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Abstract

A recent paper of Braverman, Cohen, and Garg (STOC 2018) introduced the concept of a
pseudorandom pseudodistribution generator (PRPG), which amounts to a pseudorandom gen-
erator (PRG) whose outputs are accompanied with real coefficients that scale the acceptance
probabilities of any potential distinguisher. They gave an explicit construction of PRPGs for
ordered branching programs whose seed length has a better dependence on the error parameter
ε than the classic PRG construction of Nisan (STOC 1990 and Combinatorica 1992).

In this work, we give an explicit construction of PRPGs that achieve parameters that are
impossible to achieve by a PRG. In particular, we construct a PRPG for ordered permuta-
tion branching programs of unbounded width with a single accept state that has seed length
Õ(log3/2 n) for error parameter ε = 1/ poly(n), where n is the input length. In contrast, re-
cent work of Hoza et al. (ITCS 2021) shows that any PRG for this model requires seed length
Ω(log2 n) to achieve error ε = 1/ poly(n).

As a corollary, we obtain explicit PRPGs with seed length Õ(log3/2 n) and error ε =
1/ poly(n) for ordered permutation branching programs of width w = poly(n) with an arbi-
trary number of accept states. Previously, seed length o(log2 n) was only known when both
the width and the reciprocal of the error are subpolynomial, i.e. w = no(1) and ε = 1/no(1)

(Braverman, Rao, Raz, Yehudayoff, FOCS 2010 and SICOMP 2014).
The starting point for our results are the recent space-efficient algorithms for estimating

random-walk probabilities in directed graphs by Ahmadenijad, Kelner, Murtagh, Peebles, Sid-
ford, and Vadhan (FOCS 2020), which are based on spectral graph theory and space-efficient
Laplacian solvers. We interpret these algorithms as giving PRPGs with large seed length, which
we then derandomize to obtain our results. We also note that this approach gives a simpler
proof of the original result of Braverman, Cohen, and Garg, as independently discovered by
Cohen, Doron, Renard, Sberlo, and Ta-Shma (personal communication, January 2021).
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1 Introduction

The notion of a pseudorandom generator (PRG) [BM84, Yao82, NW94] is ubiquitous in the-
oretical computer science, with vast applicability in cryptography and derandomization. A recent
work of Braverman, Cohen, and Garg [BCG18] introduced the following intriguing generalization
of a PRG, in which we attach real coefficients to the outputs of the generator:

Definition 1.1. Let B be a class of functions B : {0, 1}n → {0, 1}. An ε-pseudorandom pseu-
dodistribution generator (PRPG), or pseudorandom pseudogenerator for B is a function
(G, ρ) : {0, 1}s → {0, 1}n × R such that for every B ∈ B,∣∣∣∣ E

x←U{0,1}n
[B(x)]− E

x←U{0,1}s
[ρ(x) ·B(G(x))]

∣∣∣∣ ≤ ε.
The value s is the seed length of the PRPG, and n is the output length of the PRPG. If
|ρ(x)| ≤ r for all x we say the PRPG is r-bounded. We say that the PRPG is explicit if given x,
G(x) and ρ(x) are computable in space O(s), and |ρ(x)| is bounded by 2O(s).

(Throughout we use the standard definition of space-bounded complexity, which counts the
working, read-write memory of the algorithm, and does not include the length of the read-only
input or write-only output, which can be exponentially longer than the space bound.) With this
definition, a PRG is a special case of a PRPG with ρ(x) = 1. As noted in [BCG18], PRPGs can
be used to derandomize algorithms in the same way as a PRG: we can estimate the acceptance
probability of any function B ∈ B by enumerating over the seeds x of the PRPG (G, ρ) and
calculating the average of the values ρ(x) ·B(G(x)). Furthermore, [BCG18] observe that if (G, ρ)
is an ε-PRPG for a model then G is an ε-hitting set generator (HSG). That is, if B is any
function in B with Pr[B(Un) = 1] > ε, then there exists an x ∈ {0, 1}s such that B(G(x)) = 1.

1.1 Ordered Branching Programs

The work of Braverman, Cohen, and Garg [BCG18], as well as our paper, focuses on PRPGs for
classes B of functions computable by ordered branching programs, a nonuniform model that captures
how a space-bounded randomized algorithm accesses its random bits.

Definition 1.2. An (ordered) branching program B of length n and width w computes a
function B : {0, 1}n → {0, 1}. On an input σ ∈ {0, 1}n, the branching program computes as
follows. It starts at a fixed start state v0 ∈ [w]. Then for r = 1, . . . , n, it reads the next symbol
σr and updates its state according to a transition function Br : [w] × {0, 1} → [w] by taking
vt = Br(vt−1, σt). Note that the transition function Br can differ at each time step.

The branching program accepts σ, denoted B(σ) = 1, if vn ∈ Vacc, where Vacc ⊆ [w] is the set
of accept states, and otherwise it rejects, denoted B(σ) = 0. Thus an ordered branching program
is specified by the transition functions B1, . . . , Bn, the start state v0 and the set Vacc of accept
states.

An ordered branching program of length n and width w can compute the output of an algorithm
that uses logw bits of memory and n random bits, by taking the state at each layer as the contents
of memory at that time. We note that we can convert any ordered branching program into one
with a single accept state by collapsing all of Vacc to a single state.

Using the probabilistic method, it can be shown that there exists an ε-PRG for ordered branch-
ing programs of length n and width w with seed length s = O(log(nw/ε)). The classic construction
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of Nisan [Nis92] gives an explicit PRG with seed length s = O(log n · log(nw/ε)), and this bound
has not been improved except when w ≤ 3 [BDVY09,SZ11,GMR+12,MRT19]. Braverman, Cohen,
and Garg [BCG18] gave an explicit construction of a PRPG that achieves improved dependence on
the error parameter ε, with seed length

s = Õ (log n · log(nw) + log(1/ε)) .

In particular, for error ε = n− logn and width w = poly(n), their seed length improves Nisan’s from
O(log3 n) to Õ(log2 n). Chatthopadhyay and Liao [CL20] gave a simpler construction of PRPGs
with a slightly shorter seed length than [BCG18], with an additive dependence on O(log(1/ε))
rather than Õ(log(1/ε)).

1.2 Permutation Branching Programs

Due to the lack of progress in constructing improved PRGs for general ordered branching programs
as well as some applications, attention has turned to more restricted classes of ordered branching
programs. In this work, our focus is on permutation branching programs:

Definition 1.3. An (ordered) permutation branching program is an ordered branching
program B where for all t ∈ [n] and σ ∈ {0, 1}, Bt(·, σ) is a permutation on [w].

This can be thought of as the computation being time-reversible on any fixed input σ.
Previous works on various types of PRGs for permutation branching programs [RV05,RTV06,

BRRY10, KNP11, De11, Ste12, HPV21] have achieved seed lengths that are logarithmic or nearly
logarithmic in the length n of the branching program, improving the log2 n bound in Nisan’s
generator. Specifically, Braverman, Rao, Raz, and Yehudayoff gave a PRG for the more general
model of regular branching programs with seed length

s = O (log n · (logw + log(1/ε) + log log n)) .

For the specific case of permutation branching programs, Koucký, Nimbhorkar, and Pudlák [KNP11],
De [De11], and Steinke [Ste12] showed how to remove the log log n term at the price of a worse
dependence on w, achieving seed length

s = O(log n · (poly(w) + log(1/ε))).

Most recently, Hoza, Pyne, and Vadhan [HPV21] showed that the dependence on the width w could
be entirely eliminated if we restrict to permutation branching programs with a single accept state,
achieving seed length

s = O(log n · (log log n+ log(1/ε)).

In particular, they show that this seed length is provably better than what is achieved by the
Probabilistic Method; that is, a random function with seed length o(n) fails to be a PRG for
unbounded-width permutation branching programs with high probability. Like the prior PRGs for
bounded-width permutation branching programs, the seed length has a term of O(log n · log(1/ε)).
However, in contrast to the bounded-width case, this cannot be improved to O(log(n/ε)) by a
non-explicit construction. Hoza et al. prove that seed length Ω(log n · log(1/ε)) is necessary for
any ε-PRG against unbounded-width permutation branching programs. For hitting-set generators
(HSGs), they show that seed length O(log(n/ε)) is possible via the Probabilistic Method, thus
leaving an explicit construction as an open problem.

2



1.3 Our Results

In this paper, we construct an explicit PRPG for permutation branching programs of unbounded
width and a single accept state that beats the aforementioned lower bounds for PRGs:

Theorem 1.4. For all n ∈ N and ε ∈ (0, 1/2), there is an explicit ε-PRPG for ordered permutation
branching programs of length n, arbitrary width, and a single accept state, with seed length

s = O
(

log(n)
√

log(n/ε)
√

log log(n/ε) + log(1/ε) log log(n/ε)
)
.

In particular, when ε = 1/poly(n), we achieve seed length Õ(log3/2 n), while a PRG requires
seed length Ω(log2 n) [HPV21].

As noted in [HPV21], an ε-PRPG for branching programs with a single accept state is also an
(a ·ε)-PRPG for branching programs with at most a accept states. For bounded-width permutation
branching programs, we can take a = w and obtain:

Corollary 1.5. For all n,w ∈ N and ε ∈ (0, 1/2), there is an explicit ε-PRPG for ordered permu-
tation branching programs of length n and width w (and any number of accept states), with seed
length

s = O
(

log(n)
√

log(nw/ε)
√

log log(nw/ε) + log(1/ε) log log(nw/ε)
)
.

In particular for w = poly(n) and ε = 1/poly(n), we achieve seed length Õ(log3/2 n). Note that
the previous explicit PRGs (or even HSGs) for permutation branching programs (as mentioned in
Subsection 1.2) achieved seed length o(log2 n) only when both w = no(1) and ε = 1/no(1). With

seed length o(log2 n), Corollary 1.5 can handle width as large as w = nΩ̃(logn) and error as small

as ε = 1/n−Ω̃(log(n)). We summarize these results in a table.

Citation Type Model Seed Length

Non-explicit (folklore) PRG General Θ(log(nw/ε)
[Nis92, INW94] PRG General O(log n log(nw/ε))

[BRRY10] PRG Regular Õ(log n log(w/ε))
[KNP11,De11,Ste12] PRG Permutation O(log n(poly(w) + log(1/ε))

[BCG18,CL20], Thm 4.1 PRPG General Õ(log n log nw + log(1/ε))

[HPV21] PRG Permutation (1 accept) Θ̃(log n log(1/ε))
Non-explicit [HPV21] HSG Permutation (1 accept) O(log(n/ε))

Theorem 1.4 PRPG Permutation (1 accept) Õ(log n
√

log(n/ε) + log(1/ε))

Corollary 1.5 PRPG Permutation Õ(log n
√

log(nw/ε) + log(w/ε))

2 Overview of Proofs

The starting point for our results are the recent space-efficient algorithms for estimating random-
walk probabilities in directed graphs by Ahmadenijad, Kelner, Murtagh, Peebles, Sidford, and
Vadhan [AKM+20], which are based on spectral graph theory and space-efficient Laplacian solvers.
We interpret these algorithms as giving PRPGs with large seed length, which we then derandomize
to obtain our results.

