard to approximate (see Corollary B.8),
to an appropriate gap version of McKTP (see Corollary B.7). Note that this step closely
mimics the proof of Ilango [Ila20] for the NP-hardness of Minimum Oracle Circuit Size Problem
(MOCSP).

4. Theorem 1.4 is proved by giving a proof of its contrapositive statement, as explained by the items
below.

(a) Assume that McKTP is easy on average under the uniform distribution.

(b) By a corollary of Ilango, Loff, and Oliveira (see Lemma 2.23), for all a ≥ 1, there exists a
learning algorithm for SIZE[na] that works for infinitely many n ∈ N; see Lemma 4.2.

(c) By a learner-to-distinguisher reduction (see Lemma 4.5), for every polynomial-time computable
Boolean function family {fy}y∈{0,1}∗ , there is a distinguisher for {fy}y∈{0,1}∗ .

(d) By the correctness of the works by H̊astad, Implagliazzo, Levin, and Luby [HILL99], and
Goldreich, Goldwasser, and Micali [GGM86], there are no OWFs.

5. Theorem 1.5 is proved by giving a slight modification to the proof of [RS21, Lemma 4.7].

1.4 Paper organization

In Section 2 we give some background knowledge and useful facts. We prove Theorem 1.1 in Section 3,
Theorem 1.3 in Section 5, Theorem 1.4 in Section 4, and Theorem 1.5 in Section 6. Finally, we prove
Theorem 1.2 in Appendix B.

2 Preliminaries

We denote the natural numbers by N and the positive reals by R>0. For any n ∈ N, we denote the set
{1, . . . , n} by [n]. Let x = (x1, . . . , xn) ∈ {0, 1}n be a string of length n; we write |x| := n. The empty
string is denoted by λ.

We denote by Fn the class of all Boolean functions on n variables. We identify infinite Boolean
functions f : {0, 1}∗ → {0, 1} with collections {fn}n∈N, whereby fn : {0, 1}n → {0, 1} for all n ∈ N.

5



2.1 Circuit complexity

We consider Boolean circuits over the bounded fan-in {∧2,∨2,¬} basis. Given a circuit, its size is the
number of its gates. Let s : N→ N be a function. If we use s to upper bound the size of some circuit,
then we shall call s a size function.

Lemma 2.1. Let C be a circuit of size s ∈ N. Then, C can be described by using O(s log s) bits.

Lemma 2.2. Let s : N→ N be a size function. Then, there exists an algorithm that, on input a description
dC ∈ {0, 1}∗ of a circuit C that has n ∈ N inputs and size s(n), whereby |dC | ≤ O(s(n) log s(n)) (as in

Lemma 2.1), and a string x ∈ {0, 1}n, outputs C(x) ∈ {0, 1} in time O
(
s(n)

2
log s(n)

)
.

Proof. Let C be a circuit that has n inputs and size s(n), and let x ∈ {0, 1}n be a string. Then, on input
x, any gate of C can be evaluated in a bottom-up fashion by parsing the description dC ∈ {0, 1}∗ of C a
constant number of times. The idea described above can be implemented as an algorithm that runs in
time

s(n) ·O(|dC |) ≤ s(n) ·O(s(n) log s(n)) = O
(
s(n)

2
log s(n)

)
.

Given a Boolean function f : {0, 1}n → {0, 1}, the circuit complexity of f , denoted CC(f), is the
size of a minimum size circuit that computes f . For a size function s : N→ N, we denote by SIZE[s(n)]
the class of Boolean functions f = {fn}n∈N, whereby fn : {0, 1}n → {0, 1} for all n ∈ N, such that
CC(fn) ≤ s(n) for all n ∈ N.

We require the following trivial lower bound on the circuit complexity of an arbitrary Boolean function
(which one can also regard as a convention regarding the measure CC).

Lemma 2.3. Let f : {0, 1}n → {0, 1} be a function. Then, CC(f) ≥ n.

2.2 Uniform algorithms

In this work, we do not distinguish between Turing machines and algorithms. We say that an algorithm
A is a PPT algorithm if A is a probabilistic polynomial-time algorithm. If A is a PPT algorithm that
runs in time p(n) for a polynomial p, then we denote by A(x; r) the output of A on input x ∈ {0, 1}∗

using random bits r ∈ {0, 1}p(|x|). We say that an algorithm A is a PPT oracle algorithm if A is a PPT
algorithm that has access to some oracle. If A is a PPT oracle algorithm that runs in time p(n) for a
polynomial p and has access to an oracle for a language L ⊆ {0, 1}∗, then we denote by AL(x; r) the

output of AL on input x ∈ {0, 1}∗ using random bits r ∈ {0, 1}p(|x|).
We will require the following observation, which upper bounds the circuit complexity of uniform

computations.

Lemma 2.4 ([PF79]). Let T : N→ N be a function. Let f : {0, 1}n → {0, 1} be a function computable by
a Turing machine in time O(T (n)). Then, there exists a circuit of size O(T (n) log T (n)) that computes f .

2.3 Probability theory

We will use the following useful fact from probability theory.

Lemma 2.5 (Markov’s inequality). If X is a non-negative random variable with µ := E[X], then for all
k > 0 it is the case that Pr[X ≥ kµ] ≤ 1/k.

Lemma 2.6 (Averaging argument). If X ∈ [0, 1] is a random variable with µ := E[X], then for all
0 < c < 1 it is the case that

Pr[X ≥ cµ] ≥ (1− c)µ.

Lemma 2.7 (Chernoff bound). Let n ∈ N and X1, . . . , Xn be Boolean random variables that are
independent and identically distributed. Let X :=

∑n
i=1Xi and µ := E[X]. Then, for all 0 ≤ δ ≤ 1, it is

the case that

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ
3 .
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2.4 KT complexity

2.4.1 A universal Turing machine

In what follows, we fix some efficient universal (oracle) Turing machine (UTM) U . Let y,Π, z ∈ {0, 1}∗
and t ∈ N. The notation UΠ,y(z, 1t) denotes the output of U when U runs the program Π on input z for
at most t steps, given that U has extended oracle access to program Π and standard oracle access to
auxiliary string y. These notions are defined as follows.

1. Standard oracle access to auxiliary string y means that U has a standard oracle tape Ty of log |y|
cells, and that in order to read a bit yi of y, whereby 1 ≤ i ≤ |y|, the machine U has to write

i ∈ {0, 1}log|y|
on Ty and then enter a question state. In the next step, the contents of Ty are erased

and replaced by a bit b such that b = yi.

One important aspect of our choice of U is that, for every auxiliary string y ∈ {0, 1}∗ and

1 ≤ i ≤ log |y|, the oracle query yi
?
= 1 is such that it requires time log |y|, and can be implemented

in time O(log |y|).

2. Extended oracle access to program Π means that U has a tape TΠ of |Π| cells that contains Π, and
the head of TΠ has both the ability to jump to an indexed location 1 ≤ i ≤ |Π| of TΠ, namely
TΠ[i] = Πi, and to move left and right on TΠ. Note that in the former case the index i is written in
a separate tape of log |Π| cells, specifically allocated for that purpose. (So extended oracle access
implies the existence of two tapes that help facilitate the oracle query.)

The notation UΠ,y(z) denotes the output of U when U runs the program Π on input z, until Π halts
(if this is the case, otherwise Π runs forever), whereby U has extended oracle access to Π and standard
oracle access to y.

In this work, we will assume that whenever U is given oracle access to a program Π, this access will
be extended, and whenever U is given oracle access to an auxiliary string y, this access will be standard.
This is mainly to avoid unnecessary complications in the proof of Theorem 1.2 (where it is convenient to
have sequential access to Π, while requiring that each query to y uses logarithmic time) while maintaining
the trivial upper bound on KT complexity (see Lemma 2.8) which requires oracle access to Π.

We will also assume that the output of U will either be 1 or 0, on any input.

2.4.2 Definition of KT complexity, and some properties

Given strings x, y ∈ {0, 1}∗, we define the KT complexity of x given y, denoted KT(x | y), to be the
minimum value of |Π|+ t over programs Π ∈ {0, 1}∗ and run-time bounds t ∈ N whereby for all 1 ≤ i ≤ |x|
it is the case that UΠ,y(i, 1t) = xi.

