
Unambiguous DNFs from Hex

Shalev Ben-David Mika Göös Siddhartha Jain Robin Kothari
University of Waterloo EPFL EPFL Microsoft Quantum

February 16, 2021

Abstract. We exhibit an unambiguous k-DNF formula that requires CNF width Ω̃(k1.5).
Our construction is inspired by the board game Hex and it is vastly simpler than previous
ones, which achieved at best an exponent of 1.22. Our result is known to imply several other
improved separations in query and communication complexity (e.g., clique vs. independent
set problem) and graph theory (Alon–Saks–Seymour problem).

1 Three puzzles
First formulation. An n-variate DNF formula F = C1 ∨ · · · ∨ Cm is said to be unambiguous if
for every input x ∈ {0, 1}n at most one of the conjunctions Ci evaluates to true, Ci(x) = 1. If we
think of the DNF formula as expressing its set of 1-inputs F−1(1) as a union of subcubes C−1

i (1),
then F is unambiguous precisely when the subcubes are pairwise disjoint. Unambiguity is a severe
structural restriction on DNFs. In particular, every unambiguous DNF formula of bounded width
(defined as the maximum number of literals in a conjunction) can be written equivalently as a
bounded-width CNF formula. Namely, we have the following folklore fact [Göö15, §III].

Fact 1. Every unambiguous k-DNF can be written equivalently as a k2-CNF.

In this paper, we ask: Can this quadratic relationship be improved? Are there k-DNFs that
require CNFs of width much larger than k, perhaps even Ω(k2)? More formally, for a boolean
function f : {0, 1}n → {0, 1} we define the following standard complexity measures.

− 1-certificate complexity C1(f) is the least k such that f can be written as a k-DNF;
− 0-certificate complexity C0(f) is the least k such that f can be written as a k-CNF;
− unambiguous 1-certificate complexity UC1(f) is the least k such that f can be written as an

unambiguous k-DNF.

Puzzle I. For α > 1, does there exist a boolean function f with C0(f) ≥ UC1(f)α−o(1)?

Here we abused terminology: instead of a single boolean function we really mean an infinite
sequence of functions fn satisfying C0(fn) = ω(1) as n→∞. Puzzle I was first asked in [Göö15],
although an analogous question had been studied in communication complexity (under the name
clique vs. independent set; see Section 2.1) since Yannakakis [Yan91]. The paper [Göö15] gave
a complicated recursive construction achieving an exponent α ≈ 1.12. This was subsequently
optimised (but not simplified) in [BHT17] improving the exponent to α ≈ 1.22. Our main result,
stated as Theorem 1 in Section 2, gives a new simple construction with α = 1.5.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 16 (2021)

Second formulation. In order to separate boolean function complexity measures it is often a good
idea to proceed in two steps: First construct a partial boolean function f : {0, 1}n → {0, 1, ∗} where
some inputs x are undefined, f(x) = ∗. Then modify f into a total function by eliminating all
the ∗-inputs. We proceed to formulate an appropriate partial function version of Puzzle I.

We recall the notion of a certificate, adapted here for a partial function f : {0, 1}n → {0, 1, ∗}.
Let Σ ⊆ {0, 1, ∗} be a subset of output symbols. We write for short 0, 1, 0, 1 for the output sets
{0}, {1}, {1, ∗}, {0, ∗}. A partial input ρ ∈ {0, 1, ∗}n is a Σ-certificate for x ∈ {0, 1}n if ρ is consistent
with x and for every input x′ consistent with ρ we have f(x′) ∈ Σ. The size of ρ, denoted |ρ|, is
the number of its non-∗ entries. The Σ-certificate complexity of x, denoted CΣ(f, x), is the least
size of a Σ-certificate for x. The Σ-certificate complexity of f , denoted CΣ(f), is the maximum
of CΣ(f, x) over all x ∈ f−1(Σ); this definition is consistent with the one given at the start of this
section. Finally, we define certificate complexity C(f) as max{C0(f),C1(f)}.

Puzzle II. For α > 1, does there exist a partial function f together with an x ∈ f−1(∗) such that
both C0(f, x) and C1(f, x) are at least C(f)α−o(1)?

We will show in Theorem 2 that Puzzle I and II are in fact equivalent: solving one with an
exponent α will imply a solution to the other one with the same α. The implication I⇒II is
easy while the converse (converting a partial function into a total one) is non-trivial and uses the
cheat sheet framework introduced in [ABK16]. Consequently, we feel that II is the most fruitful
formulation to attack and that is indeed how our new separation result is obtained.

Third formulation. We present one more equivalent formulation using purely graph theoretic
language. While this version is not needed for our separation result, we include it for aesthetic
reasons. Let G = (V,E) be a hypergraph. We say G is intersecting if every two edges e, e′ ∈ E
intersect, e ∩ e′ 6= ∅. A subset U ⊆ V is a hitting set for G if U intersects every edge e ∈ E.
Moreover, U is c-monochromatic for a colouring c : V → {0, 1} if c is constant on U . Finally, we
define the rank of G, denoted r(G), as the maximum size |e| of an edge e ∈ E.

