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Abstract

A Boolean constraint satisfaction problem (CSP), Max-CSP(f), is a maximization problem
specified by a constraint f : {−1, 1}k → {0, 1}. An instance of the problem consists of m
constraint applications on n Boolean variables, where each constraint application applies the
constraint to k literals chosen from the n variables and their negations. The goal is to compute
the maximum number of constraints that can be satisfied by a Boolean assignment to the
n variables. In the (γ, β)-approximation version of the problem for parameters γ ≥ β ∈ [0, 1],
the goal is to distinguish instances where at least γ fraction of the constraints can be satisfied
from instances where at most β fraction of the constraints can be satisfied.

In this work we completely characterize the approximability of all Boolean CSPs in the
streaming model. Specifically, given f , γ and β we show that either (1) the (γ, β)-approximation
version of Max-CSP(f) has a probabilistic streaming algorithm using O(log n) space, or (2) for
every ε > 0 the (γ − ε, β + ε)-approximation version of Max-CSP(f) requires Ω(

√
n) space for

probabilistic streaming algorithms. Previously such a separation was known only for k = 2. We
stress that for k = 2, there are only finitely many distinct problems to consider.

Our positive results show wider applicability of bias-based algorithms used previously by
[GVV17], [CGV20] by giving a systematic way to explore biases. Our negative results combine
the Fourier analytic methods of [KKS15], which we extend to a wider class of CSPs, with a rich
collection of reductions among communication complexity problems that lie at the heart of the
negative results.
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1 Introduction

In this paper we give a complete characterization of the approximability of Boolean constraint
satisfaction problems (CSPs) described by a single constraint in the streaming setting. We describe
the exact class of problems below, and give a brief history of previous work before giving our results.

1.1 Boolean CSPs

In this paper we use N to denote the set of natural numbers {1, 2, 3, . . .}. For n ∈ N we use [n] to
denote the set {1, 2, . . . , n}. We refer to a variable taking values in {−1, 1} as a Boolean variable.
Given a Boolean variable X, we refer to X and −X as the literals associated with X. For vectors
a,b ∈ Rn we use a � b to denote their coordinate-wise product. I.e., if a = (a1, . . . , an) and
b = (b1, . . . , bn) then a� b = (a1b1, . . . , anbn).

In this paper, a Boolean CSP is a maximization problem, Max-CSP(f), specified by a single
constraint function f : {−1, 1}k → {0, 1} for some positive integer k. Given n Boolean variables
x1, . . . , xn, an application of the constraint function f to these variables, which we term simply a
constraint, is given by two k-tuples j = (j1, . . . , jk) ∈ [n]k and b = (b1, . . . , bk) ∈ {−1, 1}k where
the ji’s are distinct, and represents the application of the constraint function f to the literals
b1xj1 , . . . , bkxjk . Specifically an assignment σ = (σ1, . . . , σn) ∈ {−1, 1}n satisfies a constraint given
by (j,b) if f(b1σj1 , . . . , bkσjk) = 1. For a constraint C = (j,b) and assignment σ we use σ|j
as shorthand for (σj1 , . . . , σjk) and C(σ) as shorthand for f(b � σ|j) = f(b1σj1 , . . . , bkσjk). An
instance Ψ of Max-CSP(f) consists of m constraints C1, . . . , Cm applied to n variables x1, . . . , xn.
The value of an assignment σ ∈ {−1, 1}n on an instance Ψ = (C1, . . . , Cm), denoted valΨ(σ) is
the fraction of constraints satisfied by σ, i.e., valΨ(σ) = 1

m

∑
i∈[m]Ci(σ). The goal of the exact

problem is to compute the maximum, over all assignments, of the value of the assignment on the
input instance, i.e., to compute, given Ψ, the quantity valΨ = maxσ∈{−1,1}n{valΨ(σ)}. (We note
that the literature on CSPs has several generalizations: one may allow an entire set of constraint
functions, not just a single one. One may restrict the constraint applications to be applicable only
to variables and not literals. And finally one can of course consider non Boolean CSPs. We do
not do any of those in this paper, though extending our techniques to classes of functions seems
immediately feasible. See more discussion in Section 1.7.)

In this work we consider the approximation version of Max-CSP(f), which we study in terms of
the “gapped promise problems”. Specifically given 0 ≤ β < γ ≤ 1, the (γ, β)-approximation version
of Max-CSP(f), abbreviated (γ, β)-Max-CSP(f), is the task of distinguishing between instances
from Γ = {Ψ| opt(Ψ) ≥ γ} and instances from B = {Ψ| opt(Ψ) ≤ β}. It is well-known that
this distinguishability problem is a refinement of the usual study of approximation which usually
studies the ratio of γ/β for tractable versions of (γ, β)-Max-CSP(f). See Proposition 2.10 for a
formal statement in the context of streaming approximability of Max-CSP(f) problems.

1.2 Streaming algorithms

We consider streaming algorithms that take as input instances Ψ of Max-CSP(f) on n variables
and m clauses for m,n ∈ N. m and n are given to our algorithms initially and then the constraints
C1, . . . , Cm arrive one at a time. Our algorithms are allowed to use internal randomness and
s bits of space. The algorithms output a single bit at the end. They are said to solve the (γ, β)-
approximation problem correctly if they output the correct answer with probability at least 2/3
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(i.e., they err with probability at most 1/3).
Our main dividing line is between algorithms that work with space O(poly log n), versus algo-

rithms that require space at least nε for some ε > 0. In informal usage we refer to a streaming
problem as “easy” if it can be solved with polylogarithmic space (the former setting) and “hard”
if it requires polynomial space (the latter setting).

1.3 Past work

To our knowledge, streaming algorithms for Boolean CSPs have not been investigated extensively.
On the positive side, it may be surprising that there exists any non-trivial algorithm at all. Here, and
later, we describe algorithms solving the (1, ρ(f)− ε)-approximation problem for ε > 0 as “trivial”,
where ρ(f) = 2−k

∑
a∈{−1,1}k f(a) is the fraction of clauses satisfied by a random assignment. Note

that the algorithm that always outputs 1s solves (1, ρ(f)− ε)-approximation problem.
It turns out that there do exist some non-trivial approximation algorithms for Boolean CSPs.

This was established by the work of Guruswami, Velingker, and Velusamy [GVV17] who, in our
notation, gave an algorithm for the (γ, 2γ/5 − ε)-approximation version of Max-2AND, for every
γ ∈ [0, 1] (Max-2AND is the Max-CSP(f) problem corresponding to f(a, b) = 1 if a = b = 1 and
0 otherwise). A central ingredient in their algorithm is the ability of streaming algorithms to
approximate the `1 norm of a vector in the turnstile model, which allows them to estimate the
“bias” of n variables (how often they occur positively in constraints, as opposed to negatively).
Subsequently, the work of Chou, Golovnev, and Velusamy [CGV20] further established the utility
of such algorithms, which we refer to as bias-based algorithms, by giving optimal algorithms for
all Boolean CSPs on 2 variables. In particular they give a better (optimal!) analysis of bias-based
algorithms for Max-2AND, and show that Max-2SAT also has an optimal algorithm based on bias.
We note that Max-2SAT is again not covered by the results of the current paper since it involves
two functions corresponding to clauses of length 1, and clauses of length 2.

On the negative side, the problem that has been explored the most is Max-CUT, or in our
language Max-2XOR, which corresponds to f(x, y) = x ⊕ y = (1 − xy)/2.1 Kapralov, Khanna,
and Sudan [KKS15] showed that Max-2XOR does not have a (1, 1/2 + ε)-approximation algo-
rithm using o(

√
n)-space. This was subsequently improved upon by Kapralov, Khanna, Sudan,

and Velingker [KKSV17], and Kapralov and Krachun [KK19]. The final paper [KK19] completely
resolves Max-CUT and Max-2XOR showing that (1, 1/2 + ε)-approximation for these problems re-
quires Ω(n) space. Turning to other problems, the work by [GVV17] notices that the (1, 1/2 + ε)-
inapproximability of Max-2XOR immediately yields (1, 1/2 + ε)-inapproximability of Max-2AND as
well. In [CGV20] more sophisticated reductions are used to improve the inapproximability result
for Max-2AND to a (γ, 4γ/9 + ε)-inapproximability for some positive γ, which turns out to be the
optimal ratio by their algorithm and analysis. As noted earlier their work gives optimal algorithms
for all functions f : {−1, 1}2 → {0, 1}.

1.4 Our results

Our main theorem is a dichotomy for approximating all Boolean CSPs in the streaming setting.

Theorem 1.1. For every k ∈ N, for every function f : {−1, 1}k → {0, 1}, and for every 0 ≤ β <
γ ≤ 1, at least one of the following always holds:

1Strictly speaking this work does not include Max-CUT, which does not allow constraints to be placed on arbitrary
literals. Max-2XOR is however very closely related and in particular is harder than Max-CUT.
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1. (γ, β)-Max-CSP(f) has a O(log n)-space streaming algorithm.

2. For every ε > 0, (γ − ε, β + ε)-Max-CSP(f) requires Ω(
√
n) space. If γ = 1, then (1, β + ε)-

Max-CSP(f) requires Ω(
√
n) space.

Furthermore, given the truth-table of f , and γ and β as `-bit rationals2, it can be decided in
polynomial space poly(2k, `) which one of the two conditions holds.

In analogy with the terminology used in the study of CSP approximation in polynomial time,
we define a problem to be “(streaming)-approximation-resistant” if it is hard to beat random as-
signment with no(1)-space. Recall ρ(f) denotes the fraction of assignments that satisfy a function f .
We say that Max-CSP(f) is streaming-approximation-resistant if, for every ε > 0 there exists δ > 0
such that (1, ρ+ ε)-Max-CSP(f) requires Ω(nδ) space. (We suppress the qualifier “streaming-” for
most of the paper.) We get the following dichotomy for streaming-approximation-resistance.

Corollary 1.2. For every k ∈ N, for every function f : {−1, 1}k → {0, 1}, if Max-CSP(f) is
streaming-approximation-resistant, then for every ε > 0, the (1, ρ + ε)-approximation version of
Max-CSP(f) requires Ω(

√
n) space. If Max-CSP(f) is not streaming-approximation-resistant, then

there exists ε > 0 such that (1− ε, ρ+ ε)-Max-CSP(f) can be solved in logarithmic space. Further-
more, given the truth-table of the function f , there is an algorithm running in space poly(2k) that
decides if Max-CSP(f) is streaming-approximation-resistant or not.

In Section 2.4, we show how to apply our theorem above to get a full characterization of the
approximation profile of the Max-2AND problem (i.e., the Max-CSP(f) problem for f(x, y) = 1 if
x = y = 1 and 0 otherwise). This reproduces the result shown in [CGV20] while giving a more
refined picture of the approximability. See Section 2.4.

We remark that while our dichotomy theorems are in some sense “explicit” (formalized best by
the assertion that they can be decided in PSPACE given the truth table of f : {−1, 1}k → {0, 1}, γ,
and β, they do not necessarily resolve questions about the approximation resistance of an infinite
family of functions such as the linear threshold functions. But they can be applied to get some
uniform classes of results. We mention one below.

Say that a function f supports 1-wise independence if there exists a distribution D supported on
the satisfying assignments to f , i.e., on f−1(1) ⊆ {−1, 1}k such that its marginals are all uniform,
i.e., for every j ∈ [k], we have Ea∼D[aj ] = 0. Our main theorem immediately yields the following
corollary.

Corollary 1.3. If f : {−1, 1}k → {0, 1} supports 1-wise independence then Max-CSP(f) is
streaming-approximation-resistant.

We also give a (very) partial converse, showing that symmetric functions are approximation
resistant if and only if they support 1-wise independence (see Lemma 2.11). While we do believe
that there are other streaming-approximation-resistant problems, we do not know of one (and in
particular do not give one in this paper). We discuss this more in the next section.

2α ∈ R is said to be an `-bit rational if there exist integers −2` < p, q < 2` such that α = p/q.
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1.5 Contrast with dichotomies in the polynomial time setting

The literature on dichotomies of Max-CSP(f) problems is vast. One broad family of results here
[Sch78, Bul17, Zhu17] considers the exact satisfiability problems (corresponding to distinguishing
between instances from {Ψ| opt(Ψ) = 1} and instances from {Ψ| opt(Ψ) < 1}. Another family of
results [Rag08, AM09, KTW14] considers the approximation versions of Max-CSP(f) and gets “near
dichotomies” along the lines of this paper — i.e., they either show that the (γ, β)-approximation is
easy (in polynomial time), or for every ε > 0 the (γ − ε, β + ε)-approximation version is hard (in
some appropriate sense). Our work resembles the latter series of works both in terms of the nature
of results obtained, the kinds of characterizations used to describe the “easy” and “hard” classes,
and also in the proof approaches (though of course the streaming setting is much easier to analyze,
allowing for much simpler proofs overall). We summarize their results giving comparisons to our
theorem and then describe a principal contrast.

In a seminal work, Raghavendra [Rag08] gave a characterization of the polynomial time approx-
imability of the Max-CSP(f) problems based on the unique games conjecture [Kho02]. Our Theo-
rem 1.1 is analogous to his theorem, though restricted to a single function, with Boolean variables,
with ability to complement variables. A characterization of approximation resistant functions is
given by Khot, Tulsiani and Worah [KTW14]. Our Corollary 1.2 is analogous to this. Austrin
and Mossel [AM09] show that all functions supporting a pairwise independent distribution are
approximation-resistant. Our Corollary 1.3 is analogous to this theorem.

While our results run in parallel to the work on polynomial time approximability our charac-
terizations are not immediately comparable. Indeed there are some significant differences which
we highlight below. Of course there is the obvious difference that our negative results are un-
conditional (and not predicated on a complexity theoretic assumption like the unique games con-
jecture or P 6=NP). But more significantly our characterization is a bit more “explicit” than those
of [Rag08] and [KTW14]. In particular the former only shows decidability of the problem which
take ε as an input (in addition to γ, β and f) and distinguishes (γ, β)-approximable problems from
(γ − ε, β + ε)-inapproximable problems. The running time of their decision procedure grows with
1/ε. In contrast our distinguishability separates (γ, β)-approximability from “∀ε > 0, (γ−ε, β+ε)-
inapproximability” — so our algorithm does not require ε as an input - it merely takes γ, β and f
as input. Indeed this difference is key to the understanding of approximation resistance. Due to the
stronger form of our main theorem (Theorem 1.1), our characterization of streaming-approximation-
resistance is explicit (decidable in PSPACE), whereas a decidable characterization of approximation-
resistance in the polynomial time setting seems to be still open.

Our characterizations also seem to differ from the previous versions in terms of the features be-
ing exploited to distinguish the two classes. This leads to some strange gaps in our knowledge. For
instance, it would be natural to suspect that (conditional) inapproximability in the polynomial time
setting should also lead to (unconditional) inapproximability in the streaming setting. But we don’t
have a formal theorem proving this.3 One (unfulfilling) consequence of this gap in knowledge is that
we do not yet have an streaming-approximation-resistant problem that is not covered by Corol-
lary 1.3. In the polynomial time setting, Potechin [Pot19] gives a balanced linear threshold function
that is approximation-resistant. Balanced linear threshold functions do not support 1-wise inde-
pendence and so his function would be a good candidate for a streaming-approximation-resistant
function that is not covered by Corollary 1.3.

3Of course, if this were false, it would be a breakthrough result giving a polynomial time (even log space) algorithm
for the unique games!
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1.6 Overview of our analysis

At the heart of our characterization is a family of algorithms for Max-CSP(f) in the streaming
setting. We will describe this family soon, but the main idea of our proof is that if no algorithm
in this family solves (γ, β)-Max-CSP(f), then we can extract a single pair of instances, roughly a
γ-satisfiable “yes” instance and an at most β-satisfiable “no” instance, that certify this inability.
We then show how this pair of instances can be exploited as gadgets in a negative result. Up
to this part our approach resembles that in [Rag08] (though of course all the steps are quite
different). The main difference is that we are able to use the structure of the algorithm and the
lower bound construction to show that we can afford to consider only instances on k variables.
(This step involves a non-trivial choice of definitions that we elaborate on shortly.) This bound on
the number of variables allows us to get a very “decidable” separation between approximable and
inapproximable problems. Specifically we show that distinction between approximable setting and
the inapproximable one can be expressed by a quantified formula over the reals with a constant
number of quantifiers over 2k variables and equations — a problem that is known to be solvable in
PSPACE. We give more details below.

Bias-based algorithms. For every λ = (λ1, . . . , λk) ∈ Rk we define the λ-bias measure of an
instance Ψ of Max-CSP(f) as follows. Let pij denote the number of occurrences of the literal xi
as the jth variable in a constraint, and let nij denote the same quantity for the literal −xi. Let
biasi,j = 1

m(pij − nij). We define the λ-bias of the ith variable to be a weighted sum of biasi,j
as follows: biasλ(Ψ)i =

∑k
j=1 λjbiasi,j . Let the bias vector of the instance Ψ be biasλ(Ψ) =

(biasλ(Ψ)1, . . . , biasλ(Ψ)n). It turns out that the ability to estimate the `1 norm of a vector in the
“turnstile model” implies that for any given λ vector, we can estimate the `1 norm of biasλ(Ψ)
(to within a multiplicative factor of (1 ± ε) for arbitrarily small ε > 0). We refer to an algorithm
that aims to solve the (γ, β)-Max-CSP(f) using only an estimate of the `1 norm of biasλ(Ψ) (for
some λ based on f, γ, β) as a “bias-based algorithm”. A priori it is not clear how to choose a λ
vector for a given problem. The crux of our analysis is to identify two (bounded, closed) convex
sets KY

γ ,K
N
β ⊆ Rk such that if the two sets are disjoint then the hyperplane separating them gives

us the desired λ.
We now give some insight into the sets KY

γ and KN
β . Roughly these sets capture properties of

instances of Max-CSP(f) on k variables, say x1, . . . , xk. The instances we consider are special in
that xi always appears as the ith variable in every constraint: the only variability being in whether
it appears positively or negatively. The set KY

γ consists of the bias vectors biasλ(Ψ) of all instances

Ψ that have valΨ(1k) ≥ γ, i.e., the assignment of all 1’s satisfied γ fraction of the constraints of
Ψ. The set KN

β is similarly supposed to capture the biases biasλ(Ψ) of instances Ψ for which the
value is at most β. Determining exactly which assignments achieve this bounded value turns out
to be subtle and we defer describing it here. But given our choice, our analysis roughly works as
follows: Given an instance Ψ on n variables, we create a distribution D(Ψ) ∈ ∆({−1, 1}k) and its
projection µ onto Rk such that if Ψ is a YES instance, then µ ends up being in KY

γ , while if Ψ is a

NO instance, µ ∈ KN
β . Most crucially, the `1 norm of biasλ(Ψ) exactly corresponds to the distance

from µ to the hyperplane separating KY
γ and KN

β , which allows us to distinguish the YES and NO
cases. Details of the definition of sets can be found in Section 2 and the analysis of the algorithm
can be found in Section 4.
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Communication complexity of hidden partitions. Hardness results in streaming are usually
obtained by appealing to lower bounds for one-way communication complexity and our work is no
different. The rough idea is to create instances Ψ that are divided into a (large) constant number
of sub-instances Ψ1, . . . ,ΨT that are on the same set of variables, x1, . . . , xn. In YES instances,
the sub-instances are chosen so that a planted assignment chosen uniformly satisfies γ fraction of
the constraints. In NO instances, the sub-instances are chosen “randomly” so that no assignment
is very likely to satisfy β fraction of the constraints. The division into sub-instances is used as
follows: no two constraints within a sub-instance share variables - so an algorithm with limited
memory when facing the stream corresponding to Ψt would not really see any interesting patterns
locally, and so would need to remember “details” about Ψ1, . . . ,Ψt−1. However, and this is where
our sets KY and KN come into play, remembering univariate marginals (or how often xi appeared
positively or negatively) would hopefully be of no use since both the YES and the NO distributions
would have exactly the same marginals.

