
Hitting Sets for Orbits of Circuit Classes and Polynomial
Families

Chandan Saha
Indian Institute of Science

chandan@iisc.ac.in

Bhargav Thankey
Indian Institute of Science
thankeyd@iisc.ac.in

Abstract

The orbit of an n-variate polynomial f (x) over a field F is the set orb(f) := { f (Ax + b) :
A ∈ GL(n, F) and b ∈ Fn}. The orbit of a polynomial f is a geometrically interesting subset of
the set of affine projections of f . Affine projections of polynomials computable by seemingly
weak circuit classes can be quite powerful. For example, the polynomial IMM3,d – the (1, 1)-th
entry of a product of d generic 3× 3 matrices – is computable by a constant-width read-once
oblivious algebraic branching program (ROABP), yet every polynomial computable by a size-s
general arithmetic formula is an affine projection of IMM3,poly(s) [BC92]. To our knowledge, no
efficient hitting set construction was known for orb(IMM3,d) before this work.

In this paper, we initiate the study of explicit hitting sets for the orbits of polynomials com-
putable by several natural and well-studied circuit classes and polynomial families. In partic-
ular, we give quasi-polynomial time hitting sets for the orbits of:

1. Low-individual-degree polynomials computable by commutative ROABPs. This implies
quasi-polynomial time hitting sets for the orbits of the elementary symmetric polynomials
and the orbits of multilinear sparse polynomials.

2. Multilinear polynomials computable by constant-width ROABPs. This implies a quasi-
polynomial time hitting set for the orbits of the family {IMM3,d}d∈N.

3. Polynomials computable by constant-depth, constant-occur formulas. This implies quasi-
polynomial time hitting sets for the orbits of multilinear depth-4 circuits with constant top
fan-in, and also polynomial-time hitting sets for the orbits of the power symmetric polyno-
mials and the sum-product polynomials.

4. Polynomials computable by occur-once formulas.

We say a polynomial has low individual degree if the degree of every variable in the polyno-
mial is at most poly(log n), where n is the number of variables.

The first two results are obtained by building upon and strengthening the rank concentra-
tion by translation technique of [ASS13]; the second result additionally uses the merge-and-
reduce idea from [FS13b, FSS14]. The proof of the third result applies the algebraic indepen-
dence based technique of [ASSS16,BMS13] to reduce to the case of constructing hitting sets for
the orbits of sparse polynomials. A similar reduction using the Shpilka-Volkovich (SV) gener-
ator based argument in [SV15] yields the fourth result. The SV generator plays an important
role in all the four results.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 15 (2021)

Contents

1 Introduction 1
1.1 The models . 3
1.2 Our results . 5
1.3 Proof techniques . 7
1.4 Related work . 9

2 Preliminaries 11
2.1 The Shpilka-Volkovich generator . 12
2.2 Low support rank concentration . 13
2.3 Algebraic rank and faithful homomorphisms . 13

3 Hitting sets for the orbits of commutative ROABPs 14
3.1 The goal: low support rank concentration . 15
3.2 Achieving rank concentration . 16
3.3 Proofs of Theorems 6 and 7 . 18

4 Hitting sets for the orbits of multilinear constant-width ROABPs 19
4.1 Low support rank concentration: an inductive argument 20
4.2 Details of the induction step . 22
4.3 Proof of Theorem 9 . 23

5 Hitting sets for the orbits of depth four, constant-occur formulas 24
5.1 Upper bounding the top fan-in of f . 24
5.2 Constructing a faithful homomorphism for the orbits 25
5.3 Proof of Theorem 10: the depth-4 case . 27

6 Hitting sets for the orbits of occur-once formulas 28
6.1 Structural results . 28
6.2 Proof of Theorem 11 . 29

7 Conclusion 31

Acknowledgements 31

A Missing proofs from Section 3 39

B Missing proof from Section 4 43

C Hitting sets for the orbits of sparse polynomials 46

D Hitting sets for the orbits of constant-depth, constant-occur formulas 47

E Lower bounds for ROABPs and occur-once formulas against their orbits 51

F Affine projections and orbit closures 54

1 Introduction

Polynomial identity testing (PIT) is a fundamental problem in arithmetic circuit complexity. PIT is
the problem of deciding if a given arithmetic circuit computes an identically zero polynomial. It is
one of the few natural problems in BPP (in fact, in co-RP) for which we do not know of determin-
istic polynomial-time algorithms. A probabilistic polynomial-time algorithm for PIT follows from
the DeMillo-Lipton-Schwartz–Zippel lemma [DL78, Zip79, Sch80]. There are several algorithms
for other interesting problems that have PIT at their core. The fast parallel algorithms for the
perfect matching problem [Lov79, KUW86, MVV87, FGT16, ST17], the linear matroid intersection
problem [NSV94, GT20], and the maximum rank matrix completion problem [Mur93, GT20] are
based on PIT. The deterministic primality testing algorithm in [AKS04] derandomizes a particular
instance of PIT over a ring [AB03]. Also, multivariate polynomial factorization for general circuits
can be efficiently reduced to PIT and factoring univariate polynomials [Kal89, KT90, KSS15].

Derandomizing PIT is closely connected to proving circuit lower bounds. A sub-exponential
time derandomization of PIT implies either a super-polynomial Boolean circuit lower bound or
a super-polynomial arithmetic circuit lower bound [KI04]. A sub-exponential time derandomiza-
tion of black-box1 PIT implies a super-polynomial arithmetic circuit lower bound [HS80, Agr05].
Conversely, a super-polynomial lower bound for arithmetic circuits implies a deterministic sub-
exponential time algorithm for low-degree2, black-box PIT [KI04, NW94]3. Similar hardness versus
randomness tradeoffs are also known for constant depth arithmetic circuits [DSY09,CKS18]. Thus,
derandomizing black-box PIT is essentially equivalent to proving arithmetic circuit lower bounds.
The black-box PIT problem for a circuit class C is also known as the problem of constructing hitting
sets for C (see Definition 5).

Two restricted circuit classes. In the past two decades, PIT algorithms and hitting set construc-
tions have been studied for various restricted classes/models of circuits. Bounding the read
of every variable is a natural restriction that has received a lot of attention. In particular, two
constant-read models have been intensely studied in the literature. These are read-once oblivi-
ous algebraic branching programs (ROABPs) and constant-read (more generally, constant-occur) for-
mulas (see Definition 1 and 3) . The ROABP model is surprisingly rich and powerful. It cap-
tures several other interesting circuit classes such as sparse polynomials or depth-two circuits,
depth-three powering circuits (symmetric tensors), set-multilinear depth-three circuits (tensors)
and its generalization set-multilinear algebraic branching programs, and semi-diagonal circuits
[FS13b]. Some notable polynomials such as the iterated matrix multiplication polynomial, the
elementary and the power symmetric polynomials, and the sum-product polynomial can be com-
puted by linear-size ROABPs. A polynomial-time PIT algorithm and a quasi-polynomial time hit-
ting set construction for ROABPs are known [RS05, FS13b, AGKS15]. Hitting sets for ROABPs,
which can be viewed as the algebraic analogue of pseudorandomness for randomized space-
bounded computation [Nis92, INW94, FK18], have also led to the derandomization of an inter-
esting case of the Noether Normalization Lemma [Mul17, FS13a], and to hitting sets for non-

1An algorithm for the black-box PIT problem takes as input black-box access to a circuit. The algorithm cannot “see”
the circuit but can query it at any point.

2i.e., the input circuit computes a polynomial of degree poly(n), where n is the number of variables.
3A stronger lower bound yields a stronger derandomization result: an exponential lower bound for arithmetic

circuits implies a quasi-polynomial time derandomization of low-degree, black-box PIT.

1

commutative algebraic branching programs [FS13b]. The constant-occur formula model is also
reasonably natural; it captures other interesting circuit classes like multilinear depth-four cir-
cuits with bounded top fan-in [KMSV13, SV18] and sums of constantly many read-once formulas
[SV15]. A quasi-polynomial time hitting set construction for multilinear constant-read formu-
las was given by [AvMV15]. [ASSS16] obtained polynomial-time constructible hitting sets for
constant-depth, constant-occur formulas.

Hitting sets for orbits. In this paper, we study hitting set constructions for the orbits of ROABPs
and constant-occur formulas. The orbit of a polynomial f is the set of polynomials obtained by
applying invertible affine transformations on the variables of f , i.e., by replacing the variables of
f with linearly independent affine forms. The orbit of a circuit class is the union of the orbits of
the polynomials computable by the circuits in the class. Our reasons for studying hitting sets for
the orbits of ROABPs and constant-occur formulas are threefold:

1. The power of orbit closures: The set of affine projections of an n-variate polynomial f (x) over
a field F is aproj(f) := { f (Ax + b) : A ∈ Fn×n and b ∈ Fn}; the orbit of f is the set
orb(f) = { f (Ax + b) : A ∈ GL(n, F) and b ∈ Fn} ⊆ aproj(f).4 Affine projections
of polynomials computable by polynomial-size ROABPs or constant-occur formulas have
great expressive power. For example, the iterated matrix multiplication polynomial IMMw,d
– the (1, 1)-th entry of a product of d generic w×w matrices – is computable by a linear-size
ROABP, yet every polynomial computable by a size-s general algebraic branching program5

is in aproj(IMMs,s). In fact, every polynomial computable by a size-s arithmetic formula is
in aproj(IMM3,poly(s)) [BC92]. The sum-product polynomial SPs,d := ∑i∈[s] ∏j∈[d] xi,j is com-
putable by a depth-2 read-once formula, but even so every polynomial computable by a
general depth-3 circuit with top fan-in s and formal degree d is in aproj(SPs,d). As demon-
strated by the depth reduction results in [GKKS16,Tav15,Koi12,AV08,VSBR83], depth-3 cir-
cuits are incredibly powerful. Also, affine projections of read-once formulas capture general
arithmetic formulas. The orbit of f being a mathematically interesting subset of aproj(f), it
is natural to ask if we can give efficient hitting set constructions for the orbits of the above-
mentioned polynomial families and circuit classes. Moreover, orb(f) is not ‘much smaller’
than aproj(f), as the latter is contained in the orbit closure of f if char(F) = 0 (see Appendix
F). By identifying n-variate, degree-d polynomials with their respective coefficient vectors in
F(n+d

d), the orbit closure of f (denoted by orb(f)) is defined as the Zariski closure of orb(f).
The polynomials in orb(f), and hence also the polynomials in aproj(f), can be approximated
infinitesimally closely by the polynomials in orb(f) over C.6 In this sense, orb(f) is a dense
subset of aproj(f).

2. Geometry of the circuit classes: Consider an n-variate polynomial f ∈ R[x] that is computable
by a polynomial-size ROABP or a polynomial-size constant-occur formula. Let V(f) be the
variety (i.e., the zero locus) of f . The geometry of V(f) is preserved by any rigid transfor-

4Ideally, we should use the notations aprojF and orbF, but we are dropping the subscripts here for simplicity, and
because we would be always working with the underlying field F.

5Thanks to the depth reduction result in [VSBR83], low-degree polynomials computable by arithmetic circuits are
also computable by quasi-polynomially large algebraic branching programs.

6However, orb(f) can be strictly larger than aproj(f).

2

mation7 on Rn. Computation of a set H ⊆ Rn that is not contained in T(V(f)), for every
rigid transformation T, would have to be “mindful” of the geometry of V(f) and oblivious
to the choice of the coordinate system. Computing such an H is exactly the problem of con-
structing a hitting set for the polynomials { f (Rx + b) : R ∈ O(n, R) and b ∈ Rn}. We
can generalize the problem slightly by replacing R ∈ O(n, R) with A ∈ GL(n, R).8 A hit-
ting set for ROABPs or constant-occur formulas does not immediately give a hitting set for
{ f (Ax + b) : A ∈ GL(n, R) and b ∈ Rn}, as the definitions of an ROABP and a constant-
occur formula are tied to the choice of the coordinate system. In fact, we show in Appendix
E.1 that there is an explicit polynomial g in the orbit of a sparse polynomial such that any
ROABP computing g has exponential size. We also show in Appendix E.2 that there is an
explicit polynomial g ∈ orb(x1x2 · · · xn) such that any occur-once formula computing g has
size at least 2n−1. It is thus natural to ask if there is anything special about the geometry of
V(f) which can facilitate efficient constructions of hitting sets for orb(f).

3. Strengthening existing techniques: Finally, it is worth investigating whether the techniques
used to design hitting sets for ROABPs and constant-occur formulas can be applied or
strengthened or combined to give hitting sets for the orbits of these circuit classes.

Indeed, the results in this paper are obtained by building upon, strengthening and combining sev-
eral tools and techniques from the literature, in particular the rank concentration by translation
technique from [ASS13], the merge-and-reduce idea from [FS13b, FSS14], the algebraic indepen-
dence based technique from [ASSS16, BMS13], and the Shpilka-Volkovich generator from [SV15].
Our work here on hitting sets for the orbits of the above-mentioned circuit classes probes a line of
research that – to our knowledge – has remained largely unexplored. In obtaining these results,
we have highlighted the efficacy and the versatility of some of the existing tools and techniques.
We describe the relevant circuit models in the next section and state our results in Section 1.2.

1.1 The models

Unless otherwise stated, we will assume that polynomials have coefficients that belong to a field F.

Algebraic branching programs (ABPs) were defined by Nisan in [Nis91]. As the name suggests,
read-once oblivious algebraic branching programs (ROABPs) are a read-once variant of ABPs.
While Nisan defined ABPs using directed graphs, in this work we use the following equivalent
and conventional definition of an ROABP.

Definition 1 (ROABP [FS13b]). An n-variate, width-w read-once oblivious algebraic branching
program (ROABP) is a product of the form 1T ·M1(x1)M2(x2) · · ·Mn(xn) · 1, where 1 is the w× 1
vector of all ones, and for every i ∈ [n], Mi(xi) is a w× w matrix whose entries are in F[xi].

Definition 2 (Commutative ROABP). An n-variate, width-w commutative ROABP is an n-variate,
width-w ROABP 1T · M1(x1)M2(x2) · · ·Mn(xn) · 1, where for all i, j ∈ [n], Mi(xi) and Mj(xj)
commute with each other.

7A rigid transformation T is given by an orthogonal matrix R ∈ O(n, R) (which stands for reflections and rotations)
and a translation vector b ∈ Rn such that every x ∈ Rn maps to T(x) = Rx + b.

8An invertible transformation A is essentially an orthogonal transformation up to “scaling”: from singular value
decomposition, we have A = UDV, where U, V are orthogonal matrices and D is a diagonal matrix.

3

A polynomial f is s-sparse if it has at most s monomials with non-zero coefficients; these mono-
mials will be referred to as the monomials of f . It is easy to see that an s-sparse polynomial of
degree d can be computed by a depth-2 circuit of size at most sd. Also, observe that every s-sparse
polynomial can be computed by a width-s commutative ROABP.

Definition 3 (Occur-k formula [ASSS16]). An occur-k formula is a rooted tree whose leaves are
labelled by s-sparse polynomials and whose internal nodes are sum (+) gates or product-power
(×f) gates. Each variable appears in at most k of the sparse polynomials that label the leaves. The
edges feeding into a + gate are labelled by field elements and have 1 as edge weights, whereas the
edges feeding into a ×f gate have natural numbers as edge weights. A leaf node computes the
s-sparse polynomial that labels it. A + gate with inputs from nodes that compute f1, ..., fm and
with the corresponding input edge labels α1, ..., αm, computes α1 f1 + · · ·+ αm fm. A ×f gate with
inputs from nodes that compute f1, ..., fm and with the corresponding input edge weights e1, ..., em,
computes f e1

1 · · · f em
m . The formula computes the polynomial that is computed by the root node.

The size of an occur-k formula is the weighted sum of all the edges in the formula (i.e., an edge
feeding into a ×f gate is counted as many times as its edge weight, whereas an edge feeding into
a + gate is counted once) plus the sizes of the depth-2 circuits computing the s-sparse polynomials
at the leaves. The depth of an occur-k formula is equal to the depth of the underlying tree plus 2,
to account for the depth of the circuits computing the sparse polynomials at the leaves.9

Read-k formulas have been studied intensely in the literature (see Section 1.4). Occur-k formulas
generalize read-k formulas in two ways – the leaves are labelled by arbitrary sparse polynomials
instead of just variables, and powering gates are included along with the usual sum and product
gates. These generalizations help make the occur-k model complete10, and capture other interest-
ing circuit classes (such as multilinear depth-4 circuits with constant top fan-in [SV18, KMSV13])
and polynomial families (such as the power symmetric polynomials). Besides, there is no restric-
tion of multilinearity on the model, unlike the case in some prior works [AvMV15,SV18,KMSV13].

We will identify the variable set x = {x1, . . . , xn} with the column vector (x1 x2 · · · xn)T.

Definition 4 (Orbits of polynomials). Let f (x) be an n-variate polynomial over a field F. The orbit
of f , denoted by orb(f), is the set { f (Ax) : A ∈ GL(n, F)}. The orbit of a set of polynomials C,
denoted by orb(C), is the union of the orbits of the polynomials in C.

Remark. The results we present in this paper hold even if we define the orbit of an n-variate poly-
nomial f as orb(f) = { f (Ay + b) : |y| = m ≥ n, A ∈ Fn×m has rank n, and b ∈ Fn}. However,
we work with this slightly conventional definition of orb(f) for simplicity of exposition, and be-
cause the proofs in the general setting are nearly the same as the proofs we present here.

By the ‘orbit of a circuit class C’, we mean the union of the orbits of the polynomials computable by
the circuits in the class C. Our main results are efficient constructions of hitting sets for the orbits
of commutative ROABPs and constant-width ROABPs (under low individual degree restriction),
and the orbits of constant-depth constant-occur formulas and occur-once formulas.

9Observe that if f is computable by a size-s, depth-∆, occur-k formula, then it is also computable by a size-s, depth-∆
circuit that has only + and × gates.

10For example, the power symmetric polynomial xn
1 + . . .+ xn

n cannot be computed by a read-k formula for any k < n,
but it can be computed by an occur-once formula.

4

1.2 Our results

Definition 5 (Hitting set). Let C be a set of n-variate polynomials. A set of points H ⊆ Fn is a
hitting set for C if for every non-zero f ∈ C, there is a point a ∈ H such that f (a) 6= 0.

By a ‘T-time hitting set’, we mean that the hitting set can be computed in T time. Typically, T is a
function of the input parameters such as the number of variables, the size of the input circuit, and
the degree or the individual degree of the input polynomial. The individual degree of a monomial
is the largest of the exponents of the variables that appear in it. The individual degree of a polyno-
mial is the largest of the individual degrees of its monomials. We are now ready to state our results.

Theorem 6 (Hitting sets for the orbits of commutative ROABPs with low individual degree). Let
C be the set of n-variate polynomials with individual degree at most d that are computable by width-w
commutative ROABPs. If |F| > n2d, then a hitting set for orb(C) can be computed in (nd)O(d log w) time.

An interesting subclass of commutative ROABPs is the class of sums of products of univariates.
This model, which is a broad generalization of the class of sparse polynomials, has found impor-
tant applications in several other works [Sax08, SSS13, GKKS16]. We say an n-variate polynomial
f (x1, x2, . . . , xn) can be expressed as a sum of s products of univariates if f = ∑i∈[s] ∏j∈[n] fi,j(xj),
where each fi,j(xj) is a univariate polynomial in xj. Theorem 7 below (which follows as a corol-
lary from the above theorem) gives a quasi-polynomial time hitting set for the orbits of sums of
products of low degree univariates.

Theorem 7 (Hitting sets for the orbits of sums of products of low degree univariates). Let C be the
set of n-variate polynomials that can be expressed as sums of s products of univariates of degree at most d.
If |F| > n2d, then a hitting set for orb(C) can be computed in (nd)O(d log s) time.

Remarks.

1. Even under the low individual degree restriction the above class remains reasonably natural
and interesting. For example, the elementary symmetric polynomial ESymn,D = ∑S∈([n]D) ∏i∈S xi

can be expressed as a sum of n + 1 products of univariate affine forms. This is due to a nice
interpolation trick attributed to Ben-Or in [NW97, Shp02]. The theorem then implies an
nO(log n)-time hitting set for orb(ESymn,D).

2. The theorem also implies a quasi-polynomial time hitting set for the orbits of multilinear
sparse polynomials, and more generally, for the orbits of sparse polynomials with low indi-
vidual degree. It is easy to see that the orbit of a multilinear sparse polynomial may contain
a non-sparse polynomial. So, the existing hitting set constructions for sparse polynomials
[KS01, LV03] (where the complexity depends polynomially on the sparsity parameter) may
no longer remain efficient for the orbits of sparse polynomials.

3. It turns out though that for the particular case of sparse polynomials it is possible to remove
the individual degree restriction from the above theorem. This is due to an independent and
simultaneous work by [MS21]. We state their result next.

Theorem 8 (Hitting sets for the orbits of sparse polynomials [MS21]). Let C be the set of n-variate,
s-sparse polynomials of degree at most d. If |F| > nd and char(F) = 0 or > d, then a hitting set for
orb(C) can be computed in (nd)O(log s) time.

5

Remarks.

1. Hitting sets for the orbits of sparse polynomials play a basic role in our proofs of Theorem
10 and Theorem 11 (stated later). There, we apply the algebraic independence based anal-
ysis from [ASSS16, BMS13] and the Shpilka-Volkovich (SV) generator based argument from
[SV15], respectively, to reduce to the case of constructing hitting sets for the orbits of sparse
polynomials. While in the original version of our work [ST21] we applied Theorem 7 in the
base case of the proofs of Theorem 10 and 11, here we plug-in Theorem 8 in the base case.
This helps us forgo the low individual degree restriction that was present in these theorems
in the original version.

2. It is worth noting though that the proof of Theorem 8, which is also based on the SV-
generator, does not seem to scale to commutative ROABPs or even the sums of products
of univariates model. For the sake of completeness, we provide [MS21]’s nice proof of The-
orem 8 in Appendix C.

Theorem 9 (Hitting sets for the orbits of multilinear constant-width ROABPs). Let C be the set of n-
variate multilinear polynomials that are computable by width-w ROABPs. If |F| > nO(w4), then a hitting
set for orb(C) can be computed in nO(w6·log n) time.

Remarks.

1. The theorem gives a quasi-polynomial time hitting set for orb(IMM3,d), as IMM3,d is com-
putable by a width-9 ROABP. As mentioned before, the family {IMM3,d}d∈N is complete for
the class of arithmetic formulas under affine projections (in fact, under p-projections) [BC92].

2. The set of affine projections of IMM2,d is also quite rich, despite the fact that there are simple
quadratic polynomials that are not in aproj(IMM2,d) for any d [AW16, SSS09]. This is be-
cause hitting sets for aproj(IMM2,d) give hitting sets for depth-3 circuits [SSS09]. Moreover,
orb(IMM2,d) captures the orbit closures of arithmetic formulas [BIZ18]. The above theorem
implies a quasi-polynomial time hitting set for orb(IMM2,d).