Puzzle III. For α > 1, does there exist an intersecting hypergraph G = (V,E) together with a
colouring c : V → {0, 1} such every c-monochromatic hitting set has size at least r(G)α−o(1)?

Puzzle III obscures the complexity-theoretic origins of the problem, thereby rendering it increas-
ingly seductive for, say, an unsuspecting audience of combinatorialists (cf. [Raz11]). In fact, we
found all three formulations and proved them equivalent already in late 2015, and since then we
have been deploying the camouflaged variant III on several occasions, including, notably and most
unsuccessfully, at an open problem seminar at the Institute for Advanced Study in 2018.

2 Our contributions
Our main results are as follows; here, the notation Ω̃(n) hides poly(logn) factors.

Theorem 1. There exists a boolean function f with C0(f) ≥ Ω̃(UC1(f)1.5).

Theorem 2. Puzzles I, II, III are equivalent: if one of them can be solved with exponent α, then all
of them can be solved with exponent α (up to factors logarithmic in input length).

To prove Theorem 1 we describe a simple boolean function inspired by the board game Hex.
Our construction, in Section 3, is phrased as a solution to Puzzle II. Hence Theorem 1 follows from
the equivalences in Theorem 2, which are in turn proved in Section 4. We next discuss how our
results imply several other improved separations in query and communication complexity.

2

2.1 Applications: Clique vs. independent set and Alon–Saks–Seymour

The original motivation for studying Puzzle I in [Göö15] was that its solutions imply lower bounds
for two well-studied problems.

− Clique vs. independent set problem [Yan91]. This two-party communication problem is defined
relative to an n-vertex graph G = (V,E): Alice gets a clique x ⊆ V , Bob gets an independent
set y ⊆ V , and their goal is to output CISG(x, y) := |x ∩ y| ∈ {0, 1}.

− Alon–Saks–Seymour problem. For a graph G, how large can the chromatic number χ(G) be
compared to the biclique partition number bp(G) (minimum number of complete bipartite
graphs needed to partition the edges of G)?

A surprising connection here is that proving lower bounds on the conondeterministic communication
complexity of clique vs. independent set is equivalent to constructing separations for the Alon–Saks–
Seymour problem; see Bousquet et al. [BLT14] for an excellent survey of this connection. Huang
and Sudakov [HS12] were the first to find a polynomial separation between χ(G) and bp(G), which
disproved a conjectured linear relationship due to Alon, Saks, and Seymour. Subsequent work has
exhibited larger polynomial separations [Ama14, SA15] and even quasi-polynomial ones [Göö15,
BHT17]. If we plug Theorem 1 into the lifting framework of [Göö15, GLM+16] we get the following
improvements over the previous-best lower bounds with exponent 1.22 [BHT17].

Corollary 3. There exist a graph G such that CISG requires Ω̃(log1.5 n) bits of conondeterministic
communication. Equivalently, there exist a graph H such that χ(H) ≥ exp(Ω̃(log1.5 bp(H))).

Let us pause here to appreciate how long a chain of reductions we have created to solve a graph
theoretic problem by a reduction to another (hyper)graph theoretic problem, but fundamentally
passing through complexity theory. That is, we have

1. Alon–Saks–Seymour problem, reduces to
2. clique vs. independent set problem, reduces to
3. Puzzle I: separation C0 � UC1 in query complexity, reduces to
4. Puzzle II: separation C0,C1 � C for a partial function, reduces to
5. Puzzle III: 2-colouring an intersecting hypergraph.

Reduction 2-to-3 uses a lifting theorem (which is not known to have a converse) and 3-to-4 uses
cheat sheets—both of these are inherently query/communication tools that do not have natural
counterparts in classical combinatorics. The end result can be phrased as its own graph problem:
Given an intersecting hypergraph and a 2-colouring whose monochromatic hitting sets are power-α
larger than the rank, construct a graph which is an edge-disjoint union of k bicliques but which has
chromatic number exp(logα−o(1) k). It sounds to us magical that this is possible!

Other related work. It is widely conjectured (e.g., [HS12]) that the exponent 1.5 in Corollary 3
can be improved to 2, which would be optimal [Yan91]. Such optimal bounds (up to low-order
terms) exist for CISG in the deterministic [GPW18] and even randomised [GJPW18] communication
models. However, these results do not imply any bounds for the conondeterministic complexity and
hence neither for the Alon–Saks–Seymour problem.

Given that superpolynomial separations exist for the Alon–Saks–Seymour problem in general,
a recent line of work has aimed to find special graph classes where the separation is at most
polynomial [BLT14, LT16, BLMP18, CS21]. In particular, it remains open whether the separation
is polynomial for the class of perfect graphs.

3

2.2 Applications: Separations in query complexity

In query complexity, we get two improved separations involving the well-studied complexity measures
sensitivity s(f) and approximate degree d̃eg(f) (defined in Section 5). The first of these corollaries
follows automatically from [BHT17, Theorem 1] and the second one we prove in Section 5.

