
On the Power and Limitations of Branch and Cut

Noah Fleming Mika Göös† Russell Impagliazzo
University of Toronto EPFL University of California,

& Simons Institute San Diego

Toniann Pitassi Robert Robere† Li-Yang Tan
University of Toronto & IAS McGill University Stanford University

Avi Wigderson
IAS

February 9, 2021

Abstract

The Stabbing Planes proof system [8] was introduced to model the reasoning carried out in
practical mixed integer programming solvers. As a proof system, it is powerful enough to sim-
ulate Cutting Planes and to refute the Tseitin formulas — certain unsatisfiable systems of linear
equations mod2 — which are canonical hard examples for many algebraic proof systems. In
a recent (and surprising) result, Dadush and Tiwari [21] showed that these short refutations of
the Tseitin formulas could be translated into quasi-polynomial size and depth Cutting Planes
proofs, refuting a long-standing conjecture. This translation raises several interesting ques-
tions. First, whether all Stabbing Planes proofs can be efficiently simulated by Cutting Planes.
This would allow for the substantial analysis done on the Cutting Planes system to be lifted to
practical mixed integer programming solvers. Second, whether the quasi-polynomial depth of
these proofs is inherent to Cutting Planes.

In this paper we make progress towards answering both of these questions. First, we show
that any Stabbing Planes proof with bounded coefficients (SP∗) can be translated into Cutting
Planes. As a consequence of the known lower bounds for Cutting Planes, this establishes the
first exponential lower bounds on SP∗. Using this translation, we extend the result of Dadush
and Tiwari to show that Cutting Planes has short refutations of any unsatisfiable system of
linear equations over a finite field. Like the Cutting Planes proofs of Dadush and Tiwari,
our refutations also incur a quasi-polynomial blow-up in depth, and we conjecture that this is
inherent. As a step towards this conjecture, we develop a new geometric technique for proving
lower bounds on the depth of Cutting Planes proofs. This allows us to establish the first lower
bounds on the depth of Semantic Cutting Planes proofs of the Tseitin formulas.

†Work done while at Institute for Advanced Study.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 12 (2021)

1 Introduction

An effective method for analyzing classes of algorithms is to formalize the techniques used by the class
into a formal proof system, and then analyze the formal proof system instead. By doing this, theorists
are able to hide many of the practical details of implementing these algorithms, while preserving the
class of methods that the algorithms can feasibly employ. Indeed, this approach has been applied to
study many different families of algorithms, such as

• Conflict-driven clause-learning algorithms for SAT [37, 45, 53], which can be formalized using
resolution proofs [23].

• Optimization algorithms using semidefinite programming [30,47], which can often be formalized
using Sums-of-Squares proofs [6, 34].

• The classic cutting planes algorithms for integer programming [17,31], which are formalized by
cutting planes proofs [17, 20].

In the present work, we continue the study of formal proof systems corresponding to modern integer
programming algorithms. Recall that in the integer programming problem, we are given a polytope
P ⊆ Rn and a vector c ∈ Rn, and our goal is to find a point x ∈ P ∩ Zn maximizing c · x. The
classic approach to solving this problem — pioneered by Gomory [31] — is to add∗ cutting planes to
P . A cutting plane for P is any inequality of the form ax ≤ ⌊b⌋, where a is an integral vector, b is
rational, and every point of P is satisfied by ax ≤ b. By the integrality of a, it follows that cutting
planes preserve the integral points of P , while potentially removing non-integral points from P . The
cutting planes algorithms then proceed by heuristically choosing “good” cutting planes to add to P to
try and locate the integral hull of P as quickly as possible.

As mentioned above, these algorithms can be naturally formalized into a proof system — the Cut-
ting Planes proof system, denoted CP — as follows [20]. Initially, we are given a polytope P , presented
as a list of integer-linear inequalities {aix ≤ bi}. From these inequalities we can then deduce new in-
equalities using two deduction rules:

• Linear Combination. From inequalities ax ≤ b, cx ≤ d, deduce any non-negative linear combi-
nation of these two inequalities with integer coefficients.

• Division Rule. From an inequality ax ≤ b, if d ∈ Z divides all entries of a then deduce (a/d)x ≤
⌊b/d⌋.

A Cutting Planes refutation of P is a proof of the trivially false inequality 1 ≤ 0 from the inequalities
in P ; clearly, such a refutation is possible only if P does not contain any integral points. While Cutting
Planes has grown to be an influential proof system in propositional proof complexity, the original
cutting planes algorithms suffered from numerical instabilities, as well as difficulties in finding good
heurisitics for the next cutting planes to add [31].

The modern algorithms in integer programming improve on the classical cutting planes method
by combining them with a second technique, known as branch-and-bound, resulting in a family of
optimization algorithms broadly referred to as branch-and-cut algorithms. These algorithms search for
integer solutions in a polytope P by recursively repeating the following two procedures: First, P is
split into smaller polytopes P1, . . . , Pk such that P ∩ Zn ⊆

!
i∈[k] Pi (i.e. branching). Next, cutting

∗Throughout, we will say that a cutting plane, or an inequality is added to a polytope P to mean that it is added to the set
of inequalities defining P .

1

planes deductions are made in order to further refine the branched polytopes (i.e. cutting). In practice,
branching is usually performed by selecting a variable xi and branching on all possible values of xi; that
is, recursing on P ∩ {xi = t} for each feasible integer value t. More complicated branching schemes
have also been considered, such as branching on the hamming weight of subsets of variables [27],
branching using basis-reduction techniques [1, 2, 41], and more general linear inequalities [38, 43, 46].

However, while these branch-and-cut algorithms are much more efficient in practice than the clas-
sical cutting planes methods, they are no longer naturally modelled by Cutting Planes proofs. So, in
order to model these solvers as proof systems, Beame et al. [8] introduced the Stabbing Planes proof
system. Given a polytope P containing no integral points, a Stabbing Planes refutation of P proceeds
as follows. We begin by choosing an integral vector a, an integer b, and replacing P with the two
polytopes P ∩ {ax ≤ b− 1} and P ∩ {ax ≥ b}. Then, we recurse on these two polytopes, continuing
until all descendant polytopes are empty (that is, they do not even contain any real solutions). The ma-
jority of branching schemes used in practical branch-and-cut algorithms (including all of the concrete
schemes mentioned above) are examples of this general branching rule.

It is now an interesting question how the two proof systems — Cutting Planes and Stabbing Planes
— are related. By contrasting the two systems we see at least three major differences:

• Top-down vs. Bottom-up. Stabbing Planes is a top-down proof system, formed by performing
queries on the polytope and recursing; while Cutting Planes is a bottom-up proof system, formed
by deducing new inequalities from old ones.

• Polytopes vs. Halfspaces. Individual “lines” in a Stabbing Planes proof are polytopes, while
individual “lines” in a Cutting Planes proof are halfspaces.

• Tree-like vs. DAG-like. The graphs underlying Stabbing Planes proofs are trees, while the graphs
underlying Cutting Planes proofs are general DAGs: intuitively, this means that Cutting Planes
proofs can “re-use” their intermediate steps, while Stabbing Planes proofs cannot.

When taken together, these facts suggest that Stabbing Planes and Cutting Planes could be incompara-
ble in power, as polytopes are more expressive than halfspaces, while DAG-like proofs offer the power
of line-reuse. Going against this natural intuition, Beame et al. proved that Stabbing Planes can actually
efficiently simulate Cutting Planes [8]. Furthermore, they proved that Stabbing Planes is equivalent to
the proof system tree-like R(CP), denoted TreeR(CP), which was introduced by Krajı́ček [40], and
whose relationship to Cutting Planes was previously unknown.

This leaves the converse problem — of whether Stabbing Planes can also be simulated by Cutting
Planes — as an intriguing open question. Beame et al. conjectured that such a simulation was impossi-
ble, and furthermore that the Tseitin formulas provided a separation between these systems [8]. For any
graph G and any {0, 1}-labelling ℓ of the vertices of G, the Tseitin formula of (G, ℓ) is the following
system of F2-linear equations: for each edge e we introduce a variable xe, and for each vertex v we
have an equation "

u:uv∈E
xuv = ℓ(v)

asserting that the sum of the edge variables incident with v must agree with its label ℓ(v) (note such
a system is unsatisfiable as long as

#
v ℓ(v) is odd). On the one hand, Beame et al. proved that there

are quasi-polynomial size Stabbing Planes refutations of the Tseitin formulas [8]. On the other hand,
Tseitin formulas had long been conjectured to be exponentially hard for Cutting Planes [20], as they
form one of the canonical families of hard examples for algebraic and semi-algebraic proof systems,
including Nullstellensatz [33], Polynomial Calculus [16], and Sum-of-Squares [34, 51].

2

In a recent breakthrough, the long-standing conjecture that Tseitin was exponentially hard for Cut-
ting Planes was refuted by Dadush and Tiwari [21], who gave quasi-polynomial size Cutting Planes
refutations of Tseitin instances. Moreover, to prove their result, Dadush and Tiwari showed how to
translate the quasipolynomial-size Stabbing Planes refutations of Tseitin into Cutting Planes refuta-
tions. This translation result is interesting for several reasons. First, it brings up the possibility that
Cutting Planes can actually simulate Stabbing Planes. If possible, such a simulation would allow the
significant analysis done on the Cutting Planes system to be lifted directly to branch-and-cut solvers. In
particular, this would mean that the known exponential-size lower bounds for Cutting Planes refutations
would immediately imply the first exponential lower bounds for these algorithms for arbitrary branch-
ing heuristics. Second, the translation converts shallow Stabbing Planes proofs into very deep Cutting
Planes proofs: the Stabbing Planes refutation of Tseitin has depth O(log2 n) and quasi-polynomial
size, while the Cutting Planes refutation has quasipolynomial size and depth. This is quite unusual
since simulations between proof systems typically preserve the structure of the proofs, and thus brings
up the possibility that the Tseitin formulas yield a supercritical size/depth tradeoff – formulas with
short proofs, requiring superlinear depth. For contrast: another simulation from the literature which
emphatically does not preserve the structure of proofs is the simulation of bounded-size resolution by
bounded-width resolution by Ben-Sasson and Wigderson [10]. In this setting, it is known that this
simulation is tight [13], and even that there exist formulas refutable in resolution width w requiring
maximal size nΩ(w) [5]. Furthermore, under the additional assumption that the proofs are tree-like,
Razborov [50] proved a supercritical trade-off between width and size.

1.1 Our Results

A New Characterization of Cutting Planes

Our first main result gives a characterization of Cutting Planes proofs as a natural subsystem of Stab-
bling Planes that we call facelike Stabbing Planes. A Stabbing Planes query is facelike if one of the sets
P ∩{ax ≤ b−1} or P ∩{ax ≥ b} is either empty or is a face of the polytope P , and a Stabbing Planes
proof is said to be facelike if it only uses facelike queries. Our main result is the following theorem.

Theorem 1.1. The proof systems CP and Facelike SP are polynomially equivalent.

Using this equivalence we prove the following surprising simulation, stating that Stabbing Planes
proofs with relatively small coefficients (quasi-polynomially bounded in magnitude) can be quasi-
polynomially simulated by Cutting Planes.

Theorem 1.2. Let F be any unsatisfiable CNF formula on n variables, and suppose that there is a SP
refutation of F in size s and maximum coefficient size c. Then there is a CP refutation of F in size
s(cn)log s.