Implementing this reduction to the communication complexity problem is mostly straightfor-
ward given previous works. We don’t describe the reduction but only the reduced communication
problem. We consider a two-player one-way communication problem, which we call the Randomized
Mask Detection (RMD) problem where Alice gets a vector x∗ ∈ {−1, 1}n chosen uniformly at ran-
dom, and Bob gets a random k-uniform hypermatching M with αn hyperedges on [n], along with
a vector z ∈ {−1, 1}kαn whose distribution depends on whether we are in the YES case or NO case
(here α is some small but positive constant). Specifically, z specifies the x-values of the vertices
touched by M , but this information is hidden partially by picking for each edge (independently) a
masking vector b and letting z for this edge be the information for x∗ masked by (xor’ing with)
b. See Section 5.2 for a mathematically precise statement. The key difference between the YES
instance and the NO instance is the distribution of b: In the YES case, it is chosen according to
some distribution DY supported on {−1, 1}k whose marginals are in KN

γ ; and in the NO case, they

come from the distribution DN whose marginals are in KY
β . Of course, we apply this reduction

only in the setting where the two sets of marginals intersect, so for our purpose we can ignore KN
γ

and KY
β , and just consider two arbitrary distributions DY and DN with matching marginals. The

technical meat of our negative result is proving that for an arbitrary pair of distributions DY and
DN with matching marginals, any one-way communication protocol with o(

√
n) communication

has o(1)-advantage in distinguishing the YES and NO cases. See Theorem 5.3.
The work of Kapralov, Khanna, and Sudan [KKS15] seeds our quest by showing that (DY ,DN )-

RMD is hard on the special case where DY is uniform on {(1, 1), (−1,−1)} and DN is uniform on
{−1, 1}2. Strictly speaking their formalism is slightly different4 — and one in which we are not
able to express all our problems, but their proof for this case certainly applies to our formalism.
The proof of [KKS15] is Fourier analytic, based on prior work of Gavinsky, Kempe, Kerenidis, Raz,
and de Wolf [GKK+09]. The first step of our analysis extends this Fourier analytic approach to
the case of distributions over {−1, 1}k for all values of k, and to all distributions DY and DN that
have uniform marginals. This is reported in Section 6.

Somewhat to our surprise we were unable to extend the Fourier analytic proof to the case where
DY and DN have arbitrary but matching marginals. To get the full case, we turn to reductions.
Specifically we show that while we cannot directly prove the indistinguishability of general DY and

4In order to handle the general Max-CSP problem, in RMD we extend the previous framework with a more detailed
encoding of the hypermatching M , and also allow for a general masking vector b. Due to these extensions, we cannot
immediately conclude hardness of RMD from previous results, and we prove it from scratch.
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DN with matching marginals, we can use the indistinguishability for uniform marginals as a tool
(via reductions) to show indistinguishability of some restricted pairs of distributions (D,D′). The
key to the final result is that for any pair of distributions DY and DN with matching marginals,
there is a path from one to the other of finite length (our upper bound is poly(k!)) such that every
adjacent pair of distributions on the path is indistinguishable by our aforementioned reductions
for restricted pairs. We remark that while DY and DN are typically chosen to have interesting
properties with respect to their value on various assignments, the intermediate distributions may
not have any interesting properties for the underlying optimization problem! But the generality of
the framework turns out to be a strength in that we can refer to these problems anyway and use
their indistinguishability features. The path from DY to DN allows us to use triangle-inequality
for indistinguishability to get the final result on indistinguishability of RMD on distributions with
matching marginals. Details of this part can be found in Section 7.

1.7 Future questions and work

Some of the main questions left open in this work are:

1. Can the methods be extended to handle the case where the constraints come from a family of
functions, rather than a single function? We believe this should be straightforward to achieve.

2. Can we further extend the results to the setting where the constraints are not placed on
literals, but rather only on variables? Such an extension seems to require new ideas beyond
those in this paper.

3. Can we extend the results to the non-Boolean setting, i.e., when the variables take on values
from an arbitrary finite set, as opposed to {−1, 1}. We stress that both the positive and
negative results in this paper exploit restrictions of the Boolean setting! In this direction,
Guruswami and Tao [GT19] proved that (1/p+ ε)-approximation for the unique games with
alphabet size p requires Ω̃(

√
n) space in the streaming setting.

4. Can the lower bound for the hard problems be improved to linear? Such an improvement
was given by Kapralov and Krachun [KK19] for the Max-2LIN problem (Max-CSP(f) where
f(x, y) = x ⊕ y) in a technical tour-de-force. Extending this work to other optimization
problems seems non-trivially challenging.

5. Finally, our work and all the questions above only consider the setting of single-pass stream-
ing algorithms. Once this is settled, it would make sense to extend the analyses to multi-pass
algorithms. While there are several multi-pass streaming algorithms and lower bounds (see,
e.g., [Cha20, McG14, GM08] and references therein), we note that Assadi, Kol, Saxena,
and Yu [AKSY20] recently suggested a multi-round version of the Boolean Hidden Hyper-
matching problem that allows to extend some previous single-pass results (including a lower
bound for approximate Max-2LIN) to the multi-pass setting.

1.8 Structure of rest of the paper

In Section 2, we describe our result in detail. In particular we give an explicit criterion to distinguish
the easy and hard Max-CSP(f) problems in the streaming setting. Section 3 contains some of the
preliminary background used in the rest of the paper. In Section 4, we describe and analyze our

9



algorithm that yields our easiness result. In Section 5, we define the central family of communication
problems that lie at the heart of our negative results and prove the negative result for streaming
problems assuming the communication problems are hard. In Section 6, we establish the desired
lower bounds for a subclass of the problems by Fourier analytic methods. In Section 7, we establish
reductions between the communication problems that allow us to extend our negative results to
the entire set.

2 Our Results

We start with some notation needed to state our results. We use R≥0 to denote the set of non-
negative real numbers. For a finite set Ω, let ∆(Ω) denote the space of all probability distributions
over Ω, i.e.,

∆(Ω) = {D : Ω→ R≥0|
∑
ω∈Ω

D(ω) = 1}.

We view ∆(Ω) as being contained in R|Ω|. We use X ∼ D to denote a random variable drawn from
the distribution D.

2.1 Key definitions

The main objects that allow us to derive our characterization are the space of distributions on
constraints that either allow a large number of constraints to be satisfied, or only a few constraints
to be satisfied. To see where the distributions come from, note that distributions of constraints over
n variables can naturally be identified with instances of weighted constraint satisfaction problem
(where the weight associated with a constraint is simply its probability). In what follows we will
consider instances on exactly k variables x1, . . . , xk. Furthermore all constraints will use xi as
the ith variable. Hence, a constraint on k variables is specified by b ∈ {−1, 1}k, specifying the
constraint f(b1x1, . . . , bkxk). Thus in what follows we will equate “instances on k variables” with
distributions on {−1, 1}k.

Given 0 ≤ β ≤ γ ≤ 1 we will consider two sets of instances/distributions. The first set
SYγ = SYγ (f) will be instances where γ fraction of the constraints are satisfied by the assignment 1k.

The second set SNβ = SNβ (f) is a bit more subtle: it consists of instances where no “independent
identical distribution” on the variables satisfies more that β-fraction of the clauses. To elaborate,
recall that the only distributions on a single variable taking values in {−1, 1} are the Bernoulli
distributions. Let Bern(p) denote the distribution that takes the value 1 with probability 1 − p
and −1 with probability p. Then an instance belongs to SNβ if for every p, when (x1, . . . , xk) gets

a random assignment chosen according to Bern(p)k, the expected fraction of satisfied clauses is at
most β. The following is our formal definition.

Definition 2.1 (Space of Yes/No Distributions). For γ, β ∈ R, we define

SYγ = SYγ (f) = {DY ∈ ∆({−1, 1}k) | E
b∼DY

[f(b)] ≥ γ}

and SNβ = SNβ (f) = {DN ∈ ∆({−1, 1}k) | E
b∼DN

E
a∼Bern(p)k

[f(b� a)] ≤ β,∀p} .
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For γ > β the sets SYγ and SNβ are clearly disjoint. But their marginals, when projected to
single coordinates need not be, and this is the crux of our characterization. In what follows, we
define sets KY

γ and KN
β to be the marginals of the distributions in SYγ and SNβ respectively. For

a distribution D ∈ ∆({−1, 1}k), let µ(D) denote its marginals, i.e., µ(D) = (µ1, . . . , µk) where
µi = Eb∼D[bi].

Definition 2.2 (Marginals of Yes/No Distributions). For γ, β ∈ R, we define

KY
γ = KY

γ (f) = { µ(DY ) | DY ∈ SYγ }
and KN

β = KN
β (f) = { µ(DN ) | DN ∈ SNβ } .

With the two definitions above in hand we are ready to describe our characterizations of easy
vs. hard approximation versions of Max-CSP(f).

2.2 The characterization

Our main result, stated formally below, roughly says that the Max-CSP(f) problem is (γ, β)-
approximable if and only if the sets KY

γ and KN
β do not intersect.

Theorem 2.3. For every function f : {−1, 1}k → {0, 1} and for every 0 ≤ β < γ ≤ 1, the following
hold:

1. If KY
γ (f) ∩ KN

β (f) = ∅, then (γ, β)-Max-CSP(f) admits a probabilistic streaming algorithm
that uses O(log n) space.

2. If KY
γ (f) ∩ KN

β (f) 6= ∅, then for every ε > 0, the (γ − ε, β + ε)-approximation version

of Max-CSP(f) requires Ω(
√
n) space5. Furthermore, if γ = 1, then (1, β + ε)-Max-CSP(f)

requires Ω(
√
n) space.

Proof of Theorem 2.3. Part (1) of the theorem is restated and proved as Theorem 4.1 in Section 4.
Part (2) is proved as Theorem 5.1 in Section 5.4.

We now turn to the implications of this theorem. First, to get Theorem 1.1 from Theorem 2.3,
we need to show that the question “Is KY

γ ∩KN
β = ∅?” can be decided in polynomial space. To

this end, we first make the following observation.

Lemma 2.4. For every β, γ ∈ [0, 1] the sets SYγ , S
N
β ,K

N
γ and KY

β are bounded, closed and convex.

Furthermore, KY
γ ∩ KN

β = ∅ can be expressed in the quantified theory of reals with 2 quantifier

alternations, O(2k) variables, and polynomials of degree at most k + 1.

Proof. We start by considering the sets SYγ and SNβ . It is straightforward to see that SYγ is a

bounded and convex polytope in R2k . SNβ is a bit more subtle due to the universal quantification

over p ∈ [0, 1]. It is now specified by infinitely many linear inequalities in R2k and so is still a
bounded and convex set (though not necessarily a polytope). KY

γ (resp. KN
β ) is obtained by a

linear projection from R2k to Rk. So KY
γ is a bounded, closed, and convex polytope in Rk, while

KN
β is still a bounded, closed, and convex set.

5The constant hidden in the Ω notation may depend on k and ε.
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To get an intersection detection algorithm we use one more property. Note that for variable p,
the condition Ea∼DN Eb∼Bern(p)k [f(b� a)] ≤ β is a polynomial inequality in p of degree at most k,

with coefficients that are linear forms in DN (b), b ∈ {−1, 1}k. This allows us to express the
condition KY

γ ∩KN
β 6= ∅ using the following system of quantified polynomial inequalities:

∃ DY ,DN ∈ R2k , ∀p ∈ [0, 1] s.t.

DY ,DN are distributions, (2.5)

∀i ∈ [k], E
b∼DY

[bi] = E
b∼DN

[bi], (2.6)

E
b∼DY

[f(b)] ≥ γ, (2.7)

E
b∼DN

E
a∼Bern(p)k

[f(a� b)] ≤ β. (2.8)

Note that Equations (2.5), (2.6) and (2.7) are just linear inequalities in the variables DY ,DN and
do not depend on p. As noticed above Equation (2.8) is an inequality in p, and DN , of degree k in p,
and 1 in DN . We thus get that the intersection problem can be expressed in the quantified theory
of the reals by an expression with two quantifier alternations, 2k variables and O(2k) polynomial
inequalities, with polynomials of degree at most k + 1. (Most of the inequalities are of the form
DY (b) ≥ 0 or DN (b) ≥ 0. Only O(k) inequalities are not of that form; and of these, only one is
non-linear.)

The quantified theory of the reals is known to be solvable in PSPACE. In particular we may
use the following theorem.

Theorem 2.9 ([BPR06, Theorem 14.11, see also Remark 13.10]). The truth of a quantified formula
with w quantifier alternations over K variables and polynomial (potentially strict) inequalities can

be decided in space KO(w) and time 2K
O(w)

.

(Specifically, Theorem 14.11 in [BPR06] asserts the time complexity above, and Remark 13.10
yields the space complexity.)

Theorem 1.1 now follows immediately.

Proof of Theorem 1.1. Theorem 2.3 asserts that the (γ, β)-approximation version of Max-CSP(f)
is easy if and only if KY

γ ∩KN
β = ∅. Lemma 2.4 asserts that this condition is in turn expressible in

the quantified theory of the reals with 2 quantifier alternations. Finally Theorem 2.9 asserts that
this can be decided in polynomial space. The theorem follows.

We note that the literature on approximation algorithms usually considers a single parameter
version of the problem. In our context we would say that an algorithm A is a α-approximation
algorithm for Max-CSP(f) if for every instance Ψ, we have

α · valΨ ≤ A(Ψ) ≤ valΨ .

The following proposition converts our main theorem in terms of this standard notion.

Proposition 2.10. Fix f : {−1, 1}k and let KY
γ and KN

β denote the space of marginals for this
function f . Let

α = inf
β∈[0,1]

 sup
γ∈(β,1] s.t KY

γ ∩KN
β=∅
{β/γ}

 .
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Then for every ε > 0, there is an (α − ε)-approximation algorithm for Max-CSP(f) that uses
O(log n) space. Conversely every (α+ ε)-approximation algorithm for Max-CSP(f) requires Ω(

√
n)

space.

Proof. For the positive result, let τ , ε · ρ(f)/2, where ρ(f) = 2−k
∑

a∈{−1,1}k f(a) is the fraction
of clauses satisfied by a random assignment. Let

Aτ = {(iτ, jτ) ∈ [0, 1]2 | i, j ∈ Z≥0, i > j,KY
iτ ∩KN

jτ = ∅}.

By Theorem 2.3, for every (γ, δ) ∈ Aτ there is a O(log n log(1/τ))-space algorithm for (γ, β)-
Max-CSP(f) with error probability 1/(10τ2), which we refer to as the (γ, β)-distinguisher below. In
the following we consider the case where all O(τ−2) distinguishers output correct answers, which
happens with probability at least 2/3.

Our O(τ−2 log(1/τ) log n) = O(log n) space (α− ε)-approximation algorithm for Max-CSP(f) is
the following: On input Ψ, run in parallel all the (γ, β)-distinguishers on Ψ, for every (γ, β) ∈ Aτ .
Let

β0 = arg max
β

[∃γ such that the (γ, β)-distinguisher outputs YES on Ψ] .

Output β′ = max{ρ(f), β0}.
We now prove that this is an (α−ε)-approximation algorithm. First note that by the correctness

of the distinguisher we have β′ ≤ valΨ. Let γ0 be the smallest multiple of τ satisfying γ0 ≥
(β0 + τ)/α. By the definition of α, we have that KY

γ0 ∩K
N
β0+τ = ∅. So (γ0, β0 + τ) ∈ Aτ and so the

(γ0, β0 +τ)-distinguisher must have output NO on Ψ (by the maximality of β0). By the correctness
of this distinguisher we conclude valΨ ≤ γ0 ≤ (β0 + τ)/α+ τ ≤ (β′ + τ)/α+ τ . We now verify that
(β′ + τ)/α+ τ ≤ β′/(α− ε) and this gives us the desired approximation guarantee. We have

(β′ + τ)/α+ τ ≤ (β′ + 2τ)/α ≤ (β′/α) · (1 + 2τ/ρ(f)) = (β′/α)(1 + ε) ≤ (β′/(α(1− ε))),

where the first inequality uses α ≤ 1, the second uses β′ ≥ ρ(f), the equality comes from the
definition of τ and the final inequality uses (1 + ε)(1− ε) ≤ 1. This concludes the positive result.

The negative result is simpler. Given γ, β with β/γ ≥ α+ε, we can use an (α+ε)-approximation
algorithm A to solve the (γ, β)-Max-CSP(f), by outputting YES if A(Ψ) ≥ β and NO otherwise.

2.3 Approximation resistance

We now turn to Corollary 1.2. Recall that for a function f : {−1, 1}k → {0, 1}, we define ρ(f) =
2−k · |{a ∈ {−1, 1}k : f(a) = 1}| to be the probability that a uniformly random assignment
satisfies f . Recall further that f is approximation-resistant if for every ε > 0, the (1, ρ(f) + ε)-
approximation version of Max-CSP(f) requires polynomial space.

Proof of Corollary 1.2. By Theorem 2.3 we have that Max-CSP(f) is approximation-resistant if
and only if KY

1 ∩KN
ρ(f)+ε 6= ∅ for every ε > 0. In turn, this is equivalent to saying Max-CSP(f) is

approximation resistant if and only if KY
1 ∩KN

ρ(f) 6= ∅. If KY
1 ∩KN

ρ(f) = ∅, then by the property that

these sets are closed, we have that there must exist ε > 0 such that KY
1−ε∩KN

ρ(f)+ε = ∅. In turn this

implies, again by Theorem 2.3, that the (1− ε, ρ(f) + ε)-approximation version of Max-CSP(f) can
be solved by a streaming algorithm with O(log n) space. Finally, from Lemma 2.4 and Theorem 2.9
the condition “Is KY

1 ∩KN
ρ(f) = ∅?” can be checked in polynomial space.
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To get Corollary 1.3, we perform some basic reasoning about the sets KY
1 and KN

ρ(f).

Proof of Corollary 1.3. We argue that the vector 0k belongs to both KY
1 and KN

ρ(f). Theorem 2.3
now implies the assertion.