Corollary 4. There exists a boolean function f with C(f) ≥ Ω̃(s(f)2.5).

Corollary 5. There exists a boolean function f with C(f) ≥ Ω̃(d̃eg(f)3).

Previous best separations had exponents 2.22 and 2, respectively. See Aaronson et al. [ABK+21]
for an up-to-date survey of the known relationships.

2.3 Open problems

We conjecture that the puzzles are soluble with exponent α = 2 matching the upper bound in Fact 1.
This would yield near-optimal lower bounds for Corollary 3 and 5. There is also an additional
motivation to seek a solution with α = 2 (which is not afforded by our solution α = 1.5): it would
separate C(f) and deg(f) (degree of f as a multivariate polynomial) quadratically, improving on
the power-1.63 separation due to Nisan, Kushilevitz, and Wigderson [NW95].

3 Hex function
In this section, we describe our Hex-inspired solution to Puzzle II that achieves exponent α = 1.5. We
define a partial boolean function Hexn : {0, 1}n×n → {0, 1, ∗} whose n2-bit inputs are interpreted as
n×n boolean matrices. We say that two matrix entries in [n]× [n] are connected if they are adjacent
either horizontally or vertically (but not diagonally). A 1-path in an input x is top-to-bottom path of
1-entries, that is, the path starts on a 1-entry in the topmost row, moves along connected 1-entries,
and ends on the bottommost row. Similarly, a 0-path in x is a left-to-right path of 0-entries. Note
that no x can contain both a 1-path and a 0-path. We define

Hexn(x) :=

1 if x contains a 1-path of length at most 2n,
0 if x contains a 0-path of length at most 2n,
∗ otherwise.

Clearly C(Hexn) = 2n. It remains to prove the following lemma. For simplicity, we drop Hexn
from notation and write CΣ(x) := CΣ(Hexn, x).

Lemma 6. There is an x ∈ Hex−1
n (∗) such that both C0(x) and C1(x) are Ω(n1.5).

As a warm-up, we note that it is easy to find inputs x where one of C0(x) or C1(x) is large, but
not both. For example, consider the input y depicted in Figure 1a that contains a single spiraling
1-path, call it a 1-spiral for short. The 1-spiral has length Θ(n2) > 2n and hence Hexn(y) = ∗.

Claim 7. C0(y) ≥ Ω(n2) and C1(y) ≤ O(n).

Proof. For the first claim, we employ a sensitivity argument. Consider any entry e ∈ [n]× [n] in the
1-spiral that is not a corner (where the spiral makes a right-angle turn). Denote by ye the input y
but with the entry e flipped (from 1 to 0). Note that flipping e introduces a short (≤ 2n) 0-path
in ye and thus Hexn(ye) = 0. It follows that any 0-certificate for y needs to read all the non-corner
entries of which there are Θ(n2) many. For the second claim, we note that it suffices to include the
five topmost rows in a certificate to prove that any 1-path in y must be of length > 2n.

4

(a) input y (b) input z

Figure 1: Inputs to Hexn are n × n boolean matrices. Illustrated are two ∗-inputs: y consists of a single
1-spiral of length Θ(n2), and z consists of

√
n many 1-spirals of length Θ(n1.5) each.

We can similarly find an input y∗ with large C1(y∗) and small C0(y∗). The challenge in Lemma 6
is to find a single input where both 0- and 1-complexities are large. Our solution is to “balance” y.
Namely, we let z be the input that consists of

√
n many disjoint 1-spirals, each of length Θ(n1.5);

see Figure 1b for an illustration. The following two claims complete the proof of Lemma 6.
Claim 8. C0(z) ≥ Ω(n1.5).

Proof. We employ a block sensitivity argument. Let ` = Θ(n1.5) denote the number of non-corner
entries in each 1-spiral of z. For each i ∈ [`], we define a block Bi ⊆ [n]× [n], |Bi| =

√
n, as the set

that contains the i-th non-corner entry from each 1-spiral (the non-corners of a spiral are ordered
top-to-bottom, say). Denote by zBi the input obtained from z by flipping all the entries in Bi (from
1 to 0). Flipping any block Bi introduces a short (≤ 2n) 0-path in zBi and hence Hexn(zBi) = 0.
For example, in the following illustration, the short 0-path (drawn in blue) is created when we flip
the block consisting of the striped entries:

It follows that any 0-certificate for z needs to read at least one entry from each of the blocks. But
since the blocks are disjoint and there are ` = Θ(n1.5) many of them, the claim is proved.

Claim 9. C1(z) ≥ Ω(n1.5).

Proof. Let ρ be a partial input consistent with z that has size o(n1.5). We show that ρ cannot be a
1-certificate. By averaging, there is some “neglected” 1-spiral such that ρ reads o(n) many 0-entries
adjacent to the spiral. We will greedily construct a 1-path consistent with ρ by starting at the top of
the neglected spiral and trying to fit a 1-path straight down the matrix. The 0-entries read by ρ can
prevent a direct downward path from working, but every time we encounter such a 0-entry we can
avoid it by taking one step to the left or right (following the direction of the spiral). These left/right
steps make us waste at most o(n) extra steps in addition to the n downward steps. This shows there
exists a 1-path of length n+ o(n) ≤ 2n consistent with ρ, and hence ρ is not a 1-certificate.

