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Abstract

In this paper we study polynomials in VPe (polynomial-sized formulas) and in ΣΠΣ (polynomial-size

depth-3 circuits) whose orbits, under the action of the affine group GLaff
n (F),1 are dense in their ambient

class. We construct hitting sets and interpolating sets for these orbits as well as give reconstruction

algorithms. Specifically, we obtain the following results:

1. For Cn (`1(x), . . . , `n(x)) ≜ Trace((
`1(x) 1

1 0
) ⋅ . . . ⋅ (

`n(x) 1

1 0
)), where the `is are linearly indepen-

dent linear functions, we construct a polynomial-sized interpolating set, and give a polynomial-time

reconstruction algorithm. By a result of Bringmann, Ikenmeyer and Zuiddam, the set of all such

polynomials is dense in VPe [BIZ18], thus our construction gives the first polynomial-size interpo-

lating set for a dense subclass of VPe.

2. For polynomials of the form ANF∆ (`1(x), . . . , `4∆(x)), where ANF∆(x) is the canonical read-once

formula in alternating normal form, of depth 2∆, and the `is are linearly independent linear func-

tions, we provide a quasipolynomial-size interpolating set. We also observe that the reconstruction

algorithm of [GKQ14] works for all polynomials in this class. This class is also dense in VPe.

3. Similarly, we give a quasipolynomial-sized hitting set for read-once formulas (not necessarily in

alternating normal form) composed with a set of linearly independent linear functions. This gives

another dense class in VPe.

4. We give a quasipolynomial-sized hitting set for polynomials of the form f (`1(x), . . . , `m(x)), where

f is an m-variate s-sparse polynomial and the `is are linearly independent linear functions in n ≥m

variables. This class is dense in ΣΠΣ.

5. For polynomials of the form ∑
s
i=1∏

d
j=1 `i,j(x), where the `i,js are linearly independent linear func-

tions, we construct a polynomial-sized interpolating set. We also observe that the reconstruction

algorithm of [KNS19] works for every polynomial in the class. This class is dense in ΣΠΣ.

As VP = VNC2, our results for VPe translate immediately to VP with a quasipolynomial blow up in

parameters.

If any of our hitting or interpolating sets could be made robust then this would immediately yield a

hitting set for the superclass in which the relevant class is dense, and as a consequence also a lower bound

for the superclass. Unfortunately, we also prove that the kind of constructions that we have found (which

are defined in terms of k-independent polynomial maps) do not necessarily yield robust hitting sets.
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(grant number 514/20) and from the Len Blavatnik and the Blavatnik Family foundation.
1The action of (A,b) ∈ GLaff

n (F) on a polynomial f ∈ F[x] is defined as (A,b) ○ f = f(ATx + b).
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1 Introduction

Proving lower bounds on the size of algebraic circuits (also called arithmetic circuits), is an outstanding

open problem in algebraic complexity. In spite of much effort, only a handful of lower bounds are known (a

detailed account of most known lower bounds can be found in the excellent survey of Saptharishi [Sap15]).

One common theme of most known lower bounds is that they are proved using algebraic arguments. That is,

a proof of a lower bound for a class of circuits C, usually has the following structure: one comes up with a set

of (nonzero) polynomials F1, . . . , Fm, in N = (
n+d
d

) many variables, such that the coefficient vector of every

n-variate, degree-d polynomial that can be computed in C, is a common zero of all the Fis (such Fis are called

separating polynomials). Then, one exhibits a polynomial f whose coefficient vector is not a common zero,

thus proving f /∈ C. As an example one can immediately see that the well known partial derivative technique,

and its predecessor, shifted partial derivative technique, are algebraic. Grochow [Gro15] demonstrated this

for most of the known lower bound proofs. As the set of common zeros of a set of polynomials is closed,2 this

immediately implies that if we prove that f /∈ C using an algebraic argument, then the same argument also

implies that f /∈ C, the closure of C. Recall that, in characteristic zero, the closure of a class C is the set of all

polynomials that are limit points of sequences of polynomials from C, where convergence is coefficient-wise

(see Definition 1.5 for a general definition over arbitrary characteristic). As most known techniques are

algebraic, we see that for proving a lower bound for a class C one actually has to consider the larger, and

less structured class, C.

Geometric Complexity Theory (GCT for short), which was initiated by Mulmuley and Sohoni [MS01, MS08],

approaches the lower bound question from a different angle. GCT also looks for an algebraic lower bound

proof, but rather than exhibiting an algebraic argument, it aims to prove the existence of a separating poly-

nomial. Specifically, GCT attempts to prove Valiant’s hypothesis, that VP≠VNP, over C, via representation

theory. Valiant’s hypothesis is, more or less, equivalent to showing that the permanent of a symbolic n × n

matrix is not a projection of the symbolic m×m determinant for any m =m(n) polynomial in n.3 Recall that

a projection of a polynomial is a restriction of the polynomial to an affine subspace of its inputs. Observe

that a restriction of an n-variate polynomial f(x) to a subspace of its inputs, is equivalent to considering the

polynomial f(Ax + b), where A is an n × n matrix and b ∈ Cn. As any matrix is a limit point of a sequence

of invertible matrices, an algebraic proof that the permanent is not a projection of the m ×m determinant,

over C, is equivalent to an algebraic proof showing that the permanent is not in the closure of the set of

polynomials {Det(AX +b) ∣ A ∈ GLm(C), b ∈ Cm}, where GLm(C) is the group of invertible m×m matrices

(this is true for every field of characteristic ≠ 2). The set {Det(AX + b) ∣ A ∈ GLm(C), b ∈ Cm} is called

the orbit of the determinant under the action of the affine group (we denote the affine group over Cm with

GLaff
m (C)). GCT considers the linear space of polynomials that vanish on every coefficient vector in the orbit

of the determinant, and similarly the linear space of polynomials that vanish on every coefficient vector in

the orbit of the permanent. There is a natural action of GLaff
m (C) on those linear spaces, thus defining two

representations of GLaff
m (C). GCT wishes to find a separating polynomial by showing that some irreducible

representation of GLaff
m (C) has strictly larger multiplicity when considering the representation corresponding

to the determinant. This approach bypasses the barrier given in [FSV18, GKSS17] as it does not exhibit

any efficiently computable separating polynomial but rather just proves the existence of one. However, the

representation theory questions arising in this program are quite difficult, even when considering the analog

2It is closed in the Zariski topology. Over R or C this is the same as being closed in the Euclidean topology.
3A super-quasipolynomial lower bound would imply that VP≠VNP whereas a super-polynomial lower bound would imply

that permanent does not have polynomial-size algebraic formulas or algebraic branching programs.
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questions for restricted classes. For an introduction to GCT see the lecture notes of Bläser and Ikenmeyer

[BI19].

Another possible approach for proving lower bounds against a class of polynomials C, is via the construction

of a hitting set for C. Recall that a hitting set H for a class C is a set of points such that for any nonzero

polynomial f , that can be computed by a circuit from C, there is v ∈H such that f(v) ≠ 0. In [HS80] Heintz

and Schnorr observed that if we have such a hitting set H then any nonzero polynomial g that vanishes on

H cannot be computed in C. It is also not hard to see that this way of obtaining lower bounds also bypasses

the natural proof barrier of [FSV18, GKSS17]. The problem is that in most cases we obtained a hitting set

for a class only after proving a lower bound for it.

In [FS18] Forbes and Shpilka defined the notion of a robust hitting set for a circuit class C. Over fields of

characteristic zero, a hitting set H for a class C is c-robust if it also satisfies that for every f ∈ C there is

v ∈ H such that ∣f(v)∣ ≥ c ⋅ ∥f∥, where ∥⋅∥ is some fixed norm on C[x] (see Definition 1.9 for a definition

over arbitrary fields). It is not hard to see that if H is a robust hitting set for a class C then it also hits the

closure of C.

In this work we focus on depth-3 algebraic circuits, known as ΣΠΣ, and on VPe, the class of algebraic

formulas, two classes for which we lack strong lower bounds, and in particular we do not have hitting sets

for them. For ΣΠΣ circuits the best lower bound is the near cubic lower bound of Kayal, Saha and Tavenas

[KST16], and for VPe the best lower bound is the quadratic lower bound of Kalarkoti [Kal85]. Recall

that by the result of Valiant et al. [VSBR83], a super-quasipolynomial lower bound against VPe implies

a super-polynomial lower bound against VP. Similarly, a hitting set for VPe implies a hitting set for VP.

We also note that by a result of Gupta et al. [GKKS16], a strong enough lower bound or a hitting set

for ΣΠΣ imply both a lower bound for general circuits and a hitting set for them. This result also implies

that a polynomial-time reconstruction algorithm for ΣΠΣ circuits would give rise to a sub-exponential time

reconstruction algorithm for general circuits. Recall that a reconstruction algorithm for a class C is an

algorithm that, given black-box access to a circuit from C, outputs a circuit in C that computes the same

polynomial.

Instead of viewing robust hitting sets as a way to obtain hitting sets for the closure of circuit classes, we

suggest to find subclasses of interesting classes, C̃ ⊂ C, such that C is contained in the closure of C̃, and aim

to construct a robust hitting set for the subclass C̃. This offers a new approach for constructing hitting sets

for known classes and for obtaining lower bounds. Specifically, we consider subclasses of ΣΠΣ and VPe that

are dense in their superclasses. Each of these subclasses is the orbit of some simple polynomial under the

group of invertible affine transformations.

For VPe, we first consider a subclass that was defined by Bringmann, Ikenmeyer and Zuiddam [BIZ18]–the

orbit of the so called continuant polynomial (see Definition 1.16). We give a polynomial-sized interpolating

set4 for this subclass as well as a polynomial-time deterministic reconstruction algorithm that uses as oracle a

root-finding algorithm.5 In particular, this implies a polynomial-time randomized reconstruction algorithm,

and, in some cases, a polynomial-time deterministic algorithm.

In addition, we exhibit two other subclasses that are dense in VPe. The first class is defined as the orbit of

read-once formulas (ROF for short, see Definition 5.1) and the second as the orbit of read-once formulas in

alternating normal form (ROANF for short, see Definition 5.3). We obtain hitting sets for both classes and

4Recall that an interpolating set for a class C of polynomials in n variables, over a field F, is a set of points H ⊂ Fn such that
for every f ∈ C, the list of values f(H) uniquely determines f . See Definition 1.11.

5A root-finding algorithm, over a field F, when given black-box access to a univariate polynomial, outputs a root of that
polynomial in F, if such a root exists.
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an interpolating set for the second. We also observe that the reconstruction algorithm of [GKQ14] works

for the polynomials in the orbit of ROANFs. Although the results that we obtain for the subclass defined

by the continuant polynomial are stronger, we think that every such dense subclass can shed more light on

VPe and may eventually be used in order to obtain new lower bounds.

For ΣΠΣ we consider two subclasses. One is based on orbits of sparse polynomials (polynomials having

polynomially many monomials) and the other on orbits of diagonal tensors (see Definition 1.29). We give a

hitting set for the first, an interpolation set for the second, and we also observe that a slight modification of

the randomized reconstruction algorithm of [KNS19] applies for the second class.

In particular, our results give the first dense subclasses inside VPe and ΣΠΣ for which a polynomial-size

interpolating set is known as well as a polynomial-time reconstruction algorithm. By [VSBR83] our result

immediately translate to VP, giving a dense subclass of for which a quasipolynomial-sized interpolating set

is known as well as a quasipolynomial-time reconstruction algorithm.

If we could transform the interpolating sets that we have found to robust hitting sets for the orbits, then

this will immediately give hitting sets for the closure of the orbits, i.e. for ΣΠΣ and VPe, which, by [HS80]

gives a lower bound for the class. Thus, our work raises an intriguing problem:

Problem 1.1. Given an interpolating set for a class C construct a robust hitting set for C.

We stress that by our results, solving this problem would lead to hitting sets, and lower bounds, for VPe

and VP.

Another advantage for having small interpolating sets for dense subclasses is the following: One approach

for searching for separating polynomials for a class, is by considering the map from circuits in the class to

the coefficient vectors of the polynomials that they compute. That is, once we fix a computation graph,

an assignment to the constants appearing in the circuit determines the output polynomial. Each coefficient

is a polynomial in those constants, and as there are “few” constants (polynomially many for polynomially

sized circuits), and there are exponentially many coefficients, there should be many polynomials vanishing

on the closure of the image of this map. If we could get a good understanding of this map then perhaps

we could use it to construct a polynomial that vanishes on all such coefficient vectors. This polynomial will

vanish on all coefficient vectors of the superclass in which the subclass is dense. A different approach is to

find a coefficient vector that is not in the closure of the image of this map (this is the approach of Raz in

[Raz10]). Now, assume that H is an interpolating set for a dense subclass C̃ ⊂ C. We know that the map

f → f ∣H is one-to-one on C̃. Thus, the list of values f ∣H can be viewed as an efficient encoding that is given

in terms of values of the computed polynomial. This provides a different encoding of a circuit – instead of

the constants in it, use the evaluations on H. Thus, by studying the closure of this map (i.e. the closure

of the set of points on F∣H∣ that can be obtained as evaluation vectors of polynomials in the subclass) we

may be able to find a separating polynomial, or, as in Raz’s approach, find an evaluation vector that is not

obtained by any polynomial in the superclass. It is clear that one can also try this approach even if H is not

an interpolating set, however, as interpolating sets “preserve information” of a dense set, we believe that

such sets are better suited for this approach.

To conclude, focusing on dense subclasses and studying their properties could lead to better understanding

of their superclasses and perhaps to breakthrough results in algebraic complexity.

To formally state our results we need some definitions that we give next.
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1.1 Basic definitions

1.1.1 Circuit classes

Definition 1.2. An algebraic formula (also called arithmetic formula) over a field F, is a rooted tree whose

leaves are labeled with either variable or scalars from F, and whose root and internal nodes (called gates) are

labeled with either “+” (addition) or “×” (multiplication). An algebraic formula computes a polynomial in

the natural way. Each leaf computes the polynomial that labels it, and each gate computes either the sum or

product of its children, depending on its label. The output of the formula is the polynomial computed at its

root. The size of a formula is the number of wires in it. The depth of a formula is the length of the longest

simple leaf-root path in it. The formula size of a polynomial f is defined as the smallest size of a formula

that outputs f .

A sequence m(n) of natural numbers is called polynomially bounded if there exists a univariate polynomial

q such that m(n) ≤ q(n) for all n.

The complexity class VPe is defined as the set of all families of polynomials (fn)n, with fn ∈ F[x1, . . . , xn],

whose formula size is polynomially bounded.

Definition 1.3. An arithmetic circuit Φ is a Σ[s]Π[d] circuit if it is a layered graph of depth-2, has a top

gate labeled + with fan-in ≤ s and its second layer is comprised entirely of × gates with fan-in ≤ d. In other

words, Σ[s]Π[d] compute polynomials of degree d with at most s monomials.

Definition 1.4. An arithmetic circuit Φ in n variables is a Σ[s]Π[d]Σ circuit if it is a layered graph of

depth-3, has a top gate labeled + with fan-in ≤ s, its second layer is comprised entirely of × gates with fan-in

≤ d, and its bottom layer is comprised of linear functions in x1, . . . , xn. In other words, Σ[s]Π[d]Σ circuit

compute polynomials of the form

f(x) =
s

∑
i=1

d

∏
j=1

(αi,j,0 +
n

∑
k=1

αi,j,kxk) .

Given a family of circuits C, we will sometime denote it as C(F) to stress that we allow coefficients to come

from the field F. Observe that the definitions of the classes above do not depend on the field and so we can

define them over any field of our choice.

1.1.2 Approximate complexity

The following definition gives sense to the notion of approximation over arbitrary fields. In what follows we

let ε be a new formal variable.6 For a field F we denote with F[ε] the ring of polynomial expressions in ε

over F, and with F(ε) the fraction field of F[ε], i.e. the field of rational expressions in ε.

Definition 1.5. Let C(F) be a circuit class over a field F. The closure of C, denoted C(F), is defined as

follows: A family of functions (fn)n, where fn ∈ F[x1, . . . , xn], is in C(F) if there is a polynomially bounded

function m ∶ N → N, and a family of functions (gm(n))n ∈ C(F(ε)), with gm(n) ∈ F[ε][x1, . . . , xm(n)], such

that for all n ∈ N,

gm(n)(x1, . . . , xm(n)) = fn(x1, . . . , xn) + ε ⋅ gn,0(x1, . . . , xm(n)) , (1)

6Intuitively, one should think of ε as an infinitesimal quantity.
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for some polynomial gn,0 ∈ F[ε][x1, . . . , xm(n)]. Whenever an equality as in (1) holds we say that

gm(n) = fn +O(ε) or fn = gm(n) +O(ε) .

In that case we think of gm(n) as an “approximation” of fn, and we say that the family (gm(n))n approximates

the family (fn)n.

Alder [Ald84] have shown that over C it holds that (fn) ∈ C(C), in the sense of Definition 1.5, if and only if

it is in the closure of C(C) in the usual sense. That is, if for every n there exists a sequence of polynomials

gn,k ∈ C(C) such that limk→∞ gn,k = fn, where convergence is taken coefficient wise. This result holds over R
as well, see [LL89, Bür04].

Finally, we note that every matrix is approximable (in the sense of Definition 1.5) by a non-singular matrix

(which is equivalent to being a limit of a sequence of non-singular matrices, in characteristic zero).

Observation 1.6. For every A ∈ Fn×n there exists a non-singular matrix B ∈ F(ε)n×n such that A = B+O(ε).

1.1.3 Hitting and interpolating sets

Definition 1.7. A set of points H ⊆ Fn is called a hitting set for a circuit class C (we also say that H hits

C) if for every circuit Φ ∈ C, computing a non-zero polynomial, there exists some a ∈H such that Φ(a) ≠ 0.

We next give the definition of a robust hitting set, a notion first defined in [FS18]. Here we extend the

definition for arbitrary characteristic. We start by giving the definition of [FS18], over characteristic zero

(and focus on C) and then the more general definition.

Definition 1.8 (Following Definition 5.1 of [FS18]). Let ∥⋅∥ be some norm on C[x]. A hitting set H for

a circuit class C ⊆ C[x] is called robust if there exists some constant c > 0 such that, for every 0 ≠ f ∈ C,7

there exists some a ∈H such that ∣f(a)∣ ≥ c ⋅ ∥f∥.

For arbitrary characteristic we use the same approach as in Definition 1.5.

Definition 1.9. Let F be a field of arbitrary characteristic. A hitting set H ⊂ Fn for a circuit class C(F)
is called robust if for every circuit Φ ∈ C(F(ε)) computing a polynomial f(x) = h(x) + ε ⋅ g(x), where

h(x) ∈ F[x] and g(x) ∈ F[ε][x], there exists some a ∈H such that f(a) /∈ ε ⋅ F[ε].

It is not hard to prove using the result of [Ald84] that for F = C, Definitions 1.8 and 1.9 are equivalent.

Observation 1.10. If H is a finite robust hitting set for C(F), then H hits C(F) as well.

Proof. Consider 0 ≠ f ∈ C(F). By Definition 1.5 there is g ∈ C(F(ε)), such that f = g +O(ε). Clearly g ≠ 0.

Let a ∈H be such that g(a) /∈ ε ⋅ F[ε]. It follows that f(a) /∈ ε ⋅ F[ε]. In particular, f(a) ≠ 0.

We next define the notion of an interpolating set.

Definition 1.11. Let C be a class of n-variate polynomials. A set H ⊆ Fn is called an interpolating set for

C if, for every f ∈ C, the evaluations of f on H uniquely determine f .

7We abuse notation and write f ∈ C when f is the output of some circuit from C.
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Observation 1.12. If H is a hitting set for C(F) + C(F) ≜ {αf + βg ∶ f, g ∈ C, α, β ∈ F}, then H is an

interpolating set for C.

A common method for designing hitting and interpolating sets is via hitting set generators.

Definition 1.13. A polynomial mapping G ∶ Fk → Fn is called a hitting set generator (or simply a generator)

for a circuit class C(F) if for any non-zero n-variate polynomial f ∈ C, the k-variate polynomial f ○ G is

non-zero.

Similarly, we call G ∶ Fk → Fn an interpolating set generator for a circuit class C(F) if for any two different

n-variate polynomials f1, f2 ∈ C, the k-variate polynomial (f1 − f2) ○ G is non-zero.

Generators immediately give rise to hitting sets.

Observation 1.14. Let G ∶ Fk → Fn be a generator for C(F) such that the individual degree of each coordinate

of G is at most r. Let W ⊂ F be any set of size ∣W ∣ = d ⋅ r + 1. Let H = G (W k). Then H hits every n-variate

polynomial f ∈ C of degree at most d.

Proof. As G is a generator, the k-variate polynomial f ○G is nonzero. As its individual degrees are bounded

by d ⋅ r it follows that at least one of the values in (f ○ G) (W k) = f (H) is not zero.

1.1.4 k-independent maps

Our constructions rely on polynomial mappings Gk, parameterized by some integer k ≤ n, with the property

that the image of f ○ Gk contains all projections of f to k variables. We call such a map a k-independent

map.

Definition 1.15. We call a polynomial mapping G(y1, . . . , yt, z1) ∶ Ft+1 → Fn a 1-independent polynomial map

if for every index i ∈ [n] there exists an assignment ai ∈ Ft to y1, . . . , yt such that the ith coordinate of G(ai, z1)

is z1, and the rest of the coordinates are 0. For k > 1, a polynomial mapping G(y1, . . . , ytk, z1, . . . , zk) ∶

Fk(t+1) → Fn is called a k-independent polynomial map (or a k-independent map) if G is a sum of k variable-

disjoint 1-independent polynomial maps. We denote k-independent polynomial maps as G(y,z) when k, t

are implicit. The y variables are called control variables.

A k-independent polynomial map G is called uniform if all n coordinates of G are homogeneous polynomials

of the same degree.

1.1.5 The linear and affine groups and their actions

Given a matrix A ∈ Fn×n and a tuple of variables x = (x1, . . . , xn), we denote

Ax = (
n

∑
i=1

A1,ixi,
n

∑
i=1

A2,ixi, . . . ,
n

∑
i=1

An,ixi) .

Let n ≥ m ∈ N. For an m-variate polynomial f(x1, . . . , xm) ∈ F[x1, . . . , xm], a matrix A = (Ai,j)
n
i,j=1 ∈ Fn×n

and a vector b = (b1, . . . , bn) ∈ Fn, we define the n-variate polynomial f (Ax + b) to be

f (Ax + b) ≜ f (
n

∑
i=1

A1,ixi + b1,
n

∑
i=1

A2,ixi + b2, . . . ,
n

∑
i=1

Am,ixi + bm) . (2)
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Note that we ignored the last n −m coordinates of Ax + b.

We denote with GLn(F) the group of invertible n × n matrices over F, and with GLaff
n (F) the group of

invertible affine transformation, i.e. all the maps x→ Ax + b, where A ∈ GLn(F) and b ∈ Fn.

For an m-variate polynomial f over F, and n ≥m we denote with fGLaff
n (F) the orbit of f under the natural

action of GLaff
n (F):8

fGLaff
n (F)

≜ {f(Ax + b) ∣ A ∈ GLn(F), b ∈ Fn} .