Let DY be the distribution proving that f supports a 1-wise independent distribution, i.e., DY
is supported on f−1(1) and satisfies Eb∈DY [bi] = 0 for every i ∈ [k]. It follows that DY ∈ SY1 and
0k ∈ KY

1 .
LetDN be the uniform distribution on {−1, 1}k. Note that for every a ∈ {−1, 1}k we have a�b is

uniformly distributed over {−1, 1}k if b ∼ DN . Consequently, for every a we get Eb∼DN [f(b�a)] =
ρ(f), and so for every p ∈ [0, 1], we have

E
a∼Bern(p)k

E
b∼DN

[f(b ◦ a)] = ρ(f).

We conclude the DN ∈ SNρ(f) and so 0k ∈ KN
ρ(f).

We conclude from Theorem 2.3 that Max-CSP(f) is not (1, ρ(f) − ε)-approximable and so is
approximation-resistant.

2.4 Examples

We illustrate the applicability of our theorem with two examples. The first is of the specific function
Max-2AND, i.e., Max-CSP(f) for f(a, b) = a ∧ b, i.e., f(a, b) = 1 if and only if a = b = 1.

Example 1 (Max-2AND).

For the function f : {−1, 1} → {0, 1} given by f(1, 1) = 1 and f(a, b) = 0 otherwise, we
would like to calculate the quantity infβ supγ|KY

γ ∩KN
β =∅ β/γ. We first note that due to the

symmetry of f , we have KY
γ is symmetric, i.e., (µ1, µ2) ∈ KY

γ ⇔ (µ2, µ1) ∈ KY
γ . Similarly

with Kβ
N . Further by convexity of KY

γ and KN
β we get there exists a pair (µ1, µ2) ∈ KY

γ ∩KN
β

if and only if there exists a µ such that (µ, µ) ∈ KY
γ ∩ KN

β . We now define two functions
that will help us answer the question if such a µ exists. Let

γ(µ) := max
γ | (µ,µ)∈KY

γ

{γ} & β(µ) := min
β | (µ,µ)∈KN

β

{β}.

Note that KY
γ ∩KN

β 6= ∅ if and only if there exists a µ such that γ ≤ γ(µ) and β ≥ β(µ).
With some minimal calculations for γ(µ) and some slightly more involved ones for β(µ) we
can show

γ(µ) =
1 + |µ|

2
& β(µ) =

{
|µ| , |µ| ≥ 1

3
(1−|µ|)2
4(1−2|µ|) , else.

With the above in hand we can analyze when KY
γ ∩KN

β = ∅.
First, when γ ≤ 1/2, note that (0, 0) ∈ KY

γ and hence KY
γ ∩KN

β 6= ∅ for all β ≥ 1/4. When
γ > 1/2, we set |µ| = 2γ − 1 (note both γ(µ) and β(µ) only depend on |µ|) to get

β(µ)
∣∣
|µ|=2γ−1

=

{
(1−γ)2

3−4γ , 1/2 ≤ γ < 2/3

2γ − 1 , 2/3 ≤ γ .
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The quantity α(β) = supγ∈[β,1] |KY
γ ∩KN

β =∅ β/γ is minimized at β = 4/15.

At this point α = 4/9, which is consistent with the findings in [CGV20] for the Max-2AND
problem. Our more refined analysis also shows that α(β) approaches 1 as β → 1 (suggesting
that “almost-satisfiable” instances are better approximated).

Figure 1: A plot of γ, β, and β/γ with respect to µ. β/γ is minimized at β = 4/15.

The second example we consider includes an entire family of functions.

Lemma 2.11 (1-wise independence implies approximation resistant). For a symmetric function
f : {−1, 1}k → {0, 1}, Max-CSP(f) is approximation resistant if and only if it supports a 1-wise
independent distribution.

Proof. One direction of the implication directly follows from Corollary 1.2. For the other direction,
we use Fourier analysis. The necessary definitions are included in Section 3.4. A symmetric
function f is given by a set of “levels” L = {`1, . . . , `t} ⊆ {−k, . . . , k} such that f(a1, . . . , ak) = 1
if and only if ‖a‖1 =

∑k
i=1 ai ∈ L. If L contains 0, or if L contains both positive and negative

elements, then f supports a 1-wise independent distribution.6 So we conclude L contains only
positive elements or only negative elements. Without loss of generality we consider the case where
L contains only positive elements.

Let ρ = ρ(f), first note that both KY
1 and KN

ρ are symmetric since f is symmetric. Thus, by

the convexity of the sets, it suffices to consider vectors of the form µk = (µ, µ, . . . , µ) in KY
1 and

KN
ρ . Since L contains only positive elements, it follows that for µk ∈ KY

1 , we must have µ > 0. To

prove that Max-CSP(f) is not approximation resistant, it suffices to show that for µ > 0, µk is not
contained in KN

ρ . Consider a distribution D ∈ SNρ with µ(D) = µk. It can be shown by elementary

Fourier analysis that if a ∼ Bern(1/2 + ε)k and b ∼ D then

E
b∼D

E
a∼Bern(p)k

[f(b� a)] = ρ+ Ω(µτε)−O(ε2),

where τ is the sum of the first level Fourier coefficients of f (i.e., τ =
∑
||w||1=1 f̂(w)), and the Ω(·)

and O(·) notations hide constants depending on f and D, but not on ε > 0. Due to the symmetry of

6Indeed, if `1, `2 ∈ L, where `1 < 0 and `2 > 0, then a distribution D that with probability p = `2/(`2−`1) samples
a random a of Hamming weight ‖a‖1 = `1 and with probability 1 − p samples a random a of weight ‖a‖1 = `2 is
1-wise independent and is supported on f−1(1).
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f , all the first level Fourier coefficients are equal, and due to the positivity of L, all these coefficients
are positive. It follows that for some sufficiently small ε > 0, the expected probability of satisfying
a constraint is strictly larger than ρ thus proving µk 6∈ KN

ρ . We conclude KY
1 ∩KN

ρ = ∅, and so
Max-CSP(f) is not approximation-resistant.

3 Preliminaries

We will follow the convention that n denotes the number of variables in the CSP as well as the
communication game, m denotes the number of constraints in the CSP, and k denotes the arity of
the CSP. We use N to denote the set of natural numbers {1, 2, 3, . . .} and use [n] to denote the set
{1, 2, . . . , n}. By default, the Boolean variable in this paper takes value in {−1, 1}.

For variables of a vector form, we write them in boldface, e.g., x ∈ {−1, 1}n, and its i-th entry
is written without boldface, e.g., xi. For variable being a vector of vectors, we write it, for example,
as b = (b(1),b(2), . . . ,b(m)) where b(i) ∈ {−1, 1}k. The j-th entry of the i-th vector of b is then
written as b(i)j . Let x and y be two vectors of the same length, x � y denotes the entry-wise
product of them.

For every p ∈ [0, 1], Bern(p) denotes the Bernoulli distribution that takes value 1 with proba-
bility p and takes value −1 with probability 1− p.

3.1 Approximate Constraint Satisfaction

Let f : {−1, 1}k → {0, 1} be a Boolean constraint function of arity k and x1, . . . , xn be variables.
A constraint C consists of j = (j1, . . . , jk) ∈ [n]k and b = (b1, . . . , bk) ∈ {−1, 1}k where the ji’s
are distinct. The constraint C reads as requiring f(b � x|j) = f(b1xj1 , . . . , bkxjk) = 1. A Max-
CSP(f) instance Ψ contains m constraints C1, . . . , Cm where Ci = (j(i),b(i)) for each i ∈ [m]. For
an assignment σ ∈ {−1, 1}n, the value valΨ(σ) of σ on Ψ is the fraction of constraints satisfied
by σ, i.e., valΨ(σ) = 1

m

∑
i∈[m] f(b(i) � σ|j(i)). The optimal value of Ψ is defined as valΨ =

maxσ∈{−1,1}n valΨ(σ). The approximation version of Max-CSP(f) is defined as follows.

Definition 3.1 ((γ, β)-Max-CSP(f)). Let f : {−1, 1}k → {0, 1} be a constraint function and 0 ≤
β < γ ≤ 1. For each m ∈ N, let Γm = {Ψ = (C1, . . . , Cm) | valΨ ≥ γ} and Bm = {Ψ =
(C1, . . . , Cm) | valΨ ≤ β}.

The task of (γ, β)-Max-CSP(f) is to distinguish between instances from Γ = ∪m≤poly(n)Γm and
instances from B = ∪m≤poly(n)Bm.

For α ∈ [0, 1], an algorithm ALG is an α-approximation to the Max-CSP(f) problem if ALG
can solve (γ, β)-Max-CSP(f) with success probability at least 2/3 for every 0 ≤ β < γ ≤ 1 such
that β/γ ≤ α.

Let ρ(f) = 2−k · |{a ∈ {−1, 1}k | f(a) = 1}| denote the probability that a uniformly random
assignment satisfies f . We say f is streaming-approximation-resistant if for every ε > 0, the
(1, ρ(f) + ε)-Max-CSP(f) requires Ω(nδ) space for some constant δ > 0.

3.2 Total variation distance

The total variation distance between probability distributions plays an important role in our anal-
ysis.
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Definition 3.2 (Total variation distance of discrete random variables). Let Ω be a finite probability
space and X,Y be random variables with support Ω. The total variation distance between X and
Y is defined as follows.

‖X − Y ‖tvd :=
1

2

∑
ω∈Ω

|Pr[X = ω]− Pr[Y = ω]| .

We will use the triangle and data processing inequalities for the total variation distance.

Proposition 3.3 (E.g.,[KKS15, Claim 6.5]). For random variables X,Y and W :

• (Triangle inequality) ‖X − Y ‖tvd ≥ ‖X −W‖tvd − ‖Y −W‖tvd.

• (Data processing inequality) If W is independent of both X and Y , and f is a function, then
‖f(X,W )− f(Y,W )‖tvd ≤ ‖X − Y ‖tvd.

3.3 Concentration inequality

We will use the following concentration inequality which is essentially an Azuma-Hoeffding style
inequality for submartingales. The form we use is from [KK19].

Lemma 3.4 ([KK19, Lemma 2.5]). Let X =
∑

i∈[N ]Xi where Xi are Bernoulli random variables
such that for any k ∈ [N ], E[Xk |X1, . . . , Xk−1] ≤ p for some p ∈ (0, 1). Let µ = Np. For any
∆ > 0,

Pr [X ≥ µ+ ∆] ≤ exp

(
− ∆2

2µ+ 2∆

)
.

3.4 Fourier analysis

We will need the following basic notions from Fourier analysis over the Boolean hypercube (see, for
instance, [O’D14]). For a Boolean function f : {−1, 1}k → R its Fourier coefficients are defined by

f̂(v) = Ea∈{−1,1}k [f(a) · (−1)v
>a], where v ∈ {0, 1}k. We need the following two important tools.

Lemma 3.5 (Parseval’s identity). For every function f{−1, 1}k → R,

‖f‖22 =
1

2k

∑
a∈{−1,1}k

f(a)2 =
∑

v∈{0,1}k
f̂(v)2 .

Note that for every distribution f on {−1, 1}k, f̃(0k) = 2−k. For the uniform distribution U on
{−1, 1}k, Û(v) = 0 for every v 6= 0k. Thus, by Lemma 3.5, for any distribution f on {−1, 1}k:

‖f − U‖22 =
∑

v∈{0,1}k

(
f̂(v)− Û(v)

)2
=

∑
v∈{0,1}k\{0k}

f̂(v)2 . (3.6)

Next, we will use the following consequence of hypercontractivity for Boolean functions as given
in [GKK+09, Lemma 6] which it turns relies on a lemma from [KKL88].

Lemma 3.7. Let f : {−1, 1}n → {−1, 0, 1} and A = {a ∈ {−1, 1}n | f(a) 6= 0}. If |A| ≥ 2n−c for
some c ∈ N, then for every ` ∈ {1, . . . , 4c}, we have

22n

|A|2
∑

v∈{0,1}n
‖v‖1=`

f̂(v)2 ≤

(
4
√

2c

`

)`
.

17



4 Streaming Algorithm

In this section we give our main algorithmic result — a O(log n)-space streaming algorithm for the
(γ, β)-Max-CSP(f) if KY

γ = KY
γ (f) and KN

β = KN
β (f) are disjoint. (See Definition 2.2.)

We state our main theorem of this section which simply repeats Part (1) of Theorem 2.3.

Theorem 4.1. For every function f : {−1, 1}k → {0, 1} and for every 0 ≤ β < γ ≤ 1, if
KY
γ (f) ∩KN

β (f) = ∅, then (γ, β)-Max-CSP(f) admits a probabilistic streaming algorithm that uses
O(log n) space and succeeds with probability at least 2/3.

The overview of the algorithm is as follows: We use the separability of KY
γ and KN

β to obtain a
hyperplane with normal vector λ that seperates the two sets. We then estimate a λ-weighted bias
of a given instance Ψ and accept Ψ if this bias falls on the KY

γ side of the hyperplane. We note
that the bias can be approximated arbitrarily well using well-known `1-norm approximators in the
turnstile model. The bulk of the work is in analyzing the correctness of our algorithm.

We will use the following streaming algorithm for approximating the `1 norm of a vector.

Proposition 4.2 ([Ind00],[KNW10, Theorem 2.1]). Given a stream S of poly(n) updates (i, v) ∈
[n] × {−M,−(M − 1), . . . ,M − 1,M} where M = poly(n), let xi =

∑
(i,v)∈S v for i ∈ [n]. For

every ε > 0, there exists a streaming algorithm that uses O(log n) bits of memory and outputs a
(1± ε)-approximation to the value ‖x‖1 =

∑
i |xi| with probability at least 2/3.

4.1 Algorithm

Let us start with the definition of λ-bias.

Definition 4.3 (Bias (vector)). For λ = (λ1, . . . , λk) ∈ Rk, and instance Ψ = (C1, . . . , Cm) of
Max-CSP(f) where Ci = (j(i),b(i)), we let the λ-bias vector of Ψ, denoted biasλ(Ψ), be the vector
in Rn given by

biasλ(Ψ)` =
1

m
·

∑
i∈[m],t∈[k]:j(i)t=`

λtbt(i) ,

for ` ∈ [n]. The λ-bias of Ψ, denoted Bλ(Ψ), is the `1 norm of biasλ(Ψ), i.e., Bλ(Ψ) =∑n
`=1 |biasλ(Ψ)`|.
By directly applying the known `1-sketching algorithm (i.e., Proposition 4.2), the following

lemma shows that λ-bias can be estimated in O(log n) space.

Lemma 4.4. For every vector λ ∈ Rk and ε > 0, there exists a O(log n) space algorithm A that,
on input Ψ outputs a (1 ± ε)-approximation to Bλ(Ψ), i.e., for every Ψ, (1 − ε)Bλ(Ψ) ≤ A(Ψ) ≤
(1 + ε)Bλ(Ψ), with probability at least 2/3.

Proof. Note that since k and ε are constants with respect to n, we can without loss of generality
assume that each entry of λ is an integer and ε has constant bit complexity. 7

Next, for each i ∈ [m] and t ∈ [k], let (j(i)t, λt) be an update. Since m = poly(n) and k
is a constant, we know that there are only poly(n) updates and each update is constant integer.

7Concretely, round ε to 2−t where t is the smallest integer such that ε ≥ 2−t. As for λ, let λmin = minj∈[k] |λj | and

round it with the same way as we did for ε. Next, for each j ∈ [k], scale and round λj to d 4λj

λmin
e. It is not difficult to

verify that scaling down the new λ-bias by a factor of λmin/4, it is a (1± ε/2)-approximation to the original λ-bias.
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Thus, by Proposition 4.2, there exists a streaming algorithm that uses O(log n) bits of memory and
outputs a (1± ε)-approximation to the value∑

i∈[m],t∈[k]:j(i)t=`

λtbt(i)

with probability at least 2/3. Now, we design a streaming algorithm A which gets the (1 ± ε)-
approximation A to the above quantity and calculates the value m. Finally, let A(Ψ) = A/m and
by Proposition 4.2 and the definition of λ-bias, we know that A(Ψ) is a (1 ± ε)-approximation to
Bλ(Ψ) using O(log n) space with probability at least 2/3.

We will use the following form of the hyperplane separation theorem for convex bodies (see,
e.g., [BV04, Exercise 2.22]).

Proposition 4.5. Let KY and KN be two disjoint nonempty closed convex sets in Rk at least one
of which is compact. Then there exists a nonzero vector λ = (λ1, . . . , λk) and real numbers τY > τN
such that

∀x ∈ KY , 〈λ,x〉 ≥ τY and ∀x ∈ KN , 〈λ,x〉 ≤ τN .

We are now ready to describe our algorithm for (γ, β)-Max-CSP(f).

Algorithm 1 A streaming algorithm for (γ, β)-Max-CSP(f)

Input: Ψ—an instance of Max-CSP(f).
1: Let λ ∈ Rk and τN < τY be as given by Proposition 4.5 separating KY

γ (f) and KN
β (f).

2: Let ε = τY −τN
2(τY +τN ) (so that (1− ε)τY > (1 + ε)τN ).

3: Compute B̃ to be a (1 ± ε) approximation to Bλ(Ψ), i.e., (1 − ε)Bλ(Ψ) ≤ B̃ ≤ (1 + ε)Bλ(Ψ)
with probability at least 2/3.

4: if B̃ ≤ τN (1 + ε) then
Output: NO.

5: else
Output: YES.

It is clear that the algorithm above runs in O(log n) space (in particular by using Proposition 4.2
for Step 3). We now turn to analyzing the correctness of the algorithm.

4.2 Analysis of the correctness of Algorithm 1

Lemma 4.6. Algorithm 1 correctly solves (γ, β)-Max-CSP(f), if KY
γ (f) and KN

β (f) are disjoint.

Specifically, for every Ψ, let τY , τN , ε,λ, B̃ be as given in Algorithm 1, we have:

valΨ ≥ γ ⇒ Bλ(Ψ) ≥ τY and B̃ > τN (1 + ε) ,

and valΨ ≤ β ⇒ Bλ(Ψ) ≤ τN and B̃ ≤ τN (1 + ε) ,

provided (1− ε)Bλ(Ψ) ≤ B̃ ≤ (1 + ε)Bλ(Ψ).

In the rest of this section, we will prove Lemma 4.6. The key to our analysis is a distribution
D(Ψa) ∈ ∆({−1, 1}k) that we associate with every instance Ψ and assignment a ∈ {−1, 1}n to the
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variables of Ψ. Recall that in Definition 2.2, we define µ(D) = (µ1, . . . , µk) where µi = Eb∼D[bi].
If Ψ is γ-satisfied by assignment a, we prove that µ(D(Ψa)) ∈ KY

γ . On the other hand, if Ψ is

not β-satisfiable by any assignment, we prove that for every a, µ(D(Ψa)) ∈ KN
β . Finally we also

show that the bias Bλ(Ψ) relates to λ(D(Ψa)) , 〈µ(D(Ψa),λ〉, where the latter quantity is exactly
what needs to be computed (by Proposition 4.5) to distinguish the membership of µ(D(Ψa)) in
KY
γ versus the membership in KN

β .
We start with recalling some notations. For an instance Ψ = (C1, . . . , Cm) on n variables

with Ci = (j(i),b(i)), and an assignment a ∈ {−1, 1}n, let Ψa denote the new instance obtained by
flipping the variables according to a. Specifically Ψa = (Ca

1 , . . . , C
a
m) where Ca

i = (j(i),a|j(i)�b(i)).

