Monotone Branching Programs: Pseudorandomness and Circuit Complexity

Dean Doron*
Stanford University

Raghu Meka ${ }^{\dagger}$
UCLA

Omer Reingold ${ }^{\ddagger}$
Stanford University

Avishay Tal ${ }^{\S}$
UC Berkeley

Salil Vadhan ${ }^{\text {II }}$
Harvard University

Abstract

We study monotone branching programs, wherein the states at each time step can be ordered so that edges with the same labels never cross each other. Equivalently, for each fixed input, the transition functions are a monotone function of the state.

We prove that constant-width monotone branching programs of polynomial size are equivalent in power to AC^{0} circuits. This complements the celebrated theorem of Barrington, which states that constant-width branching programs, without the monotonicity constraint, are equivalent in power to NC^{1} circuits.

Next we turn to read-once monotone branching programs of constant width, which we note are strictly more powerful than read-once AC^{0}. Our main result is an explicit pseudorandom generator that ε-fools length n programs with seed length $\widetilde{O}(\log (n / \varepsilon))$. This extends the families of constant-width read-once branching programs for which we have an explicit pseudorandom generator with near-logarithmic seed length.

Our pseudorandom generator construction follows Ajtai and Wigderson's approach of iterated pseudorandom restrictions [AW89, GMR ${ }^{+}$12]. We give a randomnessefficient width-reduction process which allows us to simplify the branching program after only $O(\log \log n)$ independent applications of the Forbes-Kelley pseudorandom restrictions [FK18].

[^0]
1 Introduction

Branching programs are a fundamental model in computational complexity, capturing both space-bounded computation and circuit classes. In this paper, we study a restricted class of branching programs we call monotone, giving a characterization of their computational power, and giving a new pseudorandom generator for their read-once version.

1.1 Monotone Branching Programs

First we recall the standard definition of a layered branching program:
Definition 1.1. For $w, n, s \in \mathbb{N}, a$ (layered) branching program (BP) B on n variables, with length s and width w, or an $[n, s, w] B P$, is specified by a start state $v_{0} \in[w]$, a set of accept states $V_{\text {acc }} \subseteq[w]$, a sequence of variable indices $i_{1}, \ldots, i_{s} \in[n]$, and sequence of transition functions $E_{j}:\{0,1\} \times[w] \rightarrow[w]$ for $j=1, \ldots, s$.

A branching program B as above naturally defines a function $B:\{0,1\}^{n} \rightarrow\{0,1\}$: Start at the starting state v_{0}, and then for $j=1, \ldots, s$, read the input bit $x_{i_{j}}$ and then transition to state $v_{j}=E_{j}\left(x_{i_{j}}, v_{j-1}\right)$, The branching program accepts $\left.B(x)=1\right)$ if $v_{n} \in V_{\text {acc }}$ and rejects ($B(x)=0$) otherwise.
B is a read-once branching program, or an $[n, w]$ ROBP, if $s=n$ and i_{1}, \ldots, i_{s} is a permutation of $[n]$. If this is the identity permutation (i.e. the variables are read in order), then we say B is an ordered branching program.

A layered branching program B has an associated directed graph. The vertex set has $s+1$ layers of w vertices each. For each $j=1, \ldots, s$, layer j is labelled with an input variable, namely $x_{i_{j}}$, and there are two edges, labelled 0 and 1 , going from each vertex v in layer j to vertices layer $j+1$, namely $E_{j}(0, v)$ and $E_{j}(1, v)$.

We now introduce the model of monotone programs that we consider.
Definition 1.2 (monotone branching program (MBP)). We say a BP B is monotone if for every $j \in[s]$ and $\sigma \in\{0,1\}$, the j-th transition function with input bit restricted to σ, denoted $E_{i}^{\sigma} \triangleq E_{i}(\sigma, \cdot):[w] \rightarrow[w]$, is a monotone function according to the standard ordering of $[w]$, i.e. if $v \geq v^{\prime}$, then $E_{j}^{\sigma}(v) \geq E_{j}^{\sigma}\left(v^{\prime}\right)$.

That is, put differently, if we draw the layered graph as an $w \times(s+1)$ grid, then whenever we consider the edges associated with a fixed input x, there are no edges crossing. We will refer to BPs that are both monotone and read once as read-once MBPs.

It is important to note that this definition only requires monotonicity with respect to the state of the branching program; MBPs can easily compute functions that are nonmonotone as a function of their input (as we will see below). We remark that the definition of read-once MBPs as defined here is different from the notion of locally monotone studied in [CHRT18]. Importantly, the latter property is not preserved under restrictions and hence is less nice structurally. The read-once definition also coincides with the notion of monotone ROBPs as defined in [MZ13], if we require all reject states to precede the accepting ones in the last layer. ${ }^{1}$ However, the formulation above is more convenient for us.

[^1]
1.2 Monotone Branching Programs and $A C^{0}$

Recall Barrington's celebrated theorem that constant-width branching programs are equivalent in power to NC^{1} circuits [Bar89]. We show that if we restrict to monotone branching programs, then they become equivalent in power to the much weaker $A C^{0}$ circuits. As far as we know, this is the first characterization of $A C^{0}$ in terms of a model of branching programs.

Theorem 1.3 (see Section 4). A sequence of functions $f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ is in AC^{0} if and only if it is computable by a constant-width MBP of polynomial length.

One direction of Theorem 1.3, from an AC^{0} circuit to an MBP, is a simple induction on the depth of an $A C^{0}$ circuit. Specifically, we note that an AND or an OR of several MBPs of width w can be computed by a MBP of width $w+1$, whose length is the sum of the lengths of the constituent MBPs. The other direction is more involved. The argument proceeds by induction on the width w of the MBP B. Given an MBP B, we construct an "upper" MBP B^{u} by removing the bottom level of B, eliminating state 1 from every layer, and a "lower" part B^{ℓ}, eliminating state w from every layer, rewiring edges accordingly in both cases. In a nutshell, we observe that $B(x) \in[w]$, the state B arrived upon reading x, is either $B^{u}(x)$ or $B^{\ell}(x)$, depending on the last time B either reached state 1 or state w. The latter predicate, given the description of B, and constant-depth circuits for $B^{u}(x)$ and $B^{\ell}(x)$ (which we obtain by induction), can too be computed by a constant-depth circuit of polynomial size. We leave the rest of the details to Section 4.

Next, we turn to read-once MBPs. We prove that these are strictly stronger than readonce $A C^{0}$:

Proposition 1.4.

1. If a sequence of functions $f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ is in read-once AC^{0}, then it can be computed by constant-width read-once MBP. Moreover, if f_{n} can be computed in depth w read-once AC^{0}, then it can be computed by width $w+1$ read-once MBPs.
2. For every $n \geq 3$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ computable by a width 3 readonce MBP, but not computable by any read-once De Morgan formula (regardless of depth).

Item 1 is proven in the same way as the easier direction of Theorem 1.3, noting that if we start with a read-once $A C^{0}$ circuit, we end up with a read-once MBP. Item 2 is proven by showing that simple functions, like checking whether the input contains at least two ones cannot be computed by a read-once De Morgan formula, but can be computed be width three MBPs. We give the proof for Item 2 in Section 4.1.

Thus, constant-width read-once MBPs form an intermediate class between read-once $A C^{0}$ and $A C^{0} .{ }^{2}$

[^2]
1.3 PRGs for Read-once Monotone Branching Programs

A longstanding quest in complexity theory is to understand the power of randomness in relation to space complexity. A central challenge in this direction is to construct pseudorandom generators for read-once branching programs.

In this work we study the question of designing explicit PRGs for small-width ROBPs.
Definition 1.5. Given a class offunctions $\mathcal{F}:\{0,1\}^{n} \rightarrow\{0,1\}$, a function $G:\{0,1\}^{r} \rightarrow\{0,1\}^{n}$ is a PRG for \mathcal{F} with error ε if for any $f \in \mathcal{F}$, we have

$$
\left|\operatorname{Pr}_{y \in u\{0,1\}^{r}}[f(G(y))=1]-\underset{x \in u\{0,1\}^{n}}{\operatorname{Pr}}[f(x)=1]\right| \leq \varepsilon .
$$

We call r the seed length of the generator and the generator is explicit if its output can be computed in polynomial time (in n). We often say $G \varepsilon$-fools \mathcal{F}.

Designing pseudorandom generators against ordered ROBPs has received a lot of attention and is intimately connected to the question of understanding the power of randomness vs. space. It has also found a number of applications beyond derandomizing space. ([LVW93, Siv02, HVV06, Ind06, KLW10, HHR11] are just few examples.)

The best known PRGs for ordered ROBPs to date are those of Nisan [Nis92] and Impagliazzo-Nisan-Wigderson [INW94] which give seed length $O\left(\log ^{2} n\right)$ when $w=$ $n^{O(1)}$. However, even for width four and constant error their construction requiring seed length $O\left(\log ^{2} n\right)$ is still the best. Improving on this seed length, even for constant width, has been a longstanding barrier. We do have better PRGs for various special classes of ROBPs that are independently interesting:

- Braverman, Rao, Raz, and Yehudayoff [BRRY14] construct PRGs with $\widetilde{O}(\log n)$ seed length for constant-width ordered regular branching programs and $\varepsilon=1 / \operatorname{poly}(\log n)$. Regular branching programs are a special class of ROBPs where we require the structural condition that each vertex has the same in-degree in the underlying layered graph.
- Starting with the work of Koucký, Nimbhorkar, and Pudlák [KNP11], several works [De11, Ste12, HPV21] have achieved of a seed length of $O(\log n)$ (with no $\log \log n$ factors) for the further restricted model of ordered permutation branching programs. In these, we require that at each layer j, and for each symbol σ, the transition function E_{i}^{σ} is a permutation of w.
- Meka, Reingold, and Tal [MRT19] construct PRGs with $\widetilde{O}(\log n)$ seed length for width three ordered ROBPs and $\varepsilon=1 / \operatorname{poly}(\log n)$, as well as for unordered ones with $\varepsilon=1 / \operatorname{poly}(\log \log n)$.
- [FK18] gave a PRG that is significantly different from that of [Nis92, INW94] and achieves seed length $O\left(\log ^{3} n\right)$ for polynomial width and $O\left(\log ^{2} n\right)$ for constantwidth ROBPs (again, even unordered).