2 For all strings x ∈ {0, 1}∗, we define KT(x) to be equal to KT(x | λ).

Lemma 2.8 ([ABK+06]). There is a c > 0 such that for all x ∈ {0, 1}∗ it is the case that KT(x) is at
most |x|+ c log |x|.

Corollary 2.9. There is a c > 0 such that for all x, y ∈ {0, 1}∗ it is the case that KT(x | y) is at most
|x|+ c log |x|.

Lemma 2.10. Let n,m ∈ N be such that n ≤ m, let σ > 0, and let s := n1/σ. Then, for all y ∈ {0, 1}m
there exists x ∈ {0, 1}n such that KT(x | y) ≤ s.

Proof. This can be seen by setting x := y1 · · · yn ∈ {0, 1}n. In this case, KT(x | y) ≤ c log n ≤ n1/σ = s,
where c is from Corollary 2.9.

Lemma 2.11. Let n ∈ N be sufficiently large, m ∈ N, and c > 1. Then, it is the case that

Pr
x∼{0,1}n,
y∼{0,1}m

[
KT(x | y) ≤ n1/c

]
= o(1) ,

where x and y are independent and uniformly random.

2Originally [ABK+06], KT(x | y) was defined with the additional requirement that, for i = |x|+ 1, UΠ,y
(
i, 1t

)
= ∗. We

do not need that additional complication here, although our theorems would also hold using that definition.
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Proof. We have that

Pr
x,y

[
KT(x | y) ≤ n1/c

]
=
∑
y

Pr
x

[
KT(x | y) ≤ n1/c

]
· 1

2m

=
∑
y

∣∣{x ∈ {0, 1}n | KT(x | y) ≤ n1/c
}∣∣

2n
· 1

2m

≤
∑
y

∣∣{Π ∈ {0, 1}∗ | |Π| ≤ n1/c
}∣∣

2n
· 1

2m
,

since KT(x | y) ≤ n1/c implies that there exists a program Π ∈ {0, 1}∗ and a run-time bound t ∈ N such
that UΠ,y(i, 1t) = xi for all 1 ≤ i ≤ n, and |Π| < |Π|+ t ≤ n1/c, or

=

∣∣{Π ∈ {0, 1}∗ | |Π| ≤ n1/c
}∣∣

2n

≤ 2n
1/c+1 − 1

2n

≤ 2n
1/c+1

2n

= o(1) .

Lemma 2.12. For all f : {0, 1}n → {0, 1}, 1 ≤ t ≤ 2n, and x1, . . . , xt ∈ {0, 1}n, it is the case that

KT((f(x1) , . . . , f(xt)) | (x1, . . . , xt)) ≤ O
(

CC(f)
3
)
.

Proof. Let Cf be a minimum-size circuit that computes f . Let Π be a program as follows:

On input 1 ≤ i ≤ n, compute and output Cf (xi).

By Lemma 2.1, we can assume that the description of Cf has size O(CC(f) log CC(f)), so we have that
|Π| ≤ O(CC(f) log CC(f)). By Lemma 2.2 and Lemma 2.3, the running time of Π is at most

O(log n) +O(n log n) +O
(

CC(f)
2

log CC(f)
)
≤ O

(
CC(f)

3
)
.

Therefore, KT((f(x1) , . . . , f(xt)) | (x1, . . . , xt)) ≤ O
(

CC(f)
3
)

.

2.5 Minimum Conditional KT-complexity Problem, and variants

We give here formal definitions of the computational problems that we will consider in this work. These
are the decision and search variants of McKTP.

Definition 2.13 (Decision variant). Let c > 0 be as in Corollary 2.9. Let n ∈ N and m : N→ N. The
Minimum m-Conditional KT-complexity Problem of dimension n (McKTmP of dimension n) is defined
as follows.

• Input: Strings x ∈ {0, 1}n, y ∈ {0, 1}m(n)
, and a parameter 0 ≤ θ ≤ n+ c log n in binary.

• Question: Is there a program Π ∈ {0, 1}∗ and a run-time bound t ∈ N such that UΠ,y(i, 1t) = xi for
all 1 ≤ i ≤ n, and |Π|+ t ≤ θ?

The following result is a standard observation.

Lemma 2.14. For all polynomial-time computable functions m : N→ N, it is the case that McKTmP of
dimension n is in NP.

Definition 2.15 (Search variant). Let n ∈ N and m : N → N. The search variant of Minimum m-
Conditional KT-complexity Problem of dimension n (Search McKTmP of dimension n) is defined as
follows.

• Input: Strings x ∈ {0, 1}n and y ∈ {0, 1}m(n)
.

• Output: A program Π ∈ {0, 1}∗ and a run-time bound t ∈ N in binary such that UΠ,y(i, 1t) = xi for
all 1 ≤ i ≤ n, and the sum |Π|+ t is minimized over the choices of Π and t.

8



2.6 One-way functions

In the following, a function µ is said to be negligible if for every polynomial p there exists a n0 ∈ N such
that for all naturals n > n0 it is the case that µ(n) ≤ 1/p(n).

Definition 2.16. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. We say that f is
a one-way function (OWF) if for every PPT algorithm A there exists a negligible function µ such that for
all n ∈ N it is the case that

Pr
x∼{0,1}n,r

[
A(1n, f(x) ; r) ∈ f−1(f(x))

]
< µ(n)

where the size of r is equal to the running time of A.

We will also employ the following weaker notion of OWFs.

Definition 2.17. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. We say that f is
an α-weak one-way function (α-weak OWF) if for every PPT algorithm A and all sufficiently large n ∈ N
it is the case that

Pr
x∼{0,1}n,r

[
A(1n, f(x) ; r) ∈ f−1(f(x))

]
< 1− α(n)

where the size of r is equal to the running time of A. We say that f is a weak one-way function (weak
OWF) if there exists some polynomial q > 0 such that f is a (1/q)-weak OWF.

Yao [Yao82] proved that the existence of weak OWFs implies the existence of OWFs.

Theorem 2.18 ([Yao82]). Assume that there exists a weak one-way function. Then there exists a one-way
function. (Also, if there exists a weak-one-way function computable in logspace, then there is a one-way
function computable in logspace.)

2.7 Average-case hardness/easiness

A heuristic H is a PPT algorithm that, on input any x ∈ {0, 1}n, outputs a value in {0, 1} along each
computation path.

Definition 2.19 (Average-case hardness). Let α : N→ [0, 1] be a failure parameter function. We say that
a function f : {0, 1}n → {0, 1} is α-hard-on-average (α-HoA) if for all heuristics H and all sufficiently
large n ∈ N it is the case that

Pr
x∼{0,1}n,r

[H(x; r) = f(x)] ≤ 1− α(n)

where the size of r is equal to the running time of H.

Definition 2.20 (Average-case easiness). Let α : N → [0, 1] be a success parameter function. We say
that a function f : {0, 1}n → {0, 1} is α-easy-on-average (α-EoA) if f is not (1− α)-hard-on-average;
that is, if there exists some heuristic H such that for infinitely many n ∈ N it is the case that

Pr
x∼{0,1}n,r

[H(x; r) = f(x)] > 1− (1− α(n)) = α(n)

where the size of r is equal to the running time of H.

Let R ⊆ {0, 1}n × {0, 1}∗ be a search problem. A heuristic H is a PPT algorithm that, on input any
x ∈ {0, 1}n, outputs a value in {0, 1}∗ along each computation path.

The notions of average-case hardness and easiness for search problems are defined in a fashion similar
to that of decision problems; see Definition 2.19 and Definition 2.20.
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2.7.1 Infinitely-often average-case easiness of McKTP, with advantage

We require the following definition, which is inspired by Ilango, Loff, and Oliveira [ILO20].