As a second application of Theorem 1.1, we generalize Dadush and Tiwari’s result to show that
Cutting Planes can refute any unsatisfiable system of linear equations over a finite field. This follows
by showing that, like Tseitin, we can refute such systems of linear equations in quasipolynomial-size
Facelike SP.

Theorem 1.3. Let F be the CNF encoding of an unsatisfiable system of m linear equations over a finite
field. There is a CP refutation of F of size |F |O(logm).

This should be contrasted with the work of Filmus, Hrubeš, and Lauria [26], which gives several
unsatisfiable systems of linear equations over R that require exponential size refutations in Cutting
Planes.

3

Lower Bounds

An important open problem is to prove superpolynomial size lower bounds for Stabbing Planes proofs.
We make significant progress toward this goal by proving the first superpolynomial lower bounds on
the size of low-weight Stabbing Planes proofs. Let SP∗ denote the family of Stabbing Planes proofs in
which each coefficient has at most quasipolynomial (nlogO(1) n) magnitude.

Theorem 1.4. There exists a family of unsatisfiable CNF formulas {Fn} such that any SP∗ refutation
of F requires size at least 2n

ε
for constant ε > 0.

Our proof follows straightforwardly from Theorem 1.2 together with known Cutting Planes lower
bounds. We view this as a step toward proving SP lower bounds (with no restrictions on the weight).
Indeed, lower bounds for CP∗ (low-weight Cutting Planes) [14] were first established, and led to (un-
restricted) CP lower bounds [48].

Our second lower bound is a new linear depth lower bound for semantic Cutting Planes proofs. (In
a semantic Cutting Planes proof the deduction rules for CP are replaced by a simple and much stronger
semantic deduction rule.)

Theorem 1.5. For all sufficiently large n there is a graph G on n vertices and a labelling ℓ such that
the Tseitin formula for (G, ℓ) requires Ω(n) depth to refute in Semantic Cutting Planes.

We note that lower bounds for Semantic Cutting Planes were already established via communica-
tion complexity arguments. However, since Tseitin formulas have short communication protocols, our
depth bound for semantic Cutting Planes proofs of Tseitin is new.

Our main motivation behind this depth bound is as a step towards proving a supercritical tradeoff.
A supercritical tradeoff for CP, roughly speaking, states that efficient CP proofs must sometimes be
very deep — that is, beyond the trivial depth upper bound of O(n) [11, 50]. Establishing supercritical
tradeoffs is a major challenge, both because hard examples witnessing such a tradeoff are rare, and
because current methods seem to fail beyond the critical regime. In fact, the only supercritical tradeoff
between size and depth established to date is for bounded-width, tree-like Resolution [50].

As we mentioned above, Dadush and Tiwari’s quasipolynomial-size CP refutations of Tseitin are
quasipolynomially deep, and similarly our simulation of Facelike Stabbing Planes by Cutting Planes in
Theorem 1.1 is similarly far from depth-preserving. We therefore conjecture that the Tseitin formulas
exhibit a supercritical tradeoff for CP. Our proof of Theorem 1.5 is a novel geometric argument which
generalizes the top-down “protection lemma” approach [15] that crucially relied on the exact deduction
rules of CP. As our argument has no inherent barrier for going behind the critical regime, we hope that
it is a step towards proving a supercritical tradeoff, which we leave as an open problem.

Conjecture 1.6. There exists a family of unsatisfiable formulas {Fn} such that Fn has quasipolynomial-
size CP proofs, but any quasipolynomial-size proof requires superlinear depth.

1.2 Related Work

Lower Bounds on SP and TreeR(CP). Several lower bounds on subsystems of SP and TreeR(CP)
have already been established. Krajı́ček [40] proved exponential lower bounds on the size of R(CP)
proofs in which both the width of the clauses and the magnitude of the coefficients of each line in the
proof are bounded. Concretely, let these bounds be w and c respectively. The lower bound that he ob-
tains is 2n

Ω(1)
/cw log2 n. Kojevnikov [39] removed the dependence on the coefficient size for TreeR(CP)

4

SP Semantic CP

CP = Facelike SPSP∗

CP∗

Figure 1: Known relationships between proof systems considered in this paper. A solid black (red)
arrow from proof system P1 to P2 indicates that P2 can polynomially (quasi-polynomially) simulate
P1. A dashed arrow indicates that this simulation cannot be done.

proofs, obtaining a bound of exp(Ω(
$

n/w log n)). Beame et al. [8] provide a size-preserving simula-
tion of Stabbing Planes by TreeR(CP) which translates a depth d Stabbing Planes proof into a width d
TreeR(CP) proof, and therefore this implies lower bounds on the size of SP proofs of depth o(n/ log n).
Beame et al. [8] exhibit a function for which there are no SP refutations of depth o(n/ log2 n) via a
reduction to the communication complexity of the CNF search problem.

Supercritical Tradeoffs. Besides the work of Razborov [50], a number of supercritical tradeoffs
have been observed in proof complexity, primarily for proof space. Beame et al. [7] and Beck et al. [9]
exhibited formulas which admit polynomial size refutations in Resolution and the Polynomial Calculus
respectively, and such that any refutation of sub-linear space necessitates a superpolynomial blow-up
in size. Recently, Berkholz and Nordström [11] gave a supercritical trade-off between width and space
for Resolution.

Depth in Cutting Planes and Stabbing Planes. It is widely known (and easy to prove) that any
unsatisfiable family of CNF formulas can be refuted by exponential size and linear depth Cutting
Planes. It is also known that neither Cutting Planes nor Stabbing Planes can be balanced, in the sense
that a depth-d proof can always be transformed into a size 2O(d) proof [8, 15]. This differentiates both
of these proof systems from more powerful proof systems like Frege, for which it is well-known how
to balance arbitrary proofs [19]. Furthermore, even though both the Tseitin principles and systems
of linear equations in finite fields can be proved in both quasipolynomial-size and O(log2 n) depth in
Facelike SP, the simulation of Facelike SP by CP cannot preserve both size and depth, as the Tseitin
principles are known to require depth Θ(n) to refute in CP [15].

We first recall the known depth lower bound techniques for both Cutting Planes and Stabbing
Planes proofs. In both proof systems, arguably the primary method for proving depth lower bounds is
by reducing to real communication complexity [8, 36] ; however, communication complexity is always
trivially upper bounded by n, and it is far from clear how to use the assumption on the size of the proof
to boost this to superlinear.

A second method has been developed for proving lower bounds (applicable to Cutting Planes but
not to Stabbing Planes) using so-called protection lemmas [15], which seems much more amenable to
applying a small-size assumption on the proof. We also remark that for many formulas (such as the
Tseitin formulas!) it is known how to achieve Ω(n)-depth lower bounds in Cutting Planes via protection
lemmas, while proving even ω(log n) lower bounds via communication complexity is impossible, due
to a known folklore upper bound.

5

2 Preliminaries

We first recall the definitions of some key proof systems.

Resolution. Fix an unsatisfiable CNF formula F over variables x1, . . . , xn. A Resolution refutation
P of F is a sequence of clauses {Ci}i∈[s] ending in the empty clause Cs = ∅ such that each Ci is in F
or is derived from earlier clauses Cj , Ck with j, k < i using one of the following rules:

• Resolution. Ci = (Cj \ {ℓk}) ∪ (Ck \
%
ℓk
&
) where ℓk ∈ Cj , ℓk ∈ Ck is a literal.

• Weakening. Ci ⊇ Cj .

The size of the resolution proof is s, the number of clauses. It is useful to visualize the refutation P as
a directed acyclic graph; with this in mind the depth of the proof (denoted depthRes(P)) is the length
of the longest path in the proof DAG. The resolution depth depthRes(F) of F is the minimal depth of
any resolution refutation of F .

Cutting Planes and Semantic Cutting Planes. A Cutting Planes proof (CP) of an inequality cx ≥ d
from a system of linear inequalities P is given by a sequence of inequalities

a1x ≥ b1, a2x ≥ b2, . . . , asx ≥ bs

such that as = c, bs = d, and each inequality aix ≥ bi is either in P or is deduced from earlier
inequalities in the sequence by applying one of the two rules Linear Combination or Division Rule
described at the beginning of Section 1. We will usually be interested in the case that the list of
inequalities P defines a polytope.

An alternative characterization of Cutting Planes uses Chvátal-Gomory cuts (or just CG cuts) [17,
20]. Let P be a polytope. A hyperplane ax = b is supporting for P if b = max {ax : x ∈ P}, and
if ax = b is a supporting hyperplane then the set P ∩ {x ∈ Rn : ax = b} is called a face of P . An
inequality ax ≤ b is valid for P if every point of P satisfies the inequality and ax = b is a supporting
hyperplane of P .

Definition 2.1. Let P ⊆ Rn be a polytope, and let ax ≥ b be any valid inequality for P such that all
coefficients of a are relatively prime integers. The halfspace {x ∈ Rn : ax ≥ ⌈b⌉} is called a CG cut
for P . (We will sometimes abuse notation and refer to the inequality ax ≥ ⌈b⌉ also as a CG cut.)

If ax ≥ ⌈b⌉ is a CG cut for the polytope P , then we can derive ax ≥ ⌈b⌉ from P in O(n) steps of
Cutting Planes by Farkas Lemma (note that the inequality ax ≥ b is valid for P by definition, so we
can deduce ax ≥ b as a linear combination of the inequalities of P and then apply the division rule). If
P is a polytope and H is a CG cut, then we will write P ⊢ P ∩H , and say that P ∩H is derived from
P .

Given a CNF formula F , we can translate F into a system of linear inequalities in the following
natural way. First, for each variable xi in F add the inequality 0 ≤ xi ≤ 1. If C =

'
i∈P xi∨

'
i∈N ¬xi

is a clause in F , then we add the inequality
(

i∈P
xi +

(

i∈N
(1− xi) ≥ 1.

6

It is straightforward to see that the resulting system of inequalities will have no integral solutions if and
only if the original formula F is unsatisfiable. With this translation we consider Cutting Planes refuta-
tions (defined in the introduction) of F to be refutations of the translation of F to linear inequalities.

The semantic Cutting Planes proof system (denoted sCP or Semantic CP) is a strengthening of
Cutting Planes proofs to allow any deduction that is sound over integral points [14]. Like Cutting
Planes, an sCP proof is given by a sequence of halfspaces {aix ≥ ci}i∈[s], but now we can use the
following very powerful semantic deduction rule:

• Semantic Deduction. From ajx ≥ cj and akx ≥ ck deduce aix ≥ ci if every {0, 1} solution of
aix ≥ ci is also an integral solution of both ajx ≥ cj and akx ≥ ck.

Filmus et al. [26] showed that sCP is extremely strong: there are instances for which any refutation
in CP requires exponential size, and yet these instances admit polynomial-size refutations in semantic
sCP.

The size of a Cutting Planes proof is the number of lines (it is known that for unsatisfiable CNF
formulas that this measure is polynomially related to the length of the bit-encoding of the proof [20]).
As with Resolution, it is natural to arrange Cutting Planes proofs into a proof DAG. With this in
mind we analogously define depthCP(F) and depthsCP(F) to be the smallest depth of any (semantic)
Cutting Planes proof of F .

