
Monotone Branching Programs:
Pseudorandomness and Circuit Complexity

Dean Doron*

Stanford University
Raghu Meka†

UCLA
Omer Reingold‡

Stanford University

Avishay Tal§

UC Berkeley
Salil Vadhan¶

Harvard University

Abstract

We study monotone branching programs, wherein the states at each time step can be
ordered so that edges with the same labels never cross each other. Equivalently, for
each fixed input, the transition functions are a monotone function of the state.

We prove that constant-width monotone branching programs of polynomial size
are equivalent in power to AC0 circuits. This complements the celebrated theorem of
Barrington, which states that constant-width branching programs, without the mono-
tonicity constraint, are equivalent in power to NC1 circuits.

Next we turn to read-once monotone branching programs of constant width, which
we note are strictly more powerful than read-once AC0. Our main result is an explicit
pseudorandom generator that ε-fools length n programs with seed length Õ(log(n/ε)).
This extends the families of constant-width read-once branching programs for which
we have an explicit pseudorandom generator with near-logarithmic seed length.

Our pseudorandom generator construction follows Ajtai and Wigderson’s approach
of iterated pseudorandom restrictions [AW89, GMR+12]. We give a randomness-
efficient width-reduction process which allows us to simplify the branching program
after only O(log log n) independent applications of the Forbes–Kelley pseudorandom
restrictions [FK18].

*ddoron@stanford.edu. Supported by NSF award CCF-1763311 and Simons Foundation investigators
award 689988.

†raghum@cs.ucla.edu. Supported by NSF Career award CCF-1553605 and NSF award CCF-2007682.
‡reingold@stanford.edu. Supported by Supported by NSF award CCF-1763311 and Simons Founda-

tion investigators award 689988.
§atal@berkeley.edu.
¶salil vadhan@harvard.edu. Supported by NSF grant CCF-1763299 and a Simons Investigator Award.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 18 (2021)

1 Introduction

Branching programs are a fundamental model in computational complexity, capturing
both space-bounded computation and circuit classes. In this paper, we study a restricted
class of branching programs we call monotone, giving a characterization of their compu-
tational power, and giving a new pseudorandom generator for their read-once version.

1.1 Monotone Branching Programs

First we recall the standard definition of a layered branching program:

Definition 1.1. For w, n, s ∈ N, a (layered) branching program (BP) B on n variables, with
length s and width w, or an [n, s, w] BP, is specified by a start state v0 ∈ [w], a set of accept states
Vacc ⊆ [w], a sequence of variable indices i1, . . . , is ∈ [n], and sequence of transition functions
Ej : {0, 1} × [w]→ [w] for j = 1, . . . , s.

A branching program B as above naturally defines a function B : {0, 1}n → {0, 1}: Start
at the starting state v0, and then for j = 1, . . . , s, read the input bit xij and then transition to
state vj = Ej(xij , vj−1), The branching program accepts (B(x) = 1) if vn ∈ Vacc and rejects
(B(x) = 0) otherwise.

B is a read-once branching program, or an [n,w] ROBP, if s = n and i1, . . . , is is a permuta-
tion of [n]. If this is the identity permutation (i.e. the variables are read in order), then we say B is
an ordered branching program.

A layered branching program B has an associated directed graph. The vertex set has
s + 1 layers of w vertices each. For each j = 1, . . . , s, layer j is labelled with an input
variable, namely xij , and there are two edges, labelled 0 and 1, going from each vertex v
in layer j to vertices layer j + 1, namely Ej(0, v) and Ej(1, v).

We now introduce the model of monotone programs that we consider.

Definition 1.2 (monotone branching program (MBP)). We say a BP B is monotone if for
every j ∈ [s] and σ ∈ {0, 1}, the j-th transition function with input bit restricted to σ, denoted
Eσ
i , Ei(σ, ·) : [w] → [w], is a monotone function according to the standard ordering of [w], i.e.

if v ≥ v′, then Eσ
j (v) ≥ Eσ

j (v′).
That is, put differently, if we draw the layered graph as an w × (s + 1) grid, then whenever

we consider the edges associated with a fixed input x, there are no edges crossing. We will refer to
BPs that are both monotone and read once as read-once MBPs.

It is important to note that this definition only requires monotonicity with respect
to the state of the branching program; MBPs can easily compute functions that are non-
monotone as a function of their input (as we will see below). We remark that the definition
of read-once MBPs as defined here is different from the notion of locally monotone studied
in [CHRT18]. Importantly, the latter property is not preserved under restrictions and
hence is less nice structurally. The read-once definition also coincides with the notion
of monotone ROBPs as defined in [MZ13], if we require all reject states to precede the
accepting ones in the last layer.1 However, the formulation above is more convenient for
us.

1In fact, for the sake of constructing PRGs, we can remove this requirement by replacing ε with ε/w.

1

1.2 Monotone Branching Programs and AC0

Recall Barrington’s celebrated theorem that constant-width branching programs are equiv-
alent in power to NC1 circuits [Bar89]. We show that if we restrict to monotone branching
programs, then they become equivalent in power to the much weaker AC0 circuits. As
far as we know, this is the first characterization of AC0 in terms of a model of branching
programs.

Theorem 1.3 (see Section 4). A sequence of functions fn : {0, 1}n → {0, 1} is in AC0 if and
only if it is computable by a constant-width MBP of polynomial length.

One direction of Theorem 1.3, from an AC0 circuit to an MBP, is a simple induction on
the depth of an AC0 circuit. Specifically, we note that an AND or an OR of several MBPs
of width w can be computed by a MBP of width w + 1, whose length is the sum of the
lengths of the constituent MBPs. The other direction is more involved. The argument
proceeds by induction on the width w of the MBP B. Given an MBP B, we construct an
“upper” MBP Bu by removing the bottom level of B, eliminating state 1 from every layer,
and a “lower” part B`, eliminating state w from every layer, rewiring edges accordingly
in both cases. In a nutshell, we observe that B(x) ∈ [w], the state B arrived upon reading
x, is either Bu(x) or B`(x), depending on the last time B either reached state 1 or state w.
The latter predicate, given the description of B, and constant-depth circuits for Bu(x) and
B`(x) (which we obtain by induction), can too be computed by a constant-depth circuit
of polynomial size. We leave the rest of the details to Section 4.

Next, we turn to read-once MBPs. We prove that these are strictly stronger than read-
once AC0:

Proposition 1.4.

1. If a sequence of functions fn : {0, 1}n → {0, 1} is in read-once AC0, then it can be computed
by constant-width read-once MBP. Moreover, if fn can be computed in depth w read-once
AC0, then it can be computed by width w + 1 read-once MBPs.

2. For every n ≥ 3, there exists a function f : {0, 1}n → {0, 1} computable by a width 3 read-
once MBP, but not computable by any read-once De Morgan formula (regardless of depth).

Item 1 is proven in the same way as the easier direction of Theorem 1.3, noting that if
we start with a read-once AC0 circuit, we end up with a read-once MBP. Item 2 is proven
by showing that simple functions, like checking whether the input contains at least two
ones cannot be computed by a read-once De Morgan formula, but can be computed be
width three MBPs. We give the proof for Item 2 in Section 4.1.

Thus, constant-width read-once MBPs form an intermediate class between read-once
AC0 and AC0.2

2Both inclusions are strict, since there are functions in AC0 that cannot be computed by circuits of size
smaller than n4, and Theorem 1.3 shows that any constant-width monontone ROBPs can be computed by
O(n3) size AC0 circuits.

2

1.3 PRGs for Read-once Monotone Branching Programs

A longstanding quest in complexity theory is to understand the power of randomness in
relation to space complexity. A central challenge in this direction is to construct pseudo-
random generators for read-once branching programs.

In this work we study the question of designing explicit PRGs for small-width ROBPs.

Definition 1.5. Given a class of functions F : {0, 1}n → {0, 1}, a function G : {0, 1}r → {0, 1}n
is a PRG for F with error ε if for any f ∈ F , we have∣∣∣∣ Pr

y∈u{0,1}r
[f(G(y)) = 1]− Pr

x∈u{0,1}n
[f(x) = 1]

∣∣∣∣ ≤ ε.

We call r the seed length of the generator and the generator is explicit if its output can be
computed in polynomial time (in n). We often say G ε-fools F .