Theorem 10 (Hitting sets for the orbits of constant-depth, constant-occur formulas). Let C be the
set of n-variate, degree-D polynomials that are computable by depth-∆, occur-k formulas of size s. Let
R := (2k)2∆·2∆

. If char(F) = 0 or > (2ks)∆3R, then a hitting set for orb(C) can be computed in
(nRD)O(R(log R+∆ log k+∆ log s)+∆R) time. If the leaves are labelled by b-variate polynomials, then a hit-
ting set for orb(C) can be computed in (nRD)O(Rb+∆R) time. In particular, if ∆ and k are constants, then
the hitting sets can be constructed in time (nD)O(log s) and (nD)O(b), respectively.

Remarks.

1. The above theorem gives hitting sets for the orbits of two other interesting models that have
been studied in the literature: There is a polynomial-time constructible hitting set for mul-
tilinear depth-4 circuits with constant top fan-in [SV18, KMSV13]. Theorem 10 implies a
quasi-polynomial time hitting set for the orbit of this model, as a multilinear depth-4 circuit
with constant top fan-in can be viewed as a depth-4 constant-occur formula. [BMS13] gave a
polynomial-time hitting set for C(f1, . . . , fm), where C is a low-degree circuit and f1, . . . , fm
are sparse polynomials with bounded transcendence degree. The proof of the above theorem
also implies a quasi-polynomial time hitting set for the orbit of this model.

6

2. The theorem yields polynomial-time hitting sets for the orbits of the power symmetric poly-
nomial PSymn,D = ∑i∈[n] xD

i and the sum-product polynomial SPn,D = ∑i∈[n] ∏j∈[D] xi,j. This
is because the polynomials PSym and SP are computable by constant-depth, occur-once for-
mulas whose leaves are labelled by univariate polynomials. Prior to our work, [KS19] gave
a polynomial-time hitting set for orb(PSymn,D) using a different argument that involves the
Hessian matrix.

Theorem 11 (Hitting sets for the orbits of occur-once formulas). Let C be the set of n-variate, degree-D
polynomials that are computable by occur-once formulas whose leaves are labelled by s-sparse polynomials.
If |F| > nD and char(F) = 0 or > D, then a hitting set for orb(C) can be computed in (nD)O(log n+log s)

time. If the leaves are labelled by b-variate polynomials, then a hitting set for orb(C) can be computed in
(nD)O(log n+b) time.

Remark. The independent and concurrent work by [MS21] gave (among other results) a quasi-
polynomial time hitting set construction for the orbits of read-once formulas. We note that this
result also follows from the second part of the above theorem which is already present in the
original version of this work [ST21].

1.3 Proof techniques

Let us briefly discuss the techniques that go into proving the above results.

Commutative ROABPs with low individual degree. Theorem 6 is proved by adapting the rank
concentration by translation technique of [ASS13]11 to work for the orbits of commutative ROABPs.
Let f = 1T ·M1(x1)M2(x2) · · ·Mn(xn) · 1 be a commutative ROABP and F = M1(x1)M2(x2) · · ·Mn(xn).
For any A ∈ GL(n, F), let g = f (Ax) and G = F(Ax). Suppose that A maps xi to a linear
form `i(x) for every i ∈ [n], and let yi = `i(x). Then, g = 1T · M1(y1)M2(y2) · · ·Mn(yn) · 1 and
G = M1(y1)M2(y2) · · ·Mn(yn). We show that if g 6= 0, then there exist explicit “low” degree poly-
nomials t1(z), . . . , tn(z), where z is a “small” set of variables, such that g(x1 + t1(z), . . . , xn + tn(z))
has a “low” support12 monomial. This is done by proving that G(x1 + t1(z), . . . , xn + tn(z)) has
low support rank concentration over F(z) in the “y-variables” (see Section 2.2 for the meaning of
low support rank concentration.). That done, we use the assumption that f has low individual
degree to argue that g(x1 + t1(z), . . . , xn + tn(z)) also has a low support x-monomial. This and
the fact that |z| is small imply that g(x1 + t1(z), . . . , xn + tn(z)), when viewed as a polynomial in
F[x, z], has a low support monomial. Finally, we use the SV generator to hit g.

Our analysis differs from that in [ASS13] at a crucial point: In [ASS13], it was shown that
F(x + t) = M1(x1 + t1)M2(x2 + t2) · · ·Mn(xn + tn) has low support rank concentration over F(t)
if the nonzeroness of every polynomial in a certain collection of polynomials – each in a “small”
set of t-variables – is preserved. As each polynomial in the collection has “few” t-variables, a sub-
stitution ti ← ti(z) that preserves its nonzeroness is relatively easy to construct. But the collection
of polynomials that we need to preserve to show low support rank concentration for G(x + t) is
such that every polynomial in the collection has potentially all the t-variables. However, we are
able to argue that each of these polynomials still has a low support t-monomial. This then helps

11[ASS13] proved their result for products of univariate polynomials over a Hadamard algebra which form a subclass
of commutative ROABPs. However, their analysis also works for general commutative ROABPs.

12Support of a monomial is the number of variables with non-zero exponents in the monomial.

7

us construct a substitution ti 7→ ti(z) that preserves the nonzeroness of these polynomials.

Multilinear constant-width ROABPs. Theorem 9 is proved by combining the rank concentration
by translation technique of [ASS13] with the merge-and-reduce idea from [FS13b] and [FSS14]. Let
f = 1T ·M1(x1)M2(x2) · · ·Mn(xn) · 1 be a multilinear, width-w ROABP; here Mi(xi) ∈ Fw×w[xi]
for all i ∈ [n]. Also, let F = M1(x1)M2(x2) · · ·Mn(xn). For any A ∈ GL(n, F), let g = f (Ax)
and G = F(Ax). For i ∈ [n], suppose that A maps xi 7→ `i(x), where `i is a linear form,
and let yi = `i(x) and y = {y1, . . . , yn}. Then, g = 1T · M1(y1)M2(y2) · · ·Mn(yn) · 1 and G =
M1(y1)M2(y2) · · ·Mn(yn). Much like in the case of commutative ROABPs, we show that if g 6= 0,
then there exist explicit “low” degree polynomials t1(z), . . . , tn(z), where z is a “small” set of
variables such that G(x1 + t1(z), . . . , xn + tn(z)) has “low” support rank concentration in the “y-
variables”. While in the rank concentration argument for commutative ROABPs the x-variables
were translated only once, here the translations can be thought of as happening sequentially and
in stages. There will be dlog ne stages with each stage also consisting of multiple translations.
After the p-th stage, the product of any 2p consecutive matrices in G will have low support rank
concentration in the y-variables. Thus, after dlog ne stages, we will have low support rank con-
centration in the y-variables for G(x1 + t1(z), . . . , xn + tn(z)).

As in the case of commutative ROABPs, we show that G(x + t) has low support rank con-
centration if each polynomial in a certain collection of non-zero polynomials in the t-variables is
kept non-zero by the substitution ti 7→ ti(z). However, in this case, it is trickier to show that these
polynomials have low support t-monomials. We do this by arguing that each such polynomial
can be expressed as a ratio of a polynomial that contains a low support t-monomial and a product
of linear forms in the t-variables.

Remark. A quasi-polynomial time hitting set for general ROABPs was given by [AGKS15] using an
elegant generalization of the monomial isolation method [KS01], namely the basis isolation method.
As shown in [GKST17, FGS18], designing a basis isolating weight assignment is a stronger objec-
tive than achieving rank concentration by translation. It is not immediately clear how to obtain
efficient constructions of basis isolating weight assignments for the orbits of ROABPs, even under
additional restrictions such as commutativity, constant-width or low individual degree. How-
ever, our work here shows that the weaker objective of rank concentration by translation can be
achieved for the orbits of the above-mentioned subclasses of ROABPs.

Constant-depth, constant-occur formulas. We prove Theorem 10 by combining the algebraic in-
dependence based technique in [ASSS16] with Theorem 8. Let f be a constant-depth, constant-
occur formula. We first show that it can be assumed without loss of generality that the top-most
gate of f is a + gate whose fan-in is upper bounded by the occur of f , say k. In [ASSS16], they
were able to upper bound the top fan-in by simply translating a variable by 1 and subtracting
the original formula. However, the same idea does not quite work here, because we have only
access to a polynomial in the orbit of f . To upper bound the top fan-in, we show that there exists
a variable xi such that ∂ f

∂xi
is a constant-depth, constant-occur formula with top fan-in bounded

by k. Then, using the chain rule of differentiation, we show that one can construct a hitting set
generator for orb(f) from a generator for orb

(
∂ f
∂xi

)
; this means that we can shift our attention to

f ′ = ∂ f
∂xi

, which we shall henceforth refer to as f .

8

Let f = f1 + · · · + fk, A ∈ GL(n, F), g = f (Ax), g = g1 + . . . + gk where for all i ∈ [k],
gi = fi(Ax). It was shown in [ASSS16] that a homomorphism, which is faithful (see Definition 18)
to f1, . . . , fk, is a hitting set generator for f . In our case, this translates to ‘a homomorphism that is
faithful to g1, . . . , gk is a hitting set generator for g ’. [ASSS16] also showed that the problem of con-
structing a homomorphism φ that is faithful to f1, . . . , fk reduces to constructing a homomorphism
ψ that preserves the determinant of a certain matrix. This matrix is an appropriate sub-matrix of
the Jacobian of f1, . . . , fk. Also, it was argued that its determinant is a product of sparse polyno-
mials and so ψ was obtained from [KS01]. We use a similar argument, along with the chain rule,
to show that the problem of constructing a homomorphism φ that is faithful to g1, . . . , gk reduces
to constructing a homomorphism ψ that preserves the determinant of a sub-matrix of the same
Jacobian evaluated at Ax. As this determinant is a product of polynomials in the orbit of sparse
polynomials, we can use Theorem 8 to construct such a ψ.

Occur-once formulas. We prove Theorem 11 by building upon the arguments in [SV15] and link-
ing it with Theorem 8. At first, we show two structural results (Lemma 40 and 41) for occur-once
formulas. These lemmas are generalizations of similar structural results for read-once formulas
shown in [SV15]. Much like in [SV15], the structural results help us show that for a "typical" occur-
once formula f with a + gate as the root node, there exists a variable xi such that ∂ f

∂xi
is a product

of occur-once formulas, each of which has at most half as many non-constant leaves as f . We then
use this fact to show that a hitting-set generator for orb(f) can be constructed from a generator
for orb

(
∂ f
∂xi

)
. [SV15] uses the derivatives of f in a similar way to show that a generator for f can

be constructed from that for ∂ f
∂xi

using the SV generator (see Definition 13). However, in our case,
we want a generator for orb(f) and not just for f . For this reason, we first use the chain rule for
derivatives to relate the gradient of a g ∈ orb(f) with that of f , and then argue that there exists a
xj such that a generator for orb

(
∂ f
∂xi

)
is also a generator for ∂g

∂xj
. Finally, we use this generator for

∂g
∂xj

to construct a generator for g. The argument then proceeds by induction on the number of non-
constant leaves. In the base case, we need a hitting set generator for orbits of sparse polynomials
which we get from Theorem 8.

1.4 Related work

We give a brief account of known results on PIT and hitting sets for arithmetic circuits. The results
on hitting sets for the constant-read models are most relevant to our work here. However, for the
sake of completeness, we mention a few other prominent results.

Constant-read models. [SV15] initiated the study of PIT for read-once formulas. They gave a
polynomial-time PIT algorithm and a quasi-polynomial time hitting set construction for sums of
constantly many preprocessed read-once formulas (PROFs). The leaves of a PROF are labelled by
univariate polynomials and every variable appears in at most one leaf; PROFs form a subclass of
occur-once formulas. Later, a polynomial-time hitting set construction for the same model was
given by [MV18]. A sum of k ROFs is a special case of a multilinear read-k formula. [AvMV15]
gave a quasi-polynomial time hitting set construction for multilinear read-k formulas. Their con-
struction also works for multilinear sparse-substituted read-k formulas, wherein the leaves are re-
placed by sparse polynomials and every variable appears in at most k of the sparse polynomials.

9

Observe that a sparse-substituted read-k formula is an occur-k formula (without the powering
gates), however the arguments in [AvMV15] additionally require the multilinearity assumption.

A polynomial-time PIT for ROABPs follows from the PIT algorithm for non-commutative formu-
las [RS05]. [FS13b] gave a quasi-polynomial time construction of hitting sets for ROABPs, when
the order of the variables is known; prior to their work, a quasi-polynomial time hitting set for
multilinear, constant-width, known-variable-order ROABPs was given by [JQS10]. Building on
the rank concentration by translation technique from [ASS13] and the merge-and-reduce idea from
[FS13b], [FSS14] gave a quasi-polynomial time hitting set construction for multilinear ROABPs
(more generally, low individual degree ROABPs). Finally, [AGKS15] obtained a quasi-polynomial
time constructible hitting set for ROABPs using a different and simpler method, namely basis iso-
lation, which can be thought of as a generalization of the monomial isolation method in [KS01]. It
was also shown later that translation by a basis isolating weight assignment leads to rank concen-
tration [GKST17,FGS18], and so, constructing a basis isolating weight assignment is a stronger ob-
jective than showing rank concentration by translation. This fact was used effectively in [GKST17]
to design hitting sets for sums of constantly many ROABPs in quasi-polynomial time; they also
gave a polynomial-time PIT algorithm for the same model. A conjunction of the basis isolation and
the rank concentration techniques have been used to give more efficient constructions of hitting
sets for ROABPs [GG20], sometimes under additional restrictions on the model such as commu-
tativity and constant-width [GKS17]. The latter work also gave a polynomial-time hitting set for
constant-width ROABPs, when the order of the variables is known. For read-k oblivious algebraic
branching programs, [AFS+18] obtained a subexponential-time PIT algorithm.

Orbits and orbit closures. A polynomial-time hitting set for the orbit of the power symmetric
polynomial PSymn,d = xd

1 + . . . + xd
n was given by [KS19]. Observe that PSym is computable by

a constant-depth occur-once formula with univariate polynomials at the leaves. So, Theorem 10
subsumes this result. Our hitting-set construction is different from the one in [KS19] which in-
volves second order derivatives (in particular, the Hessian matrix), whereas the proofs here work
with first order derivatives. Very recently and independent of our work here, [MS21] gave quasi-
polynomial time hitting sets for the orbits of sparse polynomials and read-once formulas. For the
orbit closures of polynomials that are computable by low-degree, polynomial-size circuits (i.e., VP
circuits), [FS18, GSS18] gave PSPACE constructions of hitting sets.

Constant-depth models. The polynomial-time hitting set construction for depth-2 circuits (i.e.,
sparse polynomials) in [KS01] is one of the widely used results in black-box PIT. Depth-3 circuit
PIT has also received a lot of attention. [DS07] gave a quasi-polynomial time PIT algorithm for
depth-3 circuits with constant top fan-in by showing a structural result on the rank13 of a circuit.
[KS07] improved the complexity to polynomial-time using a different method, which is based on a
generalization of the Chinese Remaindering Theorem (CRT). The structural result of [DS07], along
with the rank extractors of [GR08], played a central role in devising polynomial-time constructible
hitting sets for depth-3 circuits with constant top fan-in over Q [KS11, KS09, SS13]. Ultimately, a
combination of ideas from the CRT method and rank extractors led to a polynomial-time hitting
set construction for the same model over any field [SS12, SS13]. Meanwhile, [Sax08, Kay10] gave
polynomial-time PIT for depth-3 powering circuits. Using ideas from [KS07] and [Sax08], [SSS13]

13Rank of a depth-3 circuit is the number of linearly independent linear polynomials appearing in the circuit.

10

gave polynomial-time PIT for the sum of a depth-3 circuit with constant top fan-in and a semi-
diagonal circuit (which is a special kind of a depth-4 circuit). [SSS09] showed that polynomial-time
PIT (hitting sets) for aproj(IMM2,d) implies polynomial-time PIT (hitting sets) for depth-3 circuits.

A quasi-polynomial time hitting set for set-multilinear depth-3 circuits with known variable-
partition was given by [FS12]. Independently and simultaneously, [ASS13] gave a quasi-polynomial
time hitting set for set-multilinear depth-3 circuits with unknown variable-partition (and more gen-
erally, for constant-depth pure formulas [NW97]) using a different technique, namely rank concen-
tration by translation. Set-multilinear depth-3 circuits (in fact, pure formulas) form a subclass of
ROABPs. [dOSlV16] gave subexponential-time hitting sets for multilinear depth-3 and depth-
4 formulas (and more generally, for constant-depth multilinear regular formulas) by reducing
the problem to constructing hitting sets for ROABPs. For multilinear depth-4 circuits with con-
stant top fan-in, [KMSV13] gave a quasi-polynomial time hitting set. This was improved to a
polynomial-time hitting set in [SV18]. Multilinear depth-4 circuits with constant top fan-in form
a subclass of depth-4 constant-occur formulas. [ASSS16] gave a unifying method based on al-
gebraic independence to design polynomial-time hitting sets for both depth-3 circuits with con-
stant top fan-in and constant-depth, constant-occur formulas. A generalization of depth-3 pow-
ering circuits to depth-4 is sums of powers of constant degree polynomials; [For15] gave a quasi-
polynomial time hitting set for this model. Recently, a sequence of work [PS20b,PS20a,Shp19] led
to a polynomial-time hitting set for depth-4 circuits with top fan-in at most 3 and bottom fan-in
at most 2 via a resolution of a conjecture of [Gup14, BMS13] on the algebraic rank of the factors
appearing in such circuits.

Edmonds’ model. An important special case of PIT is the following problem: given f = det(A0 +

∑i∈[n] xi Ai), where Ai ∈ Fn×n is a rank-1 matrix for every i ∈ [n] and A0 ∈ Fn×n is an arbitrary
matrix, check if f = 0 [Edm67]. This case of PIT, which can be thought of as a generalization of
PIT for determinants of read-once symbolic matrices, played an instrumental role in devising fast
parallel algorithms for several problems such as perfect matching, linear matroid intersection and
maximum rank matrix completion [Lov79,KUW86,MVV87,FGT16,ST17,NSV94,Mur93,GT20]. A
polynomial-time PIT for this model is known [Edm79,Lov89,Mur93,Gee99,IKS10]. [GT20] gave a
quasi-polynomial time hitting set via a certain derandomization of the Isolation Lemma [MVV87].
It is interesting to note that hitting sets for the orbits of polynomials computable by this model
imply hitting sets for the orbit of the determinant polynomial and also the orbit of the iterated
matrix multiplication polynomial via a known reduction [Val79] from ABPs to p-projections of
the determinant polynomial family.

We refer the reader to the surveys [Sax09, Sax14, SY10] for more details on some of the results and
the models mentioned above.

2 Preliminaries

Definition 12 (Hitting set generator). Let C be a set of n-variate polynomials and t ∈ N. A
polynomial map G : Ft → Fn is a hitting set generator for C if for every non-zero f ∈ C, we
have f ◦ G 6= 0.

We say the number of variables of G is t, and the degree of G – denoted by deg(G) – is the maxi-

11

mum of the degrees of the n polynomials that define G. We will denote the t-variate polynomial
f ◦ G by f (G). By treating a matrix A ∈ Fn×n as a linear transformation from Fn to Fn, we will
denote the polynomial map A ◦ G by AG and the t-variate polynomial f ◦ AG by f (AG). If the
defining polynomials of G have degree d0 and the degree of the polynomials in C is at most D, then
the degree of f (G) is at most d0D. Thus, if we are given the defining polynomials of G, then we can
construct a hitting set for C in time poly(n, (d0D)t) using the Schwartz-Zippel lemma, provided
also that |F| > d0D.

2.1 The Shpilka-Volkovich generator

Definition 13 (The Shpilka-Volkovich hitting set generator [SV15]). Assume that |F| ≥ n and let
α1, ..., αn be distinct elements of F. For i ∈ [n], let

Li(y) := ∏
j∈[n],j 6=i

y− αj

αi − αj

be the i-th Lagrange interpolation polynomial. Then, for t ∈ N, the Shpilka-Volkovich (SV) gen-
erator GSV

t : F2t → Fn is defined as GSV
t :=

(
G(1)t , ...,G(n)t

)
where,

G(i)t (y1, ..., yt, z1, ..., zt) =
t

∑
k=1

Li(yk) · zk.

Notice that deg
(
G(i)t

)
= n, and GSV

t+1|(yt+1=αi)
= GSV

t + ei · zt+1, where ei is the i-th standard

basis vector of Fn. Thus, Img
(
GSV

t
)
⊆ Img

(
GSV

t+1

)
and, continuing in this manner, Img

(
GSV

t
)
⊆

Img
(
GSV

t′
)

for any t′ ≥ t.

Observation 14. Let f ∈ F[x] be a non-zero polynomial that depends on only b of the x variables, and
g ∈ orb(f). Then, g has a monomial of support at most b and g(GSV

b) 6= 0.

Proof: Suppose that f depends on only the variables x1, . . . , xb. Let g = f (Ax) 6= 0, where
A ∈ GL(n, F). Suppose that A maps xi 7→ `i(x) for all i ∈ [n]. As A is invertible, `1, . . . , `n
are F-linearly independent. Let B be the b× n matrix whose i-th row is the coefficient vector of
`i for all i ∈ [b]. Then, rank(B) = b and there are b columns j1, . . . , jb of B that are also linearly
independent. This means the linear forms `′1, . . . , `′b obtained from `1, . . . , `b after setting the vari-
ables other than xj1 , . . . , xjb to 0 are also linearly independent. Thus, g(`′1, . . . , `′b) 6= 0 which is
only possible if g has a monomial whose support is contained in

{
xj1 , . . . , xjb

}
. Now observe that

g
(
GSV

b |(y1=αj1 ,y2=αj2 ,...,yb=αjb
)

)
6= 0.

The following observation, which allows us to construct a hitting set generator for a polynomial f
from a hitting set generator for ∂ f

∂xi
will be used crucially in the proofs of Theorems 8, 10 and 11.

Observation 15. Let f ∈ F[x] be an n-variate, degree d polynomial, and for some m ∈ N, let G : Fm →
Fn be a polynomial map of degree at most d′. If |F| > dd′ and there is an i ∈ [n] such that ∂ f

∂xi
(G) 6= 0,

then f (G + GSV
1) is not a constant.

12

Proof: If ∂ f
∂xi

(G) 6= 0, then there is a (β1, ..., βn) ∈ Img (G) such that

∂ f
∂xi

(β1, ..., βn) 6= 0,

because deg
(

∂ f
∂xi

(G)
)
≤ dd′ and |F| > dd′. Let r(z1) := f (β1, ..., βi−1, βi + z1, βi+1, ..., βn). Then,

∂r
∂z1

(0) =
∂ f
∂xi

(β1, ..., βn) 6= 0,

and so, f (β1, ..., βi−1, βi + z1, βi+1, ..., βn) is not a constant. Now, G + GSV
1 |(y1=αi)

= G + ei · z1. Let

Imgz1
(G + GSV

1) be the "partial image" of G + GSV
1 obtained by keeping the z1 variable alive and

setting all other variables to field elements. This means that (β1, ..., βi−1, βi + z1, βi+1, ..., βn) ∈
Imgz1

(G + GSV
1), and hence, f (G + GSV

1) is not a constant.