Given instance Ψ, let D(Ψ) ∈ ∆({−1, 1}k) be the distribution obtained by sampling a constraint
at random from Ψ and outputting the “negation pattern”. Formally, to sample a random vector
b ∼ D(Ψ), we sample i ∈ [m] uniformly and output b(i) where Ci = (j(i),b(i)).

The next lemma relates the λ-bias vector of Ψ to λ(D(Ψa)) and uses this to relate the bias of
Ψ to the maximum over a of λ(D(Ψa)).

Lemma 4.7. For every vector a ∈ {−1, 1}n, we have λ(D(Ψa)) = 〈a, biasλ(Ψ)〉. Consequently we
have Bλ(Ψ) = maxa∈{−1,1}n{λ(D(Ψa))}.

Proof. We start with the first equality. Fix a ∈ {−1, 1}n. We have

λ(D(Ψa)) = 〈µ(D(Ψa)),λ〉 (By definition of λ(·))
= E

y∼D(Ψa)
[〈y,λ〉] (By definition of µ(D) and linearity of inner product)

= E
i∼Unif{[m]}

[〈ba(i),λ〉] (By definition of D(Ψa))

= E
i∼Unif{[m]}

∑
t∈[k]

ba(i)t · λt

 (Expanding the inner product)

=
1

m

∑
i∈[m]

∑
`∈[n]

∑
t∈[k]

1j(i)t=` · λt · a` · b(i)t (Using definition of Ψa)

=
1

m

∑
`∈[n]

a`
∑
t∈[k]

λt
∑
i∈[m]

1j(i)t=` · b(i)t (Exchanging summations)

=
∑
`∈[n]

a` · biasλ(Ψ)` (By definition of biasλ(·))

= 〈a, biasλ(Ψ)〉 ,

yielding the first equality.
The second part is immediate from the observation that for every vector v ∈ Rn, we have

||v||1 = maxa∈{−1,1}n〈a,v〉 and so

Bλ(Ψ) = ||biasλ(Ψ)||1 = max
a∈{−1,1}n

{〈a, biasλ(Ψ)〉} = max
a∈{−1,1}n

{λ(D(Ψa))} .

We now turn to connecting valΨ to properties of D(Ψa).
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Lemma 4.8. For every Ψ and a, if valΨ(a) ≥ γ then D(Ψa) ∈ SYγ .

Proof. Follows from the fact that

E
b∼D(Ψa)

[f(b)] =
1

m

∑
i∈[m]

f(b(i)� a|j(i)) =
1

m

∑
i∈[m]

Ci(a) = valΨ(a) ≥ γ ,

implying D(Ψa) ∈ SYγ .

Lemma 4.9. For every Ψ, if valΨ ≤ β, then for all a, we have D(Ψa) ∈ SNβ .

Proof. We claim if valΨ ≤ β, then D(Ψ) ∈ SNβ . This suffices to prove the lemma, since for every
a ∈ {−1, 1}n we have valΨa = valΨ. So if valΨ ≤ β then valΨa ≤ β and so by the claim above
applied to Ψa, we have D(Ψa) ∈ SNβ .

We prove the contrapositive, i.e., we assume D(Ψ) 6∈ SNβ and show this implies valΨ > β. If

D(Ψ) 6∈ SNβ , then there exists p ∈ [0, 1] such that Eb∼D(Ψ) Ec∼Bern(p)k [f(b � c)] > β. But this
implies, as we show below, that if σ ∼ Bern(p)n, then Eσ∼Bern(p)n [valΨ(σ)] > β. We have:

E
σ∼Bern(p)n

[valΨ(σ)] = E
σ∼Bern(p)n

E
i∼Unif{[m]}

[Ci(σ)] (By definition of Ψ)

= E
σ∼Bern(p)n

E
i∼Unif{[m]}

[f(b(i)� σ|j(i))] (By definition of Ci)

= E
i∼Unif{[m]}

E
σ|j(i)∼Bern(p)k

[f(b(i)� σ|j(i))] (Exchanging summations)

= E
i∼Unif{[m]}

E
c∼Bern(p)k

[f(b(i)� c)] (Renaming variables)

= E
b∼D(Ψ)

E
c∼Bern(p)k

[f(b� c)] (By definition of D(Ψ))

> β (By the contrapositive assumption)

Since valΨ , maxσ{valΨ(σ)} ≥ Eσ∼Bern(p)n [valΨ(σ)], we get a contradiction to valΨ ≤ β. This
concludes the proof of the claim and hence the lemma.

Before turning to the proof of Lemma 4.6, we first do a quick post-analysis of the proof above.
The proof above is the key reason why the definition of SNβ is chosen as it is: In particular, from the

fact that there was an i.i.d. distribution, namely Bern(p)k, according to which a random assignment
satisfied the “instance” underlying D(Ψ) with value more than β allowed us to extend this to a
(again i.i.d., but this was not necessary) distribution over assignments to Ψ that also achieved value
of at least β. Note that the mere existence of an assignment of value greater than β on D(Ψ) would
have been insufficient for this step to go through, explaining our choice of definition of SNβ .

We are now ready to prove Lemma 4.6.

Proof of Lemma 4.6. Let valΨ ≥ γ. Then there exists a ∈ {−1, 1}n such that valΨ(a) ≥ γ.
By Lemma 4.8, we have that D(Ψa) ∈ SYγ . By our choice of λ, we have λ(D) ≥ τY for

every D ∈ SYγ and so in particular we have λ(D(Ψa)) ≥ τY . By Lemma 4.7, we have
Bλ(Ψ) = maxc∈{−1,1}n{λ(D(Ψc))}. Putting these together we have

Bλ(Ψ) = max
c∈{−1,1}n

{λ(D(Ψc))} ≥ λ(D(Ψa)) ≥ τY .
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Finally, since B̃ ≥ (1− ε)Bλ(Ψ), we get B̃ ≥ (1− ε)τY > (1 + ε)τN , where the final inequality holds
by our choice of ε.

The case valΨ ≤ β is similar. In this case, by Lemma 4.9 we have D(Ψa) ∈ SNβ for every a.
Now applying Lemma 4.7 we get that for every a, 〈a, biasλ〉 = λ(D(Ψa)) ≤ τN . We conclude that
Bλ(Ψ) = maxa∈{−1,1}n{〈a, biasλ〉} ≤ τN . since B̃ ≤ (1 + ε)Bλ(Ψ), we get B̃ ≤ (1 + ε)τN .

We now conclude the section with a formal proof of Theorem 4.1.

Proof of Theorem 4.1. The desired algorithm is Algorithm 1. Its space complexity is bounded by
the space required for Step 3, which by Lemma 4.4 is O(log n). Assuming Step 3 works correctly,
which happens with probability at least 2/3, Lemma 4.6 shows that it correctly solves (γ, β)-
Max-CSP(f) whenever KY

γ (f) ∩KN
β (f) = ∅.

5 Streaming Space Lower Bound from Communication Games

In this section, we prove the following theorem, which is simply a restatement of the “hard” part
of Theorem 2.3.

Theorem 5.1. For every function f : {−1, 1}k → {0, 1} and for every 0 ≤ β < γ ≤ 1, if
KY
γ (f) ∩ KN

β (f) 6= ∅, then for every ε > 0, (γ − ε, β + ε)-Max-CSP(f) requires Ω(
√
n) space8.

Furthermore, if γ = 1. then (1, β + ε)-Max-CSP(f) requires Ω(
√
n) space.

To prove this theorem, we introduce the Randomized Mask Detection (RMD) communication
game below. We then state a lower bound for the communication complexity of this game (The-
orem 5.3), and use the lower bound to prove Theorem 5.1. The proof of Theorem 5.3 appears in
Section 7.

5.1 2-Player Communication Games and The Randomized Mask Detection
Problem

In this section, and (most of) the rest of this paper, we will be considering the complexity of
2-player 1-way communication games. Broadly such games are described by two (parameterized
set of) distributions Y and N . An instance of the game is a pair (X,Y ) either drawn from Y or
from N and X is given as input to Alice and Y to Bob. A (one-way communication) protocol
Π = (ΠA,ΠB) is a pair of functions with ΠA(X) ∈ {0, 1}c denoting Alice’s message to Bob, and
ΠB(ΠA(X), Y ) ∈ {YES,NO} denoting the protocol’s output. We denote this output by Π(X,Y ).
The complexity of this protocol is the parameter c specifying the length of ΠA(X) (maximized over
all X). The advantage of the protocol Π is the quantity∣∣∣∣ Pr

(X,Y )∼Y
[Π(X,Y ) = YES]− Pr

(X,Y )∼N
[Π(X,Y ) = YES]

∣∣∣∣ .
The Randomized Mask Detection (RMD) communication game is an instance of such a com-

munication game. Let n, k ∈ N and α ∈ (0, 1) with k ≤ n and αk ≤ 1. Alice receives a private
input x∗ drawn uniformly at random from {−1, 1}n while Bob receives private inputs of a k-
uniform hypermatching of size αn and a vector z ∈ {−1, 1}αkn of the form z = (z(1), . . . , z(αn))

8The constant hidden in the Ω notation may depend on k and ε.
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where z(i) ∈ {−1, 1}k for each i ∈ [αn]. Alice’s input x∗ encodes a random bipartition of the
vertex set according to the ±1 pattern. Bob’s k-uniform hypermatching is encoded by a matrix
M ∈ {0, 1}αkn×n where the (k(i − 1) + 1)-th to the (ki)-th rows encode the i-th hyperedge by
putting exactly one 1 in each row to the corresponding vertices. During the game, Alice sends
a message to Bob and Bob has to discover the hidden structure of the vector z. The following
definition formally describes the problem.

Definition 5.2 (Randomized Mask Detection (RMD) Problem). For k ∈ N, α ∈ (0, 1/k] and
a pair of distributions DY ,DN ∈ ∆({−1, 1}k), the (DY ,DN ;α, k)-RMD problem is the 2-player
communication game given by a family of instances (Yn,Nn)n∈N,n≥1/α where for a given n, Y = Yn
and N = Nn are as follows: Both Y and N are supported on triples (x∗,M, z) where x∗ ∈ {−1, 1}n,
M ∈ {0, 1}kαn×n and z ∈ {−1, 1}kαn, where x∗ is Alice’s input and the pair (M, z) are Bob’s inputs.
We now specify the distributions of x∗,M and z in Y and N :

• In both Y and N , x∗ is distributed uniformly over {−1, 1}n.

• In both Y and N the matrix M ∈ {0, 1}αkn×n is chosen uniformly (and independently of
x∗) among matrices with exactly one 1 per row and at most one 1 per column. (Thus M
represents a k-hypermatching where each block of k rows describes a hyperedge.)

• The vector z is obtained by “masking” (i.e., xor-ing) Mx∗ by a random vector b ∈ {−1, 1}αkn
whose distribution differs in Y and N . Specificially let b = (b(1), . . . ,b(αn)) be sampled from
one of the following distributions (independent of x∗ and M):

– Y: Each b(i) ∈ {−1, 1}k is sampled independently according to DY .

– N : Each b(i) ∈ {−1, 1}k is sampled independently according to DN .

We now set z = (Mx∗)� b (recall that that � denotes coordinatewise product).

We will typically suppress k and α from the notation when they are clear from context and
simply refer to the (DYDN )-RMD. We will refer to n as the length parameter or refer to “instances
of length n” when the instances are drawn from Yn vs. Nn. The goal of a protocol solving RMD is
to distinguish between case where the masks are sampled from DY from the case where the masks
are sampled from DN and advantage measures this probability of distinguishing.

We note that our communication game is slightly different from those in previous works: Specif-
ically the problem studied in [GKK+09, KKS15] is called the Boolean Hidden Matching (BHM)
problem from [GKK+09] and the works [KKSV17, KK19] study a variant called the Implicit Hidden
Partition problem. While these problems are similar, they are less expressive than our formulation,
and specifically do not seem to capture the many different all Max-CSP(f) problems.

There are two main differences between the previous settings and our setting. The first difference
is the way to encode the matching matrix M . In all the previous works, each edge (or hyperedge)
is encoded by a single row in M where the corresponding columns are assigned to 1, so that
m = αn. However, it turns out that this encoding hides too much information and hence we do
not know how to reduce the problem to general Max-CSP. We unfold the encoding by using k
rows to encode a single k-hyperedge (leading to the setting of m = kαn in our case). The second
difference is that we allow the masking vector b to be sampled from a more general distribution.
This is also for the purpose of establishing a reduction to general Max-CSP. That being said, it
is possible to describe some of the previous results in our language: all the papers consider the
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complexity of distinguishing the distribution DY = Unif({(1, 1), (−1,−1)}) from the distribution
DN = Unif({−1, 1}2). This problem is shown to have a communication lower bound of Ω(

√
n) in

[GKK+09]. And a variant of this problem (not captured by our formulation above) is shown to
have an Ω(n) lower bound in [KK19].

Due to the above two differences, it is not clear how to derive communication lower bounds for
general DY and DN by reduction from the previous works. The main technical contribution of this
part of the paper is a communication lower bound for RMD for general DY and DN . We summarize
the result in the following theorem.

Theorem 5.3 (RMD Lower bound for distributions with matching marginals). For every k ∈ N,
there exists α0 > 0 such that for every α ∈ (0, α0) and δ > 0 the following holds: For every pair
of distributions DY ,DN ∈ ∆({−1, 1}k) with µ(DY ) = µ(DN ) there exists τ > 0 and n0 such that
for every n ≥ n0, every protocol for (DY ,Dn)-RMD achieving advantage δ on instances of length n
requires τ

√
n bits of communication.

We prove Theorem 5.3 in two parts. First, in Section 6, we prove a communication lower bound
for the special case where the marginals of DY and DN are all zero. While this captures many
new cases, it fails to capture the more interesting scenarios (involving non-approximation resistant
problems). To get lower bounds for the general case, we reduce the 0-marginal case to the general
case in Section 7.

In the rest of this section, we use Theorem 5.3 to prove the main theorem (Theorem 5.1) of
this section. We first perform a standard step on bootstrapping the number of hyperedges (which
corresponds to the number of clauses in Max-CSP) in Section 5.2. Next, we present the reduction
to Max-CSP in Section 5.3. Finally, we wrap up the proof for Theorem 5.1 in Section 5.4.

5.2 Streaming (in)distinguishability games and hardness

The hardness of RMD suggests a natural path for hardness of Max-CSP(f) problems in the stream-
ing model. Such a reduction would take two distributions DY ∈ SYγ and DN ∈ SNβ with matching
marginals, construct distributions Y and N of RMD, and then interpret these distributions (in
a natural way) as distributions over instances of Max-CSP(f) that are indistinguishable to small
space algorithms. While the exact details of this “interpretation” need to be spelled out, every step
in this path can be achieved. Unfortunately this does not mean any hardness for Max-CSP(f) since
the CSPs generated by this reduction would consist of instances that have at most one constraint
per variable! Indeed to go from the hardness of RMD to hardness of CPSs we need the hardness of
distinguishing a T -fold concatenation of streams drawn according to Y from a T -fold concatenation
of streams drawn according to N . (The concatenation now allows us to appeal to the membership
DY ∈ SYγ to conclude that instances Ψ drawn from YT have high valΨ whereas for instances Ψ

drawn from N T , the fact that DN ∈ SNβ will imply that valΨ is low for large but constant T .)
In what follows, we define the T -fold concatenated streaming problem associated with (DY ,Dn)-

RMD, which we call the (DY ,DN , T )-streaming-RMD, formally. We then show that this problem
remains indistinguishable which allows us to implement the plan alluded to above. We note that
this part of our reduction is standard in prior works. In particular we follow the presentation in
[CGV20].

The general framework defines two distributions Ystream and Nstream over streams. A stream-
ing algorithm ALG processes the streams with space s and is required to output a verdict
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in {YES,NO}. The advantage of ALG is defined as usual to be |Prσ∼Ystream [ALG(σ) =
YES]− Prσ∼Nstream [ALG(σ) = YES]|.
Definition 5.4 ((DY ,DN , T )-streaming-RMD). For k, T ∈ N, α ∈ (0, 1/k], distributions DY ,DN
over {−1, 1}k, the streaming problem (DY ,DN , T ;α, k)-streaming-RMD is the task of distinguishing,
for every n, σ ∼ Ystream,n from σ ∼ Nstream,n where for a given length parameter n, the distributions
Ystream = Ystream,n and Nstream = Nstream,n are defined as follows:

• Let Y be the distribution over instances of length n, i.e., triples (x∗,M, z), from the definition
of (DY ,DN )-RMD. For x ∈ {−1, 1}n, let Y|x denote the distribution Y conditioned on x∗ = x.
The stream σ ∼ Ystream is sampled as follows: Sample x∗ uniformly from {−1, 1}n. Let
(M (1), z(1)), . . . , (M (T ), z(T )) be sampled independently according to Y|x∗. Let σ(t) be the pair
(M (t), z(t)) presented as a stream of edges with labels in {−1, 1}k. Specifically for t ∈ [T ]
and i ∈ [αn], let σ(t)(i) = (et(i), z(t)(i)) where et(i) is the ith hyperedge of M t, i.e., et(i) =

(jt(k(i − 1) + 1), . . . , jt(k(i − 1) + k) and jt(`) is the unique index j such that M
(t)
j,` = 1.

Finally we let σ = σ(1) ◦ · · · ◦ σ(T ) be the concatenation of the σ(t)s.

• σ ∼ Nstream is sampled similarly except we now sample (M (1), z(1)), . . . , (M (T ), z(T )) indepen-
dently according to N|x∗ where N|x is the distribution N condition on x∗ = x.

Again when α and k are clear from context we suppress them and simply refer to the
(DY ,DN , T )-streaming-RMD problem.

Lemma 5.5. Let T, k ∈ N, DY ,DN be two distributions over {−1, 1}k and let α ∈ (0, 1/k]. Suppose
that a streaming algorithm ALG solves (DY ,DN , T )-streaming-RMD on instances of length n with
advantage ∆ and space s, then there is a one-way protocol for (DY ,DN )-RMD on instances of length
n using at most sT bits of communication achieving advantage at least ∆/T .

The proof of Lemma 5.5 is based on a hybrid argument (e.g., [KKS15, Lemma 6.3]). We provide
a proof here based on the proof of [CGV20, Lemma 4.11]. (We note that previous lemmas of this
form only considered the case where DN is the uniform distribution, and the proofs used some
special properties of this setting. Generalizing it to arbitrary DN involves a little extra care as
we do below.) Later, in Section 5.3, we show a reduction from (DY ,DN , T )-streaming-RMD to
Max-CSP(f) thus completing the objective of this section.