Designing pseudorandom generators against ordered ROBPs has received a lot of atten-
tion and is intimately connected to the question of understanding the power of random-
ness vs. space. It has also found a number of applications beyond derandomizing space.
([LVW93, Siv02, HVV06, Ind06, KLW10, HHR11] are just few examples.)

The best known PRGs for ordered ROBPs to date are those of Nisan [Nis92] and
Impagliazzo–Nisan–Wigderson [INW94] which give seed length O(log2 n) when w =
nO(1). However, even for width four and constant error their construction requiring seed
length O(log2 n) is still the best. Improving on this seed length, even for constant width,
has been a longstanding barrier. We do have better PRGs for various special classes of
ROBPs that are independently interesting:

• Braverman, Rao, Raz, and Yehudayoff [BRRY14] construct PRGs with Õ(log n) seed
length for constant-width ordered regular branching programs and ε = 1/ poly(log n).
Regular branching programs are a special class of ROBPs where we require the
structural condition that each vertex has the same in-degree in the underlying lay-
ered graph.

• Starting with the work of Koucký, Nimbhorkar, and Pudlák [KNP11], several works
[De11, Ste12, HPV21] have achieved of a seed length of O(log n) (with no log log n
factors) for the further restricted model of ordered permutation branching programs. In
these, we require that at each layer j, and for each symbol σ, the transition function
Eσ
i is a permutation of w.

• Meka, Reingold, and Tal [MRT19] construct PRGs with Õ(log n) seed length for
width three ordered ROBPs and ε = 1/ poly(log n), as well as for unordered ones
with ε = 1/ poly(log log n).

• [FK18] gave a PRG that is significantly different from that of [Nis92, INW94] and
achieves seed length O(log3 n) for polynomial width and O(log2 n) for constant-
width ROBPs (again, even unordered).

Our main result is an explicit PRG with seed length Õ(log(n/ε)) for constant-width
monotone ROBPs.

3

Theorem 1.6 (see Section 3.2). For any positive integers n, w ≤ n, and ε ∈ (0, 1/2), there is an
explicit PRG that ε-fools monotone [n,w] ROBPs (even unordered ones) with seed length

O
(
w2 log(n/ε) · (log log(n/ε))2

)
.

We believe that fooling read-once MBPs is an important (and clearly necessary) step
toward breaking the O(log2 n)-barrier for constant-width ROBPs. The class of (ordered)
branching programs that we understand best from the perspective of pseudorandom-
ness is that of permutation branching programs, thanks to the aforementioned works of
[BRRY14, KNP11, De11, Ste12, HPV21], all of which obtain their results by showing that
the Impagliazzo–Nisan–Wigderson [INW94] pseudorandom generator can be analyzed
better for such programs. Monotone BPs can be seen as the extreme opposite of per-
mutation BPs: the only monotone function E : [w] → [w] that is also a permutation is the
identity. Thus the only layers a monotone BP can share with a permutation BP are redun-
dant (can be eliminated from the branching program without changing its functionality).
Furthermore, in stark contrast to the case of ordered permutation branching programs, it
is known that instantiations of the classical constructions of [Nis92, INW94] with Õ(log n)
seed length provably do not work against read-once MBPs.

Technically, our arguments build on the paradigm of using random restrictions for
fooling ROBPs as studied in the works of [GMR+12, RSV13, SVW17, CSV15, HLV18,
LV17, CHRT18, FK18, MRT19, Lee19, DHH19, DHH20]. This gives more evidence that
this approach can perhaps lead to Õ(log n) seed length for constant-width ROBPs. Our
analysis introduces the idea of exploiting width reduction combined with alphabet reduction
that could be useful for the general problem.

By Proposition 1.4, the PRG of Theorem 1.6 is also a PRG for read-once De Morgan
formulas. For read-once AC0, corresponding to width w = O(1), it achieves a better de-
pendence on the width w than the previous generator for read-once AC0, which has a seed
of length log(n/ε) ·O(w log log(n/ε))2w+2 for depth-w formulas [DHH19] (our dependence
on w is w2). For read-once formulas of arbitrary depth, the best PRG prior to our work
was the PRG of Forbes and Kelley [FK18], which has seed length O(log(n/ε) log2 n). Thus,
the PRG of Theorem 1.6 attains better seed length for read-once formulas that have depth
up to w = o

(
logn

log log(n/ε)

)
.

We note that constructing PRGs that are not sensitive to the ordering of the bits in
which the input is read is a natural question. First, fooling read-once AC0, for example, is
inherently an unordered task. But also, PRGs for ROBPs that follows the “classical” and
successful seed recycling approach due to Nisan (e.g., [Nis92, INW94, KNP11, BRRY14,
BCG20]) heavily depends on the ordering of the bits. In fact, Tzur [Tzu09] proved that
Nisan’s PRG can in fact be distinguished from uniform by an unordered constant width
branching program. Thus, the hope is that PRGs that are not sensitive to the ordering will
help make progress on the problem of fooling ordered ROBPs with seed length o(log2 n).

1.4 PRGs Fooling Read-once MBPs

We proceed by giving an overview of the construction of our PRG and of the techniques
we use.

4

1.4.1 The Iterated Restrictions Approach

We construct our PRG using the iterated pseudorandom restrictions approach, pioneered by
Ajtai and Wigderson [AW89] and further developed by Gopalan et al. [GMR+12]. That is,
we pseudorandomly assign values to a pseudorandomly chosen subset of the variables,
and then repeat the process until we assigned values to all variables. Intuitively, de-
signing a pseudorandom restriction for some function f is easier than fooling f outright,
because designing a pseudorandom restriction amounts to fooling a “smoothed out” ver-
sion of f [GMR+12], or equivalently, designing a PRG that would fool f after some noise
was added [HLV18]. Previous works that used this approach include PRGs for unordered
ROBPs [RSV13, CHRT18, FK18], PRGs for width-3 ROBPs [GMR+12, SVW17, MRT19],
PRGs for bounded-depth read-once formulas [GMR+12, CSV15, DHH19, DHH20], and
PRGs for arbitrary-order product tests [HLV18, LV17, Lee19].

Following the iterated restrictions approach paradigm, we need our pseudorandom
distribution X over restrictions to satisfy two key properties. The first property is that the
restriction should approximately preserve the expectation of the function. i.e., in expectation
overX , the restricted function f |X should have approximately the same bias as f itself, i.e.
EX [EU [f |X(U)]] ≈ EU [f(U)], where U denotes the uniform distribution on the appropriate
number of bits. This feature ensures that after sampling the restriction X , our remaining
task is simply to fool f |X . The second property is the simplification property. That is, we
want that the restricted function, for a typical restriction, should be in a sense simpler
than f itself. Clearly, simplifying f would make it easier to fool.

To achieve the first property of preserving the expectation, we follow Forbes and Kel-
ley [FK18], who constructed a simple pseudorandom distribution over restrictions that
approximately preserves the expectation of any constant-width ROBP. In the Forbes–
Kelley distribution, we determine which coordinates stay alive in an almost k-wise in-
dependent manner, and sample the fixed coordinates using a small-bias space. This dis-
tribution, per a single restriction, can be sampled using Õ(log(n/ε)) uniform bits. Next,
we proceed to discuss how to achieve the simplification property.

1.4.2 Iterative Width Reduction

In our setting, we design our restrictions in a way that fits nicely with the [FK18] distri-
bution. Thus, the remaining challenge is indeed to ensure that such restrictions simplify
constant width monotone ROBPs. In [FK18], the measure of complexity was simply the
number of remaining unset variables. That is, Forbes and Kelley argued that after apply-
ing O(log n) independent pseudorandom restrictions, with high probability, all variables
are set, and hence there is nothing left to fool. Such an analysis gives seed length of
Õ(log(n/ε) · log n), and recent works used more sophisticated measures of complexity to
show that for more restricted classes of bounded width ROBPs, one can reach a function
which is simple enough after only O(log log n) independent pseudorandom restrictions
[GMR+12, MRT19, DHH19, DHH20]. In this work, we continue this line of research, and
show that afterO(log log n) iterations, roughly speaking, the width of the ROBP decreases
by 1.