It is known that any system of linear inequalities in the unit cube has CP depth at most O(n2 log n),
and moreover there are examples requiring CP-depth more than n [25]. However for unsatisfiable CNF
formulas, the CP-depth is at most n [12].

Stabbing Planes. Let F be an unsatisfiable system of linear inequalities. A Stabbing Planes (SP)
refutation of F is a directed binary tree, T , where each edge is labelled with a linear integral inequality
satisfying the following consistency conditions:

• Internal Nodes. For any internal node u of T , if the right outgoing edge of u is labelled with
ax ≥ b, then the left outgoing edge is labelled with its integer negation ax ≤ b− 1.

• Leaves. Each leaf node v of T is labelled with a non-negative linear combination of inequalities
in F with inequalities along the path leading to v that yields 0 ≥ 1.

For an internal node u of T , the pair of inequalities (ax ≤ b − 1, ax ≥ b) is called the query corre-
sponding to the node. Every node of T has a polytope P associated with it, where P is the polytope
defined by the intersection of the inequalities in F together with the inequalities labelling the path from
the root to this node. We will say that the polytope P corresponds to this node. The slab corresponding
to the query is {x∗ ∈ Rn | b − 1 < ax∗ < b}, which is the set of points ruled out by this query. The
width of the slab is the minimum distance between ax ≤ b − 1 and ax ≥ b, which is 1/‖a‖2. The
size of a refutation is the bit-length needed to encode a description of the entire proof tree, which, for
CNF formulas as well as sufficiently bounded systems of inequalities, is polynomially equivalent to the
number of queries in the refutation [21]. As well, the depth of the refutation is the depth of the binary
tree. The proof system SP∗ is the subsystem of Stabbing Planes obtained by restricting all coefficients
of the proofs to have magnitude at most quasipolynomial (nlogO(1) n) in the number of input variables.

The Stabbing Planes proof system was introduced by Beame et al. [8] as a generalization of Cutting
Planes that more closely modelled query algorithms and branch-and-bound solvers. Beame et al. proved
that SP is equivalent to the proof system TreeR(CP) introduced by Krajı́ček [40] which can be thought
of as a generalization of Resolution where the literals are replaced with integer-linear inequalities.

7

3 Translating Stabbing Planes into Cutting Planes

3.1 Equivalence of CP with Subsystems of SP

In this section we prove Theorem 1.1, restated below, which characterizes Cutting Planes as a non-
trivial subsystem of Stabbing Planes.

Theorem 1.1. The proof systems CP and Facelike SP are polynomially equivalent.

We begin by formally defining Facelike SP.

Definition 3.1. A Stabbing Planes query (ax ≤ b− 1, ax ≥ b) at a node P is facelike if one of the sets
P ∩ {x ∈ Rn : ax ≤ b− 1}, P ∩ {x ∈ Rn : ax ≥ b} is empty or a face of P (see Figure 2b). An SP
refutation is facelike if every query in the refutation is facelike.

Enroute to proving Theorem 1.1, it will be convenient to introduce the following further restriction
of Facelike Stabbing Planes.

Definition 3.2. A Stabbing Planes query (ax ≤ b − 1, ax ≥ b) at a node corresponding to a polytope
P is pathlike if at least one of P ∩ {x ∈ Rn : ax ≤ b− 1} and P ∩ {x ∈ Rn : ax ≥ b} is empty (see
Figure 2a). A Pathlike SP refutation is one in which every query is pathlike.

The name “pathlike” stems from the fact that the underlying graph of a pathlike Stabbing Planes
proof is a path, since at most one child of every node has any children (see Figure 2). In fact, we have
already seen (nontrivial) pathlike SP queries under another name: Chvátal-Gomory cuts.

Lemma 3.3. Let P be a polytope and let (ax ≤ b − 1, ax ≥ b) be a pathlike Stabbing Planes query
for P . Assume w.l.o.g. that P ∩ {x ∈ Rn : ax ≤ b− 1} = ∅ and that P ∩ {x ∈ Rn : ax ≥ b} ⊊ P .
Then ax ≥ b is a CG cut for P .

Proof. Since ax ≥ b is falsified by some point in P , it follows that there exists some 0 < ε < 1 such
that ax ≥ b − ε is valid for P — note that ε < 1 since otherwise ax ≤ b − 1 would not have empty
intersection with P . This immediately implies that ax ≥ b is a CG cut for P .

With this observation we can easily prove that Pathlike SP is equivalent to CP. Throughout the
remainder of the section, for readability, we will use the abbreviation P ∩ {ax ≥ b} for P ∩ {x ∈ Rn :
ax ≥ b}, for any polytope P and linear inequality ax ≥ b.

Lemma 3.4. Pathlike SP is polynomially equivalent to CP.

Proof. First, let a1x ≥ b1, a2x ≥ b2, . . . , asx ≥ bs be a CP refutation of an unsatisfiable system
of linear inequalities Ax ≥ b. Consider the sequence of polytopes P0 = {Ax ≥ b} and Pi =
Pi−1 ∩ {aix ≥ bi}. By inspecting the rules of CP, it can observed that Pi ∩ {aix ≤ bi − 1} = ∅ and
thus Pi+1 can be deduced using one pathlike SP query from Pi for all 0 ≤ i ≤ s.

Conversely, let P be any polytope and let (ax ≤ b − 1, ax ≥ b) be any pathlike SP query to P
(so, suppose w.l.o.g. that the halfspace defined by ax ≤ b − 1 has empty intersection with P). By
Lemma 3.3, ax ≥ b is a CG cut for P , and so can be deduced in Cutting Planes from the inequalities
defining P in length O(n) (cf. Section 2). Applying this to each query in the Pathlike SP proof yields
the theorem.

8

ax ≥ bax ≤ b− 1

∅

∅

ax ≤ b− 1 ax ≥ b

P

(a) A Pathlike query. The polytope P ∩ {x ∈ Rn : ax ≤ b− 1} = ∅, and ax ≥ b is a CG cut for P .

ax ≥ bax ≤ b− 1
ax ≤ b− 1 ax ≥ b

P

ax = b− 1

(b) A Facelike query. The polytope P ∩ {x ∈ Rn : ax ≤ b− 1} = P ∩ {x ∈ Rn : ax = b} is a face of P .

Figure 2: Pathlike and Facelike SP queries on a polytope P . On the left are the proofs and on the right
are the corresponding effects on the polytope.

Next, we show how to simulate Facelike SP proofs by Pathlike SP proofs of comparable size. The
proof of Lemma 3.6 is inspired by Dadush and Tiwari [21], and will use the following lemma due to
Schrijver [52] (although, we use the form appearing in [20]). Recall that we write P ⊢ P ′ for polytopes
P, P ′ to mean that P ′ can be obtained from P by adding a single CG cut to P .

Lemma 3.5 (Lemma 2 in [20]). Let P be a polytope defined by a system of integer linear inequalities
and let F be a face of P . If F ⊢ F ′ then there is a polytope P ′ such that P ⊢ P ′ and P ′ ∩ F ⊆ F ′.

Lemma 3.6. Facelike SP is polynomially equivalent to Pathlike SP.

Proof. That Facelike SP simulates Pathlike SP follows by the fact that any Pathlike SP query is a
valid query in Facelike SP. For the other direction, consider an SP refutation π of size t. We describe a
recursive algorithm for generating a Pathlike SP proof from π. The next claim will enable our recursive
case.

Claim. Let P be a polytope and suppose ax ≥ b is valid for P . Assume that P ∩ {ax = b} has a
Pathlike SP refutation using s queries. Then P ∩ {ax ≥ b+ 1} can be derived from P in Pathlike SP
using s+ 1 queries.

Proof of Claim. Since ax ≥ b is valid for P it follows that F = P ∩ {ax = b} is a face of P
by definition. Consider the Pathlike SP refutation F0, F1, . . . Fs = ∅, where the ith polytope Fi for
i < s is obtained from Fi−1 by applying a pathlike SP query and proceeding to the non-empty child.
Without loss of generality we may assume that Fi ⊊ Fi−1 for all i, and so applying Lemma 3.3

9

we have that Fi−1 ⊢ Fi for all i. Thus, by applying Lemma 3.5 repeatedly, we get a sequence of
polytopes P = P0 ⊢ P1 ⊢ · · · ⊢ Ps such that Pi ∩ F = Pi ∩ {ax = b} ⊆ Fi. This means that
Ps ∩ {ax = b} ⊆ Fs = ∅, and so (ax ≤ b, ax ≥ b + 1) is Pathlike SP query for Ps. This means
that Ps ⊢ Ps ∩ {ax ≥ b + 1} ⊆ P ∩ {ax ≥ b + 1}. Since any CG cut can be implemented as a
Pathlike SP query the claim follows by applying the s CG cuts as pathlike queries, followed by the
query (ax ≤ b, ax ≥ b+ 1).

We generate a Pathlike SP refutation by the following recursive algorithm, which performs an in-
order traversal of π. At each step of the recursion (corresponding to a node in π) we maintain the
current polytope P we are visiting and a Pathlike SP proof Π — initially, P is the initial polytope and
Π = ∅. We maintain the invariant that when we finish the recursive step at node P , the Pathlike SP
refutation Π is a refutation of P . The algorithm is described next:

1. Let (ax ≤ b− 1, ax ≥ b) be the current query and suppose that ax ≥ b− 1 is valid for P .

2. Recursively refute P ∩ {ax ≤ b − 1} = P ∩ {ax = b− 1}, obtaining a Pathlike SP refutation
Π with t queries.

3. Apply the above Claim to deduce P ∩ {ax ≥ b} from P in t+ 1 queries.

4. Refute P ∩ {ax ≥ b} by using the SP refutation for the right child.

Correctness follows immediately from the Claim, and also since the size of the resulting proof is the
same as the size of the SP refutation.

Theorem 1.1 then follows by combining Lemma 3.4 with Lemma 3.6.

3.2 Simulating SP∗ by CP

In this section we prove Theorem 1.2, restated below for convenience.

Theorem 1.2. Let F be any unsatisfiable CNF formula on n variables, and suppose that there is a SP
refutation of F in size s and maximum coefficient size c. Then there is a CP refutation of F in size
s(cn)log s.

To prove this theorem, we will show that any low coefficient SP proof can be converted into a
Facelike SP proof with only a quasi-polynomial loss. If P is a polytope let d(P) denote the diameter
of P , which is the maximum Euclidean distance between any two points in P . Theorem 1.2 follows
immediately from the following theorem.

Theorem 3.7. Let P be a polytope and suppose there is an SP refutation of P with size s and maximum
coefficient size c. Then there is a Facelike SP refutation of P in size

s(c · d(P)
√
n)log s.

Proof. The theorem is by induction on s. Clearly, if s = 1 then the tree is a single leaf and the theorem
is vacuously true.

We proceed to the induction step. Let P be the initial polytope and π be the SP proof. Consider
the first query (ax ≤ b, ax ≥ b + 1) made by the proof, and let πL be the SP proof rooted at the left
child (corresponding to ax ≤ b) and let πR be the SP proof rooted at the right child. Let PL denote the

10

polytope at the left child and PR denote the polytope at the right child. By induction, let π′
L and π′

R be
the Facelike SP refutations for PL and PR guaranteed by the statement of the theorem.