Proof of Lemma 5.5. Note that since we are interested in distributional advantage, we can fix the
randomness in ALG so that it becomes a deterministic algorithm. By an averaging argument the
randomness can be chosen to ensure the advantage does not decrease. Let Γ denote the evolution
of function of ALG as it processes a block of αn edges. That is, if the algorithm is in state s and
receives a stream σ of length αn then it ends in state Γ(s,σ). Let s0 denote its initial state.

We consider the following collection of (jointly distributed) random variables: Let x∗ ∼
Unif({−1, 1}n). Let σ

(1)
Y , . . . ,σ

(T )
Y ∼ Y|x∗ be chosen independently conditioned on x∗. Similarly,

let σ
(1)
N , . . . ,σ

(T )
N ∼ N|x∗ be chosen independently conditioned on x∗. Let SYt denote the state of

ALG after processing σ
(1)
Y , . . . ,σ

(t)
Y , i.e., SY0 = s0 and and SYt = Γ(SYt−1,σ

(t)
Y ). Similarly let SNt

denote the state of ALG after processing σ
(1)
N , . . . ,σ

(t)
N .

Let SYa:b denote the sequence of states (SYa , . . . , S
Y
b ) and similarly for SNa:b. Now let ∆t =

‖SY0:t − SN0:t‖tvd. Observe that ∆0 = 0 while ∆T ≥ ∆. (The latter is based on the fact that ALG
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distinguishes the two distributions with advantage ∆.) Thus ∆ ≤ ∆T −∆0 =
∑T−1

t=0 (∆t+1 −∆t)
and so there exists t∗ ∈ {0, 1, . . . , T − 1} such that

∆t∗+1 −∆t∗ = ‖SY0:t∗+1 − SN0:t∗+1‖tvd − ‖SY0:t∗ − SN0:t∗‖tvd ≥
∆

T
.

Now consider the random variable S̃ = Γ(SYt∗ ,σ
(t∗+1)
N ) (so the previous state is from

the YES distribution and the input is from the NO distribution). We claim below that

EA∼dSY0:t∗ [‖S
Y
t∗+1|SY

0:t∗=A − S̃|SY
0:t∗=A‖tvd] ≥ ∆t∗+1 − ∆t∗ . Once we have the claim, we show how

to get a space Ts protocol for (DY ,Dn)-RMD with advantage ∆t∗+1 −∆t∗ concluding the proof of
the lemma.

Claim 5.6. EA∼dSY0:t∗ [‖S
Y
t∗+1|SY

0:t∗=A − S̃|SY
0:t∗=A‖tvd] ≥ ∆t∗+1 −∆t∗.

Proof. We use the following equivalent definition of total variation distance. Random variables X
and Y satisfy ‖X − Y ‖tvd ≤ τ if and only if there exists a coupling distribution Dcouple such that
(X̃, Ỹ ) ∼ Dcouple satisfy (1) X̃ ∼d X, (2) Ỹ ∼d Y and (3) Pr[X̃ 6= Ỹ ] ≤ τ .

Since ‖SY0:t∗ − SN0:t∗‖tvd ≤ ∆t∗ we have Dcouple such that (A,B) ∼ Dcouple satisfy A ∼d SY0:t∗ ,
B ∼d SN0:t∗ , and Pr[A 6= B] ≤ ∆t∗ .

Now assume the claim is not true. Then for every A we have a coupling distribution D∗A such
that for (X,Y ) ∼ D∗A we have X ∼d SYt∗+1|SY

0:t∗=A, Y ∼d S̃|SY
0:t∗=A, and EA∼dSY0:t∗ [Pr(X,Y )∼D∗A [X 6=

Y ]] < ∆t∗+1 −∆t∗ .
We now describe a distribution D̃couple coupling SY0:t∗+1 and SN0:t∗+1 showing their total variation

distance is less than ∆t∗+1 thus achieving a contradiction. We describe the sampling procedure
sampling (Ã, B̃) ∼ D̃couple: We first sample (A,B) ∼ Dcouple. If A = B we sample (X,Y ) ∼ D∗A.
Else we sample X ∼d SYt∗+1|SY

0:t∗=A and (independently) Y ∼d SNt∗+1|SN
0:t∗=B. We let Ã = (A,X)

and B̃ = (B, Y ). It is easy to verify that Ã ∼d SY0:t∗+1 and B̃ ∼d SN0:t∗+1. Finally note that the

probability that Ã 6= B̃ is upper bounded by

Pr
(Ã,B̃)∼D̃couple

[Ã 6= B̃] = Pr
((A,X),(B,Y ))∼D̃couple

[A 6= B] + Pr
((A,X),(B,Y ))∼D̃couple

[(A = B) and X 6= Y ]

≤ Pr
(A,B)∼Dcouple

[A 6= B] + Pr
(A,B)∼Dcouple,(X,Y )∼D∗A

[X 6= Y ]

< ∆t∗ + (∆t∗+1 −∆t∗)

< ∆t∗+1

which implies ‖SY0:t∗+1 − SN0:t∗+1‖tvd < ∆t∗+1 and hence contradicts to the definition of ∆t∗+1.

We now show how a protocol can be designed for (DY ,DN )-RMD that achieves advantage at least
θ = EA∼dSY0:t∗ [‖S

Y
t∗+1|S0:t∗=A− S̃|S0:t∗=A‖tvd] ≥ ∆t∗+1−∆t∗ concluding the proof of the lemma. The

protocol uses the distinguisher TA : {0, 1}s → {0, 1} such that EA,SY
t∗+1

,S̃ [TA(SYt∗+1)]−E[TA(S̃)] ≥ θ
which is guaranteed to exist by the definition of total variation distance.

Our protocol works as follows: Let Alice receive input x∗ and Bob receive inputs (M, z) sampled
from either Y|x∗ or N|x∗ .

1. Alice samples σ(1), . . . ,σ(t∗) ∼ Y|x∗ independently and computes A = SY0:t∗ ∈ {0, 1}(t
∗+1)s

and sends A to Bob.
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2. Bob extracts SYt∗ from A, computes Ŝ = Γ(SYt∗ ,σ), where σ is the encoding of (M, z) as a
stream, and outputs YES if TA(Ŝ) = 1 and NO otherwise.

Note that if (M, z) ∼ Y|x∗ then Ŝ ∼d SYt∗+1|SY
0:t∗=A while if (M, z) ∼ N|x∗ then Ŝ ∼ S̃SY

0:t∗=A. It

follows that the advantage of the protocol above exactly equals EA[TA(SYt+1)] − EA[TA(S̃)] ≥ θ ≥
∆t∗+1 −∆t∗ ≥ ∆/T . This concludes the proof of the lemma.

By combining Lemma 5.5 with Theorem 5.3, we immediately have the following corollary.

Lemma 5.7. For k ∈ N let α0(k) be as given by Theorem 5.3. Let T, k ∈ N, α ∈ (0, α0(k)), and
DY ,DN be two distributions over {−1, 1}k with µ(DY ) = µ(DN ). Then every streaming algorithm
ALG solving (DY ,DN , T )-streaming-RMD with advantage 1/8 for all lengths uses space Ω(

√
n).

Proof. We get the lemma by combining Lemma 5.5 and Theorem 5.3. Let ALG be an algorithm
using space s solving (DY ,DN , T )-streaming-RMD with advantage 1/8. Then by Lemma 5.5, there
exists a one-way protocol for (DY ,DN )-RMD using at most sT bits of communication with advan-
tage at least 1/(8T ). Applying Theorem 5.3 with δ = 1/(8T ) > 0, we now get that s = Ω(

√
n).

5.3 Reduction from (DY ,DN , T )-streaming-RMD to approximating Max-CSP(f)

We now complete the sequence of reductions from RMD to approximating Max-CSP(f) by reducing
streaming-RMD to Max-CSP(f). To this end, note that an instance σ of streaming-RMD is a
sequence (σ(1), . . . , σ(m)) where each σ(i) = (j(i), z(i)) with j(i) ∈ [n]k and z(i) ∈ {−1, 1}k is
already syntactically very close to the description of a Max-CSP(f) instance. The only missing
ingredient is any reference to the function f itself! Indeed the reduction from streaming-RMD to
Max-CSP(f) involves just applying this function f to the literals indicated by σ(i).

Given an instance σ = (σ(1), . . . , σ(m)) of streaming-RMD, let Ψ(σ) denote the instance of
Max-CSP(f) on variables x = (x1, . . . , xn) with the constraints C1, . . . , Cm with Ci = σ(i) =
(j(i), z(i)) is the constraint satisfied if f(z(i)� x|j(i)) = 1.

In what follows we show that ifDY ∈ SYγ then for all sufficiently large constant T , and sufficiently
large n, if we draw σ ∼ Ystream,n, then with high probability, Ψ(σ) has value at least γ − o(1).
Conversely if DN ∈ SNβ , then for all sufficiently large n, if we draw σ ∼ Nstream,n, then with
high probability Ψ(σ) has value at most β + o(1). This essentially completes our reduction to
Max-CSP(f).

Lemma 5.8. For every k ∈ N, f : {−1, 1}k → {0, 1}, 0 ≤ β < γ ≤ 1, ε > 0, distributions
DY ,DN ∈ ∆({−1, 1}k), α ∈ (0, 1/(100k)), there exists an integer T0 such that for every T ≥ T0,
the following holds:

1. If DY ∈ SYγ , then for every sufficiently large n, the (DY ,DN , T )-streaming-RMD YES instance
σ ∼ Ystream,n satisfies Pr[valΨ(σ) < (γ − ε)] ≤ exp(−n).

2. If DN ∈ SNβ , then for every sufficiently large n, the (DY ,DN , T )-streaming-RMD NO instance
σ ∼ Nstream,n satisfies Pr[valΨ(σ) > (β + ε)] ≤ exp(−n).

Furthermore, if γ = 1 then Prσ∼Ystream,n
[
valΨ(σ) = 1

]
= 1.
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Proof. Roughly our proof uses the fact that the definition of SYγ is setup so that Ψ(σ) achieves

value γ under the “planted” assignment x∗. Similarly SNβ is setup so that for every assignment,
the expected value is not more than β.

We recall that the condition DY ∈ SYγ implies that Ea∼DY [f(a)] ≥ γ. Now consider a random
YES instance σ ∼ Ystream,n of (DY ,DN , T )-streaming-RMD and let x∗ denote the underlying
vector corresponding to this draw. We show that for Ψ = Ψ(σ) we have valΨ(x∗) ≥ γ − ε with
high probability. We consider the constraints given by σ(i) one at a time. Let m = αnT denote
the total number of constraints of Ψ. Let Zi = Ci(x

∗) = f(z(i) � x∗|j(i)) denote the indicator of
the event that the ith constraint is satisfied by x∗. By construction of z(i) (from Definition 5.2 and
passed through Definition 5.4), we have z(i) = b(i)� x∗|j(i) where b(i) ∼ DY independently of all
other choices. We thus have Zi = f(b(i)�x∗|j(i)�x∗|j(i)) = f(b(i)). Thus Zi is a random variable,
chosen independent of Z1, . . . , Zi−1, with expectation E[Zi|Z1, . . . , Zi−1] = Eb∼DY [f(b)] ≥ γ. By
applying a concentration bound (Lemma 3.4 suffices, though even simpler Chernoff bounds would
suffice) we get that Prσ∼Ystream,n [valΨ(σ) = 1

m

∑m
i=1 Zi < (γ − ε)] ≤ exp(−ε2m) = exp(−ε2αTn).

This yields Part (1) of the lemma.
Note that, if γ = 1, then Zi = 1 deterministically for every i, and so we get valΨ = 1 with

probability 1, yielding the furthermore part of the lemma.
We now turn to the analysis of the NO case. Here the condition DN ∈ SNβ implies that for

every p ∈ [0, 1], we have Eb∼DN Ea∼Bern(p)k [f(b� a)] ≤ β. Now consider any fixed assignment ν ∈
{−1, 1}n. In what follows we show that for a random NO instance σ ∼ Nstream,n of (DY ,DN , T )-
streaming-RMD if we let Ψ = Ψ(σ), then Pr[valΨ(ν) > (β + ε)] ≤ c−n for c > 2. This allows us to
take a union bound over the 2n possible ν’s to claim Pr[valΨ > (β + ε)] ≤ 2n · c−n.

We thus turn to analyzing valΨ(ν). Recall that σ is chosen by picking x∗ ∈ {−1, 1}n uniformly
and then picking σ(i)’s based on this choice — but our analysis will work for every choice of
x∗ ∈ {−1, 1}n. Fix such a choice and let ν∗ = ν � x∗. Now for i ∈ [m] (where m = αnT ) let
Zi denote the indicator of the event that ν satisfies Ci. We have Zi = f(b(i) � x∗j(i) � νj(i)) =

f(b(i) � ν∗|j(i)). We show below that E[Zi |Z1, . . . , Zi−1] ≤ β + ε/2. (This time the Zi’s are
dependent, but we will show the conditioning does not hurt.) This allows us to apply Lemma 3.4
to conclude Pr[valΨ(ν) = 1

m(
∑m

i=1 Zi) > (β + ε)] ≤ exp(−ε2αTn) ≤ c−n for any constant c of our
choice (for correspondingly large T ).

We thus turn to the final remaining step, i.e., to show E[Zi |Z1, . . . , Zi−1] ≤ β+ ε/2. Note that
the only affect of the conditioning Z1, . . . , Zi is that this influences the distribution of j(i). Recall
from the construction in Definition 5.4 that σ = σ(1) ◦ · · · ◦ σ(T ) is a concatenation of T streams
that are independent, conditioned on x∗. Say σ(i) belongs to the t-th component i.e., σ(t). Then
the only variables that affect Zi are the Zi′ ’s where i′ < i and i′ also is a part of σ(t). This effect is
in turn passed through the conditioning of j(i). Let us fix j(i′) for every i′ < i with i′ being part of
σ(t). Note there are at most αn such i′’s. Now let S = [n] \∪i′j(i′) be the remaining vertices. Note
that conditioned on the fixed j(i′)’s, j(i) is a uniformly chosen sequence of k distinct elements of S.
Note that since α < 1/(100k) we have |S| ≥ n−kαn ≥ .99n. Let p = pS be the fraction 1’s in ν∗|S .
We have E[Zi|S] ≤ Ej(i),b(i)[f(b(i)�ν∗|j(i))] ≤ Eb(i)∼DN Ea∼Bern(p)k [f(b(i)�a)] +k2/|S| ≤ β+ ε/2
where the second inequality uses the fact that sampling j(i)1, . . . , j(i)k independently from S leads
to ν∗j(i)1 , . . . , ν

∗
j(i)k

that are distributed independently according to Bern(p) while j(i)1, . . . , j(i)k are

distinct with probability at least 1− k2/|S|. This concludes the proof of the lemma.
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5.4 Proof of Theorem 5.1

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let α0 = α0(k) be as given by Theorem 5.3. Given ε > 0, let α = α0/2 and
T = d10000/(ε2α)e. Suppose there exists a streaming algorithm ALG that solves (γ−ε, β+ε)-Max-
CSP(f). Let DY ,DN be distributions such that Ea∼DY [f(a)] ≥ γ, Ea∼DN Ec∼Bern(p)k [f(a� c)] ≤ β
for all p ∈ [0, 1], and µ(DY ) = µ(DN ). Let n be sufficiently large and let Ystream,n and Nstream,n

denote the distributions of YES and NO instances of (DY ,DN , T )-streaming-RMD of length n.
Since α and T satisfy the conditions of Lemma 5.8, we have for every sufficiently large n

Pr
σ∼Ystream,n

[
valΨ(σ) < (γ − ε)

]
= o(1) and Pr

σ∼Nstream,n

[
valΨ(σ) > (β + ε)

]
= o(1) .

We conclude that ALG can distinguish YES instances of Max-CSP(f) from NO instances
with advantage at least 1/4 − o(1) ≥ 1/8. However, since DY ,DN and α satisfy the conditions of
Lemma 5.7 (in particular µ(DY ) = µ(DN ) and α ∈ (0, α0)) such an algorithm requires space at
least Ω(

√
n). Thus, we conclude that any streaming algorithm that solves (γ−ε, β+ε)-Max-CSP(f)

requires Ω(
√
n) space.

Finally, note that if γ = 1 then in Lemma 5.8, we have valΨ = 1 with probability one. Repeating
the above reasoning with this information, shows that (1, β + ε) − Max-CSP(f) requires Ω(

√
n)-

space.

6 Communication Lower Bound: A Special Case of 1-wise Inde-
pendence

The goal of this section is to prove a special case of Theorem 5.3 when the distributions are 1-wise
independent, i.e., their marginals are all 0. The main theorem of this section is summarized below.

Theorem 6.1 (Lower bound for 1-wise distributions). For every k ≥ 2, there exists an α0 > 0 such
that for every α ∈ (0, 1/α0), δ ∈ (0, 1/2), and every DY ,DN ∈ ∆({−1, 1}k) with µ(DY ) = µ(DN ) =
0k, there exists τ > 0, and n0 such that for every n ≥ n0, we have that every protocol for (DY ,DN )-
RMD with parameter α that achieves advantage δ requires at least τ

√
n bits of communication on

instances of length n.

Our proof of Theorem 6.1 follows the methodology of [GKK+09] with minor modifications as
required by the RMD formulation. Their proof uses Fourier analysis to reduce the task of proving
a communication lower bound to that of proving some combinatorial identities about randomly
chosen matchings. We follow the same approach and this leads us to slightly different conditions
about randomly chosen hypermatchings which requires a fresh analysis (though at the end our
bounds are qualitatively similar to those in [GKK+09]).

The proof is by contradiction. We show that if the number of bits communicated is o(
√
n), then

the posterior distribution of Bob’s input z is close to the uniform distribution in total variation
distance, and hence contradicts the assumed advantage of the protocol. In Theorem 6.2 we show
that this total variation distance is small when Alice’s message is a “typical” one, in that the
number of Alice inputs leading to this message is not too small. We show immediately after stating
Theorem 6.2 how to go from the case of typical messages to all messages, and this gives a proof of
Theorem 6.1.
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For each k-uniform hypermatching M , distribution D over {−1, 1}k, and a fixed Alice’s message,
the posterior distribution function pM,D : {−1, 1}αkn → [0, 1] is defined as follows. For each
z ∈ {−1, 1}αkn, let

pM,D(z) := Pr
x∗∈A
b∼Dαn

[z = (Mx∗)� b | M, Alice’s message] = E
x∗∈A

E
b∼Dαn

[1z=(Mx∗)�b] ,

where A ⊂ {−1, 1}n is the set of Alice’s inputs that correspond to the message. If the number of
bits communicated is at most c, then there exists a message such that A ⊆ {−1, 1}n and |A| ≥ 2n−c.

Theorem 6.2. For every k ∈ N, there exists α0 > 0 such that for every α ∈ (0, α0), δ ∈ (0, 1/2),
there exists a τ0 > 0 such that the following holds for every sufficiently large n. Let A ⊆ {−1, 1}n
be a set satisfying |A| ≥ 2n−τ0

√
n, and let D be a distribution over {−1, 1}k satisfying Ea∼D[aj ] = 0

for all j ∈ [k]. Then

E
M

[
‖pM,D − U‖2tvd

]
≤ δ2 , (6.3)

where U denotes the uniform distribution over {−1, 1}kαn.