Since the construction and analysis of PRG will not depend on the ordering of the in-

5

put bits, for simplicity we will describe it here assuming that the monotone ROBP B is
ordered (to avoid the indexing ij of input variables). Before getting to the construction,
we highlight the key concept of colliding layers in a branching program, which was also
paramount in [BV10, Ste13, SVW17, CHRT18, MRT19]. We say that a BP layer i is a col-
lision one, if there exist two edges with the same label σ that are mapped to the same
vertex, i.e. Eσ

i is not a permutation. We say a collision is realized if a restriction fixes xi
to σ, and thus effectively introduces a layer with smaller width. The property of mono-
tone BPs we use is that every non-identity layer is a collision one, and crucially, that this
property is preserved under restrictions.

Another technical, yet powerful, component of our analysis is treating a branching
program with edges labeled 0 and 1, i.e., over the alphabet {0, 1}, as a branching program
over a much larger alphabet. This allows us to consider the alphabet size of a smaller-
width BP as a progress measure, as we now discuss.

Towards describing our iterative simplifying process, express our ROBPB, over {0, 1},
as a branching program over Σ = {0, 1}` in the straightforward way, where ` will start
out as O(log(n/ε)) and eventually will be reduced to O(log log(n/ε)). Each “layer” is now
a function from Σ × [w] to [w]. Initially, moving to a larger alphabet only makes our task
more difficult, but the generality will be useful as we induct on the width below (i.e. even
if we start out with a width w program with alphabet {0, 1}, the argument below will
force us to handle width w − 1 programs having alphabet {0, 1}O(log(n/ε)).

We iteratively apply the following two observations.

1. Realizing a collision. After a suitable pseudorandom restriction X1, in every se-
quence of exp(O(`)) · log(n/ε) = exp(O(`)) collision layers, we will have a collision
in one of these layers. As each layer in a read-once MBP is either an identity layer or
a collision layer, and this remains true also after transitioning to a larger alphabet,
we can deduce that after X1 every C` consecutive nontrivial layers contains a layer
of width at most w − 1, for a sufficiently large constant C.

2. Alphabet reduction. After a suitable pseudorandom restriction X2, up to a few
“unruly” layers, we can shrink the alphabet size ofB so that all layers are effectively
over {0, 1}`/2. Specifically, we can assume that in every sequence of C` consecutive
layers of alphabet size B, all but O(log(n/ε)) of them will have their alphabet size
reduced to {0, 1}`/2.

BothX1 andX2 will consist of almost k-wise independent distributions on {0, 1, ?}where
? represents the bits not assigned by the restriction and we take X1 to have ?-probability
1/2 and X2 to have a smaller, yet still constant, ?-probability.

Equipped with the above two observations, aiming at reducing the width ofB, we ap-
ply, independently, the above X1 and X2 for t = O(log log(n/ε)) iterations. After the first
application of X1, we can write B as B = B1 ◦ . . . ◦Br, each Bi is of length at most C` over
an `-bit alphabet, starting and ending in a layer of widthw−1. Then the first application of
X2 will reduce the alphabet of each of theBi-s to consist of `/2 bits, except for O(log(n/ε))
unruly layers within each Bi. The second application of X1 will now create collisions ev-
ery C`/2 non-unruly layers, refining the program further into B = B′1 ◦ · · ·B′r′ , where each
B′i is of length at most C`/2 over an `/2-bit alphabet (except forO(log(n/ε)) unruly layers),

6

starting and ending with a layer of width w−1. The second of application of X2 will then
reduce the alphabet size of eachB′i to at most `/4 except forO(log(n/ε)) additional unruly
layers within each B′i. In general, each iteration reduces the distance between consecutive
layers of width w − 1 and and reduces the alphabet size, except for increasing the number
of unruly layers by O(log(n/ε)) within each interval. Finally after t = O(log log(n/ε)) it-
erations, we will have an alphabet where each symbol consists of `∗ = O(log log(n/ε))
bits, so the distance between width w − 1 layers is at most C`∗ = poly(log(n/ε)). Even
including the unruly layers, we can now view our as a width w − 1 read-once MBP over
Σ′ = {0, 1}poly(log(n/ε)).

Before we can repeat the above process and reduce the width from w− 1 to w− 2, etc.,
we need to reduce Σ′ back to Σ = {0, 1}O(log(n/ε)). We can achieve this by an additional
alphabet reduction using an almost k-wise independent distribution with ?-probability
1/ poly log(n/ε) suffices. The unruly layers in this reduction are the reason that we cannot
reduce our alphabet size below {0, 1}O(log(n/ε)).

Recall that due to [FK18], we can set the above restrictions to preserve the expectation
of our original B, up to a small error. Hence, with seed of length Õ(log(n/ε)) we can both
preserve the expectation and reduce the width by 1. Applying this w− 1 times, with high
probability our program will be very simple — a function depending on only O(log(n/ε))
bits (i.e. a junta), which is fooled by an almostO(log(n/ε))-wise independent distribution.

All in all, our construction consists of commonly used primitives for PRGs: pseudo-
random restrictions in which both the choice of live variables and the the choice of fixed
coordinates are sampled from an almost k-wise independent distributions, with varying
parameters. The analysis of iterative width reduction via resorting to larger alphabets is
new, and we believe can be of use for designing PRGs for other models of computation.
Naturally, there are some additional subtleties in the analysis and the choice of parame-
ters, which we leave to the complete analysis in Section 3.

2 Preliminaries

We denote by Un the uniform distribution over {0, 1}n. Suppose C is a class of functions
in {0, 1}n → R and G is a distribution over {0, 1}n. We say that C ε-fools C if for every
f ∈ C it holds that |E[f(G)]− E[f(Un)]| ≤ ε. Recall that a PRG ε-fooling C is a function
G : {0, 1}s → {0, 1}n such that G(Us) ε-fools C. As a shorthand, we often write E[f] to
denote E[f(Un)], and omit the subscript n when the number of input bits is clear from
context.

2.1 Branching Programs

We extend the definition of branching programs from Definition 1.1 to large alphabets.
We do so by grouping together at most ` consecutive bits in a single edge-layer of the
program. The main advantage in such a transformation is that we can potentially express
a width w program over {0, 1} as a width w′ < w program over {0, 1}`. This will be crucial
in our analysis.

7

We say that a read-once branching program (ROBP) B is a [n,w′]` ROBP if B can be writ-
ten as a directed layered graph with m+ 1 layers (for some m ≤ n) denoted V1, . . . , Vm+1.
Each Vi consists of at most w′ many vertices. Furthermore, there exists a partition of [n] to
disjoint subsets S1, . . . , Sm ⊆ [n] of size at most ` each, and between every consecutive lay-
ers of vertices Vi and Vi+1 there exists a set of directed edges such that any vertex in Vi has
2|Si| edges going towards Vi+1. We can treat the the i-th layer of edges as a transition func-
tion Ei : {0, 1}Si × [w′]→ [w′] between Vi and Vi+1. Namely, for each σ ∈ {0, 1}Si we have
the function Eσ

i , Ei(σ, ·) : [w] → [w] that is defined in the natural way by following the
edges labeled σ from Vi to Vi+1. Such a program naturally describes a read-once compu-
tation on x ∈ {0, 1}n, where in the i-th step we follow the edge marked with xSi

∈ {0, 1}Si

from a vertex in Vi to a vertex in Vi+1. We often denote ` as the alphabet length of B and 2`

as the alphabet size of B.
We say that an [n,w′]` ROBP is monotone if for every i ∈ [m], its i-th layer Ei satisfies

the following. For any σ ∈ {0, 1}Si and distinct x1, x2 ∈ [w′], x1 ≥ x2 implies Eσ
i (x1) ≥

Eσ
i (x2). We say Ei is an identity layer if for any σ ∈ {0, 1}Si it holds that Eσ

i is the identity
function. We say that Ei is a collision layer if there exists σ ∈ {0, 1}Si such that Eσ

i contains
a collision, i.e., there exist distinct x1, x2 ∈ [w′] such that Eσ

i (x1) = Eσ
i (x2). We will make

use of the following key observation.

Claim 2.1. In a read-once MBP, every layer is either an identity layer or a collision layer.

As noted above, our techniques will also hold for the unordered setting, so we may
assume that the bits of x are permuted by some permutation π ∈ Sn, i.e., the i-th layer of
the program follow the edge marked by xπ(i). Since we are in the unordered setting we
can assume without loss of generality that there are no identity layers in the program, by
skipping these layers.