Definition 2.21 (Following Ilango, Loff, and Oliveira [ILO20]). Let m : N→ N, s : N→ N be such that
s(n) < n/4 for all n ∈ N, and α : N→ [0, 1]. A probabilistic algorithm B solves McKTmP of dimension
n with advantage α for a size parameter s and infinitely many n ∈ N if, for infinitely many n ∈ N, it is
the case that ∣∣∣∣Pr

y,r
[B(1n, x, y; r) = 1]− Pr

z,y,r
[B(1n, z, y; r) = 1]

∣∣∣∣ ≥ α(n)

where y ∈ {0, 1}m(n)
and z ∈ {0, 1}n are uniformly random, x = x(y) ∈ {0, 1}n is arbitrary and such that

KT(x | y) ≤ s (which exists by Lemma 2.10), and r ∈ {0, 1}∗ has size equal to the running time of B. In
this case, we may also say that McKTmP of dimension n is easy-on-average with advantage α for a size
parameter s and infinitely many n ∈ N (EoA with advantage α for a size parameter s and infinitely many
n ∈ N).

2.8 Learning algorithms

For a Boolean function f : {0, 1}n → {0, 1}, an example oracle for f , denoted EX(f), is a procedure that
when invoked returns a pair (x, f(x)) where x ∼ {0, 1}n.

Let 0 < ε < 1. We say that a circuit C with n inputs is ε-close to a function f : {0, 1}n → {0, 1} if

Pr
x∼{0,1}n

[C(x) 6= f(x)] ≤ ε.

We follow the intuitive notion of learning by Valiant [Val84].

Definition 2.22 (Infinitely-often learnability; following Valiant [Val84]). A probabilistic algorithm
infinitely-often learns a class of Boolean functions F with accuracy error ε and confidence error δ if, for
all f ∈ F of the form f = {fn}n∈N, whereby fn : {0, 1}n → {0, 1} for all n ∈ N, and infinitely many
n ∈ N, it is the case that

Pr
EX(fn),r

[
AEX(fn)(1n; r) outputs a circuit that is ε(n)-close to fn

]
≥ 1− δ(n) ,

where the size of r is equal to the running time of A.

We will use the following result, which is inspired by Ilango, Loff, and Oliveira [ILO20].

Lemma 2.23 (Following Ilango, Loff, and Oliveira [ILO20, Theorem 36, Item (2)]). If there exists c > 1
such that for all 0 < γ < 1 McKTmP of dimension t and m := t1+γ can be solved on average with
advantage 1/10 for a size parameter s := t1/c and infinitely many t ∈ N, then for every a ≥ 1 the class
SIZE[na] can be infinitely-often learned in polynomial time with accuracy error 1/n and confidence error
1/n.

Proof sketch. Let a ≥ 1 be arbitrary, let c > 1 be as in the statement of Lemma 2.23, let γ := 1/ (c · 4a),
and let B be the PPT algorithm that witnesses the fact that McKTmP of dimension t and m := t1+γ can
be solved on average with advantage 1/10 for a size parameter s := t1/c and infinitely many t ∈ N. Let
t ∈ N be sufficiently large and such that B satisfies its average-case guarantees on inputs of dimension
n := tγ . Let N := t+m(t) = t+ t1+γ = t+ tn be the size of the instances of McKTmP of dimension t.
Let q be a polynomial such that B runs in time q(N). We will prove that SIZE[na] can be learned in
polynomial time with accuracy error 1/n and confidence error 1/n.

By examining the work of Ilango, Loff, and Oliveira [ILO20, Theorem 36, Item (2)], it would suffice
to show that there exists a PPT algorithm B′ such that for infinitely many n ∈ N and all f ∈ SIZE[na] it
is the case that ∣∣∣∣ Pr

{xi}ti=1,r
[B′(1n, (x1, f(x1)) , . . . , (xt, f(xt)) ; r) = 1]
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− Pr
{xi}ti=1,b,r

[B′(1n, (x1, b1) , . . . , (xt, bt) ; r) = 1]

∣∣∣∣ ≥ 1

10

whereby x1, . . . , xt ∈ {0, 1}n, b ∈ {0, 1}t, and r ∈ {0, 1}poly(N)
are independent and uniformly random.

The reason is that Ilango, Loff, and Oliveira [ILO20] employ the inequality above in a hybrid argument
that enables them to design a learning algorithm for SIZE[na], by making use of the advantage that the
hybrid argument yields. Then, they use a boosting technique by Boneh and Lipton [BL93] to improve
the accuracy of their learning algorithm.

To this end, let B′ be a probabilistic algorithm such that

B′(1n, z; r) := B(1n, (zn+1, z2n+2, . . . , zt+tn) ,

((z1, z2, . . . , zn) , (zn+2, zn+3, . . . , z2n+1) , . . . , (zt+tn−n, zt+tn−n+1, . . . , zt+tn−1)) ; r) ,

for all n ∈ N, z ∈ {0, 1}t+tn, and r ∈ {0, 1}q(N)
. That is, on input (1n, z) and using random bits r the

algorithm B′ applies a permutation σ on z, to get a string z′ := σ(z) = zσ(1) · · · zσ(n), and then runs
B on (1n, z′) using random bits r. For that matter B′ runs in polynomial time, by the facts that σ is
polynomial-time computable and B is a PPT algorithm.

We now have ∣∣∣∣ Pr
{xi}ti=1,r

[B′(1n, (x1, f(x1)) , . . . , (xt, f(xt)) ; r) = 1]

− Pr
{xi}ti=1,b,r

[B′(1n, (x1, b1) , . . . , (xt, bt) ; r) = 1]

∣∣∣∣
=

∣∣∣∣ Pr
{xi}ti=1,r

[B(1n, (f(x1) , . . . , f(xt)) , (x1, . . . , xt) ; r) = 1]

− Pr
{xi}ti=1,b,r

[B(1n, b, (x1, . . . , xt) ; r) = 1]

∣∣∣∣ ≥ 1

10

by the definition of B′, our assumption, and the fact that

KT((f(x1) , . . . , f(xt)) | (x1, . . . , xt)) ≤ O
(

(na)
3
)
≤ n4a = nγ/c = t1/c = s < t/4,

by Lemma 2.12.

2.9 Pseudorandom generators

We recount the notion of fooling a PPT algorithm.

Definition 2.24. Let `, n ∈ N be such that ` < n, and G : {0, 1}` → {0, 1}n be a function. Let A be a
PPT algorithm that on inputs of size k ∈ N runs in time q(k) for some polynomial q. Let also 0 < ε < 1.
We say that G is a function that ε-fools A, if∣∣∣∣∣∣∣ Pr

x∼{0,1}n,
r∼{0,1}q(n)

[A(x; r) = 1]− Pr
y∼{0,1}`,
r∼{0,1}q(n)

[A(G(y) ; r) = 1]

∣∣∣∣∣∣∣ < ε.

The notion of fooling is used in the definition of a pseudorandom generator (PRG). We will make use
of PRGs {Gn}n∈N for which there exists a function ` : N→ N that satisfies `(n) < n for all n ∈ N, such

that Gn : {0, 1}`(n) → {0, 1}n for all n ∈ N and the following holds: For every PPT algorithm A there
exists a function ε : N→ [0, 1] such that for all n ∈ N it is the case that Gn is a function that ε(n)-fools
A.

H̊astad, Impagliazzo, Levin, Luby [HILL99] have shown that the existence of OWFs implies the
existence of PRGs.

Theorem 2.25 (OWFs imply PRGs; see H̊astad, Impagliazzo, Levin, Luby [HILL99]). If there exists a

OWF, then for every c > 0 there exists a function {Gn}n∈N, whereby Gn : {0, 1}n
1/c

→ {0, 1}n for all
n ∈ N, such that for every PPT algorithm A there is a negligible function ε : N→ [0, 1] such that for all
n ∈ N it is the case that Gn is a function that ε(n)-fools A.
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2.10 Pseudorandom functions

We will also require the notions of pseudorandom function families and distinguishers for function families.

Definition 2.26. Let {fy}y∈{0,1}∗ be a family of functions such that fy : {0, 1}|y| → {0, 1} for all

y ∈ {0, 1}∗, and there is a polynomial-time algorithm that computes fy(x) given y and x ∈ {0, 1}|y|. We
say that the function family {fy}y∈{0,1}∗ is a pseudorandom function family (PRF family) if for all PPT

oracle algorithms A there is a negligible function ε : N→ [0, 1] such that for all sufficiently large n ∈ N it
is the case that ∣∣∣∣ Pr

y∼{0,1}n,r

[
Afy (1n; r) = 1

]
− Pr
g∼Fn,r

[Ag(1n; r) = 1]

∣∣∣∣ < ε(n)

where the size of r is equal to the running time of A.