Assuming Theorem 6.2, we prove Theorem 6.1 below.

Proof of Theorem 6.1. Let δ be as in the theorem statement and let δ′ = δ/8. Let τ0 be the
constant given by Theorem 6.2 when invoked with parameter α and δ′. Let τ = τ0/2, c′ = τ0

√
n,

and c = c′ − log(1/δ′). Note that for large enough n, we have c ≥ τ
√
n.

We will prove the theorem for this choice of τ . The proof is by contradiction. Suppose there
exists a protocol for (DY ,DN )-RMD on instances of length n with advantage at least δ using at
most c bits of communication. Let Dunif be the uniform distribution over {−1, 1}k. By triangle
inequality, there is a protocol for either (DY ,Dunif )-RMD or (DN ,Dunif )-RMD with advantage at
least δ

2 using at most c bits of communication. Without loss of generality, suppose there is protocol

for (DY ,Dunif )-RMD with advantage at least δ
2 . We have

‖pM,DY − pM,Dunif ‖tvd ≥
δ

2
.

Next, by Yao’s principle [Yao77] we may assume that the message sent by Alice is deterministic.
Namely, the message partitions the set {−1, 1}n of x∗ into 2c sets A1, A2, . . . , A2c . Using a simple
counting argument, we can show that with probability at least 1 − δ′, the message sent by Alice
corresponds to a set Ai ⊂ {−1, 1}n of size at least 2n−c−log 1/δ′ ≥ 2n−c

′
. We call such an event

GOOD. That is,

GOOD =
⋃

i∈[2c]:|Ai|≥2n−c′

Ai .

Now for each Ai with |Ai| ≥ 2n−c
′
, we apply Theorem 6.2 with parameters α and δ′ to get

‖pM,DY − pM,Dunif ‖tvd|x∗∈Ai = E
M

[‖pM,DY − U‖tvd|x∗∈Ai ] ≤ δ
′ .

Now, for x∗ ∼ Unif({−1, 1}n), we have

‖pM,DY − U‖tvd = Pr[x∗ ∈ GOOD] · ‖pM,DY − U‖tvd|x∗∈GOOD

+ Pr[x∗ 6∈ GOOD] · ‖pM,DY − U‖tvd|x∗ 6∈GOOD

≤ 1 · δ′ + δ′ · 1 =
δ

4
<
δ

2
.

30



But this contradicts our assumption that

‖pM,DY − U‖tvd = ‖pM,DY − pM,Dunif ‖tvd ≥
δ

2
.

This completes the proof of Theorem 6.1.

The rest of this section is devoted to the proof of Theorem 6.2. In Section 6.1, we reduce the
upper bound for Equation 6.3 to a combinatorial problem. Next, we analyze the combinatorial
problem in Section 6.2, and finally complete the proof of Theorem 6.2 in Section 6.3.

6.1 Reduction to a combinatorial problem

Let A ⊆ {−1, 1}n be the set of Alice’s inputs that correspond to the message. We define f :
{−1, 1}n → {0, 1} to be the indicator function of A, i.e., f(x∗) = 1 iff x∗ ∈ A. In this subsection,
we apply Fourier analysis on the left hand side of Equation 6.3 and get an upper bound in terms
of a combinatorial quantity related to the random matching and the Fourier coefficients of f . The
reduction is summarized in the following lemma.

In what follows, we will write a vector s ∈ {0, 1}αkn as a concatenation of αn vectors, i.e.,
s = (s(1), . . . , s(αn)) where s(i) ∈ {0, 1}k. We use |s(i)| to denote the Hamming weight of s(i).

Lemma 6.4. Let A ⊆ {−1, 1}n and f : {−1, 1}n → {0, 1} be its indicator function. Let k ∈ N
and α ∈ (0, 1/100k). Let D be a distribution over {−1, 1}k such that Ea∼D[aj ] = 0 for all j ∈ [k].
For each ` ∈ [n], let us denote by v` ∈ {0, 1}n, the vector where the first ` entries are 1, and the
remaining entries are 0. We have

E
M

[‖pM,D − U‖2tvd] ≤
22n

|A|2
αkn∑
`≥2

g(`) ·
∑

v∈{0,1}n
|v|=`

f̂(v)2 ,

where
g(`) = Pr

M

[
∃s ∈ {0, 1}αkn\{0αkn}, |s(i)| 6= 1∀i, M>s = v`

]
.

Proof. By Cauchy–Schwarz inequality and Equation 3.6,

E
M

[
‖pM,D − U‖2tvd

]
≤ 22αkn E

M

[
‖pM,D − U‖22

]
= 22αkn E

M

 ∑
s∈{0,1}αkn\{0αkn}

p̂M,D(s)2

 . (6.5)

The following claim shows that the expected sum of the Fourier coefficients (corresponding
to non-empty subsets of [αkn]) of the posterior distribution pM,D can be upper bounded by an
expected sum of certain Fourier coefficients of the indicator function f .

Claim 6.6.

E
M

[‖pM,D − U‖2tvd] ≤
22n

|A|2
∑

s∈GOOD\{0αkn}
E
M

[
f̂(M>s)2

]
.
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Proof. For every s ∈ {0, 1}αkn\{0αkn}, consider s ∈ {0, 1}αkn to be αn blocks s(1), . . . , s(αn) ∈
{0, 1}k of length k. Observe that

p̂M,D(s) =
1

2αkn

∑
z∈{−1,1}αkn

pM,D(z)
∏

i∈[αn],j∈[k]
s(i)j=1

z(i)j .

By substituting pM,D(z) = Ex∗∈A Eb∼Dαn [1z=Mx∗�b], the equation becomes

p̂M,D(s) =
1

2αkn
· E
x∗∈A

 ∏
i∈[αn],j∈[k]
s(i)j=1

(Mx∗)i,j

 E
b∼Dαn

 ∏
i∈[αn],j∈[k]
s(i)j=1

b(i)j

 .
Since Ea∼D[aj ] = 0 for all j ∈ [k], the right hand side expression becomes zero if there exists
i ∈ [αn] such that |s(i)| = 1. Define GOOD := {s ∈ {0, 1}αkn | |s(i)| 6= 1 ∀i}. We have

p̂M,D(s) ≤ 1

2αkn
·

∣∣∣∣∣∣∣∣∣ E
x∗∈A

 ∏
i∈[αn],j∈[k]
s(i)j=1

(Mx∗)i,j


∣∣∣∣∣∣∣∣∣ · 1s∈GOOD .

Since each row and column in M has at most one non-zero entry, we can rewrite the right hand
side as

=
1

2αkn
·

∣∣∣∣∣∣∣∣∣ E
x∗∈A

 ∏
i∈[n]

(M>s)i=1

x∗i


∣∣∣∣∣∣∣∣∣ · 1s∈GOOD

Now we relate the above quantity to the Fourier coefficients of f . Recall that f is the indicator
function of the set A and hence for each v ∈ {0, 1}n, we have

f̂(v) =
1

2n

∑
x∗

f(x∗)
∏

i∈[n]:vi=1

x∗i =
1

2n

∑
x∗∈A

∏
i∈[n]:vi=1

x∗i .

Thus, the Fourier coefficient of pM corresponding to a set s ∈ {0, 1}αkn can be bounded as follows:

p̂M,D(s) ≤ 1

2αkn
· 2n

|A|
f̂(M>s) · 1s∈GOOD . (6.7)

By plugging Equation 6.7 into Equation 6.5, we have the desired bound, and this completes the
proof of Claim 6.6.

It follows from Claim 6.6 that

E
M

[‖pM,D − U‖2tvd] ≤
22n

|A|2
∑

s∈GOOD\{0αkn}
E
M

[
f̂(M>s)2

]
.
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Since for a fixed M , the map M> is injective, the right hand side of the above inequality has the
following combinatorial form.

22n

|A|2
∑

v∈{0,1}n\{0n}

Pr
M

[
∃s ∈ GOOD\{0}, M>s = v

]
f̂(v)2 .

By symmetry, the above probability term will be the same for v and v′ which have the same
Hamming weight. For each ` ∈ [n], denote g(`) = PrM

[
∃s ∈ GOOD\{0}, M>s = v

]
, where |v| = `.

Therefore, the expression simplifies to

22n

|A|2
n∑
`≥1

g(`) ·
∑

v∈{0,1}n
|v|=`

f̂(v)2 .

Note that for ` = 1 or ` > αkn, g(`) = 0 by definition. Thus, the above expression further simplifies
to the following:

22n

|A|2
αkn∑
`≥2

g(`) ·
∑

v∈{0,1}n
|v|=`

f̂(v)2 .

We conclude that

E
M

[‖pM,D − U‖2tvd] ≤
22n

|A|2
αkn∑
`≥2

g(`) ·
∑

v∈{0,1}n
|v|=`

f̂(v)2 .

This completes the proof of Lemma 6.4.

6.2 An upper bound for the combinatorial problem

In this subsection, we upper bound the combinatorial term g(`) in Lemma 6.4. The result is
summarized in the following lemma.

Lemma 6.8. For every k, there exists an α0 > 0 such that for every α ∈ (0, α0), and for every n
and ` ≤ n/2, we have

g(`) = Pr
M

[
∃s 6= 0, |s(i)| 6= 1 ∀i, M>s = v`

]
≤
(
`

n

)`/2
.

Proof. We set α0 = (1/(2e2k))k so that 2α
1/k
0 e3/2k ≤ 1. We reformulate our events. Instead of

fixing v = v` and picking the matching M at random, we note that it is equivalent to fixing
the matching M and letting v be a uniformly random vector of weight `. We thus let M be the
matching e1, . . . , eαn, where ei = {(i− 1)k + 1, . . . , (i− 1)k + k}. Letting V denote the support of
the vector v, the event we wish to consider is: “V ⊆ [kαn] and |V ∩ ei| ≥ 1 for every i ∈ [αn].”

We bound the probability as follows. Let T = {i ∈ [αn] | ei ∩ V 6= ∅} denote the set of edges
that touch V , and let |T | = t. Note that `/k ≤ t ≤ `/2, where the latter inequality follows from the
fact that every intersection is of size at least 2. We pick V by first picking T (there are at most

(
αn
t

)
ways of doing this), and then picking V as a subset of the vertices incident to the edges of T (there
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Figure 2: An example with n = 30, k = 3, α = 0.5, and ` = 6. The red triangles denote the edges
e1, . . . , e5. The blue circle denotes the set V and the red circle denotes the set T with t = 3. Note
that the figure illustrates the over-counting we do in the proof of the lemma - the set V actually
intersects one of the edges just once, and so should not be counted. Our counting will nevertheless
include the set since it is contained in at most `/2 = 3 edges.

are
(
kt
`

)
ways of doing this). (See Figure 2.) Summing over t and dividing by the total number

of choices of V gives the final bound. We give the calculations below (which use the inequalities
(a/b)b ≤

(
a
b

)
≤ (ea/b)b).

Pr
V

[V ⊆ [kαn], |V ∩ ei| ≥ 1] ≤
∑`/2

t=`/k

(
αn
t

)(
kt
`

)(
n
`

)
≤

`/2∑
t=`/k

(eαn
t

)t
·
(
ekt

`

)`
·
(n
`

)−`

=

`/2∑
t=`/k

et+`αtk`(t/n)`−t

≤ α`/ke3`/2k`(`/n)`/2
∞∑
t′=0

(`/n)t
′

≤ 2(α1/ke3/2k)`(`/n)`/2

≤ (2α1/ke3/2k)`(`/n)`/2

≤ (`/n)`/2 .

6.3 Proof of Theorem 6.2

Proof of Theorem 6.2. By Lemma 6.4 and Lemma 6.8, we have

E
M

[‖pM,D − U‖2tvd] ≤
22n

|A|2
·
αkn∑
`=2

``/2

n`/2

∑
v∈{0,1}n
|v|=`

f̂(v)2 .

We use Lemma 3.7 to upper bound the sum of level-` Fourier coefficients for small ` as follows.
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Let c = τ0
√
n so that |A| ≥ 2n−c. For ` ∈ [4c], we have

22n

|A|2
∑

v∈{0,1}n
|v|=`

f̂(v)2 ≤

(
4
√

2c

`

)`
.

Next, we apply Parseval’s inequality (Lemma 3.5) and have
∑

v f̂(v)2 ≤ 1. Thus,

E
M

[‖pM,D − U‖2tvd] ≤
4c∑
`=2

``/2

n`/2
·

(
4
√

2c

`

)`
+

22n

|A|2
· max

4c<`≤αkn

{
``/2

n`/2

}

The second term on the right hand side is maximized at ` = 4c+ 1 (since ` ≤ n), and hence

E
M

[‖pM,D − U‖2tvd] ≤
4c∑
`=2

(
32c2

` · n

)`/2
+

(
8c

n

)2c

≤
4c∑
`=2

(210τ2
0 )` + (8τ0)2c

≤ δ2 ,

where the final expression determines our choice of τ0. Specifically, we set τ0 = δ/26 so that each
term is at most δ2/2. This completes the proof of Theorem 6.2.

7 Communication Lower Bound: General Case

In this section we finally prove Theorem 5.3. In other words we show that for every DY ,DN ∈
∆({−1, 1}k) with matching marginals, any protocol for (DY ,DN )-RMD with positive advantage
requires Ω(

√
n) bits of communication. We start with an overview.

The first step is to observe that we can prove indistinguishability of some distributions with
matching non-zero marginals. For example, given that D1 = Unif({(−1,−1), (1, 1)} is indistinguish-
able from D2 = Unif({−1, 1}2), it can also be shown that D′1 = 1

2{(1, 1)}+ 1
2D1 is indistinguishable

from D′2 = 1
2{(1, 1)} + 1

2D2 (see Lemma 7.7 for a related statement). Note that D′1 and D′2 are
distributions with non-zero but matching marginals.

The bulk of this section is devoted to proving that for every pair of distributions DY and
DN , we can find a path (a sequence) of intermediate distributions DY = D0,D1, . . . ,DL = DN
such that adjacent pairs in this sequence are indistinguishable by a “basic” argument, where a
basic argument is a combination of an indistinguishability result from Theorem 6.1 and a shifting
argument formalized in Lemma 7.7. Our proof comes in the following steps:

1. For every marginal vector µ, we identify a canonical distribution Dµ that we use as the
endpoint of the path. So it suffices to prove that for all D, D is indistinguishable from Dµ(D),
i.e., there is a path of finite length from D to Dµ(D).

2. We identify a measure Φ(D) associated with distributions that helps measure progress on
a path. Among distributions with marginal µ(D), this measure is uniquely maximized by
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Dµ(D). We show that for every distribution D that is not canonical one can take a basic step
that increases µ(D). Unfortunately the measure Φ is real-valued and the increases per step
can be by arbitrarily small amounts, so we are not done.

3. We give a combinatorial proof that there is a path of finite length (some function of k) that
takes us from an arbitrary distribution to the canonical one.

Putting the three ingredients together, along with a proof that a “basic step” is indistinguishable
gives us the final theorem.

We start with the definition of the chain and the canonical distribution. For a distribution
D ∈ ∆({−1, 1}k), its support is the set supp(D) = {a ∈ {−1, 1}k | D(a) > 0}. Next, we consider
the following partial order on {−1, 1}k. For vectors a,b ∈ {−1, 1}k we use the notation a ≤ b if
ai ≤ bi for every i ∈ [k]. Further we use a < b if a ≤ b and a 6= b.

Definition 7.1 (Chain). We refer to a sequence a(0) < a(1) < · · · < a(`), a(i) ∈ {−1, 1}k for
every i ∈ {0, . . . , `}, as a chain of length `. Note that chains in {−1, 1}k have length at most k.

Definition 7.2 (Canonical distribution). Given a vector of marginals µ = (µ1, . . . , µk) ∈ [−1, 1]k,
the canonical distribution associated with µ, denoted Dµ, is defined as follows: Let ρ : [k]→ [k] be a
permutation such that −1 ≤ µρ(1) ≤ · · · ≤ µρ(k) ≤ 1. For i ∈ {0, . . . , k}, let a(i) ∈ {−1, 1}k be given
by a(i)j = −1 if j ∈ {ρ(1), . . . , ρ(k − i)} and a(i)j = 1 otherwise. (Note that a(0) < · · · < a(k).)
Then Dµ(a(i)) = 1

2(µρ(k−i+1) − µρ(k−i)), where we define µρ(0) = −1 and µρ(k+1) = 1. Finally,
Dµ(a) = 0 for all a /∈ {a(0), . . . ,a(k)}.

It is easy to verify that Dµ is indeed a distribution, and that it has the desired marginals, i.e.,
µ(Dµ) = µ. Note that a distribution is a canonical distribution if and only if its support is a
chain. Furthermore, the canonical distribution is uniquely determined even though ρ, and hence
the chain a(0), . . . ,a(k), may not be uniquely determined. This is so since ρ is non-unique only if
µρ(i) = µρ(i+1) for some i, and in this case Dµ(a(i)) = 0 so the “non-uniqueness of a(i) does not
affect Dµ.

Next we define a potential associated with distributions. For a distribution D ∈ ∆({−1, 1}k)
define its potential to be

Φ(D) = E
b∼D

 ∑
j∈[k]

bj

2  .
We will show shortly that Dµ is the distribution with maximum potential among all distributions
with marginal µ. In the process of showing this we will introduce a “polarization operator” which
maps a distribution D to a new one that increases the potential for typical distributions. Since
this operator is useful also for further steps, we start with defining this operator and analyzing its
effect on the potential.

7.1 Polarization

Briefly, suppose the support of a distribution contains both (−1)i(1)k−i and 1i(−1)k−i. Then the
polarization operator moves some of this mass (as much as possible while maintaining the property
that the result is a distribution) to the more “polarized” points (−1)k and 1k. The operator is
defined more generally to allow the two starting points to agree on some coordinates. To define
this operator, the following notation will be useful.
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For u,v ∈ {−1, 1}k, let u ∧ v = (min{u1, v1}, . . . ,min{uk, vk}) and let u ∨ v =
(max{u1, v1}, . . . ,max{uk, vk}). We say u and v are incomparable if u 6≤ v and v 6≤ u. Note
that if u and v are incomparable then {u,v} and {u ∨ v,u ∧ v} are disjoint9.

Definition 7.3 (Polarization (update) operator). Given a distribution D ∈ ∆({−1, 1}k) and in-
comparable elements u,v ∈ {−1, 1}k, we define the (u,v)-polarization of D, denoted Du,v, to be
the distribution as given below. Let ε = min{D(u),D(v)}.

Du,v(b) =


D(b)− ε , b ∈ {u,v}
D(b) + ε , b ∈ {u ∨ v,u ∧ v}
D(b) , otherwise.

We refer to ε(D,u,v) = min{D(u),D(v)} as the polarization amount.