Observe that if an (unordered) [n,w] ROBP B over {0, 1} has m+ 1 of its n+ 1 vertex-
layers with width at most w′ and of distance at most ` apart, then we can write B as a
[n,w′]` ROBP B′. Furthermore, if B is monotone so is B′.

2.2 k-Wise and δ-Biased Distributions

We say that a random variable Y ∼ {0, 1}n is δ-biased if it δ-fools all parity functions.
Namely, if for any nonempty I ⊆ [n] it holds that∣∣∣∣∣Pr

[⊕
i∈I

Yi = 1

]
− 1

2

∣∣∣∣∣ ≤ δ.

There are explicit constructions of δ-biased distributions over {0, 1}n that can be sampled
efficiently with O(log n+ log 1

δ
) truly random bits [NN93].

Lemma 2.2 (Vazirani’s XOR Lemma, See e.g., [Gol11, Section 1]). Let Y ∼ {0, 1}n be a
δ-biased distribution, and let S ⊆ [n]. Then,

∣∣YS − U|S|∣∣ ≤ 2|S|/2 · δ.
For p ∈ [0, 1], we denote by Bernoulli(p)⊗n the distribution over {0, 1}n where the

bits are i.i.d. and each bit has expectation p. We say that Z ∼ {0, 1}n is γ-almost k-
wise independent with marginals p if for every set I ⊆ [n] satisfying |I| ≤ k it holds that∣∣ZI − Bernoulli(p)⊗|I|

∣∣ ≤ γ. We can sample such distributions efficiently.

8

Claim 2.3 (see, e.g., in [DHH20]). For any positive integers n, k, C, and any γ > 0, there is an
explicit γ-almost k-wise independent distribution with marginals p = 2−C that can be sampled
efficiently with O(Ck + log 1

γ
+ log log n) truly random bits.

Moreover, we have good tail bounds for almost k-wise distribution.

Lemma 2.4 (following [CRSW13, SVW17]). Let X1, . . . , Xn be γ-almost k-wise independent
random variables over {0, 1} with marginals q, and let α > 0. Then, for an even k ≤ qn,

Pr

[∣∣∣∣∣∑
i∈[n]

Xi − qn

∣∣∣∣∣ ≥ αqn

]
≤
(

16k

α2qn

)k/2
+ 2kγ

(
1

αq

)k
.

Corollary 2.5. LetX ′1, . . . , X ′n be γ-almost k-wise independent random variables over {0, 1}with
marginals ≥ q. Then, for an even k ≤ qn,

Pr

[∑
i∈[n]

X ′i = 0

]
≤
(

16k

qn

)k/2
+ 2kγ

(
1

q

)k
.

Proof: Take Xi = X ′i ∧ Yi where Yi is a coin toss with Pr[Yi = 1] = q/E[X ′i]. We have
that E[Xi] = q, and that X1, . . . , Xn are γ-almost k-wise independent with marginals q.
Applying Lemma 2.4 with α = 1 implies that

Pr

[∑
i∈[n]

Xi = 0

]
≤
(

16k

qn

)k/2
+ 2kγ

(
1

q

)k
.

The proof is complete since Pr
[∑

i∈[n] X
′
i = 0

]
≤ Pr

[∑
i∈[n] Xi = 0

]
.

2.3 Restrictions and Pseudorandom Restrictions

A restriction is a string x ∈ {0, 1, ?}n. Intuitively, xi = ? means the i-th coordinate has not
been set by the restriction. A restriction x can be specified by two strings y, z ∈ {0, 1}n
where z determines the ? locations and y determines the assigned values in the non-?
locations. Namely, we define Res: {0, 1}n × {0, 1}n → {0, 1, ?} by

Res(y, z)i =

{
? zi = 1,

yi zi = 0.

We define a composition operation on restrictions, by

(x ◦ x′)i =

{
xi xi 6= ?,

x′i otherwise.

For a function f on {0, 1}n, the restricted function f |x on {0, 1}n is defined by f |x(x′) =
f(x ◦ x′).

We will repeatedly use the following fact.

9

Claim 2.6. Let B be a read-once MBP of length n, and let x ∈ {0, 1, ?}n be any restriction. Then,
B|x is a read-once MBP.

Given a function f : {0, 1}n → R and a distribution X ∼ {0, 1, ?}n, we say that X
preserves the expectation of f with error ε if

|E [f |X(U)]− E[f]| ≤ ε.

Forbes and Kelley showed that pseudorandom restrictions preserve the expectation of
constant-width ROBPs. We give a “with high probability” version of their result, proved
in [DHH20].

Lemma 2.7 ([FK18], restated). There exists a constant c ≥ 1 such that the following holds for
any positive integers n,w, and η > 0. Let Z be a γ-almost k-wise independent distribution over
{0, 1}n, where k ≥ c log nw

η
and γ ≤ 2−k. Let Y be a δ-biased distribution over {0, 1}n, where

log 1
δ
≥ cwk log log n. Then, for any [n,w, {0, 1}] BPB it holds that with probability at least 1−η

over z ∼ Z, ∣∣∣∣ EY,U [B|Res(Y,z)(U)
]
− E[B]

∣∣∣∣ ≤ η.

For X ∼ {0, 1, ?}n and a positive integer t, we denote by X◦t the distribution over
{0, 1, ?}n obtained by drawing independent samples x(1), . . . , x(t) ∼ X and composing
them, namely x = x(1) ◦ . . . ◦ x(t). We record two easy claims.

Claim 2.8. Let F ⊆ {0, 1}n → R be some function class which is closed under restrictions. Then,
if X preserves the expectation of every f ∈ F with error ε, then X◦t preserves the expectation of
every f ∈ F with error t · ε.

Claim 2.9. Let X = Res(Y, Z) where Y ∼ {0, 1}n and Z is γ-almost k-wise independent with
marginals p. Then, for any positive integer t, the distribution of the ? positions in X◦t is (tγ)-
almost k-wise independent with marginals pt.

Finally, we turn to define the notion of realizing a collision, in which a restriction “hits”
a symbol in a collision layer that indeed causes a collision.

Definition 2.10 (realizing a collision). Let B be an [n,w]` ROBP and let Ei : {0, 1}Si × [w]→
[w] be a collision layer in B for some i ∈ [n]. We say a string (y, z) ∈ {0, 1}n × {0, 1}n realizes
a collision in Ei if for any symbol σ ∈ {0, 1}Si consistent with the restriction Res(y, z) (i.e.,
σj = yj for all j ∈ Si with zj = 0) we have that Eσ

i contains a collision (i.e. Eσ
i (v) = Eσ

i (v′) for
two distinct states v, v′). We say (y, z) realizes a collision in B if it realizes a collision in some
layer Ei.

We will always use the special case where a collision is realized by zSi
= 0|Si| and E

ySi
i

having a collision.

10

3 PRGs for Constant-width Read-once MBPs

We set forth two auxiliary lemmas that will serve as the building blocks for our iterative
argument.

The first claim states that in a read-once MBP with enough colliding layers from [w]
to [w], each depending on at most ` bits, it is likely that one of the layers will realize a
collision under a pseudorandom restriction. The second claim will help us implement
alphabet reduction as outlined in the introduction.

Lemma 3.1 (realizing a collision). Let ` ∈ N and m ≥ 16`. For i = 1, . . . ,m, let Ei : {0, 1}Si×
[w] → [w] where S1, . . . , Sm ⊆ [n] are disjoint sets of size at most `. Suppose that each Ei is a
collision layer. Let Y, Z ∼ {0, 1}n be γ-almost k-wise independent distributions, for ` ≤ k ≤
2`/16. Then,

Pr
Z,Y

[∃i : (Y, Z) realizes a collision in Ei] ≥ 1− 2−k/2 − γ · 8k.

Proof: For j ∈ [m] let Ej be the event that zSi
= 0|Si| and ySi

= σi, where σi is an arbitrary
choice of a string for which Eσi

i collides. Observe that when Ej occurs, (Y, Z) realizes a
collision in Ej . Thus, it suffices to lower bound the probability that some of the Ej occurs.