Our main result is an explicit PRG with seed length $\widetilde{O}(\log (n / \varepsilon))$ for constant-width monotone ROBPs.

Theorem 1.6 (see Section 3.2). For any positive integers $n, w \leq n$, and $\varepsilon \in(0,1 / 2)$, there is an explicit PRG that ε-fools monotone $[n, w]$ ROBPs (even unordered ones) with seed length

$$
O\left(w^{2} \log (n / \varepsilon) \cdot(\log \log (n / \varepsilon))^{2}\right)
$$

We believe that fooling read-once MBPs is an important (and clearly necessary) step toward breaking the $O\left(\log ^{2} n\right)$-barrier for constant-width ROBPs. The class of (ordered) branching programs that we understand best from the perspective of pseudorandomness is that of permutation branching programs, thanks to the aforementioned works of [BRRY14, KNP11, De11, Ste12, HPV21], all of which obtain their results by showing that the Impagliazzo-Nisan-Wigderson [INW94] pseudorandom generator can be analyzed better for such programs. Monotone BPs can be seen as the extreme opposite of permutation BPs: the only monotone function $E:[w] \rightarrow[w]$ that is also a permutation is the identity. Thus the only layers a monotone BP can share with a permutation BP are redundant (can be eliminated from the branching program without changing its functionality). Furthermore, in stark contrast to the case of ordered permutation branching programs, it is known that instantiations of the classical constructions of [Nis92, INW94] with $\widetilde{O}(\log n)$ seed length provably do not work against read-once MBPs.

Technically, our arguments build on the paradigm of using random restrictions for fooling ROBPs as studied in the works of [GMR ${ }^{+} 12$, RSV13, SVW17, CSV15, HLV18, LV17, CHRT18, FK18, MRT19, Lee19, DHH19, DHH20]. This gives more evidence that this approach can perhaps lead to $\widetilde{O}(\log n)$ seed length for constant-width ROBPs. Our analysis introduces the idea of exploiting width reduction combined with alphabet reduction that could be useful for the general problem.

By Proposition 1.4, the PRG of Theorem 1.6 is also a PRG for read-once De Morgan formulas. For read-once AC^{0}, corresponding to width $w=O(1)$, it achieves a better dependence on the width w than the previous generator for read-once AC^{0}, which has a seed of length $\log (n / \varepsilon) \cdot O(w \log \log (n / \varepsilon))^{2 w+2}$ for depth- w formulas [DHH19] (our dependence on w is w^{2}). For read-once formulas of arbitrary depth, the best PRG prior to our work was the PRG of Forbes and Kelley [FK18], which has seed length $O\left(\log (n / \varepsilon) \log ^{2} n\right)$. Thus, the PRG of Theorem 1.6 attains better seed length for read-once formulas that have depth up to $w=o\left(\frac{\log n}{\log \log (n / \varepsilon)}\right)$.

We note that constructing PRGs that are not sensitive to the ordering of the bits in which the input is read is a natural question. First, fooling read-once $A C^{0}$, for example, is inherently an unordered task. But also, PRGs for ROBPs that follows the "classical" and successful seed recycling approach due to Nisan (e.g., [Nis92, INW94, KNP11, BRRY14, BCG20]) heavily depends on the ordering of the bits. In fact, Tzur [Tzu09] proved that Nisan's PRG can in fact be distinguished from uniform by an unordered constant width branching program. Thus, the hope is that PRGs that are not sensitive to the ordering will help make progress on the problem of fooling ordered ROBPs with seed length $o\left(\log ^{2} n\right)$.

1.4 PRGs Fooling Read-once MBPs

We proceed by giving an overview of the construction of our PRG and of the techniques we use.

1.4.1 The Iterated Restrictions Approach

We construct our PRG using the iterated pseudorandom restrictions approach, pioneered by Ajtai and Wigderson [AW89] and further developed by Gopalan et al. [GMR ${ }^{+} 12$]. That is, we pseudorandomly assign values to a pseudorandomly chosen subset of the variables, and then repeat the process until we assigned values to all variables. Intuitively, designing a pseudorandom restriction for some function f is easier than fooling f outright, because designing a pseudorandom restriction amounts to fooling a "smoothed out" version of $f\left[\mathrm{GMR}^{+} 12\right]$, or equivalently, designing a PRG that would fool f after some noise was added [HLV18]. Previous works that used this approach include PRGs for unordered ROBPs [RSV13, CHRT18, FK18], PRGs for width-3 ROBPs [GMR ${ }^{+}$12, SVW17, MRT19], PRGs for bounded-depth read-once formulas [GMR ${ }^{+} 12$, CSV15, DHH19, DHH20], and PRGs for arbitrary-order product tests [HLV18, LV17, Lee19].

Following the iterated restrictions approach paradigm, we need our pseudorandom distribution X over restrictions to satisfy two key properties. The first property is that the restriction should approximately preserve the expectation of the function. i.e., in expectation over X, the restricted function $\left.f\right|_{X}$ should have approximately the same bias as f itself, i.e. $\mathbb{E}_{X}\left[\mathbb{E}_{U}\left[\left.f\right|_{X}(U)\right]\right] \approx \mathbb{E}_{U}[f(U)]$, where U denotes the uniform distribution on the appropriate number of bits. This feature ensures that after sampling the restriction X, our remaining task is simply to fool $\left.f\right|_{X}$. The second property is the simplification property. That is, we want that the restricted function, for a typical restriction, should be in a sense simpler than f itself. Clearly, simplifying f would make it easier to fool.

To achieve the first property of preserving the expectation, we follow Forbes and Kelley [FK18], who constructed a simple pseudorandom distribution over restrictions that approximately preserves the expectation of any constant-width ROBP. In the ForbesKelley distribution, we determine which coordinates stay alive in an almost k-wise independent manner, and sample the fixed coordinates using a small-bias space. This distribution, per a single restriction, can be sampled using $\widetilde{O}(\log (n / \varepsilon))$ uniform bits. Next, we proceed to discuss how to achieve the simplification property.

1.4.2 Iterative Width Reduction

In our setting, we design our restrictions in a way that fits nicely with the [FK18] distribution. Thus, the remaining challenge is indeed to ensure that such restrictions simplify constant width monotone ROBPs. In [FK18], the measure of complexity was simply the number of remaining unset variables. That is, Forbes and Kelley argued that after applying $O(\log n)$ independent pseudorandom restrictions, with high probability, all variables are set, and hence there is nothing left to fool. Such an analysis gives seed length of $\widetilde{O}(\log (n / \varepsilon) \cdot \log n)$, and recent works used more sophisticated measures of complexity to show that for more restricted classes of bounded width ROBPs, one can reach a function which is simple enough after only $O(\log \log n)$ independent pseudorandom restrictions [GMR ${ }^{+}$12, MRT19, DHH19, DHH20]. In this work, we continue this line of research, and show that after $O(\log \log n)$ iterations, roughly speaking, the width of the ROBP decreases by 1 .

Since the construction and analysis of PRG will not depend on the ordering of the in-
put bits, for simplicity we will describe it here assuming that the monotone ROBP B is ordered (to avoid the indexing i_{j} of input variables). Before getting to the construction, we highlight the key concept of colliding layers in a branching program, which was also paramount in [BV10, Ste13, SVW17, CHRT18, MRT19]. We say that a BP layer i is a collision one, if there exist two edges with the same label σ that are mapped to the same vertex, i.e. E_{i}^{σ} is not a permutation. We say a collision is realized if a restriction fixes x_{i} to σ, and thus effectively introduces a layer with smaller width. The property of monotone BPs we use is that every non-identity layer is a collision one, and crucially, that this property is preserved under restrictions.

Another technical, yet powerful, component of our analysis is treating a branching program with edges labeled 0 and 1, i.e., over the alphabet $\{0,1\}$, as a branching program over a much larger alphabet. This allows us to consider the alphabet size of a smallerwidth BP as a progress measure, as we now discuss.

Towards describing our iterative simplifying process, express our ROBP B, over $\{0,1\}$, as a branching program over $\Sigma=\{0,1\}^{\ell}$ in the straightforward way, where ℓ will start out as $O(\log (n / \varepsilon))$ and eventually will be reduced to $O(\log \log (n / \varepsilon))$. Each "layer" is now a function from $\Sigma \times[w]$ to $[w]$. Initially, moving to a larger alphabet only makes our task more difficult, but the generality will be useful as we induct on the width below (i.e. even if we start out with a width w program with alphabet $\{0,1\}$, the argument below will force us to handle width $w-1$ programs having alphabet $\{0,1\}^{O(\log (n / \varepsilon))}$.

We iteratively apply the following two observations.

1. Realizing a collision. After a suitable pseudorandom restriction X^{1}, in every sequence of $\exp (O(\ell)) \cdot \log (n / \varepsilon)=\exp (O(\ell))$ collision layers, we will have a collision in one of these layers. As each layer in a read-once MBP is either an identity layer or a collision layer, and this remains true also after transitioning to a larger alphabet, we can deduce that after X^{1} every C^{ℓ} consecutive nontrivial layers contains a layer of width at most $w-1$, for a sufficiently large constant C.
2. Alphabet reduction. After a suitable pseudorandom restriction X^{2}, up to a few "unruly" layers, we can shrink the alphabet size of B so that all layers are effectively over $\{0,1\}^{\ell / 2}$. Specifically, we can assume that in every sequence of C^{ℓ} consecutive layers of alphabet size B, all but $O(\log (n / \varepsilon))$ of them will have their alphabet size reduced to $\{0,1\}^{\ell / 2}$.

Both X^{1} and X^{2} will consist of almost k-wise independent distributions on $\{0,1, \star\}$ where \star represents the bits not assigned by the restriction and we take X^{1} to have \star-probability $1 / 2$ and X^{2} to have a smaller, yet still constant, \star-probability.