We similarly define fGLn(F). More generally, for a class of m-variate polynomials C(F), we denote the orbit

of C under GLaff
n (F) by

C
GLaff

n (F)
≜ {f(Ax + b) ∣ f ∈ C, A ∈ GLn(F), b ∈ Fn} .

We similarly define CGLn(F). When we want to speak about orbits of families of polynomials from C(F),
with arbitrary number of variables, we use the notation CGL(F) or CGLaff(F).

1.2 Our results

We first give our results for the class VPe and then for the class of depth-3 circuits, for which it may be

easier to obtain a robust hitting set, or prove super-polynomial lower bounds.

1.2.1 The continuant polynomial

Bringmann, Ikenmeyer and Zuiddam [BIZ18] defined the following polynomial (in Remark 3.14 of their

paper), which they called the continuant polynomial:

Definition 1.16. The continuant polynomial on n variables, Cn(x1, . . . , xn), is defined as the trace of the

following matrix product:

Cn(x1, . . . , xn) ≜ Trace
⎛

⎝

⎛

⎝

x1 1

1 0

⎞

⎠
⋅
⎛

⎝

x2 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

xn 1

1 0

⎞

⎠

⎞

⎠
. (3)

We denote with CGLaff(F) the class of families of polynomials (fn)n such that fn ∈ F[x1, . . . , xn] and for some

m ≤ n, fn ∈ C
GLaff

n (F)
m .

A result of Allender and Wang implies that the polynomial x1 ⋅ y1 + ⋯ + x8 ⋅ y8 is not in CGLaff(F) [AW16].

Thus, as a computational class it is very weak. However, Theorem 3.12 of [BIZ18] states that for every field

F of characteristic different than 2, it holds that

CGLaff(F) = VPe . (4)

We give a polynomial-size interpolating set for the class CGLaff(F) as well as a polynomial-time reconstruction

algorithm for it. We first state a simple result that gives a hitting set for the class.

Theorem 1.17. Let f(x1, . . . , xn) ∈ C
GLaff

n (F)
m , for m ≤ n, and arbitrary F. Then, for any uniform 1-

independent polynomial map G over F, f ○ G ≠ 0.

8To be precise, the action is ((A,b) ○ f) (x) = f(ATx + b). This is required in order to make the action a homomorphism,
however, for the groups that we consider it does not change the orbit.
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As immediate corollary we get a hitting set for the class.

Corollary 1.18. For every field F, there is an explicit hitting set H ⊂ Fn, of size ∣H∣ = O (n6), that hits

every 0 ≠ f ∈ C
GLaff

n (F)
m . If ∣F∣ < n2 then H is defined over a polynomial-sized extension field of F, K such that

∣K∣ ≥ n2.

Theorem 1.19. For every field F, there is an explicit interpolating set H ⊂ Fn, of size ∣H∣ = O (n10), for

⋃
n
m=1 C

GLaff
n (F)

m . If ∣F∣ < n2 then H is defined over a polynomial-sized extension field of F, K such that ∣K∣ ≥ n2.

Theorem 1.20. There is a deterministic algorithm that given F, an integer n, oracle access to a root-finding

algorithm over F, and black-box access to a polynomial f(x1, . . . , xn) ∈ C
GLaff

n (F)
m (for any m ≤ n), runs in

polynomial-time and outputs linear functions (`1(x1, . . . , xn), . . . , `m(x1, . . . , xn)) such that

f(x1, . . . , xn) = Cm (`1(x), . . . , `m(x)) .

If ∣F∣ < n3 then the algorithm will make queries from a polynomial-sized extension field of F, K, such that

∣K∣ ≥ n3, and it also requires oracle access to a root-finding algorithm over K.

1.2.2 Orbits of read-once formulas

Roughly, a read-once formula (ROF) is a formula in which every variable labels at most one leaf. However,

following [SV15, SV14] we also allow gates of the formula to pass on their output wire a linear function of

their polynomial (see Definition 5.1). We denote with ROFGL(F) the class of families of polynomials (fn)n,

such that for every n there exists a ROF Φ, on m ≤ n variables, such that fn(x1, . . . , xn) ∈ ΦGLn(F).

A ROF is in alternating normal form (ROANF) if it is a full binary tree of depth 2∆ with alternating layers

of addition and multiplication gates. In particular, it is a ROF on 4∆ many variables (see Definition 5.3).

We denote with ANF∆ the canonical ROANF of depth 2∆ in which the leaves are labeled with the variables

x1, . . . , x4∆ according to their order (see Definition 5.4). We denote with ANFGLaff[F] the class of families of

polynomials (fn)n, such that for every n there exists ∆ such that 4∆ ≤ n and fn(x1, . . . , xn) ∈ ANF
GLaff

n (F)
∆ .

We first make the following simple observation.

Theorem 1.21. For every field F, it holds that

ANFGLaff(F)
⊊ ROFGL(F)

⊊ VPe(F) . (5)

However, when taking closures we get

ANFGLaff(F) = ROFGL(F) = VPe(F) . (6)

Our main results for ROFs and ROANFs are a construction of a hitting set for the orbit of ROFs, and an

interpolating set for the orbit of ROANFs. Both constructions are obtained using independent polynomial

maps (Definition 1.15).

Theorem 1.22. Let 0 ≠ f ∈ ROFGLaff
n (F) where the underlying ROF depends on 2t variables, for 2t ≤ n.

Then, for any (t + 1)-independent polynomial map G, over F, f ○ G ≠ 0.
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Corollary 1.23. For every field F, there is a hitting set H ⊂ Fn, of size ∣H∣ = nO(logn), that hits every

0 ≠ f ∈ ROFGLaff
n (F). If ∣F∣ < n2 then H is defined over a polynomial-sized extension field of F, K such that

∣K∣ ≥ n2.

Since a hitting set for all polynomials of the form g −h where g, h ∈ C is the same as an interpolating set for

C, the following theorem gives an interpolating set for the orbit of ROANFs.

Theorem 1.24. Let f1 = ANF∆1(A1x + b1), f2 = ANF∆2(A2x + b2) ∈ ANFGLaff
n (F) and f = f1 − f2. Set

k ≜ 2 max{∆1,∆2} + 7 and let G be any uniform k-independent polynomial map, over F. If f ≠ 0 then

f ○ G ≠ 0.

Corollary 1.25. For any field F, the class ANF
GLaff

n (F)
∆ , for 4∆ ≤ n, admits an interpolating set H ⊂ Fn,

of size ∣H∣ = nO(∆). If ∣F∣ < n2 then H is defined over a polynomial-sized extension field of F, K, such that

∣K∣ ≥ n2.

Finally, we observe that the randomized algorithm of Gupta, Kayal And Qiao [GKQ14], for reconstructing

random algebraic formula (for a natural definition of a random formula), yields a randomized reconstruction

algorithm for ANFGLaff(C). Naturally, the reconstruction is up to the symmetry group of ROANFs.

Theorem 1.26 (A special case of Theorem 1.1 of [GKQ14]). Let T be a finite subset of C. Let n,∆ ≥ 1

be integers such that s ≜ 4∆ ≤ n. Given black-box access to the output f of a circuit Φ ∈ ANFGLaff
n (C), with

probability at least 1 − n2sO(1)

∣T ∣ (on internal randomness), Algorithm 6.9 of [GKQ14] successfully computes a

tuple of s linearly independent linear functions L = (`1, . . . , `s) ∈ (C[x])s such that f = ANF∆(`1, . . . , `s), and

the `is are identical to the labels of the leaves of Φ up to TSn(C)-equivalence (see Definition 2.3). Moreover,

the running time of the algorithm is poly(n, s, log(∣T ∣)).

Remark 1.27. Theorem 1.1 of [GKQ14] is stated only for characteristic zero fields. However, in Remark

6.10 they explain how to make the algorithm work over any characteristic, for a large enough field. Thus,

Theorem 1.26 also holds over large enough fields in arbitrary characteristic.

Remark 1.28. As a direct implication of Theorem 1.24, the reconstruction algorithm of Theorem 1.26 can

be converted into a zero-error algorithm, with expected quasipolynomial running time: Given black-box access

to some f1 ∈ ANFGLaff(F), we define f2 to be the output of the algorithm of Theorem 1.26 on input f1, and

then verify f1 = f2 using Corollary 1.25.

1.2.3 Dense subclasses of ΣΠΣ

We start by defining the canonical diagonal tensor of degree d and rank s, Ts,d ∈ F[x1,1, . . . , xs,d], and the

resulting class of polynomials T GLaff(F).

Definition 1.29. Let Ts,d ≜ ∑
s
i=1∏

d
j=1 xi,j. I.e., it is a sum of s variable-disjoint monomials. For n ≥ s ⋅ d,

we denote with T
GLaff

n (F)
s,d the orbit of Ts,d over F, under the action of the affine group. Finally, we denote

with T GLaff(F) the class of families of polynomials (fn)n, such that for every n there exist s and d such that

n ≥ s ⋅ d and fn(x1, . . . , xn) ∈ T
GLaff

n (F)
s,d .

Clearly, T
GLaff

n (F)
s,d ⊂ Σ[s]Π[d]Σ. We next define the class consisting of orbits of sparse polynomials.
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Definition 1.30. Let ΣΠGLaff(F) denote the class of families of polynomials that are computed by orbits of

depth-2 circuits, of polynomially bounded size, over F. I.e., it is all families (fn)n, of polynomially bounded

degree, such that for some polynomially bounded m(n), there exist Σm(n)Πdeg(fn) circuits Φm, in k ≤ n,

many variables, such that fn ∈ Φ
GLaff

n (F)
m .

As before we first give the basic observation connecting all three classes.

Theorem 1.31. For every field F it holds that

T
GLaff(F)

⊊ ΣΠGLaff(F)
⊆ ΣΠΣ(F) ,

and for fields of size ∣F∣ ≥ n + 1

ΣΠGLaff(F)
⊊ ΣΠΣ(F) .

In addition,

T GLaff(F) = ΣΠGLaff(F) = ΣΠΣ(F) . (7)

Our main results for this section are a quasipolynomial-size hitting set for the class ΣΠGLaff(F), and a

polynomial-size interpolating set for T GLaff(F).

Theorem 1.32. Let 0 ≠ g ∈ F[x] have sparsity ≤ 2t. Let (A,b) ∈ GLaff
n (F), and f(x) = g(Ax + b). Then,

for any (t + 1)-independent polynomial map G, f ○ G ≠ 0.

Corollary 1.33. For any integers s, d, n, there exists an explicit hitting set H ⊂ Fn, of size ∣H∣ = (nd)O(log s),

such that H hits every nonzero polynomial f ∈ (Σ[s]Π[d])
GLaff

n (F)
. If ∣F∣ ≤ n ⋅ d then we let H be defined over

an extension field K of F of size ∣K∣ > n ⋅ d.

We next state our result concerning an interpolating set for T GLaff(F).

Theorem 1.34. Let n, s1, s2, d1, d2 ∈ N be such that n ≥ s1 ⋅ d1, s2 ⋅ d2. For i ∈ {1,2} let fi ∈ T
GLn(F)
si,di

, and let

f = f1 − f2. If f ≠ 0, then any uniform 6-independent polynomial map G satisfies f ○ G ≠ 0.

Finally we note that the randomized reconstruction algorithm of Kayal and Saha [KS19a], which works for

(as it is termed in their paper) “non-degenerate” homogeneous depth-3 circuits, works for T GLaff(F). This

follows from the observation that T GLaff(F) circuits are always non-degenerate.

Theorem 1.35 (special case of Theorem 1 of [KS19a]). Let n, d, s ∈ N, n ≥ (3d)2 and s ≤ ( n3d)
d
3 . Let F be a

field of characteristic zero or greater than ds2. There is a randomized poly(n, d, s) = poly(n, s) time algorithm

which takes as input black-box access to a polynomial f that is computable by a T
GLaff

n (F)
s,d circuit, and outputs a

T
GLaff

n (F)
s,d circuit Φ computing f with high probability. Furthermore, Φ is unique up to TPSs,d(F)-equivalence

(see Definition 2.6).

Remark 1.36. As in remark 1.28, Theorem 1.34 enables us to convert the reconstruction algorithm of

Theorem 1.35 to a zero-error algorithm, with expected polynomial running time. Given black-box access to

some f1 ∈ T GLaff(F), we define f2 to be the output of the algorithm of Theorem 1.35 on input f1, and then

verify f1 ≡ f2 by applying Theorem 1.34 to f = f1 − f2.
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1.2.4 Robust hitting sets?

As we showed in Observation 1.10, if a hitting set H for a circuit class C is robust, then H hits C as well.

It is thus natural to ask whether our interpolating sets are already robust. Our next result shows that the

property of being a t-independent map, which was sufficient for the constructions in Theorems 1.17, 1.19,

1.22, 1.24, 1.32 and 1.34 (for the appropriate values of t), by itself is not sufficient for obtaining robust hitting

sets. We prove this by constructing an independent polynomial map which gives rise to a provably non-

robust hitting set. Our construction is the same as the one given by Forbes et al. [FSTW16] (Construction

6.3 in the full version).

Theorem 1.37. Let F be of characteristic zero. For every t, there exists a uniform t-independent polynomial

map G and a nonzero polynomial f such that f ○ G ≡ 0, and f can be computed by a ΣΠΣ formula of size

tO(
√
t). If F has a positive characteristic then f can be computed by a ΣΠΣ formula of size tt, or by a general

formula of size tO(log t). Furthermore, for a certain arrangement of the variables in a
√
n ×

√
n matrix, f

can be taken to be the determinant of any (t + 1) × (t + 1) minor.

1.3 Polynomial Identity Testing

So far we discussed our work from the perspective of dense subclasses of classes for which no strong lower

bounds are known. Here we put our work in the context of the polynomial identity testing problem.

Polynomial Identity Testing (PIT for short) is the problem of designing efficient deterministic algorithms

for deciding whether a given arithmetic circuit computes the identically zero polynomial. PIT has many

applications, e.g. deciding primality [AKS02], finding a perfect matching in parallel [FGT19, ST17] etc.,

and strong connection to circuit lower bounds [KI04, DSY09, CKS18, GKSS19]. See [SY10, Sax09, Sax14]

for surveys on PIT and [KS19b] for a survey of algebraic hardness-randomness tradeoffs.

PIT is considered both in the white-box model, in which we get access to the graph of computation of the

circuit, and in the black-box model in which we only get query access to the polynomial computed by the

circuit. Clearly, a deterministic PIT algorithm in the black-box model is equivalent to a hitting set for the

circuit class. In this work we only focus on the black-box model.

The continuant polynomial and algebraic branching programs: The continuant polynomial is

trivially computed by width-2 Algebraic Branching Programs (ABPs). Recall that an ABP of depth-d and

width-w computes polynomials of the form Trace (M1(x) ⋅ . . . ⋅Md(x)), where each Mi is a w × w matrix

whose entries contain variables or field elements. Ben-Or and Cleve proved that every polynomial in VPe

can be computed by a width-3 ABP of polynomial-size [BC92].

Raz and Shpilka gave the first polynomial-time white-box PIT algorithm for read-once ABPs (ABPs in which

every variable can appear in at most one matrix) [RS05]. Forbes, Saptharishi and Shpilka gave the first

quasipolynomial-sized hitting set for read-once ABPs (ROABPs) [FSS14]. This result was slightly improved

in [GG20] for the case where the width of the ROABP is small. Anderson et al. gave a subexponential

hitting set for read-k ABPs [AFS+18]. We note that none of these models is strong enough to contain the

orbit CGLaff(F). For ABPs that are not constant-read we do not have sub-exponential time PIT algorithms.

Thus, the following is an interesting open problem (recall that by the result of Ben-Or and Cleve a PIT

algorithm for width-3 ABPs works for VPe as well).

Problem 1.38. Give a sub-exponential time PIT algorithm for ABPs of width-2.
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Although we do not have a PIT algorithm for general branching programs, in [KNST18] Kayal et al. gave

an average-case reconstruction algorithm for low width ABPs. Kayal, Nair and Saha obtained a significantly

better algorithm in [KNS19]. Their algorithm succeeds w.h.p, provided the ABP satisfies four non-degeneracy

conditions (these conditions are defined in Section 4.3 of [KNS19]). However, the ABP computing the

continuant polynomial does not satisfy the non-degeneracy conditions that are required for their algorithm

to work. Thus, Theorem 1.20 does not follow from [KNS19].

To the best of our knowledge, CGLaff(F) is the first natural9 computational class that is dense in VPe for

which a polynomial (or even sub-exponential)-sized interpolating set (or a hitting set) is known.

Read-Once formulas: Hitting sets for read-once formulas were first constructed by Volkovich and Shpilka

[SV15], who gave quasipolynomial-sized hitting set for the model, as well as a deterministic reconstruction

algorithm of the same running time (earlier randomized reconstruction algorithms were known [BHH95,

BB98]). Minahan and Volkovich obtained a polynomial-sized hitting set for the class, which led to a similar

improvement in the running time of the reconstruction algorithm [MV18]. Anderson, van Melkebeek and

Volkovich constructed a hitting set of size nk
O(k)+O(k logn) for read-k formulas [AvMV15]. All these results

work in a slightly stronger model in which we allow to label leaves with univariate polynomials, of polynomial

degree, such that every variable appears in at most one polynomial, or with sparse polynomials on disjoint

sets of variables.

The read-once models that we consider here, ANFGLaff(F) and ROFGL(F), can be viewed as read-once formulas

composed with a layer of addition gates with the restriction that the bottom layer of additions computes

linearly independent linear functions. We note that these models do not fall into any of the previously

studied models, as a variable can appear in all the linear functions.

As is the case with CGLaff(F), our hitting sets for ANFGLaff(F) and ROFGL(F) are the first sub-exponential-

sized hitting sets for natural dense subclasses of VPe.

Small depth circuits: The class of ΣΠ circuits was considered in many works, see e.g. [BT88, KS01] and

polynomial-sized hitting sets were constructed. The class of ΣΠΣ circuits also received a lot of attention but

with lesser success. Dvir and Shpilka [DS07] and Karnin and Shpilka [KS08] gave the first quasipolynomial-

time white-box and black-box PIT algorithms for Σ[k]Π[d]Σ circuits, respectively. Currently, the best result

is by Saxena and Seshadhri who gave a hitting set of size (nd)O(k) for such circuits [SS12]. In [dOSV16] a

subexponential-size hitting set for multilinear ΣΠΣ circuits was given. In [ASSS16], Agrawal et al. gave a

hitting set of size nO(1) ⋅ (kd)O(r) for Σ[k]Π[d]Σ circuits, where r is an upper bound on the algebraic rank

of the multiplication gates in the circuit. Thus, known quasipolynomial-size hitting sets for subclasses of

ΣΠΣ circuits are known when the fan-in of the top gate is poly-logarithmic, or when the algebraic rank

of the set of multiplication gates is poly-logarithmic. In contrast, polynomials in T GLaff
n (F) and ΣΠGLaff(F),

when viewed as ΣΠΣ circuits, can have polynomially many multiplication gates and their algebraic rank

can be n. On the other hand, the corresponding ΣΠΣ circuits are such that the different linear functions

that are computed at their bottom layer are linearly independent (when we view linear functions that are a

constant multiple of each other as the same function). Thus, our Corollary 1.33 provides a hitting set for a

new subclass of ΣΠΣ circuits.

9It is hard to define what a natural class means, but, for example the set of all polynomials in VPe with a nonzero free term
has a trivial hitting set, but is not a “computational” subclass.
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To the best of our knowledge, our results for T GLaff(F) and ΣΠGLaff(F) give the first sub-exponential size

hitting sets for natural subclasses that are dense in ΣΠΣ.

1.4 More related work

Approximations in algebraic complexity were first studied by Bini et al. in the context of algorithms

for matrix multiplication [BCRL79]. For more on the history of border rank in the context of matrix

multiplication see notes of chapter 15 in [BCS13]. More recently, influenced by the GCT program, a lot

of research was invested in trying to find polynomials characterizing tensors of small rank. See [Lan17]

for a discussion on this approach. More recently, Kumar proved that every polynomial over C can be

approximated by a Σ[2]ΠΣ circuit (of exponential degree) [Kum20].

Very little is known about the closure of circuit classes. Forbes observed that the class of ROABPs is

closed [For16]. I.e. ROABP = ROABP. We are not aware of other collapses or separation between general

“natural” classes and their closures.

Beside the reconstruction algorithms mentioned earlier, reconstruction algorithms are known for ΣΠ circuits

[BT88, KS01]; for random depth three powering circuits [Kay12]; for set-multilinear ΣΠΣ and ROABPs

[BBB+00, KS06]; for ΣΠΣ circuits with bounded top fan-in [Shp09, KS09, Sin16]; and for multilinear depth-

4 circuits with a constant top fan-in [GKL12, BSV20].

In general, we do not expect the reconstruction problem to be solvable efficiently, as the problem of finding

the minimal circuit computing a given polynomial is a notoriously hard problem. A detailed discussion on

the hardness of reconstruction can be found in [KNS19].

1.5 Proof technique

Our proofs are based on the following simple yet important, and as far as we know novel, observations

concerning k-independent polynomial maps. Specifically, our proofs are based on the following two claims:

1. If we have a hitting-set generator H for nonzero polynomials of the form ∂f
∂x1

, for f ∈ C, and if G is a

1-independent map then H + G hits every nonzero f ∈ C. This is proved in Lemma 3.9.

2. Similarly, we prove that if we have a hitting-set generator H for nonzero polynomials of the form

f ∣
`=0

(Ax + b), for f ∈ C, a linear function `, and an invertible affine transformation (A,b), and if G is

a 1-independent map then H + G hits every nonzero f ∈ C. This follows from Lemma 3.10.

By applying these claims k + r times we get that composition with a (k + r)-independent map allows to

reduce the problem of hitting a class C to hitting polynomials of the form ∂kf
∂xi1∂xi2⋯∂xik

∣
`1=...=`r=0

. Thus, if

we could prove that for a class C, there is such a sequence of derivatives and restrictions that simplifies the

polynomials in it to a degree that they can be easily hit by some map H, then we conclude that H + Gk+r,

for a (k + r)-independent map Gk+r, is a hitting set generator for C.

It seems that all that is left to do is prove that for each of the orbits that we consider in Section 1.2

that is such small k and r. However, a potential problem is that a partial derivative of the polynomial

g(x) = f(Ax + b) gives ∂g
∂x1

= ∑
n
i=1

∂f
∂yi

⋅
∂`i
∂x1

, where `i is the ith coordinate of Ax + b. Thus, it is no longer

a derivative composed with an affine transformation but rather a sum of such derivatives, which could lead

to polynomials outside of our class. For example, it is not hard ot prove that if we compose the ROF
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y1 ⋅y2 ⋅y3 with (x1, x1+x2, x1+x3) and then take a derivative according to x1, then the resulting polynomial,
∂(x1⋅(x1+x2)⋅(x1+x3))

∂x1
= 3x2

1+2x1 ⋅(x2+x3)+x2 ⋅x3, is not in the orbit of any ROF. The solution to this problem

is to take a directional derivative in a direction coming from a dual basis. For example if `i(vj) = δi,j then
∂g
∂v1

=
∂f
∂x1

(Ax + b) (see Lemma 3.8). Now, comes another important observation: If H is a hitting-set

generator for nonzero polynomials of the form ∂f
∂v , for f ∈ C and a direction v, and if G is a 1-independent

map then H + G hits every nonzero f ∈ C. The point is that if ∂f
∂v ○H ≠ 0 then for some i, ∂f

∂xi
○H ≠ 0

and the claim follows from the first claim above. Thus, composition with (k + r)-independent maps allows

us to reduce the problem of hitting a class C to finding a generator for polynomials that are obtained as a

restriction to a subspace of co-dimension r of a directional partial derivative of order k of polynomials in C.