The specific problem considered by Ahmadenijad et al. is the following: given a directed graph
G = (V,E), two vertices s, t ∈ V , a walk-length k ∈ N, and an error parameter ε > 0, estimate the
probability that a random walk of length k started at s ends at t to within ±ε. Such an algorithm
can be applied to estimate the acceptance probability of an ordered branching program as follows:
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Definition 2.1 (Graph Associated with a Branching Program). Given a length n, width w branch-
ing program B with transition functions (B1, . . . , Bn) with start vertex v0 ∈ [w], and a single accept
vertex vacc, we can construct an associated layered graph G with vertex set {0, 1, . . . , n} × [w] and
directed edges from (i− 1, v) to (i, Bi(v, 0)) and (i, Bi(v, 1)) for every i = 1, . . . , n and v ∈ [w].

Applying the algorithms of Ahmadenijad et al. to the graph G with s = (0, v0), t = (n, vacc), and
k = n, we obtain an estimate of the acceptance probability of B to within ±ε, just like an ε-PRPG
for B would allow us to obtain. But a PRPG (G, ρ) is much more constrained than an arbitrary
space-efficient algorithm, which can directly inspect the graph. Instead, a PRPG is limited to
generating S = 2s walks of length n in the layered graph, described by sequencesG(x1), . . . , G(xS) ∈
{0, 1}n of edge labels, and then combining the indicators B(G(x1)), . . . , B(G(xn)) of whether the
walks ended at t via a linear combination with fixed coefficients ρ(x1), . . . , ρ(xS) ∈ R.

Note that if B is a permutation branching program, then the graph G above is 2-regular (except
for layer 0 which has no incoming edges and layer n which has no outgoing edges). Thus, the basis for
Theorem 1.4 is the (main) result of Ahmadenijad et al., which applies to regular (or more generally,
Eulerian) directed graphs G. However, they also give a new algorithm for estimating random-walk
probabilities in arbitrary directed graphs. This algorithm is not as space-efficient as the ones for
regular graphs, but is significantly simpler, so we begin by describing how to obtain a PRPG based
on that algorithm. The resulting PRPG matches the parameters of the PRPG of Braverman, Cohen,
and Garg [BCG18], but has a significantly simpler proof (and is also simpler than the construction
of Chatthopadhyay and Liao [CL20]). A similar construction was independently discovered by
Cohen, Doron, Renard, Sberlo, and Ta-Shma (personal communication, January 2021).

2.1 PRPG for Arbitrary Ordered Branching Programs

Let B be an arbitrary width w, length n ordered branching program, with associated layered graph
G as in Definition 2.1. The algorithm of Ahmadenijad et al. starts with the (n + 1)w × (n + 1)w
random-walk transition matrix W of G, which has the following block structure:

W =


0 B1 0 · · · 0
0 0 B2 · · · 0
...

. . .
...

0 0 0
. . . Bn

0 0 0 · · · 0


Here entry ((i, u), (j, v)) is the probability that taking one random step in G from vertex (i, u) ends
at (j, v). Thus Bi is the w × w transition matrix for the random walk from layer i − 1 to i in
the branching program. (Note that the matrix W is not quite stochastic due to layer n having no
outgoing edges.)

Ahmadenijad et al. consider the Laplacian L = I(n+1)w −W. Its inverse L−1 = (I(n+1)w −
W)−1 = I(n+1)w + W + W2 + W3 + · · · sums up random-walks of all lengths in G, and thus has
the following form:

L−1 =


B0...0 B0...1 B0...2 · · · B0...n

0 B1...1 B1...2 · · · B1...n
...

. . .
...

0 0 0
. . . Bn−1...n

0 0 0 · · · Bn...n

 ,
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where
Bi...j = Bi+1Bi+2 · · ·Bj .

In particular, the (0, n)’th block of L−1 gives the random-walk probabilities from layer 0 to
layer n, and thus the acceptance probability of G is exactly the (v0, vacc)’th entry of the (0, n)’th
block of L−1. Therefore, the task reduces to producing a sufficiently good estimate of L−1.

Ahmadenijad et al. estimate L−1 in two steps. First, they observe that the Saks–Zhou deran-
domization of logspace [SZ99] can be used to produce, in deterministic space O(log(nw)

√
log(n)),

approximations B̃i...j of the blocks Bi...j to within entrywise error 1/ poly(nw), resulting in an
approximate pseudoinverse

L̃−1 =



B̃0...0 B̃0...1 B̃0...2 · · · B̃0...n

0 B̃1...1 B̃1...2 · · · B̃1...n
...

. . .
...

0 0 0
. . . B̃n−1...n

0 0 0 · · · B̃n...n


, (1)

with the property that ∣∣∣∣∣∣I(n+1)w − L̃−1L
∣∣∣∣∣∣
∞
≤ 1/nw,

where ‖ · ‖∞ denotes the `∞ operator norm, ie ||M||∞ = supx 6=0 ||Mx||∞/||x||∞.

Next, Ahmadenijad et al. reduce the approximation error to an arbitrary ε < 1/(nw)O(1) by
using preconditioned Richardson iterations, as captured by the following lemma:

Lemma 2.2 (Preconditioned richardson iteration, [AKM+20] Lemma 6.2). Let || · || be a submul-
tiplicative norm on N ×N real matrices. Given matrices A,E ∈ RN×N such that ||IN −EA|| ≤ α
for some constant α > 0, let Pm =

∑m
i=0(IN −EA)iE. Then ||IN −PmA|| ≤ αm+1.

Setting N = (n + 1)w, A = L, E = L̃−1, and α = 1/nw, and m = O(lognw(1/ε)), we obtain

L̃ε = Pm such that ‖I − L̃εL‖ ≤ ε/(nw)O(1), which implies that L̃ε and L−1 are entrywise equal
up to ±ε, for

L̃ε =
m∑
i=0

(IN − L̃−1L)iL (2)

In particular, the (v0, vacc)’th entry of the (0, n)’th block of L̃ε is an estimate of the acceptance

probability of the branching program to within ±ε. Computing L̃ε from L and L̃−1 can be done
in space O((log nw) · logm), yielding Ahmadenijad et al.’s space bound of

O(log(nw)
√

log(n) + (log nw) · log lognw(1/ε)).

Now we show how, with appropriate an modification, we can interpret this algorithm of Ah-
madenijad et al. as a PRPG (albeit with large seed length). We replace the use of the Saks–Zhou
algorithm (which requires looking at the branching program) with Nisan’s pseudorandom genera-

tor. Specifically, we take B̃i...j to be the matrix whose (u, v)’th entry is the probability that, if we
start at state u in the the i’th layer and use a random output of Nisan’s pseudorandom generator

to take j − i steps in the branching program, we end at state v in the j’th layer. For B̃i...j to ap-
proximate Bi...j to within error ±1/poly(nw) as above, Nisan’s pseudorandom generator requires
seed length

sNisan = O(log(j − i) · log nw) = O(log n · log nw).
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Observe that for every i, B̃i...i = Iw = Bi...i. Without loss of generality, we may also assume that

B̃(i−1)...i = B(i−1)...i, since taking one step only requires one random bit.

Next, we observe from Equation 2 that the matrix L̃ε is a polynomial of degree 2m+ 1 in the

matrices L and L̃−1. In particular the (0, n)’th block of L̃ε is a polynomial of degree at most 2m+1

in the matrices B̃i...j . Specifically, using the upper-triangular structure of the matrices L and L̃−1

and noting that the product of d (n+ 1)× (n+ 1) block matrices expands into a sum of (n+ 1)d−1

terms, each of which is a product of d individual blocks, we show:

Observation 2.3. The (0, n)’th block of L̃ε is equals the sum of at most (n + 1)O(m) terms, each
of which is of the form

± B̃i0···i1B̃i1···i2 · · · B̃ir−1···ir , (3)

where 0 = i0 < i1 < i2 < · · · < ir = n and r ≤ 2m+ 1.

Notice that, up to the sign, each term as expressed in Equation (3) is the transition matrix for
a pseudorandom walk from layer 0 to layer n of the branching program, where we use r ≤ m + 1
independent draws from Nisan’s generator, with the j’th draw being used to walk from layer ij−1 to
layer ij . In particular, the (v0, vacc) entry of Equation (3) equals the acceptance probability of the
branching program on such a pseudorandom walk. Thus the algorithm now has the form required
of a PRPG.

The seed length for the PRPG is the sum of the seed length ssum needed to select a random
term in the sum (using the coefficients of the PRPG to rescale the sum into a expectation) and the
seed length sterm to generate a walk for the individual term. To select a random term in the sum
requires a seed of length

ssum = log nO(m) = O(m log(n)) = O(lognw(1/ε) log(n)) = O(log(1/ε)).

The seed length needed for an individual term is at most

sterm = O(m) · sNisan = O(lognw(1/ε) · log(n) · log nw) = O(log(1/ε) · log(n)).

The latter offers no improvement over Nisan’s PRG. (Recall that ε < 1/nw.) To obtain a shorter
seed length, we just need to derandomize the product in Equation (3). Instead of using r indepen-
dent seeds, we use dependent seeds generated using the Impagliazzo–Nisan–Wigderson pseudoran-
dom generator [INW94]. Specifically, we can produce a pseudorandom walk that approximates the
product to within entrywise error ±γ using a seed of length

s′term = sNisan +O((log r) · log(rw/γ)).

The entrywise error of γ in each term may accumulate over the nO(m) terms, so to achieve a PRPG
error of O(ε), we should set γ = ε/nO(m) = 1/εO(1). Recalling that r ≤ 2m + 1 = O(lognw(1/ε)),
we attain a seed length of

ssum + s′term = O(log(1/ε)) +O(log2 nw) +O(log lognw(1/ε) · log(1/ε))

= O(log2 nw + log(1/ε) · log lognw(1/ε)), .

which slightly improves over the bound of Braverman, Cohen, and Garg [BCG18], and is incompa-
rable to that of Chattopadhyay and Liao [CL20]. Specifically, our first term of O(log(n) log(nw))
is better than [CL20] by a factor of log log(nw), but our second term of O(log(1/ε) log lognw(1/ε))
is worse by a factor of log lognw(1/ε).
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2.2 PRPG for Permutation Branching Programs

Now we give an overview of our PRPG for permutation branching programs, as stated in Theo-
rem 1.4. This is based on the the algorithm of Ahmademnijad et al. that estimates random-walk
probabilities in regular (or even Eulerian) digraphs with better space complexity than the algo-
rithm described in Subsection 2.1. As before, we will review their algorithm as applied to the
((n+1) ·w)-vertex graph G associated with an ordered branching program B of length n and width
w. Since we assume that the branching program B is a permutation program, the graph G will
be 2-regular at all layers other than 0 and n. For the spectral graph-theoretic machinery used by
Ahmadenijad et al., it is helpful to work with random-walk matrices that correspond to strongly
connected digraphs, so we also add a complete bipartite graph of edges from layer n back to layer
0, resulting in the following modified version of the matrix W:

W0 =


0 B1 0 · · · 0
0 0 B2 · · · 0
...

. . .
...

0 0 0
. . . Bn

Jw 0 0 · · · 0

 , (4)

where the Jw in the lower-left corner is the w×w matrix in which every entry is 1/w (corresponding
to the complete bipartite graph we added). Notice that the matrix Jw is identically zero when
applied to any vector that is orthogonal to the uniform distribution, so it is not very different than
having 0 in the lower-left block as we had before. Indeed, the powers of W look as follows:

W2
0 =


0 0 B0..2 0 0
... 0 0

. . . 0

0
... Bn−2..n

Jw 0 0 · · · 0
0 Jw 0 · · · 0

 , . . . ,W
n
0 =


0 0 · · · 0 B0..n

Jw 0 0

0
. . . 0

... 0 Jw 0 0
0 0 0 Jw 0


where

Bi...j = Bi+1Bi+2 · · ·Bj .