Equipped with the above two observations, aiming at reducing the width of B, we apply, independently, the above X^{1} and X^{2} for $t=O(\log \log (n / \varepsilon))$ iterations. After the first application of X^{1}, we can write B as $B=B_{1} \circ \ldots \circ B_{r}$, each B_{i} is of length at most C^{ℓ} over an ℓ-bit alphabet, starting and ending in a layer of width $w-1$. Then the first application of X^{2} will reduce the alphabet of each of the B_{i}-s to consist of $\ell / 2$ bits, except for $O(\log (n / \varepsilon))$ unruly layers within each B_{i}. The second application of X^{1} will now create collisions every $C^{\ell / 2}$ non-unruly layers, refining the program further into $B=B_{1}^{\prime} \circ \cdots B_{r^{\prime}}^{\prime}$, where each B_{i}^{\prime} is of length at most $C^{\ell / 2}$ over an $\ell / 2$-bit alphabet (except for $O(\log (n / \varepsilon))$ unruly layers),
starting and ending with a layer of width $w-1$. The second of application of X^{2} will then reduce the alphabet size of each B_{i}^{\prime} to at most $\ell / 4$ except for $O(\log (n / \varepsilon))$ additional unruly layers within each B_{i}^{\prime}. In general, each iteration reduces the distance between consecutive layers of width $w-1$ and and reduces the alphabet size, except for increasing the number of unruly layers by $O(\log (n / \varepsilon))$ within each interval. Finally after $t=O(\log \log (n / \varepsilon))$ iterations, we will have an alphabet where each symbol consists of $\ell^{*}=O(\log \log (n / \varepsilon))$ bits, so the distance between width $w-1$ layers is at most $C^{\ell^{*}}=\operatorname{poly}(\log (n / \varepsilon))$. Even including the unruly layers, we can now view our as a width $w-1$ read-once MBP over $\Sigma^{\prime}=\{0,1\}^{\text {poly }(\log (n / \varepsilon))}$.

Before we can repeat the above process and reduce the width from $w-1$ to $w-2$, etc., we need to reduce Σ^{\prime} back to $\Sigma=\{0,1\}^{O(\log (n / \varepsilon))}$. We can achieve this by an additional alphabet reduction using an almost k-wise independent distribution with \star-probability $1 /$ poly $\log (n / \varepsilon)$ suffices. The unruly layers in this reduction are the reason that we cannot reduce our alphabet size below $\{0,1\}^{O(\log (n / \varepsilon))}$.

Recall that due to [FK18], we can set the above restrictions to preserve the expectation of our original B, up to a small error. Hence, with seed of length $\widetilde{O}(\log (n / \varepsilon))$ we can both preserve the expectation and reduce the width by 1 . Applying this $w-1$ times, with high probability our program will be very simple - a function depending on only $O(\log (n / \varepsilon))$ bits (i.e. a junta), which is fooled by an almost $O(\log (n / \varepsilon))$-wise independent distribution.

All in all, our construction consists of commonly used primitives for PRGs: pseudorandom restrictions in which both the choice of live variables and the the choice of fixed coordinates are sampled from an almost k-wise independent distributions, with varying parameters. The analysis of iterative width reduction via resorting to larger alphabets is new, and we believe can be of use for designing PRGs for other models of computation. Naturally, there are some additional subtleties in the analysis and the choice of parameters, which we leave to the complete analysis in Section 3.

2 Preliminaries

We denote by U_{n} the uniform distribution over $\{0,1\}^{n}$. Suppose \mathcal{C} is a class of functions in $\{0,1\}^{n} \rightarrow \mathbb{R}$ and G is a distribution over $\{0,1\}^{n}$. We say that $\mathcal{C} \varepsilon$-fools \mathcal{C} if for every $f \in \mathcal{C}$ it holds that $\left|\mathbb{E}[f(G)]-\mathbb{E}\left[f\left(U_{n}\right)\right]\right| \leq \varepsilon$. Recall that a PRG ε-fooling \mathcal{C} is a function $G:\{0,1\}^{s} \rightarrow\{0,1\}^{n}$ such that $G\left(U_{s}\right) \varepsilon$-fools \mathcal{C}. As a shorthand, we often write $\mathbb{E}[f]$ to denote $\mathbb{E}\left[f\left(U_{n}\right)\right]$, and omit the subscript n when the number of input bits is clear from context.

2.1 Branching Programs

We extend the definition of branching programs from Definition 1.1 to large alphabets. We do so by grouping together at most ℓ consecutive bits in a single edge-layer of the program. The main advantage in such a transformation is that we can potentially express a width w program over $\{0,1\}$ as a width $w^{\prime}<w$ program over $\{0,1\}^{\ell}$. This will be crucial in our analysis.

We say that a read-once branching program (ROBP) B is a $\left[n, w^{\prime}\right]_{\ell}$ ROBP if B can be written as a directed layered graph with $m+1$ layers (for some $m \leq n$) denoted V_{1}, \ldots, V_{m+1}. Each V_{i} consists of at most w^{\prime} many vertices. Furthermore, there exists a partition of $[n]$ to disjoint subsets $S_{1}, \ldots, S_{m} \subseteq[n]$ of size at most ℓ each, and between every consecutive layers of vertices V_{i} and V_{i+1} there exists a set of directed edges such that any vertex in V_{i} has $2^{\left|S_{i}\right|}$ edges going towards V_{i+1}. We can treat the the i-th layer of edges as a transition function $E_{i}:\{0,1\}^{S_{i}} \times\left[w^{\prime}\right] \rightarrow\left[w^{\prime}\right]$ between V_{i} and V_{i+1}. Namely, for each $\sigma \in\{0,1\}^{S_{i}}$ we have the function $E_{i}^{\sigma} \triangleq E_{i}(\sigma, \cdot):[w] \rightarrow[w]$ that is defined in the natural way by following the edges labeled σ from V_{i} to V_{i+1}. Such a program naturally describes a read-once computation on $x \in\{0,1\}^{n}$, where in the i-th step we follow the edge marked with $x_{S_{i}} \in\{0,1\}^{S_{i}}$ from a vertex in V_{i} to a vertex in V_{i+1}. We often denote ℓ as the alphabet length of B and 2^{ℓ} as the alphabet size of B.

We say that an $\left[n, w^{\prime}\right]_{\ell}$ ROBP is monotone if for every $i \in[m]$, its i-th layer E_{i} satisfies the following. For any $\sigma \in\{0,1\}^{S_{i}}$ and distinct $x_{1}, x_{2} \in\left[w^{\prime}\right], x_{1} \geq x_{2}$ implies $E_{i}^{\sigma}\left(x_{1}\right) \geq$ $E_{i}^{\sigma}\left(x_{2}\right)$. We say E_{i} is an identity layer if for any $\sigma \in\{0,1\}^{S_{i}}$ it holds that E_{i}^{σ} is the identity function. We say that E_{i} is a collision layer if there exists $\sigma \in\{0,1\}^{S_{i}}$ such that E_{i}^{σ} contains a collision, i.e., there exist distinct $x_{1}, x_{2} \in\left[w^{\prime}\right]$ such that $E_{i}^{\sigma}\left(x_{1}\right)=E_{i}^{\sigma}\left(x_{2}\right)$. We will make use of the following key observation.
Claim 2.1. In a read-once MBP, every layer is either an identity layer or a collision layer.
As noted above, our techniques will also hold for the unordered setting, so we may assume that the bits of x are permuted by some permutation $\pi \in S_{n}$, i.e., the i-th layer of the program follow the edge marked by $x_{\pi(i)}$. Since we are in the unordered setting we can assume without loss of generality that there are no identity layers in the program, by skipping these layers.

Observe that if an (unordered) $[n, w]$ ROBP B over $\{0,1\}$ has $m+1$ of its $n+1$ vertexlayers with width at most w^{\prime} and of distance at most ℓ apart, then we can write B as a $\left[n, w^{\prime}\right]_{\ell}$ ROBP B^{\prime}. Furthermore, if B is monotone so is B^{\prime}.

$2.2 k$-Wise and δ-Biased Distributions

We say that a random variable $Y \sim\{0,1\}^{n}$ is δ-biased if it δ-fools all parity functions. Namely, if for any nonempty $I \subseteq[n]$ it holds that

$$
\left|\operatorname{Pr}\left[\bigoplus_{i \in I} Y_{i}=1\right]-\frac{1}{2}\right| \leq \delta
$$

There are explicit constructions of δ-biased distributions over $\{0,1\}^{n}$ that can be sampled efficiently with $O\left(\log n+\log \frac{1}{\delta}\right)$ truly random bits [NN93].
Lemma 2.2 (Vazirani's XOR Lemma, See e.g., [Gol11, Section 1]). Let $Y \sim\{0,1\}^{n}$ be a δ-biased distribution, and let $S \subseteq[n]$. Then, $\left|Y_{S}-U_{|S|}\right| \leq 2^{|S| / 2} \cdot \delta$.

For $p \in[0,1]$, we denote by $\operatorname{Bernoulli}(p)^{\otimes n}$ the distribution over $\{0,1\}^{n}$ where the bits are i.i.d. and each bit has expectation p. We say that $Z \sim\{0,1\}^{n}$ is γ-almost k wise independent with marginals p if for every set $I \subseteq[n]$ satisfying $|I| \leq k$ it holds that $\left|Z_{I}-\operatorname{Bernoulli}(p)^{\otimes|I|}\right| \leq \gamma$. We can sample such distributions efficiently.

Claim 2.3 (see, e.g., in [DHH20]). For any positive integers n, k, C, and any $\gamma>0$, there is an explicit γ-almost k-wise independent distribution with marginals $p=2^{-C}$ that can be sampled efficiently with $O\left(C k+\log \frac{1}{\gamma}+\log \log n\right)$ truly random bits.