Remark 10. It is easy to see that C0(z) and C1(z) are also O(n1.5). We suspect that z is in fact
extremal for Hexn meaning that no other ∗-input can witness an exponent larger than α = 1.5.
However, we have not been able to prove this.

5

4 Equivalences of puzzles
We now prove our three puzzles equivalent (Theorem 2). The proof comprises of four implications,
each proved in its own subsection: II ⇒ I ⇒ II ⇒ III ⇒ II. This is more implications than strictly
necessary, but not all directions are equally good in terms of overheads caused by log factors.

4.1 Construction II ⇒ I

Given: A partial function f : {0, 1}n → {0, 1, ∗} and an input x ∈ f−1(∗).

Construct: A total function g : {0, 1}3n2 log2 n → {0, 1} such that
C0(g) ≥ min{C0(f, x),C1(f, x)} and UC1(g) ≤ 3 C(f) log2 n.

Overview. The basic idea is that we would like to turn regular, ambiguous certificates for f into
unambiguous collections of certificates for a modified function g. One way to do so is to give each
certificate for f a unique identification number; then we can require the new inputs to g to consist
of both an input z to f and an identification number (written in binary) for a certificate in z. We
will let such a new input (z, k) evaluate to 1 if the certificate specified by the number k really is in z,
and we will define (z, k) to be a 0-input otherwise. Then by reading all of k and the corresponding
certificate in z, we get an unambiguous certificate for (z, k) whenever (z, k) is a 1-input.

This strategy makes 1-certificates unambiguous, but it does not necessarily ensure that the
function is hard to certify on 0-inputs. The reason is that for the new function, it is conceivable
that we could certify (z, k) is a 0-inputs just by reading a few bits of k and a few bits of z, but
that those few bits suffice to prove that the certificate specified by k cannot possibly be found in z.
Indeed, it might even be easy to certify that (z, k) is a 0-input when z = x, the hard ∗-input to f .

We wish to eliminate this 0-certification strategy so that the new function is hard to certify on at
least one 0-input. To do so, we will use the cheat sheet framework [ABK16]. The idea is to hide the
identification number k of the certificate in one cell of an array consisting of, say, n different cells.
We choose n cells because this is large enough so that even reading a single bit from each cell is too
expensive. But now that we have hidden k in one of n cells, there needs to be a way to find it. So to
specify which cell of the array is the “correct” one, the one where we’ve stored k, we will change the
problem to have logn different instances of f , and we will interpret the f -outputs of these instances
as specifying a binary string of length logn, which can index a specific cell of our array. Now that
there are logn copies of f , the correct array cell will be required to contain identification numbers
for logn different certificates, one for each instance of f . Now we define this new function g to
evaluate to 1 if all the logn f -inputs are 0- or 1-inputs and if the array cell indexed really contains
valid identification numbers of certificates present in the f -inputs. Otherwise, if this doesn’t hold,
we define the input to be a 0-input to g.

With this construction, the contents of the cell pointed to by the logn-bit string of outputs of f ,
along with the certificates in that cell form small unambiguous certificates for 1-inputs to g. On the
other hand, the g-input consisting of logn copies of x ∈ f−1(∗) together with any array content will
be a 0-input that is hard to certify: Any certificate must either prove that at least one copy of x
is not a 0-input or not a 1-input, which is expensive to do because we assumed that C0(f, x) and
C1(f, x) are large, or else it must prove that none of the cells in the array contain valid certificates,
which requires it to read at least one bit from each of the n cells. We now prove this more formally.

6

Formal proof. A certificate of size C(f) specifies the indices of up to C(f) input bits and an
assignment to those bits. Since an index can be encoded using logn bits, the total number of bits
needed to represent a certificate is at most ` := 2 C(f) logn ≤ 2n logn. We choose k := logn as
the number of copies of f that we will use. Let us define g : {0, 1}kn+2kk` → {0, 1} on kn+ 2kk` ≤
3n2 log2 n bits. For an input z to g, we define sz to be the string in {0, 1, ∗}k that we get by
applying f to the first kn bits of z, interpreted as k inputs to f . If sz /∈ {0, 1}k, we define g(z) := 0.
Otherwise, if sz ∈ {0, 1}k, we interpret the last 2kk` bits of z as an array of 2k cells of size k` each,
and we let Cz ∈ {0, 1}k` be the contents of the cell indexed by sz. We interpret Cz as specifying k
different certificates for f , each specified using ` bits. We then set g(z) := 1 if each of the k inputs
for g in the first part of the string z contains the corresponding certificates specified by Cz in order.
Otherwise, we set g(z) := 0.

The following two claims verify that this construction has the desired properties.

Claim 11. C0(g) ≥ min{C0(f, x),C1(f, x)}.