Notice in particular that Wn+1
0 will be a block-diagonal matrix with Jw’s on the diagonal (i.e.

Wn+1
0 = In+1 ⊗ Jw), and thus has no dependence on the branching program B.
Now the Laplacian I(n+1)w −W0 is no longer invertible (the uniform distribution is in the

kernel). In [AKM+20], they instead estimate the Moore-Penrose pseudoinverse I(n+1)w −W0. We
instead scale W0 by a factor c = 1 − 1/(n + 1), and consider the Laplacian L0 = I(n+1)w − cW0.
Looking ahead, this scaling factor ensures that the condition number of L0 depends only on n,
allowing us to obtain a seed length independent of w. Then, by the expressions above for the
powers of W0, it can be shown that from

L−1
0 = I(n+1)w + cW0 + c2W2

0 + c3W3
0 + . . .

we can compute B0..n, which appears in Wn
0 with a scaling factor cn ≥ 1/2.

So again to estimate the acceptance probability of B, it suffices to compute a sufficiently good

approximation to L−1
0 . As before, it suffices to compute a matrix L̃−1

0 such that ‖IN − L̃−1
0 L0‖ ≤ α

for some constant α < 1 and a submultiplicative matrix norm ‖ · ‖, because then we can use
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preconditioned Richardson iterations (Lemma 2.2) to estimate L0 to within arbitrary entrywise
accuracy.

Unfortunately, we don’t know how to directly obtain such an initial approximation L̃−1
0 effi-

ciently enough for our result. Instead, following Ahmadenijad et al., we tensor W0 with a sufficiently
long directed cycle. Specifically, we let Ci be the directed cycle on 2i vertices, and consider Cq for
q = log(n+ 1) (which we assume is an integer WLOG). We consider the cycle lift, whose transition
matrix is

Cq ⊗W0 =


0 W0 0 · · · 0
0 0 W0 · · · 0
...

. . .
...

0 0 0
. . . W0

W0 0 0 · · · 0

 ,

Then, we seek to invert the Laplacian L = I2qN − cCq ⊗W0. Similarly to the above, we have:

L−1 = (I2qN − cCq ⊗W0)−1

=
(
I2qN − cn+1Cn+1

q ⊗Wn+1
0

)−1 ·
(
I2qN + cCq ⊗W0 + c2C2

q ⊗W2
0 + · · · cnCnq ⊗Wn

0

)
=

(
I2qN − cn+1Cn+1

q ⊗ (In+1 ⊗ Jw)
)−1 ·

(
I2qN + cCq ⊗W0 + c2C2

q ⊗W2
0 + · · · cnCn

q ⊗Wn
0

)
Thus,(
I2qN − cn+1Cn+1

q ⊗ (In+1 ⊗ Jw)
)
L−1 = I2qN + cCq ⊗W0 + c2C2

q ⊗W2
0 + · · · cnCn

q ⊗Wn
0

=


IN cW0 c2W2

0 · · · cnWn
0

cnWn
0 IN cW0 · · · cn−1Wn−1

0
...

. . .
...

c2W2
0 c3W3

0 c4W4
0

. . . cW0

cW1
0 c2W2

0 c3W3
0 · · · IN


Thus, if we can accurately estimate L−1, we can obtain an accurate estimate of Wn

0 , whose
upper-right block equals B0..n and thus contains the acceptance probability of the branching pro-
gram.

To compute an approximate inverse of L = I2qN − cCq ⊗W0, Ahmadenijad et al. provide a
recursive formula expressing (I2qN − cCq⊗W0)−1 in terms of (I2q−1N − c2Cq−1⊗W2

0)−1 and some
applications of the matrix W0. That is, computing the inverse of the Laplacian of the cycle lift of
W0 reduces to computing the inverse of the Laplacian of a cycle lift of W2

0 with a cycle of half the
length. At the bottom of the recursion (after q levels of recursion), we need to compute the inverse
of

IN − c2qW2q

0 = IN − cn+1Wn+1
0 = IN − cn+1In+1 ⊗ Jw,

which is easy (and does not depend on the branching program). The resulting formula for (I2qN −
cCq ⊗W0)−1 is a polynomial in W0,W

2
0,W

4
0, . . . ,W

2q−1

0 . However, computing these high powers
of W0 exactly is too expensive in space usage.

Thus, instead Ahmadenijad et al. use the derandomized square [RV05] which allows for com-
puting a sequence W0,W1, . . . ,Wq where Wi a sparsification of W2

i−1 with the property that Wq

can be constructed in deterministic space

O(log nw + q · log(1/δ))
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for an error parameter δ, rather than the space O(q · log nw) of exact repeated squaring. They
also introduce a new notion of spectral approximation, called unit-circle approximation, and show
that the derandomized square Wi is a unit-circle approximation of W2

i−1 to within error δ. Using
repeated derandomized squaring in the recursion, Ahmadenijad et al. obtain an approximate inverse

L̃−1 with the properties that:

1. The N × N blocks of L̃−1 are each of the form MWi1Wi2 · · ·Wir where M is an easily
computable matrix that does not depend on the branching program and r = O(q)

2. There is a submultiplicative matrix norm ‖·‖F such that ‖I2qN−L̃−1L‖F = O(qδ). Moreover,
δ approximation of L+ in F norm implies poly(n) · δ approximation in max norm.

Ahmadenijad et al. actually obtain that approximation in F norm implies poly(nw) · δ approx-
imation in max norm, but we improve this bound to poly(n) by our choice of scaling factor
c = 1− 1/(n+ 1).

Item 1 allows for constructing L̃−1 from W0,W1, . . . ,Wq in space

O(log q · log nw).

Item 2 allows obtaining entrywise error at most ε using preconditioned Richardson iterations
(Lemma 2.2) with degree m = O(log(n/ε)/ log(1/qδ)) provided δ < 1/O(q), which has an ad-
ditive space cost of:

O(logm · log nw).

Taking δ = 1/O(q) and recalling that q = log(n+ 1), the final space complexity is

O(log(nw) + q log q) +O(log q · log nw) +O(log log(n/ε) · log nw) = O(log nw · log log(n/ε)).

To view this algorithm as a PRPG for permutation branching programs, we use the equivalence
between the Impagliazzo–Nisan–Wigderson (INW) generator on permutation branching programs
and the derandomized square of the corresponding graph, as established in [RV05,HPV21]. Using
this correspondence, the matrix Wi has the same structure as W2i (see Equation 4), except that

each block of the form Bj..j+2i is replaced with a matrix B̃j..j+2i that is the transition matrix of a
pseudorandom walk from layer j of the branching program to layer j+2i using the INW generator.
The seed length to generate this pseudorandom walk is

sINW = O(q log(q/δ)),

which, as highlighted in [HPV21], is independent of the width w of the branching program. This is
the place where we use the fact that B is a permutation branching program rather than a regular
branching program. Even though the algorithm Ahmadenijad et al. works for regular directed
graphs (and hence regular branching programs), the derandomized square operations used in that
case can no longer be viewed as being obtained by using a pseudorandom generator to derandomize
walks in the graph.

Then, again assuming without loss of generality that ˜B(j−1)...j = Bj for j = 1, . . . , n, we have
the following analogue of Observation 2.3:

Observation 2.4. The upper-right w × w block of Pm is equals the sum of at most nO(m) terms,
each of which is of the form

± B̃i0···i1B̃i1···i2 · · · B̃ir−1···ir , (5)

where 0 = i0 < i1 < i2 < · · · < ir = n and r = O(qm).
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As Subsection 2.1, the algorithm now has the form required of a PRPG and our only remaining
challenge is to keep the seed length small. The seed length for the PRPG is the sum of the seed
length needed to select a random term in the sum (using the coefficients of the PRPG to rescale
the sum into a expectation) and the seed length to generate a walk for the individual term. To
select a random term in the sum requires a seed of length

ssum = log(nO(m)).

The seed length needed for an individual term is at most

sterm = O(qm) · sINW,

which again would be too expensive for us. To derandomize the product in Equation (5), we again
use the INW generator, but rely on the analysis in [HPV21] for permutation branching programs to
maintain a seed length that is indepndent of the width. Specifically, we can produce a pseudorandom
walk that approximates the product to within entrywise error ±γ using a seed of length

s′term = sINW +O((log r) · log(log(r)/γ)) = sINW +O(log qm · log(log(qm)/γ)).

The entrywise error of γ in each term may accumulate over the nO(m) terms, so to achieve a PRPG
error of O(ε), we should set γ = ε/nO(m), which means that s′term ≥ ssum.

All in all, we attain a seed length of

ssum + s′term ≤ 2s′term

= 2sINW +O((log qm) · log(log(qm)/γ))

= O(q log(q/δ)) + Õ(m log n) +O(log qm · log(n/ε))

= Õ

(
log n · log(1/δ) +

log(n/ε)

log(1/(δ log n))
· log n+ log log n · log(n/ε)

)
Optimizing the choice of δ as δ = exp(−Θ̃(

√
log(n/ε))), we get a seed length of

Õ(log n
√

log(n/ε) + log(1/ε) · log log n).

Note that the choice of δ here is much smaller than in the Ahmadenijad et al. algorithm, which
used δ = 1/polylog(n). The reason we need the smaller choice of δ is to reduce the effect of the
log(nO(m)) price we pay in ssum and s′term, which does not have an analogue in the algorithm of
Ahmadenijad et al.

2.3 Perspective

Some intuition for the ability of PRPGs to beat the parameters of PRGs can come from the study
of samplers [Gol97]. A sampler for a class F of functions f : {0, 1}m → R is randomized algorithm
Samp that is given oracle access to a function f ∈ F and, with probability at least 1− δ, outputs
an estimate of E[f(Un)] to within additive error ±ε. Most often, the class F is taken to be the class
of all bounded functions f : {0, 1}m → [0, 1], but some works have considered the general definition
and other classes, such as the class F of unbounded functions f such that the random variable
f(Un) has subgaussian tails [Bla18, Agr19]. Two key complexity parameters of a sampler are its
randomness complexity (the number of coin tosses it uses, typically as a function of m, δ, and ε)
and its sample complexity (the number of queries it makes to oracle f). An averaging sampler is one
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that has a restricted form, where it uses its coin tosses to generate (possibly correlated) samples
x1, . . . , xS , and then outputs the average of f on the samples, i.e. (f(x1) + · · ·+ f(xS))/S.

A PRG G : {0, 1}s → {0, 1}m for a class F can then be seen as a deterministic averaging sampler
for the class F , with randomness complexity and failure probability zero, and sample complexity
S = 2s. Indeed, the sampler simply outputs the set of all S = 2s outputs of G. Then we can see a
PRPG as a more general form of a nonadaptive deterministic sampler for the class F , one that is
restricted to output a linear combination of the function values.

So comparing the power of PRGs vs. PRPGs is a special case of the more general problem of
comparing the power of averaging samplers vs. more general nonadaptive samplers. In this more
general framing, there are some simple examples of classes F where nonadaptive samplers can have
smaller sample complexity than any averaging sampler. Specifically, if we consider the class F
of unbounded functions f : {0, 1}m → R with bounded variance, i.e. Var[f(Un)] ≤ 1, then the
best sample complexity for an averaging sampler is Θ(min{1/ε2δ, 2m}). (Essentially, Chebychev’s
Inequality is tight for such functions.) However, there is a nonadaptive sampler with sample
complexity O(log(1/δ)/ε2), namely the median-of-averages sampler, which outputs the median of
O(log(1/δ)) averages, with each average being on O(1/ε2) samples.