Moreover, we have good tail bounds for almost k-wise distribution.
Lemma 2.4 (following [CRSW13, SVW17]). Let X_{1}, \ldots, X_{n} be γ-almost k-wise independent random variables over $\{0,1\}$ with marginals q, and let $\alpha>0$. Then, for an even $k \leq q n$,

$$
\operatorname{Pr}\left[\left|\sum_{i \in[n]} X_{i}-q n\right| \geq \alpha q n\right] \leq\left(\frac{16 k}{\alpha^{2} q n}\right)^{k / 2}+2 k \gamma\left(\frac{1}{\alpha q}\right)^{k}
$$

Corollary 2.5. Let $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ be γ-almost k-wise independent random variables over $\{0,1\}$ with marginals $\geq q$. Then, for an even $k \leq q n$,

$$
\operatorname{Pr}\left[\sum_{i \in[n]} X_{i}^{\prime}=0\right] \leq\left(\frac{16 k}{q n}\right)^{k / 2}+2 k \gamma\left(\frac{1}{q}\right)^{k} .
$$

Proof: Take $X_{i}=X_{i}^{\prime} \wedge Y_{i}$ where Y_{i} is a coin toss with $\operatorname{Pr}\left[Y_{i}=1\right]=q / \mathbb{E}\left[X_{i}^{\prime}\right]$. We have that $\mathbb{E}\left[X_{i}\right]=q$, and that X_{1}, \ldots, X_{n} are γ-almost k-wise independent with marginals q. Applying Lemma 2.4 with $\alpha=1$ implies that

$$
\operatorname{Pr}\left[\sum_{i \in[n]} X_{i}=0\right] \leq\left(\frac{16 k}{q n}\right)^{k / 2}+2 k \gamma\left(\frac{1}{q}\right)^{k}
$$

The proof is complete since $\operatorname{Pr}\left[\sum_{i \in[n]} X_{i}^{\prime}=0\right] \leq \operatorname{Pr}\left[\sum_{i \in[n]} X_{i}=0\right]$.

2.3 Restrictions and Pseudorandom Restrictions

A restriction is a string $x \in\{0,1, \star\}^{n}$. Intuitively, $x_{i}=\star$ means the i-th coordinate has not been set by the restriction. A restriction x can be specified by two strings $y, z \in\{0,1\}^{n}$ where z determines the \star locations and y determines the assigned values in the non- \star locations. Namely, we define Res: $\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1, \star\}$ by

$$
\operatorname{Res}(y, z)_{i}= \begin{cases}\star & z_{i}=1 \\ y_{i} & z_{i}=0\end{cases}
$$

We define a composition operation on restrictions, by

$$
\left(x \circ x^{\prime}\right)_{i}= \begin{cases}x_{i} & x_{i} \neq \star, \\ x_{i}^{\prime} & \text { otherwise }\end{cases}
$$

For a function f on $\{0,1\}^{n}$, the restricted function $\left.f\right|_{x}$ on $\{0,1\}^{n}$ is defined by $\left.f\right|_{x}\left(x^{\prime}\right)=$ $f\left(x \circ x^{\prime}\right)$.

We will repeatedly use the following fact.

Claim 2.6. Let B be a read-once MBP of length n, and let $x \in\{0,1, \star\}^{n}$ be any restriction. Then, $\left.B\right|_{x}$ is a read-once MBP.

Given a function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ and a distribution $X \sim\{0,1, \star\}^{n}$, we say that X preserves the expectation of f with error ε if

$$
\left|\mathbb{E}\left[\left.f\right|_{X}(U)\right]-\mathbb{E}[f]\right| \leq \varepsilon
$$

Forbes and Kelley showed that pseudorandom restrictions preserve the expectation of constant-width ROBPs. We give a "with high probability" version of their result, proved in [DHH20].

Lemma 2.7 ([FK18], restated). There exists a constant $c \geq 1$ such that the following holds for any positive integers n, w, and $\eta>0$. Let Z be a γ-almost k-wise independent distribution over $\{0,1\}^{n}$, where $k \geq c \log \frac{n w}{\eta}$ and $\gamma \leq 2^{-k}$. Let Y be a δ-biased distribution over $\{0,1\}^{n}$, where $\log \frac{1}{\delta} \geq c w k \log \log n$. Then, for any $[n, w,\{0,1\}]$ BP B it holds that with probability at least $1-\eta$ over $z \sim Z$,

$$
\left|\underset{Y, U}{\mathbb{E}}\left[\left.B\right|_{\operatorname{Res}(Y, z)}(U)\right]-\mathbb{E}[B]\right| \leq \eta .
$$

For $X \sim\{0,1, \star\}^{n}$ and a positive integer t, we denote by $X^{\circ t}$ the distribution over $\{0,1, \star\}^{n}$ obtained by drawing independent samples $x^{(1)}, \ldots, x^{(t)} \sim X$ and composing them, namely $x=x^{(1)} \circ \ldots \circ x^{(t)}$. We record two easy claims.

Claim 2.8. Let $\mathcal{F} \subseteq\{0,1\}^{n} \rightarrow \mathbb{R}$ be some function class which is closed under restrictions. Then, if X preserves the expectation of every $f \in \mathcal{F}$ with error ε, then $X^{\circ t}$ preserves the expectation of every $f \in \mathcal{F}$ with error $t \cdot \varepsilon$.

Claim 2.9. Let $X=\operatorname{Res}(Y, Z)$ where $Y \sim\{0,1\}^{n}$ and Z is γ-almost k-wise independent with marginals p. Then, for any positive integer t, the distribution of the \star positions in $X^{\circ t}$ is $(t \gamma)$ almost k-wise independent with marginals p^{t}.

Finally, we turn to define the notion of realizing a collision, in which a restriction "hits" a symbol in a collision layer that indeed causes a collision.

Definition 2.10 (realizing a collision). Let B be an $[n, w]_{\ell} R O B P$ and let $E_{i}:\{0,1\}^{S_{i}} \times[w] \rightarrow$ $[w]$ be a collision layer in B for some $i \in[n]$. We say a string $(y, z) \in\{0,1\}^{n} \times\{0,1\}^{n}$ realizes a collision in E_{i} if for any symbol $\sigma \in\{0,1\}^{S_{i}}$ consistent with the restriction $\operatorname{Res}(y, z)$ (i.e., $\sigma_{j}=y_{j}$ for all $j \in S_{i}$ with $z_{j}=0$) we have that E_{i}^{σ} contains a collision (i.e. $E_{i}^{\sigma}(v)=E_{i}^{\sigma}\left(v^{\prime}\right)$ for two distinct states v, v^{\prime}). We say (y, z) realizes a collision in B if it realizes a collision in some layer E_{i}.

We will always use the special case where a collision is realized by $z_{S_{i}}=0^{\left|S_{i}\right|}$ and $E_{i}^{y S_{i}}$ having a collision.

3 PRGs for Constant-width Read-once MBPs

We set forth two auxiliary lemmas that will serve as the building blocks for our iterative argument.

The first claim states that in a read-once MBP with enough colliding layers from [w] to $[w]$, each depending on at most ℓ bits, it is likely that one of the layers will realize a collision under a pseudorandom restriction. The second claim will help us implement alphabet reduction as outlined in the introduction.
Lemma 3.1 (realizing a collision). Let $\ell \in \mathbb{N}$ and $m \geq 16^{\ell}$. For $i=1, \ldots$, m, let $E_{i}:\{0,1\}^{S_{i}} \times$ $[w] \rightarrow[w]$ where $S_{1}, \ldots, S_{m} \subseteq[n]$ are disjoint sets of size at most ℓ. Suppose that each E_{i} is a collision layer. Let $Y, Z \sim\{0,1\}^{n}$ be γ-almost k-wise independent distributions, for $\ell \leq k \leq$ $2^{\ell} / 16$. Then,

$$
\operatorname{Pr}_{Z, Y}\left[\exists i:(Y, Z) \text { realizes a collision in } E_{i}\right] \geq 1-2^{-k / 2}-\gamma \cdot 8^{k} .
$$

Proof: For $j \in[m]$ let \mathcal{E}_{j} be the event that $z_{S_{i}}=0^{\left|S_{i}\right|}$ and $y_{S_{i}}=\sigma_{i}$, where σ_{i} is an arbitrary choice of a string for which $E_{i}^{\sigma_{i}}$ collides. Observe that when \mathcal{E}_{j} occurs, (Y, Z) realizes a collision in E_{j}. Thus, it suffices to lower bound the probability that some of the \mathcal{E}_{j} occurs.

The key observation is that the events $\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}$ are 2γ-almost k / ℓ-wise independent with marginals $\geq 4^{-\ell}$. Indeed, for any test that depends on k / ℓ of the events $\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}$, the test can be written as a function of k bits from Y and k bits from Z, and since any k bits from Y are γ-almost uniform and any k bits of Z are γ-almost uniform, we get that the test is fooled by the distribution with error at most 2γ. Since on the uniform distribution $z_{S_{i}}=0^{\left|S_{i}\right|}$ and $y_{S_{i}}=\sigma_{i}$ has probability $4^{-\left|S_{i}\right|} \geq 4^{-\ell}$, we get that $\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}$ are 2γ-almost k / ℓ-wise independent with marginals $\geq 4^{-\ell}$.

By Corollary 2.5,

$$
\begin{aligned}
\operatorname{Pr}\left[\sum_{j=1}^{m} 1_{\mathcal{E}_{j}}=0\right] & \leq\left(\frac{16 k / \ell}{4^{-\ell} 16^{\ell}}\right)^{k / 2 \ell}+4(k / \ell) \gamma\left(\frac{1}{4^{-\ell}}\right)^{k / \ell} \\
& \leq\left(2^{\ell} / 4^{\ell}\right)^{k / 2 \ell}+\gamma \cdot 2^{\ell} \cdot\left(4^{\ell}\right)^{k / \ell} \leq 2^{-k / 2}+\gamma \cdot 8^{k} .
\end{aligned}
$$

Thus, we get

$$
\operatorname{Pr}_{Z, Y}\left[\exists i:(Y, Z) \text { realizes a collision in } E_{i}\right] \geq \operatorname{Pr}\left[\sum_{j=1}^{m} 1_{\mathcal{E}_{j}}>0\right] \geq 1-2^{-k / 2}+\gamma \cdot 8^{k}
$$

Lemma 3.2 (alphabet reduction). For every constant $C>1$ there exists a constant $p \in(0,1)$ such that the following holds. Let $\ell \in \mathbb{N}$ and $m \leq C^{\ell}$. For $i=1, \ldots, m$, let $E_{i}:\{0,1\}^{S_{i}} \times[w] \rightarrow$ $[w]$ where $S_{1}, \ldots, S_{m} \subseteq[n]$ are disjoint sets of size at most ℓ. Let $Z \sim\{0,1\}^{n}$ be a γ-almost k-wise independent distribution with marginals p, for $k \geq \ell$. For $j=1, \ldots$, m let B_{j} be the indicator that $Z_{S_{j}}$ has more than $\ell / 2$ ones. Then,

$$
\operatorname{Pr}\left[\sum_{j=1}^{m} B_{j} \geq \frac{k}{\ell}\right] \leq C^{k} \cdot \gamma+2^{-k}
$$

Proof: Fix a set $T \subseteq[m]$ of size $t=\frac{k}{\ell}$. For $j \in T$, let $B_{j}(z)$ be the indicator random variable that is 1 if and only if $z_{S_{j}}$ has more than $\frac{\ell}{2}$ ones. We bound $\operatorname{Pr}_{Z}\left[\forall j \in T: B_{j}(Z)=1\right]$. Note that this event depends only on k bits of Z and thus

$$
\operatorname{Pr}_{Z}\left[\forall j \in T, B_{j}(Z)=1\right] \leq \underset{U}{\operatorname{Pr}}\left[\forall j \in T: B_{j}(U)=1\right]+\gamma .
$$

To bound the probability of $\forall j \in T, B_{j}(U)$ we note that each B_{j} happens with probability at most $\binom{\ell}{\ell / 2} p^{\ell / 2} \leq 2^{\ell} p^{\ell / 2}$ and that k / ℓ of these events happen simultaneously with probability at most $\left(2^{\ell} p^{\ell / 2}\right)^{k / \ell}=2^{k} p^{k / 2}$.