The key observation is that the events E1, . . . , Em are 2γ-almost k/`-wise independent
with marginals ≥ 4−`. Indeed, for any test that depends on k/` of the events E1, . . . , Em,
the test can be written as a function of k bits from Y and k bits from Z, and since any k bits
from Y are γ-almost uniform and any k bits of Z are γ-almost uniform, we get that the
test is fooled by the distribution with error at most 2γ. Since on the uniform distribution
zSi

= 0|Si| and ySi
= σi has probability 4−|Si| ≥ 4−`, we get that E1, . . . , Em are 2γ-almost

k/`-wise independent with marginals ≥ 4−`.
By Corollary 2.5,

Pr

[
m∑
j=1

1Ej = 0

]
≤
(

16k/`

4−`16`

)k/2`
+ 4(k/`)γ

(
1

4−`

)k/`
≤ (2`/4`)k/2` + γ · 2` · (4`)k/` ≤ 2−k/2 + γ · 8k.

Thus, we get

Pr
Z,Y

[∃i : (Y, Z) realizes a collision in Ei] ≥ Pr
[m∑
j=1

1Ej > 0
]
≥ 1− 2−k/2 + γ · 8k.

Lemma 3.2 (alphabet reduction). For every constant C > 1 there exists a constant p ∈ (0, 1)
such that the following holds. Let ` ∈ N and m ≤ C`. For i = 1, . . . ,m, let Ei : {0, 1}Si × [w]→
[w] where S1, . . . , Sm ⊆ [n] are disjoint sets of size at most `. Let Z ∼ {0, 1}n be a γ-almost k-wise
independent distribution with marginals p, for k ≥ `. For j = 1, . . . ,m let Bj be the indicator
that ZSj

has more than `/2 ones. Then,

Pr

[
m∑
j=1

Bj ≥ k
`

]
≤ Ck · γ + 2−k

11

Proof: Fix a set T ⊆ [m] of size t = k
`
. For j ∈ T , letBj(z) be the indicator random variable

that is 1 if and only if zSj
has more than `

2
ones. We bound PrZ [∀j ∈ T : Bj(Z) = 1]. Note

that this event depends only on k bits of Z and thus

Pr
Z

[∀j ∈ T ,Bj(Z) = 1] ≤ Pr
U

[∀j ∈ T : Bj(U) = 1] + γ.

To bound the probability of ∀j ∈ T ,Bj(U) we note that each Bj happens with probabil-
ity at most

(
`
`/2

)
p`/2 ≤ 2`p`/2 and that k/` of these events happen simultaneously with

probability at most (2`p`/2)k/` = 2kpk/2.
Taking the union-bound over all subsets, we get the probability there exists T ⊆ [m]

of size t for which Bj = 1 for every j ∈ T is at most(
C`

t

)(
γ + 2kpk/2

)
≤ C`t ·

(
γ + 2kpk/2

)
= Ck · γ + 2−k,

for p = 1
16C2 .

3.1 Width Reduction

Lemma 3.3. Let B be an [n,w]` read-once MBP, and let ε > 0. Let k = max(`, 4 log(2n/ε)) and
γ = 32−k. Set t = log(`/ log(16k)). Also, for every j ∈ [t],

• Let Y j
1 ∼ {0, 1}

n and Zj
1 ∼ {0, 1}

`n be γ-almost k-wise independent distribution;

• Let Y j
2 ∼ {0, 1}

n be any distribution; and,

• Let Zj
2 ∼ {0, 1}

n be a γ-almost k-wise independent distribution with marginal probability
p as obtained from Lemma 3.2 for the constant C = 16.

For every j ∈ [t] we denote the j-th restriction as

Xj = Xj,1 ◦Xj,2 = Res(Y j
1 , Z

j
1) ◦ Res(Y j

2 , Z
j
2),

and we set the pseudorandom restriction X = X1 ◦ . . . ◦X t.
Then, with probability at least 1−ε over x ∼ X ,B|x can be written as an [n,w−1]`′ read-once

MBP for `′ = O(k9).

Proof: Consider `0 = `, `1 = `/2, . . . , `t = `/2t. Note that for all i we have `i ≤ k ≤ 2`i/16.
Denote Σ(0) = Σ and `0 = `. Consider the pseudorandom restriction X1,1, denoting
A1 = B|X1,1 . By Lemma 3.1, followed by a union bound, we get that with probability at
least

1− n ·
(
2−k/2 + γ · 8k

)
≥ 1− ε/2n

every 16`0 consecutive layers ofA1 contains a layer of vertices of widthw−1. In the follow-
ing, we condition on the event mentioned in the previous sentence. After the restriction
we identify all layers of width w − 1 and decompose the program to a concatenation of
subprograms starting and ending with width at most w − 1. That is, we can write A1 as

12

A1
1 ◦ . . . ◦ A1

r , where A1
i has initial and final width at most w − 1, and length at most 16`0

over alphabet Σ(0) = {0, 1}`0 .
Next, consider the application of X1,2 on A1 = A1

1 ◦ . . .◦A1
r . By Lemma 3.2 and a union

bound, with probability at least

1− n(16kγ + 2−k) ≥ 1− ε/2n,

we can reduce the alphabet in eachA1
i |X1,2 to Σ(1) = {0, 1}`0/2, except for k/`0 ≤ k “unruly”

wide layers whose alphabet is a subset of {0, 1}`0 . To sum up, after the first restriction,
with probability at least 1− ε/n, B1 = B|X1 can be written as a read-once MBP B̃1

1 ◦ . . . B̃1
r ,

such that for every subprogram B̃1
i : (i) starts and ends with widthw−1 (ii) has at most 16`0

good layers with alphabet length ≤ `1, and (iii) has up to k unruly layers with alphabet
length ≤ `0.

We show by induction on j that, with probability at least 1 − εj/n, after the j-th re-
striction Bj = B|X1◦···◦Xj can be written as B̃1

1 ◦ . . . B̃1
rj

, such that for every subprogram
B̃1
i :

• Starts and ends with width w − 1,

• Has at most 16`j−1 good layers with alphabet length ≤ `j , and,

• Has up to jk unruly layers with alphabet length ≤ `0.

Assume this to be the case for some j < t, we show how to prove it to be the case for j+1.
We denote byAj+1 = Bj|Xj+1,1 . By Lemma 3.1, with probability at least 1−n·(2−k+γ ·8k) ≥
1− ε/2n, every 16`j consecutive good layers of Bj+1 realizes a collision in Aj+1. We write
Aj+1 as

Aj+1
1 ◦ . . . Aj+1

rj+1
,

where each subprogram Aj+1
i : (i) starts and ends with width w − 1, (ii) has at most 16`j

good layers with alphabet length ≤ `j , and (iii) has up to jk unruly layers with alphabet
length ≤ `0. To see Item (iii) note that the partition to subprograms is a refinement of the
previous partition and thus cannot increase the maximal number of “unruly” layers in a
subprogram.

Applying Xj+1,2, by Lemma 3.2, with probability at least 1−n(16kγ+ 2−k) ≥ 1− ε/2n,
in each subprogram Aj+1

i we can reduce the alphabet to Σj+1 = {0, 1}`j+1 except for at
most the previous jk unruly layers and potentially k new unruly layers.

Overall, with probability at least 1 − tε/n ≥ 1 − ε, the branching program Bt can be
written as Bt = Bt

1 ◦ . . . Bt
rt , where Bt

i starts and ends with width w− 1, has at most 16`t−1

good layers and at most kt unruly layers. Thus, each Bt
i is a function of at most

16`t−1 · `t + kt · `0 ≤ k · 162(4+log(k)) + k3 = O(k9)

bits. We can merge all bits participating in Bt
i to a single symbol in Σ′ = {0, 1}`′ where

`′ = O(k9). We can thus write Bt as an [n,w − 1]`′ read-once MBP.

As a second step, we reduce the alphabet size from poly(log(n/ε)) down toO(log(n/ε)).

13

Lemma 3.4. Let ε > 0, k = 4 log(n/ε), γ = 1/(16`)k. Let B be an [n,w]` read-once MBP. Let
Z be a γ-almost k-wise independent distribution over {0, 1}n with marginals p2 = 1/2`; Let Y be
any distribution over {0, 1}n. Let X = Res(Y, Z).

Then, with probability at least 1 − ε over x ∼ X , B|x can be written as an [n,w]k read-once
MBP.

Proof: Let z ∼ Z. As in Lemma 3.2, for each layer j let Bj be the indicator random
variable that is 1 if and only if zj has more than k ones. By the union bound,

Pr
Z

[Bj = 1] ≤
(
`

k

)
· (pk2 + γ) ≤ `kpk2 + `k · γ ≤ 2 · 2−k.