Let us demonstrate this idea for the case of orbits of sparse polynomials. I.e. to polynomials of the form

g(x) = f(Ax + b), where the number of monomials in f is at most 2t. It is not hard to see that there is a

variable xi such that if we consider f ∣
xi=0

and ∂f
∂xi

then one of these polynomials has at most 2t−1 monomials.10

Thus, after a a sequence of at most t partial derivatives and restrictions, we get to a polynomial with only one

monomial that we can easily hit. Hence after at most t directional derivatives and restrictions to a subspace,

we get that g is a product of linear forms, which we can easily hit. This proves that any (t+ 1)-independent

map hits such nonzero polynomials g.

To obtain interpolating sets for our classes (and also a reconstruction algorithm for the orbit of the continuant

polynomial), we prove that if two polynomials in the orbit, of any of the classes that we consider, are different,

then there is a sequence of a few (directional) partial derivatives and restrictions that makes one of them

zero while keeping the other nonzero. Using this and the ideas from above we construct our interpolating

sets.

1.6 Discussion

As Theorem 1.37 shows, our hitting sets are not necessarily robust. It is thus an outstanding open problem

to find a way to convert a hitting set to a robust one (recall Problem 1.1).

The following toy example demonstrates that converting a hitting set for a class C to a robust hitting set for

C, cannot be done in a black-box manner and one has to use information about C for that: let C(F) be the

class of all polynomials with non-zero free term. A trivial hitting set for C would simply be the singleton

set H = {0}. On the other hand, it is clear that C = F[x], so making H robust would yield a hitting set for

all polynomials. Note, however, that this is not a “computational class.”

Another potential approach for obtaining robust hitting sets follows from the observation that the set

of queries made by a non-adaptive deterministic black-box reconstruction algorithm, A, for C, which is

continuous at 0 (i.e. at the identically zero polynomial) is a robust hitting set for C. The reason is, that if

0 ≠ f ∈ C and {fk}
∞
k=1 ⊆ C converges to f , then for large enough k: ∥fk∥2 ≥ 1

2 ∥f∥2 > 0. As the fk sequence

converges and polynomial evaluation is continuous (and their evaluation vectors are bounded), the sequence

vk = fk∣H ⊆ C∣H∣ must also converge to some vector v = f ∣H ∈ C∣H∣. If v = 0 then the continuity of A at

0 implies the coefficients of the polynomials fk(x) must also converge to zero, as A(0) = 0. This would

contradict ∥fk∥2 ≥
1
2 ∥f∥2 > 0 for large enough k, so v ≠ 0 and thus H hits C.

Thus, an interesting challenge is to derandomize the reconstruction algorithms given in Theorems 1.20, 1.26

and 1.35, hoping that the resulting algorithms are continuous at 0. We note however, that currently we do

10This is not exactly accurate – it only holds if f is not divisible by some variable xi. However, the case where there is a
monomial dividing f is also quite easy to handle as it is enough to hit the polynomial obtained after dividing by that monomial
(since a composition with a 1-independent map keeps any nonzero linear function nonzero).
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not even have efficient deterministic root-finding algorithms over C. It is also known that in general, finding

the minimal circuit for a polynomial can be very difficult. E.g., in [H̊as90, Swe18] it was shown that the

question of computing, or even approximating, tensor rank, for degree 3 tensors, is NP hard, over any field.

Remark 1.39. In Theorem 1.34, we have seen that any uniform O(log(sn))-independent polynomial map

G is an interpolating set generator for T GLaff(C); i.e, G induces an interpolating set H for T GLaff(C). On

the other hand, in Theorem 1.37, we constructed such a map G, with the additional property that G is

not a hitting set generator for ΣΠΣ circuits. In particular, this implies that the induced (non-efficient)

reconstruction map A (that takes f(H) and returns a circuit computing f) is not continuous at 0.

We conclude this section with a somewhat vague question.

Problem 1.40. Find a “computational” class of polynomials C with a known hitting set H, such that C ≠ C,

and convert H to a robust hitting set.

We note that the closure of Σ⋀Σ circuits (i.e. circuits computing polynomials of the form ∑i `i(x)
d, for

linear functions `i) is contained in the class of commutative read-once algebraic branching programs (see

[FSS14]). Thus, the hitting set for the latter class gives a robust hitting set for the former [FSS14]. However,

we seek an example in which there is an “interesting” conversion of a hitting set to a robust one.

1.7 Organization

The paper is organized as follows. Section 2 contains some more basic notations and definitions as well

as characterization of the groups of symmetries of ANF∆ and of Ts,d. In Section 3 we give properties

and constructions of k-independent polynomial maps and prove Theorem 1.37. In Section 4 we study the

continuant polynomial and prove Theorems 1.17, 1.19 and 1.20. In Section 5 we study orbits of ROFs and

ROANFs and prove Theorems 1.21, 1.22, 1.24 and 1.26. Section 6 contains our results for subclasses of ΣΠΣ

circuits (Theorems 1.31, 1.32, 1.34 and 1.35). The appendix contains missing definitions that are required

for explaining the reconstruction algorithm of [GKQ14].

2 Preliminaries

2.1 Notation

For k ∈ N, we denote [k] ≜ {1,2,3, . . . , k} and [k]0 ≜ {0,1,2, . . . , k − 1}. We use boldface lowercase letters to

denote tuples of variables or vectors, as in x = (x1, . . . , xn), a = (a1, . . . , am), when the dimension is clear

from the context. For any two elements i, j coming from some set S (usually i and j will be numbers), δi,j

equals 1 when i = j and 0 otherwise. For every m ∈ N we denote with Im the m ×m identity matrix. When

we wish to treat the entries of a matrix A as formal variables, we use boldface A. We will note use capital

bold face letters other than to denote such matrices.

For an exponent vector a = (a1, . . . , an) ∈ Nn, we denote xa ≜ ∏
n
i=1 x

ai
i . In some cases we shall consider

“monomials” with respect to set of linear functions {`i}
m
i=1: for an exponent vector e = (e1, . . . , em) ∈ Nm we

denote `e = ∏m
i=1 `

ei
i and refer to it as an {`i}-monomial. For a polynomial f(x) we define the monomial

support of f , denoted mon(f), as the set of monomials with non-zero coefficient in f . The variable set of

f , denoted var(f), is the set of variables that f depends on. I.e., all variables that appear in mon(f). The

individual degree of a variable xi in f(x) is the degree of f as a polynomial in xi. A polynomial f ∈ F[x]
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of deg(f) ≤ 1 is called a linear function, and if f is homogeneous then it is called a linear form. For a

polynomial f ∈ F[x] and an integer k ∈ N we denote by f [k] the degree-k homogeneous part of f(x),i.e. the

sum of all monomials of f of degree exactly k. In particular,

f(x) = f [0]
(x) + f [1]

(x) + . . . + f [deg(f)]
(x) .

Note that for a linear function f , f [1] is a linear form. We say that a polynomial f is homogeneous of

degree k or that f is k-homogeneous if f = f [k]. We say a set of linear functions {`1(x), . . . , `n(x)} ⊂ F[x] is

linearly independent if the set {`
[1]
i } is linearly independent.11 Given a polynomial f(x), a subset of variables

y ⊆ {x1, . . . , xn} and an assignment to those variables a ∈ F∣y∣, we denote by f ∣
y=a ∈ F[x∖y] the polynomial

resulting from assigning the values of a to the variables of y in f(x). We sometimes abuse notation and

write y ⊆ [n] to indicate the indices of the assigned variables instead of the variables themselves.

Given an arithmetic circuit Φ, we frequently denote by Φ(x) or, abusing notation, by Φ, the polynomial

computed at the output node of Φ. Given a class of arithmetic circuits C and a polynomial f ∈ F[x], we say

f ∈ C if f can be computed by some circuit from C. For a circuit class C(F) we denote by C(F) the closure

of C(F), as in Definition 1.5.

2.2 Groups of matrices and their action

We first list some simple properties of composition with a linear (or affine) transformation that we shall use

implicitly.

Observation 2.1. For any m variate polynomial f(x1, . . . , xm) and n ≥m:

� For any A ∈ GLn(F) and d ∈ N, f [d](Ax) is the d-homogeneous part of f(Ax).

� For any A ∈ GLaff
n (F), f(x) is irreducible if and only if f (Ax) is irreducible.

� The set of matrices A for which f(x) = f(Ax) forms a multiplicative subgroup of GLn(F) and a similar

claim holds for GLaff
n (F).

We next define some special groups that serve as group of symmetries of some of the models that we consider.

We first define the group of symmetries of ANF∆(x).

Definition 2.2. For m,∆ ∈ N such that m = 2∆, the tree-symmetry group TRm(F) denotes the automor-

phisms of a rooted complete binary tree of depth ∆. It is defined recursively as follows.

� For m = 1, TR1(F) consists only of the identity matrix.

� For m > 0, TRm(F) is generated by matrices of the form

⎛

⎝

A 0

0 B

⎞

⎠
and

⎛

⎝

0 Im
2

Im
2

0

⎞

⎠

where A,B ∈ TRm
2
(F).

11Note that by our definition, x and x + 1 are linearly dependent.
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Definition 2.3. For any m = 4∆, the tree-scale group TSm(F) is the group generated by elements of TRm(F)
and matrices of the form

⎛
⎜
⎜
⎜
⎜
⎜
⎝

αIm
4

0 0 0

0 α−1Im
4

0 0

0 0 βIm
4

0

0 0 0 β−1Im
4

⎞
⎟
⎟
⎟
⎟
⎟
⎠

where 0 ≠ α,β ∈ F.

The importance of the group TSm(F) stems from the fact that it is the symmetry group of ANF∆. To

intuitively see why this is the case, notice that in any representation of an ANF one may swap children of

any node without changing the output polynomial. We call such symmetries “tree-symmetries” and they are

captured by the group TRn(F). A second source of ambiguity comes from the fact that we can rescale the

formula. Recall that the output polynomial is of the form f1 ⋅f2 +f3 ⋅f4 (Definition 5.3). Clearly, the output

does not change if we replace f1 by, say, 2f1 and f2 by f2/2. Such rescaling symmetries are captured by the

group TSn(F). Finally, another source for ambiguity comes from the fact that the quadratic polynomials

computed at the bottom two layers of the ANF may have different representations. For example,

4xy + 4wz = (x + y +w − z) ⋅ (x + y −w + z) + (w + z + x − y) ⋅ (w + z − x + y) .

As there is an infinite number of representations for each quadratic polynomial (over infinite fields), we can

expect to characterize the symmetries in term of the quadratics computed at the bottom two layers of the

ANF.

Fact 2.4 (Special case of Theorem 5.43(iii) of [GKQ14]). Let m,∆, n ∈ N such that m = 4∆−1 ≤ n/4.

Let f = ANF∆(`1, . . . , `4m) ∈ ANF
GLaff

n (F)
∆ . Let Q = (q1, . . . , qm) be the list of quadratic polynomials that are

computed at the bottom two layers of the formula ANF∆(`1, . . . , `4m). In particular, f = ANF∆−1(q1, . . . , qm).

If Q′ = (q′1, . . . , q
′
m) is any other m-tuple of quadratic polynomials for which f = ANF∆−1(q

′
1, . . . , q

′
m) then Q

is TSm(F)-equivalent to Q′.

Next, we define the group of symmetries of Ts,d(x).

Definition 2.5. For any n ∈ N the permutation-scale group, denoted PSn(F), is the set of all matrices

A ∈ GLn(F) which are row-permutations of non-singular diagonal matrices with determinant one.

For example,

⎛
⎜
⎜
⎝

0 −2 0

0 0 −1

1/2 0 0

⎞
⎟
⎟
⎠

∈ PS3(C).

Definition 2.6. Let s, d, n ∈ N such that n = s ⋅ d. A matrix A ∈ GLn(F) is a member of the tensor

permutation-scale group, denoted TPSs,d(F), if A = (P ⊗ Id) ⋅ B, where P is an s × s permutation matrix

and B =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

B1 0 . . . 0

0 B2 . . . 0

⋮ ⋱ ⋮

0 . . . 0 Bd

⎞
⎟
⎟
⎟
⎟
⎟
⎠

is a block diagonal matrix such that each block Bi of B satisfies Bi ∈ PSd(F).

For example, for s = d = 2 the matrix A =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 2

0 0 1/2 0

−1 0 0 0

0 −1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

is in TPS2,2(C), as for P =
⎛

⎝

0 1

1 0

⎞

⎠
and
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B =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 0 0

0 −1 0 0

0 0 0 2

0 0 1/2 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, we have A = (P ⊗ I2) ⋅B, and clearly each block of B is in PS2(C).

Another way of defining the group is as follows: index rows and columns of A with pairs (i, j) ∈ [s] × [d].

Then, A ∈ TPSs,d(F) if and only if there exists a permutation π ∶ [s] → [s], and for all i ∈ [s] permutations

θi ∶ [d]→ [d] and constants αi,j satisfying ∏d
j=1 αi,j = 1, such that A(i,j),(i′,j′) = δπ(i),i′ ⋅ δθi(j),j′ ⋅αi,j for all i, j.

We next prove that TPSs,d(F) is the group of symmetries of Ts,d(x). In other words, we show that Ts,d(x) =

Ts,d(Ax) if and only if A ∈ TPSs,d(F). Intuitively, Ts,d admits no symmetries other than the trivial ones:

permutations on the product gates, and internal permutation-scale of each product gate such that the

product of the scale coefficients is 1. This is exactly captured by the group TPSs,d(F), which is therefore

contained in the group of symmetries of Ts,d(x).

Lemma 2.7. Let s, d, n ∈ N, such that d > 2 and n = s ⋅ d. If A ∈ GLn(F) satisfies Ts,d(x) = Ts,d(Ax), then

A ∈ TPSs,d(F).

Proof of Lemma 2.7. Fix linear forms `1,1, . . . , `s,d such that the (i, j)th coordinate of Ax (using the indexing

[n] = [s] × [d]) is `i,j(x), and Ts,d(Ax) = ∑
s
i=1∏

d
j=1 `i,j(x). By the discussion above, our goal is to prove

that there exists a permutation π ∶ [s]→ [s], and for all i ∈ [s] permutations θi ∶ [d]→ [d] and constants αi,j

satisfying ∏d
j=1 αi,j = 1, such that `i,j(x) = αi,j ⋅ xπ(i),θi(j) for all i, j. Fix some i ∈ [s] and take a derivative

of the equation Ts,d(x) = Ts,d(Ax) by xi,1:

∏
j∈{2,...,d}

xi,j =
∂Ts,d(x)

∂xi,1
=
∂Ts,d(Ax)

∂xi,1
=

s

∑
r=1

∂

∂xi,1

⎛

⎝

d

∏
j=1

`r,j(x)
⎞

⎠
. (8)

For r ∈ [s], denote hi,r(x) ≜ ∂
∂xi,1

(∏
d
j=1 `r,j(x)). As d > 2, the LHS of Equation (8) is a reducible poly-

nomial, so ∑sr=1 hi,r(x) is also reducible. Composition with a non-singular matrix preserves reducibility,

so ∑sr=1 hi,r(A
−1x) is also reducible. However, hi,1(A

−1x), . . . , hi,s(A
−1x) are s variable-disjoint, multilin-

ear polynomials, each of which is either (d − 1)-homogeneous or zero. Thus, by Observation 2.8 below, at

most one hi,r(A
−1x) can be non-zero. Accordingly, for every variable xi,j there exists a unique i′ such that

xi,j ∈ var (∏d
j′=1 `i′,j′(x)). Thus, for some i′ we have

∏
j∈{2,...,d}

xi,j =
∂

∂xi,1

⎛

⎝

d

∏
j=1

`i′,j(x)
⎞

⎠
. (9)

For any j > 1, if we take a derivative of (9) by xi,j then the LHS is clearly non-zero. Thus, both xi,1 and

xi,j exist in var (∏d
j′=1 `i′,j′(x)), proving variables in the same product gate of Ts,d(x) are mapped to the

same product gate of Ts,d(Ax). A similar argument shows that variables from distinct product gates of

Ts,d(x) are mapped to different product gates of Ts,d(Ax). It follows that product gates of Ts,d(Ax) are

variable-disjoint and that there exists a permutation π ∶ [s]→ [s] satisfying

∀i ∈ [s] ∶ var
⎛

⎝

d

∏
j=1

`i,j(x)
⎞

⎠
= {xπ(i),1, . . . , xπ(i),d} .

In particular, there can be no cancellations between different product gates of Ts,d(Ax). Therefore, by
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multilinearity, for every i ∈ [s], the linear forms `i,1(x), . . . , `i,d(x) must be variable-disjoint. Exactly d

variables appear in ∏d
j=1 `i,j(x), so for every i ∈ [s] and j ∈ [d] there exists a permutation θi ∶ [d] → [d] and

a non-zero constant αi,j ∈ F such that `i,j(x) = αi,jxπ(i),θi(j). As ∏d
j=1 αi,j is the coefficient of ∏d

j=1 xπ(i),j in

Ts,d(Ax), this product must be 1, which completes the proof.

Observation 2.8. If f, g are non-constant, variable-disjoint, multilinear polynomials, then for every c ∈ F
the polynomial f(x) + g(x) + c is irreducible.

3 k-independent polynomial maps and their properties

All the hitting and interpolating sets that we construct are based on k-independent polynomial maps (Defi-

nition 1.15). We next give some simple properties of independent polynomial maps, that follow immediately

from the definition.

Observation 3.1. It holds that

1. If G(y,z) is a (k + 1)-independent polynomial map, then there exists a subset of variables S and an

assignment α ∈ F∣S∣ such that G∣
S=α is a k-independent polynomial map.

2. For any k ≥ 1, the n coordinates of any k-independent polynomial map are F-linearly independent.

3. Let `1(x) and `2(x) be linearly independent linear functions in F[x]. Let G(y, z1, z2) be any 2-

independent polynomial map. Consider `1 ○ G and `2 ○ G as polynomials in z1, z2 over F(y). Then,

(`1 ○ G)
[1] and (`2 ○ G)

[1] are linearly independent, as linear forms in z1, z2 over F(y).

We next give the construction of [SV15] of a k-independent polynomial map (denoted Gk in [SV15]).

Definition 3.2. Fix n and a set of n distinct field elements A = {α1, . . . , αn} ⊆ F.12 For every i ∈ [n] let

Li(w) ∶ F→ F be the ith Lagrange Interpolation polynomial for the set A. That is, each Li(w) is polynomial

of degree n − 1 that satisfies Li(αj) = δi,j. We define GSV
1 (y1, z1) ∶ F2 → Fn as:

G
SV
1 (y1, z1) ≜ (L1(y1) ⋅ z1, L2(y1) ⋅ z1, . . . , Ln(y1) ⋅ z1) ,

and for any k ≥ 1, we define GSV
k ∶ F2k → Fn as:

G
SV
k (y,z) ≜ GSV

1 (y1, z1) + G
SV
1 (y2, z2) + . . . + G

SV
1 (yk, zk) =

⎛

⎝

k

∑
j=1

L1(yj) ⋅ zj ,
k

∑
j=1

L2(yj) ⋅ zj , . . . ,
k

∑
j=1

Ln(yj) ⋅ zj
⎞

⎠
.

Observation 3.3. GSV
k is a k-independent polynomial map, in which each variable has degree at most n−1.

The generator GSV
k can be converted to a uniform k-independent polynomial map by adding another k

control variables yk+1, . . . , y2k, and swapping out the Li(yj)s for their homogenizations yn−1
j+kLi (

yj
yj+k

):

Definition 3.4. With the notation used in Definition 3.2, define the uniform SV-generator with k indepen-

dence GSV-hom
k ∶ F3k → Fn as:

G
SV-hom
k (y1, . . . , y2k, z1, . . . , zk) ≜ y

n−1
1+k ⋅ G

SV
1 (

y1

y1+k
, z1) + y

n−1
2+k ⋅ G

SV
1 (

y2

y2+k
, z2) + . . . + y

n−1
2k ⋅ G

SV
1 (

yk
y2k

, zk)

12If ∣F∣ < n then we take these elements from an appropriate extension field of F.
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=
⎛

⎝

k

∑
j=1

yn−1
j+kL1 (

yj

yj+k
) ⋅ zj ,

k

∑
j=1

yn−1
j+kL2 (

yj

yj+k
) ⋅ zj , . . . ,

k

∑
j=1

yn−1
j+kLn (

yj

yj+k
) ⋅ zj

⎞

⎠
.

Observation 3.5. GSV-hom
k is a uniform k-independent polynomial map, with individual degrees at most

n − 1.

We next show how we can use k-independent polynomial maps in order to, roughly, simulate a kth order

directional derivative or, project a polynomial to a subspace of co-dimension k. We first need to define the

notion of a directional derivative.

Definition 3.6. For an n-variate polynomial f ∈ F[x] and v = (v1, . . . , vn) ∈ Fn, the derivative of f(x) in

the direction v is defined as:
∂f

∂v
=

n

∑
i=1

vi ⋅
∂f

∂xi
.

If F has positive characteristic then by ∂F
∂xi

we refer to the formal derivative (which in the case of fields of

characteristic zero is equal to the analytical definition). Observe that we still have that

∂2f

∂y∂x
=
∂2f

∂x∂y
,

∂(fg)

∂x
=
∂f

∂x
⋅ g +

∂g

∂x
⋅ f and

∂f (g1(x), . . . , gm(x))

∂xk
=
m

∑
i=1

∂f

∂yi
(g1(x), . . . , gm(x)) ⋅

∂gi
∂xk

,

where in the last expression f is an m variate polynomial, and g1, . . . , gm are n variate polynomials.

We shall often take derivatives according to a dual set to a set of linearly independent linear functions:

Definition 3.7. A dual set for m linearly independent linear functions (recall that we say that linear func-

tions are linearly independent if and only if their degree-1 homogeneous parts are linearly independent) in

n ≥m variables, `1(x), . . . , `m(x) is a set of m vectors {vi} ⊂ Fn such that `
[1]
i (vj) = δi,j.

Lemma 3.8. Let `1, . . . , `m ∈ F[x1, . . . , xn], for n ≥m, be linearly independent linear functions. Let {vi} ⊂ Fn

be a dual set. Let g ∈ F[y1, . . . , ym] be a polynomial. Then, for f(x) = g (`1(x), . . . , `m(x)) it holds that

∂f

∂vi
(x) =

∂g

∂yi
(`1(x), . . . , `m(x)) .

Proof.

∂f

∂vi
(x) =∑

j

vi,j ⋅
∂f

∂xj
(x) =∑

j,k

vi,j ⋅
∂`k
∂xj

⋅
∂g

∂yk
(`1(x), . . . , `m(x))

=∑
k

`
[1]
k (vi) ⋅

∂g

∂yk
(`1(x), . . . , `m(x)) =

∂g

∂yi
(`1(x), . . . , `m(x)) .