Proof. Consider the input to g consisting of k copies of x, followed by an all-0 array. Consider any
certificate c for this input. If c reads fewer than min{C0(f, x),C1(f, x)} bits, then c does not certify
that x is not a 0-input or that x is not a 1-input for any of the k copies of x. Moreover, c also cannot
read a bit of each of the 2k = n array cells, since n is larger than min{C0(f, x),C1(f, x)}. Hence
there is some array cell, indexed by some string s ∈ {0, 1}k, such that c reads no bits of that array
cell. Since c fails to prove anything about the f -outputs of the copies of x, we can find an input y
to g which is consistent with c such that the f -inputs in y evaluate to s; moreover, we can then set
the array cell indexed by s to provide valid certificates for the k inputs to f in y. This causes y to
be a 1-input consistent with c, contradicting the assumption that c was a 0-certificate.

Claim 12. UC1(g) ≤ 3 C(f) log2 n.

Proof. Intuitively, the contents of the cell referred to by the string sz and all the certificates in
it together form an unambiguous certificate for f . So an unambiguous 1-certificate for g has the
following form: first, it reads exactly one certificate for each of the k inputs to f ; second, in the
array cell indexed by sz, the logn-bit string of f -outputs, the certificate reads the entire array cell,
and the cell has the property that it contains exactly the same certificates read in the k inputs to
f (in order). The size of this certificate is k(`+ C(f)) ≤ logn(2 C(f) logn+ C(f)) ≤ 3 C(f) log2 n
where kC(f) bits are used to specify the certificates for k copies of f and k` bits are used to read
the full contents of one cell of the array.

It remains to show that the above collection of 1-certificates is unambiguous. We claim that
no input z to g can have two different certificates of the type we have just described. To see this,
suppose otherwise, and let ρ1 and ρ2 be two such certificates consistent with z. Suppose that ρ1
reads bits in the array cell C1 and that ρ2 reads bits in the array cell C2. Then since ρ1 proves that
the f -inputs in z evaluate to the index of C1, and since ρ2 proves that the f -inputs in z evaluate to
the index of C2, we must have C1 = C2. Since ρ1 reads all of C1 and ρ2 reads all of C2, we know
that ρ1 and ρ2 are identical on the array part of the input. However, this array cell then specifies
exactly which bits a certificate in this collection must read from the k inputs to f ; it follows that ρ1
and ρ2 must be identical.

7

4.2 Construction I ⇒ II

Given: A total function f : {0, 1}n → {0, 1}.

Construct: A partial function g : {0, 1}2n → {0, 1, ∗} and an input z ∈ g−1(∗)
such that min{C0(g, z),C1(g, z)} ≥ C0(f) and C(g) ≤ 2 UC1(f).

Let U ⊆ {0, 1, ∗}n be an unambiguous collection of 1-certificates for f so that

− for every x ∈ f−1(1) there is a unique ρx ∈ U such that x is consistent with ρx;
− each ρ ∈ U has size |ρ| ≤ UC1(f).

The function g will be defined on inputs (x, y) ∈ {0, 1}2n where x, y ∈ {0, 1}n. If x is such
that f(x) = 0, we define g(x, y) := ∗. Otherwise if f(x) = 1, we consider the unique ρx ∈ U
consistent with x: Denote by r(ρx) ⊆ [n] the set of indices i ∈ [n] that are read by ρx. We
define g(x, y) := ⊕

i∈r(ρx) yi, that is, the parity of the bits of y that are indexed by r(ρx).
To certify that g(x, y) = b for b ∈ {0, 1}, it suffices to read ρx ∈ U together with the corresponding

set of bits r(ρx) in y. This shows that C(g) ≤ 2 UC1(f). We then define the hard ∗-input
by z := (x, 0n) where x ∈ f−1(0) is any input such that C0(f, x) = C0(f).

Claim 13. min{C0(g, z),C1(g, z)} ≥ C0(f).

Proof. Let ρ ∈ {0, 1, ∗}2n be a partial input consistent with z that has size |ρ| < C0(f). Our goal
is to show that ρ is not a 1-certificate (showing that ρ is not a 0-certificate is analogous). It is
possible that ρ reads some bits in the first half of the input z = (x, 0n) and some bits in the second
half. We define a set B := {i ∈ [n] : i ∈ r(ρ) or i+ n ∈ r(ρ)} that “shifts” all the query positions
in the second half to the first half. Let ρ′ ∈ {0, 1}n be the partial input consistent with x such
that r(ρ′) = B. Since |ρ′| = |B| ≤ |ρ| < C0(f), we know that ρ′ does not certify f(x) = 0. This
means there is some 1-certificate σ ∈ U consistent with ρ′ and such that r(σ) 6⊆ r(ρ′). Our goal
becomes to use σ to modify z in positions outside r(ρ) to obtain a z′ such that g(z′) = 1, which
would show that ρ is not a 1-certificate, concluding the proof. Indeed, starting with z = (x, 0n) we
can modify the first half x to contain σ, and we can modify the bits r(σ) \ B 6= ∅ in the second
half 0n so that the positions r(σ) (in the second half) have odd parity.