2.2 Low support rank concentration

Let F be a polynomial in x-variables with coefficients from Kw×w, where K is a field and w ∈ N.
For an m ∈ N, we say that F has support-m rank concentration over K if the coefficient of every
monomial in F is in the K-span of the coefficients of the monomials of support at most m in F.
Support of a monomial xα will be denoted as Supp (xα).

Observation 16. Let f = 1T · M1(x1)M2(x2) · · ·Mn(xn) · 1 ∈ F[x] be computable by an ROABP of
width w, and F = M1(x1)M2(x2) · · ·Mn(xn). For an m ∈ N and t1(z), . . . , tn(z) ∈ F[z], where z is a
set of variables different from x, suppose that F(x+ t(z)) := M1(x1 + t1(z))M2(x2 + t2(z)) · · ·Mn(xn +
tn(z)) ∈ F(z)w×w[x] has support-m rank concentration over F(z). Then, f (x1 + t1(z), . . . , xn + tn(z)),
when viewed as a polynomial in x-variables with coefficients from F[z], has an x-monomial of support at
most m, provided f 6= 0.

Proof: Let F(x + t(z)) = ∑α Cαxα, where Cα ∈ F[z]w×w. Then, f (x1 + t1(z), . . . , xn + tn(z)) =

∑α

(
1T · Cα · 1

)
xα. If f 6= 0, then there is an α such that 1T · Cα · 1 6= 0. If Supp (xα) ≤ m, then

there is nothing to prove. Otherwise, as F(x + t(z)) has support-m rank concentration over F(z),
Cα is in the F(z)-span of

{
Cβ : Supp

(
xβ
)
≤ m

}
. Thus, there is a β with Supp

(
xβ
)
≤ m such that

1T · Cβ · 1 is non-zero, as 1T · Cα · 1 is non-zero.

2.3 Algebraic rank and faithful homomorphisms

We say that polynomials f1, . . . , fm ∈ F[x] are algebraically independent over F, if they do not sat-
isfy any non-trivial polynomial equation over F, i.e., for any p ∈ F[y1, . . . , ym], p(f1, . . . , fm) = 0
only if p = 0. For f = (f1, . . . , fm), the transcendence degree (i.e., the algebraic rank) of f over
F is the cardinality of any maximal algebraically independent subset of { f1, . . . , fm} over F. The
notion of algebraic rank is well defined as algebraic independence satisfies the matroid properties.

13

For f = (f1, . . . , fm) ∈ F[x]m, let

Jx(f) :=


∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
... · · ·

...
∂ fm
∂x1

∂ fm
∂x2

· · · ∂ fm
∂xn


m×n

denote the Jacobian matrix of f. The following well-known lemma relates the transcendence de-
gree of f over F – denoted by tr-degF(f) – to the rank of the Jacobian.

Lemma 17 (The Jacobian criterion). Let f = (f1, . . . , fm) ∈ F[x]m be a tuple of polynomials of degree at
most D and tr-degF(f) = r. If char(F) = 0 or char(F) > Dr, then tr-degF(f) = rankF(x) Jx(f).

Definition 18 (Faithful homomorphisms). A homomorphism φ : F[x] → F[z] is said to be faithful
to f = (f1, . . . , fm) ∈ F[x]m if tr-degF (f) = tr-degF (φ(f)).

Lemma 19 (Theorem 2.4 in [ASSS16]). If a homomorphism φ : F[x]→ F[z] is faithful to f = (f1, . . . , fm) ∈
F[x]m , then for any p ∈ F[y1, . . . , ym], p(f) = 0 if and only if p(φ(f)) = 0.

The following lemma was proved in [ASSS16, BMS13].

Lemma 20 (Lemma 2.7 of [ASSS16]). Let f = (f1, ..., fm) be a tuple of polynomials of degree at most
D, tr-degF(f) ≤ r, and char(F) = 0 or > Dr. Let ψ : F[x] → F[z] be a homomorphism such that
rankF(x) Jx(f) = rankF(z)ψ(Jx(f)). Then, the map φ : F[x]→ F[z, t, y1, ..., yr] that, for all i ∈ [n], maps

xi →
(

r

∑
j=1

yjtij

)
+ ψ(xi)

is faithful to f.

We will also need the following observation in our proofs.

Observation 21. Let f = (f1, . . . , fm) ∈ F[x]m be a tuple of polynomials with tr-degF(f) = r. For any
A ∈ GL(n, F), let gi = fi(Ax) for all i ∈ [m] and g = (g1, . . . , gm). Then, tr-degF(g) = r.

Proof: Assume without loss of generality that f1, . . . , fr is a transcendence basis of f. We will show
that g1, . . . , gr is a transcendence basis of g. For contradiction, let p ∈ F[y1, . . . , yr] be such that
p(g1, . . . , gr) = 0. Then, p(g1, . . . , gr) = p(f1, . . . , fr)(Ax) = 0. As A is invertible, p(f1, . . . , fr) = 0.
Because f1, . . . , fr are algebraically independent, this implies that p = 0, and so, g1, . . . , gr are
algebraically independent. Also, if there exists a j ∈ [r + 1, m] such that g1, . . . , gr, gj are alge-
braically independent, then for all non-zero p ∈ F[y1, . . . , yr+1], p(g1, . . . , gr, gj) 6= 0. But, as
p(g1, . . . , gr, gj) = p(f1, . . . , fr, f j)(Ax) and A is invertible, for all p 6= 0, p(f1, . . . , fr, f j) 6= 0. This
means that tr-degF(f) > r, which contradicts the hypothesis of the observation.

3 Hitting sets for the orbits of commutative ROABPs

The strategy. (Recap) Let f = 1T · M1(x1)M2(x2) · · ·Mn(xn) · 1 be a width-w commutative
ROABP; here Mi(xi) ∈ Fw×w[xi] for all i ∈ [n]. Also, let F = M1(x1)M2(x2) · · ·Mn(xn). For any

14

A ∈ GL(n, F), let g = f (Ax) and G = F(Ax). For i ∈ [n], suppose that A maps xi 7→ `i(x), where `i
is a linear form, and let yi = `i(x) and y = {y1, . . . , yn}. Then, g = 1T ·M1(y1)M2(y2) · · ·Mn(yn) ·
1 and G = M1(y1)M2(y2) · · ·Mn(yn). We will show that if g 6= 0, then there exist explicit
“low” degree polynomials t1(z), . . . , tn(z), where z is a “small” set of variables such that g(x1 +
t1(z), . . . , xn + tn(z)) has a “low” support monomial. This will be done by proving that G(x1 +
t1(z), . . . , xn + tn(z)) has low support rank concentration in the “y-variables”. Applying Obser-
vation 16, we will get that g(x1 + t1(z), . . . , xn + tn(z)) has a low support y-monomial. This will
then imply that g(x1 + t1(z), . . . , xn + tn(z)) has a low support x-monomial, provided f has low
individual degree. Finally, we will plug in the SV generator to preserve the non-zeroness of g.
More precisely, we will prove the following theorem at the end of Section 3.2.

Theorem 22. Let f be an n-variate polynomial with individual degree at most d that is computable by a
width-w commutative ROABP. If |F| ≥ n, then GSV

(2dlog w2e(d+1)+1) is a hitting set generator for orb(f).

Notations and conventions. In the analysis, we will treat t1(z), . . . , tn(z) as formal variables t =
(t1, . . . , tn) while always keeping in mind the substitution map ti 7→ ti(z). For i ∈ [n], let ri = `i(t).
For S ⊆ [n], define rS = {ri : i ∈ S}. The F-linear independence of `1, . . . , `n allows us to treat y
and r as sets of formal variables. Notice that in this notation, G(x + t) = M1(y1 + r1)M2(y2 +
r2) · · ·Mn(yn + rn). Let A denote the matrix algebra Fw×w. For i ∈ [n], let Mi(yi) = ∑d

ei=0 ui,ei y
ei
i ,

where ui,ei ∈ A and Mi(yi + ri) = ∑d
bi=0 vi,bi y

bi
i , where vi,bi ∈ A[ri] ⊂ A[t]. As f is a commutative

ROABP, M1(y1), . . . , Mn(yn) commute with each other and hence ui,ei and uj,ej also commute for
i 6= j. The following observation, which we prove in Appendix A, implies that vi,ei and vj,ej also
commute for i 6= j.

Observation 23. For every i ∈ [n] and bi, ei ∈ {0, . . . , d},

1. vi,bi = ∑d
ei=0 (

ei
bi
) · rei−bi

i · ui,ei ,

2. ui,ei = ∑d
bi=0 (

bi
ei
) · (−ri)

bi−ei · vi,bi ,

where (a
b) = 0 if a < b.

For a set S = {i1, i2, . . . , i|S|} ⊆ [n], where i1 < i2 < . . . < i|S|, the vector (bi1 , bi2 , . . . , bi|S|) will be
denoted by (bi : i ∈ S). Let Supp (b) denote the support of the vector b which is defined as the
number of non-zero elements in it. We also define a parameter m := 2

⌈
log w2⌉+ 1.

3.1 The goal: low support rank concentration

We set ourselves the goal of proving that there exist explicit degree-n polynomials t1(z), . . . , tn(z),
where |z| = 2m, such that G(x1 + t1(z), . . . , xn + tn(z)) = M1(y1 + r1)M2(y2 + r2) · · ·Mn(yn +
rn) ∈ A[r1, . . . , rn][y] has support-(m − 1) rank concentration over F(z) in the y-variables. We
will show in this and the next section that this happens if all polynomials in a certain collection of
non-zero polynomials

{
hS(rS) : S ⊆ ([n]m)

}
⊆ F[r1, . . . , rn], where degrS

(hS(rS)) ≤ mdm+1, remain

non-zero under the substitution ti 7→ ti(z).14 The following lemma will help us achieve this goal.

Lemma 24. Let G, t, z, y and rS be as defined above. Suppose that the following two conditions are satisfied:

14We do not really need the degree bound on hS(rS).

15

1. For every S ⊆ ([n]m) and (bi : i ∈ S) ∈ {0, . . . , d}m, there is a non-zero polynomial hS(rS) such that

hS(rS) ·∏
i∈S

vi,bi ∈ F[t]-span

{
∏
i∈S

vi,b′i
: Supp

(
b′i : i ∈ S

)
< m

}
.

2. There exists a substitution ti 7→ ti(z) that keeps hS(rS) non-zero for all S ⊆ ([n]m).

Then, for every b = (bi : i ∈ [n]) ∈ {0, . . . , d}n,

∏
i∈[n]

vi,bi ∈ F(z)-span

{
∏

i∈[n]
vi,b′i

: Supp
(
b′i : i ∈ [n]

)
< m

}
, (1)

and G(x1 + t1(z), . . . , xn + tn(z)) has support-(m− 1) rank concentration in the y-variables over F(z).

Proof: Consider a b = (bi : i ∈ [n]) ∈ {0, . . . , d}n with Supp(b) ≥ m. Pick an S ⊆ ([n]m) such that
Supp (bi : i ∈ S) = m. As hS(rS) is a non-zero polynomial and the substitution ti 7→ ti(z) keeps it
non-zero,

∏
i∈S

vi,bi ∈ F(z)-span

{
∏
i∈S

vi,b′i
: Supp

(
b′i : i ∈ S

)
< m

}
.

Also, as vi,bi and vj,bj commute when i 6= j,

∏
i∈[n]

vi,bi ∈ F(z)-span

∏
i∈S

vi,b′i
· ∏

j∈[n]\S
vj,bj : Supp

(
b′i : i ∈ S

)
< m


= F(z)-span

{
∏

i∈[n]
vi,b′i

: Supp
(
b′i : i ∈ S

)
< m and b′i = bi ∀i ∈ [n] \ S

}

⊆ F(z)-span

{
∏

i∈[n]
vi,b′i

: Supp
(
b′i : i ∈ [n]

)
< Supp(b)

}
.

Repeat the above argument for every b′ ∈ {0, . . . , d}n such that m ≤ Supp(b′) < Supp(b). Con-
tinuing in this manner yields (1) for all b ∈ {0, . . . , d}n. Since ∏i∈[n] vi,bi is the coefficient of the
monomial yb := yb1

1 · · · y
bn
n in G(x1 + t1(z), . . . , xn + tn(z)), the polynomial G(x1 + t1(z), . . . , xn +

tn(z)) has support-(m− 1) rank concentration in the y-variables over F(z).

3.2 Achieving rank concentration

We will now see how to satisfy conditions 1 and 2 of Lemma 24 such that degrS
(hS(rS)) ≤ mdm+1,

ti(z) is an explicit degree-n polynomial, and |z| = 2m. Assume without loss of generality that
S = [m]. For b = (b1, . . . , bm) and e = (e1, . . . , em) in {0, . . . , d}m, define (b

e) := ∏i∈[m] (
bi
ei
),

where, as before, (bi
ei
) = 0 if bi < ei. Also, let vb := ∏i∈[m] vi,bi and ue := ∏i∈[m] ui,ei . Define

r := (−r1, . . . ,−rm), rb := ∏i∈[m](−ri)
bi and r−e := ∏i∈[m](−ri)

−ei . We now define some vectors

16

and matrices by fixing an arbitrary order on the elements of {0, . . . , d}m.

Let V :=
(
vb : b ∈ {0, . . . , d}m) and U :=

(
ue : e ∈ {0, . . . , d}m); V is a row vector in A[r](d+1)m

whereas U is a row vector in A(d+1)m
. Let C := diag(rb : b ∈ {0, . . . , d}m) and D := diag(r−e :

e ∈ {0, . . . , d}m); both C and D are (d + 1)m × (d + 1)m diagonal matrices. Finally, let M be a
(d + 1)m × (d + 1)m numeric matrix whose rows and columns are indexed by b ∈ {0, . . . , d}m and
e ∈ {0, . . . , d}m respectively. The entry of M indexed by (b, e) contains (b

e). We now make the
following claim, the proof of which can be found in Appendix A.

Claim 25. Let U, V, C, M and D be as defined above. Then, U = VCMD.

In [ASS13], a very similar equation was called the transfer equation and we will refer to U = VCMD
by the same name. Let F :=

{
b ∈ {0, . . . , d}m : Supp(b) = m

}
; clearly, |F| = dm. 15 Also, let us

call the set of all vectors
(
ne : e ∈ {0, . . . , d}m) ∈ F(d+1)m

for which ∑e∈{0,...,d}m neue = 0 the null
space of U. Then, we have the following lemma.

Lemma 26. There are vectors {nb : b ∈ F} in the null space of U such that the following holds: Let N
be the (d + 1)m × dm matrix whose rows are indexed by e ∈ {0, . . . , d}m and whose columns are indexed
by b ∈ F and whose column indexed by b is nb. Then, the square matrix [CMDN]F is invertible, where
[CMDN]F is the sub-matrix of CMDN consisting of only those rows of CMDN that are indexed by b ∈ F.

We need the value of m in the proof of the lemma which is given in Appendix A. For now, observe
that det([CMDN]F) ∈ F[r]: Every entry of [CMDN]F is a F-linear combination of some entries of
the matrix CMD. The entry of CMD indexed by (b, e) is (b

e) · rb · r−e, which is non-zero only if
bi ≥ ei for all i ∈ [m]. In this case, rb · r−e is a monomial in the r-variables. Thus, det([CMDN]F)
– which is a polynomial in the entries of [CMDN]F – is a polynomial in the r-variables. This
observation leads to the following corollary of the above lemma, which immediately gives a way
to satisfy condition 1 of Lemma 24.

Corollary 27. Let h(r) := det([CMDN]F). Then, degr (h(r)) ≤ mdm+1. Also, for every b ∈ F,

h(r) · vb ∈ F[t]-span
{

vb′ : b′ ∈ {0, . . . , d}m and Supp
(
b′
)
< m

}
.

Proof: As mentioned in the previous paragraph, every entry of [CMDN]F is an F-linear combina-
tion of the entries of CMD which themselves are of the form (b

e) · rb · r−e. As, b, e ∈ {0, . . . , d}m

and r has m variables, the degree of rb · r−e in the r-variables is at most md. Since [CMDN]F is a
dm × dm matrix, the degree of det([CMDN]F) in the r-variables is at most mdm+1.

U = VCMD implies that VCMDN = 0. Let VF be the sub-vector of V consisting solely of the
entries indexed by b ∈ F. As VCMDN = 0, every entry of VF [CMDN]F is in

F[t]-span
{

vb′ : b′ ∈ {0, . . . , d}m \ F
}
= F[t]-span

{
vb′ : b′ ∈ {0, . . . , d}m and Supp(b′) < m

}
.

So by multiplying VF [CMDN]F by the adjoint of [CMDN]F, we get that every entry of VF times
det([CMDN]F), i.e., h(r) · vb where b ∈ F is in F[t]-span

{
vb′ : b′ ∈ {0, . . . , d}m and Supp(b′) < m

}
.

15There is a slight overloading of notation here: We have used F before at the beginning of Section 3 to denote the
product M1(x1)M2(x2) · · ·Mn(xn). However, since all our arguments involve only G = F(Ax) and not F, we would
use F in this section to denote the set that is mentioned here.

17

The following claim about h(r) gives us a way to satisfy condition 2 of Lemma 24.

Claim 28. The polynomial h(r), when viewed as a polynomial in the t-variables after setting ri = `i(t),
has a t-monomial of support at most m.

Proof: The polynomial h(r) = h(`1(t), . . . , `m(t)) 6= 0 as [CMDN]F is an invertible matrix and
`1, . . . , `m are F-linearly independent. Then, as there are only m r-variables, the claim follows
immediately from Observation 14.

Thus, by substituting GSV
m for t, the polynomial h(r) remains non-zero, satisfying condition 2. Note

that the number of variables in GSV
m , i.e., |z| = 2m and its degree is n. We are now in a position to

prove Theorem 22.

Proof of Theorem 22

Let f = 1T · M1(x1)M2(x2) · · ·Mn(xn) · 1 be a width-w commutative ROABP having individual
degree at most d; here Mi ∈ Fw×w[xi] for all i ∈ [n]. Also, let F = M1(x1)M2(x2) · · ·Mn(xn). For
any A ∈ GL(n, F), let g = f (Ax) and G = F(Ax). Suppose that A maps xi 7→ `i(x) and let yi =
`i(x) for all i ∈ [n]. Then, g = 1T ·M1(y1)M2(y2) · · ·Mn(yn) · 1 and G = M1(y1)M2(y2) · · ·Mn(yn).
In Sections 3.1 and 3.2, we have shown that G

(
x + GSV

m
)

has support-(m− 1) rank concentration
(for m = 2

⌈
log w2⌉+ 1) over F(z) in the y-variables; the z-variables are the variables introduced

by the GSV
m generator. From Observation 16, if g(x) 6= 0, then g

(
x + GSV

m
)
, when viewed as a

polynomial over F[z] in the y-variables16, has a y-monomial of support at most m − 1. Let the
y-degree of this monomial be D′. As the individual degree of every x-variable in f is at most
d, the individual degree of every y-variable in g is also at most d. Thus, D′ ≤ (m− 1)d. As the
homogeneous component of g

(
x + GSV

m
)

of y-degree D′ is non-zero, the homogeneous component
of g

(
x + GSV

m
)

(now viewed as polynomial over F[z] in the x-variables) of x-degree D′ must also
be non-zero, since `1, . . . , `n are linearly independent. This means that g(x + GSV

m), when viewed
as a polynomial over F[z] in the x-variables, has an x-monomial of support (in fact, degree) at
most D′ ≤ (m− 1)d. Thus, g

(
GSV
(m−1)d + G

SV
m

)
6= 0. Now, it follows directly from the definition of

the SV generator that GSV
(m−1)d + G

SV
m = GSV

m+(m−1)d and so g
(
GSV

m+(m−1)d

)
6= 0. Replacing m by its

value 2
⌈
log w2⌉+ 1 proves the theorem. Note that the SV generator needs |F| ≥ n.

3.3 Proofs of Theorems 6 and 7

Proof of Theorem 6: Let f be an n-variate polynomial computed by a width-w commutative ROABP
of individual degree at most d, and g ∈ orb (f). Then, from Theorem 22, g

(
GSV
(2dlog w2e(d+1)+1)

)
6= 0

whenever g 6= 0. Now, GSV
(2dlog w2e(d+1)+1) has 2

(
2
⌈
log w2⌉ (d + 1) + 1

)
variables, and is of degree n.

So g
(
GSV
(2dlog w2e(d+1)+1)

)
also has 2

(
2
⌈
log w2⌉ (d + 1) + 1

)
variables. Since the individual degree

of f is at most d, the deg(f) = deg(g) ≤ nd. So the degree of g
(
GSV
(2dlog w2e(d+1)+1)

)
is at most

n2d. Thus, as |F| > n2d, a hitting set for g can be computed in time
(
n2d + 1

)(2dlog w2e(d+1)+1) =

(nd)O(d log w).
16This we can do as g

(
x + GSV

m
)
= 1T · G

(
x + GSV

m
)
· 1, and G

(
x + GSV

m
)

can be viewed as a polynomial over A[z] in
the y-variables.

18

Proof of Theorem 7: Let f be an n-variate polynomial such that f = ∑i∈[s] ∏j∈[n] fi,j(xj), where each
fi,j(xj) is a univariate polynomial in xj. For all j ∈ [n], define the matrix Mj = diag(f1,j, . . . , fs,j).
Then f = 1T · M1(x1)M2(x2) · · ·Mn(xn) · 1. Moreover, as the matrices M1, . . . , Mn are diagonal,
they commute with each other. Hence, f is computed by a width-s commutative ROABP and the
theorem follows from Theorem 6.

Hitting set generator for the orbits of sparse polynomials. Let f = ∑j∈[s] cjx
ej,1
1 · · · x

ej,n
n be a sparse

polynomial, where cj ∈ F for j ∈ [s]. Observe that f can be computed by a commutative ROABP as
follows: Let M1(x1) := diag(c1xe1,1

1 , . . . csxes,1
1) and, for 2 ≤ i ≤ n, let Mi(xi) := diag(xe1,i

i , . . . xes,i
i).

Then, f = 1T ·M1(x1) · · ·Mn(xn) · 1. Notice that, as all matrices Mi are diagonal, it is a commu-
tative ROABP and its width is s. Thus, if the individual degree of f is at most d, then Theorem
22 implies that GSV

(2dlog s2e(d+1)+1) is a hitting set generator for orbF(f). However, as mentioned in
the introduction, a parallel and independent work [MS21] shows that for the case of sparse poly-
nomials the low individual degree restriction can be removed. They prove the following theorem
whose proof we provide in Appendix C.