Definition 2.27. Let {fy}y∈{0,1}∗ be a family of functions such that fy : {0, 1}|y| → {0, 1} for all

y ∈ {0, 1}∗, and there is a polynomial-time algorithm that computes fy(x) given y and x ∈ {0, 1}|y|.
We say that a PPT oracle algorithm A is a distinguisher for {fy}y∈{0,1}∗ if for all negligible functions

ε : N→ [0, 1] and infinitely many n ∈ N it is the case that∣∣∣∣ Pr
y∼{0,1}n,r

[
Afy (1n; r) = 1

]
− Pr
g∼Fn,r

[Ag(1n; r) = 1]

∣∣∣∣ ≥ ε(n)

where the size of r is equal to the running time of A.

Note how a distinguisher violates the guarantees of a PRF family. Below, we present a result by
Goldreich, Goldwasser, and Micali [GGM86], where they proved that the existence of PRGs implies the
existence of PRFs.

Theorem 2.28 (PRGs imply PRFs; see Goldreich, Goldwasser, and Micali [GGM86]). If there exists a

function {Gn}n∈N, whereby Gn : {0, 1}n/2 → {0, 1}n for all n ∈ N, such that for every PPT algorithm A
there is a negligible function ε : N→ [0, 1] such that for all n ∈ N it is the case that Gn is a function that
ε(n)-fools A, then there exists a PRF family.

Theorem 2.25 and Theorem 2.28 yield the following corollary.

Corollary 2.29 (OWFs imply PRFs). If there exists a OWF, then there exists a PRF family.

3 OWFs from average-case hardness of McKTP

In this section, we prove the following result.

Theorem 3.1. Assume that, for some m : N → N, McKTmP of dimension n is (1/p)-HoA for some
polynomial p. Then, there exists some weak OWF.

By Theorem 3.1 and Theorem 2.18, we get the following corollary.

Corollary 3.2 (Theorem 1.1, restated). Assume that, for some m : N→ N, McKTmP of dimension n
is (1/p)-HoA for some polynomial p. Then, there exists some OWF.

3.1 Proof of Theorem 3.1

We will first require the following two lemmas.

Lemma 3.3. For all functions m : N → N, if McKTmP is (1/p)-HoA for some polynomial p, then
Search McKTmP is

(
1/p2

)
-HoA.

Proof. We will prove the contrapositive. That is, we will prove that if Search McKTmP is
(
1− 1/p2

)
-EoA,

then McKTmP is (1− 1/p)-EoA. In what follows, let c > 0 be as in Corollary 2.9.
Let N ′ := n + m(n) be the size of the instances of Search McKTmP of dimension n. Assume that

Search McKTmP is
(
1− 1/p2

)
-EoA. That is, assume that there exists some heuristic H ′ that on input
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a random instance (x, y) ∈ {0, 1}n × {0, 1}m(n)
outputs with probability greater than 1 − 1/p(N ′)

2
a

program Π ∈ {0, 1}∗ and a run-time bound t ∈ N (in binary) such that UΠ,y(i, 1t) = xi for all 1 ≤ i ≤ n,
and the sum |Π|+ t is minimized over the choices of Π and t.

Given H ′, a heuristic H for McKTmP of dimension n and input size N := n+m(n) + log(n+ c log n),
works as follows:

On input strings x ∈ {0, 1}n and y ∈ {0, 1}m(n)
, and a size parameter 0 ≤ θ ≤ n+ c log n in

binary, run H ′ on (x, y) to get a program Π ∈ {0, 1}∗ and a run-time bound t ∈ N (in binary).
If Π and t are such that UΠ,y(i, 1t) = xi for all 1 ≤ i ≤ n and |Π|+ t ≤ θ, then return YES.
Else, return NO.

Note that the running time of H is polynomial in N . The success probability of H over a random instance
(x, y, θ) and random bits r is

Pr
x,y,θ,r

[H(x, y, θ; r) succeeds]

≥ Pr
x,y,θ,r

[H(x, y, θ; r) succeeds | H ′(x, y; r) succeeds] · Pr
x,y,r

[H ′(x, y; r) succeeds]

> 1 ·

(
1− 1

p(N ′)
2

)
= 1− 1

p(N ′)
2 ≥ 1− 1

p(N)
,

since 1/p(N ′)
2 ≤ 1/p(N) for all sufficiently large n ∈ N, as desired.

Therefore, McKTmP is (1− 1/p)-EoA as witnessed by H.

The following is an elaboration on the seminal work by Liu and Pass [LP20].

Lemma 3.4 (Following Liu and Pass [LP20]). Assume that, for some m : N→ N, Search McKTmP is
(1/p)-HoA for some polynomial p. Then, there exists some weak OWF.

Proof. Fix some UTM U , and let c > 0 be as in Corollary 2.9. Let n ∈ N be sufficiently large and such
that Search McKTmP of dimension n is (1/p)-HoA. Consider the function f : {0, 1}∗ → {0, 1}∗ defined
by the mapping rule

(s, t, y,Π′) 7→
(
s+ t, UΠ,y

(
1, 1t

)
, . . . , UΠ,y

(
n, 1t

)
, y
)
,

where m := m(n), y ∈ {0, 1}m, Π′ ∈ {0, 1}n+c logn
is a program, and Π := Π′|[s] is the s-bit prefix of

Π′. Note that without loss of generality, s + t ≤ n + c log n, by Corollary 2.9. This also implies that
s ≤ n + c log n and t ≤ n + c log n. For that matter, f is a function from {0, 1}M to {0, 1}N , where
M := 2 log(n+ c log n) + m + n + c log n and N := log (n+ c log n) + n + m, and is computable in
polynomial time.

Observe also that f is only defined over infinitely many input lengths. However, by a padding trick, f
can be transformed into another function f ′ that is defined over all input lengths, and such that f ′ is a
weak one-way function, given that f is [LP20].

We now claim that if Search McKTmP is (1/p)-HoA, then f is a (1/q)-weak OWF, where q is a

polynomial such that q(n) := 2 (n+ c log n)
2
ncp(n+m(n))

3
for all n ∈ N. Towards a contradiction,

assume that there exists a PPT algorithm A that inverts f with probability at least 1−1/q(M) ≥ 1−1/q(n).
First, note that except for a fraction 1/ (2p(n+m)) of sequences of random bits r for A, the

deterministic machine Ar, given by Ar(f(z)) := A(f(z) ; r) for all z ∈ {0, 1}M , fails to invert f with
probability at most 2p(n+m) /q(n) over a uniformly random input z. This is so, as

Pr
r

[
Pr
z

[Ar(f(z)) fails] >
2p(n+m)

q(n)

]
≤ Pr

r

[
Pr
z

[Ar(f(z)) fails] ≥ 2p(n+m) ·Pr
z,r

[Ar(f(z)) fails]

]
= Pr

r

[
Pr
z

[A(f(z) ; r) fails] ≥ 2p(n+m) ·E
r

[
Pr
z

[A(f(z) ; r) fails]
]]
≤ 1

2p(n+m)
,
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by Lemma 2.5. Henceforth, we will call such a sequence of random bits good ; otherwise, we will call a
sequence of random bits bad. Therefore, we have

Pr
z,r

[A(f(z) ; r) fails | r is good] = Pr
z,r

[Ar(f(z)) fails | r is good] ≤ 2p(n+m)

q(n)
.

We propose the following heuristic H for Search McKTmP:

On input strings x ∈ {0, 1}n and y ∈ {0, 1}m, and using random bits r, the algorithm H
runs A(j, x, y; r) for all j ∈ [n+ c log n]. For each j ∈ [n+ c log n], A(j, x, y; r) returns a tuple(
sj , tj , y,Π

′
j

)
. Then, H(x, y; r) returns a program Π′k|[sk] from

{
Π′j
∣∣
[sj ]

}
j∈[n+c logn]

such that

U
Π′k|[sk]

,y
(i, 1tk) = xi for all 1 ≤ i ≤ n, and

∣∣∣Π′k|[sk]

∣∣∣+ tk = sk + tk is minimized.