4.3 Construction II ⇒ III

Given: A partial function f : {0, 1}n → {0, 1, ∗} and x ∈ f−1(∗).

Construct: An intersecting hypergraph G = (V,E) with |V | = 2n+ 2 and
r(G) = C(f) + 1 and a colouring c : V → {0, 1} such that every
c-monochromatic hitting set has size at least min{C0(f, x),C1(f, x)}.

For each i ∈ [n], we introduce two vertices vi,0 and vi,1 into V . We also have two special vertices,
which we denote u0 and u1. For each 0-certificate ρ ∈ {0, 1, ∗}n of size |ρ| ≤ C(f), we construct an
edge Sρ, as follows. For each i ∈ [n], if ρi = 0 we place vi,0 in Sρ, and if ρi = 1 we place vi,1 in Sρ.
We also place u0 in Sρ. Then |Sρ| = |ρ|+ 1 ≤ C(f) + 1.

For each 1-certificate ρ of size |ρ| ≤ C(f), we construct an edge Sρ slightly differently. Essentially,
we negate the bits of ρ before creating the edge out of ρ. So if ρi = 0 we place vi,1 in Sρ and if ρi = 1

8

we place vi,0 in Sρ. We also place u1 in Sρ. Together, the edges coming from 0- and 1-certificates
constitute all the edges in E. This defines G = (V,E).

Note that r(G) = C(f) + 1. Additionally, G is intersecting. To see this, note that if Sρ and Sρ′

are two edges of G, then there are three options: if ρ and ρ′ are both 0-certificates, they share u0;
if ρ and ρ′ are both 1-certificates, they share u1; and if ρ and ρ′ are certificates of opposite types,
then they must contradict each other at some index, meaning that ρi = 0 and ρ′i = 1 (or vice versa)
for some i ∈ [n]. In this last case, Sρ and Sρ′ either both contain vi,0 or both contain vi,1. In all
cases, Sρ and Sρ′ have a non-empty intersection.

We now define the colouring c : V → {0, 1} based on the input x ∈ f−1(∗). We do so by setting
c(vi,xi) = 0, c(vi,1−xi) = 1, c(u0) = 0, and c(u1) = 1. It remains to prove the following claim.

Claim 14. If H is a c-monochromatic hitting set for G, then |H| ≥ min{C0(f, x),C1(f, x)}.

Proof. If H uses the colour 1, then it does not contain u0; since it is a hitting set, it must
intersect Sρ for each short 0-certificate ρ in some vertex vi,b (where i ∈ [n] and b ∈ {0, 1}). Since
H is monochromatic with colour 1, we must have b = 1 − xi. Since vi,1−xi ∈ Sρ, we must have
ρi = 1− xi. In other words, the hitting set H must define a set of indices in [n] such that for each
short 0-certificate ρ of f , there is some index i in this set on which ρ contradicts x. Since each
0-input to f contains a short 0-certificate (of length at most C(f)), we conclude that this set of
indices used by H is such that each 0-input to f conflicts with x in one of those indices. This means
that we can construct a 0-certificate by reading these indices in the string x; thus |H| ≥ C0(f, x).

Alternatively, suppose that H uses the colour 0. Then it does not contain u1, and must intersect
each Sρ for a short 1-certificate ρ of f in a vertex vi,b. Since H uses the colour 0, we must have
b = xi, and since vi,xi ∈ Sρ, we must have ρi = 1− xi. As before, this implies that H defines a set
of indices such that each short 1-certificate of f contradicts x on one of these indices; hence we can
get a 1-certificate by reading those indices in x, which implies that |H| ≥ C1(f, x).

4.4 Construction III ⇒ II

Given: An intersecting hypergraph G = (V,E) and a colouring c : V → {0, 1}
such that every c-monochromatic hitting set has size at least h > r(G).

Construct: A partial boolean function f : {0, 1}V → {0, 1, ∗} and an input x ∈ f−1(∗)
such that C(f) ≤ r(G) and min{C0(f, x),C1(f, x)} ≥ h.

We define f on n = |V | bits so that an input to f is interpreted as a colouring of V . We define
f(z) := 0 if the colouring z contains a monochromatic edge of colour 0, and we define f(z) := 1
if z contains a monochromatic edge of colour 1. Note that both cases cannot hold, because G is
intersecting. If neither of these cases holds, we define f(z) := ∗.

To certify that f(z) = 0 or that f(z) = 1, we can just read a monochromatic edge in z; this only
uses r(G) bits in the worst case over 0- or 1-inputs z, so C(f) ≤ r(G).

Next, consider the input x to f which is defined by the colouring c. Since any monochromatic
edge is a monochromatic hitting set (since G is intersecting, so every edge is a hitting set), and
since the minimum monochromatic hitting set in c has size h > r(G), we conclude that c does not
have a monochromatic edge, and hence f(x) = ∗. Observe that a certificate that x is not a 0-input
is a proof that there is no 0-monochromatic edge in c, and such a proof must necessarily read a
1-monochromatic hitting set in c; hence C0(f, x) ≥ h. Similarly, we have C1(f, x) ≥ h.