Lemma 3.9. Let f ∈ F[x] where x = (x1, . . . , xn). Let H(w) ∶ Ft → Fn be a polynomial map in variables

w, and let G(y,z) be a k-independent polynomial map such that var(H) ∩ var(G) = ∅. Then, for any

v1, . . . ,vk ∈ Fn:
∂kf

∂v1∂v2⋯∂vk
○H ≠ 0 ⇒ f ○ (G +H) ≠ 0 .

Proof. By definition of k-independent polynomial maps, G = G1(y1, z1) + . . . + Gk(yk, zk) for some variable-

disjoint 1-independent polynomial maps G1, . . . ,Gk. It is therefore enough to prove the lemma for k = 1, as
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we can replace f with ∂k−1f
∂v2⋯∂vk , H with H +G2 + . . .+Gk and G with G1; by iterative application of the result

for k = 1, we will get the general result for an arbitrary k ∈ N.

Denote H = (H1,H2, . . . ,Hn). By Definition 3.6, the condition ∂f
∂v ○H ≠ 0 implies that there exists some

i ∈ [n] such that ∂f
∂xi

○H ≠ 0. Assume, WLOG, ∂f
∂x1

○H ≠ 0. As G is a 1-independent polynomial map, there

exists some α ∈ F∣y1∣ such that f ○ (G +H)∣
y1=α = f(z1 +H1,H2, . . . ,Hn); denote g ≜ f ○ (G +H)∣

y1=α. As

no coordinate of H depends on z1:

∂g

∂z1
=
∂ (z1 +H1)

∂z1
⋅
∂f

∂x1
(z1 +H1,H2, . . . ,Hn) = 1 ⋅ (

∂f

∂x1
) (z1 +H1,H2, . . . ,Hn)

and therefore:
∂g

∂z1
∣
z1=0

= 1 ⋅ (
∂f

∂x1
) (0 +H1,H2, . . . ,Hn) = (

∂f

∂x1
) ○H ≠ 0 .

As g is a projection of f ○ (G +H), it follows that f ○ (G +H) ≠ 0.

The next lemma shows how to use k-independent maps in order to project a polynomial to a subset of its

coordinates.

Lemma 3.10. Let m ≤ n ∈ N and g(w) ∈ F[w1, . . . ,wm]. Let f(x) = g(`1(x), . . . , `m(x)) for linearly

independent linear functions `1(x), . . . , `m(x). Let G(y,z) be a k-independent polynomial map. For a set

S ⊆ [n] of size k denote by g̃(xi ∶ i ∈ [m] ∖ S) = g∣
S=0

the projection of g to the variables outside of S.

Then, there exist linearly independent linear functions {˜̀
i(x) ∶ i ∈ [m] ∖ S}, additional linear functions

L(x) = (L1(x), . . . , Lk(x)) and an assignment α ∈ F∣y∣ such that:

f(x + G(α,L(x))) = g̃(˜̀
i(x) ∶ i ∈ [m] ∖ S) .

Proof. It is enough to prove the lemma for the case k = 1, as we may then define f̃(x) ≜ f(x+G(α, L1(x))) =

g̃(˜̀
1(x), . . . , ˜̀m−1(x)) and apply the result iteratively. Thus, assume k = 1, and WLOG assume S = {x1}

(thus, g̃(w2, . . . ,wm) = g(0,w2, . . . ,wm)).

Let xi be some variable with a non-zero coefficient in `1(x). Such a variable exists as the `js are linearly

independent. For j ∈ [m], denote βj =
∂`j
∂xi

, i.e. βj is the coefficient of xi in `j . By our choice of i, β1 ≠ 0.

Choose some α ∈ F∣y∣ such that G(α, z1) has z1 in the ith coordinate, and 0 in all other coordinates. Define

L(x) ≜ −
`1(x)
β1

, so we get:

f(x + G(α, L(x)) = f (x1, x2, . . . , xi−1, xi −
`1(x)

β1
, xi+1, . . . , xn) .

Observe that for every i,

`i (x + G(α, L(x)) = `i (x1, x2, . . . , xi−1, xi −
`1(x)

β1
, xi+1, . . . , xn) = `i(x) −

βi
β1

⋅ `1(x) .

In particular, `1 (x + G(α, L(x)) = 0. For i = 2, . . . ,m, define:

˜̀
i(x) ≜ `i(x) −

βi
β1

⋅ `1(x) .
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As `1, . . . , `m are linearly independent, it follows that ˜̀
2, . . . , ˜̀m are also linearly independent. We get that

f(x + G(α, L(x))) = g(0, ˜̀2(x), . . . , ˜̀m(x)) = g̃(˜̀
2(x), . . . , ˜̀m(x)) .

3.1 Proof of Theorem 1.37

We next prove that there are k-independent maps that are provably not robust. The proof is by giving a

different construction of such maps that, for an appropriate arrangement of the n variables in a matrix, is

guaranteed to output matrices of rank at most k. Thus, a determinant of any (k + 1) × (k + 1) minor, a

polynomial that has small formulas for small values of k, vanishes on the output of any such map.

The fact that such a construction exists was already noticed in [FSTW16] (Construction 6.3 of the full

version of the paper). For completeness we repeat the construction here.

Proof. (of Theorem 1.37) Fix the number of variables n and assume WLOG n is a perfect square, i.e., n =m2.

We index the variables as xi,j for i, j ∈ [m]. We let f = Dett+1. By [GKKS16], over fields of characteristic

zero, f has a tO(
√
t) = O(n) sized ΣΠΣ formula, which is polynomial in n for t = O ((logn/ log logn)2

). Over

fields of positive characteristic the formula size is quasipolynomial in t, and the ΣΠΣ complexity is at most

t!, which is polynomial in n for t = O (logn/ log logn).

Denote by M the (t + 1) × (t + 1) symbolic matrix of variables Mi,j = xi,j . We first construct a uniform

1-independent polynomial map G1 such that M ○ G1 is of rank 1, and define G to be a sum of t variable-

disjoint copies of G1. As rank(M ○G1) = 1, we have rank(M ○G) ≤ t so Dett+1(M ○G) = 0, as required. We

now focus on G1.

Fix n distinct field elements {αi,j}
m
i,j=1 ⊆ F and let w,y, z be new variables. Define two vectors of polynomials

of degree n − 1, R = (R1, . . . ,Rm),C = (C1, . . . ,Cm) ∈ F[y]m, such that for every k ∈ [m] Rk and Ck satisfy

Rk(αi,j) = δi,k and Ck(αi,j) = δj,k.

Define G1(w,y, z) as the m×m matrix z ⋅(w2n−2R(
y
w)⋅C(

y
w)T ) (the (i, j) entry of G1 is z ⋅w2n−2 ⋅Ri(

y
w)⋅Cj(

y
w)).

As every coordinate of G1 is a homogeneous polynomial of degree 2n − 1, G1 is a uniform polynomial map.

For any i, j ∈ [m] we have that

G1(1, αi,j , z) = z ⋅ (Ri′(αi,j) ⋅Cj′(αi,j))i′,j′∈[m] = z ⋅ (δi,i′δj,j′)i′,j′∈[m] .

The above matrix has z in entry (i, j) and 0 everywhere else, so G1 is a uniform 1-independent polynomial

map. The resulting matrix M ○G1 is of rank 1 since it is a product of vectors R ⋅CT , so the variable-disjoint

sum G = ∑t1 G1(wi, yi, zi) is a uniform t-independent polynomial map satisfying f ○ G = 0.

4 Interpolation and reconstruction for orbits of the continuant polyno-

mial

We start by proving that any uniform 1-independent map hits CGLaff(F) (Theorem 1.17).

Proof of Theorem 1.17. Let f(x1, . . . , xn) = Cm (`1(x) + b1, . . . , `m(x) + bm), where the `is are linear forms.

Observe that Cm(y1, . . . , ym) is a multilinear polynomial that has a unique monomial of degree m and all
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other monomials are of smaller degree. Thus,

Cm(y1, . . . , ym) =
m

∏
i=1

yi + C̃m−1(y1, . . . , ym) ,

where deg (C̃m−1) ≤m − 1. Hence,

f(x) = Cm (`1(x) + b1, . . . , `m(x) + bm) =
m

∏
i=1

`i + f̃ (`1, . . . , `m) ,

where deg (f̃) ≤m − 1.

Let G1 be a uniform 1-independent polynomial map into Fn. Let d be the degree of the different components

of G1. Observation 3.1(2) implies that (∏
m
i=1 `i) ○ G1 ≠ 0 and hence it is a nonzero homogeneous polynomial

of degree m ⋅ d. As deg (f̃ ○ G1) ≤ (m − 1) ⋅ d < deg ((∏
m
i=1 `i) ○ G1), we have that

f ○ G1 = (
m

∏
i=1

`i) ○ G1 + f̃ ○ G1 ≠ 0

and the claim follows.

Corollary 1.18 follows immediately from Theorem 1.17, Observation 1.14 and the construction of a uniform

generator in Definition 3.4.

Remark 4.1. A similar argument would show that G(y, z) ≜ (yn−1, yn−2z, . . . , zn−1) is a hitting set generator

for C
GLaff

n (F)
m , which leads to a hitting set of size n4.

We now turn to giving a reconstruction algorithm for CGLaff(F). We start by proving some simple lemmas

that will be used for constructing an interpolating set.

Definition 4.2. We call an ordered triplet (i, j, k) ∈ Z3
m a consecutive triplet if j = i + 1 and k = i + 2, or

j = k + 1 and i = k + 2, where all equalities are taken modulo m.

Lemma 4.3. Let m ≥ 3. Then (i, j, k) is a consecutive triplet if and only if every monomial in Cm(x0, . . . , xm−1)

that contains both xi and xk, also contains xj.

Proof. Observe that a polynomial f(x) has a monomial containing xi and xk but not xj , if and only if this

is also the case when we set xj = 0. Assume that (i, j, k) is a consecutive triplet. Then,

Cm(x0, . . . , xi,0, xi+2, . . . , xm−1) = Trace
⎛

⎝

⎛

⎝

x0 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

xi 1

1 0

⎞

⎠
⋅
⎛

⎝

0 1

1 0

⎞

⎠
⋅
⎛

⎝

xi+2 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

xm−1 1

1 0

⎞

⎠

⎞

⎠

= Trace
⎛

⎝

⎛

⎝

x0 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

xi−1 1

1 0

⎞

⎠
⋅
⎛

⎝

xi + xi+2 1

1 0

⎞

⎠
⋅
⎛

⎝

xi+3 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

xm−1 1

1 0

⎞

⎠

⎞

⎠
.

It immediately follows that no monomial of Cm(x0, . . . , xi,0, xi+2, . . . , xm−1) contains both xi and xi+2.

We now prove the second direction in the claim. Since Cm is a trace of a matrix product, by properties of

trace we can assume WLOG that i < j < k, by first rotating the order of the matrices until we have i < j < k

or k < j < i (where a < b means that the matrix corresponding to a comes before that of b). As both cases
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are equivalent we can assume that i < j < k. We next handle this case. Assume WLOG that j − i > 1. Set

xr = 0 for every i + 2 ≤ r < k, to 0. We get that the new polynomial has the form

Trace
⎛
⎜
⎝

⎛

⎝

x0 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

xi 1

1 0

⎞

⎠
⋅
⎛

⎝

xi+1 1

1 0

⎞

⎠
⋅
⎛

⎝

0 1

1 0

⎞

⎠

k−i−2

⋅
⎛

⎝

xk 1

1 0

⎞

⎠
⋅ . . .

⎛

⎝

xm−1 1

1 0

⎞

⎠

⎞
⎟
⎠

=

⎧⎪⎪
⎨
⎪⎪⎩

Cm−k+i+2 (x0, . . . , xi, xi+1, xk, . . . , xm−1) , for k − i even

Cm−k+i+1 (x0, . . . xi−1, xi, xi+1 + xk, . . . , xm−1) , for k − i odd
,

and a monomial of maximal degree in this polynomial contains both xi and xk (when k − i is even there is

a unique monomial of maximal degree, and when k − i is odd there are two such monomials).

Corollary 4.4. Let m ≥ 3. Then (i, j, k) is a consecutive triplet if and only if ∂2Cm
∂xi∂xk

∣
xj=0

= 0.

For every list of three distinct indices (i, j, k) ∈ [m]3
0 denote

C(i,j,k)
m (x) ≜

∂2Cm

∂xi∂xk
∣
xj=0

.

Lemma 4.5. Let n ≥ m ≥ 3 and t be integers. Assume H(w) ∶ Ft → Fn is a hitting-set generator for

C
(i,j,k)
m

GLaff
n (F)

, for every list of three distinct indices (i, j, k) ∈ [m]3
0. Let G3(y,z) be a 3-independent poly-

nomial map (into Fn) that each of its coordinates is a homogeneous linear function in z, over F(y) (for

example, GSV
k has this property, for every k). Then, for every m1,m2 and n and every two polynomials

f1 ∈ C
GLaff

n (F)
m1 and f2 ∈ C

GLaff
n (F)

m2 it holds that f1 = f2 if and only if f1 ○ (H + G3) = f2 ○ (H + G3).

Roughly, what the lemma claims is that if G3 is a 3-independent map and H hits C
(i,j,k)
m

GLaff
n (F)

, then H +G3

is an interpolating-set generator.

Proof. Denote f1 = Cm1 (`1,0, . . . , `1,m1−1) and f2 = Cm2 (`2,0, . . . , `2,m2−1). The proof has three steps. We

first prove that if f1 ○ (H +G3) = f2 ○ (H +G3) then m1 =m2 and there exists a permutation π ∶ [m]0 → [m]0,

and constants αj , such that for every j it holds that `1,j = αj ⋅ `2,π(j). We then show that, possibly after

rotating the order and taking a transpose, we can assume WLOG that π is the identity permutation. At

the last step we prove that either αj = 1 for every j, or that m is even, α0 ⋅ α1 = 1 and for every j, α2j = α0

and α2j+1 = α1.

Step 1: As in the proof of Theorem 1.17, deg(fi) =mi and the homogeneous part of degree mi in fi is given

by

f
[mi]
i =

mi−1

∏
j=0

`
[1]
i,j .

Observe that since f
[mi]
i ○ (H + G3) is nonzero (e.g. by Observation 3.1(2)), and its degree, as a polynomial

in z, is exactly mi (and every other term in fi ○ (H +G3) has degree strictly smaller as a polynomial in z), it

must hold that m1 =m2. To simplify the notation let m =m1 =m2. Again by comparing terms of maximal

degree in z we see that

⎛

⎝

m−1

∏
j=0

`
[1]
1,j

⎞

⎠
○ G3 =

⎛

⎝

m−1

∏
j=0

`
[1]
2,j

⎞

⎠
○ G3 . (10)
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As both {`1,i} and {`2,i} are linearly independent sets, we get from unique factorization and from Observa-

tion 3.1(3), that there exists a permutation π ∶ [m]0 → [m]0 and constants {αj} so that `1,j = αj`2,π(j), for

every j. This completes the first step.

Step 2: We wish to show that the permutation π is an “ordered” cycle of length m. That is, that it either

has the form (i, i+ 1, . . . ,m− 1,0, . . . , i− 1), or (i, i− 1, . . . ,0,m− 1, . . . , i+ 1), for some i. Indeed, assume for

a contradiction that this is not the case. Then, there must be an index i such that (π(i), π(i + 1), π(i + 2))

is not a consecutive triplet. Let {vj}j be a dual set to {`2,j}j . Corollary 4.4 and Lemma 3.8 imply that

∂2f1

∂vi∂vi+2
∣
`2,i+1(x)=0

= 0 and
∂2f2

∂vi∂vi+2
∣
`2,i+1(x)=0

≠ 0 .

In particular

−C(π(i),π(i+1),π(i+2))
m (`2,0, . . . , `2,m−1) =

∂2(f1 − f2)

∂vi∂vi+2
∣
`2,i+1(x)=0

≠ 0 .

By the assumption on H we get that

−C(π(i),π(i+1),π(i+2))
m ○H =

⎛

⎝

∂2(f1 − f2)

∂vi∂vi+2
∣
`2,i+1(x)=0

⎞

⎠
○H = −

⎛

⎝

∂2f2

∂vi∂vi+2
∣
`2,i+1(x)=0

⎞

⎠
○H ≠ 0 .

Applying Lemma 3.9 for k = 2 and Lemma 3.10 for k = 1 we get that (f1−f2)○(H +G3) ≠ 0, in contradiction.

Step 3: To simplify notation, assume, WLOG, that π is the identity permutation. Observe that ∏m−1
i=0 `

[1]
1,i ○

G3 =∏
m−1
i=0 αi ⋅∏

m−1
i=0 `

[1]
2,i ○G3. Hence, Equation (10) implies that∏m−1

i=0 αi = 1. If there is i such that αi ⋅αi+1 ≠ 1

then use G3 to restrict to the subspace `1,i = `1,i+1 = 0 (using Lemma 3.10). Denote with G′3, the map G3 after

we used two of the zis for the restriction (G′3 is a 1-independent map). As Cm(x0, . . . , xi−1,0,0, xi+2, . . . , xm−1) =

Cm−2(x0, . . . , xi−1, xi+2, . . . , xm−1), we get a contradiction by considering the terms of maximal degrees (as

polynomials in the remaining z) in f1 ○ G3 and f2 ○ G3 as follows:

⎛

⎝
∏

j∈[m]0∖{i,i+1}
`
[1]
1,j

⎞

⎠
○ G

′
3 =

⎛

⎝
∏

j∈[m]0∖{i,i+1}
`
[1]
2,j

⎞

⎠
○ G

′
3 =

⎛

⎝
∏

j∈[m]0∖{i,i+1}
αj ⋅ `

[1]
1,j

⎞

⎠
○ G

′
3

=
⎛

⎝
∏

j∈[m]0∖{i,i+1}
αj

⎞

⎠
⋅
⎛

⎝
∏

j∈[m]0∖{i,i+1}
⋅`
[1]
1,j

⎞

⎠
○ G

′
3

=
1

αi ⋅ αi+1
⋅
⎛

⎝
∏

j∈[m]0∖{i,i+1}
⋅`
[1]
1,j

⎞

⎠
○ G

′
3 ≠

⎛

⎝
∏

j∈[m]0∖{i,i+1}
`
[1]
1,j

⎞

⎠
○ G

′
3 ,

where the first equality follows from the assumption that f1 ○ G3 = f2 ○ G3 and the last inequality uses the

assumption αi ⋅αi+1 ≠ 1. Consequently, either for every i, αi = 1, which means that f1 = f2, as we wanted to

prove, or m is even and for every i, α2,i = α0 and α2,i+1 = α1, and that α0 ⋅α1 = 1. We next show that in this

case as well the polynomials are equal. Indeed, observe that
⎛

⎝

1 0

0 α0

⎞

⎠
⋅
⎛

⎝

1 0

0 α1

⎞

⎠
=
⎛

⎝

1 0

0 1

⎞

⎠
. Hence,

f1 = Trace
⎛

⎝

⎛

⎝

`1,0 1

1 0

⎞

⎠
⋅
⎛

⎝

`1,1 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

`1,m−1 1

1 0

⎞

⎠

⎞

⎠

= Trace
⎛

⎝

⎛

⎝

1 0

0 α0

⎞

⎠
⋅
⎛

⎝

`1,0 1

1 0

⎞

⎠
⋅
⎛

⎝

1 0

0 α0

⎞

⎠
⋅
⎛

⎝

1 0

0 α1

⎞

⎠
⋅
⎛

⎝

`1,1 1

1 0

⎞

⎠
⋅
⎛

⎝

1 0

0 α1

⎞

⎠
⋅
⎛

⎝

1 0

0 α0

⎞

⎠
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⋅
⎛

⎝

`1,2 1

1 0

⎞

⎠
⋅
⎛

⎝

1 0

0 α0

⎞

⎠
⋅
⎛

⎝

1 0

0 α1

⎞

⎠
⋅ . . . ⋅

⎛

⎝

1 0

0 α0

⎞

⎠
⋅
⎛

⎝

1 0

0 α1

⎞

⎠
⋅
⎛

⎝

`1,m−1 1

1 0

⎞

⎠
⋅
⎛

⎝

1 0

0 α1

⎞

⎠

⎞

⎠

= Trace
⎛

⎝

⎛

⎝

`1,0 α0

α0 0

⎞

⎠
⋅
⎛

⎝

`1,1 α1

α1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

`1,m−1 α1

α1 0

⎞

⎠

⎞

⎠
(11)

= Trace
⎛

⎝

⎛

⎝

α0 ⋅ `2,0 α0

α0 0

⎞

⎠
⋅
⎛

⎝

α1 ⋅ `2,1 α1

α1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

α1 ⋅ `2,m−1 α1

α1 0

⎞

⎠

⎞

⎠

= (α0 ⋅ α1)
m/2

⋅Trace
⎛

⎝

⎛

⎝

`2,0 1

1 0

⎞

⎠
⋅
⎛

⎝

`2,1 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

`2,m−1 1

1 0

⎞

⎠

⎞

⎠
= 1 ⋅ f2 .

This concludes the proof of the lemma.

From Lemma 4.5 we see that all that we have to do in order to construct an interpolating set for CGLaff(F),

is to find a map H as in the statement of the lemma.

Lemma 4.6. Let n ≥m be integers. Let G2(y,z) be a 2-independent polynomial map into Fn, that is linear in

z. Then, For every list of three distinct indices (i, j, k) ∈ [m]3
0 and for every m n-variate linearly independent

linear functions `0(x), . . . , `m−1(x) ∈ F[x] it holds that if C
(i,j,k)
m (`0, . . . , `m−1) ≠ 0 then C

(i,j,k)
m (`0, . . . , `m−1)○

G2 ≠ 0.

Proof. As C
(i,j,k)
m (`0, . . . , `m−1) ≠ 0 it follows that (i, j, k) is not a consecutive triplet. Assume WLOG that

i < j − 1 < j < k. Use G2 to further restrict the polynomial to the subspace `j−1 = 0 (using Lemma 3.10).

Let G′2 denote G2 after the restriction. Lemma 3.10 guarantees that G′2 is 1-independent. Observe that

the homogeneous term of maximal degree in C
(i,j,k)
m (`0, . . . , `m−1) ∣

`j−1(x)=0
is equal to ∏t∈[m]0∖{i,j−1,j,k} `

[1]
t .

It follows that the term of maximal degree, as a polynomial in z, in C
(i,j,k)
m (`0, . . . , `m−1) ∣

`j−1(x)=0
○ G′2 is

(∏t∈[m]0∖{i,j−1,j,k} `
[1]
t ) ○ G′2, which is nonzero by Observation 3.1(2).

Combining Lemmas 4.5 and 4.6 we get the following corollary:

Corollary 4.7. Let G5(y,z) ∶ Ft → Fn be a 5-independent polynomial map that is linear in z. Then, for

every m1,m2 ≤ n and every two polynomials f1 ∈ C
GLaff

n (F)
m1 and f2 ∈ C

GLaff
n (F)

m2 , it holds that f1 = f2 if and only

if f1 ○ G5 = f2 ○ G5.

Theorem 1.19 follows immediately from Corollary 4.7 and Observation 1.14.

4.1 Reconstruction algorithm for CGLaff(F)

The reconstruction algorithm is given in Page 27.

Analysis of Algorithm 1:

Claim 4.8. Step 1 can be executed in polynomial-time.