We will now analyze the average-case performance of H. Fix a good sequence of random bits r, as defined
above, and recall that, in this case, Prz[Ar(f(z)) fails] ≤ 2p(n+m) /q(n). Let Sr be the set of inputs
(x, y) for which H(x, y; r) fails, when given random bits r. Observe that, for any good r,

Pr
x,y

[H(x, y; r) fails] =
|Sr|

2n+m
.

Consider (x, y) ∈ Sr and let wx,y := KT(x | y) be the conditional KT-complexity of x given y. By
Corollary 2.9, we have wx,y ≤ n+ c log n. If H(x, y; r) fails, then it means that A fails to invert (wx,y, x, y)
when given the good sequence of random bits r.

Recall that Prz[Ar(f(z)) fails] ≤ 2p(m (n+ 1)) /q(n). Recall also, from the definition of f , and from
the fact that wx,y ≤ n+ c log n, that

Pr
z

[f(z) = (wx,y, x, y)] ≥ 1

(n+ c log n)
2 · 2m · 2n+c logn

.

Thus, for any good sequence r, we have

2p(n+m)

q(n)
≥ Pr

z
[Ar (f(z)) fails]

=
∑

(w,x,y):Ar(w, x, y) fails

Pr
z

[f(z) =(w, x, y)]

≥
∑

(x,y):Ar(wx,y, x, y) fails

Pr
z

[f(z) =(wx,y, x, y)]

≥
∑

(x,y)∈Sr

1

(n+ c log n)
2 · 2m · 2n+c logn

=
|Sr|

2n+m
· 1

(n+ c log n)
2

2c logn

=
Prx,y[H(x, y; r) fails]

(n+ c log n)
2
nc

.

Since this holds for any good sequence r, we have that

Pr
x,y,r

[H(x, y; r) fails | r is good] ≤ (n+ c log n)
2
nc2p(n+m)

q(n)

=
(n+ c log n)

2
nc2p(n+m)

2 (n+ c log n)
2
ncp(n+m)

3

=
1

p(n+m)
2

<
1

2p(n+m)
,
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since p(n+m) > 2 for all sufficiently large n ∈ N. Therefore, H fails with probability at most

Pr
x,y,r

[H(x, y; r) fails | r is good] + Pr
r

[r is bad] <
1

2p(n+m)
+

1

2p(n+m)
=

1

p(n+m)
.

This yields a contradiction.

We now turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. Immediate; by Lemma 3.3 and Lemma 3.4, since if p is a polynomial, then p2 is a
polynomial too.

4 Average-case hardness of McKTP from OWFs

In this section, we prove the following result, which is a weak converse to Theorem 3.1.

Theorem 4.1 (Theorem 1.4, restated). Assume that there exists a OWF. Then, there exists a function
m : N → N such that McKTmP of dimension n is (1/h)-HoA, for a function h : N → R>0 such that
h(N) := 2N/poly(logN) for all N ∈ N.

4.1 Applications of heuristics

We will require the following result, which asserts that heuristics with good average-case performance
guarantees can be used to design learning algorithms.

Lemma 4.2. If for all 0 < γ < 1 it is the case that McKTmP of dimension n and m := n1+γ is
(1− 1/h)-EoA, for a function h : N→ R>0 such that h(N) := 2N/poly(logN) for all N ∈ N, then for every
a ≥ 1 the class SIZE[na] can be infinitely-often learned in polynomial time with accuracy error ε = 1/n
and confidence error δ = 1/n.

Proof. We will apply Lemma 2.23, by proving that if for all 0 < γ < 1 it is the case that McKTmP of
dimension n and m := n1+γ is (1− 1/h)-EoA, then for all c > 1 and all 0 < γ < 1 it is the case that
McKTmP of dimension n and m := n1+γ is EoA with advantage 1/10 for a size parameter s := n1/c and
infinitely many n ∈ N. The desired result will then follow from Lemma 2.23.

Let 0 < γ < 1 be arbitrary. Let H be the heuristic that witnesses the fact that McKTmP of dimension
n and m := n1+γ is (1− 1/h)-EoA (see Definition 2.20), and assume that H runs in time q(N) on inputs
of size N for some polynomial q.

Let n ∈ N be sufficiently large and such that H satisfies its average-case performance guarantees on
inputs of dimension n. In what follows, let N := n+m(n) + log(n+ σ log n) be the size of the McKTmP
on instances of dimension n, where σ is from Corollary 2.9; see Definition 2.13.

Let c > 1 be arbitrary, and s := n1/c. Let H∗ be a probabilistic algorithm such that, for all strings x ∈
{0, 1}n and y ∈ {0, 1}m(n)

, and all random strings r ∈ {0, 1}q(N)
, satisfies H∗(1n, x, y; r) := H(x, y, s; r).

By the definition of H∗, we have that the first term of the LHS of the inequality of Definition 2.21 is

Pr
y,r

[H∗(1n, x, y; r) = 1] = Pr
y,r

[H(x, y, s; r) = 1] ,

where y ∈ {0, 1}m(n)
is uniformly random, and x = x(y) ∈ {0, 1}n is such that KT(x | y) ≤ s, as

guaranteed to exist by Lemma 2.10. We claim that this probability is sufficiently large.

Claim 4.3. It is the case that

Pr
y,r

[H(x, y, s; r) = 1] ≥ 1

5
.

Proof. Towards a contradiction, assume that

Pr
y,r

[H(x, y, s; r) = 1] <
1

5
.
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Then, the number of inputs and random bits of H that make H output “0” is greater than

K := 2m(n) · 2q(N) ·
(

1− 1

5

)
= 2m(n)+q(N) · 4

5
.

However, it is the case that K < 2N+q(N)/h(N), by our assumption on the average-case performance of
H. So

2m(n)+q(N) · 4

5
<

1

h(N)
· 2N+q(N) =

1

2N/poly(logN)
· 2n+m(n)+log(n+σ logn)+q(N)

or
4

5
<

1

2N/poly(logN)
· 2n+log(n+σ logn) ≤ 1

2n1+γ/poly(logn)
· 22n <

4

500
;

this yields a contradiction. (Claim 4.3) �

We now turn to the second term of the LHS of the inequality of Definition 2.21. To this end, we have

Pr
z,y,r

[H∗(1n, z, y; r) = 1] = Pr
z,y,r

[H(z, y, s; r) = 1]

≤ Pr
z,y,r

[H(z, y, s; r) = 1 | KT(z | y) > s] + Pr
z,y

[KT(z | y) ≤ s]

=
Prz,y,r[H(z, y, s; r) = 1 and KT(z | y) > s]

Prz,y[KT(z | y) > s]

+ Pr
z,y

[KT(z | y) ≤ s]

≤ 1/h(N)

1/2
+

1

20
,

by Lemma 2.11, or

=
2

h(N)
+

1

20

=
2

2N/poly(logN)
+

1

20

≤ 1

20
+

1

20

=
1

10
,

Therefore, by Claim 4.3 and the discussion above,

Pr
y,r

[H∗(1n, x, y; r) = 1]− Pr
z,y,r

[H∗(1n, z, y; r)] ≥ 1

5
− 1

10
=

1

10
,

as desired.

Remark 4.4. It should be noted that Lemma 4.2 also holds for the case where McKTP is zero-error easy
on average.

4.2 Applications of infinitely-often learning algorithms

An important observation is that a learning algorithm for polynomial-size circuits may be used to create
distinguishers for polynomial-time computable function families.

Lemma 4.5 (See also Oliveira and Santhanam [OS17, Theorem 8]). Assume that for every a ≥ 1
the class SIZE[na] can be infinitely-often learned in polynomial time with accuracy error ε = 1/n and

confidence error δ = 1/n. Then, for all function families {fy}y∈{0,1}∗ such that fy : {0, 1}|y| → {0, 1} for

all y ∈ {0, 1}∗, and there is a polynomial-time algorithm that computes fy(x) given y and x ∈ {0, 1}|y|,
there is a distinguisher for {fy}y∈{0,1}∗ .