Theorem 29. Let f be an n-variate, s-sparse polynomial of degree d and g ∈ orb(f). Also, let |F| > nd
and char(F) = 0 or > d. Then, g 6= 0 implies g

(
GSV
dlog se+1

)
6= 0. In fact, if g is not a constant, then

neither is g
(
GSV
dlog se+1

)
.

We will make use of the above theorem in Sections 5 and 6 to prove Theorems 10 and 11, respec-
tively.

4 Hitting sets for the orbits of multilinear constant-width ROABPs

The strategy. (Recap) Let f = 1T ·M1(x1)M2(x2) · · ·Mn(xn) · 1 be a multilinear, width-w ROABP;
here Mi(xi) ∈ Fw×w[xi] for all i ∈ [n]. Also, let F = M1(x1)M2(x2) · · ·Mn(xn). For any A ∈
GL(n, F), let g = f (Ax) and G = F(Ax). For i ∈ [n], suppose that A maps xi 7→ `i(x), where `i is
a linear form, and let yi = `i(x) and y = {y1, . . . , yn}. Then, g = 1T ·M1(y1)M2(y2) · · ·Mn(yn) · 1
and G = M1(y1)M2(y2) · · ·Mn(yn). Just like in the previous section, we will show that if g 6= 0,
then there exist explicit “low” degree polynomials t1(z), . . . , tn(z), where z is a “small” set of
variables such that G(x1 + t1(z), . . . , xn + tn(z)) has “low” support rank concentration in the “y-
variables”. While in the rank concentration argument in the previous section the x-variables were
translated only once, here the translations can be thought of as happening sequentially and in
stages. There will be dlog ne stages with each stage also consisting of multiple translations. After
the p-th stage, the product of any 2p consecutive matrices in G will have low support rank concen-
tration in the y-variables. Thus, after dlog ne stages, we will have low support rank concentration
in the y-variables for G(x1 + t1(z), . . . , xn + tn(z)).

Notations and conventions. Much like in the previous section, we will first translate the x-
variables by the t-variables and then substitute the t-variables by low degree polynomials in a
small set of variables. We will translate the x-variables by dlog ne groups of t-variables, t1, . . . , tdlog ne.
For all p ∈ dlog ne, the group tp will have µ := w2 +

⌈
log w2⌉ sub-groups of t-variables, tp,1, . . . ,

tp,µ. For all p ∈ dlog ne and q ∈ [µ], tp,q :=
{

tp,q,1, . . . , tp,q,n
}

. Thus, finally the translation will look
like

19

xi → xi + ∑
p∈dlog ne,

q∈[µ]

tp,q,i

for all i ∈ [n]. Finally, we will substitute the t-variables as tp,q,i 7→ sp,q · z
βp,q(i)
p,q , where βp,q(i) will be

fixed later in the analysis. Let rp,q,i := `i
(
tp,q
)
; notice that for all i ∈ [n], yi is translated as

yi → yi + ∑
p∈dlog ne,

q∈[µ]

`i
(
tp,q
)
= yi + ∑

p∈dlog ne,
q∈[µ]

rp,q,i.

For the purpose of analysis, we will think of the translation as happening sequentially in the order
t1,1, . . . , t1,µ, t2,1, . . . , t2,µ, . . . , tn,1, . . . tn,µ, i.e., we will first translate by t1,1, then by t1,2, and so on.
Let us denote the order thus imposed on the set {(p, q) : p ∈ [dlog ne] , q ∈ [µ]} by ≺.

For a set S = {i1, i2, . . . , i|S|} ⊆ [n], where i1 < i2 < . . . < i|S|, the vector (bi1 , bi2 , . . . , bi|S|) will be
denoted by (bi : i ∈ S). Let Supp (b) denote the support of the vector b which is defined as the
number of non-zero elements in it.

The inductive argument given on the next two subsections is inspired by the “merge-and-reduce”
idea from [FS13b, FSS14].

4.1 Low support rank concentration: an inductive argument

In this and the next sections, we will prove the following lemma. Let A := Fw×w.

Lemma 30. There exist
{

βp,q(i) : p ∈ [dlog ne] , q ∈ [µ], i ∈ [n]
}
⊂ Z≥0, such that

G

x1 + ∑
p∈dlog ne,

q∈[µ]

sp,q · z
βp,q(1)
p,q , . . . , xn + ∑

p∈dlog ne,
q∈[µ]

sp,q · z
βp,q(n)
p,q

 ,

when treated as a polynomial in the y-variables over A[rp,q,i : p ∈ [dlog ne] , q ∈ [µ], i ∈ [n]], has
support-µ rank concentration in the y-variables over F

(
sp,q, zp,q : p ∈ [dlog ne] , q ∈ [µ]

)
. Moreover,{

βp,q(i) : p ∈ [dlog ne] , q ∈ [µ], i ∈ [n]]
}

can be found in time nO(w4) and each βp,q(i) ≤ nO(w4).

We will prove this lemma by induction on (p, q). Let us call
{

βp,q(i) : p ∈ [dlog ne] , q ∈ [µ], i ∈ [n]]
}

efficiently computable and good if they can be found in time nO(w4) and each βp,q(i) ≤ nO(w4). Pre-
cisely, the induction hypothesis is as follows.

Induction hypothesis. Just before translating by tp∗,q∗-variables, we will assume that the follow-
ing is true: there exist efficiently computable and good

{
βp,q(i) : (p, q) ≺ (p∗, q∗)

}
such that the

product of any 2p∗ consecutive matrices in

G

x1 + ∑
(p,q)≺(p∗,q∗)

sp,q · z
βp,q(1)
p,q , . . . , xn + ∑

(p,q)≺(p∗,q∗)
sp,q · z

βp,q(n)
p,q


20

has support-(2µ− (q∗ − 1)) rank concentration in the y-variables over F
(
sp,q, zp,q : (p, q) ≺ (p∗, q∗)

)
.

Base case. In the base case, (p∗, q∗) = (1, 1). Observe that we can assume that w ≥ 2; if w = 1,
then g is a product of univariates and the existence of a polynomial time hitting set follows from
Observation 14. For any w ≥ 2, 2 ≤ 2µ. As a product of any two consecutive matrices in G has
support 2 ≤ 2µ rank concentration in the y-variables over F, the base case is satisfied.

Induction step. We need to show that there exist efficiently computable and good
{

βp∗,q∗(i) : i ∈ [n]
}

such that after translating by tp∗,q∗ and substituting tp∗,q∗,i → sp∗,q∗ · z
βp∗ ,q∗ (i)
p∗,q∗ , the product of any 2p∗

consecutive matrices in

G

x1 + ∑
(p,q)4(p∗,q∗)

sp,q · z
βp,q(1)
p,q , . . . , xn + ∑

(p,q)4(p∗,q∗)
sp,q · z

βp,q(n)
p,q


has support-(2µ− q∗) rank concentration in the y-variables over F

(
sp,q, zp,q : (p, q) 4 (p∗, q∗)

)
. If

q∗ < µ, then this would mean that the induction hypothesis holds immediately before translation
by tp∗,q∗+1. On the other hand, if q∗ = µ, then the following easy-to-verify observation implies that
the induction hypothesis holds immediately before translation by tp∗+1,1.

Observation 31. Suppose that
{

βp,q(i) : (p, q) 4 (p∗, µ)
}

are such that the product of any 2p∗ consecu-
tive matrices in

G

x1 + ∑
(p,q)4(p∗,µ)

sp,q · z
βp,q(1)
p,q , . . . , xn + ∑

(p,q)4(p∗,µ)
sp,q · z

βp,q(n)
p,q


has support-µ rank concentration in the y-variables over F

(
sp,q, zp,q : (p, q) 4 (p∗, µ)

)
. Then the product

of any 2p∗+1 consecutive matrices in

G

x1 + ∑
(p,q)4(p∗,µ)

sp,q · z
βp,q(1)
p,q , . . . , xn + ∑

(p,q)4(p∗,µ)
sp,q · z

βp,q(n)
p,q


has support-2µ rank concentration in the y-variables over F

(
sp,q, zp,q : (p, q) 4 (p∗, µ)

)
.

Simplifying notations for the ease of exposition. By focusing on the induction step, we will
henceforth denote F

(
sp,q, zp,q : (p, q) ≺ (p∗, q∗)

)
by F, and for all i ∈ [n],

Mi

yj + ∑
(p,q)≺(p∗,q∗)

`i

(
sp,q · z

βp,q(1)
p,q , . . . , sp,q · z

βp,q(n)
p,q

)
by Mi(yi), tp∗,q∗,i by ti, rp∗,q∗,i by ri, sp∗,q∗ by s, zp∗,q∗ by z and βp∗,q∗(i) by β(i).

Without loss of generality, we shall consider the product M1(y1 + r1) · · ·Mm(yn + rm) of the first
m = 2p∗ matrices. Our goal is to show that there exist efficiently computable and good {β(i) : i ∈ [m]}
such that after substituting ti → s · zβ(i), the above product has support-(2µ − q∗) rank concen-
tration in the y-variables over F(s, z) assuming that M1(y1) · · ·Mm(ym) has support-(2µ− (q∗ − 1))
rank concentration in the y-variables over F.

21

4.2 Details of the induction step

Recalling some notations. Before we show how to achieve rank concentration, let us recall some
notations defined in Section 3. While in Section 3, the individual degree is d, here the individual
degree is 1 and so, we modify the definitions accordingly. A is used to denote the matrix algebra
Fw×w. For i ∈ [m], Mi(yi) = ∑1

ei=0 ui,ei y
ei
i , where ui,ei ∈ A and Mi(yi + ri) = ∑1

bi=0 vi,bi y
bi
i , where

vi,bi ∈ A[ri] ⊂ A[t]. For b = (b1, . . . , bm) and e = (e1, . . . , em) in {0, 1}m, (b
e) := ∏i∈[m] (

bi
ei
). Also,

vb := ∏i∈[m] vi,bi and ue := ∏i∈[m] ui,ei . Moreover, r := (−r1, . . . ,−rm), rb := ∏i∈[m](−ri)
bi and

r−e := ∏i∈[m](−ri)
−ei . Let t := (t1, . . . , tn).

The following vectors and matrices are defined by fixing an arbitrary order on the elements of
{0, 1}m. V :=

(
vb : b ∈ {0, 1}m) and U :=

(
ue : e ∈ {0, 1}m); V is a row vector in A[r]2

m
whereas

U is a row vector in A2m
. Both C := diag(rb : b ∈ {0, 1}m) and D := diag(r−e : e ∈ {0, 1}m) are

2m × 2m diagonal matrices. Finally, M is a 2m × 2m numeric matrix whose rows and columns were
indexed by b ∈ {0, 1}m and e ∈ {0, 1}m, respectively. The entry of M indexed by (b, e) contains
(b

e). The proof of the following transfer equation is same as the proof of Claim 25.

Claim 32. Let U, V, C, M and D be as defined above. Then, U = VCMD.

Let F :=
{

b ∈ {0, 1}m : Supp(b) > 2µ− q∗
}

.17 Also, recall that the the null space of U is the set of
all vectors

(
ne : e ∈ {0, 1}m) ∈ F2m

for which ∑e∈{0,1}m neue = 0. We have the following lemma.

Lemma 33. There are vectors {nb : b ∈ F} in the null space of U such that the following holds: Let
N be the 2m × |F| matrix whose rows are indexed by e ∈ {0, 1}m and whose columns are indexed by
b ∈ F and whose column indexed by b is nb. Then, the square matrix [CMDN]F is invertible, where
[CMDN]F is the sub-matrix of CMDN consisting of only those rows of CMDN that are indexed by F.
Also, det ([CMDN]F) ∈ F[r] ⊂ F[t] can be expressed as the ratio of a polynomial in F[t] that contains a
monomial of degree at most 2w2µ in the t-variables and a product of linear forms in F[t].

The proof of this lemma, which uses the value of µ, is given in Appendix B. We now complete the
induction step using this lemma. As det([CMDN]F) is a polynomial in F[r] we get the following
corollaries.

Corollary 34. Let h(r) := det([CMDN]F). Then, for every b ∈ F,

h(r) · vb ∈ F[t]-span
{

vb′ : b′ ∈ {0, 1}m and Supp
(
b′
)
≤ 2µ− q∗

}
. (2)

Proof: Same as the proof of Corollary 27.

Corollary 35. Suppose {β(i) : i ∈ [n]} are such that the substitution ti 7→ s · zβ(i) keeps all non-zero
polynomials in F[t] containing a monomial of degree at most 2w2µ in the t-variables non-zero. Then, the
product M1(y1 + r1) · · ·Mm(ym + rm) has support-(2µ− q∗) rank concentration in the y-variables over
F(s, z) after substituting ti → s · zβ(i).

Proof: Multiply both sides of (2) by (h(r))−1 after substituting ti 7→ s · zβ(i).

17There is a slight overloading of notation here: We have used F before at the beginning of Section 4 to denote the
product M1(x1)M2(x2) · · ·Mn(xn). However, since all our arguments involve only G = F(Ax) and not F, we would
use F in this section to denote the set that is mentioned here.

22

We now prove that {β(i) : i ∈ [n]} as in the above corollary can be computed efficiently.

Claim 36. There exist {β(i) : i ∈ [n]} such that the substitution ti 7→ s · zβ(i) keeps all non-zero polyno-
mials in F[t] containing a monomial of degree at most 2w2µ in the t-variables non-zero. Moreover, we can
find all the β(i) in time nO(w4) and each β(i) ≤ nO(w4).

Proof: Because of the presence of s, the substitution ti 7→ s · zβ(i) keeps any two homogeneous
polynomials of different degrees distinct (unless it maps both of them to 0). So, we need to find
{β(i) : i ∈ [n]} such that the substitution ti 7→ zβ(i) maps any two t-monomials of degree at most
2w2µ = O(w4) to distinct monomials in z. Now, there are at most (n+2w2µ

2w2µ
) = nO(w4) such mono-

mials. So, [KS01] implies that we can find a {β(i) : i ∈ [n]} where each β(i) ≤ nO(w4) in time
nO(w4).

This completes the induction step. We now ready to prove Lemma 30 stated in Section 4.1.

Proof of Lemma 30. So far we have proved that there exist
{

βp,q(i) : p ∈ [dlog ne] , q ∈ [µ], i ∈ [n]]
}

,
such that

G

x1 + ∑
p∈dlog ne,

q∈[µ]

sp,q · z
βp,q(1)
p,q , . . . , xn + ∑

p∈dlog ne,
q∈[µ]

sp,q · z
βp,q(n)
p,q


has support-µ rank concentration in the y-variables over F

(
sp,q, zp,q : p ∈ [dlog ne] , q ∈ [µ]

)
. More-

over, for each (p, q), we can find all βp,q(i) in time nO(w4) and each βp,q(i) ≤ nO(w4). However, since
the algorithm that follows from [KS01] is oblivious, the βp,q(i) found for some fixed (p, q) can be
used for all values of (p, q). This proves the lemma.

4.3 Proof of Theorem 9

Let f = 1T ·M1(x1)M2(x2) · · ·Mn(xn) · 1 be a multilinear width-w ROABP; here Mi(xi) ∈ Fw×w[xi]
for all i ∈ [n]. Also, let F = M1(x1)M2(x2) · · ·Mn(xn). For any A ∈ GL(n, F), let g = f (Ax)
and G = F(Ax). For i ∈ [n], suppose that A maps xi 7→ `i(x), where `i is a linear form,
and let yi = `i(x) and y = {y1, . . . , yn}. Then, g = 1T · M1(y1)M2(y2) · · ·Mn(yn) · 1 and G =
M1(y1)M2(y2) · · ·Mn(yn). Let µ = w2 +

⌈
log w2⌉. From Lemma 30, there exist polynomials,

say t1, . . . , tn, in F
[
sp,q, zp,q : p ∈ [dlog ne] , q ∈ [µ]

]
of degree at most nO(w4) such that G(x1 +

t1, . . . , xn + tn) has support-µ rank concentration in the y-variables over F
({

sp,q, zp,q
}

p,q

)
. More-

over, these polynomials can be computed in time nO(w4). Suppose that g 6= 0. Then, from Ob-
servation 16, g(x1 + t1, . . . , xn + tn) has a support-µ, y-monomial when viewed as a polynomial
over F

[{
sp,q, zp,q

}
p,q

]
in the y-variables. Since f is multilinear, as seen in the proof of Theorem

22, g(x1 + t1, . . . , xn + tn) has a support-µ, x-monomial. Thus, g
(
GSV

µ + (t1, . . . , tn)
)
6= 0. Now,

g
(
GSV

µ + (t1, . . . , tn)
)

is a polynomial in 2µ + µ · dlog ne variables over F. Also, its degree is at

most nO(w4). So, if |F| > nO(w4), a hitting set for g can be computed in time

23

nO(w4·µ·log n) = nO(w6·log n).

This, along with the time required to compute t1, . . . , tn, still gives a nO(w6·log n)-time hitting set for
g.

5 Hitting sets for the orbits of depth four, constant-occur formulas

In this section, we will show the existence of quasi-polynomial time hitting sets for the orbits of
depth-4, occur-k formulas. Without loss of generality, we will assume that the top-most gate of
a formula is a + gate. The argument that we present in this section for the depth ∆ = 4 case of
Theorem 10 can be generalised to work for arbitrary depths. The general argument can be found
in Appendix D.

For some k ∈N, let f ∈ F[x] be an n-variate, degree-D polynomial computed by a (4, k, s) formula,
i.e., a depth-4, occur-k formula of size-s. We will identify f with the formula computing it. As
mentioned in Section 1.3, we first upper bound the top fan-in of f in Section 5.1 and then use the
notion of faithful homomorphisms to construct hitting sets for orb(f).

5.1 Upper bounding the top fan-in of f

To upper bound the fan-in of f , we show that for all i ∈ [n], ∂ f
∂xi

is a depth-4, occur-k′ formula with
top fan-in at most k; here k′ is not too large compared to k (see Claim 37 below). We then argue in
Claim 38 that there exists an i ∈ [n] such that a hitting set generator for orb(f) can be constructed
using a hitting set generator for orb(∂ f

∂xi
). Thus, by overloading the notation and referring to ∂ f

∂xi
as

f , we can assume that the top fan-in of f is at most k.

Claim 37. Let f be a (4, k, s) formula. Then, for every i ∈ [n], ∂ f
∂xi

is a (4, 2k2, 2ks) formula with top fan-in
bounded by k.

Proof: Let x = xi. Let f = ∑i∈[m] fi, and x be present only in f1, . . . , fr, where r ≤ k. Furthermore,
for all i ∈ [r], let fi = ∏j∈mi

q
ei,j
i,j and x be present only in qi,1, . . . qi,ri , ∑i∈[r] ri ≤ k. Here, qi,j are

s-sparse polynomials. Now,

∂ f
∂x

= ∑
i∈[r]

(
mi

∏
j=ri+1

q
ei,j
i,j

)
·

 ∑
j∈[ri]

ei,j
∂qi,j

∂x
· qei,j−1

i,j · ∏
j′∈[ri]
j′ 6=j

q
ei,j′

i,j′


= ∑

i∈[r]
∑

j∈[ri]

ei,j
∂qi,j

∂x
· ∏

j′∈[mi]

q
e′i,j′
i,j′

 ,

where e′i,j′ = ei,j′ for j′ 6= j and e′i,j = ei,j − 1. First of all, notice that the top fan-in of ∂ f
∂x is at most

∑i∈[r] ri ≤ k, its depth is 4, and as the leaves are still qi,j or ∂qi,j
∂x , the sparsity of the polynomials

labelling the leaves are also at most s. However, the size and the occur may change.

24

For all i ∈ [r], let the occur of fi be pi ≤ k; then the occur of ∏j′∈[mi] q
e′i,j′
i,j′ is at most pi. Also, as ∂qi,j

∂x

is an s-sparse polynomial, its occur is 1. Then, the occur of ∂ f
∂x is at most

∑
i∈[r]

ri (1 + pi) ≤ ∑
i∈[r]

ri + ∑
i∈[r]

rik ≤ k + k2 ≤ 2k2.

Similarly, suppose that the size of fi is si ≤ s− 1 18; then the size of ∏j′∈[mi] q
e′i,j′
i,j′ is at most si − 1 (as

e′i,j = ei,j − 1). Also, as the size of qi,j is ≤ s, the size of ∂qi,j
∂x is at most s. So, the size of ∂ f

∂x is at most

∑
i∈[r]

ri (s + si + 1) ≤ ∑
i∈[r]

ri (s + s) ≤ 2ks.

We now show that there exists an i ∈ [n] such that a hitting set generator for orb(f) can be con-
structed using a hitting set generator for orb(∂ f

∂xi
).

Claim 38. Let f ∈ F[x] be an n-variate polynomial of degree D, and char(F) = 0 or > D. There is an
i ∈ [n] such that ∂ f

∂xi
6= 0, and if G is a hitting set generator for orb

(
∂ f
∂xi

)
, then G̃ := G + GSV

1 is a hitting
set generator for orb(f), provided |F| > deg(G) · D.

Proof: Let A ∈ GL(n, F) and g = f (Ax). If f is a constant, then constructing a hitting set for
orb(f) is trivial. Otherwise, there exists an i ∈ [n] such that ∂ f

∂xi
6= 0 (because char(F) = 0 or >

D). Suppose that a polynomial map G is a hitting set generator for orb
(

∂ f
∂xi

)
. The gradient of a

polynomial p(x), denoted by ∇p, is the column vector
(

∂p
∂x1

∂p
∂x2

. . . ∂p
∂xn

)T
. By the chain rule of

differentiation,

∇g = AT · [∇ f](Ax).

As AT is invertible, ∂ f
∂xi

(AG) 6= 0 =⇒ [∇ f](AG) 6= 0 =⇒ [∇g](G) 6= 0 =⇒ ∃j ∈
[n] such that ∂g

∂xj
(G) 6= 0. Since |F| > deg(G) · D, by Observation 15, g(G̃) is not a constant.

All we need to do now is construct a hitting set generator for orb
(

∂ f
∂xi

)
. Overloading the notation,

we refer to ∂ f
∂xi

as f , which is computed by a (4, k, s) formula whose top fan-in is at most k.

5.2 Constructing a faithful homomorphism for the orbits

Let f = ∑i∈[m] fi be a (4, k, s) formula. From the discussion in the previous section, we can
assume without loss of generality that m ≤ k. Let A ∈ GL(n, F), and gi = fi(Ax) for all
i ∈ [m]. Recall that a homomorphism φ is said to be faithful to g = (g1, . . . , gm) ∈ F[x]m if
tr-degF (g) = tr-degF (φ(g)). Also, from Lemma 19, if φ is faithful to g, then for any m-variate

181 less than s, as fi is connected to the top-most + gate by an edge.

25

polynomial p, p(φ(g)) = 0 if and only if p(g) = 0. Thus, if we have a homomorphism φ that
is faithful to g (irrespective of A), then we can use φ as a hitting set generator for orb(f). The
following lemma helps us construct such a homomorphism.