Union bounding over all layers, the probability that we failed to reduce the alphabet size
to 2k in any of the layers is at most 1− 2n2−k ≥ 1− ε.

3.2 Putting It Together

Our process will apply a sequence of w− 1 restrictions sampled using Lemma 2.7, reduc-
ing the program width one at a time, with high probability, while preserving the accep-
tance probability.

Let c be a large enough constant. Set k = c log(nw/ε) and t = log(k). Set γ = 1/(ck9)k

and δ = min{γ/2k, 2−cwk log logn}. Set C = 16, p1 = 1
16C2 and p2 = 1

ck9
.

For i ∈ [w − 2] and for j ∈ [t]:

• Let X i,j,1 = Res(Y i,j,1, Zi,j,1) be a restriction from Lemma 2.7 with parameters k, γ
and δ as above. We have that Y i,j,1 is a δ-biased distribution, which is also a γ-almost
k-wise independent distribution (due to Lemma 2.2). We have that Zi,j,1 is γ-almost
k-wise independent (with marginals 1/2).

• Let X i,j,2 = Res(Y i,j,2, Zi,j,2) be a composition of log(1/p1) = O(1) restrictions from
Lemma 2.7 with parameters k, γ and δ as above. We have that Y i,j,1 is a δ-biased
distribution, which is also a γ-almost k-wise independent distribution. By Claim 2.9
we have that Zi,j,2 is log(1/p1)γ-almost k-wise independent with marginals p1.

• Let X̃ i = Res(Ỹ i, Z̃i) be a composition of log(1/p2) = O(log log(nw/ε)) restrictions
from Lemma 2.7 with parameters k, γ and δ as above. By Claim 2.9 we have that Z̃i

is log(1/p2)γ-almost k-wise independent with marginals p2.

We define X i,j = (X i,j,1 ◦ X i,j,2) and X i = (X i,1 ◦ X i,2 ◦ · · · ◦ X i,t) ◦ X̃ i. And finally,
X = X1 ◦X2 ◦ · · · ◦Xw−1. Let S ∼ {0, 1}n be a ε-almost k-wise independent distribution.
Our PRG G is given by

G = X ◦ S.
Let s = s(n,w, ε) be the seed length required to sample from G. Following the seed

lengths of the above primitives in Section 2, we can give the following bound.

Claim 3.5. It holds that

s = O
(
w2 log(n/ε) · (log log(n/ε))2

)
,

14

Claim 3.6. G fools width-w read-once MBPs of length n with error at most 4εn.

Proof: LetB be an [n,w]1 read-once MBP, which can also be written as an [n,w]k read-once
MBP by grouping every k-consecutive layers. Note that this transformation preserves
monotonicity. Since our restriction is picked as a m = O(t ·w +w log k) ≤ n compositions
of restrictions that each maintain the acceptance probability of the ROBP up to error ε
(Lemma 2.7), we see that ∣∣∣∣ EX,U[B|X(U)]− E

U
[B(U)]

∣∣∣∣ ≤ ε · n.

It remains to show that EX,U [B|X(U)] ≈ EX,S[B|X(S)]. For that we show that with high
probability B|X can be expressed as a [n, 1]k read-once MBP. Let E = E

(
X
)

be the union
of the following bad events:

• There exists an i ∈ [w− 1] such that (X i,1 ◦X i,2 ◦ · · · ◦X i,t) fails to reduce the width,
in the sense of Lemma 3.3.

• There exists an i ∈ [w − 1] such that X̃ i fails to reduce the alphabet size from O(k9)
to k, in the sense of Lemma 3.4.

By Lemmas 3.3 and 3.4, Pr[E] ≤ 2wε. Note that in the case that E does not occur, we have
that B|X is a [n, 1]k ROBP or in other words that it is a junta that depends on at most k
bits. In such a case, B|X will be ε-fooled by S. Overall we have∣∣∣∣ EX,U[B|X(U)]− E

X,S
[B|X(S)]

∣∣∣∣ ≤ Pr[E] + Pr[Ē] ·
∣∣∣E
X

[
E
U

[B|X(U)]− E
S

[B|X(S)] | Ē
]∣∣∣

≤ 2wε+ ε.

Combining both estimates we see that∣∣∣E
G

[B(G)]− E
U

[B(U)]
∣∣∣ ≤ ε · (n+ 2w + 1) ≤ 4εn.

Theorem 3.7. Let n ∈ N, ε > 0, w ≤ n. There exists a generator G that fools width-w read-once
MBPs of length n, with error at most ε′ and seed-length O(w2 · log(n/ε′) · (log log(n/ε′))2).

Proof: Apply Claim 3.6 and Claim 3.5 with ε = ε′/4n.

4 Monotone Branching Programs and AC0 Circuits

In this section we show the equivalence between constant width MBPs and AC0 circuits,
proving Theorem 1.3:

Theorem 1.3. A sequence of functions fn : {0, 1}n → {0, 1} is in AC0 if and only if it is com-
putable by a constant-width MBP of polynomial length.

15

First, observe that the known implication, that read-once AC0 formulas can be com-
puted by constant-width ROBPs, extends to the read-many setting. We show this by first
considering a general depth-w AC0 formula F of size s that can read each bit many times.
We denote the size of a formula as the number of leaves in the formula tree.

Lemma 4.1. Let f : {0, 1}n → {0, 1} be a function computable by a depth-w AC0 formula of size
s. Then, f can also be computed by an [n, s, w + 1] MBP.

Proof: We prove the claim by induction on the depth w. For w = 1, f computes either the
disjunction or the conjunction of at most s literals. This can clearly be done by an [n, s, 2]
MBP. Next, fix some f computable by a formula F : {0, 1}n → {0, 1} of depth w > 1 and
size s, and assume that its top gate is an AND gate (the other case is similar). We denote
the subformulas feeding into the top gate as F1, . . . , Fm. Suppose the sizes of F1, . . . , Fm
are s1, . . . , sm respectively, with s = s1 + . . . + sm. By the induction’s hypothesis, each
subformula Fi is computable by a [n, si, w] MBP.

To constructB that computes F , we can concatenate theBi-s and add another “sudden
reject” level.3 The starting vertex of B is the starting vertex of B1. Whenever a computa-
tion of some Bi, for some i < m, reaches its final layer, we rewire the edges in that layer
to either the sudden reject level, if Bi did not reach an accepting vertex, or to the starting
vertex of Bi+1. The accept vertices of B are the accept vertices of Bm.

The fact thatB computes f readily follows, and the bound on the length ofB is indeed
at most s1 + . . . + sm = s. To argue that monotonicity is preserved, simply observe that
the rewiring preserves the order: In the AND case, accept vertices are rewired to the next
starting vertex, which is indeed above the sudden reject level, to which all reject vertices
are rewired. The OR case is similar.

The result naturally extends to AC0 circuits, due to the standard transformation expressing
a size s depth w AC0 circuit as a size sw depth w AC0 formula.

Corollary 4.2. Let f : {0, 1}n → {0, 1} be a function computable by a depth-w AC0 circuit of size
s. Then, f can also be computed by an [n, sw, w + 1] MBP.

Next, we give the other direction of Theorem 1.3. It is enough to consider ROBPs (and
we will later justify that).

Lemma 4.3. Let f : {0, 1}n → {0, 1} be a function computable by a [n,w] read-once MBP. Then,
f can also be computed by a circuit of depth O(w) and size O(w4n3).

Proof: We prove this lemma by induction on the width. For w = 1 the claim is trivial. Fix
some w > 1 and let B be an [n,w] read-once MBP. We define two BPs, Bu and B`, each of
width w − 1, as follows.

• For Bu, we remove the first level of vertices (that is, removing state number 1 in
each layer) and reroute edges that go into state 1 to state 2. Formally, each transi-
tion U b

i : {2, . . . , w} → {2, . . . , w} of Bu is defined by U b
i (x) = max

{
Eb
i (x), 2

}
, for

Eb
i : [w]→ [w] being the corresponding transition of B.

3In a sudden reject level, each vertex transitions to the same level with both its edges, and the last vertex
in that level is a reject vertex. When the top gate is an OR gate, we would replace the sudden reject level
with a sudden accept level, and make the last vertex of the sudden accept level an accepting vertex.