16



Proof. Let {fy}y∈{0,1}∗ be a function family such that fy : {0, 1}|y| → {0, 1} for all y ∈ {0, 1}∗, and

there is a polynomial-time algorithm that computes fy(x) given y and x ∈ {0, 1}|y|. In particular, for

all y ∈ {0, 1}∗ it is the case that fy : {0, 1}|y| → {0, 1} is computable in time |y|k/2 for some k > 0. By

Lemma 2.4, for all y ∈ {0, 1}∗ it is the case that fy : {0, 1}|y| → {0, 1} is computable by some circuit of
size

O
(
|y|k/2 log |y|

)
≤ |y|k .

Let A be the PPT learning algorithm for SIZE
[
nk
]

that works for infinitely many n ∈ N, and that runs
in time q(n) for some polynomial q, as guaranteed to exist by our assumption. In particular, let n ∈ N be
sufficiently large and such that A satisfies its learning guarantees on inputs of size n. Let t := n100 and
define D to be a probabilistic oracle algorithm as follows.

On input 1n, random bits r := (r′, r′′) ∈ {0, 1}O(q(n)) × {0, 1}t·n, and given oracle access
to some function g : {0, 1}n → {0, 1}, the algorithm D runs A on 1n using random bits

r′ ∈ {0, 1}O(q(n))
to get a hypothesis h for g, whereby simulating calls to EX(g) by using the

oracle for g. Then, D samples t strings x1, . . . , xt from {0, 1}n using random bits r′′ ∈ {0, 1}t·n
and uses the oracle for g to compute

α :=
|{i ∈ [t] | h(xi) = g(xi)}|

t
.

Finally, if α ≥ 2/3, then D outputs 1; else, D outputs 0.

Note that D runs in time polynomial in n. We will now prove that D is a distinguisher for {fy}y∈{0,1}∗ .
To this end, we will show that D satisfies Definition 2.27.

The first term of the LHS of the inequality of Definition 2.27 is

Pr
y∼{0,1}n,r

[
Dfy (1n; r) = 1

]
= Pr

y,r

[
α ≥ 2

3

]
= Pr

y,r

[
|{i ∈ [t] | h(xi) = fy(xi)}|

t
≥ 2

3

]
≥ Pr

y,r

[
|{i ∈ [t] | h(xi) = fy(xi)}|

t
≥ 3

4

(
1− 1

n

)]
= Pr

y,r

[
|{i ∈ [t] | h(xi) = fy(xi)}|

t
≥ 3

4
(1− ε)

]
≥ Pr

y,r

[
|{i ∈ [t] | h(xi) = fy(xi)}|

t
≥ 3

4
(1− ε) | h is ε-close to fy

]
·Pr
y,r

[h is ε-close to fy] .

For all 1 ≤ i ≤ t, let Xi be a Boolean variable such that Xi := 1 if and only if h(xi) = fy(xi). Then,

Pr
y,r

[
Dfy (1n; r) = 1

]
≥ Pr

y,r

[∑t
i=1Xi

t
≥ 3

4
(1− ε) | h is ε-close to fy

]
·Pr
y,r

[h is ε-close to fy]

≥ Pr
y,r

[∑t
i=1Xi

t
≥ 3

4
E
y,r

[∑t
i=1Xi

t

]]
(1− δ) ,

as CC(fy) ≤ |y|k = nk, or

≥ 1

4
E
y,r

[∑t
i=1Xi

t

]
(1− δ) ,
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by Lemma 2.6, or

≥ 1

4
(1− ε) (1− δ)

=
1

4

(
1− 1

n

)(
1− 1

n

)
≥ 1

4
− 1

8

=
1

8
.

We now turn to the second term of the LHS of the inequality of Definition 2.27. To this end, we have

Pr
g∼Fn,r

[Dg(1n; r) = 1] = Pr
g,r

[
α ≥ 2

3

]
= Pr

g,r

[
|{i ∈ [t] | h(xi) = g(xi)}|

t
≥ 2

3

]
≤ Pr

g,r

[
|{i ∈ [t] | h(xi) = g(xi)}|

t
≥ 2

3
| {xi}ti=1 are distinct

]
+ Pr

[
{xi}ti=1 are not distinct

]
= Pr

b,r

[
|{i ∈ [t] | h(xi) = bi}| ≥

2t

3
| {xi}ti=1 are distinct

]
+ Pr

[
{xi}ti=1 are not distinct

]
,

where b1, . . . , bt ∈ {0, 1} are independent and uniformly random, and b := (b1, . . . , bt).
Similarly as above, for all 1 ≤ i ≤ t, let Xi be a Boolean variable such that Xi := 1 if and only if

h(xi) = bi. Let Y be the event that all of the xi are distinct. Then,

Pr
g∼Fn,r

[Dg(1n; r) = 1] ≤ Pr
b,r

[
t∑
i=1

Xi ≥
2t

3
| Y

]
+ Pr

[
{xi}ti=1 are not distinct

]
= Pr

b,r

[
t∑
i=1

Xi ≥
4

3
· t

2
| Y

]
+ Pr[∃i, j ∈ [t] : i 6= j and xi = xj ]

≤ Pr
b,r

[
t∑
i=1

Xi ≥
4

3
· t

2
| Y

]
+

(
t

2

)
2−n,

by a union bound, or

= Pr
b,r

[
t∑
i=1

Xi ≥
(

1 +
1

3

)
E
b,r

[
t∑
i=1

Xi | Y

]
| Y

]
+

(
n100

2

)
2−n

≤
(
e−

1/9
3

)Eb,r[∑t
i=1Xi|Y ]

+
n200

2n
,

by Lemma 2.7, or

≤
(
e−1/27

)t/2
+

1

32

= e−t/54 +
1

32

= e−n
100/54 +

1

32

≤ 1

32
+

1

32
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=
1

16
.

Therefore, ∣∣∣∣ Pr
y∼{0,1}n,r

[
Dfy (1n; r) = 1

]
− Pr
g∼Fn,r

[Dg(1n; r) = 1]

∣∣∣∣ ≥ 1

8
− 1

16
=

1

16
= Ω(1)

and as every negligible function µ : N → [0, 1] is such that µ(n) = o(1) < Ω(1), the desired result
follows.

4.3 Proof of Theorem 4.1

We will prove the contrapositive. To this end, assume that for all functions m : N→ N it is the case that
McKTmP of dimension n is (1− 1/h)-EoA, for a function h : N→ R>0 such that h(N) := 2N/poly(logN)

for all N ∈ N. This implies that for all 0 < γ < 1 it is the case that McKTmP of dimension n and
m := n1+γ is (1− 1/h)-EoA, for a function h : N→ R>0 such that h(N) := 2N/poly(logN) for all N ∈ N.

By Lemma 4.2, for all a ≥ 1, we get a learning algorithm for SIZE[na] that works for infinitely many

n ∈ N. By Lemma 4.5, for every function family {fy}y∈{0,1}∗ such that fy : {0, 1}|y| → {0, 1} for all

y ∈ {0, 1}∗, and there is a polynomial-time algorithm that computes fy(x) given y and x ∈ {0, 1}|y|, there
is a distinguisher for {fy}y∈{0,1}∗ . By Corollary 2.29, there are no OWFs.

5 Logspace-computable OWFs from average-case hardness of
McKTP

Now we show that, applying the insights of Ren and Santhanam [RS21], we can strengthen the theorems
of the preceding section. We show the following.

Theorem 5.1. Assume that, for some m : N → N, McKTmP of dimension n is (1/p)-HoA for some
polynomial p. Then, there exists some weak OWF computable in logspace.