This example suggests two areas of investigation for future work. First, can we gain further
benefits in seed length by considering further generalizations of PRGs that are allowed to estimate
acceptance probability with more general functions than linear combinations (or possibly even with
adaptive queries)? Second, is there a benefit in the study of samplers in restricting attention to
ones that output linear combinations like PRPGs? Perhaps these still retains some of the useful
composition properties and connections to other pseudorandom objects that are enjoyed by aver-
aging samplers (cf. [Zuc97, Vad12, Agr19]), while allowing for gains in sample and/or randomness
complexity.

2.4 Organization of the Remaining Sections

In Section 3 we introduce arithmetic over pseudodistributions and recall properties of unit circle
approximation. We then recall the Nisan [Nis92] generator, and the analysis of the INW generator
from [HPV21]. In Section 4 we prove Theorem 4.1 using a simple analysis that introduces precon-
ditioning methods. In Section 5 we prove Theorem 1.4, using more sophisticated preconditioning
tools from [AKM+20] and [CKP+17] and the analysis of the INW PRG from [HPV21].

3 Preliminaries

We first introduce basic operations on pseudodistributions, connections between PRGs for per-
mutation branching programs and operations on graphs, and existing families of generators and
expanders.

Following [RSV13], we will view branching programs not as boolean functions, but as a matrix
valued function B : {0, 1}n → Rw×w where B[s]i,j = 1 if the branching program started at state i
ends at state j upon reading s. In all cases, we will index matrices from zero, to correspond with
the conventional notation for labeling layers of branching programs.

Definition 3.1. Let B be a width w, length n branching program with transition functions
B1 . . . , Bn. For t ∈ [n] let Bt : {0, 1} → Rw×w be defined where Bt(s)i,j = 1 if Bt(i, s) = j
and 0 otherwise. For 0 ≤ i < j ≤ n let Bi..j be defined as Bi..j(si+1 . . . sj) = Bi+1(si+1) . . .Bj(sj),
and let B = B0..n.
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We can define the matrix form of pseudodistribution generators. We write Un = U{0,1}n for
convenience.

Definition 3.2. Let (X,Y ) be joint random variables on {0, 1}n × R and || · || a norm on w × w
matrices. We say that (X,Y ) is an ε-pseudorandom pseudodistribution for a class B of length
n, width w ordered branching programs if for all B ∈ B we have

||E[Y ·B[X]]− E[B[Un]]|| < ε.

We say that (G, ρ) : {0, 1}s → {0, 1}n×R is an ε-pseudodistribution generator (ε-PRPG) for a
class B if (G(Us), ρ(Us)) is an ε-pseudodistribution for B. We write B[(Y,X)] to denote E[Y ·B[X]].

In contrast to pseudorandom generators, we can define rules for “arithmetic” on PRPGs, which
naturally translate into operations on matrix forms.

Definition 3.3 (Sum Rule for PRPGs). Given PRPGs Fa = (Ga, ρ), Fb = (Gb, ρb) with seed length
s, let Fa + Fb be the PRPG with seed length s+ 1, where for (x, b) ∈ {0, 1}s × {0, 1} we define

(Fa + Fb)((x, b)) =

{
(Ga(x), 2ρ(x)) b = 1

(Gb(x), 2ρ(x)) b = 0

Remark 3.4. For any branching program B and PRPGs Fa, Fb,

B[Fa] + B[Fb] = B[Fa + Fb].

Furthermore, if Fa and Fb are explicit then Fa+Fb is, and if Fa and Fb are r-bounded then Fa+Fb
is 2r-bounded.

Definition 3.5 (Product Rule for PRPGs). Given PRPGs Fa = (Ga, ρa), Fb = (Gb, ρb) seed length
s and output lengths n, n′ respectively, let FaFb be the PRPG with seed length 2s and output length
n+ n′, where for (x, y) ∈ {0, 1}s × {0, 1}s we define

(FaFb)((x, y)) = (Gb(x)||Ga(y), ρa(x)ρb(y))

where || denotes concatenation. We define the product of a PRPG Fa and scalar λ ∈ R as
(λFa)(x) = (Ga(x), λ · ρa(x)).

Remark 3.6. For any branching programs B,B′ of length n, n′ and equal width and PRPGs Fa, Fb
of output length n, n′,

(BB
′
)[FaFb] = B[Fa]B

′
[Fb].

Furthermore, if Fa and Fb are explicit then FaFb is, and if Fa and Fb are r-bounded then FaFb is
r2-bounded.

Slightly abusing notation, if F is an empty PRG on zero bits we define B[F ] = Iw. This is
purely for cleanliness of later derivations. We also implicitly define the sum and concatenation of
PRPGs with different seed lengths, by first padding the shorter seed to equal that of the longer.
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3.1 Matrix Approximation Preliminaries

We introduce basic notation and unit-circle approximation, a measure of closeness of approximation
for matrices that allows for error bounds independent of size.

• For a complex number z ∈ C we write z∗ to denote the complex conjugate of z and |z| to
denote the magnitude of z.

• For a matrix A ∈ CN×N we write A∗ to denote its conjugate transpose and write UA =
(A + A∗)/2 to denote its symmetrization.

• For A ∈ CN×N we define ||A||∞ = maxi
∑n

j=1 |Ai,j |.

• We say a Hermitian matrix A is positive semidefinite (PSD) or write A � 0 if x∗Ax ≥ 0
for all x ∈ CN . For two Hermitian matrices A,E, we use A � E to denote A − E � 0 and
define � analogously.

• For any vector norm || · || defined on Cn we define the matrix semi-norm on CN×N by ||A|| =
maxx 6=0 ||Ax||/||x||. For a PSD matrix H and vector x we have ||x||H =

√
x∗Hx and the

matrix seminorm is defined accordingly.

We give a basic proposition to be used for condition number bounds.

Proposition 3.7. Let H ∈ CN×N be a Hermitian positive definite matrix with minimum eigenvalue
α and maximum eigenvalue β. Then for any x ∈ CN , α||x||22 ≤ ||x||2H ≤ β||x||22.

Proof. Let (µi)i∈[n] be an orthonormal eigenbasis for H and λi the associated eigenvalues. Then

for any x ∈ CN ,

||x||2H = x∗(

N∑
i=1

λiµiµ
∗
i )x ≤ β||x||22

and the lower bound is nearly identical.

We next introduce a notion of approximation that is preserved under cycle lifting and other
essential operations.

Definition 3.8 (Unit-Circle Approximation [AKM+20]). For A,E ∈ CN×N and ε ∈ (0, 1/2), we

say A is an ε-unit-circle approximation of E, denoted A
◦
≈ε E, if

∀x, y ∈ CN , |x∗(A−E)y| ≤ ε

2
(||x||2 + ||y||2 − |x∗Ex+ y∗Ey|).

Including the magnitude operation in the right hand side forces the approximation to be exact
for all eigenspaces with eigenvalues of complex magnitude 1, and this property is essential for
the preservation of approximation under high powers. The unit-circle approximation is developed
in [AKM+20].

Proposition 3.9. For A,E ∈ CN×N , if A
◦
≈ε E and c ∈ C with |c| < 1 then cA

◦
≈ε cE.

Proof. Fix arbitrary ∀x, y ∈ CN , then

|x∗(cA− cE)y| ≤ ε

2
(||x||2 + ||y||2 − |x∗Ex+ y∗Ey|) ≤ ε

2
(||x||2 + ||y||2 − |x∗cEx+ y∗cEy|).
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Proposition 3.10. Let A,E,X,Y ∈ RN×N where A
◦
≈ε X and E

◦
≈ε Y. Then for any λ ∈ [0, 1],

λA + (1− λ)E
◦
≈ε λX + (1− λ)Y

Proof. Fix arbitrary ∀x, y ∈ CN , then

|x∗(λA + (1− λ)E− (λX + (1− λ)Y))y| ≤ λ|x∗(A−X)y|+ (1− λ)|x∗(E−Y)y|

≤ ε

2
(||x||22 + ||y||22 − λ|x∗Xx+ y∗Xy| − (1− λ)|x∗Yx+ y∗Yy|)

≤ ε

2
(||x||22 + ||y||22 − |x∗(λX + (1− λ)Y)x+ y∗(λX + (1− λ)Y)y|)

3.2 Explicit Primitive Generators

To prove Theorem 4.1 we make use of the existing pseudorandom generator of Nisan [Nis92].

Theorem 3.11 ([Nis92]). Given n,w and ε ∈ (0, 1/2), there exists an explicit pseudorandom
generator G : {0, 1}s → {0, 1}n such that for any branching program B of length n and width w,∣∣∣∣B[Un]−B[G]

∣∣∣∣
max
≤ ε,

and s = O(log(n) log(nw/ε)).

To prove Theorem 1.4 we make use of a consequence of [HPV21]. To do so, we require a notion
of distributions over graphs.

Definition 3.12. Given a length n permutation branching program B with transition functions
B1, . . . , Bn, B0 where we require a transition function from layer n to layer 0, define the transition
graph of B as a function B̂ : {0, 1} → R(n+1)w×(n+1)w where

B̂[s] =


0 B0..1[s] 0 . . . 0

0 0 B1..2[s]
...

...
. . . 0

0 0 Bn−1..n[s]
Bn..0[s] 0 . . . 0

 .

Furthermore, for all i define B̂(i)[(s1, . . . , si)] = B̂[s1] . . . B̂[si].

We then state a convenient form of the theorem.

Theorem 3.13 (Consequence of [HPV21] Theorem 1.4). For all ` ∈ N and ε ∈ (0, 1/2), there
is a family of explicit PRGs INW0, . . . , INW` such that INW0 : {0, 1} → {0, 1} is the identity
map on one bit, and for all i ∈ [`], INWi has seed length bi = O(i log(1/ε)). Furthermore, for all
i ∈ {0, . . . , `− 1}, for any permutation branching program B with transition graph B̂,

E[B̂(2i+1)[INWi+1(Ubi+1
)]]
◦
≈ε E[B̂(2i+1)[INWi(Ubi), INWi(Ubi)]].
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4 Pseudodistributions for General Branching Programs

We first develop the PRPG for general branching programs, as it outlines the some of the ideas
and constructions used later but with simpler analysis.

Theorem 4.1. For all n,w and ε ∈ (0, 1/2), there is an explicit poly(1/ε) bounded pseudorandom
pseudodistribution generator GEN with seed length O(log(n) log(nw)+log(1/ε) log lognw(1/ε)) such
that for every (n,w) branching program B,∣∣∣∣B[Un]−B[GEN]

∣∣∣∣
max
≤ ε.

4.1 Richardson Iteration for PRG Error Reduction

We first define a set of PRPGs of all lengths for a given error parameter. We write R : {0, 1} →
{0, 1} to mean the trivial PRG on one bit.

Definition 4.2. Given n,w ∈ N, for all r ∈ [n] let Nr be the explicit PRG obtained from Theo-
rem 3.11 with width w, length r and error δ = 1/4n2w2. Then for all r ∈ [n] define the PRPG

Dr = Nr−1R−Nr.

We then define a set of products of such PRPGs. The index set is equivalent to all possible
divisions of the layers {0, . . . , k} for k ≤ n into at most ` sections.