Suppose w.l.o.g. that |πL| ≤ |π|/2. Let b0 be the largest integer such that ax ≥ b0 is satisfied for
any point in P . The plan is to replace the first query (ax ≤ b, ax ≥ b+ 1) with a sequence of queries
q0, q1, . . . , qt−1 such that

• For each i, qi = (ax ≤ b0 + i, ax ≥ b0 + i+ 1).

• The query q0 is the root of the tree and qi is attached to the right child of qi−1 for i ≥ 1.

• qt−1 = (ax ≤ b, ax ≥ b+ 1).

After doing this replacement, instead of having two child polytopes PL, PR below the top query, we
have t + 1 polytopes P0, P1, . . . , Pt+1 where Pi = P ∩ {ax = b0 + i} and Pt+1 = PR. To finish the
construction, for each i ≤ t use the proof π′

L to refute Pi and the proof π′
R to refute Pt+1.

We need to prove three statements: this new proof is a valid refutation of P , the new proof is
facelike, and that the size bound is satisfied.

First, it is easy to see that this is a valid proof, since for each i ≤ t the polytope Pi ⊆ PL and
Pt+1 ⊆ PR — thus, the refutations π′

L and π′
R can be used to refute the respective polytopes.

Second, to see that the proof is facelike, first observe that all the queries in the subtrees π′
L,π

′
R are

facelike queries by the inductive hypothesis. So, we only need to verify that the new queries at the top
of the proof are facelike queries, which can easily be shown by a quick induction. First, observe that
the query q0 is a facelike query, since b0 was chosen so that ax ≥ b0 is valid for the polytope P . By
induction, the query qi = (ax ≤ b0 + i, ax ≥ b0 + i + 1) is a facelike query since the polytope Pi

associated with that query is P ∩{ax ≥ b0+i} by definition. Thus ax ≥ b0+i is valid for the polytope
at the query.

Finally, we need to prove the size upper bound. Let s be the size of the original proof, sL be the
size of πL and sR be the size of πR. Observe that the size of the new proof is given by the recurrence
relation

f(s) = t · f(sL) + f(sR).

where f(1) = 1. Since the queries q0, q1, . . . , qt−1 cover the polytope PL with slabs of width 1/‖a‖2,
it follows that

t ≤ d(PL)‖a‖2 ≤ d(P)
√
n‖a‖∞ = d(P)c

√
n

where we have used that the maximum coefficient size in the proof is c. Thus, by induction, the previous
inequality, and the assumption that sL ≤ s/2, we can conclude that the size of the proof is

f(s) ≤ sL(c · d(P)
√
n)(c · d(PL)

√
n)log sL + sR(c · d(PR)

√
n+)log sR

≤ sL(c · d(P)
√
n)(c · d(P)

√
n)log(s/2) + sR(c · d(P)

√
n)log s

≤ sL(c · d(P)
√
n)log s + sR(c · d(P)

√
n)log s

= s(c · d(P)
√
n)log s.

Theorem 1.2 follows immediately, since for any CNF formula F the encoding of F as a system of
linear inequalities is contained in the n-dimensional cube [0, 1]n, which has diameter

√
n. We may also

immediately conclude Theorem 1.4 by applying the known lower bounds on the size of Cutting Planes
proofs [28, 29, 35, 48].

As a consequence of Theorem 1.2 and the non-automatability of Cutting Planes [32], we can con-
clude that SP∗ proofs cannot be found efficiently assuming P ∕= NP. Indeed, non-automatability of
SP∗ follows by observing that the argument [32] does not require large coefficients.

11

4 Refutations of Linear Equations over a Finite Field

In this section we prove Theorem 1.3. To do so, we will extend the approach used by Beame et al. [8]
to prove quasi-polynomial upper bounds on the Tseitin formulas to work on any unsatisfiable set of
linear equations over any finite field.

If ax = b is a linear equation we say the width of the equation is the number of non-zero variables
occurring in it. Any width-d linear equation over characteristic q can be represented by a CNF formula
with qd−1 width-d clauses — one ruling out each falsifying assignment. For a width-d system of m
linear equations F over a finite field, we will denote by |F | := mqd−1 the size of the CNF formula
encoding F .

Theorem 4.1. Let F = {f1 = b1, . . . , fm = bm} be a width-d, unsatisfiable set of linear equations
over characteristic q. There is an SP refutation of (the CNF encoding of) F in size (mqd)O(logm)qd =
|F |O(logm).

First we sketch the idea over characteristic 2. In this case the SP proof corresponds to a branch
decomposition procedure which is commonly used to solve SAT (see e.g. [3, 22, 24, 42]). View the
system F as a hypergraph over n vertices (corresponding to the variables) and with a d-edge for each
equation. Partition the set of hyperedges into two sets E = E1 ∪ E2 of roughly the same size, and
consider the cut of vertices that belong to both an edge in E1 and in E2. Using the SP rule we branch
on all possible values of the sum of the cut variables in order to isolate E1 and E2. Once we know this
sum, we are guaranteed that either E1 is unsatisfiable or E2 is unsatisfiable depending on the parity
of the of the sum of the cut variables. This allows us to recursively continue on the side of the cut
(E1 or E2) that is unsatisfiable. Since there are n Boolean variables, each cut corresponds to at most
n+ 1 possibilities for the sum, and if we maintain that the partition of the hyper edges defining the cut
is balanced, then we will recurse at most O(logm) times. This gives rise to a tree decomposition of
fanout O(n) and height O(log n).

Over characteristic q the proof will proceed in much the same way. Instead of a subgraph, at each
step we will maintain a subset of the equations I ⊆ [m] such that {fi = bi}i∈I must contain a constraint
that is violated by the SP queries made so far. We partition I into two sets I1 and I2 of roughly equal
size and query the values a and b of

#
i∈I1 fi and

#
i∈I2 fi. Because F is unsatisfiable, at least one of

a−
#

i∈I1 bi ∕≡ 0 or b−
#

i∈I2 bi ∕≡ 0, meaning that that it is unsatisfiable, and we recurse on it.
In the following, we will let z stand for a vector of Fq-valued variables zi. When we discuss any

form f := az where a ∈ Fm
q and z is a vector of n variables zi, we will implicitly associate it with the

linear form
#

i∈[n] ai(
#

j∈[log q] xi,j) where xi,j are the log q many Boolean variables encoding zi in
the CNF encoding of F .

Proof of Theorem 4.1. Let F = {f1 = b1, . . . , fm = bm} be a system of unsatisfiable linear equations
over Fq, where each fi = aiz for ai ∈ Fn

q , and bi ∈ Fq. Because F is unsatisfiable, there exists a
Fq linear combination of the equations in F witnessing this; formally, there exists α ∈ Fn

q such that#
i∈[m] αifi ≡ 0 mod q, but

#
i∈[m] αibi ∕≡ 0 mod q.

Stabbing Planes will implement the following binary search procedure for a violated equation;
we describe the procedure first, and then describe how to implement it in Stabbing Planes. In each
round we maintain a subset I ⊆ [m] and an integer kI representing the value of

#
i∈I αifi. Over the

algorithm, we maintain the invariant that kI −
#

i∈I bi ∕≡ 0 mod q, which implies that there must be a
contradiction to F inside of the constraints {fi = bi}i∈I .

12

Initially, I = [m] and we obtain kI by querying the value of the sum
#

i∈[m] αifi. If kI ∕≡ 0
mod q then this contradicts the fact that

#
i∈I αifi ≡ 0 mod q; thus, the invariant holds. Next,

perform the following algorithm.

1. Choose a balanced partition I = I1 ∪ I2 (so that ||I1|− |I2|| ≤ 1).

2. Query the value of
#

i∈I1 αifi and
#

i∈I2 αifi; denote these values by a and b respectively.

3. If a−
#

i∈I1 αibi ∕≡ 0 mod q then recurse on I1 with kI1 := a. Otherwise, if b−
#

i∈I2 αibi ∕≡
0 mod q then recurse on I2 with kI2 := b.

4. Otherwise (if a−
#

i∈I1 αibi ≡ b−
#

i∈I2 αibi ≡ 0 mod q), then this contradicts the invariant:

0 ∕≡ kI −
(

i∈I
bi =

(

i∈I
αi(fi − bi)

=
(

i∈I1

αi(fi − bi) +
(

i∈I2

αi(fi − bi)

= (a−
(

i∈I1

αibi) + (b−
(

i∈I1

αibi) ≡ 0 mod q.

This recursion stops when |I| = 1, at which point we have an immediate contradiction between kI and
the single equation indexed by I .

It remains to implement this algorithm in SP. First, we need to show how to perform the queries in
step 2. Querying the value of any sum

#
i∈I αifi can be done in a binary tree with at most q2md leaves,

one corresponding to every possible query outcome. Internally, this tree queries all possible integer
values for this sum (e.g. (

#
i∈I αifi ≤ 0,

#
i∈I αifi ≥ 1), (

#
i∈I αifi ≤ 1,

#
i∈I αifi ≥ 2), . . .). For

the leaf where we have deduced
#

i∈[m] αifi ≤ 0 we use the fact that each variable is non-negative to
deduce that

#
i∈[m] αifi ≥ 0 as well. Note that q2md is an upper bound on this sum because there are

m equations, each containing at most d variables, each taking value at most (q− 1) †. Thus, step 2 can
be completed in (q2md)2 queries.

Finally, we show how to derive refutations in the following cases: (i) when we deduced that#
i∈[m] αifi ∕≡ 0 mod q at the beginning, (ii) in step 4, (iii) when |I| = 1.

(i) Suppose that we received the value a ∕≡ 0 mod q from querying
#

i∈[m] αifi. Note that every
variable in

#
i∈[m] αifi is a multiple of q. Query

) (

i∈[m]

αifi/q ≤ ⌈a/q⌉ − 1,
(

i∈[m]

αifi/q ≥ ⌈a/q⌉
*
.

At the leaf that deduces
#

i∈[m] αifi/q ≤ ⌈a/q⌉ − 1, we can derive 0 ≥ 1 as a non-negative
linear combination of this inequality together with

#
i∈[m] αifi ≥ a. Similarly, at the other leaf#

i∈[m] αifi/q ≥ ⌈a/q⌉ can be combined with
#

i∈[m] αifi ≤ a to derive 0 ≥ 1.

(ii) Suppose that a−
#

i∈I1 αibi ≡ b−
#

i∈I2 αibi ≡ 0 mod q. Then 0 ≥ 1 is derived by summing#
i∈I1 αifi ≥ a,

#
i∈I2 αifi ≥ b and

#
i∈I αifi ≤ kI , all of which have already been deduced.

†Note that instead of querying the value of
!

i∈I αifi we could have queried
!

i∈I αifi (mod q) to decrease the number
of leaves to qmd.

13

(iii) When |I| = 1 then we deduced that aIz = kI for kI ∕≡ bI mod q and we would like to derive
a contradiction using the axioms encoding aIz ≡ bI . These axioms are presented to SP as the
linear-inequality encoding of a CNF formula, and while there are no integer solutions satisfying
both these axioms and aIz = kI , there could in fact be rational solutions. To handle this, we
simply force that each of the at most d variables in aIz takes an integer value by querying the
value of each variable one by one. As there are at most d variables, each taking an integer value
between 0 and q − 1, this can be done in a tree with at most qd many leaves. At each leaf of this
tree we deduce 0 ≥ 1 by a non-negative linear combination with the axioms, the integer-valued
variables, and aIz ≡ bI .