Taking the union-bound over all subsets, we get the probability there exists $T \subseteq[m]$ of size t for which $B_{j}=1$ for every $j \in T$ is at most

$$
\binom{C^{\ell}}{t}\left(\gamma+2^{k} p^{k / 2}\right) \leq C^{\ell t} \cdot\left(\gamma+2^{k} p^{k / 2}\right)=C^{k} \cdot \gamma+2^{-k}
$$

for $p=\frac{1}{16 C^{2}}$.

3.1 Width Reduction

Lemma 3.3. Let B be an $[n, w]_{\ell}$ read-once $M B P$, and let $\varepsilon>0$. Let $k=\max (\ell, 4 \log (2 n / \varepsilon))$ and $\gamma=32^{-k}$. Set $t=\log (\ell / \log (16 k))$. Also, for every $j \in[t]$,

- Let $Y_{1}^{j} \sim\{0,1\}^{n}$ and $Z_{1}^{j} \sim\{0,1\}^{\text {ln }}$ be γ-almost k-wise independent distribution;
- Let $Y_{2}^{j} \sim\{0,1\}^{n}$ be any distribution; and,
- Let $Z_{2}^{j} \sim\{0,1\}^{n}$ be a γ-almost k-wise independent distribution with marginal probability p as obtained from Lemma 3.2 for the constant $C=16$.

For every $j \in[t]$ we denote the j-th restriction as

$$
X^{j}=X^{j, 1} \circ X^{j, 2}=\operatorname{Res}\left(Y_{1}^{j}, Z_{1}^{j}\right) \circ \operatorname{Res}\left(Y_{2}^{j}, Z_{2}^{j}\right)
$$

and we set the pseudorandom restriction $\bar{X}=X^{1} \circ \ldots \circ X^{t}$.
Then, with probability at least $1-\varepsilon$ over $\bar{x} \sim \bar{X},\left.B\right|_{\bar{x}}$ can be written as an $[n, w-1]_{\ell^{\prime}}$ read-once MBP for $\ell^{\prime}=O\left(k^{9}\right)$.

Proof: Consider $\ell_{0}=\ell, \ell_{1}=\ell / 2, \ldots, \ell_{t}=\ell / 2^{t}$. Note that for all i we have $\ell_{i} \leq k \leq 2^{\ell_{i}} / 16$. Denote $\Sigma^{(0)}=\Sigma$ and $\ell_{0}=\ell$. Consider the pseudorandom restriction $X^{1,1}$, denoting $A^{1}=\left.B\right|_{X^{1,1}}$. By Lemma 3.1, followed by a union bound, we get that with probability at least

$$
1-n \cdot\left(2^{-k / 2}+\gamma \cdot 8^{k}\right) \geq 1-\varepsilon / 2 n
$$

every $16^{\ell_{0}}$ consecutive layers of A^{1} contains a layer of vertices of width $w-1$. In the following, we condition on the event mentioned in the previous sentence. After the restriction we identify all layers of width $w-1$ and decompose the program to a concatenation of subprograms starting and ending with width at most $w-1$. That is, we can write A^{1} as
$A_{1}^{1} \circ \ldots \circ A_{r}^{1}$, where A_{i}^{1} has initial and final width at most $w-1$, and length at most $16^{\ell_{0}}$ over alphabet $\Sigma^{(0)}=\{0,1\}^{\ell_{0}}$.

Next, consider the application of $X^{1,2}$ on $A^{1}=A_{1}^{1} \circ \ldots \circ A_{r}^{1}$. By Lemma 3.2 and a union bound, with probability at least

$$
1-n\left(16^{k} \gamma+2^{-k}\right) \geq 1-\varepsilon / 2 n
$$

we can reduce the alphabet in each $\left.A_{i}^{1}\right|_{X^{1,2}}$ to $\Sigma^{(1)}=\{0,1\}^{\ell_{0} / 2}$, except for $k / \ell_{0} \leq k^{\text {"unruly" }}$ wide layers whose alphabet is a subset of $\{0,1\}^{\ell_{0}}$. To sum up, after the first restriction, with probability at least $1-\varepsilon / n, B^{1}=\left.B\right|_{X^{1}}$ can be written as a read-once MBP $\tilde{B}_{1}^{1} \circ \ldots \tilde{B}_{r}^{1}$, such that for every subprogram \tilde{B}_{i}^{1} : (i) starts and ends with width $w-1$ (ii) has at most $16^{\ell_{0}}$ good layers with alphabet length $\leq \ell_{1}$, and (iii) has up to k unruly layers with alphabet length $\leq \ell_{0}$.

We show by induction on j that, with probability at least $1-\varepsilon j / n$, after the j-th restriction $B^{j}=\left.B\right|_{X^{1} \circ \ldots \circ X^{j}}$ can be written as $\tilde{B}_{1}^{1} \circ \ldots \tilde{B}_{r_{j}}^{1}$, such that for every subprogram \tilde{B}_{i}^{1} :

- Starts and ends with width $w-1$,
- Has at most $16^{\ell_{j-1}}$ good layers with alphabet length $\leq \ell_{j}$, and,
- Has up to $j k$ unruly layers with alphabet length $\leq \ell_{0}$.

Assume this to be the case for some $j<t$, we show how to prove it to be the case for $j+1$. We denote by $A^{j+1}=\left.B^{j}\right|_{X^{j+1,1}}$. By Lemma 3.1, with probability at least $1-n \cdot\left(2^{-k}+\gamma \cdot 8^{k}\right) \geq$ $1-\varepsilon / 2 n$, every $16^{\ell_{j}}$ consecutive good layers of B^{j+1} realizes a collision in A^{j+1}. We write A^{j+1} as

$$
A_{1}^{j+1} \circ \ldots A_{r_{j+1}}^{j+1}
$$

where each subprogram A_{i}^{j+1} : (i) starts and ends with width $w-1$, (ii) has at most $16^{\ell_{j}}$ good layers with alphabet length $\leq \ell_{j}$, and (iii) has up to $j k$ unruly layers with alphabet length $\leq \ell_{0}$. To see Item (iii) note that the partition to subprograms is a refinement of the previous partition and thus cannot increase the maximal number of "unruly" layers in a subprogram.

Applying $X^{j+1,2}$, by Lemma 3.2, with probability at least $1-n\left(16^{k} \gamma+2^{-k}\right) \geq 1-\varepsilon / 2 n$, in each subprogram A_{i}^{j+1} we can reduce the alphabet to $\Sigma_{j+1}=\{0,1\}^{\ell_{j+1}}$ except for at most the previous $j k$ unruly layers and potentially k new unruly layers.

Overall, with probability at least $1-t \varepsilon / n \geq 1-\varepsilon$, the branching program B^{t} can be written as $B^{t}=B_{1}^{t} \circ \ldots B_{r_{t}}^{t}$, where B_{i}^{t} starts and ends with width $w-1$, has at most $16^{\ell_{t-1}}$ good layers and at most $k t$ unruly layers. Thus, each B_{i}^{t} is a function of at most

$$
16^{\ell_{t-1}} \cdot \ell_{t}+k t \cdot \ell_{0} \leq k \cdot 16^{2(4+\log (k))}+k^{3}=O\left(k^{9}\right)
$$

bits. We can merge all bits participating in B_{i}^{t} to a single symbol in $\Sigma^{\prime}=\{0,1\}^{\ell^{\prime}}$ where $\ell^{\prime}=O\left(k^{9}\right)$. We can thus write B^{t} as an $[n, w-1]_{\ell^{\prime}}$ read-once MBP.

As a second step, we reduce the alphabet size from $\operatorname{poly}(\log (n / \varepsilon))$ down to $O(\log (n / \varepsilon))$.

Lemma 3.4. Let $\varepsilon>0, k=4 \log (n / \varepsilon), \gamma=1 /(16 \ell)^{k}$. Let B be an $[n, w]_{\ell}$ read-once MBP. Let Z be a γ-almost k-wise independent distribution over $\{0,1\}^{n}$ with marginals $p_{2}=1 / 2 \ell$; Let Y be any distribution over $\{0,1\}^{n}$. Let $X=\operatorname{Res}(Y, Z)$.

Then, with probability at least $1-\varepsilon$ over $\bar{x} \sim \bar{X},\left.B\right|_{\bar{x}}$ can be written as an $[n, w]_{k}$ read-once MBP.

Proof: Let $z \sim Z$. As in Lemma 3.2, for each layer j let B_{j} be the indicator random variable that is 1 if and only if z_{j} has more than k ones. By the union bound,

$$
\operatorname{Pr}_{Z}\left[B_{j}=1\right] \leq\binom{\ell}{k} \cdot\left(p_{2}^{k}+\gamma\right) \leq \ell^{k} p_{2}^{k}+\ell^{k} \cdot \gamma \leq 2 \cdot 2^{-k} .
$$

Union bounding over all layers, the probability that we failed to reduce the alphabet size to 2^{k} in any of the layers is at most $1-2 n 2^{-k} \geq 1-\varepsilon$.