Proof. Let G1(y, z) be a 1-independent map. Let w be a new variable and consider G = w⋅G1. I.e., we multiply

each coordinate of G1 with w. Observe that the degree of w and of z in (f ○ G) is exactly deg(f) = m. As

in the proof of Theorem 1.17, we see that the m-homogeneous component of (f ○ G), when viewed as a
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input : Integer n, black-box access to f = C
GLaff

n (F)
m

output: Linear functions ˜̀
0, . . . , ˜̀m−1 ∈ F[x] such that f = Cm (˜̀

0, . . . , ˜̀m−1)

1 Compute m using interpolation and the hitting set constructed in Theorem 1.17 ;

2 Factor f [m] ; /* Using univariate root-finding */

3 /* We found linear functions L
[1]
0 , . . . , L

[1]
m−1, such that for some permutation π and

scalars αi, αi ⋅L
[1]
i = `

[1]
π(i) */

4 Compute a dual set {vi}i to {L
[1]
i }

i
;

5 /* Next we compute the free terms */

6 for i = 0 to m − 1 do

7 Define f ′i(x) ≜
∂f
∂vi

(x);

8 Set gi(x) = f(x) −L
[1]
i (x) ⋅ f ′i(x) ; /* We can simulate queries to gi */

9 Compute deg (gi);
10 if deg (gi) =m − 2 then
11 set λi = 0
12 else

13 Find u ∈ Fn such that f [m](u) ≠ 0;

14 Set λi = (L
[1]
i (u) ⋅ gi

[m−1](u)) /f [m](u);

15 end

16 Set Li = L
[1]
i + λi;

17 end
18 /* There is a permutation π and scalars αi such that αi ⋅Li = `π(i) */

19 Find all consecutive triplets and recover the permutation π ;
20 /* WLOG π is the identity permutation */

21 Find {ui} such that Li(uj) = δi,j ;
22 /* We now recover the αis */

23 if m is odd then
24 for i = 0 to m − 1 do

25 Set ˜̀
i = f(ui) ⋅Li;

26 end

27 else

28 Set β0 = α0 = 1 and ˜̀
0 = L0;

29 for i = 1 to m − 1 do

30 Set βi = (f(ui−1 +ui) − 2) /βi−1 and ˜̀
i = βi ⋅Li;

31 end

32 end

33 return ˜̀
0, . . . , ˜̀m−1;

Algorithm 1: reconstruction algorithm for CGLaff(F)
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polynomial in w, is (∏
m−1
i=0 `

[1]
i ) ○ G1 ≠ 0. As we know that m ≤ n, using interpolation (over w) we get

black-box access to (f ○ G)[k], for every 0 ≤ k ≤ n. We look for the first k, starting from n and going down,

such that (f ○ G)[k] ≠ 0. This can be done, for example, by interpolation (over y, z).

Claim 4.9. Step 2 can be done with polynomially many queries to a root-finding algorithm over F (assuming

∣F∣ ≥ n3).

We assume some knowledge with known factoring algorithms. For good a reference see [vzGG03] (the lecture

notes of Madhu Sudan are also a great resource on the subject [Sud99]).

Proof sketch. Observe that f [m] = ∏
m−1
i=0 `

[1]
i , and all its linear factors are linearly independent. Known

factoring algorithms require that we reduce the polynomial that we wish to factor to a square-free, bivariate

polynomial. This can be easily done using 2-independent maps. Let G2(y, z1, z2) be a 2-independent map

that is a linear form in z1 and z2 (e.g., GSV
2 ). Observation 3.1(3) shows that composing f [m] with G2(y,z),

keeps all factors linearly independent, when viewed as linear polynomials in z. Each assignment to y gives

a different polynomial whose factors are homogeneous linear functions in z1, z2. Observe that there is an

assignment to y from the set [n3]∣y∣, that maintains the property that the factors are linearly independent.

Indeed, for every two factors we need the assignment to be a nonzero of the determinant of the coefficient-

matrix of the two factors. There are (
m
2
) such determinant, each has degree 2(n − 1) as a polynomial in y

(hence the requirement for a field of size n3). By going over all such assignments to y, we are guaranteed to

find one that maintains this property.

Once we reduced to the square-free, bivariate case, factoring algorithms proceed by reducing to factoring of

univariate polynomials. In our case the univariate completely splits as a product of linear factors, hence the

univariate factorization step only need oracle access to a root-finding algorithm.

Observe that we have found irreducible linear functions L
[1]
i , each is a scalar product of some `

[1]
π(i), for some

permutation π. Let {αi} be such that αi ⋅L
[1]
i = `

[1]
π(i).

Claim 4.10. For every i, the for-loop in Step 6 returns Li such that αi ⋅Li = `π(i).

Proof. For i ∈ [m]0, denote Cm(y0, . . . , ym−1) = yπ(i) ⋅Fi,1(y∖yπ(i))+Fi,0(y∖yπ(i)). Observe that deg(Fi,1) =

m − 1 (since it contains the product of all yj except yπ(i)) and that deg (Fi,0) =m − 2. Indeed,

Fi,0(y) = Cm(y0, . . . , ym−1)∣yπ(i)=0

= Trace
⎛

⎝

⎛

⎝

y0 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

yπ(i)−1 1

1 0

⎞

⎠
⋅
⎛

⎝

0 1

1 0

⎞

⎠
⋅
⎛

⎝

yπ(i)+1 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

ym−1 1

1 0

⎞

⎠

⎞

⎠

= Trace
⎛

⎝

⎛

⎝

y0 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

yπ(i)−2 1

1 0

⎞

⎠
⋅
⎛

⎝

yπ(i)−1 + yπ(i)+1 1

1 0

⎞

⎠
⋅
⎛

⎝

yπ(i)+2 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

ym−1 1

1 0

⎞

⎠

⎞

⎠

= Cm−2 (y0, . . . , yπ(i)−2, yπ(i)−1 + yπ(i)+1, yπ(i)+2, . . . , ym−1) .

We now note that

f ′i(`0, . . . , `m−1) =
∂`π(i)
∂vi

⋅ Fi,1(` ∖ `π(i)) = αi ⋅ Fi,1(` ∖ `π(i)) .

As gi = f −L
[1]
i ⋅ f ′i , we get that

gi = (`π(i) ⋅ Fi,1(` ∖ `π(i)) + Fi,0(` ∖ `π(i))) −L
[1]
i ⋅ (αi ⋅ Fi,1(` ∖ `π(i)))
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= (`π(i) − αi ⋅L
[1]
i ) ⋅ Fi,1(` ∖ `π(i)) + Fi,0(` ∖ `π(i)) .

Thus, deg(gi) = m − 2 if and only if `π(i) − αi ⋅ L
[1]
i = 0. In other words, deg(gi) = m − 2 if and only if

`π(i) is homogeneous and Li = L
[1]
i . As `

[1]
π(i) = αi ⋅ L

[1]
i , it holds that (`π(i) − αi ⋅L

[1]
i ) ∈ F. Therefore, if

deg(gi) =m − 1 we get that

g
[m−1]
i = (`π(i) − αi ⋅L

[1]
i ) ⋅ Fi,1(`

[1]
∖ `

[1]
i )

[m−1]
= (`π(i) − αi ⋅L

[1]
i ) ⋅ ∏

j≠π(i)
`
[1]
j . (12)

Hence,

λi = L
[1]
i (u) ⋅ g

[m−1]
i (u)/f [m]

(u) = L
[1]
i (u) ⋅ (`π(i) − αi ⋅L

[1]
i ) ⋅ ∏

j≠π(i)
`
[1]
j /∏

j

`
[1]
j

= (L
[1]
i (u) ⋅ (`π(i) − αi ⋅L

[1]
i )) /`

[1]
π(i)(u) = (`π(i) − αi ⋅L

[1]
i ) /αi .

It follows that

αi ⋅Li = αi ⋅ (L
[1]
i + λi) = αi ⋅L

[1]
i + αi ⋅ λi = αi ⋅L

[1]
i + (`π(i) − αi ⋅L

[1]
i ) = `π(i)

as claimed.

An important point to notice is that we can check whether deg(gi) =m− 1 in the same manner in which we

computed deg(f) (thanks to Equation (12)).

Note that Step 19 can be executed using Corollary 4.4 and Lemma 4.6. Indeed, as `π(i) = αiLi, it follows that

{vi/αi} is a dual set for {`
[1]
π(i)}. That is, `

[1]
π(i) (vj/αj) = δi,j . Therefore, ∂2f

∂(vi/αi)∂(vk/αk) ∣`π(j)=0
= 0 if and only

if ∂2f
∂vi∂vk

∣
Lj=0

= 0. Hence, with the help of Lemma 4.6 and interpolation, we can find all consecutive triplets.

Once we have that information, construction of π (up to reversal, which does not change the resulting

polynomial) is immediate. Since we know π we can assume WLOG that π is the identity permutation.

Step 21 is possible as the Lis are linearly independent. Note that `
[1]
π(i) (uj) = δi,j ⋅ αj .

Claim 4.11. The linear functions ˜̀
i that were computed in Steps 23-31 satisfy Cm (˜̀

0, . . . , ˜̀m−1) = f .

Proof. First, observe that `i(uj) = αi ⋅ δi,j . Assume first that m is odd. Then

f(ui) = Trace
⎛

⎝

⎛

⎝

`0(ui) 1

1 0

⎞

⎠
⋅
⎛

⎝

`1(ui) 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

`m−1(ui) 1

1 0

⎞

⎠

⎞

⎠

= Trace
⎛
⎜
⎝

⎛

⎝

0 1

1 0

⎞

⎠

i

⋅
⎛

⎝

αi 1

1 0

⎞

⎠
⋅
⎛

⎝

0 1

1 0

⎞

⎠

m−i−1
⎞
⎟
⎠
=

= Trace
⎛

⎝

αi 1

1 0

⎞

⎠
= αi .

In this case we get that ˜̀
i = f(ui) ⋅Li = αiLi = `i. In particular, we recovered the original `is.

Next, assume that m is even. Observe that since m is even we can replace each `2i with `2i/α0 and each

`2i+1 with `2i+1 ⋅ α0 and still get the same f (recall Equation (11)). Therefore, we may assume WLOG that

α0 = 1.
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The first iteration gives

f(u0 +u1) = Trace
⎛

⎝

⎛

⎝

`0(u0 +u1) 1

1 0

⎞

⎠
⋅
⎛

⎝

`1(u0 +u1) 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

`m−1(u0 +u1) 1

1 0

⎞

⎠

⎞

⎠

= Trace
⎛
⎜
⎝

⎛

⎝

1 1

1 0

⎞

⎠
⋅
⎛

⎝

α1 1

1 0

⎞

⎠
⋅
⎛

⎝

0 1

1 0

⎞

⎠

m−2
⎞
⎟
⎠
= Trace

⎛

⎝

α1 + 1 1

α1 1

⎞

⎠
= α1 + 2 .

Hence, β1 = (f(u0 +u1) − 2) /α0 = α1/1 = α1, and therefore, ˜̀
1 = `1. We proceed to show by induction that

for every i, βi = αi.

f(ui +ui+1) = Trace
⎛

⎝

⎛

⎝

0 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

`i(ui +ui+1) 1

1 0

⎞

⎠
⋅
⎛

⎝

`i+1(ui +ui+1) 1

1 0

⎞

⎠
⋅ . . . ⋅

⎛

⎝

0 1

1 0

⎞

⎠

⎞

⎠

= Trace
⎛
⎜
⎝

⎛

⎝

0 1

1 0

⎞

⎠

i

⋅
⎛

⎝

αi 1

1 0

⎞

⎠
⋅
⎛

⎝

αi+1 1

1 0

⎞

⎠
⋅
⎛

⎝

0 1

1 0

⎞

⎠

m−i−2
⎞
⎟
⎠

= Trace
⎛

⎝

αi ⋅ αi+1 + 1 αi

αi+1 1

⎞

⎠
= αi ⋅ αi+1 + 2 ,

and we conclude, from the induction hypothesis, that βi+1 = αi+1 and that ˜̀
i+1 = `i+1.

Thus, algorithm 1 correctly outputs linear functions {˜̀
i} so that Cm(˜̀

0, . . . , ˜̀m−1) = f .

The claim regarding the running time is also obvious given the analysis above. We thus see that Theorem 1.20

holds.

Remark 4.12. As Theorem 1.37 shows that t-independent maps do not necessarily lead to robust hitting

sets, our reconstruction algorithm is not continuous at 0 (recall the discussion in section 1.6): Intuitively,

around 0, there is no way to break the tie between the different polynomials C
(j,i,k)
m (x) and decide which are

the consecutive triplets.

5 Orbits of read-once formulas

In this section we discuss the circuit classes ANFGLaff(F) and ROFGL(F) (see Definitions 5.1 and 5.3 below),

which are dense in VPe. We construct a hitting set for ROFGL(F) and an interpolating set for ANFGLaff(F).

Finally we observe that the randomized reconstruction algorithm of [GKQ14] works for every polynomial in

ANFGLaff(C).

We start with basic definitions concerning ROFs and ROANFs and prove Theorem 1.21.

Definition 5.1. An arithmetic read-once formula (ROF for short) Φ over a field F in the variables x =

(x1, . . . , xn) is a binary tree T whose leaves are labeled with input variables and a pairs of field elements

(α,β) ∈ F2, and whose internal nodes are labeled with the arithmetic operations {+,×} and a field element

α ∈ F. Each input variable can label at most one leaf. The computation is performed in the following way:

A leaf labeled with the variable xi and with (α,β), computes the polynomial αxi + β. If a node v is labeled

with the operation ∗ ∈ {+,×} and with α ∈ F, and its children compute the polynomials Φv1 and Φv2, then the

polynomial computed at v is Φv = Φv1 ∗Φv2 + α. A polynomial f(x) is called a read-once polynomial (ROP

for short) if f(x) can be computed by a ROF.
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Observation 5.2. Read-once polynomials are always multilinear polynomials.

We next define formulas in alternating normal form, as was first defined in [GKQ14].

Definition 5.3 (Section 3.2 in [GKQ14]). We say that an arithmetic formula Φ, over F, is in alternating

normal form (Φ is called an ANF for short) if:

1. The underlying tree of Φ is a complete rooted binary tree (the root node is called the output node). In

particular, size(Φ) = 2depth(Φ)+1−1, where size(Φ) is the number of nodes in the tree of Φ and depth(Φ)

is the maximum distance of a leaf node from the output node of Φ.

2. The internal nodes consist of alternating layers of + and × gates. In particular, the label of an internal

node at distance d from the closest leaf node is + if d is even and × otherwise. So if the root node is a

+ node, its children are all × nodes, its grandchildren are all + etc.

3. The leaves of the tree are labeled with linear functions. That is, each leaf is labeled with `(x) =

a0 +∑
n
i=1 aixi, where each ai ∈ F is a scalar.

The product depth ∆ of Φ is the number of layers of product gates. The number of leaves of Φ is therefore

always 4∆ if the top gate is +, and 1
2 ⋅ 4

∆ if the top gate is ×.

The class ANFGLaff(F) mentioned in section 1.2.2 is defined in terms of the following canonical read-once

ANF formula (ROANF for short):

Definition 5.4 (Notation from Fact 3.4 of [GKQ14]). We denote the canonical ROANF polynomial, of

product depth ∆ on 4∆ variables, as ANF∆(x). It is defined recursively as follows:

ANF0(x) = x1

ANF∆+1(x) = ANF∆ (x(1)
)ANF∆ (x(2)

) +ANF∆ (x(3)
)ANF∆ (x(4)

) ,

where x(i) is the 4∆-tuple of variables {x(i−1)⋅4∆+1, . . . , xi⋅4∆}.

For example, ANF1 (x) = x1x2 + x3x4.

Observe that any polynomial in ANF
GLaff

n (F)
∆ is an ANF according to Definition 5.3, but not vice versa.

Next we give some basic definitions concerning the underlying tree of a ROF, or of a ROANF.

Definition 5.5. Let Φ be a ROF and vi, vj nodes of Φ. The first common gate of vi, vj (denoted fcg(vi, vj))

is the first gate in Φ common to all the paths from vi and vj to the root of the formula.

Definition 5.6. Let T be the computation tree of some ROP polynomial g ∈ F[x]. For a node v ∈ T that is

not the root, we denote by sib(v) ∈ T the unique sibling of v in T . When clear from context, sib(v) ∈ F[x]
denotes the polynomial computed at node sib(v).

We may characterize mon(ANF∆(x)) by the first common gates of pairs of variables appearing in the

monomials:

Observation 5.7. xe ∈ mon(ANF∆(x)) if and only if xe is multilinear of degree 2∆, and for every xi ≠

xj ∈ var(xe) it holds that fcg(xi, xj) is a product gate.
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Observation 5.8. Let n = 4∆. Let T be the computation tree of ANF∆(x) (from Definition 5.4 above).

Fix some variable xi ∈ x and let {v1, . . . , v∆} ⊆ T be the addition gates on the path from xi to the root of T ,

where v∆ is the root. Denote with v0 ∈ T the leaf labeled xi. Then, recalling Definition 5.6,

∂ANF∆

∂xi
=

∆−1

∏
k=0

sib(vk) =
∆−1

∏
k=0

ANFk(var(sib(vk))) .

Corollary 5.9. For any set of variables S ⊆ x, ∂ANF∆

∂S is either zero, or a product of variable-disjoint

ROANFs.

Corollary 5.10. For any 0 ≠ u ∈ F4∆
, ∂ANF∆

∂u is non-zero.

Proof. Denote u = (u1, . . . , un). By Observation 5.8, every monomial of ∂ANF∆

∂xi
is divisible by sib(xi) and

is not divisible by xi. Furthermore, for every j ≠ i, any monomial of ∂ANF∆

∂xj
that contains sib(xi), must

also contain xi. Thus, in any linear combination ∂ANF∆

∂u = ∑
n
i=1 ui

∂ANF∆

∂xi
, no cancellations can occur as the

monomial sets in the summed polynomials are disjoint.

We first give the simple proof of Theorem 1.21, that separates ANFGLaff(F), ROFGL(F) and VPe, and that

shows that their closures are equal.

Proof of Theorem 1.21. From the definition it is obvious that ANFGLaff(F) ⊆ ROFGL(F). It is also clear that

the classes are different as the degree of every polynomial in ANFGLaff(F) is always a power of 2, which is not

necessarily the case for polynomials in ROFGL(F). As polynomials in ROFGL(F) are multilinear with respect

to some basis, it is also clear that ROFGL(F) ⊊ VPe, as the example f(x) = x2 shows. It is also not hard to

demonstrate a multilinear polynomial in VPe that is not in ROFGL(F). The next claim follows example 3.8

of [SV14].

Claim 5.11. f(x) = x1x2 + x2x3 + x3x1 ∉ ROFGL(F).

Proof. Assume for a contradiction that there is some ROF formula containing f in its orbit. As f is

irreducible, the top gate of Φ is an addition gate. As there cannot be any cancellations in Φ, the children of

the root must compute homogeneous degree 2 polynomials. It is not hard to see that this means that the

polynomial computed cannot be written as a ROF in only three linear functions, as one child of the root

must compute a linear function.

To show that the closures are equal, we note that Proposition 3.2 of [GKQ14] states that any polynomial

that is computed by a size s formula, can be computed by an ANF formula of size O(s4). As the leaves of

an ANF formula are labeled with linear functions, we can approximate these linear functions with linearly

independent linear functions and thus conclude that VPe ⊆ ANFGLaff(F). The claim about the closures

immediately follows.

5.1 A hitting set generator for orbits of read-once formulas

In this section we prove Theorem 1.22 that gives a hitting set for ROFGLaff
n (F). Our proof follows the proof

of [SV15], who constructed such a generator for ROFs. We note that Minahan and Volkovich significantly

improved upon the result of [SV15], namely, they achieved a polynomial-sized hitting set for ROFs. However,

we do not know how to adapt their approach to orbits of ROFs and instead use the method of [SV15] that

32



is based on taking partial derivatives, an operation that works well when composing the ROF with a k-

independent map (recall Lemma 3.9). We now turn to proving Theorem 1.22.

Proof of Theorem 1.22. The proof of the theorem is by induction on the number of variables in the underlying

ROF, which we denote by m. In fact, we claim something stronger:

Let Φ be a ROF on m ≤ 2t many variables that computes a non-constant polynomial. Then, for f ∈ ΦGLaff
n (F)

and any (t + 1)-independent polynomial map G, over F, f ○ G is a non-constant polynomial.

For m ≤ 2 the claim follows from Observation 3.1.

Let f ∈ F[x1, . . . , xn] be in the orbit of some ROF, on m many variables, Φ(w1, . . . ,wm). Let t be the

smallest integer such that m ≤ 2t. By definition, for some linearly independent n-variate linear functions

`1, . . . , `m, f(x) = Φ (`1(x), . . . , `m(x)) (where we abuse notation and identify Φ with the polynomial that

it computes). Let {vi} be a dual set to {`i}.

As in the proof of Lemma 5.1 of [SV15], we split the proof into cases depending on the top gate of Φ.

Let G1,Gt be a 1-independent polynomial map and a t-independent polynomial map, respectively, such that

G = G1 + Gt.

Case Φ = Φ1+Φ2+α: As Φ1 and Φ2 are variable disjoint, we can assume, WLOG that ∣var (Φ1) ∣ ≤m/2 ≤ 2t−1.

Assume further, WLOG, that ∂Φ1

∂w1
≠ 0. As Φ2 does not depend on w1, we get from Lemma 3.8 that

∂f
∂v1

= ∂Φ1

∂w1
(`1, . . . , `m) ≠ 0. By our induction hypothesis, ( ∂f

∂v1
)○Gt = (

∂f1

∂v1
)○Gt is a non-constant polynomial.

Lemma 3.9 implies that f ○ G = f ○ (G1 + Gt) ≠ 0, and it is clearly not a constant polynomial.

Case Φ = Φ1 × Φ2 + α: As we can assume that both Φ1 and Φ2 are non-constant (there is always such

formula computing Φ(w) if it is not the constant polynomial), they both contain less than m variables.

Denote fi = Φi (`1, . . . , `m), so that f = f1 ⋅ f2 + α. The induction hypothesis implies that f1 ○ Gt+1 and

f2 ○ Gt+1 are both non-constant. Hence, f ○ Gt+1 = (f1 ○ Gt+1) ⋅ (f2 ○ Gt+1) + α is also non-constant, as we

wanted to prove.

As before, Corollary 1.23 follows immediately from Theorem 1.22 and Observation 1.14.

5.2 An interpolating set generator for ANFGLaff(F)

In this section, we construct an interpolating set generator for ANFGLaff(F), thus proving Theorem 1.24. We

restate the theorem to ease the reading.

Theorem 1.24. Let f1 = ANF∆1(A1x + b1), f2 = ANF∆2(A2x + b2) ∈ ANFGLaff
n (F) and f = f1 − f2. Set

k ≜ 2 max{∆1,∆2} + 7 and let G be any uniform k-independent polynomial map, over F. If f ≠ 0 then

f ○ G ≠ 0.

The first step in the proof is a reduction to the case where f1 and f2 are “almost the same”. Recall that by

Fact 2.4, f1 and f2 can be equal and still compute different linear functions at their bottom layer. The next

lemma (roughly) shows that composing ANF∆(x) with an O(∆)-independent map, preserves equivalence

of different ANFs while not introducing any new equivalences.