Lemma 39. Let f = (f1, ..., fm) ∈ F[x]m be a tuple of n-variate polynomials of degree at most δ, A ∈
GL(n, F), gi = fi(Ax) for all i ∈ [m], and g = (g1, . . . , gm). Further, suppose that tr-degF(f) ≤ r,
and char(F) = 0 or > δr. Let ψ : F[x] → F[z] be a homomorphism such that rankF(x) Jx(f)(Ax) =
rankF(z) ψ(Jx(f)(Ax)). Then, the map φ : F[x]→ F[z, t, y1, ..., yr] that, for all i ∈ [n], maps

xi 7→
(

r

∑
j=1

yjtij

)
+ ψ(xi)

is faithful to g.

Proof: Let Jx(g) be the Jacobian matrix of g, and Jx(f)(Ax) the Jacobian matrix of f evaluated at
Ax. From the chain rule of differentiation, Jx(g) = Jx(f)(Ax) · A. As A in an invertible matrix,

rankF(x) Jx(g) = rankF(x) Jx(f)(Ax). (3)

Also, for any homomorphism ψ : F[x]→ F[z], ψ (Jx(g)) = ψ (Jx(f)(Ax)) · A and hence,

rankF(z) ψ (Jx(g)) = rankF(z) ψ (Jx(f)(Ax)) . (4)

So, if we have a homomorphism ψ satisfying rankF(x) Jx(f)(Ax) = rankF(z) ψ (Jx(f)(Ax)), then
from (3) and (4),

rankF(x) Jx(g) = rankF(z) ψ (Jx(g)) .

Also, from Observation 21, tr-deg(g) = tr-deg(f) ≤ r, and deg(gi) = deg(fi) ≤ δ. So, using
Lemma 20, we can construct a homomorphism φ faithful to g from ψ, as stated in the lemma.

Let us apply Lemma 39 to the (4, k, s) formula f = ∑i∈[m] fi, where m ≤ k. Let f = (f1, ..., fm)

and tr-degF(f) = r ≤ k. Observe that the degree of each fi is at most δ ≤ s2. Then, from
Lemma 17, rankF(x) Jx(f) = r, provided char(F) = 0 or > δr. As A is invertible, this means
that rankF(x) Jx(f)(Ax) = r. Assume without loss of generality that { f1, . . . , fr} is a transcen-
dence basis of f. Then, again from Lemma 17, the sub-matrix of Jx(f) consisting of the rows
corresponding to f1, . . . , fr must be full rank. Thus, we can assume without loss of generality
that the minor M of Jx(f) consisting of those rows, and columns corresponding to x1, . . . , xr, has
non-zero determinant. Notice that, as A is invertible, the determinant of M evaluated at Ax, i.e.,
det(M(Ax)) = [det(M)](Ax) is also non-zero. To ensure that the rankF(z) ψ (Jx(f)(Ax)) is also r,
it suffices to construct a homomorphism ψ that is a hitting set generator for orb(det(M)).

Constructing ψ. Let us look at det(M) a little more closely. As before, let fi = ∏j∈mi
q

ei,j
i,j , where

qi,j are s-sparse polynomials of degree at most s. For i ∈ [r], let the number of qi,j containing
any of x1, . . . , xr be ci. As f is an occur-k formula, ∑i∈[m] ci ≤ kr ≤ k2. From the i-th row of
M, we can factor out q

ei,j
i,j if qi,j does not contain any of x1, . . . , xr. Moreover, even if qi,j contains

some variable from x1, . . . , xr, we can still factor out q
ei,j−1
i,j . After we have taken out all these

factors, let the residual matrix be M′. Then, each entry of the i-th row of M′ is a polynomial

26

with sparsity at most cisci and degree at most cis. Thus, det(M′) is a polynomial with sparsity at
most r! ·∏i∈[r] cisci ≤ k! · kk · sk2 ≤ k2k · sk2

and degree at most ∑i∈[r] cis ≤ k2s. So, det(M) is a
product of polynomials with sparsity at most k2k · sk2

and degree at most k2s. From Theorem 29,
ψ = GSV

(dlog(k2k ·sk2)e+1)
= GSV

O(k2(log k+log s)) is a hitting set generator for orb(det(M)), if |F| > nk2s

and char(F) = 0 or > k2s .
If the qi,j are b-variate polynomials, then det(M′) is a polynomial in ∑i∈[r] cib ≤ k2b variables.

From Observation 14, ψ = GSV
k2b is a hitting set generator for orb(det(M)).

Constructing φ. Using ψ and Lemma 39, we get a homomorphism φ that is faithful to g. Observe
that φ is a polynomial map in at most O

(
k2 (log k + log s)

)
+ k + 1 = O

(
k2 (log k + log s)

)
vari-

ables and of degree at most nk + 1 (as the degree of the polynomial map ψ is at most n and, in
Lemma 39, deg

(
∑r

j=1 yjtij
)
≤ nk + 1).

If the qi,j are b-variate polynomials, then φ is a polynomial map in at most O(k2b) + k+ 1 = O(k2b)
variables and of degree at most nk + 1.

5.3 Proof of Theorem 10: the depth-4 case

For ∆ = 4, the value of R in the statement of Theorem 10 is (2k)128. However, in this special case,
one can work with a much smaller value for R. We choose R = k4 so that char(F) = 0 or >

(2ks)6k2
. This ensures that the constraints on char(F) and |F|, coming from Claim 38, Lemma 39

and the application of Theorem 29 in the construction of ψ, are satisfied.

Let f be a (4, k, s) formula. If f is a constant, then so is every polynomial in orb(f). In this case,
the set containing any non-zero point in Fn is a hitting set for orb(f); so suppose that f is not
a constant. There exists an i ∈ [n] such that ∂ f

∂xi
6= 0 (as char(F) = 0 or > s2 ≥ D). From

Claim 37, ∂ f
∂xi
6= 0 can be computed by a (4, 2k2, 2ks) formula with top fan-in at most k. More-

over, from the proof of Claim 38, if G is a hitting set generator for orb
(

∂ f
∂xi

)
, then G̃ = G + GSV

1

is a hitting set generator for orb(f), provided char(F) = 0 or > D and |F| > deg(G) · D. From
Section 5.2, there exists a G that has at most O

((
2k2)2 (log 2k2 + log 2ks

))
= O

(
k4 (log k + log s)

)
many variables and has degree at most 2nk2 + 1. As GSV

1 has 2 variables and has degree n, G̃ has
O
(
k4 (log k + log s)

)
variables and has degree at most 2nk2 + 1. Thus, for any g ∈ orb(f), g(G̃)

has O
(
k4 (log k + log s)

)
variables and has degree at most (2nk2 + 1)D. So, a hitting set for orb(f)

can be computed in time (nk2D)O(k4(log k+log s)) = (nRD)O(R(log k+log s)).

The proof for the case where the leaves are labelled by b-variate polynomials is similar. Now, G
has O(k4b) variables and has degree at most 2nk2 + 1. Thus, g(G̃) has O(k4b) variables and is of
degree at most (2nk2 + 1)D, and so, a hitting set for orb(f) can be computed in (nk2D)O(k4b) time.

27

6 Hitting sets for the orbits of occur-once formulas

In this section, we give a quasi-polynomial time construction of hitting sets for the orbits of poly-
nomials computable by occur-once formulas. Assume, without loss of generality, that none of the
edge labels of an occur-once formula is zero. We will identify an occur-once formula with the
polynomial f it computes and define the width of f - denoted by width(f) - to be the number of
non-constant sparse polynomials at the leaves of the formula. Observe that if width(f) ≥ 1, then f
is not a constant. As mentioned in Section 1.3, we reduce the problem of finding a hitting set gen-
erator for orb(f) to that of finding a generator for orb(∂ f

∂xi
), where xi is such that ∂ f

∂xi
is a product of

occur-once formulas of widths at most width(f)
2 ; this is done in Theorem 42. To prove the theorem,

we need a couple of structural results about occur-once formulas and their derivatives, which we
prove in the following two lemmas. These lemmas are inspired by similar structural results for
read-once formulas given in [SV15], but the arguments need to be appropriately adapted here as
occur-once formulas form a more powerful model than read-once formulas.

6.1 Structural results

We will call an occur-once formula an s-sparse occur-once formula if the leaves of the formula are
labelled by s-sparse polynomials. Without loss of generality, assume that an s-sparse occur-once
formula is layered with all the leaves appearing in layer 0. If a gate appears in layer k, then the
depth of the occur-once formula rooted at the gate is k + 2. We will also identify a gate with the
occur-once formula rooted at the gate.

Lemma 40. Let f be an s-sparse occur-once formula having width(f) ≥ 2. Then, f can be expressed in
one of the following three forms:

1. f = α(f1 + f2) + β,

2. f = α(f1 · f2) + β,

3. f = α f e
1 + β,

where α, β ∈ F, α 6= 0 and f1, f2 are non-constant, variable disjoint, s-sparse occur-once formulas.
Further, width(f1) + width(f2) = width(f) in the first two forms, and width(f1) = width(f) and
depth(f1) < depth(f) in the third form.

Proof: Let the depth of f be ∆, which equals the number of layers in f plus 1. Let h be any gate in
f in layer 1 (i.e., the layer just above the leaves) and width(h) ≥ 2. If h is a + gate, then it can be
expressed in form 1. If h is a ×f gate, then it can be written in form 2.

Assume, by the way of induction, that the lemma is true for all gates h′ in f of width(h′) ≥ 2 and
at layers less than k for some 1 < k ≤ ∆− 2. Let h be a gate in the k-th layer with width(h) ≥ 2.
There are two cases:

Case 1: h is a + gate, say h = α1h1 + · · ·+ αmhm. Clearly, if at least two of its children are non-
constants, then h is in form 1. On the other hand, if only one child, say h1, is a non-constant,
then width(h1) = width(h) ≥ 2. As h1 is in layer k − 1, from the induction hypothesis, it can
be written in one of the three forms with the corresponding constants α and β. Then, by adding

28

α2h2 + · · ·+ αmhm (which is a constant) to α1β and multiplying α1 by α, h can also be written in
the same form.

Case 2: h is a ×f gate, say h = h1
e1 · · · hm

em . Clearly, if at least two of its children are non-
constants, then h is in form 2. On the other hand, if only one child, say h1, is a non-constant, then
width(h1) = width(h) ≥ 2. In this case, by taking α = h2

e2 · · · hm
em (which is a constant), and

observing that depth(h1) = k− 1 + 2 < k + 2 = depth(h), we see that h is in form 3.

Lemma 41. Let f be an s-sparse occur-once formula. Then for any i ∈ [n], ∂ f
∂xi

is a product of s-sparse
occur-once formulas of widths at most width(f).

Proof: Let the depth of f be ∆. Notice that the lemma is true for all the leaves (i.e., at layer 0) of f
as any derivative of an s-sparse polynomial is also an s-sparse polynomial. Assume, by the way
of induction, that the lemma is true for all gates at layers less than k, for some 1 ≤ k ≤ ∆− 2 and
let h be any gate in the k-th layer of f . There are two cases:

Case 1: h is a + gate, say h = α1h1 + · · · + αmhm. As f , and hence h, is an s-sparse occur-once
formula, we can assume without loss of generality that xi appears only in h1, if it appears at all.
Then, ∂h

∂xi
= α1

∂h1
∂xi

. From the induction hypothesis, ∂h1
∂xi

is a product of s-sparse occur-once formulas
of widths at most width(h1) ≤ width(h), and so, the lemma is true for h.

Case 2: h is a ×f gate, say h = h1
e1 · · · hm

em . As, in the previous case, assume that xi appears only
in h1. Then,

∂h
∂xi

= e1 · h1
e1−1 · h2

e2 · · · · · hm
em · ∂h1

∂xi
.

From the induction hypothesis, ∂h1
∂xi

is a product of s-sparse occur-once formulas of widths at most

width(h1) ≤ width(h). Moreover, h1
e1−1, h2

e2 , ..., hm
em are also s-sparse occur-once formulas of

widths at most width(h). Thus, the lemma is true for h.

6.2 Proof of Theorem 11

We now show the existence of an efficient hitting set generator for orbits of occur-once formulas.

Theorem 42. Let f be an n-variate, degree-D polynomial that is computable by an s-sparse occur-once
formula, and g ∈ orb(f). Also, let |F| > nD and char(F) = 0 or > D. Then for any t ≥ log(width(f)),
g 6= 0 implies g

(
GSV
(dlog se+1+t)

)
6= 0. In fact, if g is not a constant, then neither is g

(
GSV
(dlog se+1+t)

)
.

Proof: Notice that if g is a non-zero constant, then g
(
GSV
(dlog se+1+t)

)
6= 0 for all t. So, to prove the

theorem, we need to show that if g is not a constant, then neither is g
(
GSV
(dlog se+1+t)

)
.

Let h be an s-sparse occur-once formula satisfying width(h) = 1. Then, h must be of the form

αm
(
· · ·
(
α2 (α1 p(x)e1 + β1)

e2 + β2
)
· · ·
)em + βm,

29

where p(x) is an s-sparse polynomial, e1, ..., em ∈ N, α1, ..., αm ∈ F \ {0} and β1, ..., βm ∈ F. Let
A ∈ GL(n, F). If h(Ax) is not a constant, then neither is p(Ax). Thus, from Theorem 29 and the
fact that Img(GSV

k) ⊆ Img(GSV
k+1) for any k ≥ 0, we have that p

(
AGSV

(dlog se+1+t)

)
is not a constant

for any t ≥ 0. Hence, h
(

AGSV
(dlog se+1+t)

)
is also not a constant for any t ≥ 0.

Assume, by the way of induction, that the theorem is true for all g′ such that g′ ∈ orb(f ′) for some
n-variate, degree-D, s-sparse occur-once formula f ′ with 1 ≤ width(f ′) < ` ≤ width(f). Let h be
an n-variate, degree-D, s-sparse occur-once formula having width(h) = ` ≥ 2, and A ∈ GL(n, F).
From Lemma 40, there are three cases,

Case 1: h = α(h1 + h2) + β. Then, we can assume without loss of generality that width(h1) ≤
width(h)

2 = `
2 , as width(h1) + width(h2) = width(h). Since h1 is not a constant, there exists an

i ∈ [n] such that ∂h1
∂xi
6= 0 (because char(F) is 0 or > D). As ∂h

∂xi
= α · ∂h1

∂xi
(h1 and h2 being variable

disjoint) and α 6= 0, ∂h
∂xi
6= 0. Now, from Lemma 41, ∂h1

∂xi
is a product of s-sparse occur-once

formulas of width at most `
2 . Then, from the induction hypothesis, ∂h

∂xi

(
AGSV

(dlog se+1+t)

)
6= 0 for

any t ≥ log `− 1. Let q = h(Ax). The gradient of a polynomial p(x), denoted by∇p, is the column

vector
(

∂p
∂x1

∂p
∂x2

. . . ∂p
∂xn

)T
. By the chain rule of differentiation,

∇q = AT · [∇h](Ax).

As AT is invertible, there exists a j ∈ [n] such that ∂q
∂xj

(
GSV
(dlog se+1+t)

)
6= 0 for any t ≥ log `− 1.

This means, by Observation 15, q(GSV
(dlog se+1+t)) is not a constant for any t ≥ log ` (as deg(q) ≤ D

and |F| > nD). In other words, h(AGSV
(dlog se+1+t)) is not a constant for any t ≥ log `.

Case 2: h = α(h1 · h2) + β. As width(h1), width(h2) < width(h), from the induction hypothesis,
we have that for any t ≥ log `, h1

(
AGSV

(dlog se+1+t)

)
, h2

(
AGSV

(dlog se+1+t)

)
are not constants and so

neither is h
(

AGSV
(dlog se+1+t)

)
.

Case 3: h = αhe
1 + β. In this case, width(h1) = width(h) = ` ≥ 2, but depth(h1) < depth(h). As

h
(

AGSV
(dlog se+1+t)

)
is not a constant if and only if h1

(
AGSV

(dlog se+1+t)

)
is not a constant, the problem

reduces to showing that for any g1 ∈ orb(h1), g1

(
GSV
(dlog se+1+t)

)
is not a constant for any t ≥ log `.

We now run the argument from the beginning with h replaced by h1, which has a smaller depth.
Eventually, we will land up in Case 1 or 2, as a depth-3 occur-once formula having width ≥ 2 is
either in form 1 or 2 (see proof of Lemma 40).

A non-zero polynomial f ∈ C is computable by an s-sparse occur-once formula. Observe that
width(f) ≤ n. Let g ∈ orb(f). From Theorem 42, we have that g

(
GSV
(dlog se+1+dlog ne)

)
is a non-zero

polynomial in 2 (dlog se+ 1 + dlog ne) variables of degree at most nD. As |F| > nD, a hitting set
for orb(C) can be computed in time (nD + 1)2(dlog se+1+dlog ne) = (nD)O(log n+log s).

The proof is similar if the leaves of the occur-once formulas in C are labelled by b-variate
polynomials. We just need to apply Observation 14 instead of Theorem 29 in the base case.

30

7 Conclusion

In this paper, we have studied the hitting set problem for the orbits of several important polyno-
mial families and circuit classes that are not closed under affine projections. This line of research
is both natural and interesting as affine projections of some of these circuit classes and polyno-
mial families capture much larger circuit classes (in some cases, almost the entire class of VP
circuits). The orbit of a polynomial f is a natural and “dense” subset of affine projections of f
that, in turn, resides in the orbit closure of f . We have shown efficient hitting set constructions
for the orbits of several well-studied circuit classes such as commutative ROABPs, sums of prod-
ucts of univariates and constant-width ROABPs (under the low individual degree restriction),
and constant-depth constant-occur formulas and occur-once formulas. In the process, we have
obtained efficiently constructible hitting sets for the orbits of the elementary symmetric polyno-
mials, the power symmetric polynomials, the sum-product polynomials, and the iterated matrix
multiplication polynomials of width-3, which is a complete family of polynomials for arithmetic
formulas under p-projections. Despite the progress made here, there are several natural questions
that, if resolved, will strengthen and complete the set of results presented in this work. We leave
these for future work:

• Removing the low individual degree restriction. The low individual degree restriction is
natural as it subsumes the multilinear case. However, it would be ideal if we get rid of this
limitation of our results. In particular, can we give an efficient hitting-set construction for
the orbits of general commutative ROABPs and constant-width ROABPs?

• Lower bound and hitting set for the orbits of ROABPs. We would also like to remove the
requirements of commutativity and constant-width from our results on hitting sets for the
orbits of ROABPs. It is worth noting that an explicit hitting set for the orbits of ROABPs
implies a lower bound for the same model computing some explicit polynomial [Agr05]. To
our knowledge, no explicit lower bound is known for the orbits of ROABPs. Can we prove
such a lower bound first?

• Hitting sets for the orbits of Det and IMM. The determinant (Det) and the iterated matrix
multiplication (IMM) polynomial families are complete for the class of algebraic branching
programs under p-projections. Can we design efficiently constructible hitting sets for the
orbits of Det and IMM? Observe that a hitting set for the orbits of multilinear ROABPs is a
hitting set for orb(IMM). Also, a hitting set for the orbits of the polynomials computable by
the Edmonds’ model (see Section 1.4) is a hitting set for the orbits of both Det and IMM.

Acknowledgements

We thank Rohit Gurjar for asking (nearly four years back) whether an explicit hitting set is known
for the orbit of the IMM polynomial. His question, asked during a discussion with CS on equiva-
lence testing for the IMM polynomial, has spurred us to think about the problems that we study in
this paper. We also thank Ankit Garg, Neeraj Kayal, and Vishwas Bhargava for several stimulating
discussions at the onset of this work. Thanks especially to Ankit for pointing out a simplification
in the proof of Theorem 6 and Vishwas for asking if Theorem 8 can be applied to orbits of multi-
linear depth-4 circuits with constant top fan-in.

31

References

[AB03] Manindra Agrawal and Somenath Biswas. Primality and identity testing via Chinese
remaindering. J. ACM, 50(4):429–443, 2003. Conference version appeared in the pro-
ceedings of FOCS 1999.

[AFS+18] Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and
Ben Lee Volk. Identity Testing and Lower Bounds for Read-k Oblivious Algebraic
Branching Programs. ACM Trans. Comput. Theory, 10(1):3:1–3:30, 2018. Conference
version appeared in the proceedings of CCC 2016.

[AGKS15] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for
ROABP and sum of set-multilinear circuits. SIAM J. Comput., 44(3):669–697, 2015.

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In Ra-
maswamy Ramanujam and Sandeep Sen, editors, FSTTCS 2005: Foundations of Software
Technology and Theoretical Computer Science, 25th International Conference, Hyderabad, In-
dia, December 15-18, 2005, Proceedings, volume 3821 of Lecture Notes in Computer Science,
pages 92–105. Springer, 2005.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathe-
matics, 160(2):781–793, 2004.

[ASS13] Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-set
for set-depth-∆ formulas. In Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 321–330. ACM, 2013.

[ASSS16] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Jaco-
bian Hits Circuits: Hitting Sets, Lower Bounds for Depth-D Occur-k Formulas and
Depth-3 Transcendence Degree-k Circuits. SIAM J. Comput., 45(4):1533–1562, 2016.
Conference version appeared in the proceedings of STOC 2012.

[AV08] Manindra Agrawal and V. Vinay. Arithmetic Circuits: A Chasm at Depth Four. In 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28,
2008, Philadelphia, PA, USA, pages 67–75. IEEE Computer Society, 2008.

[AvMV15] Matthew Anderson, Dieter van Melkebeek, and Ilya Volkovich. Deterministic poly-
nomial identity tests for multilinear bounded-read formulae. Comput. Complex.,
24(4):695–776, 2015. Conference version appeared in the proceedings of CCC 2011.

[AW16] Eric Allender and Fengming Wang. On the power of algebraic branching programs of
width two. Comput. Complex., 25(1):217–253, 2016. Conference version appeared in the
proceedings of ICALP 2011.

[BC92] Michael Ben-Or and Richard Cleve. Computing Algebraic Formulas Using a Constant
Number of Registers. SIAM J. Comput., 21(1):54–58, 1992. Conference version appeared
in the proceedings of STOC 1988.

32

[BIZ18] Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. On algebraic branching
programs of small width. J. ACM, 65(5):32:1–32:29, 2018. Conference version appeared
in the proceedings of CCC 2017.

[BMS13] Malte Beecken, Johannes Mittmann, and Nitin Saxena. Algebraic independence and
blackbox identity testing. Inf. Comput., 222:2–19, 2013. Conference version appeared
in the proceedings of ICALP 2011.

[CKS18] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Hardness vs randomness for
bounded depth arithmetic circuits. In Rocco A. Servedio, editor, 33rd Computational
Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of
LIPIcs, pages 13:1–13:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[DL78] Richard A. DeMillo and Richard J. Lipton. A Probabilistic Remark on Algebraic Pro-
gram Testing. Inf. Process. Lett., 7(4):193–195, 1978.