Definition 4.3. Given `, n ∈ N, define the index set Vn,` as

Vn,` = {(d1, . . . dk) : di ∈ Z+, 0 ≤ k ≤ `,
∑
i

di ≤ n}.

For σ ∈ Vn,` we write |σ| to denote the k corresponding to this σ. Note that this includes the
empty tuple σ = (). Now given w ∈ N, let Dr be defined as in Definition 4.2 with n = n,w = w.
For all σ = (d1, . . . , dk) ∈ Vn,`, let g = n−

∑k
i=1 di and define Mσ = [

∏k
i=1Ddi ]Ng.

We prove the sum over all such PRPGs is a good approximation of truly random input.

Lemma 4.4. Fix arbitrary n,w ∈ N and ε ∈ (0, 1/2). Define ` = dlognw(1/ε)e+1 and let Vn,` and
Mσ be defined as in Definition 4.3 with n = n,w = w and ` = `. Then for any (n,w) branching
program B, ∣∣∣∣∣∣

∣∣∣∣∣∣
∑

σ∈Vn,`

B[Mσ]−B[Un]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

≤ ε/2.

We remark that each Mσ is a sum of 2` products of at most 2`+1 explicit PRGs, each with seed
length O(log(nw) log(n)), multiplied by a sign. We prove the lemma by relating the summation
to the output of preconditioned richardson iteration applied to a matrix chosen to have a desired
inverse.

Proposition 4.5. Fix n,w ∈ N. Let Nr be as defined in Definition 4.2 with n = n,w = w. Then
for any (n,w) branching program B, define the path lift Laplacian L ∈ R(n+1)w×(n+1)w of B as
the (n+ 1)× (n+ 1) block matrix where

L =


Iw −B0..1[R] 0 0

0 I
. . . 0

0 0 Iw −Bn−1..n[R]
0 0 0 Iw


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with inverse

L−1
i,j =


Bi..j [R

j−i] i < j

Iw i = j

0 i > j

.

Then define

L̃−1
i,j =


Bi..j [Nj−i] i < j

Iw i = j

0 i > j

.

Let Err = I(n+1)w − L̃−1L. Then ||Err||∞ ≤ 1/2nw.

To prove this, we describe the structure of Err.

Lemma 4.6. Fix n,w ∈ N and let Dr be defined as in Definition 4.2. The error matrix Err as
defined in Proposition 4.5 has form:

Erri,j =

{
Bi..j [Dj−i] i < j

0 i ≥ j
.

Proof. We first consider when i < j. From the structure of L we have

(L̃−1L)i,j =
n∑
k=0

L̃−1
i,kLk,j

= L̃−1
i,jLj,j + L̃−1

i,j−1Lj−1,j

= Bi..j [Nj−i] · Iw −Bi..j−1[Nj−1−i]Bj−1..j [R]

= Bi..j [Nj−i −Nj−1−iR]

= Bi..j [Dj−i]

And analyzing the rest of the cases is immediate, and then (Err)i,j matches the desired form.

We can then prove the proposition.

Proof Of Proposition 4.5. We bound the ∞ norm of each block of Err then take a union bound
over the at most n nonzero blocks in each row. Diagonal and lower triangular blocks are trivially
0, and then for any i < j we have

||Erri,j ||∞ = ||Bi..j [Dj−i]||∞
≤ ||Bi..j [Nj−i−1R]−Bi..j [R

j−i] + Bi..j [R
j−i]−Bi..j [Nj−i]||∞

≤ ||Bi..j−1[Nj−i−1]−Bi..j−1[Rj−i−1]||∞||Bj−1..j [R]||∞ + ||Bi..j [R
j−i]−Bi..j [Nj−i]||∞

≤ 1

4n2w
+

1

4n2w
.

Where the first equality comes from Lemma 4.6, and the final from Theorem 3.11 where we lose a
factor of w from going from max to ∞ norm. Thus a union bound over all nonzero j of Erri,· for
all i completes the proof.
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Thus, by replacing truly random input with a PRG of the correct length, we obtain a weak
approximation of L−1. We then use preconditioned Richardson iteration to boost this to a high
quality approximation, and by describing this output in terms of a PRPG prove that this generator
approximates truly random input for all branching programs.

Lemma 2.2 (Preconditioned richardson iteration, [AKM+20] Lemma 6.2). Let || · || be a submul-
tiplicative norm on N ×N real matrices. Given matrices A,E ∈ RN×N such that ||IN −EA|| ≤ α
for some constant α > 0, let Pm =

∑m
i=0(IN −EA)iE. Then ||IN −PmA|| ≤ αm+1.

Proof. We have IN −PmA = (IN −EA)m+1, and then the proof follows by the submultiplicativity
of || · ||.

We can then apply Richardson iteration to boost our weak estimate of L−1 to a strong estimate.

Lemma 4.7. Fix n,w ∈ N and ε ∈ (0, 1/2) and let Dr be defined as in Definition 4.2. Set

` = dlognw(1/ε)e+ 1. Then for any (n,w) branching program B, let L, L̃−1 and Err be defined as
in Proposition 4.5. Then ∣∣∣∣∣

∣∣∣∣∣∑̀
i=0

Erri · L̃−1 − L−1

∣∣∣∣∣
∣∣∣∣∣
max

≤ ε/2.

Proof. We apply Lemma 2.2 with A = L, E = L̃−1, || · || = || · ||∞ and α ≤ 1/2nw (which follows

from Proposition 4.5) and obtain Pm =
∑`

i=0 Erri · L̃−1 satisfying ||I−PmL||∞ ≤ ε/2nw. Finally,

||Pm − L−1||max ≤ ||(I−PmL)L−1||∞
≤ ||I−PmL||∞||L−1||∞
≤ ε

2nw
(n+ 1)

Given this error guarantee, it remains to interpret the “output” of Richardson iteration in
an oblivious manner. Intuitively, taking powers of the Err matrix corresponds to concatenating
PRPGs to create more complex pseudodistributions on layers.

Lemma 4.8. Fix n,w, ` ∈ N and ε ∈ (0, 1/2). Let {Mσ : σ ∈ Vn,`} be as defined in Definition 4.3.

For any (n,w) branching program B, let Err, L̃−1 be as defined in Proposition 4.5. Then

(
∑̀
i=0

Erri · L̃−1)0,n =
∑

σ∈Vn,`

B[Mσ].
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Proof. Fix any 0 ≤ r ≤ `.

(Errr · L̃−1)0,n =
∑

li∈{0..n}r
Err0,l1(

r−1∏
i=1

Errli,li+1
)L̃−1

lr,n

=
∑

0<l1<...<lr≤n
Err0,l1(

r−1∏
i=1

Errli,li+1
)L̃−1

lr,n

=
∑

0<l1<...<lr≤n
B[Dl1(

r−1∏
i=1

Dli+1−li)Nn−lr ]

=
∑

(di)i∈[r]:di∈N,g=
∑r
i=1 di≤n

B[(
r∏
i=1

Ddi)Nn−g]

=
∑

σ∈Vn,`,|σ|=r

B[Mσ]

where the second and third lines follow from Lemma 4.6. Thus,

∑̀
r=0

(Errr · L̃−1)0,n =
∑̀
r=0

∑
σ∈Vn,`,|σ|=r

B[Mσ] =
∑

σ∈Vn,`

B[Mσ].

We can then prove the main lemma.

Proof of Lemma 4.4. Fix n,w ∈ N and ε ∈ (0, 1/2) and let ` = dlognw(1/ε)e+ 1. Fix an arbitrary

(n,w) branching program B. Let L, L̃−1 and Err be defined as in Proposition 4.5. Then

ε/2 ≥

∣∣∣∣∣
∣∣∣∣∣(∑̀
r=0

Erri · L̃−1)0,n − (L−1)0,n

∣∣∣∣∣
∣∣∣∣∣
max

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

σ∈Vn,`

B[Mσ]−B[Un]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

Where the first line follows from Lemma 4.7 and the second from Lemma 4.8.

Note that |Vn,`| ≤ nO(`) = poly(1/ε) and for all σ, Mσ is a 2` bounded explicit PRPG, so∑
σ∈Vn,`Mσ is already an explicit, poly(1/ε) bounded ε-PRPG for (n,w) branching programs.

Unfortunately, each PRPG Mσ has seed length Ω(` log(n) log(nw)) = Ω(log(n) log(1/ε)). However,
we can then apply standard derandomization results and use that ` = O(lognw(1/ε)) to replace
these PRPGs with suitable approximations.

4.2 Approximation of PRPG Products

Lemma 4.9. Given w ∈ N and δ ∈ (0, 1/2) and a tuple of explicit PRGs M1, . . . ,Mr where
Mi : {0, 1}s → {0, 1}li and given i, Mi is constructible in space O(s), there exists an explicit

PRG M̃ such that for any branching program B of width w and length
∑r

i=1 li, we have ||B[M̃ ]−
B[M1 . . .Mr]||max < δ and M̃ has seed length O(s+ log(r) log(rw/δ)).

This result is a direct consequence of the derandomization lemma below. We use the formulation
as stated in Lemma 11 of [CL20].
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Lemma 4.10 (INW [INW94]). Let G1 : {0, 1}s → {0, 1}l1 and G2 : {0, 1}s → {0, 1}l2 be explicit
PRGs. Then for any δ ∈ (0, 1/2) there is an explicit PRG G : {0, 1}s′ → {0, 1}l1+l2 where s′ =
s + O(log(w/δ)) such that for any (l1, w) branching program B and (l2, w) branching program B′,
we have ∣∣∣∣∣∣(BB

′
)[G]−B[G1]B

′
[G2]

∣∣∣∣∣∣
max

< δ.

Given Lemma 4.9, we can reduce the seed of all PRPGs appearing in the Richardson polynomial.

Corollary 4.11. Fix w ∈ N and γ ∈ (0, 1/2) and a length n PRPG M =
∑t

i=1 τi ·Gi1 . . . Gik where
τi ∈ {−1, 1} and for all ij, Gij is an explicit PRG with seed length s, and given i, τi and the index
set ij are constructible in space O(s). Then there is an explicit t bounded PRPG F with seed length
O(s+ log(wkt/γ) log(k)) such that for any (n,w) branching program B,∣∣∣∣B[F ]−B[M ]

∣∣∣∣
max
≤ γ.

Proof. For all i ∈ [t], let Fi be the PRPG obtained from applying Lemma 4.9 to Gi1 . . . Gik with
δ = γ/t. Then Fi is explicit and has seed length O(s+ log(k) log(wkt/γ)).

Then defining F =
∑

i τiFi, we have for any branching program B

∣∣∣∣B[F ]−B[M ]
∣∣∣∣

max
≤

t∑
i=1

∣∣∣∣B[τiFi]−B[τiGi1 . . . Gik ]
∣∣∣∣

max

≤ γ

t
t

Then by Definition 3.3 F is t bounded and has seed length O(s+ log(t) + log(k) log(wkt/γ)).

4.3 From Richardson Iterations to PRPGs

We are now prepared to prove Theorem 4.1.

Theorem 4.1. For all n,w and ε ∈ (0, 1/2), there is an explicit poly(1/ε) bounded pseudorandom
pseudodistribution generator GEN with seed length O(log(n) log(nw)+log(1/ε) log lognw(1/ε)) such
that for every (n,w) branching program B,∣∣∣∣B[Un]−B[GEN]

∣∣∣∣
max
≤ ε.