Lemma 5.12. Let f1 = ANF∆1(A1x+b1), f2 = ANF∆2(A2x+b2) ∈ ANFGLaff
n (F) and f = f1 −f2. For i = 1,2,

denote by hi ≜ x
deg(fi)
0 fi(

x1

x0
, . . . , xnx0

) the homogenization of fi, and let Ãi be an extension of Ai such that

Ãi ∈ GLn+1(F) and hi = ANF∆i(Ãix). Set k = 2 max{∆1,∆2} + 7 and let G be any uniform k-independent

polynomial map. If f ≠ 0 then at least one of the following holds:
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1. f ○ G ≠ 0.

2. ∆1 = ∆2, and there is a 1 − 1 map between the quadratic forms of h2(Ã
−1
1 x) and those of ANF∆1(x),

such that any two quadratics that were matched have the same monomials, possibly with different coeffi-

cients.13 Furthermore, the map between the quadratics is a TR4∆1−1(F) symmetry (see Definition 2.2).

Observe that if {`i,j} are linear functions such that fi = ANF∆i
(`i,1(x), . . . , `i,4∆i), then the condition “the

monomials appearing in the quadratic forms of h2 ((Ã1)
−1x) are identical to the monomials of the quadratic

forms of ANF∆1(x), up to TR4∆1 (F) symmetry” is equivalent to saying that there exists a permutation

π ∈ TR4∆1−1(F), matching quadratics in f2 to those of f1, such that when we represent the ith quadratic

q
(2)
i of f2 according to the linear functions {`1,1, . . . , `1,4∆1}, then q

(2)
i has the same set of {`1,1, . . . , `1,4∆1}-

monomials as q
(1)
π(i), the π(i)th quadratic in f1. In general, whenever we say “up to TR4∆1−1(F) symmetry”

we mean that there exists a permutation π ∈ TR4∆1−1(F) such that the statement holds when we apply π to

the quadratics computed at the bottom layers.

Once we have this in mind we can see that the only “bad” case is when, for every i, `2,i = αi ⋅ `1,i, for scalars

αi ∈ F (possibly after applying some TR4∆1−1(F) symmetry). Thus, the proof of Theorem 1.24 would follow

from the next lemma.

Lemma 5.13. Let `1(x), . . . , `n(x) be linearly independent linear forms, and let α1, . . . , αn ∈ F be non-zero

constants. Let f = ANF∆(`1, . . . , `n) and g = ANF∆(α1`1, . . . , αn`n), and let G be a (2∆ + 2)-independent

polynomial map. It holds that if f − g ≠ 0 then (f − g) ○ G ≠ 0.

We first give the formal proof of the theorem and then prove the main lemmas.

Proof of Theorem 1.24. Let h1, h2 be the homogenizations of f1, f2 as in the premise of Lemma 5.12. As-

sume Case 2 of Lemma 5.12 holds, as otherwise we are done. Then, for n = 4∆1 , this assumption im-

plies that for some linearly independent linear forms `1, . . . , `n and non-zero constants α1, . . . , αn ∈ F,

h1 = ANF∆1(`1, . . . , `n) and h2 = ANF∆1(α1`1, . . . , αn`n). By Lemma 5.13, if f ≠ 0 then (h1 − h2) ○ G ≠ 0;

and by the following lemma (Lemma 5.14), we may conclude f ○ G ≠ 0.

Lemma 5.14. Let x = (x1, . . . , xn) and f ∈ F[x] be a polynomial of degree d. Let g(x0,x) = x
d
0f(

x1

x0
, . . . , xnx0

)

be the homogenization of f , and let G ∶ Ft → Fn+1 be a polynomial map such that the coordinates of G are

homogeneous polynomials of identical degree. Let H ∶ Ft → Fn be the restriction of G to the coordinates in

[n] (i.e., we ignore the 0th coordinate). If g ○ G ≠ 0 then f ○H ≠ 0.

Proof. Write g(x0,x) = ∑
d
i=0 x

i
0f

[d−i](x), and denote by G0 the 0th coordinate of G (such that G = (G0,H)).

We get:

g ○ G =
d

∑
i=0

(G0)
i
⋅ (f [d−i]

○H).

Fix i ∈ [d+ 1]0 to be the minimal index such that f [d−i] ○H ≠ 0. Such an index must exist, because g ○G ≠ 0.

As all coordinates of G are homogeneous and of identical degree, for any i < i′ ∈ [d] such that f [d−i′] ○H

is non-zero, we must have deg(f [d−i] ○H) > deg(f [d−i′] ○H). Thus, nothing can cancel f [d−i] ○H in f ○H,

proving f ○H ≠ 0.

13Thus, composition with G does not exactly preserve equivalence.
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5.2.1 Proof of Lemma 5.12

The high-level strategy for proving Lemma 5.12 is as follows: first, we show that if Case 2 of the lemma

is false, then there are v,u ∈ Fn such that ∂2f
∂v∂u =

∂2f1

∂v∂u ≠ 0. This is proven in Lemma 5.16, based on the

structural result of Lemma 5.15. After that, we prove that (k − 2)-independent polynomial maps hit ∂2f1

∂v∂u ,

in Lemma 5.18.

To prove Lemma 5.12, we first set out to prove that inclusion of monomial sets is enough to deduce that

Case 2 of Lemma 5.12 holds:

Lemma 5.15. Let g(x) = ANF∆(Ax+ b) for some (A,b) ∈ GLaff
n (F). Let q1, . . . , q4∆−1 denote the quadratic

forms of ANF∆ such that g = ANF∆−1(q1(Ax + b), . . . , q4∆−1(Ax + b)). If mon(g) ⊆ mon(ANF∆(x)), then

b = 0 and mon(qi(Ax)) = mon(qi(x)), up to TR4∆−1(F) symmetry. In particular, mon(g) = mon(ANF∆(x)).

Proof. The proof is by induction on ∆.

For ∆ = 1, we know mon(g) ⊆ {x1x2, x3x4}. ANF1(x) is irreducible, so mon(g) ≠ {x1x2} or {x3x4}, and

g is non-constant so mon(g) = {x1x2, x3x4}. Now, let `1(x), . . . , `4(x) denote linearly independent linear

functions such that g = `1(x)`2(x) + `3(x)`4(x), and denote αi ≜ `i(0). The 1-homogeneous part of g is

given by:

g[1] = α1`
[1]
2 (x) + α2`

[1]
1 (x) + α3`

[1]
4 (x) + α4`

[1]
3 (x).

As g is 2-homogeneous, g[1] = 0. As the `
[1]
i s are linearly independent, this implies α1 = . . . = α4 = 0, and

therefore b = 0, proving the base case.

Assume ∆ > 1 and denote ANF∆(x) = F1F2 + F3F4, where F1, . . . , F4 are the grandchildren of the root of

ANF∆. In particular, each Fi is an ANF∆−1(x) formula (on one quarter of the variables). We note that

g is 2∆ homogeneous because mon(g) ⊆ mon(ANF∆), so g = ANF∆(Ax) (because ANF∆(Ax + b)[2
∆] =

ANF∆(Ax)). Denote g = g1g2 + g3g4 where gi(x) = Fi(Ax).

First, note that var(g) = var(ANF∆(x)): we already know var(g) ⊆ var(ANF∆(x)), and g must depend on

at least 4∆ variables, or the 4∆ linear functions on the leaves cannot be linearly independent.

Next, observe that g1g2 and g3g4 must be variable disjoint: if xi ∈ var(g1g2) ∩ var(g3g4), then (
∂g
∂xi

) (A−1x)

is a sum of non-constant, variable-disjoint, multilinear polynomials, and (
∂g
∂xi

) (x) is therefore irreducible

(recall Observation 2.8). However, if we denote by xj the sibling of xi in ANF∆(x), the fact that mon(g) ⊆

mon(ANF∆(x)) implies that every monomial of ∂g
∂xi

(x) is divisible by xj . As ∆ > 1, we have deg (
∂g
∂xi

) ≥ 3,

and therefore ∂g
∂xi

must be reducible, in contradiction. Thus, var(g1g2) ∩ var(g3g4) = ∅, and in particular

mon(g1g2),mon(g3g4) ⊆ mon(ANF∆).

Next, assume, WLOG, there exist some monomial xe ∈ mon(F1F2) such that xe ∈ mon(g1g2). If g1g2

contains a monomial of F3F4, then g1g2 can be partitioned into a sum of two variable-disjoint, non-constant,

multilinear polynomials; which would contradict reducibility of g1g2. Thus, mon(g1g2) ⊆ mon(F1F2). As we

showed that var(g) = var(ANF∆(x)), the conditions on the monomials implies that there must exist some

monomial of F3F4 in g, so we may conclude mon(g3g4) ⊆ mon(F3F4), and in addition, var(g1g2) = var(F1F2)

and var(g3g4) = var(F3F4).

To apply induction, it remains to prove that mon(gi) ⊆ mon(Fi) for i ∈ [4] (up to TR(F)); focus on g1g2

and WLOG assume var(g1) ∩ var(F1) ≠ ∅.

As all monomials of g1g2 are multilinear, var(g1) ∩ var(g2) = ∅. As ∆ > 1, we may denote by p1, p2, p3, p4
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the variable-disjoint polynomials such that F1 = p1 + p2 and F2 = p3 + p4:

F1F2 = (p1 + p2)(p3 + p4) = p1p3 + p1p4 + p2p3 + p2p4 .

We now show that g1 cannot contain variables from both F1 and F2. Assume there exist monomials xe1 ,xe2 ∈

mon(g1) such that xe1 contains variables from var(F1) and xe2 contains variables from var(F2) (xe1 and

xe2 may be the same monomial). WLOG assume var(xe1)∩var(p1) ≠ ∅, and likewise var(xe2)∩var(p3) ≠ ∅.

Let xc ∈ mon(g2), and let xi∣x
c. If xi ∈ var(p2), then xe1 ⋅xc ∈ mon(g1g2) is a monomial involving variables

from both p1 and p2, in contradiction; by a symmetric argument, we cannot have xi ∈ var(p4). Thus, all

monomials of g2 may involve only variables of p1 and p3, i.e., var(g2) ⊆ var(p1)⊍var(p3). Therefore, the only

way to get monomials involving variables of p2 or p4 is via monomials of g1, so g1 must contain monomials

xe1
′

,xe2
′

containing variables of p2 and p4, respectively (here we use the fact that var(g1g2) = var(F1F2)).

As before, we get var(g2) ⊆ var(p2) ⊍ var(p4), in contradiction.

We can therefore conclude that var(g1) ⊆ var(F1). Using var(g1g2) = var(F1F2), we deduce var(g2) ∩

var(F2) ≠ ∅, and repeating the argument of the previous paragraph we conclude var(g2) ⊆ var(F2), which

implies var(gi) = var(Fi) for i = 1,2.

As mon(g1g2) ⊆ mon(F1F2), we may conclude mon(gi) ⊆ mon(Fi) (for i = 1,2):

mon(Fi) = {xe∣(x∖var(Fi))=1
∶ xe ∈ mon(F1F2)} ⊇ {xe∣(x∖var(gi))=1

∶ xe ∈ mon(g1g2)} = mon(gi).

Finally, we may apply the induction hypothesis and conclude b = 0 and mon(qi(Ax)) = mon(qi(x)), up to

TR4∆−1(F) symmetry. I.e., there is a permutation π ∈ TR4∆−1(F) such that mon(qi(Ax)) = mon(qπ(i)(x))

(TR4∆−1(F) symmetry enters every time we use “WLOG” in the proof).

The next step is showing that, if Case 2 of Lemma 5.12 does not hold, then we may choose a pair of vectors by

which to take a derivative of f = f1 − f2 such that ∂2f1

∂v1v2
= 0 and ∂2f2

∂v1v2
≠ 0. This is formalized in Lemma 5.16

below, and is proved by applying Lemma 5.15.

Lemma 5.16. Let f = ANF∆(A1x) and g = ANF∆(A2x), for some A1,A2 ∈ GLn(F). Denote g̃ ≜ g(A−1
1 x).

If mon(g̃) ≠ mon(ANF∆(x)), then there exist v,u ∈ Fn such that ∂2f
∂v∂u = 0 and ∂2g

∂v∂u ≠ 0.

Proof. Let `1(x), . . . , `n(x) be linearly independent linear forms such that f = ANF∆(`1(x), . . . , `4∆(x)),

and let {v1, . . . ,v4∆} be a dual set.

By Lemma 5.15, the fact that mon(g̃) ≠ mon(ANF∆(x)) implies mon(g̃) /⊆ mon(ANF∆(x)). Fix some

monomial xe ∈ mon(g̃) ∖mon(ANF∆(x)), and choose v,u as follows:

� If xe is not a multilinear monomial, let xi be such that x2
i ∣x

e. Set v = u ≜ vi. In this case, we get from

Lemma 3.8 that ∂2f
∂v∂u =

∂2ANF∆

∂x2
i

(`1, . . . , `4∆) = 0, as ANF∆ is multilinear. Clearly ∂2g
∂v∂u ≠ 0.

� If xe is multilinear, then let xi, xj ∈ var(xe) be such that fcg(xi, xj) is an addition gate (all monomials

of g̃ are of degree exactly 2∆, so Observation 5.7 implies the existence of such a pair of variables). Set

v ≜ vi,u ≜ vj . Lemma 3.8 again implies that ∂2f
∂v∂u =

∂2ANF∆

∂xi∂xj
= 0, because fcg(xi, xj) is an addition

gate in ANF∆. As before, it is clear that ∂2g
∂v∂u ≠ 0.

Looking back at Lemma 5.12, Lemma 5.16 allows us to separate f1 from f2, provided Case 2 of Lemma 5.12

does not hold. We still need to provide a hitting set for ∂2f1

∂v∂u , where v,u are arbitrary, and satisfy ∂2f1

∂v∂u ≠ 0.
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To do so, we reduce ∂2f1

∂v∂u to a single, non-zero product of variable-disjoint ROPs composed with affine

transformations (Lemma 5.18). For simplicity, we first reduce to a product of ROPs in the standard basis

in Lemma 5.17, and subsequently extend the result to affine orbits in Lemma 5.18.

Lemma 5.17. Let ∆ ≥ 2, and let f(x) = ∑i,j αi,j
∂2ANF∆(x)
∂xi∂xj

be some non-zero linear combination of second

derivatives of ANF∆(x). Then, there exist variables xi, xj, sets D,Z ⊆ x such that ∣D∣ ≤ 2 and ∣Z ∣ = 2, and

a constant βi,j such that

(
∂ ∣D∣f

∂D
) ∣

Z=0
= βi, j(

∂2+∣D∣ANF∆(x)

∂xi∂xj∂D
) ∣

Z=0
≠ 0.

Proof. First, assume there exist some i, j such that αi,j
∂2ANF∆(x)
∂xi∂xj

≠ 0 and xi ≠ sib(xj). SetD = {sib(xi), sib(xj)}.

By Observation 5.8,
∂4ANF∆(x)
∂xi∂xj∂D

≠ 0 and is a product of variable-disjoint ROPs that do not depend on xi nor

on xj .

Consider any pair {i′, j′} ≠ {i, j} and set h =
∂2ANF∆(x)
∂xi′∂xj′

. Note that if ∂2h
∂D ≠ 0 then ∂2h

∂D is divisible by xi

or by xj (or both, if {i, j} ∩ {i′, j′} = ∅). If we set Z ≜ {xi, xj}, then (∂
2h
∂D ) ∣

Z=0
= 0. This is true for any

{i′, j′} ≠ {i, j}, and as
∂4ANF∆(x)
∂xi∂xj∂D

does not depend on xi nor on xj we get

(
∂2f

∂D
) ∣

Z=0
= (

∂4ANF∆

∂xi∂xj∂D
) ∣

Z=0
≠ 0 .

Next, assume all non-zero summands of f , αi,j
∂2ANF∆(x)
∂xi∂xj

, satisfy xi = sib(xj). Note that if xixj + xi′xj′ is a

quadratic form of ANF∆(x), then
∂2ANF∆(x)
∂xi∂xj

=
∂2ANF∆(x)
∂xi′∂xj′

(Observation 5.8). Therefore,

f = ∑
xixj+xi′xj′ is a

quadratic of ANF∆

(αi,j + αi′,j′)
∂2ANF∆(x)

∂xi∂xj
.

Fix some i, j, i′, j′ such that q1 = xixj + xi′xj′ is a quadratic of ANF∆(x), and (αi,j + αi′,j′)
∂2ANF∆(x)
∂xi∂xj

≠ 0.

As ∆ ≥ 2, q1 has a sibling quadratic form; denote it by q2 ≜ sib(q1) = xkx` + xk′x`′ and set D ≜ {xk}. Note

that by Observation 5.8, (αi,j + αi′,j′)
∂3ANF∆(x)
∂xi∂xj∂D

≠ 0, does not depend on xi, xj , xi′ , xj′ , and is a product of

variable-disjoint ROPs.

Set Z = {xi, xi′}. Consider any pair {s, t} such that {s, t} ∉ {{i, j},{i′, j′}} and xs = sib(xt). Set h = ∂2ANF∆

∂xt∂xs
.

If ∂h
∂xk

≠ 0 then it is divisible by the quadratic form q1 = xixj + xi′xj′ (by Observation 5.8), and thus

( ∂h
∂D

) ∣
Z=0 = 0. Hence,

(
∂f

∂D
) ∣
Z=0

= ((αi,j + αi′,j′)
∂3ANF∆(x)

∂xi∂xj∂D
) ∣

Z=0
≠ 0 .

Lemma 5.18. Let ∆ ≥ 2, let f = ANF∆(Ax + b) for some (A,b) ∈ GLaff
n (F), and let w,u ∈ Fn. Then, for

any (2∆ + 5)-independent polynomial map G, if ∂2f
∂w∂u ≠ 0 then ∂2f

∂w∂u ○ G ≠ 0.

Proof. Let `1(x), . . . , `4∆(x) be linearly independent linear functions such that f = ANF∆(`1, . . . , `4∆). Let

{v1, . . . ,v4∆} be a dual set. There exist constants αi,j such that:

0 ≠
∂2f

∂w∂u
(x) =∑

i,j

αi,j
∂2ANF∆

∂xi∂xj
(Ax + b) .
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Denote g(x) ≜
∂2f
∂w∂u(A

−1x − A−1b) = ∑i,j αi,j
∂2ANF∆

∂xi∂xj
(x), and let xi0 , xj0 , D = {xk, x`}, Z = {xr, xm} and

βi0j0 be as promised by Lemma 5.17. Thus,14

(
∂2g

∂D
(x)) ∣

Z=0
= (βi0j0

∂4ANF∆

∂xi0∂xj0∂D
(x)) ∣

xr=xm=0

≠ 0 . (13)

From Lemma 3.8 and Equation (13) we deduce that

(
∂4f

∂w∂u∂vk∂v`
(x)) ∣

`r=`m=0

= (
∂2g

∂D
(Ax + b)) ∣

`r=`m=0

= (βi0j0
∂2

∂vk∂v`
(
∂2ANF∆

∂xi∂xj
(Ax + b))) ∣

`r=`m=0

≠ 0 .

Let G = G1+G2+G2∆+1 be a (2∆+5)-independent map where G1,G2 are 2-independent polynomial maps, G2∆+1

is a (2∆+1)-independent polynomial map, and G1,G2,G2∆+1 are variable-disjoint. As (
∂4f

∂w∂u∂vk∂v`
(x)) ∣

`r=`m=0
is a non-zero product of ROPs composed with an affine transformation, where the underlying ROPs depend

on at most 4∆ variables, we get from Theorem 1.22 that (
∂4f

∂w∂u∂vk∂v`
(x)) ∣

`r=`m=0
○ G2∆+1 ≠ 0. Lemma 3.10

implies that ∂4f
∂w∂u∂vk∂v`

(G2∆+1 +G2) ≠ 0. Finally, from Lemma 3.9 it follows that ∂2f
∂w∂u(G2∆+1 +G2 +G1) ≠ 0,

as required.

We are now ready to prove Lemma 5.12.

Proof of Lemma 5.12. First, assume ∆1 ≠ ∆2. WLOG assume ∆1 > ∆2. Let `1, . . . , `4∆1 be linearly inde-

pendent linear functions such that f1 = ANF∆1(`1, . . . , `4∆1 ). There must exist some i such that `i is not

spanned by the linear functions at the leaves of f2. Fix some vector v such that `[1](v) = 0 for every linear

function ` labeling a leaf of f2, and such that `
[1]
i (v) = 1. By Lemma 3.8 and Corollary 5.10, ∂f2

∂v = 0 and
∂f1

∂v ≠ 0; thus, 0 ≠ ∂f
∂v =

∂f1

∂v . From Lemma 5.18 it follows that any (2∆1 + 5)-independent polynomial map G′

satisfies ∂f
∂v ○ G

′ ≠ 0; and therefore, using Lemma 3.9, we get f ○ G ≠ 0, so Case 1 of the lemma holds.

Next, assume ∆1 = ∆2 and denote h ≜ h1 − h2 (recall that hi is the homogenization of fi). As G is uniform,

Lemma 5.14 implies that it suffices to prove that either h ○ G ≠ 0 (where we extend G to n + 1 coordinates

such that G is still a uniform k-independent polynomial map) or that Case 2 of the lemma holds.

Assume that h ○ G = 0. Lemmas 5.16 and 5.18 imply that ANF∆(x) and h2 (Ã1
−1

(x)) have the same set of

monomials. From Lemma 5.15 we conclude that Case 2 holds.

5.2.2 Proof of Lemma 5.13

Finally, we conclude the proof of Theorem 1.24 by proving Lemma 5.13 that gives a hitting set for the

difference of two polynomials in ANF
GLaff

n (F)
∆ that, up to constant factors, have the same linear functions on

the leaves.

Proof of Lemma 5.13. First, if f = αg for some α ∈ F, then f − g ∈ ANFGLaff
n (F) and the lemma follows from

Theorem 1.22. We therefore assume that f is not a multiple of g, and denote that by f /∝ g.

For any node u in the complete binary tree of depth 2∆, denote by uf the polynomial computed at node u

in ANF∆(`1, . . . , `n), and by ug the polynomial computed at node u in ANF∆(α1`1, . . . , αn`n). Fix a node

u satisfying uf(x) /∝ ug(x), such that u is a deepest node with that property. In particular, each child of

14Note that by Lemma 5.17 we may have ∣D∣ = 1, but we may add some other variable x` to simplify the notation.
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uf is a multiple of the corresponding child of ug. Note that, as f /∝ g, such a node u must exist; and by the

premise of the lemma, uf and ug are not leaves. In addition, uf and ug must be addition gates, otherwise

we may choose a child u′ of u such that u′f(x) /∝ u′g(x).

Let {v1, . . . ,vn} be a dual set to {`1, . . . , `n}. Denote uf = f1f2 + f3f4 and ug = g1g2 + g3g4, where the fis

are the grandchildren of uf and the gis are the grandchildren of ug. By choice of u, there exist constants

α,β ∈ F such that f1f2 = α ⋅ g1g2 and f3f4 = β ⋅ g3g4, and α ≠ β (otherwise uf = α ⋅ug). WLOG, assume f1, g1

are ancestors of the leaf labeled `1 (or α1`1), and f3, g3 are ancestors of the leaf labeled `3 (or α3`3). By

Observation 5.8, there exist polynomials F (x),G(x) such that:

∂f

∂v1
= F (x)f2(x)

∂f1

∂v1
(x) ,

∂f

∂v3
= F (x)f4(x)

∂f3

∂v3
(x) ,

∂g

∂v1
= G(x)g2(x)

∂g1

∂v1
(x) and

∂g

∂v3
= G(x)g4(x)

∂g3

∂v3
(x) .