3.2 Putting It Together

Our process will apply a sequence of $w-1$ restrictions sampled using Lemma 2.7, reducing the program width one at a time, with high probability, while preserving the acceptance probability.

Let c be a large enough constant. Set $k=c \log (n w / \varepsilon)$ and $t=\log (k)$. Set $\gamma=1 /\left(c k^{9}\right)^{k}$ and $\delta=\min \left\{\gamma / 2^{k}, 2^{-c w k \log \log n}\right\}$. Set $C=16, p_{1}=\frac{1}{16 C^{2}}$ and $p_{2}=\frac{1}{c k^{9}}$.

For $i \in[w-2]$ and for $j \in[t]$:

- Let $X^{i, j, 1}=\operatorname{Res}\left(Y^{i, j, 1}, Z^{i, j, 1}\right)$ be a restriction from Lemma 2.7 with parameters k, γ and δ as above. We have that $Y^{i, j, 1}$ is a δ-biased distribution, which is also a γ-almost k-wise independent distribution (due to Lemma 2.2). We have that $Z^{i, j, 1}$ is γ-almost k-wise independent (with marginals $1 / 2$).
- Let $X^{i, j, 2}=\operatorname{Res}\left(Y^{i, j, 2}, Z^{i, j, 2}\right)$ be a composition of $\log \left(1 / p_{1}\right)=O(1)$ restrictions from Lemma 2.7 with parameters k, γ and δ as above. We have that $Y^{i, j, 1}$ is a δ-biased distribution, which is also a γ-almost k-wise independent distribution. By Claim 2.9 we have that $Z^{i, j, 2}$ is $\log \left(1 / p_{1}\right) \gamma$-almost k-wise independent with marginals p_{1}.
- Let $\tilde{X}^{i}=\operatorname{Res}\left(\tilde{Y}^{i}, \tilde{Z}^{i}\right)$ be a composition of $\log \left(1 / p_{2}\right)=O(\log \log (n w / \varepsilon))$ restrictions from Lemma 2.7 with parameters k, γ and δ as above. By Claim 2.9 we have that \tilde{Z}^{i} is $\log \left(1 / p_{2}\right) \gamma$-almost k-wise independent with marginals p_{2}.
We define $X^{i, j}=\left(X^{i, j, 1} \circ X^{i, j, 2}\right)$ and $X^{i}=\left(X^{i, 1} \circ X^{i, 2} \circ \cdots \circ X^{i, t}\right) \circ \tilde{X}^{i}$. And finally, $X=X^{1} \circ X^{2} \circ \cdots \circ X^{w-1}$. Let $S \sim\{0,1\}^{n}$ be a ε-almost k-wise independent distribution. Our PRG G is given by

$$
G=X \circ S
$$

Let $s=s(n, w, \varepsilon)$ be the seed length required to sample from G. Following the seed lengths of the above primitives in Section 2, we can give the following bound.

Claim 3.5. It holds that

$$
s=O\left(w^{2} \log (n / \varepsilon) \cdot(\log \log (n / \varepsilon))^{2}\right)
$$

Claim 3.6. G fools width-w read-once MBPs of length n with error at most $4 \varepsilon n$.
Proof: Let B be an $[n, w]_{1}$ read-once MBP, which can also be written as an $[n, w]_{k}$ read-once MBP by grouping every k-consecutive layers. Note that this transformation preserves monotonicity. Since our restriction is picked as a $m=O(t \cdot w+w \log k) \leq n$ compositions of restrictions that each maintain the acceptance probability of the ROBP up to error ε (Lemma 2.7), we see that

$$
\left|\underset{X, U}{\mathbb{E}}\left[\left.B\right|_{X}(U)\right]-\underset{U}{\mathbb{E}}[B(U)]\right| \leq \varepsilon \cdot n .
$$

It remains to show that $\mathbb{E}_{X, U}\left[\left.B\right|_{X}(U)\right] \approx \mathbb{E}_{X, S}\left[\left.B\right|_{X}(S)\right]$. For that we show that with high probability $\left.B\right|_{X}$ can be expressed as a $[n, 1]_{k}$ read-once MBP. Let $E=E(\bar{X})$ be the union of the following bad events:

- There exists an $i \in[w-1]$ such that $\left(X^{i, 1} \circ X^{i, 2} \circ \cdots \circ X^{i, t}\right)$ fails to reduce the width, in the sense of Lemma 3.3.
- There exists an $i \in[w-1]$ such that \tilde{X}^{i} fails to reduce the alphabet size from $O\left(k^{9}\right)$ to k, in the sense of Lemma 3.4.

By Lemmas 3.3 and $3.4, \operatorname{Pr}[E] \leq 2 w \varepsilon$. Note that in the case that E does not occur, we have that $\left.B\right|_{X}$ is a $[n, 1]_{k}$ ROBP or in other words that it is a junta that depends on at most k bits. In such a case, $\left.B\right|_{X}$ will be ε-fooled by S. Overall we have

$$
\begin{aligned}
\left|\underset{X, U}{\mathbb{E}}\left[\left.B\right|_{X}(U)\right]-\underset{X, S}{\mathbb{E}}\left[\left.B\right|_{X}(S)\right]\right| & \leq \operatorname{Pr}[E]+\operatorname{Pr}[\bar{E}] \cdot\left|\underset{X}{\mathbb{E}}\left[\underset{U}{\mathbb{E}}\left[\left.B\right|_{X}(U)\right]-\underset{S}{\mathbb{E}}\left[\left.B\right|_{X}(S)\right] \mid \bar{E}\right]\right| \\
& \leq 2 w \varepsilon+\varepsilon
\end{aligned}
$$

Combining both estimates we see that

$$
|\underset{G}{\mathbb{E}}[B(G)]-\underset{U}{\mathbb{E}}[B(U)]| \leq \varepsilon \cdot(n+2 w+1) \leq 4 \varepsilon n
$$

Theorem 3.7. Let $n \in \mathbb{N}, \varepsilon>0, w \leq n$. There exists a generator G that fools width-w read-once MBPs of length n, with error at most ε^{\prime} and seed-length $O\left(w^{2} \cdot \log \left(n / \varepsilon^{\prime}\right) \cdot\left(\log \log \left(n / \varepsilon^{\prime}\right)\right)^{2}\right)$.

Proof: Apply Claim 3.6 and Claim 3.5 with $\varepsilon=\varepsilon^{\prime} / 4 n$.

4 Monotone Branching Programs and AC^{0} Circuits

In this section we show the equivalence between constant width MBPs and AC^{0} circuits, proving Theorem 1.3:

Theorem 1.3. A sequence of functions $f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ is in AC^{0} if and only if it is computable by a constant-width MBP of polynomial length.

First, observe that the known implication, that read-once $A C^{0}$ formulas can be computed by constant-width ROBPs, extends to the read-many setting. We show this by first considering a general depth- $w \mathrm{AC}^{0}$ formula F of size s that can read each bit many times. We denote the size of a formula as the number of leaves in the formula tree.

Lemma 4.1. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a function computable by a depth- $w \mathrm{AC}^{0}$ formula of size s. Then, f can also be computed by an $[n, s, w+1]$ MBP.

Proof: We prove the claim by induction on the depth w. For $w=1, f$ computes either the disjunction or the conjunction of at most s literals. This can clearly be done by an $[n, s, 2]$ MBP. Next, fix some f computable by a formula $F:\{0,1\}^{n} \rightarrow\{0,1\}$ of depth $w>1$ and size s, and assume that its top gate is an AND gate (the other case is similar). We denote the subformulas feeding into the top gate as F_{1}, \ldots, F_{m}. Suppose the sizes of F_{1}, \ldots, F_{m} are s_{1}, \ldots, s_{m} respectively, with $s=s_{1}+\ldots+s_{m}$. By the induction's hypothesis, each subformula F_{i} is computable by a $\left[n, s_{i}, w\right]$ MBP.

To construct B that computes F, we can concatenate the B_{i}-s and add another "sudden reject" level. ${ }^{3}$ The starting vertex of B is the starting vertex of B_{1}. Whenever a computation of some B_{i}, for some $i<m$, reaches its final layer, we rewire the edges in that layer to either the sudden reject level, if B_{i} did not reach an accepting vertex, or to the starting vertex of B_{i+1}. The accept vertices of B are the accept vertices of B_{m}.

The fact that B computes f readily follows, and the bound on the length of B is indeed at most $s_{1}+\ldots+s_{m}=s$. To argue that monotonicity is preserved, simply observe that the rewiring preserves the order: In the AND case, accept vertices are rewired to the next starting vertex, which is indeed above the sudden reject level, to which all reject vertices are rewired. The OR case is similar.

The result naturally extends to $A C^{0}$ circuits, due to the standard transformation expressing a size s depth $w \mathrm{AC}^{0}$ circuit as a size s^{w} depth $w \mathrm{AC}^{0}$ formula.
Corollary 4.2. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a function computable by a depth- $w \mathrm{AC}^{0}$ circuit of size s. Then, f can also be computed by an $\left[n, s^{w}, w+1\right]$ MBP.

Next, we give the other direction of Theorem 1.3. It is enough to consider ROBPs (and we will later justify that).
Lemma 4.3. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a function computable by a $\left.n, w\right]$ read-once MBP. Then, f can also be computed by a circuit of depth $O(w)$ and size $O\left(w^{4} n^{3}\right)$.

Proof: We prove this lemma by induction on the width. For $w=1$ the claim is trivial. Fix some $w>1$ and let B be an $[n, w]$ read-once MBP. We define two BPs, B^{u} and B^{ℓ}, each of width $w-1$, as follows.

- For B^{u}, we remove the first level of vertices (that is, removing state number 1 in each layer) and reroute edges that go into state 1 to state 2 . Formally, each transition $U_{i}^{b}:\{2, \ldots, w\} \rightarrow\{2, \ldots, w\}$ of B^{u} is defined by $U_{i}^{b}(x)=\max \left\{E_{i}^{b}(x), 2\right\}$, for $E_{i}^{b}:[w] \rightarrow[w]$ being the corresponding transition of B.