It can be verified that the polarization operator preserves the marginals, i.e., µ(D) = µ(Du,v).
Note also that this operator is non-trivial, i.e., Du,v = D, if {u,v} 6⊆ supp(D). By correlating the
“+1”s and “−1”s, the polarization operator makes the support of D more polarized in the sense
quantified in the following lemma.

Lemma 7.4 (Polarization increases potential). Let D ∈ ∆({−1, 1}k) be a distribution with marginal
vector µ = µ(D) and let u,v ∈ supp(D) be incomparable. Then we have

Φ(Du,v) = Φ(D) + 8 · ε · s · t

where ε = ε(D,u,v) is the polarization amount, and s = |{j ∈ [k] |uj = −vj = 1}| and t = |{j ∈
[k] |uj = −vj = −1}|. In particular Φ(Du,v) > Φ(D).

Proof. We look at the difference Φ(Du,v)− Φ(D). Let ` =
∑

j∈[k]:uj=vj
uj . We have:

Φ(Du,v)− Φ(D) =
∑

b∈{−1,1}k
(Du,v(b)−D(b)) · Φ(b)

= ε · (Φ(u ∧ v) + Φ(u ∨ v)− Φ(u)− Φ(v))

= ε · ((`+ s+ t)2 + (`− s− t)2 − (`+ s− t)2 − (`− s+ t)2)

= 8 · ε · s · t .

Finally note that s, t > 0 since u and v are incomparable, and ε > 0 since u,v ∈ supp(D), thus
yielding Φ(Du,v) > Φ(D).

Lemma 7.5 (Dµ maximizes potential). For every distribution D ∈ ∆({−1, 1}k) with µ = µ(D)
we have Φ(D) ≤ Φ(Dµ). Furthermore the inequality is strict if D 6= Dµ.

Proof. Let D∗ be a distribution with marginal µ that maximized Φ(D). Suppose there exist in-
comparable u,v ∈ supp(D∗), then by Lemma 7.4 we have that Φ(D∗) < Φ(D∗u,v) contradicting
the maximality of D∗. It follows that there are no incomparable elements in supp(D∗), or in other
words, supp(D∗) is a chain. We now show that this implies D∗ = Dµ.

More specifically we show that any distribution D supported on a chain is uniquely determined
by its marginal µ. To see this, let ρ : [k] → [k] be a bijection such that µρ(j) ≤ µρ(j+1) for all j.

9To see this, suppose u = u ∧ v, then we have uj = min{uj , vj} for all j ∈ [k] and hence u ≤ v, which is a
contradiction. The same analysis works for the other cases.
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Let τ0 < τ1 < · · · < τ` be the attainable values of µ, i.e., {τ | ∃j ∈ [k] s.t. µj = τ} = {τ0, . . . , τ`}.
For 0 ≤ i ≤ `, let a(i) be given by a(i)j = −1 if µj ≤ τ`−i and a(i)j = 1 otherwise. Note that
a(0) < · · · < a(`). It can be verified that supp(D∗) = {a(0), . . . ,a(`)}, and D∗(a(i)) is uniquely
defined for all i.

Claim 7.6. supp(D∗) = {a(0), . . . ,a(`)}, and D∗(a(i)) = (τ`−i+1 − τ`−i)/2, where τ−1 = −1 and
τ`+1 = 1.

Proof. For the sake of contradiction, assume supp(D∗) = {a′(0), . . . ,a′(`′)} 6= {a(0), . . . ,a(`)}
where a′(0) < a′(1) < · · · < a′(`′) is a chain. Let 0 ≤ i ≤ min{`, `′} be the smallest i such that
a(i) 6= a′(i). Consider the following three situations: (i) a(i) < a′(i), (ii) a(i) > a′(i), and (iii) a(i)
and a′(i) are incomparable.

For (i) and (iii), due to the construction of {a(0), . . . ,a(`)} and the fact that {a′(0), . . . ,a′(`′)} is
a chain, we have that for each j, j′ ∈ [k] with τi−2 < µj , µj′ ≤ τi, a′(i′)j = a′(i′)j′ for all 0 ≤ i′ ≤ `′.
This implies that µj = µj′ which is a contradiction because there are two attainable values τi and
τi−1 lie in the interval (τi−2, τi]. Similar argument also works for situation (ii).

We conclude that supp(D∗) = {a(0), . . . ,a(`)}. It is immediate to see that D∗(a(i)) is uniquely
defined for all i by solving the following linear system.

µ =

 | | |
a(0) a(1) · · · a(`)
| | |



D∗(a(0))
D∗(a(1))
· · ·

D∗(a(`))

 .
Note that by the construction of {a(0), . . . ,a(`)}, the matrix has full rank, and, hence, there is a
unique solution. It can be verified that the solution is given by D∗(a(i)) = (τ`−i+1− τ`−i)/2, where
τ−1 = −1 and τ`+1 = 1.

In summary, D∗ is uniquely determined by µ(D) and its support is a chain. This implies that
D∗ = Dµ, so Dµ is the unique distribution that maximizes the potential.

7.2 Indistinguishability of a polarization update

Our next observation is that for every distribution D with incomparable elements u, v in their
support, D is indistinguishable, in the RMD problem, from its (u,v)-polarization Du,v.

Lemma 7.7 (Polarization update preserves indistinguishability). Let α0(k) be as given in Theo-
rem 6.1. Let k ∈ N, α ∈ (0, α0), δ ∈ (0, 1/2). Then for every distribution D ∈ ∆({−1, 1}k) and
incomparable u,v ∈ supp(D) there exists τ > 0 and n0 such that for every n ≥ n0 every protocol for
(D,Du,v)-RMD achieving advantage δ on instances of length n requires τ

√
n bits of communication.

We prove Lemma 7.7 by a reduction. We show that there exists a pair of distributions DY and
DN with marginals being zero such that given a protocol Π for (D,Du,v)-RMD, we can get a protocol
Π′ for (DY ,DN )-RMD. We then use Theorem 6.1 to get a lower bound on the communication of Π′

and thus of Π. Specifically, we divide the proof into three steps. In step one, we define DY and DN
and provide intuition on the reduction. Next, we formally describe the reduction by designing a
protocol for (DY ,DN )-RMD from a protocol for (D,Du,v)-RMD. Finally, we prove the correctness
of the reduction and wrap up the proof of Lemma 7.7.

38



Step 1: The auxiliary distributions DY and DN . We start by defining DY and DN . Let
S = {i ∈ [k] |ui 6= vi}. Let k′ = |S|. Without loss of generality, we re-index the coordinates and
assume S = {1, 2, . . . , k′}. Let a = u|S so that v|S = −a. We also let ũ = u|S̄ denote the common
parts of u and v. Let DY be the uniform distribution over {a,−a}, and DN be the uniform
distribution over {1k′ , (−1)k

′}. Note that µ(DY ) = µ(DN ) = 0k
′
. Let D1 = Unif({u,v}) and

D2 = Unif({u ∨ v,u ∧ v}). Let ε = ε(D,u,v) be the polarization amount. Let D0 ∈ ∆({−1, 1}k)
be such that D = (1− 2ε)D0 + 2εD1. Note that Du,v = (1− 2ε)D0 + 2εD2.

We give an informal idea now, before giving the (potentially notationally complex) details.
The rough idea is that Alice and Bob first pad their inputs with lots of dummy variables (whose
values are known to both) and expand the masks from DY (or DN ) into masks that are from D1

(respectively D2). They then augment the sequence of masks from αn′ to αn = Ω(αn′/ε), injecting
many random masks from D0. This gives them an instance of (D,Du,v)-RMD to solve for which
they use the protocol Π. It is not too hard to see all this can be done locally by Alice and Bob;
and this is proved formally below.

Step 2: A reduction from (DY ,DN )-RMD to (D,Du,v)-RMD. Consider a protocol Π =
(ΠA,ΠB) for (D,Du,v)-RMD with parameter α ≤ 1/(200k) using C(n) bits of communication to
achieve an advantage of δ on instances of length n. We let n′ = (k′ε/k)n where k′ was chosen in
the previous step. We also let α′ = (2k/k′)α so that α′ ≤ 1/(100k′). We use Π to design a protocol
Π′ for (DY ,DN )-RMD with parameter α′ achieving advantage of at least δ/2 on instances of length
n′ with communication C ′(n′) = C(n). We conclude by Theorem 6.1 that there exists a constant
τ ′ such that C(n) ≥ τ ′

√
n′ = τ

√
n, where τ = τ ′

√
εk′/k > 0 as desired.

Our protocol Π′ uses shared randomness between Alice and Bob (while we assume Π is de-
terministic). Let n′′ = kn′/k′ so that n = n′′/(2ε). Let α′′ = α′n′/n′′ = kα/k′. Recall that
an instance of (DY ,DN )-RMD is determined by a four tuple (x′,M ′, z′,b′) with x′ ∈ {−1, 1}n′ ,
M ′ ∈ {0, 1}k′α′n′×n′ and z′,b′ ∈ {−1, 1}k′α′n′ with z′ = M ′x′ � b′. See Figure 3 for a pictorial
description.

Figure 3: Pictorial description of (x′,M ′,b′, z′).

We give two maps using shared randomness R′ and R′′:

(i) From (DY ,DN )-RMD to (D1,D2)-RMD: (x′,M ′,b′, z′, R′) 7→ (x′′,M ′′,b′′, z′′) where x′′ ∈
{0, 1}n′′ , M ′′ ∈ {0, 1}kα′′n′′×n′′ and b′′, z′′ ∈ {−1, 1}kα′′n′′ .

(ii) From (D1,D2)-RMD to (D,Du,v)-RMD: (x′′,M ′′,b′′, z′′, R′′) 7→ (x,M,b, z), where x ∈
{0, 1}n, M ∈ {0, 1}kαn×n and b, z ∈ {−1, 1}kαn.

Before describing the two maps, let us first state the desired conditions.
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Success conditions for the reduction

(1) The reduction is locally well-defined. Namely, there exist random strings R′ and
R′′ so that (i) Alice can get x through the maps (x′, R′) 7→ x′′ and (x′′, R′′) 7→ x while
Bob can get (M, z) through the maps (M ′, z′, R′) 7→ (M ′′, z′′) and (M ′′, z′′, R′′) 7→
(M, z).

(2) The reduction is sound and complete. Namely, (i) z′′ = M ′′x′′ � b′′ and z =
Mx�b. (ii) If b′ ∼ Dα′n′Y then b′′ ∼ Dα′′n′′1 and b ∼ Dαn. Similarly if b′ ∼ Dα′n′N then
b′′ ∼ Dα′′n′′2 and b ∼ Dαnu,v. (iii) x′′ ∼ Unif({−1, 1}n′′), x ∼ Unif({−1, 1}n) and M is a
uniformly random matrix conditioned on having exactly one “1” per row and at most
one “1” per column.

In Claim 7.8 and Claim 7.9 we show that the above conditions hold except for an error event
that occurs with tiny (exp(−n)) probability. For now, let us show that these conditions imply the
success of the reduction. Assuming conditions (1) and (2) the rest is simple. Alice computes x
from x′, R′ and R′′ and sends m = ΠA(x) to Bob, who computes (M, z) from M ′, z′, R′ and R′′ and
outputs ΠB(m,M, z). Conditions (1)-(2) combined with the bound on the error event imply that
if Π has advantage δ then Π′ has advantage at least δ − exp(−n) ≥ δ/2 as desired.

In the rest of this subsection, we describe the two maps and show that they satisfy the described
success conditions. We wrap up the reduction and the proof of Lemma 7.7 in the end.

Step 3: Specify and analyze the first map. We now turn to specifying the maps men-
tioned above and proving that they satisfy conditions (1)-(2). We start with (x′,M ′,b′, z′, R′) 7→
(x′′,M ′′,b′′, z′′). For this part, we let R′ ∼ Unif({−1, 1}n′′−n′). We set x′′ = (x′, R′). To get M ′′, z′′

and b′′ we need some more notations. First, note that α′n′ = α′′n′′ due to the choice of parameters.
Next, note that M ′′ can be viewed as the stacking of matrices M ′1, . . . ,M

′
α′n′ ∈ {0, 1}k

′×n′ . We first
extend M ′i by adding all-zero columns at the end to get N ′′i ∈ {0, 1}k

′×n′′ . We then stack N ′′i on top
of P ′′i ∈ {0, 1}(k−k

′)×n′′ to get M ′′i , where (P ′′i )j` = 1 if and only if ` = n′+(i−1)k+j. See Figure 5
for a pictorial description of N ′′i and P ′′i . We let M ′′ be the stacking of M ′′1 , . . . ,M

′′
α′′n′′ . Next we

turn to b′′. Let b′ = (b′(1), · · · ,b′(α′′n′′)). Let ũ = (uk′+1, . . . , uk) denote the common parts of u
and v. We let b′′(i) = (b′(i), ũ) and b′′ = (b′′(1), · · · ,b′′(α′′n′′)). Finally we let z′′ = M ′′x′′ � b′′

as required. See Figure 4 for a pictorial description.

Figure 4: Pictorial description of (x′′,M ′′,b′′, z′′).

Now, we verify that the first map satisfies the success conditions mentioned above.

Claim 7.8. The first map in the reduction is locally well-defined, sound, and complete.
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Proof. To see that the first map is locally well-defined, note that Alice can compute x′′ = (x′, R′)
locally. Similarly, Bob can compute M ′′ locally by construction. As for z′′, note that z′′ interleaves
(in a predetermined order) the bits of z′ and those of (Pix

′′ � ũ)i∈[αn′]. Furthermore Pix
′′ depends

only on R′ (since the first n′ columns of all Pis are zero). Thus Bob can locally compute Pix
′′ for

every i, and since ũ is also known Bob can compute z′′ locally.
To see the first map is sound and complete, (i) z′′ = M ′′x′′�b′′ follows from the construction. As

for (ii), for each i ∈ [α′n′] = [α′′n′′], if b′i ∼ DY = Unif({a,−a}), then b′′i ∼ Unif({(a, ũ), (−a, ũ)}).
Note that a is chosen to be the uncommon part of u and v and hence (a, ũ) = u and (−a, ũ) = v.
Thus, b′′i ∼ Unif({u,v}) = D1 as desired. Similarly, one can show that if b′i ∼ DN , then b′′i ∼ D2.
Finally, we have x′′ ∼ Unif({−1, 1}n′′) by construction and hence (iii) holds.

This completes the proof of conditions (1)-(2) for the first step of the reduction.

Figure 5: Pictorial description of N ′′i , P
′′
i , Ni, Pi.

Step 4: Specify and analyze the second map. We now turn to the second map. Here R′′

will be composed of many smaller parts which we introduce now. Let y ∼ Unif({−1, 1}n−n′′), w ∼
Bern(2ε)αn. Let Γ ∈ {0, 1}n×n be a uniform permutation matrix. Let c = (c(1), . . . , c((n−n′′)/k))
where c(i) ∼ D0 are chosen independently. We let R′′ = (y,w,Γ, c). Let #w(i) = |{j ∈ [i] |wj = 1}|
denote the number 1’s among the first i coordinates of w. If #w(αn) ≥ α′′n′′ or if αn−#w(αn) ≥
(n − n′′)/k we declare an error, Note E[#w(n)] = α′′n′′/2 so the probability of error is negligible
(specifically it is exp(−n)).

We now define the elements of (x,M,b, z). We set x = Γ(x′′,y) so x is a random permutation
of the concatenation of x′′ and y. Next, let M ′′ = (M ′′1 , . . . ,M

′′
α′′n′′) where M ′′i ∈ {0, 1}k×n

′′
. We

extend M ′′i to Ni ∈ {0, 1}k×n by adding all-zero columns to the right. For i ∈ {1, . . . , (n− n′′)/k},
let Pi ∈ {0, 1}k×n be given by (Pi)j` = 1 if and only if ` = n′′ + (i − 1)k + j. See Figure 5 for a
pictorial description of Ni and Pi. Next we define a matrix M̃ ∈ {0, 1}kαn×n = (M̃1, . . . , M̃αn) where
M̃i ∈ {0, 1}k×n is defined as follows: If wi = 1 then we let M̃i = N#w(i) else we let M̃i = Pi−#w(i).

Finally we let M = M̃ · Γ−1. Next we turn to b. Again let b′′ = (b′′(1), . . . ,b′′(α′′n′′)). We
let b = (b(1), . . . ,b(αn)) where b(i) is defined as follows: If wi = 1 then b(i) = b′′(#w(i)), else
b(i) = c(i−#w(i)). Finally, z = Mx� b. See Figure 6 for a pictorial description. This concludes
the description of the map and we turn to analyzing its properties.

Figure 6: Pictorial description of x,w,M,b, z.
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Now, we verify that the first map satisfies the success conditions mentioned above.

Claim 7.9. If #w(αn) ≤ α′′n′′ and αn − #w(αn) ≤ (n − n′′)/k, then the second map in the
reduction is locally well-defined, sound, and complete. In particular, the error event happens with
probability at most exp(−Ω(n)) over the randomness of R′′.

Proof. To see that the second map is locally well-defined, first note that Alice can compute x =
Γ(x′′,y) from x′′ and the shared randomness R′′ locally. As for Bob, note that the maximum
index needed for N and b′′ (resp. P and c) is at most #w(αn) (resp. αn − #w(i)). Namely, if
#w(αn) ≤ α′′n′′ and αn−#w(αn) ≤ (n−n′′)/k, then M and b are well-defined. Also, using similar
argument as in the proof of Claim 7.8, one can verify that M and b can be locally computed by
M ′′, b′′, and the shared randomness R′′.

To see the second map is sound and complete, (i) z = Mx � b directly follows from the
construction. As for (ii), if b′ ∼ Dα′n′Y , from Claim 7.8 we know that b′′ ∼ Dα′n′1 = Unif({u,v})α′n′ .
Now, for each i ∈ [αn], b(i) = b′′(#w(i)) with probability 2ε and b(i) = c(i − #w(i)) with
probability 1− 2ε. As b′′(i′) ∼ D1 for every i′ ∈ [α′n′] and c(i′′) ∼ D0 for every i′′ ∈ [(n− n′′)/k],
we have b(i) ∼ (1 − 2ε)D0 + 2εD1 = D as desired. Similarly, one can show that for every i ∈
[α′n′] = [α′′n′′], if b′(i) ∼ Dα′n′N , then b(i) ∼ Du,v. Finally, we have x ∼ Unif({−1, 1}n) and M is
a uniformly random matrix with exactly one “1” per row and at most one “1” per column (due to
the application of a random permutation Γ) by construction.

This completes the proof of conditions (1)-(2) for the second step of the reduction.

Step 5: Wrap up the proof of Lemma 7.7.

Proof of Lemma 7.7. Let us start with setting up the parameters. Given k, α ∈ (0, α0), n,D, and
incomparable pair (u,v) ∈ supp(D) and polarization amount ε = ε(D,u,v), let k′ = |{i ∈ [k] |ui 6=
vi}|, n′ = (k′ε/k)n, α′ = (2k/k′)α, n′′ = kn′/k′, α′′ = α′n′/n′′, and δ′ = δ/2.

Now, for the sake of contradiction, we assume that there exists a protocol Π = (ΠA,ΠB) for
(D,Du,v)-RMD with advantage δ and at most τ

√
n bits of communication.