The recursion terminates in at most O(logm) many rounds because the number of equations under
consideration halves every time. Therefore, the size of this refutation is (qmd)O(logm)qd. Note that by
making each query in a balanced tree, this refutation can be carried out in depth O(log2(mqd)).

Finally, we conclude Theorem 1.3.

Proof of Theorem 1.3. Observe that the SP refutation from Theorem 4.1 is facelike. Indeed, to perform
step 2 we query (

#
i∈I αifi ≤ t− 1,

#
i∈I αifi ≥ t) from t = 1, . . . , q2md. For t = 1, the halfspace#

i∈I αifi ≥ 0 is valid for the current polytope because the polytope belongs to the [0, 1]n cube. For
each subsequent query,

#
i∈I αifi ≥ t − 1 is valid because the previous query deduced

#
i∈I αifi ≥

t−1. Similar arguments show that the remaining queries are also facelike. Thus, Lemma 3.6 completes
the proof.

We note that the CP refutations that result from Theorem 1.3 have a very particular structure: they
are extremely long and narrow. Indeed, they has depth nO(logm). We give a rough sketch of the
argument: it is enough to show that most lines Li in the CP refutation are derived using some previous
line Lj with j = O(i). This is because the final line would have depth proportional to the size of the
proof. To see that the CP refutation satisfies this property, observe that for each node visited in the
in-order traversal, the nodes in the right subproof πR depend on the halfspace labelling the root, which
in turn depends on the left subproof πL.

5 Lower Bound on the Depth of Semantic CP Refutations

Our results from Section 3 suggest an interesting interplay between depth and size of Cutting Planes
proofs. In particular, we note that there is a trivial depth n and exponential size refutation of any
unsatisfiable CNF formula in Cutting Planes; however, it is easy to see that the Dadush–Tiwari proofs
and our own quasipolynomial size CP proofs of Tseitin are also extremely deep (in particular, they are
superlinear). Even in the stronger Semantic CP it is not clear that the depth of these proofs can be
decreased. However, this does not hold for SP, which has quasi-polynomial size and poly-logarithmic
depth refutations. This motivates Conjecture 1.6, regarding the existence of a “supercritical” trade-off
between size and depth for Cutting Planes [11, 50]. The Tseitin formulas are a natural candidate for
resolving this conjecture.

In this section we develop a new method for proving depth lower bounds which we believe should
be more useful for resolving this conjecture. Our method works not only for CP but also for semantic
CP. Using our technique, we establish the first linear lower bounds on the depth of Semantic CP
refutations of the Tseitin formulas.

14

Lower bounds on the depth of syntactic CP refutations of Tseitin formulas were established by
Buresh-Openheim et al. [15] using a rank-based argument. Our proof is inspired by their work, and
so we describe it next. Briefly, their proof proceeds by considering a sequence of polytopes P (0) ⊇
. . . ⊇ P (d) where P (i) is the polytope defined by all inequalities that can be derived in depth i from
the axioms in F . The goal is to show that P (d) is not empty. To do so, they show that a point p ∈ P (i)

is also in P (i+1) if for every coordinate j such that 0 < pj < 1, there exists points p(j,0), p(j,1) ∈ P (i)

such that p(j,b)k = b if k = j and p
(j,b)
k = pk otherwise. The proof of this fact is syntactic: it relies on

the careful analysis of the precise rules of CP.
When dealing with Semantic CP, we can no longer analyze a finite set of syntactic rules. Further-

more, it is not difficult to see that the aforementioned criterion for membership in P (i+1) is no longer
sufficient for Semantic CP. We develop an analogous criterion for Semantic CP given later in this
section. As well, we note that the definition of P (i) is not well-suited to studying the depth of bounded-
size CP proofs like those in Conjecture 1.6 — there does not appear to be a useful way to limit P (i) to
be a polytope derived by a bounded number of halfspaces. Therefore we develop our criterion in the
language of lifting, which is more amenable to supercritical tradeoffs [11, 50].

Through this section we will work with the following top-down definition of Semantic CP.

Definition 5.1. Let F be an n-variate unsatisfiable CNF formula. An sCP refutation of F is a directed
acyclic graph of fan-out ≤ 2 where each node v is labelled with a halfspace Hv ⊆ Rn (understood as a
set of points satisfying a linear inequality) satisfying the following:

1. Root. There is a unique source node r labelled with the halfspace Hv = Rn (corresponding to
the trivially true inequality 1 ≥ 0).

2. Internal-Nodes. For each non-leaf node u with children v, w, we have

Hu ∩ {0, 1}n ⊆ Hv ∪Hw.

3. Leaves. Each sink node u is labeled with a unique clause C ∈ F such that Hv ∩ {0, 1}n ⊆
C−1(0).

The above definition is obtained by taking a (standard) sCP proof and reversing all inequalities:
now, a line is associated with the set of assignments falsified at that line, instead of the assignments
satisfying the line.

To prove the lower bound we will need to find a long path in the proof. To find this path we will be
taking a root-to-leaf walk down the proof while constructing a partial restriction ρ ∈ {0, 1, ∗}n on the
variables. For a partial restriction ρ, denote by free(ρ) := ρ−1(∗) and fix(ρ) := [n] \ free(ρ). Let the
restriction of H by ρ be the halfspace

H ↾ρ := {x ∈ Rfree(ρ) : ∃α ∈ H, αfix(ρ) = ρfix(ρ), αfree(ρ) = x}.

It is important to note that H ↾ρ is itself a halfspace on the free coordinates of ρ.
One of our key invariants needed in the proof is the following.

Definition 5.2. A halfspace H ⊆ Rn is good if it contains the all-12 vector, that is, (12)
n = (12 ,

1
2 , . . . ,

1
2) ∈

H .

We will need two technical lemmas to prove the lower bounds. The first lemma shows that if a
good halfspace H has its boolean points covered by halfspaces H1, H2, then one of the two covering
halfspaces is also good modulo restricting a small set of coordinates.

15

Lemma 5.3. Let H ⊆ Rn be any good halfspace, and suppose H ∩ {0, 1}n ⊆ H1 ∪H2 for halfspaces
H1, H2. Then there is a restriction ρ and an i = 1, 2 such that |fix(ρ)| ≤ 2 and Hi ↾ρ is good.

The second lemma shows that good halfspaces are robust, in the sense that we can restrict a good
halfspace to another good halfspace while also satisfying any mod-2 equation.

Lemma 5.4. Let n ≥ 2 and H ⊆ Rn be a good halfspace. For any I ⊆ [n] with |I| ≥ 2 and b ∈ {0, 1},
there is a partial restriction ρ ∈ {0, 1, ∗}n with fix(ρ) = I such that

•
"

i∈I
ρ(xi) = b and

• H ↾ρ ⊆ Rfree(ρ) is good.

With these two lemmas one can already get an idea of how to construct a long path in the proof.
Suppose we start at the root of the proof; the halfspace is 1 ≥ 0 (which is clearly good) and the
restriction we maintain is ρ = ∗n. We can use the first lemma to move from the current good halfspace
to a good child halfspace while increasing the number of fixed coordinates by at most 2. However, we
have no control over the two coordinates which are fixed by this move, and so we may fall in danger of
falsifying an initial constraint. Roughly speaking, we will use the second lemma to satisfy constraints
that are in danger of being falsified.

We delay the proofs of these technical lemmas to the end of the section, and first see how to prove
the depth lower bounds.

5.1 Lifting Decision Tree Depth to Semantic CP Depth

As a warm-up, we show how to lift lower bounds on Resolution depth to Semantic CP depth by com-
posing with a constant-width XOR gadget. If F is a CNF formula then we can create a new formula by
replacing each variable zi with an XOR of 4 new variables xi,1, . . . , xi,4:

zi := XOR4(xi,1, . . . , xi,4) = xi,1 ⊕ · · ·⊕ xi,4.

We call zi the unlifted variable associated with the output of the XOR4 gadget applied to the i-th block
of variables. Formally, let XORn

4 : {0, 1}4n → {0, 1}n be the application of XOR4 to each 4-bit block
of a 4n-bit string. Let F ◦XORn

4 denote the formula obtained by performing this substitution on F and
transforming the result into a CNF formula in the obvious way.

The main result of this section is the following.

Theorem 5.5. For any unsatisfiable CNF formula F ,

depthsCP(F ◦ XORn
4) ≥

1

2
depthRes(F).

Key to our lower bound will be the following characterization of Resolution depth by Prover-
Adversary games.

Definition 5.6. The Prover–Adversary game associated with an n-variate formula F is played between
two competing players, Prover and Adversary. The game proceeds in rounds, where in each round the
state of the game is recorded by a partial assignment ρ ∈ {0, 1, ∗}n to the variables of F .

16

Initially the state is the empty assignment ρ = ∗n. Then, in each round, the Prover chooses an
i ∈ [n] with ρi = ∗, and the Adversary chooses b ∈ {0, 1}. The state is updated by ρi ← b and play
continues. The game ends when the state ρ falsifies an axiom of F .

It is known [49] that depthRes(F) is exactly the smallest d for which there is a Prover strategy that
ends the game in d rounds, regardless of the strategy for the Adversary.

The proof of Theorem 5.5 will follow by using an optimal Adversary strategy for F to construct a
long path in the Semantic CP proof of F ◦ XORn

4 . Crucially, we need to understand how halfspaces H
transform under XORn

4 :

XORn
4 (H) := {z ∈ {0, 1}n : ∃x ∈ H ∩ {0, 1}4n ,XORn

4 (x) = z}.

As we have already stated, we will maintain a partial assignment ρ ∈ {0, 1, ∗}4n on the 4n lifted
variables. However, in order to use the Adversary, we will need to convert ρ to a partial assignment
on the n unlifted variables. To perform this conversion, for any ρ ∈ {0, 1, ∗}4n define XORn

4 (ρ) ∈
{0, 1, ∗}n as follows: for each block i ∈ [n], define

XORn
4 (ρ)i =

+
XOR4(ρ(xi,1), . . . , ρ(xi,4)) if (i, j) ∈ fix(ρ) for j ∈ [4],

∗ otherwise.

We are now ready to prove Theorem 5.5. Fix any Semantic CP refutation of F ◦XORn
4 , and suppose

that there is a strategy for the Adversary in the Prover-Adversary game of F certifying that F requires
depth d. Throughout the walk, we maintain a partial restriction ρ ∈ {0, 1, ∗}4n to the lifted variables
satisfying the following three invariants with respect to the current visited halfspace H .

– Block Closed. In every block either all variables in the block are fixed or all variables in the block
are free.

– Good Halfspace. H ↾ρ is good.

– Strategy Consistent. The unlifted assignment XORn
4 (ρ) does not falsify any clause in F .