16

• Similarly, for B`, we remove the last level of vertices: Each transition Lbi : [w − 1] →
[w − 1] of B` is defined by Lbi(x) = min

{
Eb
i (x), w − 1

}
.

Notice that these transformations preserve monotonicity. Roughly speaking, our goal is
to first argue that at each transition, B acts the same as either Bu or B`, depending on
whether B last reached the state 1 or the state w. Then, we show that we can efficiently
detect, given any layer j and an input x, if indeed B(x) passed through the state 1 or
through the state w before reaching the layer j.

Let s0 be the starting vertex ofB, and denote u0 = max {s0, 2} and `0 = min {s0, w − 1}.
Given some input x ∈ {0, 1}n, we consider the computation path of all three BPs on x.
Towards this end, denote by s1, . . . , sn ∈ [w] the states that x traverses in B, u1, . . . , un ∈
{2, . . . , w} the states that x traverses inBu and `1, . . . , `n ∈ [w−1] the states that x traverses
in B`. First, observe that:

Claim 4.4. For every i ∈ [n], ui ≥ si ≥ `i.

The above claim readily follows by induction on i, using the monotonicity property.
Next, we argue:

Claim 4.5. For every i ∈ [n], let j ≤ i be the largest integer such that sj ∈ {1, w}, if it exists.
Thus, if sj = w then ui = si and if sj = 1 then `i = si.

Proof: Fix some i ∈ [n] and assume that j ≤ i is the largest integer such that sj ∈ {1, w},
say sj = 1. By Claim 4.4, we must also have `j = 1. Then by induction, we also have
`j′ = sj′ for all j′ = j, j + 1, . . . , i, because the only way in which the transition in B` and
B can differ is if sj′ = w, which by assumption does not occur in this interval.

Hence, for each layer i, we know that either si = ui or si = `i, and we know which is the
case by looking at the last place the original path reached either 1 or w.

By our induction’s hypothesis, for every i ∈ [n] and s ∈ {2, . . . , w} there exists a circuit
Cu
i,s : {0, 1}n → {0, 1} such that Cu

i,s(x) = 1 if and only if Bu reached the state s after
reading x1, . . . , xi. Similarly, there exists a circuit C`

i,s that detects whether B` reached
s ∈ [w − 1] in the i-th layer upon traversing with x. Using these circuits, for each s ∈ [w],
we will construct a circuit Cs(x) that determined whether sn = s.

The construction goes as follows. The circuit will determine the last j where there
was a “switch” between the two cases of Claim 4.5, i.e., the smallest j ∈ [n] such that
sj ∈ {1, w} and for every k ≥ j it holds that sk ∈ {2, . . . , w − 1} ∪ {sj}. Observe that if
sj = 1 then sj−1 = uj−1, so Exj

j (uj−1) = 1. Afterward, we keep following B`, i.e., sk = `k
and soExk+1

k+1 (`k) 6= w for all k ≥ j. The converse also holds. Namely,Exj
j (uj−1) = 1 implies

that sj = `j = 1 (since `j−1 ≤ uj−1 and the program is monotone) and E
xk+1

k+1 (`k) 6= w for
all k ≥ j implies that indeed sk+1 = `k+1. Thus, the predicate

PL(x) =

∨
j∈[n]

((
E
xj
j (uj−1) = 1

)
∧
∧
k≥j

(
E
xk+1

k+1 (`k) 6= w
)) ∨(u1 6= w ∧

∧
k≥1

Exk
k (`k) 6= w

)

17

evaluates to 1 if and only if the largest integer j ≤ n such that sj ∈ {1, w} has sj = 1, or sj
never equals w (and hence sn = `n). Following the same reasoning,

PU(x) =

∨
j∈[n]

((
E
xj
j (`j−1) = w

)
∧
∧
k≥j

(
E
xk+1

k+1 (uk) 6= 1
)) ∨(`1 6= 1

∧
k≥1

Exk
k (uk) 6= 1

)
evaluates to 1 if and only if the largest integer j ≤ n such that sj ∈ {1, w} has sj = w, or
sj never equals 1 (and hence sn = un).

We now wish to compute PL : {0, 1}n → {0, 1} by a shallow circuit. Determining
uj−1 can be done by querying Cu

j−1,s(x) for each s ∈ {2, . . . , w}. Similarly, determining
`k can be done by querying C`

k,s(x) for each s ∈ [w − 1]. The functions Eb
j and Eb

k+1, for
each b ∈ {0, 1}, are determined solely by B and can be hardwired. Letting size(w − 1)
and depth(w − 1) be the size and depth upper bound for the circuits guaranteed to us by
the hypothesis, we can bound size(PL) by 2nw · size(w − 1) + O(wn2) and depth(PL) by
depth(w − 1) +O(1). The same bounds for PU : {0, 1}n → {0, 1} also hold.

Equipped with circuits CL and CU computing PL and PU respectively, we are ready to
compute B. Indeed, all that is left is to determine whether sn = `n or sn = un and invoke
the relevant circuit from the previous level. This incurs additional constant depth and
O(wn) size. Overall, the size and depth of C satisfies the recurrence relations size(w) =
O(nw) · size(w − 1) + O(wn2) and depth(w) = depth(w − 1) + O(1). As size(1) = O(n) and
depth(1) = O(1), this gives us depth O(w) and size wO(w) · nw.

We can improve the size of the circuit by a dynamic programming approach. For
1 ≤ a ≤ b ≤ w, let B[a,b] be the ROBP in which we keep only the levels a, . . . , b and rewire
edges accordingly. Namely, we replace each Eσ

i (x) with max {a,min {b, Eσ
i (x)}}. Observe

that for when a < b, (B[a,b])` = B[a,b−1] and (B[a,b])u = B[a+1,b].
For every 1 ≤ a ≤ b ≤ w and s ∈ {a, . . . , b}, let Xa,b,s

i be the indicator which is 1 if and
only if upon reading the first i bits of x, the program B[a,b] reached the state s. Note that
there are at most w3 · n such indicators overall.

Fix some integer ∆ ∈ {0, . . . , w − 1}. We can compute the values

I∆ =
{
Xa,a+∆,s
i : a ∈ [w −∆], s ∈ [a, a+ ∆], i ∈ [n]

}
in the following manner. For ∆ = 0, all indicators are true. For ∆ ≥ 1, assume we already
computed the values

I∆−1 =
{
Xa,a+∆−1,s
i : a ∈ [w − (∆− 1)], s ∈ [a, a+ ∆− 1], i ∈ [n]

}
.

Thus, to compute a single indicator from I∆ given I∆−1, we can use the above recurrence
relations, as each `i and ui correspond to some indicator from I∆−1. This takes O(wn2)
size and O(1) depth. Computing the entire I∆ thus takes O(w3n3) size and O(1) depth.
Overall, computing

Given an [n, s, w] MBP, we can replace recurring variables with dummy ones, construct
the corresponding circuits, and project the original variables back. We therefore get the
following corollary.

Corollary 4.6. Let f : {0, 1}n → {0, 1} be a function computable by an [n, s, w] MBP for s ≥ n.
Then, f can also be computed by a circuit of depth O(w) and size O(w4s3).

18

4.1 Read-once MBPs and Read-once AC0

We prove Item 2 of Proposition 1.4, giving a family of functions computable by read-once
MBPs but not by read-once formulas. Our proof also gives a new characterization of
read-once formulas.

Proposition 1.4 (Item 2). For every n ≥ 3, there exists a function f : {0, 1}n → {0, 1} com-
putable by a width 3 read-once MBP, but not computable by any read-once De Morgan formula
(regardless of depth).

Proof: We first give a property of functions computable by read-once formulas. Given
g : {0, 1}m → {0, 1} and b ∈ {0, 1}, let Wb(g) ∈ {0, . . . ,m} denote the size of the smallest
set of coordinates I ⊆ [m] for which there exists a z ∈ {0, 1}|I| such that for every x ∈
{0, 1}m it holds that xI = z implies g(x) = b.

Lemma 4.7. Let g : {0, 1}n → {0, 1} be a function computable by a read-once De Morgan for-
mula. Then, W0(g) ·W1(g) ≤ n.

Roughly speaking, this lemma says that for a function computable by a read-once
formula, we can either find a short witness for it being 0, or a short witness for it being 1.
In particular, it cannot be highly resilient.