[^3]- Similarly, for B^{ℓ}, we remove the last level of vertices: Each transition $L_{i}^{b}:[w-1] \rightarrow$ $[w-1]$ of B^{ℓ} is defined by $L_{i}^{b}(x)=\min \left\{E_{i}^{b}(x), w-1\right\}$.

Notice that these transformations preserve monotonicity. Roughly speaking, our goal is to first argue that at each transition, B acts the same as either B^{u} or B^{ℓ}, depending on whether B last reached the state 1 or the state w. Then, we show that we can efficiently detect, given any layer j and an input x, if indeed $B(x)$ passed through the state 1 or through the state w before reaching the layer j.

Let s_{0} be the starting vertex of B, and denote $u_{0}=\max \left\{s_{0}, 2\right\}$ and $\ell_{0}=\min \left\{s_{0}, w-1\right\}$. Given some input $x \in\{0,1\}^{n}$, we consider the computation path of all three BPs on x. Towards this end, denote by $s_{1}, \ldots, s_{n} \in[w]$ the states that x traverses in $B, u_{1}, \ldots, u_{n} \in$ $\{2, \ldots, w\}$ the states that x traverses in B^{u} and $\ell_{1}, \ldots, \ell_{n} \in[w-1]$ the states that x traverses in B^{ℓ}. First, observe that:

Claim 4.4. For every $i \in[n], u_{i} \geq s_{i} \geq \ell_{i}$.
The above claim readily follows by induction on i, using the monotonicity property. Next, we argue:

Claim 4.5. For every $i \in[n]$, let $j \leq i$ be the largest integer such that $s_{j} \in\{1, w\}$, if it exists. Thus, if $s_{j}=w$ then $u_{i}=s_{i}$ and if $s_{j}=1$ then $\ell_{i}=s_{i}$.

Proof: Fix some $i \in[n]$ and assume that $j \leq i$ is the largest integer such that $s_{j} \in\{1, w\}$, say $s_{j}=1$. By Claim 4.4, we must also have $\ell_{j}=1$. Then by induction, we also have $\ell_{j^{\prime}}=s_{j^{\prime}}$ for all $j^{\prime}=j, j+1, \ldots, i$, because the only way in which the transition in B^{ℓ} and B can differ is if $s_{j^{\prime}}=w$, which by assumption does not occur in this interval.

Hence, for each layer i, we know that either $s_{i}=u_{i}$ or $s_{i}=\ell_{i}$, and we know which is the case by looking at the last place the original path reached either 1 or w.

By our induction's hypothesis, for every $i \in[n]$ and $s \in\{2, \ldots, w\}$ there exists a circuit $C_{i, s}^{u}:\{0,1\}^{n} \rightarrow\{0,1\}$ such that $C_{i, s}^{u}(x)=1$ if and only if B^{u} reached the state s after reading x_{1}, \ldots, x_{i}. Similarly, there exists a circuit $C_{i, s}^{\ell}$ that detects whether B^{ℓ} reached $s \in[w-1]$ in the i-th layer upon traversing with x. Using these circuits, for each $s \in[w]$, we will construct a circuit $C_{s}(x)$ that determined whether $s_{n}=s$.

The construction goes as follows. The circuit will determine the last j where there was a "switch" between the two cases of Claim 4.5, i.e., the smallest $j \in[n]$ such that $s_{j} \in\{1, w\}$ and for every $k \geq j$ it holds that $s_{k} \in\{2, \ldots, w-1\} \cup\left\{s_{j}\right\}$. Observe that if $s_{j}=1$ then $s_{j-1}=u_{j-1}$, so $E_{j}^{x_{j}}\left(u_{j-1}\right)=1$. Afterward, we keep following B^{ℓ}, i.e., $s_{k}=\ell_{k}$ and so $E_{k+1}^{x_{k+1}}\left(\ell_{k}\right) \neq w$ for all $k \geq j$. The converse also holds. Namely, $E_{j}^{x_{j}}\left(u_{j-1}\right)=1$ implies that $s_{j}=\ell_{j}=1$ (since $\ell_{j-1} \leq u_{j-1}$ and the program is monotone) and $E_{k+1}^{x_{k+1}}\left(\ell_{k}\right) \neq w$ for all $k \geq j$ implies that indeed $s_{k+1}=\ell_{k+1}$. Thus, the predicate

$$
P_{L}(x)=\left(\bigvee_{j \in[n]}\left(\left(E_{j}^{x_{j}}\left(u_{j-1}\right)=1\right) \wedge \bigwedge_{k \geq j}\left(E_{k+1}^{x_{k+1}}\left(\ell_{k}\right) \neq w\right)\right)\right) \vee\left(u_{1} \neq w \wedge \bigwedge_{k \geq 1} E_{k}^{x_{k}}\left(\ell_{k}\right) \neq w\right)
$$

evaluates to 1 if and only if the largest integer $j \leq n$ such that $s_{j} \in\{1, w\}$ has $s_{j}=1$, or s_{j} never equals w (and hence $s_{n}=\ell_{n}$). Following the same reasoning,

$$
P_{U}(x)=\left(\bigvee_{j \in[n]}\left(\left(E_{j}^{x_{j}}\left(\ell_{j-1}\right)=w\right) \wedge \bigwedge_{k \geq j}\left(E_{k+1}^{x_{k+1}}\left(u_{k}\right) \neq 1\right)\right)\right) \vee\left(\ell_{1} \neq 1 \bigwedge_{k \geq 1} E_{k}^{x_{k}}\left(u_{k}\right) \neq 1\right)
$$

evaluates to 1 if and only if the largest integer $j \leq n$ such that $s_{j} \in\{1, w\}$ has $s_{j}=w$, or s_{j} never equals 1 (and hence $s_{n}=u_{n}$).

We now wish to compute $P_{L}:\{0,1\}^{n} \rightarrow\{0,1\}$ by a shallow circuit. Determining u_{j-1} can be done by querying $C_{j-1, s}^{u}(x)$ for each $s \in\{2, \ldots, w\}$. Similarly, determining ℓ_{k} can be done by querying $C_{k, s}^{\ell}(x)$ for each $s \in[w-1]$. The functions E_{j}^{b} and E_{k+1}^{b}, for each $b \in\{0,1\}$, are determined solely by B and can be hardwired. Letting size $(w-1)$ and depth $(w-1)$ be the size and depth upper bound for the circuits guaranteed to us by the hypothesis, we can bound size $\left(P_{L}\right)$ by $2 n w \cdot \operatorname{size}(w-1)+O\left(w n^{2}\right)$ and depth $\left(P_{L}\right)$ by depth $(w-1)+O(1)$. The same bounds for $P_{U}:\{0,1\}^{n} \rightarrow\{0,1\}$ also hold.

Equipped with circuits C_{L} and C_{U} computing P_{L} and P_{U} respectively, we are ready to compute B. Indeed, all that is left is to determine whether $s_{n}=\ell_{n}$ or $s_{n}=u_{n}$ and invoke the relevant circuit from the previous level. This incurs additional constant depth and $O(w n)$ size. Overall, the size and depth of C satisfies the recurrence relations size $(w)=$ $O(n w) \cdot \operatorname{size}(w-1)+O\left(w n^{2}\right)$ and depth $(w)=\operatorname{depth}(w-1)+O(1)$. As size $(1)=O(n)$ and depth $(1)=O(1)$, this gives us depth $O(w)$ and size $w^{O(w)} \cdot n^{w}$.

We can improve the size of the circuit by a dynamic programming approach. For $1 \leq a \leq b \leq w$, let $B^{[a, b]}$ be the ROBP in which we keep only the levels a, \ldots, b and rewire edges accordingly. Namely, we replace each $E_{i}^{\sigma}(x)$ with $\max \left\{a, \min \left\{b, E_{i}^{\sigma}(x)\right\}\right\}$. Observe that for when $a<b,\left(B^{[a, b]}\right)^{\ell}=B^{[a, b-1]}$ and $\left(B^{[a, b]}\right)^{u}=B^{[a+1, b]}$.

For every $1 \leq a \leq b \leq w$ and $s \in\{a, \ldots, b\}$, let $X_{i}^{a, b, s}$ be the indicator which is 1 if and only if upon reading the first i bits of x, the program $B^{[a, b]}$ reached the state s. Note that there are at most $w^{3} \cdot n$ such indicators overall.

Fix some integer $\Delta \in\{0, \ldots, w-1\}$. We can compute the values

$$
\mathcal{I}_{\Delta}=\left\{X_{i}^{a, a+\Delta, s}: a \in[w-\Delta], s \in[a, a+\Delta], i \in[n]\right\}
$$

in the following manner. For $\Delta=0$, all indicators are true. For $\Delta \geq 1$, assume we already computed the values

$$
\mathcal{I}_{\Delta-1}=\left\{X_{i}^{a, a+\Delta-1, s}: a \in[w-(\Delta-1)], s \in[a, a+\Delta-1], i \in[n]\right\} .
$$

Thus, to compute a single indicator from \mathcal{I}_{Δ} given $\mathcal{I}_{\Delta-1}$, we can use the above recurrence relations, as each ℓ_{i} and u_{i} correspond to some indicator from $\mathcal{I}_{\Delta-1}$. This takes $O\left(w n^{2}\right)$ size and $O(1)$ depth. Computing the entire \mathcal{I}_{Δ} thus takes $O\left(w^{3} n^{3}\right)$ size and $O(1)$ depth. Overall, computing

Given an $[n, s, w]$ MBP, we can replace recurring variables with dummy ones, construct the corresponding circuits, and project the original variables back. We therefore get the following corollary.
Corollary 4.6. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a function computable by an $[n, s, w]$ MBP for $s \geq n$. Then, f can also be computed by a circuit of depth $O(w)$ and size $O\left(w^{4} s^{3}\right)$.

4.1 Read-once MBPs and Read-once $A C^{0}$

We prove Item 2 of Proposition 1.4, giving a family of functions computable by read-once MBPs but not by read-once formulas. Our proof also gives a new characterization of read-once formulas.

Proposition 1.4 (Item 2). For every $n \geq 3$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ computable by a width 3 read-once MBP, but not computable by any read-once De Morgan formula (regardless of depth).