9

Remark 15. We note that f is monotone by construction: flipping any bit in an input z from 0
to 1 can only change f(z) from 0 to ∗ or 1, or from ∗ to 1. In particular, this means that we can
transform any solution to II into a monotone one via the steps II⇒III⇒II.

5 Application: Approximate degree vs. certificate complexity
Finally, we prove Corollary 5, which states that there exists a total function f with C(f) ≥ Ω̃(d̃eg(f)3).
Let us quickly recall the definition of the ε-approximate degree d̃egε(f) of an n-bit boolean function f :
it equals the least degree of an n-variate polynomial p : Rn → R such that p(x) ∈ f(x)± ε for every
boolean input x ∈ {0, 1}n. We also set d̃eg(f) := d̃eg1/3(f).

Proof of Corollary 5. By applying the construction II⇒I (Section 4.1) to our Hex function
(Section 3), we get a total g with C0(g) ≥ Ω̃(UC1(g)1.5). All we have to show is that g also has

d̃eg(g) ≤ Õ(
√

UC1(g)). (1)

Lets examine the function constructed by II⇒I using the notation in that proof. This proof starts
out with an original n-bit function f (namely, Hex√n) and it defines from it a new function g
on O(n2 log2 n) bits using the cheat sheet framework. An input to g consists of k := logn inputs
to f and an array of size n, where each cell of the array is of size k`, where ` ≤ 2 C(f) logn is the
number of bits needed to specify a certificate of f . In a 1-input to g, the correct cell, which is
cell sz, is supposed to contain k certificates for the k instances of f . We did not specify how the
certificates would be described since the construction II⇒I applies to a general function f , but now
let us describe them precisely for f = Hex. Here, a convenient 0-certificate is a list of adjacent
0-entries that starts from the left and ends on the right. For a 1-certificate we can have a similar
list that starts at the top and ends at the bottom. Let us modify our function g to require that the
certificates are presented in exactly this format.

Now for any cell c, consider the boolean function gc that on an input z to g evaluates to 1 if
g(z) = 1 and additionally that cell c is the one pointed to by z (that is, sz = c). We will show that
this boolean function has an approximating polynomial of degree Õ(

√
UC1(g)).

To check if cell c is the one pointed to by the logn copies of f , we first need to check that
the certificates contained in c are valid certificates for the logn instances of f , and that logn
f -outputs of these certificates, when interpreted as a number is indeed c. First we claim that
checking if a certificate for a particular f is valid can be done with an approximating polynomial
of degree Õ(

√
UC1(g)). Let us do this for 0-certificates, and the construction for 1-certificates is

similar. Each 0-certificate for an instance of f contains C(f) many Hex-matrix entries that are
adjacent, all having the value 0, and starting at the left and ending at the right. Checking if two
adjacent entries in the list correspond to adjacent matrix entries requires only O(logn) queries by a
deterministic query algorithm (decision tree). There are O(n) such checks to be made. Checking
if a matrix entry in the list is 0 requires O(logn) queries as well. There are O(n) such checks to
be made. And finally checking that the first and last entry of the list are on the left and right
require O(logn) queries. In total we have to make O(n) checks, each of which cost O(logn) queries.
Equivalently, we want to compute the logical And of O(n) many query algorithms, each of which
has query complexity O(logn).

A deterministic query algorithm of O(logn) queries can be converted to an exact polynomial of
degree O(logn). Nisan and Szegedy [NW95] showed that there is a polynomial of degree O(

√
n) to

approximate the n-bit And function. Composing this polynomial with a O(logn)-degree polynomials
for the individual checks gives us an approximating polynomial of degree Õ(

√
n) for checking if

10

a particular certificate for f is valid. Since there are logn certificates to be checked, checking
all of them does not increase the degree by more than a log factor. Once we have checked if all
the f certificates are valid, we know the outputs and can check if this equals c. Thus we have an
approximating polynomial for gc of degree Õ(

√
n).

Now that we know that gc has an approximating polynomial of degree Õ(
√
n), we can construct

one for g from such polynomials. First we boost the approximation accuracy of the polynomials we
constructed to have error 1/3n, which only increases the degree by a log factor. Then we observe
that g(z) = 1 if and only if one of the gc(z) functions evaluate to 1, and furthermore, no more than
one of them can evaluate to 1 since these are unambiguous certificates. So we get an approximate
polynomial for g by simply summing up the polynomials for all gc. Since each polynomial had error
1/3n, the resulting polynomial has error at most 1/3. The degree has not increased, and hence we
have an approximating polynomial for g of degree Õ(

√
n) = Õ(

√
UC1(f)). This proves (1).

Acknowledgements

Thanks to Ryan Alweiss, Harry Buhrman, Nati Linial, and Mario Szegedy for their thoughts on
Puzzle III. Thanks to Thomas Watson for many discussions about Hex and complexity classes.