Initially, we set ρ = ∗4n and the initial halfspace is 1 ≥ 0, so the pair (H, ρ) trivially satisfy the
invariants. Suppose we have reached the halfspace H in our walk and ρ is a restriction satisfying the
invariants. We claim that H cannot be a leaf. To see this, suppose that H is a leaf, then by definition
H ∩ {0, 1}4n ⊆ C−1(0) for some clause C ∈ F ◦ XORn

4 . By the definition of the lifted formula, this
implies that XORn

4 (H) ⊆ D−1(0) for some clause D ∈ F . Since (H, ρ) satisfy the invariants, the
lifted assignment XORn

4 (ρ) does not falsify D, and so by the block-closed property it follows that there
must be a variable zi ∈ D such that all lifted variables in the block i are free under ρ. But then applying
Lemma 5.4 to the block of variables {xi,1, xi,2, xi,3, xi,4}, we can extend ρ to a partial assignment ρ′

such that zi = XOR4(ρ(xi,1), ρ(xi,2), ρ(xi,3), ρ(xi,4)) satisfies D. But H ↾ ρ′ is a projection of H ↾ ρ
and so this contradicts that XORn

4 (H) violates D.
It remains to show how to take a step down the proof. Suppose that we have taken t < d/2 steps

down the Semantic CP proof, the current node is labelled with a halfspace H , and the partial assignment
ρ satisfies the invariants. If H has only a single child H1, then H ∩ {0, 1}4n ⊆ H1 ∩ {0, 1}4n and
ρ will still satisfy the invariants for H1. Otherwise, if H has two children H1 and H2 then applying
Lemma 5.3 to the halfspaces H ↾ ρ, H1 ↾ ρ, H2 ↾ ρ we can find an i ∈ {1, 2} and a restriction τ such
that Hi ↾ (ρτ) is good and τ restricts at most 2 extra coordinates. Let i1, i2 ∈ [n] be the two blocks of
variables in which τ restricts variables, and note that it could be that i1 = i2.

Finally, we must restore our invariants. We do this in the following three step process.

17

• Query the Adversary strategy at the state XORn
4 (ρ) on variables zi1 , zi2 and let b1, b2 ∈ {0, 1} be

the responses.

• For i = i1, i2 let Ii be the set of variables free in the block i, and note that |Ii| ≥ 2. Apply
Lemma 5.4 to H ↾ (ρτ) and Ii to get new restrictions ρi1 , ρi2 so that blocks i1 and i2 both take
values consistent with the Adversary responses b1, b2.

• Update ρ ← ρτρi1ρi2 .

By Lemma 5.4 the new restriction ρ satisfies the block-closed and the good halfspace invariants. At
each step we fix at most two blocks of variables, and thus the final invariant is satisfied as long as
t < d/2. This completes the proof.

5.2 Semantic CP Depth Lower Bounds for Unlifted Formulas

Next we show how to prove depth lower bounds directly on unlifted families of F2-linear equations.
The strength of these lower bounds will depend directly on the expansion of the underlying constraint-
variable graph of F .

Throughout this section, let F denote a set of F2-linear equations. In a Semantic CP proof, we
must encode F as a CNF formula, but while proving the lower bound we will instead work with the
underlying system of equations. For a set F of F2-linear equations let G(F) := (F ∪ V,E) be the
bipartite constraint-variable graph defined as follows. Each vertex in F corresponds to an equation
in F and each vertex in V correspond to variables xi. There is an edge (Ci, xj) ∈ E if xj occurs
in the equation Ci. For a subset of vertices X ⊆ F ∪ V define the neighbourhood of X in GF as
Γ(X) := {v ∈ F ∪ V : ∃u ∈ X, (u, v) ∈ E}.

Definition 5.7. For a bipartite graph G = (U ∪ V,E) the boundary of a set W ⊆ U is

δ(W) := {v ∈ V : |Γ(v) ∩W | = 1}.

The boundary expansion of a set W ⊆ U is |δ(W)|/|W |. The graph G is a (r, s)-boundary expander
if the boundary expansion of every set W ⊆ U with |W | ≤ r has boundary expansion at least s.

If F is a system of linear equations then we say that F is an (r, s)-boundary expander if its con-
straint graph GF is. The main result of this section is the following theorem, analogous to Theorem 5.5.

Theorem 5.8. For any system of F2-linear equations F that is an (r, s+ 3)-boundary expander,

depthsCP(F) ≥ rs/2.

The proof of this theorem follows the proof of Theorem 5.5 with some small changes. As before,
we will maintain a partial assignment ρ ∈ {0, 1, ∗}n that will guide us on a root-to-leaf walk through
a given Semantic CP proof; we also require that each halfspace H that we visit is good relative to our
restriction ρ. Now our invariants are (somewhat) simpler: we will only require that F ↾ρ is a sufficiently
good boundary expander.

We first prove an auxiliary lemma that will play the role of Lemma 5.4 in the proof of Theorem 5.8.
We note that it follows immediately from Lemma 5.4 and boundary expansion.

Lemma 5.9. Suppose F is a system of F2-linear equations that is an (r, s)-boundary expander for s >
1, and suppose F ′ ⊆ F with |F ′| ≤ r. Let H be a good halfspace. Then there exists a ρ ∈ {0, 1, ∗}n
with fix(ρ) = Γ(F ′) such that

18

• F ′ is satisfied by ρ, and

• H ↾ρ is good.

Proof. We first use expansion to find, for each constraint Ci ∈ F ′, a pair of variables yi,1, yi,2 that are
in Ci’s boundary. To do this, first observe that |δ(F)′| ≥ s|F ′| > |F ′| by the definition of boundary
expansion. The pigeonhole principle then immediately implies that there are variables yi,1, yi,2 ∈ δ(F ′)
and a constraint Ci ∈ F ′ such that yi,1, yi,2 ∈ Ci. Since yi,1, yi,2 do not occur in F ′ \ {Ci}, it follows
that F ′ \ {Ci} is still an (r, s)-boundary expander. So, we update F ′ = F ′ \ {Ci} and repeat the above
process.

When the process terminates, we have for each constraint Ci ∈ F ′ a pair of variables yi,1, yi,2 that
occur only in Ci. Write the halfspace H =

#
iwixi ≥ c, and let I = Γ(F ′) \

!
i∈I {yi,1, yi,2} be

the set of variables occurring in F ′ that were not collected by the above process. We define a partial
restriction ρ with fix(ρ) = I that depends on |I| as follows.

• If |I| = 0 then ρ = ∗n.

• If I = {xi} then define ρ(xi) = 1 if wi ≥ 0 and ρ(xi) = 0 otherwise, and for all other variables
set ρ(x) = ∗.

• If |I| > 2 then apply Lemma 5.4 to generate a partial restriction ρ with fix(ρ) = I that sets the
XOR of I arbitrarily.

Observe that H ↾ρ is good. The only non-trivial case is when |I| = 1, but, in this case we observe

(H ↾ρ)((1/2)n−1) = wiρ(xi) +
(

j ∕=i

wi/2 ≥
(

i

wi/2 ≥ c,

where we have used that H is good and the definition of ρ.
Next we extend ρ as follows: for each i = 1, 2, . . . , |F ′| apply Lemma 5.4 to Ii = {yi,1, yi,2} to

generate a partial restriction ρi with fix(ρi) = Ii so that the constraint Ci ↾ ρρ1 · · · ρi−1 is satisfied
by ρi. Observe that this is always possible since Ii is in the boundary of Ci. Finally, we update
ρ ← ρρ1 · · · ρ|F ′|. It follows by Lemma 5.4 that F ′ is satisfied by ρ and H ↾ρ is good.

We are now ready to prove Theorem 5.8. Fix any Semantic CP refutation of F and let n be the
number of variables. We take a root-to-leaf walk through the refutation while maintaining a partial
assignment ρ ∈ {0, 1, ∗}n and an integer valued parameter k ≥ 0. Throughout the walk we maintain
the following invariants with respect to the current halfspace H:

– Good Expansion. F ↾ρ is a (k, t)-boundary expander with t > 3.

– Good Halfspace. H ↾ρ is good.

– Consistency. The partial assignment ρ does not falsify any clause of F .

Initially, we set k = r and ρ = ∗n, so the invariants are clearly satisfied since F is an (r, s + 3)-
expander. So, suppose that we have reached a halfspace H in our walk, and let k, ρ be parameters
satisfying the invariants. We first observe that if k > 0 then H cannot be a sink node of the proof.
To see this, it is enough to show that H contains a satisfying assignment for each equation C ∈ F .
Because H ↾ ρ is non-empty (since it is good) there exists a satisfying assignment in H for every

19

equation satisfied by ρ, so, assume that C is not satisfied by ρ. In this case, since F ↾ ρ is a (k, t)-
expander for k > 0 we can apply Lemma 5.9 to {C} and H ↾ ρ and obtain a partial restriction τ with
fix(τ) = Γ(C) such that τ satisfies C. It follows that H is not a leaf.

Next, we show how to take a step down the proof while maintaining the invariants. If H has only
a single child H1, then H ⊆ H1 and we can move to H1 without changing ρ or k. Otherwise, let the
children of H be H1 and H2. Applying Lemma 5.3 to H ↾ρ, H1 ↾ρ, H2 ↾ρ we get a partial restriction
τ and an i ∈ {1, 2} such that Hi ↾ ρτ is good and |fix(τ)| ≤ 2. Due to this latter fact, since F ↾ ρ is
a (k, t)-expander it follows that F ↾ ρτ is a (k, t − 2)-expander in the worst case. Observe that since
t > 3 it follows that F ↾ ρτ still satisfies the consistency invariant. It remains to restore the expansion
invariant.

To restore the expansion invariant, let W be the largest subset of equations such that W has bound-
ary expansion at most 3 in F ↾ ρτ , and note that |W | ≤ k and W has boundary expansion at least
t − 2 > 1. Applying Lemma 5.9, we can find a restriction ρ′ such that W ↾ ρτρ′ is satisfied and
H ↾ρτρ′ is a good halfspace. Now update ρ ← ρτρ′ and k ← k − |W |. Since W is the largest subset
with expansion at most 3, it follows that F ↾ρ is now a (k, t′)-boundary expander with t′ > 3. Finally,
we halt the walk if η = 0.

We now argue that this path must have had depth at least rs/2 upon halting. Assume that we have
taken t steps down the proof. For each step i ≤ t let Wi be the set of equations which lost boundary
expansion during the ith cleanup step. Note that Wi ∩ Wj = ∅ for every i ∕= j. Let W ∗ = ∪t

i=1Wi,
note that |W ∗| = d, and at the end of the walk, W ∗ has no neighbours and therefore no boundary in
F ↾ ρ. Before the start of the ith cleanup step, Wi has at most 3|Wi| boundary variables. Therefore,
at most 3|W ∗| = 3r boundary variables were removed during the cleanup step. Since F started as an
(r, s+ 3)-boundary expander, it follows that W had at least r(s+ 3) boundary variables at the start of
the walk. But, since all variables have been removed from the boundary by the end, this means that rs
variables must have been removed from the boundary during the move step. Thus, as each move step
sets at most 2 variables, it follows that t ≥ rs/2 before the process halted.

5.3 Proof of Lemma 5.3 and Lemma 5.4

In this section we prove our two key technical lemmas: Lemma 5.3 and Lemma 5.4. We begin by
proving Lemma 5.4 as it is simpler.

Proof of Lemma 5.4. Let H be represented by
#

i∈[n]wixi ≥ c and suppose without loss of generality
that c ≥ 0 and that I = {1, . . . , k}. Let the weights of I in H be ordered |w1| ≥ |w2| ≥ . . . |wk|.
Define ρ by setting ρ(xi) = ∗ for i ∕∈ I , for i ≤ k−1 set ρ(xi) = 1 if wi ≥ 0 and ρ(xi) = 0 otherwise,
and set ρ(xk) so that

,
i∈I ρ(xi) = b. Clearly the parity constraint is satisfied, we show that H ↾ ρ is

good. This follows by an easy calculation:

(H ↾ρ)((1/2)[n]\I) = wk−1ρ(xk−1) + wkρ(xk) +
(

i≤k−2

wiρ(xi) +
(

i≥k+1

wi/2

≥ wk−1/2 + wk/2 +
(

i≤k−2

wiρ(xi) +
(

i≥k+1

wi/2

≥
(

i∈[n]
wi/2 ≥ c

where the first inequality follows by averaging since |wk−1| ≥ |wk|, and the final inequality follows
since H is good.