[dOSlV16] Rafael Mendes de Oliveira, Amir Shpilka, and Ben lee Volk. Subexponential Size Hit-
ting Sets for Bounded Depth Multilinear Formulas. Comput. Complex., 25(2):455–505,
2016. Conference version appeared in the proceedings of CCC 2015.

[DS07] Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and poly-
nomial identity testing for depth 3 circuits. SIAM J. Comput., 36(5):1404–1434, 2007.
Conference version appeared in the proceedings of STOC 2005.

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness tradeoffs for
bounded depth arithmetic circuits. SIAM J. Comput., 39(4):1279–1293, 2009. Conference
version appeared in the proceedings of STOC 2008.

[Edm67] Jack Edmonds. Systems of distinct representatives and linear algebra. Journal of research
of the National Bureau of Standards, 71:241–245, 1967.

[Edm79] Jack Edmonds. Matroid intersection. In P.L. Hammer, E.L. Johnson, and B.H. Korte,
editors, Discrete Optimization I, volume 4 of Annals of Discrete Mathematics, pages 39–49.
Elsevier, 1979.

[FGS18] Michael A. Forbes, Sumanta Ghosh, and Nitin Saxena. Towards blackbox identity test-
ing of log-variate circuits. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel
Marx, and Donald Sannella, editors, 45th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 54:1–54:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018.

[FGT16] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in
quasi-nc. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 754–763. ACM, 2016.

[FK18] Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once
branching programs, in any order. In Mikkel Thorup, editor, 59th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018,
pages 946–955. IEEE Computer Society, 2018.

33

[For15] Michael A. Forbes. Deterministic divisibility testing via shifted partial derivatives. In
Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 451–465. IEEE
Computer Society, 2015.

[FS12] Michael A. Forbes and Amir Shpilka. On identity testing of tensors, low-rank recovery
and compressed sensing. In Howard J. Karloff and Toniann Pitassi, editors, Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY,
USA, May 19 - 22, 2012, pages 163–172. ACM, 2012.

[FS13a] Michael A. Forbes and Amir Shpilka. Explicit Noether Normalization for Simulta-
neous Conjugation via Polynomial Identity Testing. In Prasad Raghavendra, Sofya
Raskhodnikova, Klaus Jansen, and José D. P. Rolim, editors, Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques - 16th International
Workshop, APPROX 2013, and 17th International Workshop, RANDOM 2013, Berkeley,
CA, USA, August 21-23, 2013. Proceedings, volume 8096 of Lecture Notes in Computer
Science, pages 527–542. Springer, 2013.

[FS13b] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 243–252. IEEE Computer Society, 2013.

[FS18] Michael A. Forbes and Amir Shpilka. A PSPACE construction of a hitting set for the
closure of small algebraic circuits. In Ilias Diakonikolas, David Kempe, and Monika
Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1180–1192. ACM,
2018.

[FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for mul-
tilinear read-once algebraic branching programs, in any order. In David B. Shmoys,
editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014, pages 867–875. ACM, 2014.

[Gee99] James F. Geelen. Maximum rank matrix completion. Linear Algebra and its Applications,
288:211 – 217, 1999.

[GG20] Zeyu Guo and Rohit Gurjar. Improved explicit hitting-sets for roabps. In Jaroslaw
Byrka and Raghu Meka, editors, Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020,
Virtual Conference, volume 176 of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

[GKKS16] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic
Circuits: A Chasm at Depth 3. SIAM J. Comput., 45(3):1064–1079, 2016. Conference
version appeared in the proceedings of FOCS 2013.

[GKS17] Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity testing for constant-width,
and any-order, read-once oblivious arithmetic branching programs. Theory Comput.,
13(1):1–21, 2017. Conference version appeared in the proceedings of CCC 2016.

34

[GKST17] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic Iden-
tity Testing for Sum of Read-Once Oblivious Arithmetic Branching Programs. Comput.
Complex., 26(4):835–880, 2017. Conference version appeared in the proceedings of CCC
2015.

[GR08] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large
fields. Comb., 28(4):415–440, 2008. Conference version appeared in the proceedings
of FOCS 2005.

[GSS18] Zeyu Guo, Nitin Saxena, and Amit Sinhababu. Algebraic dependencies and PSPACE
algorithms in approximative complexity. In Rocco A. Servedio, editor, 33rd Computa-
tional Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume
102 of LIPIcs, pages 10:1–10:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018.

[GT20] Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-nc. Comput.
Complex., 29(2):9, 2020. Conference version appeared in the proceedings of STOC 2017.

[Gup14] Ankit Gupta. Algebraic geometric techniques for depth-4 PIT & sylvester-gallai con-
jectures for varieties. Electron. Colloquium Comput. Complex., 21:130, 2014.

[Hal35] P. Hall. On Representatives of Subsets. Journal of the London Mathematical Society, s1-
10(1):26–30, 01 1935.

[HS80] Joos Heintz and Claus-Peter Schnorr. Testing polynomials which are easy to compute
(extended abstract). In Raymond E. Miller, Seymour Ginsburg, Walter A. Burkhard,
and Richard J. Lipton, editors, Proceedings of the 12th Annual ACM Symposium on Theory
of Computing, April 28-30, 1980, Los Angeles, California, USA, pages 262–272. ACM, 1980.

[IKS10] Gábor Ivanyos, Marek Karpinski, and Nitin Saxena. Deterministic polynomial time
algorithms for matrix completion problems. SIAM J. Comput., 39(8):3736–3751, 2010.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for net-
work algorithms. In Frank Thomson Leighton and Michael T. Goodrich, editors, Pro-
ceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May
1994, Montréal, Québec, Canada, pages 356–364. ACM, 1994.

[JQS10] Maurice J. Jansen, Youming Qiao, and Jayalal Sarma. Deterministic Black-Box Identity
Testing pi-Ordered Algebraic Branching Programs. In Kamal Lodaya and Meena
Mahajan, editors, IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai, India, vol-
ume 8 of LIPIcs, pages 296–307. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2010.

[Kal89] Erich Kaltofen. Factorization of polynomials given by straight-line programs. Adv.
Comput. Res., 5:375–412, 1989.

[Kay10] Neeraj Kayal. Algorithms for arithmetic circuits. Electron. Colloquium Comput. Complex.,
17:73, 2010.

35

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity
tests means proving circuit lower bounds. Comput. Complex., 13(1-2):1–46, 2004. Con-
ference version appeared in the proceedings of STOC 2003.

[KMSV13] Zohar Shay Karnin, Partha Mukhopadhyay, Amir Shpilka, and Ilya Volkovich. De-
terministic Identity Testing of Depth-4 Multilinear Circuits with Bounded Top Fan-in.
SIAM J. Comput., 42(6):2114–2131, 2013. Conference version appeared in the proceed-
ings of STOC 2010.

[KNS20] Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation between read-once oblivi-
ous algebraic branching programs (roabps) and multilinear depth-three circuits. ACM
Trans. Comput. Theory, 12(1):2:1–2:27, 2020.

[Koi12] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput.
Sci., 448:56–65, 2012.

[KS01] Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity testing of
multivariate polynomials. In Proceedings on 33rd Annual ACM Symposium on Theory of
Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 216–223, 2001.

[KS07] Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits. Com-
put. Complex., 16(2):115–138, 2007. Conference version appeared in the proceedings of
CCC 2006.

[KS09] Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth
3 circuits. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 198–207. IEEE Computer Soci-
ety, 2009.

[KS11] Zohar Shay Karnin and Amir Shpilka. Black box polynomial identity testing of gener-
alized depth-3 arithmetic circuits with bounded top fan-in. Comb., 31(3):333–364, 2011.
Conference version appeared in the proceedings of CCC 2008.

[KS19] Pascal Koiran and Mateusz Skomra. Derandomization and absolute reconstruction for
sums of powers of linear forms. CoRR, abs/1912.02021, 2019.

[KSS15] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial
identity testing and polynomial factorization. Comput. Complex., 24(2):295–331, 2015.
Conference version appeared in the proceedings of CCC 2014.

[KT90] Erich Kaltofen and Barry M. Trager. Computing with Polynomials Given By Black
Boxes for Their Evaluations: Greatest Common Divisors, Factorization, Separation of
Numerators and Denominators. J. Symb. Comput., 9(3):301–320, 1990. Conference ver-
sion appeared in the proceedings of FOCS 1988.

[KUW86] Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in
random NC. Comb., 6(1):35–48, 1986. Conference version appeared in the proceedings
of STOC 1985.

36

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In Lothar Bu-
dach, editor, Fundamentals of Computation Theory, FCT 1979, Proceedings of the Conference
on Algebraic, Arthmetic, and Categorial Methods in Computation Theory, Berlin/Wendisch-
Rietz, Germany, September 17-21, 1979, pages 565–574. Akademie-Verlag, Berlin, 1979.

[Lov89] László Lovász. Singular spaces of matrices and their application in combinatorics.
Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society,
20(1):87–99, 1989.

[LV03] Richard J. Lipton and Nisheeth K. Vishnoi. Deterministic identity testing for multi-
variate polynomials. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages 756–760.
ACM/SIAM, 2003.

[MS21] Dori Medini and Amir Shpilka. Hitting Sets and Reconstruction for Dense Orbits in
VPe and ΣΠΣ Circuits. CoRR, abs/2102.05632, 2021.

[Mul17] Ketan D. Mulmuley. Geometric complexity theory V: Efficient algorithms for Noether
normalization. J. Amer. Math. Soc., 30(1):225–309, 2017. Extended abstract appeared in
the proceedings of FOCS 2012.

[Mur93] K. Murota. Mixed matrices: Irreducibility and decomposition. In R. A. Brualdi,
S. Friedland, and V. Klee, editors, Combinatorial and Graph-Theoretical Problems in Lin-
ear Algebra. The IMA Volumes in Mathematics and its Applications, vol 50., pages 39–71.
Springer, New York, NY, 1993.

[MV18] Daniel Minahan and Ilya Volkovich. Complete derandomization of identity testing
and reconstruction of read-once formulas. ACM Trans. Comput. Theory, 10(3):10:1–
10:11, 2018. Conference version appeared in the proceedings of CCC 2017.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as
matrix inversion. Comb., 7(1):105–113, 1987. Conference version appeared in the pro-
ceedings of STOC 1987.

[Nis91] Noam Nisan. Lower Bounds for Non-Commutative Computation (Extended Ab-
stract). In Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana,
USA, pages 410–418. ACM, 1991.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Comb.,
12(4):449–461, 1992. Conference version appeared in the proceedings of STOC 1990.

[NSV94] H. Narayanan, Huzur Saran, and Vijay V. Vazirani. Randomized Parallel Algorithms
for Matroid Union and Intersection, With Applications to Arboresences and Edge-
Disjoint Spanning Trees. SIAM J. Comput., 23(2):387–397, 1994. Conference version
appeared in the proceedings of SODA 1992.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994. Conference version appeared in the proceedings of FOCS 1988.

37

[NW97] Noam Nisan and Avi Wigderson. Lower Bounds on Arithmetic Circuits Via Partial
Derivatives. Computational Complexity, 6(3):217–234, 1997. Conference version ap-
peared in the proceedings of FOCS 1995.

[PS20a] Shir Peleg and Amir Shpilka. A generalized sylvester-gallai type theorem for quadratic
polynomials. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 8:1–8:33. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[PS20b] Shir Peleg and Amir Shpilka. Polynomial time deterministic identity testing algorithm
for Σ[3]ΠΣΠ[2] circuits via Edelstein-Kelly type theorem for quadratic polynomials.
CoRR, abs/2006.08263, 2020.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-
commutative models. Comput. Complex., 14(1):1–19, 2005. Conference version ap-
peared in the proceedings of CCC 2004.

[Sax08] Nitin Saxena. Diagonal circuit identity testing and lower bounds. In Luca Aceto, Ivan
Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, Automata, Languages and Programming, 35th International Collo-
quium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Al-
gorithms, Automata, Complexity, and Games, volume 5125 of Lecture Notes in Computer
Science, pages 60–71. Springer, 2008.

[Sax09] Nitin Saxena. Progress on polynomial identity testing. Bull. EATCS, 99:49–79, 2009.

[Sax14] Nitin Saxena. Progress on polynomial identity testing-ii. In M. Agrawal and V. Arvind,
editors, Perspectives in Computational Complexity, volume 26 of Progress in Computer Sci-
ence and Applied Logic, pages 131–146. Birkhäuser, Cham, 2014.

[Sch80] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identi-
ties. J. ACM, 27(4):701–717, 1980.

[Shp02] Amir Shpilka. Affine projections of symmetric polynomials. J. Comput. Syst. Sci.,
65(4):639–659, 2002. Conference version appeared in the proceedings of CCC 2001.

[Shp19] Amir Shpilka. Sylvester-gallai type theorems for quadratic polynomials. In Moses
Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages
1203–1214. ACM, 2019.

[SS12] Nitin Saxena and C. Seshadhri. Blackbox Identity Testing for Bounded Top-Fanin
Depth-3 Circuits: The Field Doesn’t Matter. SIAM J. Comput., 41(5):1285–1298, 2012.
Conference version appeared in the proceedings of STOC 2011.

[SS13] Nitin Saxena and C. Seshadhri. From sylvester-gallai configurations to rank bounds:
Improved blackbox identity test for depth-3 circuits. J. ACM, 60(5):33:1–33:33, 2013.
Conference version appeared in the proceedings of FOCS 2010.

38

[SSS09] Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. The power of depth 2
circuits over algebras. In Ravi Kannan and K. Narayan Kumar, editors, IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2009, December 15-17, 2009, IIT Kanpur, India, volume 4 of LIPIcs, pages 371–
382. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2009.

[SSS13] Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. A case of depth-3 identity
testing, sparse factorization and duality. Comput. Complex., 22(1):39–69, 2013.

[ST17] Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in
quasi-nc. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 696–707. IEEE
Computer Society, 2017.

[ST21] Chandan Saha and Bhargav Thankey. Hitting Sets for Orbits of Circuit Classes and
Polynomial Families. Electron. Colloquium Comput. Complex., 28:15, 2021.

[SV15] Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. Comput.
Complex., 24(3):477–532, 2015. Conference versions appeared in the proceedings of
STOC 2008 and APPROX-RANDOM 2009.

[SV18] Shubhangi Saraf and Ilya Volkovich. Black-Box Identity Testing of Depth-4 Multilinear
Circuits. Comb., 38(5):1205–1238, 2018. Conference version appeared in the proceed-
ings of STOC 2011.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results
and open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–
388, 2010.

[Tav15] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf. Com-
put., 240:2–11, 2015. Conference version appeared in the proceedings of MFCS 2013.

[Val79] Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings of the 11h Annual
ACM Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA,
pages 249–261, 1979.

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel Com-
putation of Polynomials Using Few Processors. SIAM J. Comput., 12(4):641–644, 1983.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Alge-
braic Computation, EUROSAM ’79, An International Symposiumon Symbolic and Algebraic
Computation, Marseille, France, June 1979, Proceedings, pages 216–226, 1979.

A Missing proofs from Section 3

In this section, we give the proofs of Observation 23, Claim 25 and Lemma 26.

39

A.1 Proof of Observation 23

The proof of Observation 23 follows from the following claim.

Claim 43. Let p(y) = ∑d
e=0 weye, where we ∈ A and p(y+ r) = ∑d

b=0 w̃byb. Then, w̃b = ∑d
e=0 (

e
b)r

e−bwe.

Proof:

p(y + r) =
d

∑
e=0

we(y + r)e

=
d

∑
e=0

we

d

∑
b=0

(
e
b

)
re−byb

=
d

∑
b=0

(
d

∑
e=0

(
e
b

)
re−bwe

)
yb.

Thus, w̃b = ∑d
e=0 (

e
b)r

e−bwe.

For 1, put w̃b = vi,bi , e = ei, b = bi, r = ri and we = ui,ei . For 2, put w̃b = ui,bi , e = bi, b = ei, r =
−ri and we = vi,ei .

A.2 Proof of Claim 25

The entry indexed by e ∈ {0, . . . , d}m of U is ue. Observe that

ue = ∏
i∈[m]

ui,ei

= ∏
i∈[m]

(
d

∑
bi=0

(
bi

ei

)
· (−ri)

bi−ei · vi,bi

)
(from Observation 23)

= ∑
b=(b1,...,bn)∈{0,...,d}m

(
b
e

)
∏

i∈[m]

(−ri)
bi · ∏

i∈[m]

vi,bi · ∏
i∈[m]

(−ri)
−ei

= ∑
b∈{0,...,d}m

(
b
e

)
· rb · vb · r−e

= ∑
b∈{0,...,d}m

vb · rb ·
(

b
e

)
· r−e.

The equation U = VCMD now follows easily from the definitions of these matrices.

A.3 Proof of Lemma 26

The entries of U, the columns of M, the rows and columns of D, and the rows of N are indexed by
e ∈ {0, . . . , d}m. Impose an order ≺, say the lexicographical order, on the indices e ∈ {0, . . . , d}m

of U and the other three matrices. Pick the minimal basis of the space spanned by the entries of U
according to this order, i.e., consider the entries of U in the order dictated by ≺ while forming the

40

basis. Let B := {e ∈ {0, . . . , d}m : ue is in the minimal basis of U w.r.t. ≺}.

Construction of the matrix N. The columns of N are indexed by b ∈ F. We will now specify a set
of column vectors {nb : b ∈ F} in the null space of U such that the column of N indexed by b ∈ F
is nb. There are two cases for b ∈ F:

Case 1: b ∈ F \ B. In this case, ub is dependent on {ue : e ∈ B and e ≺ b}. Pick this dependence
vector as nb.

Case 2: b ∈ F ∩ B. Let there be p such b, where p ≤ |B| ≤ w2. For a set E ⊆ [m] and
b ∈ {0, . . . , d}m, let (b)E denote the vector obtained by projecting b to the coordinates in E.
Roughly speaking, the following claim says that each of these p vectors has a "small signature"
that differentiates it from the other p− 1 vectors.

Claim 44. There exists a way of numbering all b ∈ F ∩ B as b1, . . . , bp and there exist non-empty sets
E1, . . . , Ep ⊆ [m], each of size at most log p ≤ log w2 such that for all k ∈ [p− 1],

(bk)Ek 6= (b`)Ek ∀` ∈ {k + 1, . . . , p} (5)

Proof: Suppose that we have already identified b1, . . . , bk−1 for some k ∈ [p − 1] and have con-
structed E1, . . . , Ek−1 satisfying (5). We will show how to identify bk and construct Ek greedily.

Initially Ek = ∅. Let T be the set of the b vectors that have not been numbered yet; |T| ≤ p.
As each vector in T is unique, there exists an index i1 ∈ [m] such that the i1-th entry is not the
same for all b ∈ T. In fact, there must exist a j1 ∈ [d] such that the number of b whose i1-th entry
is j1 is at least 1 and at most |T|/2. Add i1 to Ek and remove from T all those b whose i1-th entry is
not j1. Again, as each vector in T is unique, there exists an index i2 ∈ [m] \ Ek and a j2 ∈ [d] such
that the number of b ∈ T whose i2-th entry is j2 is at least 1 and at most |T|/2. Again, add i2 to Ek
and remove from T all those b whose i2-th entry is not j2. Continuing in this fashion, in log p or
fewer iterations, |T| = 1; call the only vector in T, bk and stop. It is clear that |Ek| ≤ log p and that
bk and Ek satisfy (5).

After having identified b1, . . . , bp−1, call the last remaining vector bp and pick Ep to be any
arbitrary singleton set.

We will call Ek the signature of bk for k ∈ [p]. The following claim tells us that for each vector bk,
there is a vector that is not in B and has support at most m− 1, but agrees with bk on its signature
and so in some sense can be used as a proxy for bk.

Claim 45. For every k ∈ [p], there exists a vector b′k ∈ {0, . . . , d}m \ (F ∪ B) such that (b′k)Ek = (bk)Ek

and also b′k and bk agree on all locations where b′k is non-zero.

Proof: As |Ek| ≤ log w2 and m = 2
⌈
log w2⌉+ 1, for any vector b′ ∈ {0, . . . , d}m satisfying (b′)Ek =

(bk)Ek , there are still at least
⌈
log w2⌉ + 1 coordinates whose values we are free to choose. For

each such free coordinate, we choose its value to be either 0 or the value at the same coordinate
in bk. There are 2dlog w2e+1 ≥ 2w2 such b′, one of which is bk and the remaining 2w2 − 1 are in
{0, . . . , d}m \ F. As |B| ≤ w2, at least one of these 2w2 − 1 vectors is in {0, . . . , d}m \ (F ∪ B). Pick
any such vector and call it b′k.

41

We will now use the above two claims to construct nbk for all k ∈ [p]. We will use b′k from Claim 45
as a proxy for bk. Notice that ub′k

is dependent on
{

ue : e ∈ B and e ≺ b′k
}

. Let this dependence
vector be nbk . This completes the construction of N. We will now show that [CMDN]F is an in-
vertible matrix.

[CMDN]F is invertible. As C is a diagonal matrix with non-zero entries, it is sufficient to show
that [MDN]F = [M]FDN is an invertible matrix, where [M]F is the sub-matrix of M consisting of
only those rows of M that are indexed by b ∈ F. The following claim lets us simplify the structure
of [M]F so that it becomes easier to argue that [M]FDN is invertible.

Claim 46. There is a row operation matrix R ∈ GL(dm, F) having determinant 1 such that R[M]F has
the following structure: The rows of R[M]F are indexed by b = (b1, . . . , bm) ∈ F and its columns by
e = (e1, . . . , em) ∈ {0, . . . , d}m. Its entry indexed by (b, e) is non-zero if and only if for all i ∈ [m],
bi = ei if ei 6= 0. All the non-zero entries of R[M]F are either 1 or −1.

Proof: We prove the claim by induction on m. For m = 1,

[M]F =


1 (d

d−1) (d
d−2) · · · (d

1) 1
0 1 (d−1

d−2) · · · (d−1
1) 1

0 0 1 · · · (d−2
1) 1

...
...

...
...

...
...

0 0 0 · · · 1 1

 .

Let R1 be the row operation matrix that multiplies the last row of [M]F by (2
1) and subtracts it from

the second to last row; then it multiplies the last row by (3
1), the second to last row by (3

2) and
subtracts them from the third to last row, and so on. Then, the first d columns of R1[M]F form
a d× d identity matrix. Also, it is not hard to see that the entry in the last column of the row of
R1[M]F indexed by e ∈ [d] is 1− (e

1) + (e
2) − · · · + (−1)e−1(e

e−1) = (−1)e−1. Let R1 be R. Also,
ignoring the last column of R[M]F and [M]F, the remaining sub-matrices of both the matrices are
upper triangular with ones on the diagonal. Thus both of them have determinant 1. As R relates
them, it also has determinant 1.

Assume that the claim is true for all values of m′ up to, but not including m ≥ 2. Let the matrix
M for m′ be denoted by Mm′ and R for m′ be denoted by Rm′ . Then, [Mm]F = [Mm−1]F ⊗ [M1]F.
Let Rm := Rm−1 ⊗ R1. Then, Rm[Mm]F = (Rm−1 ⊗ R1) ([Mm−1]F ⊗ [M1]F) = (Rm−1[Mm−1]F) ⊗
(R1[M1]F). Thus, the claim that Rm[Mm]F has the desired structure follows from the induction
hypothesis. Further, as both Rm−1 and R1 have determinant 1, det(Rm) = 1.