References
[ABK16] Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity

using cheat sheets. In Proceedings of the 48th Symposium on Theory of Computing
(STOC), pages 863–876. ACM, 2016. doi:10.1145/2897518.2897644.

[ABK+21] Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal.
Degree vs. approximate degree and quantum implications of Huang’s sensitivity theorem.
In Proceedings of the 53rd Symposium on Theory of Computing (STOC), 2021. To
appear. arXiv:2010.12629.

[Ama14] Kazuyuki Amano. Some improved bounds on communication complexity via new
decomposition of cliques. Discrete Applied Mathematics, 166(0):249–254, 2014. doi:
10.1016/j.dam.2013.09.015.

[BHT17] Shalev Ben-David, Pooya Hatami, and Avishay Tal. Low-sensitivity functions from
unambiguous certificates. In 8th Innovations in Theoretical Computer Science Conference
(ITCS), volume 67, pages 28:1–28:23. Schloss Dagstuhl, 2017. doi:10.4230/LIPIcs.ITCS.
2017.28.

[BLMP18] Nicolas Bousquet, Aurélie Lagoutte, Frédéric Maffray, and Lucas Pastor. Decomposition
techniques applied to the clique-stable set separation problem. Discrete Mathematics,
341(5):1492–1501, 2018. doi:10.1016/j.disc.2017.10.014.

[BLT14] Nicolas Bousquet, Aurélie Lagoutte, and Stéphan Thomassé. Clique versus independent
set. European Journal of Combinatorics, 40(0):73–92, 2014. doi:10.1016/j.ejc.2014.02.003.

[CS21] Maria Chudnovsky and Paul Seymour. Subdivided claws and the clique-stable set
separation property. 2019-20 MATRIX Annals, pages 483–487, 2021. doi:10.1007/
978-3-030-62497-2 29.

11

https://doi.org/10.1145/2897518.2897644
http://arxiv.org/abs/2010.12629
https://doi.org/10.1016/j.dam.2013.09.015
https://doi.org/10.1016/j.dam.2013.09.015
https://doi.org/10.4230/LIPIcs.ITCS.2017.28
https://doi.org/10.4230/LIPIcs.ITCS.2017.28
https://doi.org/10.1016/j.disc.2017.10.014
https://doi.org/10.1016/j.ejc.2014.02.003
https://doi.org/10.1007/978-3-030-62497-2_29
https://doi.org/10.1007/978-3-030-62497-2_29

[GJPW18] Mika Göös, T. S. Jayram, Toniann Pitassi, and Thomas Watson. Randomized communi-
cation vs. partition number. ACM Transactions on Computation Theory, 10(1):4:1–4:20,
2018. doi:10.1145/3170711.

[GLM+16] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman.
Rectangles are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869, 2016.
doi:10.1137/15M103145X.

[Göö15] Mika Göös. Lower bounds for clique vs. independent set. In Proceedings of the 56th
Symposium on Foundations of Computer Science (FOCS), pages 1066–1076. IEEE, 2015.
doi:10.1109/FOCS.2015.69.

[GPW18] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs.
partition number. SIAM Journal on Computing, 47(6):2435–2450, 2018. doi:10.1137/
16M1059369.

[HS12] Hao Huang and Benny Sudakov. A counterexample to the Alon–Saks–Seymour conjecture
and related problems. Combinatorica, 32(2):205–219, 2012. doi:10.1007/s00493-012-2746-4.

[LT16] Aurélie Lagoutte and Théophile Trunck. Clique–Stable Set separation in perfect graphs
with no balanced skew-partitions. Discrete Mathematics, 339(6):1809–1825, 2016. doi:
10.1016/j.disc.2016.02.005.

[NW95] Noam Nisan and Avi Wigderson. On rank vs. communication complexity. Combinatorica,
15(4):557–565, 1995. doi:10.1007/BF01192527.

[Raz11] Ran Raz. How to fool people to work on circuit lower bounds, 2011. Seminar talk. URL:
https://youtu.be/nsQzS3IOS6Y.

[SA15] Manami Shigeta and Kazuyuki Amano. Ordered biclique partitions and communication
complexity problems. Discrete Applied Mathematics, 184:248–252, 2015. doi:10.1016/j.
dam.2014.10.029.

[Yan91] Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs.
Journal of Computer and System Sciences, 43(3):441–466, 1991. doi:10.1016/0022-0000(91)
90024-Y.

12
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1145/3170711
https://doi.org/10.1137/15M103145X
https://doi.org/10.1109/FOCS.2015.69
https://doi.org/10.1137/16M1059369
https://doi.org/10.1137/16M1059369
https://doi.org/10.1007/s00493-012-2746-4
https://doi.org/10.1016/j.disc.2016.02.005
https://doi.org/10.1016/j.disc.2016.02.005
https://doi.org/10.1007/BF01192527
https://youtu.be/nsQzS3IOS6Y
https://doi.org/10.1016/j.dam.2014.10.029
https://doi.org/10.1016/j.dam.2014.10.029
https://doi.org/10.1016/0022-0000(91)90024-Y
https://doi.org/10.1016/0022-0000(91)90024-Y