20

In the remainder of the section we prove Lemma 5.3. It will be convenient to work over {−1, 1}n
rather than {0, 1}n, so, we restate it over this set and note that we can move between these basis by
using the bijection v :→ (1− v)/2.

Lemma 5.10. Let H ∈ Rn be a halfspace such that 0n ∈ H and suppose that H∩{−1, 1}n ⊆ H1∪H2.
Then one of H1 or H2 contains a point y ∈ {−1, 0, 1}n such that y has at most two coordinates in
{−1, 1}.

The key ingredient in our proof of Lemma 5.10 is the following simple topological lemma, which
will allow us to find a well-behaved point lying on a 2-face of the {−1, 1}n cube

Definition 5.11 (2-face). A 2-face of the n-cube with vertices {−1, 1}n are the 2-dimensional 2-by-2
squares spanned by four vertices of the cube that agree on all but two coordinates.

Lemma 5.12. Let w(1), w(2) ∈ Rn be any pair of non-zero vectors, then we can find a vector v ∈ Rn

orthogonal to w(1), w(2), such that v lies on a 2-face.

Proof. We will construct the vector v iteratively by rounding one coordinate at a time until v contains
n− 2 coordinates in {−1, 1}. At each step, we will maintain that v ∈ [−1, 1]n, and therefore when the
process halts v will lie on a 2-face. For the base case, let u any non-zero vector that is orthogonal to
w(1) and w(2). Begin at the origin by letting v := 0n and move in the direction of u until one of the
coordinates of v′ becomes +1 or −1. More formally, let α > 0 be the minimum value such that v+αu
has one of its coordinates in {−1, 1}. Let j ∈ {1, 2}, and observe that by orthogonality,

〈v + αu,w(j)〉 = 〈v, w(j)〉+ α〈u,w(j)〉 = 〈0, w(j)〉+ 0 = 0.

Set v to be v + αu. Note that the v are in [−1, 1], as otherwise this would contradict our choice of α.
Suppose that we have constructed a vector v orthogonal to w(1) and w(2) such that all of its coor-

dinates belong to [−1, 1] and exactly i < n − 2 of its coordinates belong to {−1, 1}; suppose w.l.o.g.
that they are the first i coordinates. We will show how to booleanize at least one more coordinate of v.
Let u be any non-zero vector orthogonal to {w(1), w(2), e1, . . . , ei} where ej is the jth standard basis
vector. Begin moving from v in the direction of u, and let α > 0 be the smallest value such that one of
the coordinates j > i of v + αu is in {−1, 1}. We verify that the following properties hold:

1. The first i coordinates of v + αu are in {−1, 1}. This follows because we moved in a direction
orthogonal to e1, . . . , ei.

2. v + αu is orthogonal to w(1) and w(2). Let j ∈ {1, 2} and observe that 〈vi+1, w
(j)〉 = 〈vi +

αu,w(j)〉 = 〈vi, w(j)〉+ α〈u,w(j)〉 = 0, where the last equality follows because w(j) is orthog-
onal to vi by induction and u by assumption.

Finally, set v to be v + αu.

Proof of Lemma 5.10. Let each of the halfspaces Hi be represented by inequalities 〈w(i)x〉 ≥ b(i) for
i ∈ {1, 2}. By the previous lemma we can find a point p that lies on a 2-face F such that p is orthogonal
to w(1) and w(2). Now, p falls into one of the four 1-by-1 quadrants of the 2-face (see the Figure 3). Sup-
pose by symmetry that p is contained within the quadrant with vertices {(−1, 1), (0, 1), (−1, 0), (0, 0)},
and let a ∈ F ⊆ Rn be the point corresponding to the vertex (−1, 1).

21

p

a− p

(0, 0)

(1, 1)

(1,−1)

a = (−1, 1)

(−1,−1)

Figure 3: A 2-face of the n-cube together with a depiction of the booleanizing process.

Since H contains the origin, H contains either v or −v for every vector v. Thus, by symmetry,
we can assume that a is contained in H — otherwise, simply exchange a and p for −a and −p. Since
H ∩ {−1, 1}n ⊆ H1 ∪ H2 and a ∈ {−1, 1}n, it follows that a is in one of H1 or H2. Assume that
a ∈ H1, so, 〈w(1), a〉 ≥ b(1). Our goal is to construct a y ∈ H1 that satisfies the statement of the
lemma. We consider two cases:

– Case 1: 〈w(1), a− p〉 ≤ 0. In this case y := 0n ∈ H1 as

〈w(1), 0n〉 = 〈w(1), p〉 ≥ 〈w(1), a〉 ≥ b(1).

where first equality follows because w(1) and p are orthogonal by assumption, and the final
inequality follows because a ∈ H1.

– Case 2: 〈w(1), a − p〉 > 0. For simplicity, suppose that the unfixed coordinates of the 2-face F
are {1, 2}. We construct a point that satisfies the statement of the lemma as follows. First, note
that since a, p ∈ F it follows that the vector a−p has at most 2 non-zero coordinates. Beginning
at the origin 0n, move in the direction a − p until a coordinate i ∈ {1, 2} becomes fixed to −1
or 1, and let α(a− p) be the corresponding point. Since (a− p) is in the 2-face, ||a− p||∞ ≤ 1
and so α ≥ 1. We can then verify that α(a− p) ∈ H1, since

〈w(1),α(a− p)〉 = α〈w(1), a〉 ≥ 〈w(1), a〉 ≥ b(1),

where we have used the fact that p is orthogonal to w(1) and α ≥ 1. Finally, since α(a−p) ∈ H1

we can round the final non-zero coordinate to −1 or 1; since H1 is a halfspace one of the two
vectors will remain in H1.

In either case we have constructed a vector y ∈ H(−1) such that yi ∈ {−1, 0, 1}n and yi ∈ {−1, 1} for
at most two coordinates.

5.4 Applications of the Semantic Depth Lower Bounds

We now use the theorems from the previous sections to obtain several concrete lower bounds. First, we
give strong depth lower bounds for sCP proofs of Tseitin formulas on expander graphs.

Theorem 5.13. There exists a graph G and labelling ℓ : V → {0, 1} such that any sCP refutation of
Tseitin(G, ℓ) requires depth Ω(n).

22

Proof. A graph G = (V,E) is a γ-edge expander if

min {|Γ(W)| : W ⊆ V, |W | ≤ |V |/2} ≥ γ|W |,

where Γ(W) is the neighbourhood of W . We claim that if G is a γ-edge expander then any Tseitin
formula over G is a (n/2, γ)-boundary expander. Fix any subset W of the equations with |W | ≤
n/2. By the definition of edge expansion we have that |Γ(W)| ≥ γ|W |, and since each variable is
contained in exactly two constraints, it follows that the boundary of W in Tseitin(G, ℓ) has size at least
|δ(W)| ≥ γ|W |. The result then follows from Theorem 5.8 and the existence of strong edge expanders
G (e.g. d-regular Ramanujan graphs are at least d/4-edge expanders, and exist for all d and n [44]).

Next, we give lower bounds on the depth of Semantic CP refutations of random k-XOR and random
k-CNF formulas for constant k.

Definition 5.14. Let XOR(m,n, k) be the distribution on random k-XOR formulas obtained by sam-
pling m equations from the set of all mod 2 linear equations with exactly k variables.

Theorem 5.15. The following holds for Semantic CP :

1. For any k ≥ 6 there exists m = O(n) such that F ∼ XOR(m,n, k) requires refutations of depth
at least Ω(n) with high probability.

2. For any k ≥ 6 there exists m = O(n) such that F ∼ F(m,n, k) requires refutations of depth at
least Ω(n) with high probability.

Proof. We first prove (1) and obtain (2) via a reduction. Fix m = O(n) so that F is unsatisfiable with
high probability. For any constant k, δ and m = O(n), F ∼ XOR(m,n, k) is an (αn, k − 2 − 2δ)-
boundary expander for some α > 0 (see e.g. [15, 18]). Thus, setting k ≥ 6 and ε to be some small
constant, the boundary expansion of GF is at least 3. By Theorem 5.8, F requires depth Ω(n) to refute
in Semantic CP with high probability.

The proof of (2) is via a reduction from F(m,n, k) to XOR(m,n, k). Every k-clause occurs in the
clausal encoding of exactly one k-XOR constraint. It follows that from any k-CNF formula F we can
generate a k-XOR formula whose clausal expansion F ′ contains F as follows: for each clause C ∈ F ,
if C contains an even (odd) number of positive literals then add to F ′ every clause on the variables of
C which contains an even (odd) number of positive literals. The resulting F ′ is the clausal encoding of
a set of |F | k-XOR constraints. As there is a unique k-XOR consistent with the clauses of F , we can
define the distribution XOR(m,n, k) equivalently as follows:

1. Sample F ∼ F(m,n, k),

2. Return the k-XOR F ′ generated from F according to the aforementioned process.

It follows that the complexity of refuting F ∼ F(m,n, k) is at least that of refuting F ′ ∼ XOR(m,n, k)
and (2) follows from (1) with the same parameters.

Finally, we use Theorem 5.8 to extend the integrality gaps from [15] to sCP by essentially the same
argument. For a linear program with constraints given by a system of linear inequalities Ax ≤ b,
the r-round sCP relaxation adds all inequalities that can be derived from Ax ≤ b by a depth-r sCP
proof. We show that the r-round Semantic sCP linear program relaxation cannot well-approximate the
number of satisfying assignments to a random k-SAT or k-XOR instance.

23

First we define our LP relaxations. Suppose that F is a k-CNF formula with m clauses C1, C2, . . . , Cm

and n variables x1, x2, . . . , xn. If Ci =
'

i∈P xi∨
'

i∈N xi then let E(Ci) =
#

i∈P xi+
#

i∈N 1−xi.
We consider the following LP relaxation of F :

max

m(

i=1

yi

subject to E(Ci) ≥ yi ∀i ∈ [m]

0 ≤ xj ≤ 1 ∀j ∈ [n]

0 ≤ yi ≤ 1 ∀i ∈ [m]

If F is a k-XOR formula with m constraints and n variables then we consider the above LP relax-
ation obtained by writing F as a k-CNF. Finally, recall that the integrality gap is the ratio between the
optimal integral solution to a linear program and the optimal solution produced by the LP.

Theorem 5.16. For any ε > 0 and k ≥ 6,

1. There is κ > 0 and m = O(n) such that for F ∼ XOR(m,n, k) the integrality gap of the
κn-round sCP relaxation of F is at least (2− ε) with high probability.

2. There is κ > 0 and m = O(n) such that for F ∼ F(m,n, k) the integrality gap of the κn-round
sCP relaxation of F is at least 2k/(2k − 1)− ε with high probability.