Because of the above claim, showing that R[M]FDN is invertible would suffice. Just like we did
with M, we also impose the order ≺ on the columns of R[M]F that are indexed by e ∈ {0, . . . , d}m.
Recall that the rows of R[M]F and the columns of N are indexed by b ∈ F. We order these indices
as follows: we keep the indices b ∈ F \ B before b1, . . . , bp. We will treat r−e as a monomial in
(−r1)

−1, . . . , (−rm)−1 “variables” and impose the order≺ on the monomials in these variables. Let
A := {b : b ∈ F \ B} ∪

{
b′1, . . . , b′p

}
; notice that |A| = |F|. Also, the elements of A are ordered as

the elements of F but with b′k replacing bk for k ∈ [p]. Then, from the Cauchy-Binet formula and

42

the construction of the matrix N, det(R[M]FDN) equals

det ([R[M]F]•,A) [N]A ·∏
e∈A

r−e + lower order monomials in the (−r1)
−1, . . . , (−rm)

−1 variables.

Here [R[M]F]•,A denotes the restriction of R[M]F to the columns indexed by e ∈ A, and [N]A
denotes the restriction of N to the rows indexed by e ∈ A. Thus to show that R[M]FDN (and
therefore [CMDN]F) is invertible, it is sufficient to prove the following two claims.

Claim 47. [N]A is an identity matrix.

Proof: This basically follows from the construction of N: Consider a b ∈ F \ B. As A does not
contain any element of B, the column of [N]A indexed by b has only one non-zero entry (which is
1) in the row indexed by b. Similarly, the column of [N]A indexed by bk for any k ∈ [p] has only
one non-zero entry (which is 1) in the row indexed by b′k. The claim then follows from the fact
that the elements of A are ordered as the elements of F but with b′k replacing bk for all k ∈ [p].

Claim 48. The matrix [R[M]F]•,A is an upper triangular matrix with 1 or −1 entries on the diagonal.

Proof: Consider the column of [R[M]F]•,A indexed by some b ∈ F \ B. From Claim 46, the only
non-zero entry in this column is in the row indexed by b itself. Now consider a column of
[R[M]F]•,A indexed by b′k for some k ∈ [p]. From Claims 44 and 45, (b′k)Ek = (bk)Ek 6= (b`)Ek

for all ` > k. As every coordinate of bk is non-zero, it follows from Claim 46 that the entry in the
row indexed by b` must be 0 for every ` > k. Also, from Claim 45, bk and b′k agree at all coordi-
nates b′k is non-zero. So, from Claim 46, the entry in the row indexed by bk must be non-zero. Also,
recall from Claim 46 that the non-zero entries of R[M]F are either 1 or −1. The claim then follows
from the fact that the elements of A are ordered same as elements of F but with b′k replacing bk for
all k ∈ [p].

B Missing proof from Section 4

B.1 Proof of Lemma 33

The entries of U, the columns of M, the rows and columns of D, and the rows of N are indexed by
e ∈ {0, 1}m. Impose the degree lexicographic order, denoted by ≺dlex, on the indices e ∈ {0, 1}m

of U and the other three matrices19. Pick the minimal basis of the space spanned by the entries of U
according to this order, i.e., consider the entries of U in the order dictated by ≺dlex while forming
the basis. Let B := {e ∈ {0, 1}m : ue is in the minimal basis of U w.r.t. ≺dlex}.

Observation 49. By the induction hypothesis, for every e ∈ F ∩ B, Supp(e) = 2µ− (q∗ − 1).

Construction of the matrix N. The columns of N are indexed by b ∈ F. We will now specify a set
of column vectors {nb : b ∈ F} in the null space of U such that the column of N indexed by b ∈ F
is nb. There are two cases for b ∈ F:

Case 1: b ∈ F \ B. In this case, ub is dependent on {ue : e ∈ B and e ≺dlex b}. Pick this depen-
dence vector as nb.

19by identifying e with an m-variate monomial.

43

Case 2: b ∈ F ∩ B. Let there be p such b, b1, . . . , bp, where p ≤ |B| ≤ w2. For a set E ⊆ [m]
and b ∈ {0, 1}m, let (b)E denote the vector obtained by projecting b to the coordinates in E.
Roughly speaking, the following claim says that each of these p vectors has a "small signature"
that differentiates it from the other p− 1 vectors.

Claim 50. There exist sets E1, . . . , Ep ⊆ [m], each of size w2 − 1 such that for all k ∈ [p],

1. Supp ((bk)Ek) = w2 − 1,

2. (bk)Ek 6= (b`)Ek ∀` 6= k.

Proof: For k ∈ [p], let S(bk) be the set of coordinates where bk is non-zero. Fix any k ∈ [p].
Notice that Supp(bk) = |S(bk)| = 2µ − (q∗ − 1) ≥ µ + 2 = w2 +

⌈
log w2⌉ + 2. For ` 6= k, as

Supp(bk) = Supp(b`) and bk 6= b`, there must exist an i` ∈ S(bk), such that the i`-th coordinate
of bk and b` are distinct. Put all such i` for ` 6= k in Ek. If |Ek| is still less than w2 − 1, then
arbitrarily put some more elements in Ek from S(bk) so that |Ek| = w2 − 1. This can be done as
S(bk) is sufficiently large.

As before, we will call Ek the signature of bk. The following claim tells us that for each vector bk,
there is a vector that is not in B and has support less than 2µ− (q∗ − 1), but agrees with bk on its
signature and so in some sense can be used as a proxy for bk.

Claim 51. For every k ∈ [p], there exists a vector b′k ∈ {0, 1}m \ (F ∪ B) such that (b′k)Ek = (bk)Ek and
also b′k and bk agree on all locations where b′k is non-zero.

Proof: Similar to the proof of Claim 45.

We will now use the above two claims to construct nbk for all k ∈ [p]. We will use b′k from Claim
51 as a proxy for bk. Notice that ub′k

is dependent on
{

ue : e ∈ B and e ≺dlex b′k
}

. Let this depen-
dence vector be nbk . This completes the construction of N. We will now show that [CMDN]F is
invertible. In fact, we will show that det ([CMDN]F) is the ratio of a polynomial in F[t] which con-
tains a monomial of degree at most 2w2µ and a product of a bunch of non-zero linear forms in F[t].

[CMDN]F is invertible. Let [M]F be the restriction of M to the rows indexed by F, and [C]F the
restriction of C to the rows and columns indexed by F.

Observation 52. The matrix [M]F has the following structure: The rows of [M]F are indexed by b =
(b1, . . . , bm) ∈ F and its columns by e = (e1, . . . , em) ∈ {0, 1}m. Its entry indexed by (b, e) is non-zero if
and only if for all i ∈ [m], bi = ei if ei 6= 0. All non-zero entries are 1.

We order the indices b ∈ F as follows: Let F0 := {b ∈ F : Supp(b) > 2µ− (q∗ − 1)} and F1 :=
{b ∈ F : Supp(b) = 2µ− (q∗ − 1)}. We first keep the b ∈ F0 in (descending) degree lexicographic
order20, followed by b ∈ F1 \ B in (reverse) lexicographic order21, and then b1, . . . , bp. Also, let

A := (F \ B)]
{

b′1, . . . , b′p
}

. Notice that |A| = |F|. Also, the elements of A are ordered as the

elements of F but with b′k replacing bk for k ∈ [p]. For any S ⊆ {0, 1}m of size |S| = |F|, let [M]F,S

20i.e., b comes before b̂ if Supp(b) > Supp(b̂), or if Supp(b) = Supp(b̂) and b̂ ≺lex b.
21i.e., b comes before b̂ if b̂ ≺lex b.

44

denote the restriction of [M]F to the columns indexed by e ∈ S, and [N]S denote the restriction of
N to the rows indexed by e ∈ S. Now,

det([CMDN]F)

= det([C]F)det([M]FDN)

= ∏
b∈F

rb ·

 ∑
S⊆{0,1}m

|S|=|F|

det ([M]F,S) · det([N]S) ·∏
e∈S

r−e



= ∏
b∈F

rb ·

 ∑
S⊆A]B
|S|=|F|

det ([M]F,S) · det([N]S) ·∏
e∈S

r−e



= ∏
b∈F

rb ·

 ∑
S⊆A]B
|S|=|F|

det ([M]F,S) · det([N]S) · ∏
e∈S∩A

r−e · ∏
e∈S∩B

r−e



= ∏
b∈F

rb · ∏
e∈A]B

r−e ·

 ∑
S⊆A]B
|S|=|F|

det ([M]F,S) · det([N]S) · ∏
e∈A\S

re · ∏
e∈B\S

re

 ,

where the second equality follows from the Cauchy-Binet formula and the third equality from the
fact that for any S 6⊆ A]B, det([N]S) = 0. Now, notice that ∏b∈F rb ·∏e∈A]B r−e is the reciprocal
of a product of non-zero linear forms in t-variables, as F ⊆ A] B. We shall now prove that

∑
S⊆A]B
|S|=|F|

det ([M]F,S) · det([N]S) · ∏
e∈A\S

re · ∏
e∈B\S

re (6)

has a t-monomial of degree at most w2(2µ− (q∗ − 1)).

Claim 53. [N]A is an identity matrix.

Proof: Same as that of Claim 47.

Claim 54. The matrix [M]F,A is an upper triangular matrix with ones on the diagonal.

Proof: Consider the column of [M]F,A indexed by some b ∈ F \ B. Because of the way we have
ordered the elements in F and A, it follows from Observation 52, the only non-zero entries in this
column are in and above the row indexed by b. Now consider a column of [M]F,A indexed by
b′k for some k ∈ [p]. From Claims 50 and 51, (b′k)Ek = (bk)Ek 6= (b`)Ek for all ` 6= k. As every
coordinate of (bk)Ek is non-zero, it follows from Observation 52 that the entry in the row indexed
by b` must be 0 for every ` 6= k. Also, from Claim 51, as bk and b′k agree at all coordinates b′k is
non-zero. So, from Observation 52, the entry in the row indexed by bk must be non-zero. Also,
recall from Observation 52 that the non-zero entries of [M]F are ones. The claim then follows from
the fact that the elements of A are ordered as that of F but with b′k replacing bk for k ∈ [p].

45

Claim 55. det ([M]F,A) · det([N]A) ·∏e∈B\A re = ∏e∈B re 6= 0 and has t-degree at most 2w2µ.

Proof: det ([M]F,A) · det([N]A) ·∏e∈B\A re = ∏e∈B re 6= 0 follows from Claims 53 and 54 and the
fact that A ∩ B is empty. For every e ∈ B, degt(r

e) ≤ 2µ − (q∗ − 1). So, degt (∏e∈B re) ≤
w2 · (2µ− (q∗ − 1)) ≤ 2w2µ, as |B| ≤ w2.

Claim 56. For any S ⊆ A] B such that |S| = |F| and det([N]S) is non-zero, there is a one-to-one
correspondence between A \ S and S∩B such that if e ∈ A \ S corresponds to e′ ∈ S∩B, then e′ ≺dlex e.

Proof: As det([N]S) 6= 0, there must be a one-to-one correspondence between the rows and columns
of [N]S such that if the column indexed by b ∈ F corresponds to a row indexed by e ∈ S, then the
(e, b)-th entry of [N]S must be non-zero. Obtain a one-to-one correspondence between A and S
from the above correspondence by replacing bk with b′k for all k ∈ [p]. Notice that, if e ∈ A corre-
sponds to e′ in S, then either e′ ≺dlex e or e′ = e. Now, removing A ∩ S from A yields A \ S, and
removing A ∩ S from S yields S ∩ B. So the correspondence between A and S yields the desired
correspondence between A \ S and S ∩ B.

The above claim implies that for every S ∈ A] B of size |F|, either det ([M]F,S) · det([N]S) ·
∏e∈A\S re ·∏e∈B\S re is 0, or ∏e∈B re ≺dlex ∏e∈A\S re ·∏e∈B\S re. Hence, ∏e∈B re is the smallest
r-monomial in the polynomial given in (6) w.r.t. ≺dlex order, and so, the homogeneous component
of this polynomial that has the same r-degree as that of ∏e∈B re survives. Now, from Claim 55 and
the fact that `1, . . . , `n are linearly independent, the polynomial in (6) has a t-monomial of degree
≤ 2w2µ.

C Hitting sets for the orbits of sparse polynomials

In this section, we provide the proofs of Theorems 29 and 8 due to [MS21].

Proof of Theorem 29: Let g = f (Ax), where A ∈ GL(n, F), and suppose that A maps xi 7→ `i(x)
for all i ∈ [n]. If g(x) is a non-zero constant, then g

(
GSV

k

)
6= 0 for all k ≥ 1. So, to prove the

theorem, we just need to show that if g is not a constant, then neither is g
(
GSV
(dlog se+1)

)
. We can

assume without loss of generality that f is constant-free, i.e., f (0) = 0, as otherwise we can prove
the theorem on the constant-free part of f .

The theorem shall be proved by induction on the number of monomials s in f . Assume without
loss of generality that the monomials of f do not have a non-trivial GCD, for otherwise we can
take the GCD common and then prove the theorem separately for both the GCD (which is a mono-
mial) and the residual polynomial. For the base case of s = 1, g is a product of linear forms and
hence g(GSV

1) is a non-constant if g is a non-constant. Now, assume that the theorem is true for all
n-variate, degree d polynomials with sparsity strictly less than s > 1. For f , there are two cases:

Case 1: Every variable xi appears in at most s/2 monomials of f . Assume without loss of gener-
ality that x1 appears in some monomial of f . Then, as char(F) = 0 or > d, ∂ f

∂x1
6= 0. Moreover,

the sparsity of ∂ f
∂x1

is at most s/2 and so, from the induction hypothesis, ∂ f
∂x1

(
AGSV

(dlog s
2e+1)

)
6=

46

0. Now, recall that the gradient of a polynomial p(x), denoted by ∇p, is the column vector(
∂p
∂x1

∂p
∂x2

. . . ∂p
∂xn

)T
. By the chain rule of differentiation,

∇g = AT · [∇ f](Ax).

As AT is invertible, there exists a j ∈ [n] such that ∂g
∂xj

(
GSV
(dlog s

2e+1)

)
= ∂g

∂xj

(
GSV
(dlog se)

)
6= 0. Then,

Observation 15 implies that g
(
GSV
(dlog se+1)

)
is not a constant (as deg(g) = d and |F| > nd).

Case 2: There is a variable - say x1 - which appears in more than s/2 monomials. As the linear
forms `1, . . . , `n are linearly independent, `1 6= 0. So, there exists an i ∈ [n] such that the coefficient
of xi in `1 is non-zero. Let x−i denote the vector (x1, . . . , xi−1, xi+1, . . . , xn) and suppose that `1(x) =
c(xi − h(x−i)), where c ∈ F\{0} and h is a linear form. Also, for all j ∈ {2, . . . , n}, define

˜̀j(x−i) := `j(x1, . . . , xi−1, h(x−i), xi+1, . . . , xn) = `j mod `1.

As `1, . . . , `n are F-linearly independent, so are ˜̀2(x−i), . . . , ˜̀n(x−i). Now,

g(x1, . . . , xi−1, h(x−i), xi+1, . . . , xn) = f (0, ˜̀2, . . . , ˜̀n).

As the monomials of f do not have a non-trivial GCD and f is constant-free, f (0, x2, . . . , xn) is
not a constant. Moreover, it has at most s/2 monomials. Let t =

⌈
log s

2

⌉
+ 1 and recall that

GSV
t =

(
G(1)t , . . . ,G(n)t

)
. Then, from the induction hypothesis,

g
(
G(1)t , . . . ,G(i−1)

t , h
(
G(1)t , . . . ,G(i−1)

t ,G(i+1)
t , . . . G(n)t

)
,G(i+1)

t , . . . ,G(n)t

)
is a non-constant. This implies, for a fresh variable zt+1, g

(
G(1)t , . . . ,G(i−1)

t , zt+1,G(i+1)
t , . . . ,G(n)t

)
is a non-constant. Hence, g

(
G(1)t , . . . ,G(i−1)

t , zt+1 + G(i)t ,G(i+1)
t , . . . ,G(n)t

)
is a non-constant, and

therefore, g
(
G(1)t+1, . . . ,G(n)t+1

)
is a non-constant, as GSV

t+1|(yt+1=αi)
= GSV

t + ei · zt+1. Putting the value

of t, we get that g
(
GSV
(dlog se+1)

)
is a non-constant.

Theorem 8 follows as a corollary to Theorem 29. Let f be a non-zero n-variate, s-sparse polyno-
mial, and g ∈ orb(f). Then, g(GSV

(dlog se+1)) 6= 0. Now, g
(
GSV
(dlog se+1)

)
is a 2 (dlog se+ 1)-variate

polynomial of degree nd. As |F| > nd, a hitting set for orb(C) can be computed in time (nd)O(log s).

D Hitting sets for the orbits of constant-depth, constant-occur formulas

Let f ∈ F[x] be a n-variate, degree-D polynomial computed by a (∆, k, s) formula i.e., a depth-∆,
occur-k formula of size-s. Let us identify f with a (∆, k, s) formula computing it. In this section,
the level of a gate in f will be one plus its distance from the output gate of f . Just like we did
in Section 5, we first upper bound the top fan-in of f in Section D.1 and then use the notion of
faithful homomorphisms to construct hitting sets for orb(f) in Section D.2.

47

D.1 Upper bounding the top fan-in of f

We begin by showing that f can be written in a "canonical" form.

Claim 57. If f is a (∆, k, s) formula, then it can also be computed by a (∆, k, (2s)∆) formula in a canonical
form with the following properties:

1. All gates connected to the leaves of f are ×f gates.

2. f has alternating levels of + and ×f gates.

Proof: While f contains a + gate connected to the leaves, we merge all the leaves connected to
it into a single leaf node computing their sum. Now, if this + gate is not connected to any gate
other than this leaf, it can simply be replaced by the leaf after multiplying the sparse polynomial
computed by the leaf by the label of the edge between it and the + gate. This does not increase
the depth, size or occur of f . Otherwise, we add a ×f gate between the + gate and the leaf. While
this can increase the size of f by a factor of 2, the occur remains the same. The depth does not
increase, because the + gate is also connected to some non-leaf node. Now f has property 1.

If f has a + gate q which is fed another + gate h as input and the edge connecting them is labelled
by α, then we can simply remove h, connect all its inputs directly to q and multiply the labels of
edges connecting all these inputs to q by α. This modification to f clearly does not increase its
depth, size or occur. Also, now each sum gate in f is connected solely to ×f gates.

Consider any maximal sub-tree of f made up, solely, of ×f gates. Let its root be q and its inputs
h1, . . . , hm. Then, q = he1

1 · · · h
em
m , where ei is the product of the weights of all edges on the path

from hi to q. As the sub-tree is maximal, none of h1, . . . , hm are ×f gates and q is also not an input
to a ×f gate. Thus, if we replace each such sub-tree with a single ×f gate computing the same
polynomial, f will also satisfy 2. Notice that, doing this does not increase the depth or occur;
size on the other hand, may increase. Suppose that the depth of the sub-tree is ∆′. Let the sum
of weights of edges connecting gates at level `+ 1 (from q) to gates at level ` be r` ≤ 2s, for all
` ∈ [∆′ − 1]. Also, let the sum of weights of edges connecting the leaves be r∆′ . As, all edge
weights are non-negative, ∑i∈[m] ei ≤ ∏`∈[∆′] r` ≤ (2s)∆′ ≤ (2s)∆−2. Since, there can be no more
than (2s) such sub-trees, the size of f can increase by at most (2s)∆−1. Thus, size of f is at most
2s + (2s)∆−1 ≤ (2s)∆.

We can also assume that the output gate of f is not a ×f gate, for otherwise, we only need to
construct a hitting set generator for orbits of all of its factors which themselves are (∆− 1, k, (2s)∆)
formulas, with + gates at the top or are sparse polynomials. Thus, we can assume without loss of
generality that ∆ is an even number: if ∆ 6= 2, then the top most gate is a + gate, f has alternating
levels of + and ×f gates and gates connected to the leaves are ×f gates. We now make the
following claim which will allow us to assume that the top fan-in of f is at most k.

Claim 58. Let f be a (∆, k, s) formula in the canonical form of Claim 57, with either a + gate at the top or
∆ = 2. Then, for any i ∈ [n], ∂ f

∂xi
is a (∆, (2k)∆/2, (2k)∆/2s) formula in the canonical form with the top

fan-in bounded by k.

48

Proof: When ∆ = 2, f is a polynomial of sparsity s and k = 1. So, the sparsity of ∂ f
∂xi

is at most s
and the depth and occur do not increase, making the claim true. Assume, by the way of induction,
that the claim is true for all formulas of depth ∆− 2. Let x = xi, f = ∑i∈[m] fi and x be present
only in f1, . . . , fr, r ≤ k. Furthermore, for all i ∈ [r], let fi = ∏j∈mi

q
ei,j
i,j and x be present only in

qi,1, . . . qi,ri , ∑i∈[r] ri ≤ k. Then,

∂ f
∂x

= ∑
i∈[r]

(
mi

∏
j=ri+1

q
ei,j
i,j

)
·

 ∑
j∈[ri]

ei,j
∂qi,j

∂x
· qei,j−1

i,j · ∏
j′∈[ri]
j′ 6=j

q
ei,j′

i,j′


= ∑

i∈[r]
∑

j∈[ri]

∂qi,j

∂x
· ∏

j′∈[mi]

q
e′i,j′
i,j′

 ,

where e′i,j′ is either ei,j′ or ei,j′ − 1. First of all, notice that, the top fan-in of ∂ f
∂x is at most ∑i∈[r] ri ≤ k.

As all qi,j are formulas of depth ∆ − 2, from the induction hypothesis, ∂qi,j
∂x is also a depth ∆ − 2

formula. Thus, the depth of ∂ f
∂x is at most ∆. However, the size and occur may change.

For all i ∈ [r], let the occur of fi be pi ≤ k; then the occur of ∏j′∈[mi] q
e′i,j′
i,j′ is at most pi. Also, from the

induction hypothesis, ∂qi,j
∂x has occur (2k)(∆−2)/2. So, the occur of ∂ f

∂x is at most ∑i∈[r] ri

(
(2k)(∆−2)/2 + pi

)
,

which can be bounded from above by (2k)∆/2. Similarly, suppose that the size of fi is si ≤ s− 1;

then the size of ∏j′∈[mi] q
e′i,j′
i,j′ is at most si. Also, from the induction hypothesis, ∂qi,j

∂x has size (2k)
∆−2

2 s.

So, the size of ∂ f
∂x is at most ∑i∈[r] ri

(
(2k)

∆−2
2 s + si + 1

)
≤ (2k)∆/2s.