Proof sketch. Modify the definition of f from the proof of Lemma 3.4, so that now f is

(s, t, y,Π′) 7→
(
s+ t, UΠ,y

(
1, 1t

)
, . . . , UΠ,y

(
n, 1t

)
, y
)
,

where m := m(n), y ∈ {0, 1}m, Π′ ∈ {0, 1}n+c logn
is a program, Π := Π′|[s] is the s-bit prefix of Π′, and

t ≤ d log n for some d. This function f is clearly computable in logspace.
Significantly, Ren and Santhanam [RS21, Theorem 4.1] show that, if the search version of KT is

hard-on-average, then a function very similar to f is a weak one-way function. Essentially identical
considerations allow us to conclude that, if Search McKTmP is (1/p)-HoA for some polynomial p, then
f is a weak one-way function. The main point is that, for every y, most strings x have the property
that, when |Π|+ t is minimized (where U uses description Π and run-time t to compute the bits of x),
t = O(log n). The rest of the analysis is very similar to that of Lemma 3.4.

By Theorem 5.1 and Theorem 2.18, we get the following corollary.

Corollary 5.2 (Theorem 1.3, restated). Assume that, for some m : N→ N, McKTmP of dimension n
is (1/p)-HoA for some polynomial p. Then, there exists some logspace-computable OWF.

6 Average-case hardness of McKTP from logspace-computable
OWFs: Proof of Theorem 1.5

Again, we appeal to the techniques of Ren and Santhanam. Ren and Santhanam [RS21, Theorem 4.4]
show that, if there is a one-way function computable in logspace, then the problem of computing an
approximation to KT complexity is hard-on-average. A nearly-identical proof shows that computing
KT(x | y) is HoA. Essentially the only modification that needs to be made to the proof of [RS21, Theorem
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4.4] arises in the proof of their Lemma 4.7, which establishes that computing KT is HoA under a condition
that holds if there is a logspace-computable OWF. The proof of [RS21, Lemma 4.7] relies on the fact that
the output of a certain pseudorandom generator has small KT complexity, whereas a random string has
high KT complexity. But the output z of this generator also has small KT(z | y) for every y, whereas a
random string z has KT(z | y) large for almost every y. Thus a very similar analysis shows that computing
KT(x | y) is HoA, which in turn (via Lemma 3.3) implies that McKTmP is HoA.

Acknowledgements

We would like to thank Russell Impagliazzo for explaining his work [IL90] to us, and Ján Pich and Ninad
Rajgopal for illuminating discussions. We thank Ján Pich for bringing his work [Pic20] to our attention.
We thank Mikito Nanashima and Hanlin Ren for helpful comments and for spotting bugs in the proofs of
earlier versions of Lemma 3.3 and Lemma 3.4, respectively. In particular, we thank Hanlin Ren for asking
the question of whether KT complexity would be an appropriate complexity measure to consider in the
context of our work. We thank Yanyi Liu and Rafael Pass for the excellent correspondence regarding their
work [LP20, LP21c, LP21d], and Rahul Santhanam for bringing the work by Impagliazzo and Naor [IN96]
to our attention. Finally, we would like to thank the anonymous reviewers for their helpful feedback.

This work was partly carried out during a visit of Dimitrios Myrisiotis to DIMACS, with support
from the Special Focus on Lower Bounds in Computational Complexity program. Eric Allender was
partially supported by NSF Grants CCF-1909216 & CCF-1909683. Mahdi Cheraghchi’s research was
partially supported by the National Science Foundation under Grant No. CCF-2006455. Harsha Tirumala
was partially supported by NSF Grant CCF-1909216 and the Simons Collaboration on Algorithms and
Geometry.

References

[ABK+06] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneb-
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A Hard-on-average problems in NP

We first introduce some useful notation. For a language L ⊆ {0, 1}∗ we define its characteristic function,
namely fL : {0, 1}∗ → {0, 1}, to be a function given by

fL(x) :=

{
1, if x ∈ L,
0, otherwise

for all x ∈ {0, 1}∗.
For sets K,L ⊆ {0, 1}∗, the disjoint union of K and L, denoted K ] L, is the set {0x | x ∈ K} ∪

{1x | x ∈ L}.
For a failure parameter function α : N→ [0, 1], we say that a language L is α-hard-on-average (α-HoA)

if its characteristic function fL is α-HoA. Similarly we define average-case easiness for languages.
We prove the following.

Proposition A.1. Let L be a language in NP that is α-HoA for some failure parameter function
α : N→ [0, 1]. Then, the language L∗ := L] SAT is NP-complete and α∗-HoA, where α∗ : N→ [0, 1] is a
failure parameter function such that α∗(n) := α(n− 1)− 1/2 for all naturals n ≥ 2.

Before we prove Proposition A.1, we recount the following basic observation.

22



Lemma A.2. NP is closed under disjoint union.

We now turn to the proof of Proposition A.1.

Proof of Proposition A.1. By Lemma A.2, the language L∗ is in NP since L∗ is the disjoint union of
L ∈ NP and SAT ∈ NP.

We will now show that L∗ is NP-hard, by giving a polynomial-time reduction R from SAT to L∗. For
all x ∈ {0, 1}∗, let R(x) := 1x ∈ {0, 1}∗. We see that R is polynomial-time computable. Moreover, if
x ∈ SAT, then R(x) = 1x ∈ L∗, and if R(x) ∈ L∗, then 1x ∈ L∗ and so x ∈ SAT.

What is left is to prove that L∗ is α∗-HoA, where α∗ : N→ [0, 1] is such that α∗(n) := α(n− 1)− 1/2
for all naturals n ≥ 2. Towards a contradiction, assume that L∗ is (1− α∗)-EoA and let H∗ be a heuristic
that witnesses this phenomenon. We will give a heuristic H that witnesses the fact that L is (1− α)-EoA,
whereby establishing the desired contradiction. To this end, let

H(x) := H∗(0x)

for all x ∈ {0, 1}∗. We will show that H has the desired average-case performance. Indeed,

Pr
x∼{0,1}n

[H(x) = fL(x)] = Pr
x∼{0,1}n

[H∗(0x) = fL∗(0x)]

= Pr
y∼{0,1}n+1

[H∗(y) = fL∗(y) | y1 = 0]

≥ Pr
y∼{0,1}n+1

[H∗(y) = fL∗(y)]− Pr
y∼{0,1}n+1

[y1 = 1]

≥ 1− α∗(n+ 1)− 1

2

= 1−
(
α((n+ 1)− 1)− 1

2

)
− 1

2

= 1− α(n) .

B McKTP is NP-complete under randomized reductions

In this section, we prove Theorem 1.2 by adapting Ilango’s work [Ila20].

B.1 Set Cover

We first fix some notation about Set Cover.

Definition B.1. The Set Cover problem is defined as follows.

• Input: A tuple (n, S1, . . . , St) in binary, where n ∈ N and S1, . . . , St ⊆ [n] are sets such that
[n] ⊆

⋃t
i=1 Si.

• Output: The value of

min
I⊆[t]

{
|I| | [n] ⊆

⋃
i∈I

Si

}
.

Dinur and Steurer [DS14] show that it is NP-hard to approximate Set Cover.

Theorem B.2 ([DS14]). It is NP-hard to approximate Set Cover by a factor of at most (1− o(1)) lnn.

B.2 Approximation algorithms

In the following, we will adopt the following notion of an approximation algorithm.

Definition B.3. Let Π be an optimization problem. For all instances I ∈ {0, 1}∗ of Π, let the optimal
solution of I be denoted by OPT(I) ∈ R. Let α > 0. We say that a probabilistic algorithm A approximates
Π by a factor of α if, for all instances I of Π, it is the case that

OPT(I) < A(I) ≤ α ·OPT(I)

with probability at least 1− o(1) over the internal randomness of A.
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B.3 Proof of Theorem 1.2

For a string b of length m and a set R ⊆ [m], let b〈R〉 be the string of length m where

b〈R〉(j) :=

{
b(j) , if j ∈ R,
0, otherwise

for all 1 ≤ j ≤ m. Equivalently,
b〈R〉(j) := b(j) ∧ 1j∈R

for all j ∈ [m].
Next, we define a uniformly random partition P = (P1, . . . , Pn) of [m] into n parts to be such that

each element i ∈ [m] is put into Pj where j ∈ [n] is chosen uniformly at random. It will be also useful to
think of P as a uniformly random function P : [m]→ [n].

For a partition P = (P1, . . . , Pn) of [m] and any set S ⊆ [n], we define the P-lift of S, denoted SP , to
be the set

SP :=
⋃
i∈S

Pi.