Observe that

∂(f − g)

∂v1
= F (x)f2(x)

∂f1

∂v1
(x) −G(x)g2(x)

∂g1

∂v1
(x) = (α ⋅ F (x) −G(x))g2(x)

∂g1

∂v1
(x) , (14)

and
∂(f − g)

∂v3
= F (x)f4(x)

∂f3

∂v3
(x) −G(x)g4(x)

∂g3

∂v3
(x) = (β ⋅ F (x) −G(x))g4(x)

∂g3

∂v3
(x) . (15)

Let G1,G2∆+1 be a 1-independent polynomial map and a (2∆+1)-independent polynomial map, respectively,

such that G = G1 + G2∆+1. Theorem 1.22 and Observation 5.8 imply that (g2(x)
∂g1

∂v1
(x)) ○ G2∆+1 ≠ 0, so if

α ⋅ F (G2∆+1) ≠ G(G2∆+1) then we get from Equation (14) that
∂(f−g)
∂v1

○ G2∆+1 ≠ 0 and thus (f − g) ○ G ≠ 0

(using Lemma 3.9). On the other hand, if α ⋅ F (G2∆+1) = G(G2∆+1), then, since α ≠ β, a similar argument,

relying on Equation (15), shows that
∂(f−g)
∂v3

○ G2∆+1 ≠ 0 and thus (f − g) ○ G ≠ 0, as claimed.

5.3 Reconstruction for ANFGLaff(C)

In this section, we argue that the reconstruction algorithm of Gupta et al. [GKQ14], when given oracle access

to a polynomial f ∈ ANFGLaff(C), w.h.p. successfully reconstructs an ANFGLaff(C) formula computing f . We

do so by explaining why the different steps of their algorithm succeed w.h.p. on any input f ∈ ANFGLaff(C). To

ease the reading we give their algorithm (AFR) and its main subroutine (LDR) in the appendix (Algorithms 2

and 3). We remind that their result, with minor changes, can be adapted to any large enough field, see

remark 1.27.

Before quoting the original result, we define the distribution on ANF formulas used in [GKQ14]. To this

end, we define the universal ANF:

Definition 5.19. Let ∆, n ∈ N. Let x = (x1, . . . , xn) and y = {yi,j ∶ i = 1, . . . ,4∆, j = 1, . . . , n + 1} be formal

variables. The universal ∆, n ANF, denoted U∆,n(x,y), is an ANF formula of product depth ∆ in which

leaf i is labeled ∑nj=1 xjyi,j + yi,n+1.

Trivially, for any ANF formula f(x) of product depth ∆ on n variables, there exists an assignment v ∈

C(n+1)⋅4∆
to the y variables of U∆,n(x,y) such that f(x) = U∆,n(x,v). Given the number of variables n,

the size s = 2 ⋅ 4∆ − 1 of the ANF we wish to sample, and a finite set of field elements S ⊆ C, we define the

distribution D(n, s, S) on ANF formulas by uniformly sampling an assignment v from S4∆(n+1). This is the

distribution used in the main result of [GKQ14]:

39



Theorem 5.20 (Theorem 1.1 of [GKQ14]). Let F be a field of characteristic 0 and S be a finite subset of F.

Assume there is a black box holding an ANF formula Φ of size s sampled from D(n, s, S), and Φ computes

a polynomial f ∈ F[x1, . . . , xn]. There is a randomized algorithm that, given this black box, either outputs an

ANF formula Φ′ of size ≤ s computing f , or outputs Fail. The algorithm succeeds for a (1− n2⋅sO(1)
∣S∣ ) fraction

of the ANF formulas from D(n, s, S). Moreover, the running time of the algorithm is at most (ns)O(1).

We note that, although it is not mentioned in their main theorem, the output formula is unique up to TSn(C)-

equivalence, and this fact is stated when needed in intermediate results of [GKQ14] (recall Fact 2.4). We

prove Theorem 1.26 by going over the different steps of Algorithm 2. We do not repeat all the arguments

and claims of [GKQ14], but rather give high level explanations, referring to theorems, algorithms and tools

of [GKQ14].

Sketch of proof of Theorem 1.26. We shall use the following notation in the proof. We wish to reconstruct

f ∈ ANFGLaff
n (C) that is computed by the ANF formula Φ. We define the homogenization of f , fh, as usual:

fh(x0, . . . , xn) = x
deg(f)
0 ⋅ f (x1/x0, . . . , xn/x0). Denote by A an (n + 1) × (n + 1) matrix of formal variables

ai,j . For i ≠ j ∈ {r + 1, r + 2, . . . , n} we denote by Ai,jr the matrix A where all columns except those indexed

by {0,1,2, . . . , r}∪ {i, j} are set to zero (generic projection matrix to the variables x0, x1, . . . , xr, xi, xj). We

denote by A ∈ Cn×n an assignment toA, and likewise Ai,jr would be an assignment to the n⋅(r+3) variables of

Ai,jr . Note that ANF∆(Ai,jr x) is a universal homogeneous (r+3)-variate ANF (in {x0, x1, . . . , xr, xi, xj}) in

the sense that for every (r+3)-variate homogeneous ANF f(x0, x1, . . . , xr, xi, xj), of depth 2∆, there exists an

assignment Ai,jr such that f(x) = ANF∆(Ai,jr x). Finally, following [GKQ14], we denote σ
Ai,jr

(f) ≜ fh(Ai,jr x)

(where now we think of x as x = (x0, . . . , xn)).

Looking at Algorithm 2, it is clear that except for Step AFR3, the rest of the algorithm works without any

assumptions on the input ANF. Hence, the proof of correctness boils down to proving that Step AFR3 works

w.h.p.; and more importantly, proving that the LDR algorithm (Algorithm 3, the subroutine invoked in Step

AFR3) succeeds w.h.p. on random projections of any ANFGLaff
n (C) instance. Specifically, we need to prove

that for any f ∈ ANFGLaff
n (C), step AFR3 succeeds with probability ≥ 1−

∣Φ∣O(1)
∣T ∣ on a random linear projection

to r + 3 = 128 variables (see remark A.1) of the homogenization of f , fh (where the coefficients of the

projection are sampled from T ⊆ C).

Gupta et al. define two conditions on internal nodes of an ANF U∆,n(x, v): formulaic independence (FI, see

Definition A.5) and pairwise singular independence (PSI, see Definition A.7). These conditions are defined

in terms of dimensions of certain algebraic varieties V1, . . . , Vk. In Lemmas 5.10, 5.11, 5.16 and 5.26 of their

paper, they show that if every node of Φ satisfies FI, then the LDR algorithm correctly reconstructs the

polynomial computed at each node of Φ (up to an appropriate group of symmetries). Moreover, part (2) of

their Lemma 5.16 shows that when a node u of Φ satisfies FI and PSI, then the polynomials computed at

the grandchildren of u are computed up to TSn(C) equivalence. Overall, this means that all the quadratic

forms are computed correctly up to TSn(C)-equivalence.

Thus, if the projected polynomials σ
Ai,jr

(f) that we compute in Step AFR3 satisfy FI and PSI, then the

algorithm will correctly reconstruct our ANFGLaff
n (C) formula.

To prove that (w.h.p.) σ
Ai,jr

(f) satisfies FI and PSI, Gupta et al. prove that these conditions are captured

by a set of polynomial equations. Intuitively, this is not a surprising result as FI and PSI are algebraic

conditions.

Observation 5.21. For every i, j ∈ {r + 1, r + 2, . . . , n} there exists a set of nonzero polynomials
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p1, . . . , pk ∈ C[Ai,jr ] with the property that ANF∆(Ai,jr x) satisfies FI and PSI if Ai,jr is not a point on the

variety V (p1(A
i,j
r ), . . . , pk(A

i,j
r )) ≜ {Ai,jr ∣ p1(A

i,j
r ) = . . . = pk(A

i,j
r ) = 0}. Furthermore, the degree of each pi

is 2O(∆), which is polynomial in the size of the formula.

This observation is not stated as is in [GKQ14] but it can be immediately deduced from the proofs of

Corollaries 5.31 and 5.32 of [GKQ14].

Thus, we wish to show that a random Ai,jr does not belong to the variety defined in Observation 5.21. For

this we follow the same approach as Gupta et al. We prove that there exist good projections Ai,jr that do

not belong to the variety, and then using DeMillo-Lipton-Schwartz-Zippel lemma we conclude that such a

random projection is not on the variety.

Claim 5.22. Let r ≥ 125 and n ≥ r. For any n-variate f ∈ ANFGLaff
n (C), computed by the ANF formula Φ,

and any i, j ∈ {r + 1, r + 2, . . . , n}, there exists some projection Ai,jr such that σ
Ai,jr

(f) satisfies FI and PSI at

every internal node of Φ.

Proof. To prove the existence of a “good” projection for an arbitrary f ∈ ANFGLaff
n (C), we use an explicit

ANF g, on 128 variables, that can be described as a projection of any f ∈ ANFGLaff
n (C) (more accurately, of

fh). The definition of g comes from the proof of Lemma 5.30 of [GKQ14]:

∀i, j ∈ [4] ∶ gi,j(x) ≜(x
e
32(i−1)+8(j−1) + x

e
32(i−1)+8(j−1)+1) ⋅ (x

e
32(i−1)+8(j−1)+2 + x

e
32(i−1)+8(j−1)+3)

+ (xe32(i−1)+8(j−1)+4 + x
e
32(i−1)+8(j−1)+5) ⋅ (x

e
32(i−1)+8(j−1)+6 + x

e
32(i−1)+8(j−1)+7)

∀i ∈ [4] ∶ gi(x) ≜gi,1(x)gi,2(x) + gi,3(x)gi,4(x) (16)

g(x) ≜g1(x)g2(x) + g3(x)g4(x). (17)

The exponent e ∈ N is chosen such that the degree of g is 2∆ for the given ∆, i.e. e = 2∆−3. Gupta et al.

prove that g satisfies PSI in Lemma 5.30. In Lemma 5.29, the FI condition is proven to hold for a slightly

different polynomial (specifically, they prove gi as defined in equation (16) satisfies FI), but the proof for

formulaic independence of g itself works exactly the same (relies on variable-disjointness of g1, . . . , g4), so we

get:

Fact 5.23. The polynomial g defined in Equation (17) satisfies FI and PSI (and so does g(xπ(0), . . . , xπ(127)),

for any permutation π).

Let g(x) be as defined in equation (17) above. Our goal here is, given an unknown f ∈ ANFGLaff
n (C) and

indices i, j ∈ [n], to prove there exists some projection Ai,jr such that σ
Ai,jr

(f) = g(x) (possibly up to a

permutation of the variables); as we only care about projections up to permutations of the variables, we can

WLOG assume i = r + 1, j = r + 2. The correctness of Algorithm 3 is proven for a number of variables ≥ 128

and g is a 128-variate polynomial, so for sake of simplicity we may assume r = 125 such that projections of

fh have the same number of variables as g.

For an ANF Ψ computing g such that each leaf is labeled by a single variable from {x1, . . . , x128} (times some

constant), denote by Ψ̃ a new formula constructed as follows: for every i ∈ [4∆], if leaf number i in Ψ is labeled

αi ⋅xj , relabel it to αi ⋅xj+`i(x), where `i is some linear form depending on the variables x129, . . . , xn. Choose

the coefficients of the `is so that all the leaves of Ψ̃ are linearly independent (thus, Ψ̃(x) ∈ ANFGLaff
n (C)).

As fh and Ψ̃ are two polynomials in the GLn+1(C)-orbit of ANF∆, there exists some B ∈ GLn+1(C) such

that fh(Bx) = Ψ̃(x), and by construction Ψ̃∣
x129=0,x130=0,...,xn=0

(x) = Ψ(x) = g(x). By defining Ai,jr to be
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the matrix B with columns 129, . . . , n set to zero, we get σ
Ai,jr

(f) = Ψ̃∣
x129=0,x130=0,...,xn=0

(x) = g(x). Since

Ai,jr is a projection, this is what we wanted to prove.

Thus, by applying the DeMillo-Lipton-Schwartz-Zippel lemma, we can conclude that a random projection

(sampled from a set T ⊆ C) of the homogenization of any f ∈ ANFGLaff
n (C) satisfies FI and PSI with probability

at least (1 −
∣Φ∣O(1)

∣T ∣ ), thanks to the upper bound on the degree of the pis of Observation 5.21. For Step AFR3

to work, we need all n2 projections to yield “good” polynomials, and by a simple application of the union

bound we deduce that AFR3 succeeds with probability at least (1 −
n2⋅∣Φ∣O(1)

∣T ∣ ).

This completes the proof of Theorem 1.26

Remark 5.24. The original theorem of [GKQ14] uses two sets of field elements: the set S, used to sample

random ANFs from the distribution D(n, s, S), and the set T , used to sample random projections Ai,jr of the

input ANF. As their algorithm works for any f ∈ ANFGLaff
n (C), we do not need the set S. Thus,we only use

T , and we add run-time dependence on log(∣T ∣) so we can sample the uniform distribution on T .

6 Dense orbits for ΣΠΣ circuits

In this section we prove our claims regarding dense orbits in ΣΠΣ. We start by proving Theorem 1.31

regarding the relation between T GLaff(F), ΣΠGLaff(F) and ΣΠΣ.

Proof of Theorem 1.31. The claim regarding the closures follows immediately from the fact that every matrix

can be approximated by invertible matrices and from the simple observation that for any n-variate polynomial

f(x) ∈ Σ[s]Π[d]Σ(F), there exist A ∈ Fn×n,b ∈ Fn such that Ts,d(Ax + b) = f(x).

To prove the separation we first note that the polynomial f(x) = x2
1 is in ΣΠ, but not in T GLaff(F): if

f(x) ∈ T GLaff(F), then there exists (A,b) ∈ GLaff
n (F) such that f(Ax + b) = Ts,d, for some s and d (as we

compose with invertible affine maps). However, f(Ax + b) = (`(x))2 for some non-constant linear function

`(x), which is obviously not a multilinear polynomial. The second separation will follow from the next

simple claim.

Claim 6.1. If f ∈ ΣΠGLaff(F) is d-homogeneous, then it is in the GLn(F) orbit of some d-homogeneous ΣΠ

circuit (i.e. no affine translation is needed).

Proof. Let (A,b) ∈ GLaff
n (F) and let Ψ be a ΣΠ circuit such that f(x) = Ψ(Ax + b). Observe that for every

i it holds that Ψ(x)[i] ≠ 0 if and only if Ψ(Ax)[i] ≠ 0, since A is invertible. In particular, if Ψ(x) had a

monomial of degree larger than d then the degree of f(x) = Ψ(Ax + b) would have been larger than d in

contradiction. Thus, all gates in Ψ have degree at most d. Similarly, we now see that f(x) = (Ψ(Ax + b))[d] =

(Ψ(x))[d] (Ax). Thus, Ψ[d] is the claimed ΣΠ circuit.

Let σd(x) be the nth elementary symmetric polynomial. I.e. the sum over all degree-d multilinear monomials

in n-variables. Theorem 0 of [NW97] shows that any homogeneous ΣΠΣ circuit computing σd must have

size Ω( n2d)
d. As any homogeneous polynomial in ΣΠGLn(F) can be computed by a homogeneous ΣΠΣ

circuit of the same complexity, we get an exponential lower bound on the sparsity of any ΣΠGLaff(F) circuit

computing σd, over any field. To get an upper bound on the ΣΠΣ complexity, note that, over any field

of size ∣F∣ ≥ n + 1, σd has a ΣΠΣ circuit of size O (n2) (see [SW01]), that is obtained by interpolating the

polynomial f(Y ) =∏
n
i=1(Y + xi).
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We devote the rest of this section to proving Theorems 1.32, 1.34 and 1.35.

6.1 A hitting-set generator for ΣΠGLaff(F) circuits

In this section, we prove Theorem 1.32. The main idea is that given some f ∈ ΣΠGLaff(F), where f(x) =

g(Ax+b) = g(`1(x), . . . , `n(x)) for an s-sparse polynomial g, composing f with a 1-independent polynomial

map allows us to “halve” the number of monomials appearing in the underlying ΣΠ circuit g(x). Depending

on the structure of g, this can be done by either taking a derivative of f at the direction of an appropriately

chosen dual vector, or by restricting f to a linear subspace in which some `i(x) = 0 and other linear functions

remain linearly independent. By Lemmas 3.9 and 3.10, both tasks can be simulated using a 1-independent

generator.

As a reminder, we restate Theorem 1.32 before giving its proof.

Theorem 1.32. Let 0 ≠ g ∈ F[x] have sparsity ≤ 2t. Let (A,b) ∈ GLaff
n (F), and f(x) = g(Ax + b). Then,

for any (t + 1)-independent polynomial map G, f ○ G ≠ 0.

Proof. By induction on t. For t = 0, 0 ≠ f(x) is either a non-zero constant, or a product of non-zero linear

functions. A non-zero linear function composed with a 1-independent polynomial map G is non-zero because

the n entries of G are linearly independent (Observation 3.1(2)), so f ○ G ≠ 0.

Let t > 0 and let G1(y1, z1) and Gt(y2, z2, . . . , zt+1) be a 1-independent polynomial map and a t-independent

polynomial map, respectively, such that G = G1 + Gt. Let `1, . . . , `n be linear functions such that the ith

coordinate of Ax is `i(x), and let b = (b1, ..., bn).

First, we note that WLOG we can assume that no variable xi divides g; otherwise we can take some g̃ ∈ F[x]
such that g(x) = xki g̃(x), xi does not divide g̃ and both g and g̃ have the same sparsity. By the base case

(sparsity 1), (`i(x) + bi)
k ○ G ≠ 0, so f ○ G ≠ 0 if and only if (g̃(Ax + b)) ○ G ≠ 0.

Now that we know g(x) is not divisible by any variable, we consider two cases:

Case 1: There exists a variable xi ∈ var(g) that appears in ≤ 2t−1 monomials of g(x). Choose v ∈ Fn such

that `i(v) = 1, and for all j ≠ i, `j(v) = 0. By Lemma 3.8, ∂f
∂v (x) = (

∂g
∂xi

) (Ax + b). By choice of xi,
∂g
∂xi

is

non-zero and of sparsity ≤ 2t−1, so by induction: (
∂f
∂v) (Gt) ≠ 0. Lemma 3.9 implies that f ○G = f ○(G1+Gt) ≠ 0.

Case 2: Every variable xi ∈ var(g) appears in at least 2t−1 monomials of g. Assume, WLOG, that x1 ∈ var(g),

and define g̃(x) ≜ g(0, x2, x3, . . . , xn). As x1 does not divide g, g̃ ≠ 0 and is of sparsity ≤ 2t−1. By Lemma 3.10,

there exist linearly independent linear functions ˜̀
2, . . . , ˜̀n, an assignment α ∈ F∣y1∣ and some linear function

L(x) such that f (x + G1 (α, L(x))) = g̃ (`2(x), . . . , `n(x)) ≠ 0. As g̃ is non-zero and has sparsity ≤ 2t−1, we

get from the induction hypothesis that f (x + G1 (α, L(x)))○Gt ≠ 0, and therefore f (x + G1 (y1, z1))○Gt ≠ 0.

Hence, f ○ G = f ○ (Gt + G1) = f (x + G1 (y1, z1)) ○ Gt ≠ 0.

Corollary 1.33 follows immediately from Theorem 1.32 and Observation 1.14.

6.2 An interpolating set generator for T GLaff(F)

To construct an interpolating set generator for T GLaff
n (F) ≜ T GLaff(F) ∩F[x1, . . . , xn] we need a generator that

hits the difference of two polynomials of T GLaff
n (F). As this class is closed under multiplication by scalars,

such a generator hits every nonzero sum of two T GLaff
n (F) polynomials. The main idea can be described as

follows: the tensor Ts,d on variables {x1,1, . . . , xs,d} has the property that for any two variables in distinct
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product gates, xi,j and xi′,j′ (i ≠ i′), it holds that
∂2Ts,d

∂xi,j∂xi′,j′
= 0. We prove that for a sum of distinct T GLaff

n (F)

polynomials, there is always a pair of “dual” vectors such that if we take a derivative in their direction then

one of the T GLaff
n (F) polynomials of the sum vanishes. Once we prove this, all that is left is to hit the

remaining polynomial (or actually, its derivative).

If f ∈ T GLaff
n (F) and v ∈ Fn is arbitrary, then ∂f

∂v need not be in T GLaff
n (F). We thus begin by constructing a

hitting set generator for directional derivatives of T GLaff
n (F) polynomials.

Lemma 6.2. Let f ∈ T GLaff
n (F), k ∈ N and v1, . . . ,vk ∈ Fn. Then, for any (k + 2)-independent polynomial

map G:
∂kf

∂v1∂v2⋯∂vk
≠ 0⇒

∂kf

∂v1∂v2⋯∂vk
○ G ≠ 0 .

Proof. Let G
(1)
1 ,G

(2)
1 ,Gk be a pair of 1-independent polynomial maps and a k-independent polynomial map,

respectively, such that G = G
(1)
1 + G

(2)
1 + Gk. Let {`1,1, . . . , `s,d} be linearly independent linear functions such

that f(x) = ∑si=1∏
d
j=1 `i,j . Let {ui,j} be a dual set to {`

[1]
i,j }. I.e., `

[1]
i,j (ui′,j′) = δi,i′ ⋅ δj,j′ .

Set g(x) ≜ ∂kf
∂v1∂v2⋯∂vk (x). For every i, letQi(wi,1, . . . ,wi,d) be a polynomial satisfyingQi(`i,1(x), . . . , `i,d(x)) =

∂k(∏dj=1 `i,j(x))
∂v1∂v2⋯∂vk . In particular, g(x) = ∑

s
i=1Qi(`i,1, . . . , `i,d). Fix some i ∈ [s] such that Qi is non-constant

(if no such i exists, then g is a non-zero constant and thus g ○ G ≠ 0). Assume, WLOG, that Qi depends

non-trivially on wi,1 and consider the derivative in direction ui,1. From Lemma 3.8 We get

∂Qi(`i,1(x), . . . , `i,d(x))

∂ui,1
=
∂Qi
∂wi,1

(`i,1(x), . . . , `i,d(x)) ≠ 0 ,

and for i′ ≠ i
∂Qi′(`i,1(x), . . . , `i,d(x))

∂ui,1
=
∂Qi′

∂wi,1
(`i,1(x), . . . , `i,d(x)) = 0 .

Thus
∂g

∂ui,1
=
∂Qi
∂wi,1

(`i,1(x), . . . , `i,d(x)) ≠ 0 .

As Qi(`i,1(x), . . . , `i,d(x)) is a kth order directional derivative of the product `i,1(x)⋯`i,d(x) we have that

Qi(`i,1(x), . . . , `i,d(x)) = ∑
S⊆[d]
∣S∣=k

αS
⎛

⎝
∏

j∈[d]∖S
`i,j(x)

⎞

⎠
,

for some constants αS ∈ F. Thus,

∂g

∂ui,1
= ∑
S⊆{2,...,d}

∣S∣=k

αS
⎛

⎝
∏

j∈{2,...,d}∖S
`i,j(x)

⎞

⎠
.