Proof. Let ` = dlognw(1/ε)e + 1 and let {Mσ : σ ∈ Vn,`} be defined as in Definition 4.3 with
` = `, n = n and w = w. Observe that |Vn,`| ≤ nlognw(1/ε) = poly(1/ε).

For all σ ∈ Vn,`, let GENσ be the explicit PRPG obtained from applying Corollary 4.11
with M = Mσ, w = w and γ = ε/2|Vn,`|. In the notation of the corollary, k = O(lognw(1/ε))
and t = 1/ poly(ε). Thus GENσ is explicit, poly(1/ε) bounded, and has seed length sterm =
O(log(nw) log(n) + log(w/ε) log lognw(1/ε)). As we have log(n) = Ω(log lognw(1/ε)) we can ignore
the log(w) log lognw(1/ε) term.

Finally, let ssum = dlog(|Vn,`|)e and define GEN : {0, 1}ssum × {0, 1}sterm → {0, 1}n by

GEN =
∑

σ∈Vn,`

GENσ .
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Now fix an arbitrary (n,w) branching program B. We have

∣∣∣∣B[GEN]−B[Un]
∣∣∣∣

max
=

∣∣∣∣∣∣
∣∣∣∣∣∣B[

∑
σ∈Vn,`

GENσ]−B[Un]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

≤
∑

σ∈Vn,`

∣∣∣∣∣∣
∣∣∣∣∣∣B[GENσ]−

∑
σ∈Vn,`

B[Mσ]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

+

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

σ∈Vn,`

B[Mσ]−B[Un]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

≤ ε

2|Vn,`|
|Vn,`|+

ε

2

where the final line comes from our choice of error in Corollary 4.11 and Lemma 4.4.
It remains to show seed length and explicitness. We have that GEN is explicit and poly(1/ε)

bounded by Definition 3.3. The seed length is bounded as s = ssum + sterm, and as

ssum = O(` log(n)) = O(lognw(1/ε) log(n)) = O(log(1/ε))

and
sterm = O(log(n) log(nw) + log(1/ε) log lognw(1/ε))

so we obtain the desired result.

5 Pseudodistributions for Permutation Branching Programs

There are two major modifications of the above method for permutation branching programs. First,
we use machinery from [AKM+20] for a more sophisticated estimate of the norm of the error matrix.
Second, we use tools from [HPV21] to approximate concatenations of PRPGs independent of width.

5.1 Cycle Lift Correspondence

For the duration of the section we will assume that n + 1 is a power of two. This is without loss
of generality, as any prefix of an ε-PRPG for permutation branching programs must also ε-fool
permutation branching programs, as the final layers could be the identity.

We first give an analogue of Lemma 4.4, except that the base PRPGs are somewhat more
complicated, so we defer their precise definition till later. We define our index set in an isomorphic
but more convenient manner.

Definition 5.1. For all n, ` ∈ N define the index set Vn,` as

Vn,` = {0 < σ1 < · · · < σk ≤ n : σi ∈ Z+, 0 ≤ k ≤ `}.

For σ ∈ Vn,` we write |σ| to denote the k corresponding to this σ.

We can then state an analogue of Lemma 4.4.

Theorem 5.2. For all n ∈ N and ε, δ ∈ (0, 1/2), set ` = dlog1/δ(1/ε)e. Then there exists a family

{Mσ : σ ∈ Vn,`} of PRPGs, where for all σ, Mσ is a sum over 2` products of O(` log(n)) explicit
PRGs, each with seed length O(log(n) log(log(n)/δ)), multiplied by a sign. Furthermore, for any
permutation branching program B of length n and arbitrary width,∣∣∣∣∣∣

∣∣∣∣∣∣
∑

σ∈Vn,`

B[Mσ]−B[Un]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

≤ ε · poly(n).
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For the remainder of the subsection, for an arbitrary length n, width w permutation BP B
let N = (n + 1)w. Given the program B, we define a graph that “holds” information about the
(pseudo)-distribution of a function over the program.

Definition 5.3. Given n ∈ N and a width n permutation branching program B, define the modified
transition graph B̂ : {0, 1} → R(n+1)w×(n+1)w by

B̂[s] =


0 B0..1[s] 0 . . . 0

0 0 B1..2[s]
...

...
. . . 0

0 0 Bn−1..n[s]
Jw 0 . . . 0


Recall that for all i we define B̂(i) : {0, 1}i → R(n+1)w×(n+1)w as B̂(i)[s] = B̂[s1]B̂[s2] . . . B̂[si].
Finally, given a PRPG (G, ρ) : {0, 1}s → {0, 1}m we abuse notation and define

B̂(m)[(G, ρ)] = E
x←Us

[ρ(x)B̂(m)[G(s)].

We first prove a basic result on the structure of these matrices.

Proposition 5.4. For all x ∈ N, s ∈ {0, 1}x and j, k ∈ {0, . . . , n}, let m = j + x mod n + 1.
Then:

(B̂(x)[s])j,k =


0 k 6= m

Jw m ≤ j
Bj..k[s] j < m

Proof. The only nonzero blocks of B̂ have index (i, i + 1 mod n + 1), and we implicitly mod the
indices for notational convenience. Thus,

(B̂(x)[s])j,k = (
x∏
i=1

B̂[si]j+(i−1),j+i)j,k

Clearly if k 6= j + x mod n+ 1 this is zero. Otherwise, if B̂[si]n,0 = Jw appeared in this product,
all other matrices in the product are doubly stochastic and so (B̂(x)[s])j,k = Jw. Otherwise the
product is of the form

∏x
i=1 B[si]j+(i−1),j+i = Bj..j+x[s] as desired.

Remark 5.5. We have that B̂(n+1)[s] = In+1 ⊗ Jw, independent of s. Furthermore,

(In+1 ⊗ Jw)B̂(x)[s] = (In+1 ⊗ Jw)B̂(x)[s′] = B̂(x)[s′](In+1 ⊗ Jw)

for any x and s, s′, which follows from the fact that B is a permutation branching program.

This will enable higher powers to exactly cancel in the error reduction procedure.

Definition 5.6. Given n ∈ N and δ ∈ (0, 1/2), let INW0, . . . , INWq be the PRGs obtained from
applying Theorem 3.13 with n = 2q and error δ = δ/40q. These generators have seed length
bi = O(q log(q/δ)). Then for any permutation BP B, let B̂ be defined as in Definition 5.3 and for
all i ∈ {0, . . . , `} define

Wi = E[B̂(2i)[INWi(Ubi)]].
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We remark that since INW0 is the trivial PRG on one bit, W0 is defined identically to what is
stated in Subsection 2.2. Furthermore, these matrices are well structured, as products correspond
to concatenations of PRG outputs.

Proposition 5.7. For any sequence Wi1 . . .Wir and k, l ∈ {0, . . . , n}, let m = k +
∑r

j=1 2ij

mod n+ 1. Then

(
r∏
j=1

Wij )k,l =


0 k 6= m

Jw m ≤ k
Bk..l[(

∏r
j=1 INWij )] k < m

Proof. We write the product as

r∏
j=1

Wij =
r∏
j=1

E
x←Ubij

[B̂(2ij )[INWij (x)]]

= E
xij←Ubij

[

r∏
j=1

B̂(2ij )[INWij (xij )]]

= B̂(
∑r
j=1 2ij )[

r∏
j=1

INWij ]

where the final line follows from Proposition 5.4, and we conclude by Proposition 5.4.

We now show that the distribution matrices successively approximate each other with respect
to unit circle approximation.

Lemma 5.8. For all i ∈ [q],

Wi
◦
≈ δ

40 log(n)
W2

i−2.

Proof. Let Âx be the transition graph of the length n permutation branching program Ax, which
has transition functions B1, . . . , Bn, A

x
0 where Ax0(v, b) = (v − 1 + x mod w) + 1. We first claim

B̂[s] = Ewx=1 Âx[s]. Fixing s, clearly (Âx)i,j [s] = B̂[s]i,j for all x for all blocks (i, j) 6= (n, 0). For
the (n, 0) block, for all x ∈ [w] and s ∈ {0, 1}, Ax[s] is a matching from v ∈ [w] to (v − 1 + x
mod w) + 1. Therefore for any s, the probability over x of reaching state v′ from state v is 1/w for
all v, v′ ∈ [w], so we verify the claim.

Then by Theorem 3.13, for all x ∈ [w] and i ∈ [q] we have

E[Â(2i)
x [INWi(Ubi)]]

◦
≈δ/40 log(n) E[Â(2i)

x [(INWi−1(Ubi−1
), INWi−1(Ubi−1

))]]

Then applying Proposition 3.10 we obtain

Wi = B̂(2i)[INWi]

=
w
E
x=1

[E[Â(2i)
x [INWi(Ubi)]]]

◦
≈δ/40 log(n)

w
E
x=1

[E[Â
(2i)
j [(INWi−1(Ubi−1

), INWi−1(Ubi−1
))]]]

= B̂(2i)[INWi−1, INWi−1]

= W2
i−1

22



We wish to use this sequence of approximations W0, . . . ,Wq to construct a good approximation
to Wn

0 . To do so, we slightly modify the construction described in Section 6 of [AKM+20]. They
tensor the matrix to be approximated with a cycle of sufficient length (in our case n + 1). To do
so, they first define a series of cycles.

Definition 5.9. Let C0 = [1] and given Ci let Ci+1 =

[
0 Ci

I2i 0

]
.

We now define the weighted Laplacian of the cycle-lift of length n of W0.

Definition 5.10. Given n ∈ N, δ ∈ (0, 1/2) and a length n permutation BP B, define c = 1− 1
n+1 .

Let B̂ and W0 be defined as in Definition 5.6 with δ = δ. Define the Laplacian of the cycle-lift as

L = L(0) = I2qN −Cq ⊗ cW0.

For convenience, we write ci = c2i . This definition is identical to that in [AKM+20] except we
multiply W0 by a small factor. This makes L invertible, making the analysis cleaner and providing
a bound on the condition number of L that is independent of the width of the branching program.
We now detail the decomposition of this laplacian using repeated Schur complements, identical to
that of Section 6 of [AKM+20].

Let H be the set of indices {2q−1N, 2q−1N + 2, . . . , 2qN − 1}, so that the cycle Cq alternates
between H and Hc. We get the following nice form for the Schur complement of L onto the set H:

Sc(L, H) = I2q−1N − (I2q−1 ⊗ cW0)(Cq−1 ⊗ cW0) = I2q−1N −Cq−1 ⊗ c2W2
0

This is exactly the Laplacian of the cycle lift of W2
0 with Cq−1. We then replace W2

0 with W1

and again take the Schur complement with respect to Cq−2. We repeat this procedure q times to
obtain a decomposition of the laplacian in terms of repeated Schur complements. Formally, define
L(0) = L and for all i ∈ [q] define

L(i) = X1 . . .Xi

[
I(2q−2q−i)N 0

0 I2q−i −Cq−i ⊗ c2iWi

]
Yi . . .Y1 (6)

Where

Xj =

I(2q−2q−j+1)N 0 0

0 I2q−jN 0
0 −I2q−j ⊗ cj−1Wj−1 I2q−jN

 ,Yj =

I(2q−2q−j+1)N 0 0

0 I2q−jN −Cq−j ⊗ cj−1Wj−1

0 0 I2q−jN


Given this factorization, it is easy to compute the inverse:

(L(q))−1 = Y−1
1 . . .Y−1

q

[
I(2q−1)N 0

0 (IN −C0 ⊗ cqWq)
−1

]
X−1
q . . .X−1

1

Where

X−1
j =

I(2q−2q−j+1)N 0 0

0 I2q−jN 0
0 I2q−j ⊗ cj−1Wj−1 I2q−jN

 ,Y−1
j =

I(2q−2q−j+1)N 0 0

0 I2q−jN Cq−j ⊗ cj−1Wj−1

0 0 I2q−jN


Note that

(IN −C0 ⊗ cqWq)
−1 = (IN − cqIn+1 ⊗ Jw)−1 = IN + (

∞∑
i=1

ciq)(In+1 ⊗ Jw)

23



where the scaling by cq allows a power series representation, and the dependence on B falls out.
We now characterize this cycle lift inverse in terms of the base matrices Wi. To do so, we define

Dr for r ∈ {0, . . . , q}. Intuitively, Dr “holds” the layers of the original cycle Cq that are divisible
by 2r. We start with layer 0 in Dq and repeatedly lift using X−1

i and Y−1
i to construct indices

with smaller least significant digits.