First, observe that n−n′′ = (1− ε)n and α′′n′′ = 2εαn. As w ∼ Bern(ε)αn, we have #w(αn) ≤
α′′n′′ and αn − #w(αn) ≤ (n − n′′)/k with probability at least 1 − exp(−Ω(n)). Thus, combine
with Claim 7.8 and Claim 7.9, if (x′,M ′, z′) is a Yes (resp. No) instance of (DY ,DN )-RMD,
then the output of the reduction, i.e., (x,M, z), is a Yes (resp. No) instance of (D,Du,v)-RMD
with probability at least 1 − exp(−Ω(n)). Moreover, Claim 7.8 and Claim 7.9 also show that
the reduction can be implemented locally and hence Alice and Bob can run the protocol Π on
(x,M, z). In particular, Alice and Bob computes x and (M, z) using their inputs and shared
randomness respectively. Then, Alice sends m = ΠA(x) to Bob and Bob outputs ΠB(m,M, z).
By the correctness of the reduction as well as that of the protocol, we know that Alice and Bob
have advantage at least δ − exp(−Ω(n)) ≥ δ/2 = δ′ in solving (DY ,DN )-RMD with at most
τ
√
n = τ

√
(k/(k′ε))n′ bits of communication.

Finally, by Theorem 6.1, we know that there exists a constant τ0 > 0 such that any protocol
for (DY ,DN )-RMD with advantage δ′ requires at least τ0

√
n′ bits of communication. This implies

that τ ≥ τ0

√
k′ε/k. We conclude that any protocol for (D,Du,v)-RMD with advantage δ requires

at least τ
√
n bits of communication.
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7.3 Finite upper bound on the number of polarization steps

In this section we prove that there is a finite upper bound on the number of polarization steps
needed to move from a distribution D ∈ ∆({−1, 1}k) to the canonical distribution with marginal
µ(D), i.e., Dµ(D). Together with the indistinguishability result from Lemma 7.7 this allows us to
complete the proof of Theorem 5.3 by going from DY to Dµ(DY ) = Dµ(DN ) and then to DN by
using the triangle inequality for indistinguishability.

In this section we extend our considerations to functions A : {−1, 1}k → R≥0. Let
F({−1, 1}k) = {A : {−1, 1}k → R≥0}. For A ∈ F({−1, 1}k), let µ0(A) =

∑
a∈{−1,1}k A(a).

Note ∆({−1, 1}k) ⊆ F({−1, 1}k) and A ∈ ∆({−1, 1}k) if and only if A ∈ F({−1, 1}k) and µ0(A) =∑
a∈{−1,1}k A(a) = 1. We extend the definition of marginals, support, canonical distribution, poten-

tial and polarization operators to F({−1, 1}k). In particular we let µ(A) = (µ0, µ1, . . . , µk) where
µ0 = µ0(A) and µj =

∑
a∈{−1,1}k ajA(a) for j ∈ [k]. We also define canonical function and polariza-

tion operators so as to preserve µ(A). So given arbitrary A, letD = 1
µ0(A) ·A. NoteD ∈ ∆({−1, 1}k).

For µ = (µ0, µ1, . . . , µk) ∈ Rk+1, we define Aµ = µ0 · Dµ′ where µ′ = (µ1/µ0, . . . , µk/µ0) to be the
canonical function associated with µ. We remark that by Lemma 7.4 and Lemma 7.5, Aµ(A) is the
unique function such that (i) it has the same marginals as A and (ii) it supports a chain.

Definition 7.10 (Polarization length). For distribution A ∈ F({−1, 1}k), let N(A) be the small-
est t such that there exists a sequence A = A0, A1, . . . , At such that A0 = A, At = Aµ(A)

is canonical and for every i ∈ [t] it holds that there exists incomparable ui,vi ∈ supp(Ai−1)
such that Ai = (Ai−1)ui,vi. If no such finite sequence exists then let N(A) be infinite. Let
N(k) = supA∈F({−1,1}k){N(A)}. Again, if N(A) = ∞ for some A or if no finite upper bound
exists, N(k) is defined to be ∞.

Note that if D ∈ ∆({−1, 1}k) so is every element in the sequence, so the polarization length
bound below applies also to distributions. Our main lemma in this subsection is the following:

Lemma 7.11 (A finite upper bound on N(k)). N(k) is finite for every finite k. Specifically
N(k) ≤ (k2 + 3)(1 +N(k − 1)).

We prove Lemma 7.11 constructively in the following four steps.

Step 1: Description of the algorithm Polarize. Let us start with some notations. For
A ∈ F({−1, 1}k) we let A|x`=b denote the function A restricted to the subcube {−1, 1}`−1 × {b} ×
{−1, 1}k−`. Note that A restricted to subcubes is effectively a (k− 1)-dimensional function and we
will use this reduction in dimension in our recursive algorithm.
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Algorithm 2 Polarize(·)
Input: A ∈ F({−1, 1}k).

1: if k=2 then
2: Output: A(−1,1),(1,−1).

3: (A0)|xk=−1 ← Polarize(A|xk=−1) ; (A0)|xk=1 ← Polarize(A|xk=1) ; t← 0.
4: Let (−1)k = at(0) < · · · < at(k − 1) = (1k−1,−1) be a chain supporting (At)|xk=−1.
5: Let ((−1)k−1, 1) = bt(0) < · · · < bt(k − 1) = 1k be a chain supporting (At)|xk=1.
6: while ∃(i, j) with j < k − 1 such that at(i) ∨ bt(j) = 1k and At(at(i)), At(bt(j)) > 0 do
7: Let (it, jt) be the lexicographically smallest such pair (i, j).
8: Bt ← (At)at(it),bt(jt).
9: (At+1)|xk=−1 ← Polarize(Bt|xk=−1) ; (At+1)|xk=1 ← (Bt)|xk=1.

10: t← t+ 1.
11: Let (−1)k = at(0) < · · · < at(k − 1) = (1k−1,−1) be a chain supporting (At)|xk=−1.
12: Let ((−1)k−1, 1) = bt(0) < · · · < bt(k − 1) = 1k be a chain supporting (At)|xk=1.

13: Let ` ∈ [k] be such that for every a ∈ {−1, 1}k \ {1k} we have At(a) > 0⇒ a` = −1.
14: (At+1)|x`=−1 ←Polarize(At)|x`=−1. (At+1)|x`=1 ← (At)|x`=1.
15: Output: At+1.

The goal of the rest of the proof is to show that Algorithm 2 terminates after a finite number
of steps and outputs Aµ(A).

Step 2: Correctness assuming Polarize terminates.

Claim 7.12 (Correctness condition of Polarize). For every A ∈ F({−1, 1}k), if Polarize ter-
minates, then Polarize(A) = Aµ(A). In particular, Polarize(A) has the same marginals as A
and is supported on a chain.

Proof. First, by the definition of the polarization operator (Definition 7.3), the marginals of At are
the same for every t. So in the rest of the proof, we focus on inductively showing that if Polarize
terminates, then Polarize(A) is supported on a chain.

For the base case where k = 2, we always have Polarize(A) = A(−1,1),(1,−1) supported on a
chain as desired.

When k > 2, note that when the algorithm enters the Clean-up stage, if we let m and n denote
the largest indices such that At(at(m)), At(bt(n)) > 0 and At(bt(n)) 6= 1k, then the condition that
at(m) ∨ bt(n) 6= 1k implies that there is a coordinate ` such that at(m)` = bt(n)` = −1. Since
every c such that At(c) > 0 and ck = −1 satisfies c ≤ at(m), we have At(c) > 0 implies c` = −1.
Similarly for every c 6= 1k such that ck = 1, we have At(c) > 0 implies c` = −1. We conclude that
At is supported on {1k} ∪ {c | c` = −1}. Thus, by the induction hypothesis, after polarizing the
subcube x` = −1 and leaving the subcube x` = 1 unchanged, we get that the resulting function
At+1 is supported on a chain as desired and complete the induction. We conclude that if Polarize
terminates, we have Polarize(A) = Aµ(A).

Step 3: Invariant in Polarize. Now, in the rest of the proof of Lemma 7.11, the goal is to
show that for every input A, the number of iterations of the while loop in Algorithm 2 is finite. The
key claim (Claim 7.16) here asserts that the sequence of pairs (it, jt) is monotonically increasing
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in lexicographic order. Once we establish this claim, it follows that there are at most k2 iterations
of the while loop and so N(k) ≤ (k2 + 3) · (1 + N(k − 1)), proving Lemma 7.11. Before proving
Claim 7.16, we establish the following properties that remain invariant after every iteration of the
while loop.

Claim 7.13. For every t ≥ 0, we have ∀b ∈ {−1, 1}, (At)|xk=b is supported on a chain.

Proof. For b = −1, the claim follows from the correctness of the recursive call to Polarize. For
b = 1, we claim by induction on t that the supporting chain bt(0) < · · · < bt(k − 1) never changes
(with t). To see this, note that bt(k−1) = 1k is the only point in the subcube {xk = 1} that increases
in value compared to At, and this is already in the supporting chain. Thus bt(0) < · · · < bt(k− 1)
continues to be a supporting chain for (At+1)|xk=1.

For c ∈ {−1, 1}k, we say that a function A : {−1, 1}k → R≥0 is c-subcube-respecting (c-
respecting, for short) if for every c′ such that A(c′) > 0, we have c′ ≥ c or c′ ≤ c. We say that
A is c-downward-respecting if A is c-respecting and the points in the support of A above c form a
partial chain, specifically, if u,v > c have A(u), A(v) > 0 then either u ≥ v or v ≥ u.

Note that if A is supported on a chain then A is c-respecting for every point c in the chain.
Conversely, if A is supported on a chain and A is c-respecting, then A is supported on a chain that
includes c.

Claim 7.14 (Polarization on subcubes). Let A be a c-respecting function and let Ã be obtained from
A by a finite sequence of polarization updates, as in Definition 7.3. Then Ã is also c-respecting.
Furthermore if A is c-downward-respecting and w > c then Ã is also c-downward-respecting and
A(w) = Ã(w).

Proof. Note that it suffices to prove the claim for a single update by a polarization operator since
the rest follows by induction. So let Ã = Au,v for incomparable u,v ∈ supp(A).

Since A is c-respecting, and u,v are incomparable, either u ≤ c,v ≤ c or u ≥ c,v ≥ c. Suppose
the former is true, then u ∨ v ≤ c and u ∧ v ≤ c, and hence, Ã is c-respecting. Similarly, in the
case when u ≥ c,v ≥ c, we can show that Ã is c-respecting. The furthermore part follows by
noticing that for u and v to be incomparable if A is c-downward-respecting and A(u), A(v) > 0,
then u,v ≤ c, and so the update changes A only at points below c.

The following claim asserts that in every iteration of the while loop, by the lexicographically
minimal choice of (it, jt), there exists a coordinate h ∈ [k − 1] such that every vector c < at(it) in
the support of At, Bt, or At+1 has ch = −1, and every vector c 6= 1k in the support of (At)|xk=1

has ch = −1.

Claim 7.15. For every t ≥ 0, ∃h ∈ [k − 1] such that ∀c ∈ {−1, 1}k, if c ∈ supp(At) ∪ supp(Bt) ∪
supp(At+1), then the following hold:

• If c < at(it), then ch = −1.

• If ck = 1 and c 6= 1k, then ch = −1.

Proof. Since (it, jt) is lexicographically the smallest incomparable pair in the support of At, for
i < it, j < k − 1, and At(a(i)), At(b(j)) > 0, we have a(i) ∨ b(j) 6= 1k. Let m be the largest index
smaller than it such that At(at(m)) > 0. Similarly, let n < k − 1 be the largest index such that
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At(bt(n)) > 0. Then the fact that at(m) ∨ bt(n) 6= 1k implies that there exists h ∈ [k − 1] such
that at(m)h = bt(n)h = −1. Now, using the fact (from Claim 7.13) that (At)|xk=−1 is supported
on a chain, we conclude that for every c < at(it), At(c) > 0 implies that c ≤ at(m) and hence,
ch = −1. Similarly, for every vector c 6= 1k in the support of (At)|xk=1, by the maximality of n, we
have ch = −1.

We now assert that the same holds for Bt. First, recall that supp(Bt) ⊂ supp(At)∪ {1k,at(it)∧
bt(jt)} since Bt = (At)at(it),bt(jt). Next, note that the only point (other than 1k) where Bt is larger
than At is at(it)∧bt(jt). It suffices to show that (at(it)∧bt(jt))h = −1. We have at(it)∧bt(jt) ≤
bt(jt) ≤ bt(n) and hence (at(it) ∧ bt(jt))h = −1.

Finally, we assert that same holds also for At+1. Since At+1|xk=1 = Bt|xk=1, the second item in
the claim follows trivially. To prove the first item, let us consider a′ ∈ {−1, 1}k defined as follows:
a′h = −1 and a′r = at(it)r for r 6= h. Note that Bt|xk=−1 is at(it)-respecting since potentially the
only new point in its support (compared to At|xk=−1) is at(it)∧bt(jt) ≤ at(it). From the previous
paragraph we also have that if Bt(c) > 0 and c < at(it), then ch = −1 and hence, c ≤ a′. On
the other hand, if Bt(c) > 0 and c ≥ at(it), then c ≥ a′. Therefore, Bt|xk=−1 is a′-respecting. By
applying Claim 7.14, we conclude that (At+1)|xk=−1 is also a′-respecting. It follows that if c < a(it)
and At+1(c) > 0, then c ≤ a′ and so ch = −1.

Step 4: Proof of Lemma 7.11. The following claim establishes that the while loop in the
Polarize algorithm terminates after a finite number of iterations.

Claim 7.16. For every t ≥ 0, (it, jt) < (it+1, jt+1) in lexicographic ordering.

Proof. Consider the chain at+1(0) < · · · < at+1(k− 1) supporting At+1|xk=−1. Note that for i ≥ it,
At+1|xk=−1 is at(i)-respecting (since At|xk=−1 and Bt|xk=−1 were also so). In particular, At|xk=−1

is at(i)-respecting because it is supported on a chain containing at(i). Next Bt|xk=−1 is at(i)-
respecting since potentially the only new point in its support is at(it) ∧ bt(jt) ≤ at(i). Finally,
At+1|xk=−1 is also at(i)-respecting using Claim 7.14. Thus we can build a chain containing at(i)
that supports At+1|xk=−1. It follows that we can use at+1(i) = at(i) for i ≥ it. Now consider i < it.
We must have at+1(i) < at+1(it) = at(it). By Claim 7.15, there exists h ∈ [k − 1] such that for
i < it, at+1(i)h = −1.

We now turn to analyzing (it+1, jt+1). Note that by definition, At+1(at+1(it+1)) > 0 and
At+1(bt+1(bt+1)) > 0. First, let us show that it ≤ it+1. On the contrary, let us assume that
it+1 < it. It follows from the above paragraph that at+1(it+1)h = −1. Also, for every bt+1(j) with
j < k − 1 and At+1(bt+1(j)) > 0, we have bt+1(j)h = −1. Therefore, a(it+1) ∨ b(jt+1) 6= 1k (in
particular (a(it+1) ∨ b(jt+1))h = −1), which is a contradiction.

Next, we show that if it+1 = it, then jt+1 ≥ jt. By the minimality of (it, jt) in the t-th round, for
j < jt such that At(bt(j)) > 0, we have at(it) ∨ bt(j) 6= 1k. Since it+1 = it, at+1(it+1) = at+1(it) =
at(it). We already noted in the proof of Claim 7.13 that bt(0) < · · · < bt(k−1) is also a supporting
chain for (At+1)|xk=1. The only point where the function At+1|xk=1 has greater value than At|xk=1

is 1k. Therefore, for j < jt such that At+1(bt+1(j)) > 0, we have at+1(it+1) ∨ bt+1(j) 6= 1k and
hence, jt+1 ≥ jt.

So far, we have established that (it+1, jt+1) ≥ (it, jt) in lexicographic ordering. Finally, we will
show that (it+1, jt+1) 6= (it, jt) by proving that at least one of At+1(at+1(it)) and At+1(bt+1(jt))
is zero. The polarization update ensures that at least one of Bt(at(it)) and Bt(bt(jt)) is zero.
If Bt(bt(jt)) = 0, then by definition, we have At+1(bt+1(jt)) = At+1(bt(jt)) = 0. Finally to
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handle the case Bt(at(it)) = 0, let us again define a′ as: a′h = −1 and a′r = at(it)r for r 6=
h, where h is as given by Claim 7.15. We assert that Bt|xk=−1 is a′-downward-respecting. As
shown in the proof of Claim 7.15, we have Bt|xk=−1 is a′-respecting. The support of Bt|xk=−1 is
contained in {at(0), · · · ,at(k−1)}∪{at(it)∧bt(jt)} and at(it)∧bt(jt) < at(it), and by Claim 7.15,
at(it)∧bt(jt) ≤ a′. It follows that Bt|xk=−1 is a′-downward-respecting. Finally, by the furthermore
part of Claim 7.14 applied to Bt|xk=−1 and w = at(it), we get that At+1(at+1(it)) = At+1(at(it)) =
Bt(at(it)) = 0. It follows that (it+1, jt+1) 6= (it, jt).

Proof of Lemma 7.11. By Claim 7.12, we know that if Algorithm 2 terminates, we have
Polarize(A) = Aµ(A). Hence, the maximum number of polarization updates used in Polar-

ize (on input from F({−1, 1}k)) serves as an upper bound for N(k). By Claim 7.16, we know
that there are at most k2 iterations of the while loop and so N(k) ≤ (k2 + 3) · (1 + N(k − 1)) as
desired.

7.4 Putting it together

We now have the ingredients in place to prove Theorem 5.3.

Proof of Theorem 5.3. Given distribution DY ,DN with µ = µ(DY ) = µ(DN ). Applying
Lemma 7.11 to DY we get there exist D0 = DY ,D1, . . . ,Dt = Dµ such that Di+1 = (Di)u(i),v(i),
i.e., Di is an update of Di, with t ≤ N(k) <∞. Similarly applying Lemma 7.11 to DN we get there
exist D′0 = DN ,D′1, . . . ,D′t′ = Dµ such that D′i+1 = (D′i)u′(i),v′(i) with t′ ≤ N(k) < ∞. Applying
Lemma 7.7 with δ′ = δ/(2N(k)) to the pairs Di and Di+1 we get there exists τi such that every
protocol for (Di,Di+1)-RMD requires τi

√
n bits of communication to achieve advantage δ′. Simi-

larly applying Lemma 7.7 again with δ′ = δ/(2N(k)) to the pairs D′i and D′i+1 we get there exists
τ ′i such that every protocol for (D′i,D′i+1)-RMD requires τ ′i

√
n bits of communication to achieve

advantage δ′. Letting τ = min
{

mini∈[t]{τi},mini∈[t′]{τ ′i}
}

, we get, using the triangle inequality for
indistinguishability, that every protocol Π for (DY ,DN )-RMD achieving advantage δ ≥ (t + t′)δ′

requires τ
√
n communication.
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