Proof. Let F ∼ XOR(m,n, k) and let Yi be the event that the ith constraint is falsified by a uniformly
random assignment. Let δ := ε/(2−ε), then by a multiplicative Chernoff Bound, the probability that a
uniformly random assignment satisfies at least a 1/(2−ε)-fraction of F is Pr[

#
i∈[m] Yi ≥ (1+δ)m2] ≤

2−δm/6. By a union bound, the probability that there exists an assignment satisfying at least a 1/(2−ε)
fraction of F is 2n−δm/6 which is exponentially small when m ≥ 7n(2− ε)/ε.

On the other hand, consider the partial restriction to the LP relaxation of F that sets yi = 1 for all
i ∈ [m]. Setting m ≥ 7n(2 − ε)/ε large enough, by Theorem 5.15 there some κ > 0 such that with
high probability F requires depth κn. Hence, the κn round Semantic CP LP relaxation is non-empty,
and there is a satisfying assignment α ∈ Rn. Thus α ∪ {yi = 1} satisfies all constraints of max(F).

The second result follows by an analogous argument.

6 Conclusion

We end by discussing some problems left open by this paper. The most obvious of which is a resolution
to Conjecture 1.6. Similarly, can supercritical size-depth tradeoffs be established for monotone circuits?
As a first step towards both of these, can one prove a supercritical size-depth tradeoff for a weaker proof
system such as Resolution?

The simulation results presented in Section 3 leave open several questions regarding the relationship
between SP and CP. First, the simulation of SP∗ by CP incurs a significant blowup in the coefficient
size due to Shrijver’s lemma. It would be interesting to understand whether SP∗ can quasi-polynomially
simulated by CP∗; that is, whether this blowup in the size of the coefficients is necessary.

The most obvious question left open by these simulations is whether CP can polynomially simulate
SP, or even polynomially simulate SP∗. Similarly, what are the relationships of both SP and CP, to
(bounded-coefficient) R(CP), the system which corresponds to dag-like SP. R(CP) can polynomially
simulate DNF Resolution, and therefore has polynomial size proofs of the Clique-Colouring formulas,

24

for cliques of size Ω(
√
n) and colourings of size o(log2 n) [4]. Quasi-polynomial lower bounds on

the size of CP refutations are known for this range of parameters and this rules out a polynomial
simulation by Cutting Planes; however, a quasi-polynomial simulation may be possible. Extending this
polynomial upper bound to work in the case to closer clique and coloring sizes by taking advantage of
the additional power of R(CP) over DNF Resolution appears to be a promising approach to resolving
this question.

Acknowledgements

T.P. was supported by NSERC, NSF Grant No. CCF-1900460 and the IAS school of mathematics.
R.R. was supported by NSERC, the Charles Simonyi Endowment, and indirectly supported by the
National Science Foundation Grant No. CCF-1900460. L.T. was supported by NSF grant CCF-192179
and NSF CAREER award CCF-1942123. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

[1] Karen Aardal, Robert E. Bixby, Cor A. J. Hurkens, Arjen K. Lenstra, and Job W. Smeltink. Market
split and basis reduction: Towards a solution of the cornuéjols-dawande instances. INFORMS J.
Comput., 12(3):192–202, 2000.

[2] Karen Aardal and Arjen K. Lenstra. Hard equality constrained integer knapsacks. Math. Oper.
Res., 29(3):724–738, 2004.

[3] Michael Alekhnovich and Alexander A. Razborov. Satisfiability, branch-width and tseitin tautolo-
gies. In 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19 November
2002, Vancouver, BC, Canada, Proceedings, pages 593–603. IEEE Computer Society, 2002.

[4] Albert Atserias, Maria Luisa Bonet, and Juan Luis Esteban. Lower bounds for the weak pigeon-
hole principle and random formulas beyond resolution. Inf. Comput., 176(2):136–152, 2002.

[5] Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow proofs may be maximally long.
ACM Trans. Comput. Log., 17(3):19:1–19:30, 2016.

[6] Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A. Kelner, David
Steurer, and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York,
NY, USA, May 19 - 22, 2012, pages 307–326, 2012.

[7] Paul Beame, Christopher Beck, and Russell Impagliazzo. Time-space tradeoffs in resolution:
superpolynomial lower bounds for superlinear space. In Howard J. Karloff and Toniann Pitassi,
editors, Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012,
New York, NY, USA, May 19 - 22, 2012, pages 213–232. ACM, 2012.

[8] Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina Kolokolova, Denis Pankratov, Toni-
ann Pitassi, and Robert Robere. Stabbing planes. In 9th Innovations in Theoretical Computer
Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages 10:1–10:20,
2018.

25

[9] Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for polynomial calcu-
lus: extended abstract. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Sympo-
sium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
813–822. ACM, 2013.

[10] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. J. ACM,
48(2):149–169, 2001.

[11] Christoph Berkholz and Jakob Nordström. Supercritical space-width trade-offs for resolution.
SIAM J. Comput., 49(1):98–118, 2020.

[12] Alexander Bockmayr, Friedrich Eisenbrand, Mark E. Hartmann, and Andreas S. Schulz. On the
chvátal rank of polytopes in the 0/1 cube. Discret. Appl. Math., 98(1-2):21–27, 1999.

[13] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for resolution. Comput.
Complex., 10(4):261–276, 2001.

[14] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes proofs with
small coefficients. J. Symb. Log., 62(3):708–728, 1997.

[15] Joshua Buresh-Oppenheim, Nicola Galesi, Shlomo Hoory, Avner Magen, and Toniann Pitassi.
Rank bounds and integrality gaps for cutting planes procedures. Theory of Computing, 2(4):65–
90, 2006.

[16] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps between
degrees for the polynomial calculus modulo distinct primes. J. Comput. Syst. Sci., 62(2):267–289,
2001.

[17] Vasek Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathe-
matics, 4(4):305–337, 1973.

[18] Vasek Chvátal and Endre Szemerédi. Many hard examples for resolution. J. ACM, 35(4):759–768,
1988.

[19] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems.
J. Symb. Log., 44(1):36–50, 1979.

[20] William J. Cook, Collette R. Coullard, and György Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, 1987.

[21] Daniel Dadush and Samarth Tiwari. On the complexity of branching proofs. In Shubhangi Saraf,
editor, 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken,
Germany (Virtual Conference), volume 169 of LIPIcs, pages 34:1–34:35. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[22] Adnan Darwiche. Recursive conditioning. Artif. Intell., 126(1-2):5–41, 2001.

[23] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J. ACM,
7(3):201–215, 1960.

[24] Rina Dechter. Bucket elimination: A unifying framework for processing hard and soft constraints.
ACM Comput. Surv., 28(4es):61, 1996.

26

[25] Friedrich Eisenbrand and Andreas S. Schulz. Bounds on the chvátal rank of polytopes in the
0/1-cube. In Gérard Cornuéjols, Rainer E. Burkard, and Gerhard J. Woeginger, editors, Integer
Programming and Combinatorial Optimization, 7th International IPCO Conference, Graz, Aus-
tria, June 9-11, 1999, Proceedings, volume 1610 of Lecture Notes in Computer Science, pages
137–150. Springer, 1999.

[26] Yuval Filmus, Pavel Hrubes, and Massimo Lauria. Semantic versus syntactic cutting planes.
In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on Theoretical Aspects of
Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs,
pages 35:1–35:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[27] Matteo Fischetti and Andrea Lodi. Local branching. Math. Program., 98(1-3):23–47, 2003.

[28] Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random Θ(log n)-cnfs are
hard for cutting planes. In 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 109–120, 2017.

[29] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds
from resolution. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceed-
ings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pages 902–911. ACM, 2018.

[30] Michel X. Goemans and David P. Williamson. .879approximationn algorithms for max cut and
max 2sat. In Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of Computing,
STOC ’94, pages 422–431, New York, NY, USA, 1994. ACM.

[31] Ralph E Gomory. An algorithm for integer solutions to linear programs. Recent advances in
mathematical programming, 64(260-302):14, 1963.

[32] Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes is np-
hard. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 68–77. ACM, 2020.

[33] Dima Grigoriev. Tseitin’s tautologies and lower bounds for nullstellensatz proofs. In 39th Annual
Symposium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto,
California, USA, pages 648–652. IEEE Computer Society, 1998.

[34] Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the parity.
Theor. Comput. Sci., 259(1-2):613–622, 2001.

[35] Pavel Hrubes and Pavel Pudlák. Random formulas, monotone circuits, and interpolation. In Chris
Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 121–131. IEEE Computer Society, 2017.

[36] Russell Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. Upper and lower bounds for tree-
like cutting planes proofs. In Proceedings of the Ninth Annual Symposium on Logic in Computer
Science (LICS ’94), Paris, France, July 4-7, 1994, pages 220–228. IEEE Computer Society, 1994.

27

[37] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In Benjamin Kuipers and Bonnie L. Webber, editors, Proceedings of the Four-
teenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Arti-
ficial Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode Island,
USA, pages 203–208. AAAI Press / The MIT Press, 1997.

[38] Miroslav Karamanov and Gérard Cornuéjols. Branching on general disjunctions. Math. Program.,
128(1-2):403–436, 2011.

[39] Arist Kojevnikov. Improved lower bounds for tree-like resolution over linear inequalities. In João
Marques-Silva and Karem A. Sakallah, editors, Theory and Applications of Satisfiability Testing
- SAT 2007, 10th International Conference, Lisbon, Portugal, May 28-31, 2007, Proceedings,
volume 4501 of Lecture Notes in Computer Science, pages 70–79. Springer, 2007.

[40] Jan Krajı́cek. Discretely Ordered Modules as a First-Order Extension of the Cutting Planes Proof
System. The Journal of Symbolic Logic, 63(4):1582–1596, 1998.

[41] Bala Krishnamoorthy and Gábor Pataki. Column basis reduction and decomposable knapsack
problems. Discret. Optim., 6(3):242–270, 2009.

[42] Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. A SAT approach to branchwidth. ACM
Trans. Comput. Log., 20(3):15:1–15:24, 2019.

[43] Ashutosh Mahajan and Theodore K Ralphs. Experiments with branching using general disjunc-
tions. In Operations Research and Cyber-Infrastructure, pages 101–118. Springer, 2009.

[44] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families IV: bipartite
ramanujan graphs of all sizes. SIAM J. Comput., 47(6):2488–2509, 2018.

[45] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference,
DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 530–535. ACM, 2001.

[46] Jonathan H. Owen and Sanjay Mehrotra. Experimental results on using general disjunctions in
branch-and-bound for general-integer linear programs. Comput. Optim. Appl., 20(2):159–170,
2001.

[47] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in ro-
bustness and optimization. PhD thesis, California Institute of Technology, 2000.

[48] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations.
J. Symb. Log., 62(3):981–998, 1997.

[49] Pavel Pudlák. Proofs as games. The American Mathematical Monthly, 107(6):541–550, 2000.

[50] Alexander A. Razborov. A new kind of tradeoffs in propositional proof complexity. J. ACM,
63(2):16:1–16:14, 2016.

[51] Grant Schoenebeck. Linear level lasserre lower bounds for certain k-csps. In 49th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadel-
phia, PA, USA, pages 593–602. IEEE Computer Society, 2008.

28

[52] A. Schrijver. On cutting planes. In Peter L. Hammer, editor, Combinatorics 79, volume 9 of
Annals of Discrete Mathematics, pages 291 – 296. Elsevier, 1980.

[53] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.

29 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