Proof: We first give a property of functions computable by read-once formulas. Given $g:\{0,1\}^{m} \rightarrow\{0,1\}$ and $b \in\{0,1\}$, let $W_{b}(g) \in\{0, \ldots, m\}$ denote the size of the smallest set of coordinates $I \subseteq[m]$ for which there exists a $z \in\{0,1\}^{[I \mid}$ such that for every $x \in$ $\{0,1\}^{m}$ it holds that $x_{I}=z$ implies $g(x)=b$.

Lemma 4.7. Let $g:\{0,1\}^{n} \rightarrow\{0,1\}$ be a function computable by a read-once De Morgan formula. Then, $W_{0}(g) \cdot W_{1}(g) \leq n$.

Roughly speaking, this lemma says that for a function computable by a read-once formula, we can either find a short witness for it being 0 , or a short witness for it being 1 . In particular, it cannot be highly resilient.

Proof: We prove the lemma by induction on the formula's depth d. For $d=1, g$ is either an AND of literals or an OR of literals. For the AND function, W_{0} (AND) $=1$ and $W_{1}(\mathrm{AND})=n$. For the OR function, $W_{0}(\mathrm{OR})=n$ and $W_{1}(\mathrm{OR})=1$. Thus, indeed, $W_{0}(g) \cdot W_{1}(g) \leq n$.

Assume our lemma holds for formulas of depth $d \geq 1$, and let g be some formula of depth $d+1$, say with an AND top gate, so $g=\operatorname{AND}\left(f_{1}, \ldots, f_{k}\right)$, each $f_{i}:\{0,1\}^{n_{i}} \rightarrow\{0,1\}$ is a depth- d formula. In this case, $W_{0}(g)=\min _{j \in[k]} W_{0}\left(f_{j}\right)$ and $W_{1}(g)=\sum_{i \in[k]} W_{1}\left(f_{i}\right)$. By our induction's hypothesis, we get that

$$
W_{0}(g) \cdot W_{1}(g)=\left(\min _{j \in[k]} W_{0}\left(f_{j}\right)\right) \cdot \sum_{i \in[k]} W_{1}\left(f_{i}\right) \leq \sum_{i \in[k]} W_{0}\left(f_{i}\right) \cdot W_{1}\left(f_{i}\right) \leq \sum_{i \in[k]} n_{i}=n .
$$

The case of an OR top gate is analogous.
Now, our function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ will simply be the $\operatorname{Thr}_{2}^{n}$ function, that returns 1 if and only if the Hamming weight of the input string $x \in\{0,1\}^{n}$ is at least 2 . There, $W_{1}(f)=2$ and $W_{0}(f)=n-1$, so it is not computable by read-once formulas, however f is computable by a simple width-3 read-once MBP.

We note that we can also construct balanced functions f separating read-once MBPs from read-once De Morgan formulas. In particular, $f=\mathrm{AND}_{m} \circ \operatorname{Thr}_{2}^{w}$ for $m=O\left(2^{w} / w\right)$ (which resembles the Tribes function) has this property. More generally, one can consider, say, Thr_{2}, as a "gadget" to construct richer families of read-once MBPs not computable by read-once formulas.

References

[AW89] Miklos Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant depth circuits. Advances in Computing Research, 5(199-222):1, 1989.
[Bar89] David A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in NC^{1}. Journal of Computer and System Sciences, 38(1):150-164, 1989.
[BCG20] Mark Braverman, Gil Cohen, and Sumegha Garg. Pseudorandom pseudodistributions with near-optimal error for read-once branching programs. SIAM Journal on Computing, 49(5):STOC18-242-STOC18-299, 2020.
[BRRY14] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators for regular branching programs. SIAM Journal on Computing, 43(3):973-986, 2014.
[BV10] J. Brody and E. Verbin. The coin problem and pseudorandomness for branching programs. In Proceedings of the 51st IEEE Annual Symposium on Foundations of Computer Science (FOCS 2012), pages 30-39, Oct 2010.
[CHRT18] Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved pseudorandomness for unordered branching programs through local monotonicity. In Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC 2018), pages 363-375. ACM, 2018.
[CRSW13] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and bins: Smaller hash families and faster evaluation. SIAM Journal on Computing, 42(3):1030-1050, 2013.
[CSV15] Sitan Chen, Thomas Steinke, and Salil Vadhan. Pseudorandomness for readonce, constant-depth circuits. arXiv preprint arXiv:1504.04675, 2015.
[De11] Anindya De. Pseudorandomness for permutation and regular branching programs. In Proceedings of the 26th Annual IEEE 26th Annual Conference on Computational Complexity (CCC 2011), pages 221-231. IEEE, 2011.
[DHH19] Dean Doron, Pooya Hatami, and William M. Hoza. Near-optimal pseudorandom generators for constant-depth read-once formulas. In Proceedings of the 34th Computational Complexity Conference (CCC 2019). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2019.
[DHH20] Dean Doron, Pooya Hatami, and William M. Hoza. Log-seed pseudorandom generators via iterated restrictions. In Proceedings of the 35th Computational Complexity Conference (CCC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.
[FK18] Michael A. Forbes and Zander Kelley. Pseudorandom generators for readonce branching programs, in any order. In Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2018). IEEE, 2018.
[GMR ${ }^{+}$12] Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan. Better pseudorandom generators from milder pseudorandom restrictions. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2012), pages 120-129. IEEE, 2012.
[Gol11] Oded Goldreich. Three XOR-lemmas - an exposition. In Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation, pages 248-272. Springer, 2011.
[HHR11] Iftach Haitner, Danny Harnik, and Omer Reingold. On the power of the randomized iterate. SIAM Journal on Computing, 40(6):1486-1528, 2011.
[HLV18] Elad Haramaty, Chin Ho Lee, and Emanuele Viola. Bounded independence plus noise fools products. SIAM Journal on Computing, 47(2):493-523, 2018.
[HPV21] William M. Hoza, Edward Pyne, and Salil P. Vadhan. Pseudorandom generators for unbounded-width permutation branching programs. In James R. Lee, editor, 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume 185 of LIPIcs, pages 7:17:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
[HVV06] Alexander Healy, Salil Vadhan, and Emanuele Viola. Using nondeterminism to amplify hardness. SIAM Journal on Computing, 35(4):903-931, 2006.
[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation. Journal of the ACM, 53(3):307-323, 2006.
[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network algorithms. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC 1994), pages 356-364. ACM, 1994.
[KLW10] Adam R. Klivans, Homin Lee, and Andrew Wan. Mansour's conjecture is true for random DNF formulas. In Proceedings of the 23rd Annual Conference on Learning Theory (COLT 2010), 2010.
[KNP11] Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom generators for group products. In Proceedings of the 43 rd Annual ACM Symposium on Theory of Computing (STOC 2011), pages 263-272. ACM, New York, 2011.
[Lee19] Chin Ho Lee. Fourier bounds and pseudorandom generators for product tests. In Proceedings of the 34th Computational Complexity Conference (CCC 2019), pages 7:1-7:25. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.
[LV17] Chin Ho Lee and Emanuele Viola. More on bounded independence plus noise: Pseudorandom generators for read-once polynomials. In Electronic Colloquium on Computational Complexity (ECCC), volume 24, page 167, 2017.
[LVW93] Michael Luby, Boban Velickovic, and Avi Wigderson. Deterministic approximate counting of depth-2 circuits. In Proceedings of the 2nd Annual Israel Symposium on Theory and Computing Systems (ISTCS 1993), pages 18-24. IEEE, 1993.
[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3 branching programs. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC 2019), pages 626-637. ACM, New York, 2019.
[MZ13] Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold functions. SIAM Journal on Computing, 42(3):1275-1301, 2013.
[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica, 12(4):449-461, 1992.
[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applications. SIAM Journal on Computing, 22(4):838-856, 1993.
[RSV13] Omer Reingold, Thomas Steinke, and Salil Vadhan. Pseudorandomness for regular branching programs via Fourier analysis. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 655670. Springer, 2013.
[Siv02] D Sivakumar. Algorithmic derandomization via complexity theory. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC 2002), pages 619-626. ACM, 2002.
[Ste12] Thomas Steinke. Pseudorandomness for permutation branching programs without the group theory. Technical Report TR12-083, Electronic Colloquium on Computational Complexity (ECCC), July 2012.
[Ste13] John Steinberger. The distinguishability of product distributions by read-once branching programs. In Proceedings of the 28th IEEE Conference on Computational Complexity (CCC 2013), pages 248-254. IEEE, 2013.
[SVW17] Thomas Steinke, Salil Vadhan, and Andrew Wan. Pseudorandomness and Fourier-growth bounds for width-3 branching programs. Theory of Computing, 13(1):1-50, 2017.
[Tzu09] Yoav Tzur. Notions of weak pseudorandomness and GF $\left(2^{n}\right)$-polynomials. Master's thesis, Weizmann Institute of Science, 2009.

[^0]: *ddoron@stanford.edu. Supported by NSF award CCF-1763311 and Simons Foundation investigators award 689988.
 ${ }^{\dagger}$ raghum@cs.ucla. edu. Supported by NSF Career award CCF-1553605 and NSF award CCF-2007682.
 ${ }^{\ddagger}$ reingold@stanford.edu. Supported by Supported by NSF award CCF-1763311 and Simons Foundation investigators award 689988.
 §atal@berkeley.edu.
 ${ }^{\mathbb{I}}$ salil_vadhan@harvard.edu. Supported by NSF grant CCF-1763299 and a Simons Investigator Award.

[^1]: ${ }^{1}$ In fact, for the sake of constructing PRGs, we can remove this requirement by replacing ε with ε / w.

[^2]: ${ }^{2}$ Both inclusions are strict, since there are functions in AC^{0} that cannot be computed by circuits of size smaller than n^{4}, and Theorem 1.3 shows that any constant-width monontone ROBPs can be computed by $O\left(n^{3}\right)$ size AC^{0} circuits.

[^3]: ${ }^{3}$ In a sudden reject level, each vertex transitions to the same level with both its edges, and the last vertex in that level is a reject vertex. When the top gate is an OR gate, we would replace the sudden reject level with a sudden accept level, and make the last vertex of the sudden accept level an accepting vertex.