Definition 5.11. Let Dq = (IN − cqIn+1 ⊗ Jw)−1 ∈ RN×N . Given Dr ∈ RN2q−r×N2q−r , define

Dr−1 ∈ RN2q+1−r×N2q+1−r
as

Dr−1 =

[
I2q−rN Cq−r ⊗ cr−1Wr−1

0 I2q−rN

] [
I2q−rN 0

0 Dr

] [
I2q−rN 0

I2q−r ⊗ cr−1Wr−1 I2q−rN

]
=

[
I2q−rN + (Cq−r ⊗ cr−1Wr−1)Dr(I ⊗ cr−1Wr−1) (Cq−r ⊗ cr−1Wr−1)Dr

Dr(I2q−r ⊗ cr−1Wr−1) Dr

]
With this definition, D0 = (L(q))−1.
We index the rows and columns of the N ×N blocks of Dr by the cycle Cq−r, multiplied by 2r

(for instance, Dq−1 has block indices {0, 2q−1}). We now show the inverse has the correct form.

Lemma 5.12. For all k ∈ {0, . . . , q} and v, w ∈ {0, . . . , 2q−k − 1} · 2k, let m = w − v mod 2q.
Then

(Dk)v,w = (IN − cqIn+1 ⊗ Jw)−1cmWi1 . . .Wir

where
∑r

j=1 2ij = m and r ≤ 2(q−k). Furthermore, given v, w the indices i1, . . . , ir are computable
in space O(log(n)).

Proof. We prove this using backwards induction from Dq. For the base case, there is only one block
v = w = 0 and (Dq)0,0 = (IN − cqIn+1 ⊗ Jw)−1 as claimed. Now assume that the indices fixed by
Dr have the claimed form. Fix any indices v, w ∈ {0, . . . , 2q−r} and consider the 2 × 2 submatrix
of Dr−1 induced by the (v, w) entry of each of the four components of the lift. From the definition
of Cq−(r−1), this submatrix has indices

S =

[
(v + 2r−1, w + 2r−1) (v + 2r−1, w)

(v, w + 2r−1) (v, w)

]
.

We aim to show the entries of (Dr−1)|S have the desired form. From the definition of the indexing
we obtain ((Cq−r ⊗ IN )Dr)v,w = (Dr)v+2r,w. Recalling the structure of the lift,

(Dr−1)|S =

[
(I2q−rN + (Cq−r ⊗ cr−1Wr−1)Dr(I ⊗ cr−1Wr−1))v,w ((Cq−r ⊗ cr−1Wr−1)Dr)v,w

(Dr(I2q−r ⊗ cr−1Wr−1))v,w (Dr)v,w

]
.

Note that for v 6= w we have |v−w| ≥ 2r by definition, and In+1 ⊗ Jw commutes with Wi for all i
by Remark 5.5.

• (Dr−1)v,w = (Dr)v,w has the claimed form by the inductive assumption.

• (Dr−1)v,w+2r−1 = (Dr)v,wcr−1Wr−1 and so has the claimed form.

• (Dr−1)v+2r−1,w = cr−1Wr−1(Dr)v+2r,w and so has the claimed form.

• For the upper right block where v 6= w,

(Dr−1)v+2r−1,w+2r−1 = cr−1Wr−1(Dr)v+2r,wcr−1Wr−1

and so has the claimed form.
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• Finally, for the upper left block where v = w, let W̃ be the product of Wij matrices in
(Dr)v+2r,v, which must have total length v − (v + 2r) mod 2q = 2q − 2r by the inductive
assumption. Therefore,

(Dr−1)v+2r−1,w+2r−1 = IN + cr−1Wr−1(Dr)v+2r,vcr−1Wr−1

= IN + cr−1Wr−1[(IN − cqIn+1 ⊗ Jw)−1c2q−2rW̃ ]cr−1Wr−1

= IN + cq(In+1 ⊗ Jw)(IN − cqIn+1 ⊗ Jw)−1

= (IN − cqIn+1 ⊗ Jw)−1

and so has the claimed form.

It is clear that each lift concatenates at most two matrices Wr−1 to any block, so the number of
matrices in each product is bounded as desired.

Finally, given x, y ∈ {0, . . . , 2q−(r−1)−1}·2r−1 in the index set of Dr−1, it is simple to determine
which indices x′, y′ of Dr were used to lift to (Dr−1)x,y. Given this, we determine if the lift to
Dr−1 left and/or right concatenated Wr−1 (with corresponding index r − 1) and recurse. Since
this requires storing x, y and the current level r, we require space O(log(n)) to output the index
set. Furthermore, note that this algorithm does not depend on B, only n and the (fixed) lift
procedure.

Corollary 5.13. By taking Wi = W2i
0 for all i (corresponding to simply writing L as q suc-

cessive Schur complements and not replacing higher powers with approximations) we obtain from
Lemma 5.12 that

(L−1)0,n = (L(0))−1
0,n = (IN − cqIn+1 ⊗ Jw)−1cnWn

0 .

5.2 Applying Richardson Iteration

From the previous subsection, we obtain a matrix (L(q))−1 which we wish to show is a good (enough)
preconditioner of L. To do so, we use tools from [CKP+17,AKM+20]. This will allow us to boost
the quality of our approximation using Richardson iteration.

Proposition 5.14. Given n ∈ N and δ, ε ∈ (0, 1/2), define ` = dlog1/δ(1/ε)e. Fix any length

n permutation BP B and let L and L(q) be defined as in Definition 5.10. Then define Err =
I2qN − (L(q))−1L and

L̃−1 =
∑̀
i=0

Erri · (L(q))−1.

Then ||L̃−1 − L−1||max ≤ ε · poly(n).

To prove this, we recall machinery from [AKM+20]. For all i ∈ {0, . . . , q}, define

S(i) =

[
0 0
0 I2q−iN −Cq−i ⊗ ciWi

]
∈ R2qN×2qN (7)

where the 0 padding is added to make the dimensions of the matrices equal. These correspond to
the approximate Schur complement blocks used in the cycle decomposition.
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Lemma 5.15 ([AKM+20] Lemma 6.7). Let S0, . . . ,S(q) and L(0), . . . ,L(q) be defined as in Equa-
tion (7) and Equation (6) respectively. Then for

F =
2

q

q∑
i=0

US(i)

we have:

• For each 0 ≤ i ≤ q, ∣∣∣∣∣∣F+/2(L− L(i))F+/2
∣∣∣∣∣∣

2
≤ ε/q,

• The final matrix L(q) satisfies

L(q)TF+L(q) � 1

40q2
F.

The lemma is proved in [AKM+20] for Laplacians of cycle lifts of Eulerian graphs without
the scaling factor c, but no component of the proof requires this. We reproduce the proof in
Appendix A. We now recall a further lemma required to bound the norm of Err.

Lemma 5.16 ([AKM+20] Lemma D.4). Suppose we are given matrices L, L̃ and a positive semi-
definite matrix F such that ker(F) ⊆ ker(L) = ker(LT ) = ker(L̃) = ker(L̃T ) and

• ||F+/2(L− L̃)F+/2||2 ≤ ε,

• L̃F+L̃ � γF,

then ||Iim(F) − L̃+L||F ≤ ε
√
γ−1.

Now that we have this F norm, we can use Richardson iteration to prove the proposition.

Proof of Proposition 5.14. We apply Lemma 5.16 with L = L, L̃ = L(q) and F = F, all of which
are invertible and thus trivially satisfy the kernel properties, and satisfy the other properties by
Lemma 5.15, which gives

||Err||F = ||I2qN − (L(q))−1L||F ≤ 40qδ/40q = δ.

We then apply Lemma 2.2 with A = L,E = (L(q))−1, m = `, and norm || · || = || · ||F, so we obtain

||I2qN − L̃−1L||F = ||I2qN − (
∑̀
i=0

Erri · (L(q))−1)L||F = ||I2qN −PmL||F ≤ δ` ≤ ε.

For any v ∈ R2qN with ||v||2 = 1 we have

||Lv||2 = ||S(0)v||2 = ||(I2qN −Cq ⊗ cW0)v||2 ≥ 1− c = 1/(n+ 1).

Furthermore for all i > 0, US(i) is positive semidefinite. Therefore F = 2
q

∑q
i=0 US(i) is a symmetric

positive definite matrix with minimum singular value 2
q (1− c) = 1/poly(n). Then,

||L−1 − L̃−1||max ≤ ||(L−1 − L̃−1)LL−1||2
≤ ||I2qN − L̃−1L||2||L−1||2
≤ poly(n) · ||I2qN − L̃−1L||F
≤ poly(n) · ε

where the third line follows from Proposition 3.7.
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5.3 Translation to Pseudodistributions

Now that we have a Richardson polynomial approximating the true inverse, as in the path lift case
we wish to interpret the output as a pseudodistribution.

Definition 5.17. Given n ∈ N and δ ∈ (0, 1/2), for all x, y ∈ {0, . . . , n} let m = y − x mod n+ 1
and define

Gx,y = INWi1 . . . INWir

as the product of PRGs satisfying

(IN − cqIn+1 ⊗ Jw)−1cmB̂(m)[Gx,y] = (L(q))−1
x,y.

for any length n permutation BP B where (L(q))−1 is as defined in Definition 5.10 with n = n and
δ = δ. We remark that r ≤ 2q and Gx,y is explicit given x, y by Lemma 5.12.

Lemma 5.18. Given n ∈ N and δ ∈ (0, 1/2), for all i, j ∈ {0, . . . , n}, let m = j− i mod n+1. Let
Gx,y be defined as in Definition 5.17 with n = n and δ = δ and recall R is the trivial PRG on one
bit. Then for any length n permutation BP B, let Err be defined as in Proposition 5.14. Then,

Erri,j =

{
0 i = j

cmB̂(m)[Gi,j−1R−Gi,j ] i 6= j.

Proof. The approach is nearly identical to that of the path lift. We detail the case where i < j:

Erri,j = −
n∑
k=0

(L(q))−1
i,kLk,j

= −[(L(q))−1
i,j Lj,j + (L(q))−1

i,j−1Lj−1,j ]

= (IN − cqIn+1 ⊗ Jw)−1(−cj−iB̂(m)[Gi,j ] + cj−i−1B̂(m−1)[Gi,j−1]cW0)

= (IN − cqIn+1 ⊗ Jw)−1cj−i(B̂(m)[Gi,j−1R]− B̂(m)[Gi,j ])

= cj−iB̂(m)[Gi,j−1R−Gi,j ].