We now upper bound the top fan-in of f using this claim. Let A ∈ GL(n, F) and g(x) = f (Ax).
If f is a constant, then constructing a hitting set for orb(f) is trivial. Otherwise, there exists an
i ∈ [n] such that ∂ f

∂xi
6= 0 (because char(F) > (2ks)∆3R ≥ D). Suppose that a polynomial map,

G : Ft → Fn of degree at most nR + 1 is a hitting set generator for orb
(

∂ f
∂xi

)
. The gradient of

a polynomial p(x), denoted by ∇p, is the column vector
(

∂p
∂x1

∂p
∂x2

. . . ∂p
∂xn

)T
. By the chain rule of

differentiation,

∇g = AT · [∇ f](Ax).

As AT is invertible, ∂ f
∂xi

(AG) 6= 0 =⇒ ∇ f (AG) 6= 0 =⇒ ∇g(G) 6= 0 =⇒ ∃ ∈ [n], such that ∂g
∂xj

(G)
6= 0. Then, from Observation 15, for G̃ := G + GSV

1 , g(G̃) 6= 0, i.e., G̃ is a hitting set generator for

orb(f). So, all we need to do now is construct a hitting set generator for orb
(

∂ f
∂xj

)
and from Claim

58, ∂ f
∂xj

has top fan-in at most k. Overloading the notation, we refer to ∂ f
∂xj

as f , which is computed
by a (∆, k, s) formula in the canonical form and with a + gate at the top whose fan-in is at most k.

49

D.2 Constructing a faithful homomorphism

Let f = f1 + · · · + fk and A ∈ GL(n, F). Let gi = fi(Ax) for all i ∈ [k], f = (f1, . . . , fk) and
g = (g1, . . . , gk). We now show how to create a homomorphism φ that is faithful to g; from
Lemma 19, this homomorphism will be a hitting set generator for orb(f). φ will be constructed
recursively as follows: each level of recursion corresponds to a level in f , with the recursion start-
ing at level 2 and ending at level ∆− 2. At level `, our goal will be to construct a homomorphism
φ` which is faithful to every tuple in a certain set C` of tuples. Each tuple in C` consists of at most
r` derivatives, of order at most a`, of disjoint groups of gates at level ` of f , evaluated at Ax. Note
that, as the derivatives are of disjoint groups of gates in f , |C`| ≤ s.

For ` = 2, C2 contains only one tuple, viz. g, r2 = k and a2 = 0. For any ` ≥ 2, let q ∈
C`, q = (q1, . . . , qr`), where qi = hi(Ax) for all i ∈ [r`] and let h = (h1, . . . , hr`). If φ`+1 is such
that rankF(x) Jx(h)(Ax) = rankF(z) φ`+1 (Jx(h)(Ax)), then using Lemma 39, we can construct a φ`

faithful to q. The following lemma which was proved in [ASSS16], helps us reduce the problem
from level ` to level `+ 1.

Lemma 59 (Lemma 4.4 of [ASSS16]). Let h be a tuple of r` derivatives, of order at most a`, of gates G at
level ` of f , tr-degF(h) = r′` and h′ be a transcendence basis of h. Any r′` × r′` minor of Jx(h′) is of the
form ∏i pei

i , where pis are polynomials in at most r`+1 := (a` + 1) · 2a`+1k · r2
` many derivatives of order

at most a`+1 := a` + 1 of disjoint groups of children of G.

For each h, we will use the above lemma for a non-zero r′` × r′` minor of Jx(h′). Then, the lemma
gives a bunch of tuples h1, . . . , hu, one for each pi. Suppose that pi is a polynomial in pi,1, . . . , pi,m,
which are derivatives of gates at level `+ 1 of f . Then, hi = (pi,1(Ax), . . . , pi,m(Ax)) and C`+1 is a
set of all hi, for all h. If φ`+1 is faithful to each tuple in C`+1, then from Lemma 19, φ`+1

(
pei

i (Ax)
)
6=

0 and hence it preserves the rank of Jx(h)(Ax).

The base case of the recursion is when ` = ∆ − 2. Our goal is to create a homomorphism φ∆−2
which is faithful to every tuple in the set C∆−2, |C∆−2| ≤ s of at most r∆−2 many sparse polynomials
(because any derivative of a sparse polynomial is a sparse polynomial) evaluated at Ax. r∆−2 can
be bounded from above by R := (2k)2∆·2∆

. For all q = h(Ax) = (h1(Ax), . . . , hR(Ax)) ∈ C∆−2, we
will create a φ∆−1 such that rankF(x) Jx(h)(Ax) = rankF(z) φ∆−1 (Jx(h)(Ax)). Let h1, . . . , hR′ be a
transcendence basis of h. As the size of f is s, every entry of any |R′| × |R′| sub-matrix of Jx(h) is
a polynomial with sparsity and degree at most s. So, the determinant of any such sub-matrix is a
polynomial with sparsity at most R′! · sR′ ≤ R! · sR and degree at most sR. Hence, from Theorem
29, GSV

(dlog(R!·sR)e+1) = GSV
(O(R(log R+log s))) is a hitting set generator for orbits of these determinants.

Thus, we can put φ∆−1 = GSV
(O(R(log R+log s))). We then repeatedly use Lemma 39 to construct φ2. At

level ` of the recursion, we add at most r` + 1 ≤ R + 1 many new variables for a total of at most
(∆− 2)(R + 1) new variables. Also, notice that at level `, the polynomial that we add to φ`+1 to
create φ` has degree at most nr` + 1 ≤ nR + 1. Thus, there exists a homomorphism ψ in at most
(∆− 2)(R + 1) variables and of degree at most nR + 1, such that GSV

(O(R(log R+log s))) + ψ is a hitting
set generator for orb(f). We are now ready to prove Theorem 10.

50

D.3 Proof of Theorem 10

A non-zero polynomial f ∈ C is computed by a (∆, k, s) formula. Then, f is also computed by a
(∆, k, (2s)∆) formula in the canonical form of Claim 57. There are two cases:

Case 1: The top most gate of the formula is a + gate. If f is constant, then so is every polynomial
in orb(f). In this case, the set containing any point in Fn is a hitting set for orb(f); so we will
assume that f is not constant. Then, there exists a xi such that ∂ f

∂xi
6= 0 (as char(F) > (2ks)∆3R ≥ D)

and as argued in Section D.1, ∂ f
∂xi

can be computed by a (∆, (2k)∆/2, (2k)∆/2(2s)∆) formula with +

gate at the top and top fan-in bounded by k. Moreover, if G is a hitting set generator for orb
(

∂ f
∂xi

)
,

then since char(F) > (2ks)∆3R ≥ (nR + 1)D, G̃ = G + GSV
1 is a hitting set generator for orb(f). As

char(F) = 0 or > (2ks)∆3R, Lemma 39 works, since the degree of polynomials computed by gates
in f can be at most

(
(2k)∆/2(2s)∆)∆ ≤ (2ks)∆3

. Thus, as shown in Section D.2, there exists a G that
has at most

O
(

R
(

log R + log
(
(2k)∆/2(2s)∆

)))
+ (∆− 2)(R + 1) = O (R (log R + ∆ log k + ∆ log s) + ∆R)

many variables and of degree nR + 1. As GSV
1 has 2 variables and is of degree n, the number

of variables in G̃ is O (R (log R + ∆ log k + ∆ log s) + ∆R) and its degree is nR + 1. Thus, for any
A ∈ GL(n, F), and g(x) := f (Ax), g(G̃) is a polynomial in O (R (log R + ∆ log k + log s) + ∆R)
variables and of degree at most (nR + 1)D. So, a hitting set for g can be constructed in time
(nRD)O(R(log R+∆ log k+∆ log s)+∆R).

Case 2: The top most gate of the formula is a×f gate. Then, all inputs to this gate are computed by
(∆− 1, k, (2s)∆) formulas in the canonical form of Claim 57 and with a + gates at the top. Hence,
all inputs of f are in case 1.

The proof for the case where the leaves are labelled by b-variate polynomials is similar; all we
need to do is observe that GSV

Rb is a hitting set generator for b-variate polynomials. So, we can use
G = GSV

Rb + ψ.

E Lower bounds for ROABPs and occur-once formulas against their
orbits

E.1 A lower bound for ROABPs

In this section, we show that there is a (3n + 2)-variate, O(n)-sparse, degree-(n + 1) polynomial f
satisfying the following property: there exists a polynomial g ∈ orb(f) such that any ROABP com-
puting g has width 2Ω(n). The polynomial g is the obtained by suitably modifying a polynomial
constructed in [KNS20], so let us first describe their construction.

Definition 60 (Double cover of a graph). For a graph G = (V, E) on n-vertices, the double cover
of G is a bipartite graph G̃ = (L] R, Ẽ), where |L| = |R| = n with the following properties:

51

1. For every u ∈ V, there is a vertex u(L) ∈ L and a vertex u(R) ∈ R,

2. For every edge {u, v} ∈ E, there are edges
{

u(L), v(R)
}

and
{

v(L), u(R)
}

in Ẽ.

Observation 61. The double cover of a k-regular graph is also k-regular.

Observation 62. Let u, v ∈ V. If there is a path of odd length between them, then there is a path between
u(L) and v(R) in G̃. If there is a path of even length between them, then there is a path between u(L) and v(L)

in G̃.

Proof: Let u→ u1 → · · · → um → v be a path of odd length between u and v. As the length of the
path is odd, m is even. Then, u(L) → u(R)

1 → u(L)
2 → · · · → u(R)

m−1 → u(L)
m → v(R) is a path between

u(L) and v(R) in G̃. The proof of the other case is similar.

Construction of g [KNS20]. Let G = (V, E) be a 3-regular expander graph with n vertices and let
G̃ = (L] R, Ẽ) be its double cover. From Observation 61, G̃ is also a 3-regular graph. So, it follows
from Hall’s Marriage Theorem [Hal35] that there exist perfect matchings M1, M2, M3 ⊆ Ẽ such
that Ẽ = M1]M2]M3. Label the edges in M1 by the variables x = (x1, . . . , xn), the edges in M2
by the variables y = (y1, . . . , yn), and the edges in M3 by the variables z = (z1, . . . , zn). With every
vertex in u ∈ L] R, associate the affine form 1 + xi + yj + zk such that the only edges incident on
u in G̃ are labelled by xi, yj and zk.

Observation 63. Each xi, yi and zi appears in exactly one of the affine forms associated with the vertices
in L and in exactly one of the affine forms associated with the vertices in R.

Let p1 be the product of all the affine forms associated with the vertices in L and p2 the product of
all the affine forms associated with the vertices in R; define p := p1 + p2. The following fact was
proved in [KNS20].

Fact 64. [KNS20] Over any field F, any ROABP computing p has width 2Ω(n).

Using p we construct g as follows g := s1 p + s2q, where s1, s2 are variables distinct from x, y and
z and q is a polynomial in F[x, y, z] which we will define later. Notice that any ROABP computing
g must also have width 2Ω(n). This is true, since by setting s1 → 1 and s2 → 0 in an ROABP
computing g, we get an ROABP computing p.

For a vertex u ∈ L] R, with the affine form associated with it being 1 + xi + yj + zk, we will
say that the linear form22 associated with it is xi + yj + zk. Before constructing f , we prove the
following claim.

Claim 65. Let the linear forms associated with the vertices in L be `1, . . . , `n and those associated with the
vertices in R be r1, . . . , rn. Then, F-span〈`1, . . . `n, r1, . . . , rn〉 has dimension 2n− 1.

Proof: Assume without loss of generality that, for all i ∈ [n], `i and ri are the linear forms contain-
ing xi. Now, from Observation 63,

∑
i∈[n]

`i = ∑
i∈[n]

xi + ∑
i∈[n]

yi + ∑
i∈[n]

zi = ∑
i∈[n]

ri.

22A linear form is a linear polynomial whose constant term is 0.

52

So the vector 1 ∈ F2n whose first n coordinates are 1 and last n coordinates are−1 is a dependence
vector of `1 . . . `n, r1, . . . , rn. We now show that it is the only dependence vector (up to scaling by
any field element). This would immediately imply the claim.

Suppose that ∑i∈[n] ci`i = ∑i∈[n] diri. Then, since xi appears only in `i and ri, ci = di for all
i ∈ [n]. Identify the vertices in L and R by the linear forms associated with them. Observe that if
there is an edge between `i and rj, then they share a variable. Moreover, they are the only linear
forms containing that variable. So, ci = dj = cj. Fix an i 6= 1. As G is an expander, it is connected.
So, from Observation 62, there is either a path between `1 and ri or a path between `1 and `i. Thus,
ci = c1 for all i ∈ [n], i.e., 1 is the only possible dependence vector.

The polynomial f .

f := s1

(
∏

i∈[n]
xi + ∏

i∈[n−1]
yi

(
∑

i∈[n]
xi + ∑

i∈[n−1]
−yi

))
+ s2

(
yn + ∑

i∈[n]
zi

)
.

Notice that f is a polynomial in 3n + 2 variables, it has degree n + 1, and has O(n) monomials.

A and b mapping f to g. As F-span〈`1, . . . `n, r1, . . . , rn〉 has dimension 2n − 1, we can assume
without loss of generality that {`1, . . . , `n, r1, . . . , rn−1} is its basis. Also, as the space spanned by
the linear forms in x, y and z variables is a vector space of dimension 3n, there exist linear forms
t1, . . . tn+1 such that `1, . . . , `n, r1, . . . , rn−1, t1, . . . , tn+1 are linearly independent. Let A be the matrix
of the linear transformation that maps

xi 7→ `i, ∀i ∈ [n],
yi 7→ ri, ∀i ∈ [n− 1],
yn 7→ tn+1,
zi 7→ ti, ∀i ∈ [n],
si 7→ si, for i = 1, 2.

As `1, . . . , `n, r1, . . . , rn−1, t1, . . . , tn+1 are linearly independent, and as s1 and s2 are variables dis-
tinct from x, y and z, A ∈ GL(3n + 2, F). Define b as follows: bi = 1 for all i ∈ [2n− 1] (i.e., for
coordinates corresponding to x and y1, . . . , yn−1) and 0 otherwise.

Let q be the polynomial that is obtained after substituting the variables in yn + ∑i∈[n] zi by the
corresponding linear forms. Then, it is easy to see that g = f (A · (x, y, z, s1, s2)T + b) ∈ orb(f).

E.2 A lower bound for occur-once formulas

Let f (x) = x1x2 · · · xn; clearly, f can be computed by an occur-once formula of size O(n). Let
`1 = x1, `i(x) = x1 + xi for i ∈ [2, n], and A ∈ GL(n, F) such that Ax = (`1 `2 · · · `n)T. Let
g := f (Ax) = x1(x1 + x2)(x1 + x3) · · · (x1 + xn). We will show that any occur-once formula
computing g has size at least 2n−1. The proof is divided into the following two claims.

Claim 66. g cannot be computed by any occur-once formula of width more than 1.

53

Proof: For the sake of contradiction, assume that g can be computed by an occur-once formula of
width ≥ 2. Consider such a formula of the smallest possible depth ∆. From Lemma 40, there are
three cases:

Case 1: g = α(g1 + g2) + β, where g1 and g2 are non-constant, variable disjoint, occur-once formu-
las and α 6= 0. As x1 · · · xn is a monomial of g, x1, ..., xn must appear in either g1 or g2. But then,
the other will have to be a constant – a contradiction.

Case 2: g = α(g1 · g2) + β, where g1 and g2 are non-constant, variable disjoint, occur-once formu-
las and α 6= 0. Assume without loss of generality that x1 appears in g1 and therefore, does not
appear in g2. Then, as every monomial of g contains x1, the constant term of g1 must be zero. This
means that the constant term of α(g1 · g2) is also 0, which forces β to be 0, as g has no constant
term. As F[x] is a unique factorization domain, x1, (x1 + x2), ..., (x1 + xn) are the only irreducible
factors of g = α(g1 · g2). But then, x1 is absent in g2, and so, g2 must be a constant – a contradiction.

Case 3: g = αge
1 + β, where g1 is a non-constant occur-once formula having width(g1) = width(g) ≥

2 and depth(g1) < depth(g) = ∆, and α 6= 0. If h is the highest degree homogeneous part of g1,
then αhe is the highest degree homogeneous part of αge

1 + β = g. Since g is homogeneous and
square-free, we must have e = 1.

Thus, we have shown that g = αg1 + β, where g1 is a non-constant occur-once formula having
width(g1) ≥ 2 and depth(g1) ≤ ∆− 1. If we apply Lemma 40 on g1, we once again get three cases,
out of which, Case 1 and 2 can be refuted as above. Suppose g1 = α1ge1

1,1 + β1, where g1,1 is a non-
constant occur-once formula having width(g1,1) ≥ 2 and depth(g1,1) < ∆− 1. Then, g = αα1ge1

1,1 +
αβ1 + β. Arguing as before, we can show that e1 = 1. The expression αα1g1,1 + αβ1 + β can be
computed by an occur-once formula of width≥ 2 and depth≤ ∆− 1, as depth(g1,1) < ∆− 1. This
contradicts the minimality of ∆.

Claim 67. If g is computable by an occur-once formula of width 1, then the size of the formula is ≥ 2n−1.

Proof: If g is computable by an occur-once formula of width 1, then the formula is of the form

αm
(
· · ·
(
α2 (α1 p(x)e1 + β1)

e2 + β2
)
· · ·
)em + βm, (7)

where p(x) is a depth-2 occur-once formula, e1, ..., em ∈ N, α1, ..., αm ∈ F \ {0} and β1, ..., βm ∈
F. Let h be the highest degree homogeneous part of p(x). Then, αhe1e2···em is the highest degree
homogeneous part of g, for some α 6= 0. As g is a homogeneous and square-free polynomial, we
must have e1 = e2 = . . . = em = 1. But then, g = αp(x) + β for some α ∈ F \ {0} and β ∈ F. As
p(x) is a depth-2 occur-once formula and g has 2n−1 monomials, the size of the formula p(x), and
therefore also the size of the formula (7) above, is at least 2n−1.

F Affine projections and orbit closures

Let f ∈ F[x] be an n-variate, degree-d polynomial over F, and char(F) = 0. The set of affine
projections of f over a field F is aprojF(f) := { f (Ax + b) : A ∈ Fn×n and b ∈ Fn}; the orbit of f
over F is the set orbF(f) := { f (Ax + b) : A ∈ GL(n, F) and b ∈ Fn} ⊆ aprojF(f). Let m := (n+d

d).
By identifying a polynomial in aprojF(f) with its coefficient vector in Fm, we will view aprojF(f)
and orbF(f) as subsets of Fm.

54

Definition 68 (Orbit closure). The orbit closure of f over F, denoted by orbF(f), is the smallest
affine variety in Fm that contains orbF(f).

In other words, orbF(f) is the Zariski closure of the set orbF(f) ⊆ Fm over F. We give a proof of
the following well-known theorem, which implies orbF(f) ⊆ aprojF(f) ⊆ orbF(f) ⊆ Fm.

Theorem 69. aprojF(f) ⊆ orbF(f).

Proof: Let M(n, d) := {α = (α1, α2, . . . , αn) ∈ Zn
≥0 : ∑i∈[n] αi ≤ d}. Let Y := (yi,j)i,j∈[n] be a

generic n× n matrix, and u := (u1 u2 . . . un) be a generic n-dimensional vector. We will treat yi,j
and ui as formal variables and denote these set of variables as y := {yi,j : i, j ∈ [n]} ∪ {ui : i ∈ [n]}.
Consider the polynomial f (Yx+u) ∈ F[x, y]. By treating f (Yx+u) as a polynomial in x variables
with coefficients from F[y], we write it as,

f (Yx + u) = ∑
α∈M(n,d)

gα(y) · xα,

where gα(y) ∈ F[y] and degy(gα) ≤ d. Let g := {gα(y) : α ∈ M(n, d)} ⊂ F[y]. For simplicity,
we denote the elements of g as g1, g2, . . . , gm. Let z := {z1, z2, . . . , zm} be a set of m variables. The
annihilating ideal of g is the set

ann-I(g) := {h(z) ∈ F[z] : h(g) = h(g1, g2, . . . , gm) = 0} ⊂ F[z].

Observe that ann-I(g) is an ideal of F[z]. The affine variety of this ideal over F will be denoted as
V(ann-I(g)) ⊆ Fm.

Observation 70. aprojF(f) ⊆ V(ann-I(g)).

Proof: An element c ∈ aprojF(f) is the coefficient vector of f (Ax + b) for some A ∈ Fn×n and
b ∈ Fn. The matrix A and the vector b naturally assign a value a ∈ Fn2+n to the y variables so that

f (Ax + b) = ∑
α∈M(n,d)

gα(a) · xα.

Notice that g(a) := (g1(a), g2(a), . . . , gm(a)) is the coefficient vector c of f (Ax + b). As h(g) = 0
for every h ∈ ann-I(g), we have h(g(a)) = 0 for every h ∈ ann-I(g). Hence, c ∈ V(ann-I(g)).

Claim 71. orbF(f) = V(ann-I(g)).

Proof: From Observation 70, orbF(f) ⊆ V(ann-I(g)), as orbF(f) ⊆ aprojF(f). Since orbF(f) is
the smallest variety in Fm containing orbF(f), and intersection of two varieties is again a variety,
we have orbF(f) ⊆ V(ann-I(g)).

To show the other direction, i.e., orbF(f) ⊇ V(ann-I(g)), it is sufficient to show that the ideal
of orbF(f) (denoted as I(orbF(f))) is contained in ann-I(g). This is because, V(I(orbF(f))) =

orbF(f), as orbF(f) is a variety. Let p(z) ∈ I(orbF(f)) and degz(p) = D. Then, p(c) = 0 for all
c ∈ orbF(f). Consider the polynomial p(g) = p(g1, g2, . . . , gm) ∈ F[y]. If p(g) = 0, then p ∈
ann-I(g) and we are done. So, suppose p(g) 6= 0. Note that degy(p(g)) ≤ Dd, as degy(gi) ≤ d.

55

Pick a set S ⊂ F of size |S| = n+ Dd+ 1 (such an S exists as char(F) = 0). By the Schwartz-Zippel
lemma,

Pr
a∈rSn2+n

{p(g(a)) = 0} ≤ Dd
|S| .

On the other hand,
Pr

a∈rSn2+n
{g(a) ∈ orbF(f)} ≥ 1− n

|S| ,

as a random A ∈ Sn×n is invertible with probability at least 1 − n
|S| (from the Schwartz-Zippel

lemma again). Since p(c) = 0 for all c ∈ orbF(f),

Pr
a∈rSn2+n

{g(a) ∈ orbF(f)} ≤ Pr
a∈rSn2+n

{p(g(a)) = 0} .

Hence, 1− n
|S| ≤

Dd
|S| , implying |S| ≤ n + Dd. But, this is a contradiction as |S| = n + Dd + 1.

Therefore, p(g) = 0.

The proof of the theorem now follows from Observation 70 and the above claim.

56

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