Assume, WLOG, that for T = {2, . . . , k+1}, αT ≠ 0. Observe that except for the term αT (∏j∈{2,...,d}∖T `i,j(x)),

every other term is divisible by one of the functions `i,j , for j ∈ T . Let V = {v ∣ `i,j(v) = 0, ∀j ∈ T}. It

follows that ∂g
∂ui,1

∣
V
= αT (∏j∈{2,...,d}∖T `i,j(x)) ∣V ≠ 0. Lemma 3.10 implies that there exist linear functions
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L1(x), . . . , Lk(x) and an assignment β such that for L = (L1, . . . , Lk):

∂g

∂ui,1
(x + Gk(β,L(x))) = αT

⎛

⎝
∏

j∈{2,...,d}∖T
`i,j (x + Gk(β,L(x)))

⎞

⎠
≠ 0 .

As the right term is a product of linear functions, we get from Observation 3.1(2) that

∂g

∂ui,1
(x + Gk(β,L(x))) ○ G

(2)
1 ≠ 0 .

Therefore, ∂g
∂ui,1

○ (G
(2)
1 + Gk) ≠ 0. The claim now follows from Lemma 3.9.

It is not hard to see that the proof above implies the following hitting set generator for T GLaff(F):

Corollary 6.3. If 0 ≠ f ∈ T GLaff
n (F), then for any 2-independent polynomial map G: f ○ G ≠ 0.

We are now prepared to a construct hitting set generator for T GLaff
n (F) + T GLaff

n (F). We recall the statement

of Theorem 1.34.

Theorem 1.34. Let n, s1, s2, d1, d2 ∈ N be such that n ≥ s1 ⋅ d1, s2 ⋅ d2. For i ∈ {1,2} let fi ∈ T
GLn(F)
si,di

, and let

f = f1 − f2. If f ≠ 0, then any uniform 6-independent polynomial map G satisfies f ○ G ≠ 0.

Proof. Let G6 be a uniform 6-independent polynomial map and let {`i,j,k} be linear functions such that

fi = Tsi,di (`i,1,1, . . . , `i,si,di).

We first prove that if f ○ G6 = 0 then d1 = d2. Assume for a contradiction that d1 > d2. Observe that

f
[d1]
1 = Ts1,d1 (`

[1]
1,1,1, . . . , `

[1]
1,s1,d1

) (recall that `[1] is the degree 1 homogeneous part of `). As the `
[1]
1,i,js are

linearly independent, it follows that f
[d1]
1 ≠ 0. Corollary 6.3 implies that f

[d1]
1 ○G6 ≠ 0, and as G6 is uniform,

we get that deg (f1 ○ G6) = d1 ⋅ deg (G6). On the other hand, deg (f2 ○ G6) ≤ d2 ⋅ deg (G6) < deg (f1 ○ G6). It

follows that f ○ G6 ≠ 0, in contradiction. From now on we denote d = d1 = d2.

Next, we note that we can assume that f is homogeneous. Let ˜̀
i,j,k = x0 ⋅ `i,j,k(x/x0) be the homogeniza-

tion of `i,j,k. Observe that the homogenization of f is f̃(x0,x) ≜ xd0f(x/x0) = Ts1,d (
˜̀
1,1,1, . . . , ˜̀1,s1,d1

) +

Ts2,d (
˜̀
2,1,1, . . . , ˜̀2,s2,d2

), which is a homogeneous polynomial in T GLn+1(F) + T GLn+1(F). By Lemma 5.14, it

is enough to prove that f̃ ○ G′6 ≠ 0, where G′6 is a uniform 6-independent map into Fn+1. Hence, to simplify

notation and WLOG, we assume from now on that f is homogeneous and that `i,j,k = `
[1]
i,j,k. Next, we handle

the case s1 ≠ s2.

Assume, WLOG, that s1 > s2. As the s1 ⋅ d linear functions {`1,i,j}i,j are linearly independent, there must

exist a linear form, WLOG, `1,1,1, such that `1,1,1 /∈ span ({`2,i,j}i,j). As before, fix a vector v such that

`1,1,1(v) = 1 and `2,i,j(v) = 0 for all i, j ∈ [s2]×[d]. Lemma 3.8 implies that ∂f2

∂v = 0. On the other hand, from

linear independence we get that
∂(∏dj=1 `1,1,j)

∂v ≠ 0 and, the same argument also gives ∂f1

∂v ≠ 0. Thus ∂f
∂v ≠ 0.

From Lemmas 6.2 and 3.9 we conclude that any uniform 4-independent polynomial map hits f . Observe

that the proof above also shows that it must be the case that span ({`1,i,j}i,j) = span ({`2,i,j}i,j), or else any

uniform 4-independent polynomial map hits f .

From this point on, we assume that s1 = s2 = s and that span({`1,i,j}i,j) = span ({`2,i,j}i,j).

As span ({`1,i,j}i,j) = span ({`2,i,j}i,j), we can represent f2 as a polynomial in {`1,i,j}i,j (recall this notion

from Section 2.1). We split the proof into two cases, depending on the {`1,i,j}i,j-monomials appearing in f2:
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1. The set of {`1,i,j}i,j-monomials appearing in f2 is a subset of the {`1,i,j}i,j-monomials in f1. I.e.,

f2(x) = ∑
s
i=1 αi ⋅∏

d
j=1 `1,i,j . This means that f = ∑

s
i=1(1 + αi) ⋅∏

d
j=1 `1,i,j ∈ T

GLn(F)
s,d , and the theorem

follows from Corollary 6.3.

2. There exists an {`1,i,j}i,j-monomial ∏i,j `
ai,j
i,j in f2 that is not an {`1,i,j}i,j-monomial of f1. Let {vi,j}

be a dual set to {`1,i,j}. We proceed to show we can choose two vectors u,w ∈ {v1,1, . . . ,vs,d} such

that ∂2f1

∂u∂w = 0 and ∂2f2

∂u∂w ≠ 0. We again consider two cases:

� There exists some ai,j ≥ 2: Let u =w = vi,j . By Lemma 3.8:

∂2f1

∂u∂w
(x) =

∂Ts,d

∂2xi,j
(`1,1,1, . . . , `1,s,d) = 0

and
∂2f2

∂u∂w
(x) ≠ 0 ,

as the {`1,i,j}-monomial ∏i,j `
ai,j
i,j exists in f2.

� ai,j ≤ 1 for every i, j: In this case, since f2 is homogeneous, there must be some i ≠ i′ such that

for some j and j′, ai,j , ai′,j′ ≠ 0. Now choose u = vi,j and w = vi′,j′ . As before, it is easy to verify

that
∂2f1

∂u∂w
(x) = 0 and

∂2f2

∂u∂w
(x) ≠ 0 .

Thus, in either cases, there exist u,w such that

∂2f

∂u∂w
=
∂2f2

∂u∂w
≠ 0.

By Lemma 6.2, any 4-independent polynomial map hits ∂2f
∂u∂w ; so by Lemma 3.9, any uniform 6-

independent polynomial map hits f .

6.3 Reconstruction of T GLaff(C) circuits

In [KS19a], Kayal and Saha gave a polynomial-time, randomized reconstruction algorithm that, given black-

box access to a homogeneous ΣΠΣ circuits satisfying a non-degeneracy condition (Definition 6.5), recon-

structs the circuit with high probability. To prove Theorem 1.35 all we have to do is show that any

homogeneous polynomial f ∈ T GLaff(F) satisfies the non-degeneracy condition of Definition 6.5.

To explain the condition we first need to define the partial derivative space of a polynomial:

Definition 6.4. For an n-variate polynomial f(x) ∈ F[x], of degree d, and for any k ∈ [d], the partial

derivative space of order k of f (PDk space for short), denoted ∂kf , is the F-span of all partial derivatives

of f of order k:

∂kf = spanF {
∂kf

∂xi1∂xi2⋯∂xik
∶ i1, . . . , ik ∈ [n]} .

Definition 6.5 (Non-degeneracy condition [KS19a]). Let f(x) = f1(x) + . . . + fs(x), where fi = ∏
d
j=1 `i,j

for some linear forms `i,j, be an n-variate d-homogeneous polynomial, which can be computed by a depth-3
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circuit of top fan-in s. Fix k ≜ ⌈
log(s)

log( n
e⋅d

)⌉, where e is the base of the natural logarithm. We say f(x) is

non-degenerate if dim(∂kf) = s ⋅(dk), and for every i ∈ [s] there exist 2k+1 linear forms `i,r1 , . . . , `i,r2k+1
such

that:

dim
⎛

⎝
∂k

⎛

⎝
∑

j∈[s]∖{i}
fj

⎞

⎠
mod spanC{`i,r1 , . . . , `i,r2k+1

}
⎞

⎠
= (s − 1) ⋅ (

d

k
)

Theorem 6.6 (Theorem 1 of [KS19a]). Let n, d, s ∈ N, n ≥ (3d)2 and s ≤ ( n3d)
d
3 . Let F be a field of

characteristic zero or greater than ds2.15 There is a randomized, poly(n, d, s) = poly(n,s) time algorithm

which takes as input black-box access to an n-variate d-homogeneous polynomial f that can be computed

by a non-degenerate (Definition 6.5) ΣΠΣ circuit of top fan-in s, and outputs a non-degenerate, n-variate,

d-homogeneous ΣΠΣ circuit of top fan-in s computing f .

For our proof we will need the following simple fact.

Fact 6.7. Let f(x) be a polynomial of degree d and (A,b) ∈ GLaff
n (F). Then, for any k ∈ [d]:

∂kf(Ax + b) = {g(Ax + b) ∶ g ∈ ∂kf(x)} .

Proof of Theorem 1.35. As given a non-homogeneous T GLaff
n (F) circuit we can easily get query access to its

homogenization, fh = xd0f(
x1

x0
, . . . , xnx0

), which is a homogeneous polynomial in T GLn+1(F), we can assume

WLOG that the black-box polynomial is homogeneous. It should also be clear that a polynomial satisfies

the condition in Definition 6.5 if and only if its homogenization does.

It is clear that dim (∂kTs,d) = s(
d
k
), and since composing with an invertible linear transformation does not

affect the dimension of the PDk space (Fact 6.7), it follows that dim (∂kf) = s(dk) for any d-homogeneous,

s-sparse f ∈ T GLn(F). It is also clear that Ts,d satisfies the second condition and that this condition too is

invariant under invertible linear transformations.

We still need to argue that the output of the algorithm of Theorem 6.6 is a T GL(F) circuit. Theorem 6.6

guarantees that the output circuit Φ = ∑
s
1∏

d
1 `i,j is a non-degenerate d-homogeneous, ΣΠΣ circuit computing

f . We claim the linear forms `i,j on the leaves are linearly independent, and conclude that it is indeed a

T GL(F) circuit. Indeed, as f(x) is GLn(F)-equivalent to Ts,d(x) and ∂d−1Ts,d(x) = spanF{x1,1, . . . , xs,d}, it

follows that ∂d−1Φ has dimension s ⋅d. The space ∂d−1Φ is contained in spanF{`1,1, . . . , `s,d}, so by dimension

argument the set {`1,1, . . . , `s,d} must be linearly independent.

Finally, we note that by Lemma 2.7 the representation that was found is unique up to TPSs,d(F)-equivalence.

This concludes the proof of Theorem 1.35.
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A The reconstruction algorithm of [GKQ14]

For Algorithm 2 we introduce the following notation. Given integers 0 < r < i < j ≤ n we denote xr,i,j ≜

(x0, . . . , xr,0, . . . ,0, xi,0, . . . ,0, xj ,0, . . . ,0) a vector of variables of length n + 1. To be consistent with the

notation of [GKQ14] we also use the following notation: given an (n+1)×(n+1) matrix A and a polynomial

f(x1, . . . , xn) we denote σA(f) ≜ fh(Ax), where fh is the homogenization of f . Finally, we define the

rank of a homogeneous quadratic polynomial q to be the minimal k such that for some linear forms {`i}
k
i=1,

q = `21 + . . . + `
2
t − `

2
t+1 − . . . − `

2
k.

input : Black-box access to an n-variate polynomial f ∈ F[x] of degree at most d = 2∆

output: Either a set of 4∆ linear functions `1, . . . , `4∆ such that f = ANF∆(`1, . . . , `4∆) or Fail

AFR1 If ∆ = 0 then f is a linear function. Compute f via interpolation and return the linear function;

AFR2 Homogenization. Homogenize f (i.e. obtain query access to fh);
AFR3 Reduction to LDR. Pick (n + 1) vectors a0, . . . ,an, each of whose coordinates are chosen

uniformly at random from a large enough subset T ⊆ F. Let r = 127 and m = 4∆−1. For
r < i < j ≤ n, let Ai,jr be the (n + 1) × (n + 1) matrix whose kth column (k ∈ [n + 1]0) is δijk ⋅ ak
where δijk is 1 if k ∈ {0,1, . . . , r} ∪ {i, j} and 0 otherwise. For each Ai,jr invoke the LDR
algorithm on σ

Ai,jr
(f) (which is an r + 3-variate polynomial) to obtain an m-tuple,

Qi,j = (qi,j,1, . . . , qi,j,m), of quadratic polynomials satisfying

� rank(qi,j,l) ≤ 4 for each {i, j} ∈ (
{r+1,r+2,...,n}

2
) and l ∈ [m], and

� σ
Ai,jr

(f) = ANF∆−1(Qi,j)

AFR4 Patchwork. Invoke the algorithm of Lemma 6.6 of [GKQ14] on input
((a0, . . . ,an), (qi,j)r<i<j≤n) and obtain an m-tuple of quadratic forms Q = (q1, q2, . . . , qm);

AFR5 For each i ∈ [m], find linear forms `i,1, `i,2, `i,3, `i,4 such that qi = `i,1 ⋅ `i,2 + `i,3 ⋅ `i,4;
AFR6 return (`1,1, . . . , `1,4, `2,1, . . . , `m,3, `m,4);

Algorithm 2: ANF Formula Reconstruction AFR(f(x),∆) (Algorithm 6.9 of [GKQ14])

Remark A.1. We note that in Algorithm 5.1 of [GKQ14] (Algorithm 3) they treat f as an (r + 1)-variate

polynomial. However the r in their Algorithm 6.9 (Algorithm 2) is not the same r as in Algorithm 3,

specifically, rAFR = rLDR + 2. Hence, to avoid confusion, we decided to denote the number of variables in

Algorithm 3 with r + 3.

53



input : An r + 3-variate homogeneous polynomial f ∈ F[Y ] of degree d = 2∆ given as a list of
coefficients

output: Either a tuple of m = 4∆−1 quadratic forms (q1, . . . , qm), each of rank 4, such that
f = ANF∆−1(q1, . . . , qm), or Fail

LDR1 If ∆ = 1 then return f itself;
LDR2 Let Sing(f) be the ideal generated by the first order derivatives of f - i.e., the ideal

⟨
∂f

∂Y0
,
∂f

∂Y1
, . . . ,

∂f

∂Yr+2
⟩ .

Use Proposition 4.8 of [GKQ14] to determine the dimension of Sing(f). If codimension of
Sing(f) is not 4, output Fail. Else, compute a set of generators g1, g2, . . . , gl for the top
dimensional component (of codimension 4) of Sing(f) using the algorithm of Theorem 4.14 of
[GKQ14];

LDR3 Compute a basis {g̃1, . . . , g̃t} for the vector space V ⊆ F[Y ] consisting of all the homogeneous

components of degree d
2 of each gi above. If t = dim(V ) ≠ 4, output Fail;

LDR4 By solving an appropriate system of polynomial equations in 4 unknowns, compute another
basis {h1, h2, h3, h4} of V such that the singularities of each hi has a component of
codimension 4;

LDR5 By going over all permutations π ∶ [4]→ [4], find one such that f is an F-linear combination of
hπ(1) ⋅ hπ(2) and hπ(3) ⋅ hπ(4). Compute α,β such that f = αhπ(1)hπ(2) + βhπ(3)hπ(4). Let

h̃1 = αhπ(1), h̃2 = hπ(2), h̃3 = βhπ(3), h̃4 = hπ(4);

LDR6 For each i ∈ [4], make a recursive call to LDR(h̃i,∆ − 1) and obtain Qi = (qi,1, qi,2, . . . , qi,4∆−2)

such that h̃i = ANF∆−2(qi,1, qi,2, . . . , qi,4∆−2) ;

LDR7 return Q = Q1 ○Q2 ○Q3 ○Q4, where ‘○’ denotes list concatenation ;

Algorithm 3: Low-dimensional formula reconstruction LDR(f(Y ),∆) (Algorithm 5.1 of
[GKQ14])
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A.1 Definition of Formulaic Independence and Pairwise Singular Independence

In [GKQ14] Gupta et al. characterize “bad” inputs to their average-case, randomized algorithm in terms of

points in a specific variety. As we only stated their algorithm over the complex numbers, we define varieties

only over C. However, all definitions can be easily extended to other fields as well.

For any set of n-variate polynomials F ⊆ C[x], we define the zero set of F as:

V (F) ≜ {a ∈ Cn ∣ ∀f ∈ F ∶ f(a) = 0} .

Any set V ⊆ Cn that can be defined as a zero set V = V (F) for some set of polynomials F ⊆ C[x] is called

a variety, or an algebraic set.

The notions “Formulaic Independence” and “Pairwise Singular Independence” are defined in terms of di-

mensions of projective varieties, as the polynomials in question are always homogeneous.

Let r ∈ N. The r-dimensional projective space Pr is the space Cr+1 ∖ {0} with the equivalence relation ∼,

where v,u ∈ Cr+1 ∖ {0} satisfy v ∼ u if and only if there exists some λ ∈ C such that λv = u.

If V = V (f1, . . . , fk) is a variety where every fi is an r + 1-variate homogeneous polynomial, and if v ∈ Cr+1

satisfies f1(v) = . . . = fk(v) = 0, then for every λ ∈ C: f1(λ ⋅v) = . . . = fk(λ ⋅v) = 0. Thus, the set V ∖ {0} can

be viewed as a subset of Pr. In this case we call V a projective variety, and define its dimension as follows:

Definition A.2 (Proposition 11.4 in [Har13]). The dimension of a projective variety V ⊆ Pr, denoted

dim(V ), is the largest integer k such that any linear space of dimension ≥ r − k intersects V nontrivially.

The definition of formulaic independence involves the algebraic set of singularities of a polynomial f , and

the Jacobian matrix of a tuple of polynomials: For a polynomial f ∈ C[x], the set of singularities of f is the

set of points v ∈ Cn such that f(v) = (
∂f
∂x1

) (v) = (
∂f
∂x2

) (v) = . . . = (
∂f
∂xn

) (v) = 0. In other words,

Sing(f) = V (f,
∂f

∂x1
, . . . ,

∂f

∂xn
) .

Given a tuple of polynomials f = (f1, . . . , fm) ∈ C[x]m, the Jacobian of f is the following matrix of partial

derivatives of f1, . . . , fm:

J(f ,x) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∂f1

∂x1

∂f1

∂x2
⋯

∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
⋯

∂f2

∂xn

⋮ ⋮ ⋱ ⋮
∂fm
∂x1

∂fm
∂x2

⋯
∂fm
∂xn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

∈ C[x]m×n .

Definition A.3 (Definition from Section 3.1 of [GKQ14]). Let M(x) ∈ C[x]s×r be a matrix whose entries

are polynomials in x, and let t ∈ N. We denote by Minors(M(x), t) ⊆ C[x] the set of determinants of all

t × t submatrices of M(x).

Definition A.4 (Definition 5.2 of [GKQ14]). Let g = (g1(x), . . . , gk(x)) ∈ C[x] be a k-tuple of homogeneous

polynomials. The algebraic set VJ(g1, . . . , gk) (VJ(g) for short) is defined to be the set of common zeroes of

polynomials in Minors(J(g,x), k). In other words, VJ(g) consists of all points v ∈ Pr for which the rank of

the Jacobian matrix J(g,x) is less than k.

Definition A.5 (Formulaic Independence, Definition 5.3 of [GKQ14]). Let x = (x0, x1, . . . , xr) and let

f, f1, f2, f3, f4 ∈ C[x] such that f = f1 ⋅ f2 + f3 ⋅ f4. Denote f ≜ (f1, f2, f3, f4). We say that f1, f2, f3, f4 are
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formulaically independent if dim(V (f)) = r−4 and dim(Sing(f)∩VJ(f)) < r−4. We say that a homogeneous

ANF formula Φ satisfies formulaic independence at node v if v is a + gate, and the four polynomials computed

at the grandchildren of v are formulaically independent.

To define pairwise singular independence, we must first define the iterated Jacobian matrix :

Definition A.6 (The Iterated Jacobian and the variety VI , Definition 5.19 of [GKQ14]). Let x = (x0, x1, . . . , xr),

and let g1, . . . ,gk ∈ (C[x])m be m-tuples of homogeneous, (r+1)-variate polynomials: gi = gi,1, . . . , gi,m. The

iterated Jacobian of (g1, . . . ,gk), denoted I(g1, . . . ,gk), is defined to be the following matrix: I(g1, . . . ,gk) ∈

C[x](
r+1
k

)×mk has its rows indexed by k-sized subsets of indices of variables {j1, . . . , jk} ∈ (
[r+1]0
k

) and its

columns indexed by tuples (i1, . . . , ik) ∈ [m]k. The ({j1, . . . , jk}, (i1, . . . , ik))th entry of I(g1, . . . ,gk,x) is the

polynomial

Det

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂g1,i1

∂xj1

∂g2,i2

∂xj1
⋯

∂gk,ik
∂xj1

∂g1,i1

∂xj2

∂g2,i2

∂xj2
⋯

∂gk,ik
∂xj2

⋮ ⋮ ⋱ ⋮
∂g1,i1

∂xjk

∂g2,i2

∂xjk
⋯

∂gk,ik
∂xjk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The algebraic set VI(g1, . . . ,gk) is defined to be the common zeroes of the polynomials in Minors(I(g1, . . . ,gk), `
k).

Definition A.7 (Pairwise Singular Independence, Definition 5.20 of [GKQ14]). Let {fi,j}
4
i,j=1 ⊆ C[x] be

sixteen homogeneous, (r+1)-variate polynomials of the same degree. For every i ∈ [4], let fi = fi,1 ⋅fi,2+fi,3 ⋅fi,4

and fi = (fi,1, fi,2, fi,3, fi,4). For a set S = {i1, . . . , ik} ⊆ [4], denote: WS ≜ VJ(fi1 , . . . , fik) ∩ VI(fi1 , . . . ,fik).

We say that (f1,f2,f3,f4) are pairwise singularly independent if

1. for all 1 ≤ i < j ≤ 4: dim(Sing(fi) ∩ Sing(fj)) ≤ r − 6, and

2. for all S ⊆ [4] such that ∣S∣ ≥ 2: dim(WS) ≤ r − 6.

We say that a homogeneous ANF formula Φ satisfies pairwise singular independence at a node v if the node

v is a + gate, and (fv1 ,fv2 ,fv3 ,fv4) are pairwise singularly independent, where v1, v2, v3, v4 are nodes which

are the grandchildren of v and fvi is the 4-tuple of polynomials computed at the grandchildren of the node

vi.
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