Following Ilango [Ila20], we show that McKTP can be used to approximate Set Cover.

Lemma B.4 (Following Ilango [Ila20]). Let S1, . . . , St ⊆ [n] be sets that cover [n]. Let b be a string of

length m ≥ (nt)
5

and let P = (P1, . . . , Pn) be a uniformly random partition of [m] into n parts. Define

the oracle O : {0, 1}log t × {0, 1}logm → {0, 1} to be such that

O(i, z) :=

{
b〈SPi 〉(z) , if i ∈ [t],

0, otherwise,

for all i ∈ [t] and z ∈ [m]. Let y be the truth table of O, and note that |y| = mt. Let ` be the size of an
optimal cover of [n] by S1, . . . , St. Then, we have that

1. KT(b | y) ≤ 200` (log t+ logm) and

2. KT(b | y) > ` (log t+ logm) /2 with high probability over the choice of b.

Proof. We prove each item of Lemma B.4 separately.

Claim B.5. It is the case that KT(b | y) ≤ 200` (log t+ logm).

Proof. Assume that an optimal set cover of size ` is realized by the sets Si1 , . . . , Si` . Fix some UTM U
that has oracle access to y. Let Π ∈ {0, 1}∗ be a program that contains in its description encodings of
i1, . . . , i` ∈ {0, 1}t and operates as follows:

On input x ∈ {0, 1}logm
, compute and output y(i1,x) ∨ · · · ∨ y(i`,x).

Note that |Π| ≤ (`+ 2) log t+O(1) ≤ 100` log t. In what follows, let T ∈ N be a sufficiently large run-time
bound such that

UΠ,y
(
x, 1T

)
:= y(i1,x) ∨ · · · ∨ y(i`,x)

= O(i1, x) ∨ · · · ∨O(i`, x) =
∨
i∈[`]

∨
j∈Si

b〈Pj〉(x) =
∨
j∈[n]

bPj (x) = b(x) ,

for all x ∈ {0, 1}logm
. Note that T ≤ 100` (log t+ logm). Therefore, we have that KT(b | y) ≤

200` (log t+ logm). (Claim B.5) �

We now turn to the lower bound. We do this by a union bound argument. Fix some oracle
program My(·) := UΠ,y

(
·, 1T

)
of program Π that uses oracle y and runs in time T such that |Π|+ T ≤

` (log t+ logm) /2. Then, as each oracle query requires time log t+ logm, we can deduce that M makes
at most `/2 ≤ n/2 ≤ n oracle queries to y.
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We will show that

Pr
b,P

[My computes b in time T , and |Π|+ T ≤ ` (log t+ logm) /2]

is exponentially small. We do this by finding a long sequence of inputs x1, . . . , xd on which M has not
too large a chance of computing b.

We construct this list recursively, as follows. Let x1 := 0logm, and let

Q1 :=
{
x ∈ {0, 1}logm |My(x1) makes a query (i, x) to y, for some i ∈ [t]

}
.

Now, for j ≥ 1, if {0, 1}logm \Qj is non-empty, then let xj+1 be an element of {0, 1}logm \Qj , and let

Qj+1 := Qj ∪
{
x ∈ {0, 1}logm |My(xj+1) makes a query (i, x) to y, for some i ∈ [t]

}
.

If {0, 1}logm
= Qj , then terminate the sequence. Since M makes at most n queries to y, we know that

|Qj | ≤ jn. Thus, since |Qd| =
∣∣∣{0, 1}logm

∣∣∣ = m the length of this sequence is at least m/n. That is,

d ≥ m/n.
It remains to bound the probability

Pr[for all j ∈ [d], My(xj) = b(xj)] =

d∏
j=1

Pr

My(xj) = b(xj) |
∧

k∈[j−1]

My(xk) = b(xk)

 .
Fix some j ∈ [d]. We will bound

Pr

My(xj) = b(xj) |
∧

k∈[j−1]

My(xk) = b(xk)

 .
Let E :=

∧
k∈[j−1]M

y(xk) = b(xk) be the event that we are conditioning on.

Claim B.6. It is the case that

Pr[My(xj) = b(xj) | E] ≤ 1− 1

2n
.

Proof. By construction of the sequence x1, . . . , xd, we know that on all the inputs x1, . . . , xj−1, the
program My does not make an oracle call of the form (i, xj) for any i. Thus, the only time the value
of O depends on b(xj) and P (xj) is on inputs of the form (i, xj) for some i, and since b(xj) and P (xj)
are chosen independently at random, we know that b(xj) and P (xj) are still uniform random variables
conditioned on E. That is,

Pr[b(xj) = 1 | E] =
1

2

and

Pr[P (xj) = r | E] =
1

n

for all r ∈ [n].
Now, define O′ as

O′(i, x) :=

{
0, if x = xj ,

O(i, x) , otherwise,

and let y′ be the truth table of O′. Let also i1, . . . , iv with v ≤ `/2 be such that, using the modified oracle
O′, they are the only oracle queries My′(xj) makes that have xj as the 2nd component of the query, so
the queries are (i1, xj) , . . . , (iv, xj). Since v < ` there exists an element r∗ that is not in Si1 ∪ · · · ∪ Siv .

Moreover, observe that if P (xj) = r∗, then My(xj) will actually make the same oracle queries (and

get the same zero responses) as the modified oracle program My′ . In this case, since P (xj) = r∗ is not in
Si1 ∪ · · · ∪ Siv , it follows that

O(i1, xj) = · · · = O(iv, xj) = 0
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regardless of the value of b(xj). Thus, the output of My on input x does not depend at all on the value
of b(x) if P (xj) = r∗. Hence, the probability it correctly guesses My(x) = b(x) is at most half when
P (xj) = r∗.

Since P (xj) is chosen uniformly at random, we have that P (xj) = r∗ with probability 1/n. Therefore,

Pr[My(xj) = b(xj) | E] ≤ 1− 1

2n

and the proof is complete. /

Using Claim B.6, we have

d∏
j=1

Pr

My(xj) = b(xj) |
∧

k∈[j−1]

My(xk) = b(xk)

 ≤ (1− 1

2n

)d
≤ e−d/(2n) ≤ e−m/(2n2) ≤ e−n

3t5/2.

On the other hand the number of oracle programs of size at most ` (log t+ logm) /2 ≤ O(nt log n) is

at most 2O(n2t). Thus, by a union bound, the probability that there exists an oracle program Π that
computes any bit of b in time T , whereby |Π|+ T ≤ ` (log t+ logm) /2, is o(1) as desired.

Lemma B.4 implies the following corollary.

Corollary B.7. There is a polynomial-time computable function M : N → N such that the following
hold. Given a Set Cover instance I := (n, S1, . . . , St), a random b of length N ≥ (nt)

5
and a random

partition P of [N ] into n parts, if one constructs a string y as in Lemma B.4, whereby |y| ≤M(N), then
KT(b | y) approximates Set Cover by a factor of 400 according to Definition B.3. That is, if ` is the size
of an optimal set cover of I and c := logN + log t, then it is the case that with probability 1

2

c
·KT(b | y) ≤ 400`,

and with probability 1− o(1)
2

c
·KT(b | y) > `.

Proof. Let y ∈ {0, 1}∗, n ∈ N, and t ∈ N be as in Lemma B.4. Let γ := 1/2. Then, McKTMP of

dimension N := |b| ≥ (nt)
5

and M := N1+γ = N1+1/2 = N ·N1/2 ≥ Nt = |y| is such that Lemma B.4
immediately implies that

` <
2

c
·KT(b | y) ≤ 400`,

where the first inequality holds with probability 1− o(1) and the second one holds with probability 1.

Theorem B.2 and Corollary B.7 yield the following corollary.

Corollary B.8. There exists a polynomial-time computable function m : N→ N such that McKTmP is
NP-hard under polynomial-time randomized reductions.

Finally, by combining Lemma 2.14 and Corollary B.8 we get a proof of Theorem 1.2.

Corollary B.9 (Theorem 1.2, restated). There exists a polynomial-time computable function m : N→ N
such that McKTmP is NP-complete under polynomial-time randomized reductions.
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