Proof: We prove the lemma by induction on the formula’s depth d. For d = 1, g is ei-
ther an AND of literals or an OR of literals. For the AND function, W0(AND) = 1 and
W1(AND) = n. For the OR function, W0(OR) = n and W1(OR) = 1. Thus, indeed,
W0(g) ·W1(g) ≤ n.

Assume our lemma holds for formulas of depth d ≥ 1, and let g be some formula of
depth d + 1, say with an AND top gate, so g = AND(f1, . . . , fk), each fi : {0, 1}ni → {0, 1}
is a depth-d formula. In this case, W0(g) = minj∈[k] W0(fj) and W1(g) =

∑
i∈[k] W1(fi). By

our induction’s hypothesis, we get that

W0(g) ·W1(g) =

(
min
j∈[k]

W0(fj)

)
·
∑
i∈[k]

W1(fi) ≤
∑
i∈[k]

W0(fi) ·W1(fi) ≤
∑
i∈[k]

ni = n.

The case of an OR top gate is analogous.

Now, our function f : {0, 1}n → {0, 1} will simply be the Thrn2 function, that returns 1
if and only if the Hamming weight of the input string x ∈ {0, 1}n is at least 2. There,
W1(f) = 2 and W0(f) = n− 1, so it is not computable by read-once formulas, however f
is computable by a simple width-3 read-once MBP.

We note that we can also construct balanced functions f separating read-once MBPs
from read-once De Morgan formulas. In particular, f = ANDm ◦ Thrw2 for m = O(2w/w)
(which resembles the Tribes function) has this property. More generally, one can consider,
say, Thr2, as a “gadget” to construct richer families of read-once MBPs not computable by
read-once formulas.

19

References

[AW89] Miklos Ajtai and Avi Wigderson. Deterministic simulation of probabilistic
constant depth circuits. Advances in Computing Research, 5(199-222):1, 1989.

[Bar89] David A. Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. Journal of Computer and System Sci-
ences, 38(1):150–164, 1989.

[BCG20] Mark Braverman, Gil Cohen, and Sumegha Garg. Pseudorandom pseudo-
distributions with near-optimal error for read-once branching programs.
SIAM Journal on Computing, 49(5):STOC18–242–STOC18–299, 2020.

[BRRY14] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudoran-
dom generators for regular branching programs. SIAM Journal on Computing,
43(3):973–986, 2014.

[BV10] J. Brody and E. Verbin. The coin problem and pseudorandomness for branch-
ing programs. In Proceedings of the 51st IEEE Annual Symposium on Foundations
of Computer Science (FOCS 2012), pages 30–39, Oct 2010.

[CHRT18] Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Im-
proved pseudorandomness for unordered branching programs through local
monotonicity. In Proceedings of the 50th Annual ACM Symposium on Theory of
Computing (STOC 2018), pages 363–375. ACM, 2018.

[CRSW13] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and bins:
Smaller hash families and faster evaluation. SIAM Journal on Computing,
42(3):1030–1050, 2013.

[CSV15] Sitan Chen, Thomas Steinke, and Salil Vadhan. Pseudorandomness for read-
once, constant-depth circuits. arXiv preprint arXiv:1504.04675, 2015.

[De11] Anindya De. Pseudorandomness for permutation and regular branching pro-
grams. In Proceedings of the 26th Annual IEEE 26th Annual Conference on Com-
putational Complexity (CCC 2011), pages 221–231. IEEE, 2011.

[DHH19] Dean Doron, Pooya Hatami, and William M. Hoza. Near-optimal pseudo-
random generators for constant-depth read-once formulas. In Proceedings of
the 34th Computational Complexity Conference (CCC 2019). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2019.

[DHH20] Dean Doron, Pooya Hatami, and William M. Hoza. Log-seed pseudorandom
generators via iterated restrictions. In Proceedings of the 35th Computational
Complexity Conference (CCC 2020). Schloss Dagstuhl-Leibniz-Zentrum für In-
formatik, 2020.

20

[FK18] Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-
once branching programs, in any order. In Proceedings of the 59th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2018). IEEE, 2018.

[GMR+12] Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil
Vadhan. Better pseudorandom generators from milder pseudorandom re-
strictions. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2012), pages 120–129. IEEE, 2012.

[Gol11] Oded Goldreich. Three XOR-lemmas – an exposition. In Studies in Complexity
and Cryptography. Miscellanea on the Interplay between Randomness and Compu-
tation, pages 248–272. Springer, 2011.

[HHR11] Iftach Haitner, Danny Harnik, and Omer Reingold. On the power of the ran-
domized iterate. SIAM Journal on Computing, 40(6):1486–1528, 2011.

[HLV18] Elad Haramaty, Chin Ho Lee, and Emanuele Viola. Bounded independence
plus noise fools products. SIAM Journal on Computing, 47(2):493–523, 2018.

[HPV21] William M. Hoza, Edward Pyne, and Salil P. Vadhan. Pseudorandom gen-
erators for unbounded-width permutation branching programs. In James R.
Lee, editor, 12th Innovations in Theoretical Computer Science Conference, ITCS
2021, January 6-8, 2021, Virtual Conference, volume 185 of LIPIcs, pages 7:1–
7:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[HVV06] Alexander Healy, Salil Vadhan, and Emanuele Viola. Using nondeterminism
to amplify hardness. SIAM Journal on Computing, 35(4):903–931, 2006.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings,
and data stream computation. Journal of the ACM, 53(3):307–323, 2006.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness
for network algorithms. In Proceedings of the 26th Annual ACM Symposium on
Theory of Computing (STOC 1994), pages 356–364. ACM, 1994.

[KLW10] Adam R. Klivans, Homin Lee, and Andrew Wan. Mansour’s conjecture is
true for random DNF formulas. In Proceedings of the 23rd Annual Conference on
Learning Theory (COLT 2010), 2010.

[KNP11] Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom gen-
erators for group products. In Proceedings of the 43rd Annual ACM Symposium
on Theory of Computing (STOC 2011), pages 263–272. ACM, New York, 2011.

[Lee19] Chin Ho Lee. Fourier bounds and pseudorandom generators for product
tests. In Proceedings of the 34th Computational Complexity Conference (CCC 2019),
pages 7:1–7:25. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

21

[LV17] Chin Ho Lee and Emanuele Viola. More on bounded independence plus
noise: Pseudorandom generators for read-once polynomials. In Electronic Col-
loquium on Computational Complexity (ECCC), volume 24, page 167, 2017.

[LVW93] Michael Luby, Boban Velickovic, and Avi Wigderson. Deterministic approxi-
mate counting of depth-2 circuits. In Proceedings of the 2nd Annual Israel Sympo-
sium on Theory and Computing Systems (ISTCS 1993), pages 18–24. IEEE, 1993.

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators
for width-3 branching programs. In Proceedings of the 51st Annual ACM Sym-
posium on Theory of Computing (STOC 2019), pages 626–637. ACM, New York,
2019.

[MZ13] Raghu Meka and David Zuckerman. Pseudorandom generators for polyno-
mial threshold functions. SIAM Journal on Computing, 42(3):1275–1301, 2013.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation.
Combinatorica, 12(4):449–461, 1992.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient construc-
tions and applications. SIAM Journal on Computing, 22(4):838–856, 1993.

[RSV13] Omer Reingold, Thomas Steinke, and Salil Vadhan. Pseudorandomness for
regular branching programs via Fourier analysis. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, pages 655–
670. Springer, 2013.

[Siv02] D Sivakumar. Algorithmic derandomization via complexity theory. In Pro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC
2002), pages 619–626. ACM, 2002.

[Ste12] Thomas Steinke. Pseudorandomness for permutation branching programs
without the group theory. Technical Report TR12-083, Electronic Colloquium
on Computational Complexity (ECCC), July 2012.

[Ste13] John Steinberger. The distinguishability of product distributions by read-once
branching programs. In Proceedings of the 28th IEEE Conference on Computa-
tional Complexity (CCC 2013), pages 248–254. IEEE, 2013.

[SVW17] Thomas Steinke, Salil Vadhan, and Andrew Wan. Pseudorandomness and
Fourier-growth bounds for width-3 branching programs. Theory of Computing,
13(1):1–50, 2017.

[Tzu09] Yoav Tzur. Notions of weak pseudorandomness and GF(2n)-polynomials.
Master’s thesis, Weizmann Institute of Science, 2009.

22
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