Where the second line follows from the definition of L, the third from Definition 5.17, and the fifth
from Remark 5.5.

We now index the nonzero summands of the Richardson polynomial.

Lemma 5.19. Given n, ` ∈ N and δ ∈ (0, 1/2), let Gx,y be as defined in Definition 5.17 and Vn,`
as in Definition 5.1. Then for all σ ∈ Vn,`, define

Mσ = (G0,σ1−1R−G0,σ1)
r−1∏
i=1

(Gσi,σi+1−1R−Gσi,σi+1)Gσr,n.

Then for any length n permutation BP B, let Err and (L(q))−1 be defined as in Proposition 5.14.
Then,

(
∑̀
r=0

Errr(L(q))−1)0,n = (IN − cqIn+1 ⊗ Jw)−1cn
∑

σ∈Vn,`

B̂(n)[Mσ].
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Proof. Fix any r ∈ {0, . . . , `}, then

(Errr(L(q))−1)0,n =
∑

(ij)∈{0..n}r
Err0,i1

r−1∏
j=1

Errij ,ij+1(L(q))−1
ir,n

=
∑

σ∈Vn,`:|σ|=r

Err0,σ1(

r−1∏
i=1

Errσd,σd+1
)(L(q))−1

σr,n

=
∑

σ∈Vn,`:|σ|=r

cσ1B̂(σ1)[G0,σ1−1R−G0,σ1 ]
r−1∏
i=1

cσi+1−σiB̂(σi+1−σi)[Gσi,σi+1−1R−Gσi,σi+1 ](L(q))−1
σr,n

= (IN − cqIn+1 ⊗ Jw)−1cn
∑

σ∈Vn,`:|σ|=r

B̂(n)[Mσ].

Where the second line follows from Lemma 5.18 and Remark 5.5 as B̂(m)[s] − B̂(m)[s′] = 0 for all
m > n and all s, s′, so all products of total length greater than n are identically zero and fall out.
Then we conclude by taking a sum over r.

We next show the family of PRPGs Mσ jointly approximate B̂(n)[Un], which holds the distri-
bution of random walks from layer 0 to layer n in the branching program.

Lemma 5.20. Given n ∈ N and ε, δ ∈ (0, 1/2), let ` = dlog1/δ(1/ε)e and let {Mσ : σ ∈ Vn,`}
be defined as in Lemma 5.19. Then for any length n permutation BP B, let B̂ be defined as in
Definition 5.3. Then ∣∣∣∣∣∣

∣∣∣∣∣∣
∑

σ∈Vn,`

B̂(n)[Mσ]− B̂(n)[Un]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

≤ ε · poly(n).

Proof. Recall L̃−1,L as defined in Proposition 5.14. We obtain

ε · poly(n) ≥
∣∣∣∣∣∣(L̃−1 − L−1)0,n

∣∣∣∣∣∣
max

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

σ∈Vn,`

(IN − cqIn+1 ⊗ Jw)−1cnB̂(n)[Mσ]− (IN − cqIn+1 ⊗ Jw)−1cnWn
0

∣∣∣∣∣∣
∣∣∣∣∣∣
max

=

∣∣∣∣∣∣
∣∣∣∣∣∣cn

∑
σ∈Vn,`

B̂(n)[Mσ]− cnB̂(n)[Un]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

≥ 1

4

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

σ∈Vn,`

B̂(n)[Mσ]− B̂(n)[Un]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

where the first line follows from Proposition 5.14, the second from Lemma 5.19 and Corollary 5.13,
the third from Remark 5.5 and Proposition 5.7, and the fourth from our choice of c.

We are now prepared to prove Theorem 5.2.

28



Theorem 5.2. For all n ∈ N and ε, δ ∈ (0, 1/2), set ` = dlog1/δ(1/ε)e. Then there exists a family

{Mσ : σ ∈ Vn,`} of PRPGs, where for all σ, Mσ is a sum over 2` products of O(` log(n)) explicit
PRGs, each with seed length O(log(n) log(log(n)/δ)), multiplied by a sign. Furthermore, for any
permutation branching program B of length n and arbitrary width,∣∣∣∣∣∣

∣∣∣∣∣∣
∑

σ∈Vn,`

B[Mσ]−B[Un]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

≤ ε · poly(n).

Proof. Let {Mσ : σ ∈ Vn,`} be defined as in Lemma 5.19. For all σ, we have that Mσ is a sum over
2` products of 2` log(n + 1) explicit PRGs, each of which has seed length O(log(n) log(log(n)/δ)),
multiplied by a sign. Finally,

ε · poly(n) ≥

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

σ∈Vn,`

B̂(n)[Mσ]− B̂(n)[Un]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

≥

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

σ∈Vn,`

(B̂(n)[Mσ])0,n − (B̂(n)[Un])0,n

∣∣∣∣∣∣
∣∣∣∣∣∣
max

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

σ∈Vn,`

B[Mσ]−B[Un]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

Where the first line follows from Lemma 5.20 and the third from Proposition 5.4.

We now have a set of explicit PRPGs {Mσ : σ ∈ Vn,`} whose sum provides a high quality
approximation of an arbitrary permutation branching program of length n. As before, we wish to
decrease the seed length of each Mσ.

5.4 Permutation Branching Program Inner Derandomization

Given the approximation bound on the sum over PRPGs Mσ, we wish to decrease the seed length
of terms in this sum. Applying Lemma 4.9 would give a nearly-logarithmic dependence on width.
This is acceptable for polynomial width permutation BPs, but can avoided entirely with the main
result of [HPV21].

We now state the inner derandomization lemma.

Lemma 5.21. Fix γ ∈ (0, 1/2) and a length n PRPG M =
∑t

i=1 τiGi1 . . . Gik where τi ∈ {−1, 1}
and for all ij, Gij is an explicit PRG with seed length s, and given i, τi and the index set ij
are computable in space O(s). Then there exists a t bounded explicit PRPG F with seed length
O(s+ log(k) log(t log(k)/γ)) such that for any length n permutation branching program B,∣∣∣∣B[M ]−B[F ]

∣∣∣∣
max
≤ γ.

Proof. Fix an arbitrary permutation branching program B of length n and width w (and degree 2).
By Theorem 1.4 of [HPV21], for all k, s ∈ N and δ ∈ (0, 1/2) there is H : {0, 1}sINW → ({0, 1}s)k
such that H is an explicit δ-PRG for permutation branching programs of length k and degree 2s,
and H has seed length sINW = O(s + log(k) log(log(k)/δ)). Let H be the PRG obtained from
applying the above theorem with δ = γ/t.
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Now fix i ∈ [t] and consider the product Gi1 . . . Gik . Let {lj−1 +1, lj−1 +2, . . . , lj} be the bits of
the product output by Gij , where l0 = 0. Then for all j ∈ [k], define B′j−1..j [s] = Blj−1..lj [Gij (s)].
Note that this defines a length 1, degree 2s permutation branching program of the same width as
B. Then B′ is a degree 2s, length k permutation branching program. Unrolling the definition,

γ/t ≥
∣∣∣∣∣∣B′[U[2s]k ]−B

′
[H]
∣∣∣∣∣∣

max

=

∣∣∣∣∣∣
∣∣∣∣∣∣
k∏
j=1

E[Blj−1..lj [Gij (Us)]]− E
x←UsINW

k∏
j=1

Blj−1..lj [Gij (H(x)j)]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

=

∣∣∣∣∣∣
∣∣∣∣∣∣B[

k∏
j=1

Gij ]−B[(
k∏
j=1

Gij ) ◦H]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

where H(x)j is the jth symbol output by H on seed x. Then for all i, define

Fi = (
k∏
j=1

Gij ) ◦H

which is explicit by composition of space bounded algorithms and has seed length sINW = O(s +
log(k) log(t log(k)/γ)). Finally, define F =

∑t
i=1 τiFi, which is explicit by Definition 3.3 and has

seed length sINW +O(log(t)) = O(s+ log(k) log(t log(k)/γ)) as desired. Finally,

∣∣∣∣B[M ]−B[F ]
∣∣∣∣ ≤ t∑

i=1

∣∣∣∣B[τiGi1 . . . Gik ]−B[τiFi]
∣∣∣∣

≤ γ

t
t

5.5 Proof of Theorem 1.4

We are now prepared to prove the main theorem.

Theorem 5.22 (Restatement of Theorem 1.4). For all n and ε ∈ (0, 1/2), there is an explicit
pseudorandom pseudodistribution generator GEN with seed length

s = O(log(n)
√

log(n/ε)
√

log log(n/ε) + log(1/ε) log log(n/ε))

such that for every permutation branching program B of length n and arbitrary width,∣∣∣∣B[Un]−B[GEN]
∣∣∣∣

max
≤ ε.

Proof. Let B be any permutation branching program of length n. Applying Theorem 5.2 with
ε = ε/ poly(n) and δ = δ to be chosen later, we obtain

` = dlog1/δ(n/ε)e = O(log(n/ε)/ log(1/δ))

and a family {Mσ : σ ∈ Vn,`} jointly satisfying∣∣∣∣∣∣
∣∣∣∣∣∣
∑

σ∈Vn,`

B[Mσ]−B[Un]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

≤ ε/2.
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For all σ ∈ Vn,`, let GENσ be the explicit PRPG obtained from applying Lemma 5.21 withM = Mσ,
t = 2`, k = 2 log(n+ 1)`, and error parameter γ = ε/2|Vn,`|.

Finally, define

GEN =
∑

σ∈Vn,`

GENσ,

then applying the triangle inequality and unwinding definitions, we obtain,

∣∣∣∣B[GEN]−B[Un]
∣∣∣∣

max
=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

σ∈Vn,`

B[GENσ]−B[Un]

∣∣∣∣∣∣
∣∣∣∣∣∣
max

≤
∑

σ∈Vn,`

∣∣∣∣B[GENσ]−B[Mσ]
∣∣∣∣

max
+ ||

∑
σ∈Vn,`

B[Mσ]−B[Un]||max

≤ ε

2|Vn,`|
|Vn,`|+ ε/2

= ε.

Where the third line follows from Lemma 5.21 and Theorem 5.2.
It remains to show seed length and explicitness. By Lemma 5.21, we have that for all σ, GENσ

is explicit and has seed length

sterm = O(log(n) log(log(n)/δ) + log(log(n)`)(`+ log(|Vn,`|/ε))).

Thus GEN has seed length s = sterm +ssum = sterm +O(log(|Vn,`|)) and is explicit by Definition 3.3.

Finally, we choose δ = 2−
√

log(n/ε) log log(n/ε). Therefore we obtain

` = O(
√

log(n/ε)/
√

log log(n/ε))

which implies log |Vn,`| = O(` log(n)) = O(log(n)
√

log(n/ε)/
√

log log(n/ε)), which implies

s = ssum + sterm

= O(log(n) log log(n) + log(n)
√

log(n/ε) log log(n/ε) + log log(n/ε)(`+ log(|Vn,`|/ε)))

= O(log(n)
√

log(n/ε) log log(n/ε) +
log log(n/ε)√
log log(n/ε)

√
log(n/ε) log(n) + log log(n/ε) log(1/ε))

= O(log(n)
√

log(n/ε)
√

log log(n/ε) + log(1/ε) log log(n/ε)).
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A Proof of Lemma 5.15

Here we reproduce the proof of [AKM+20] Lemma 6.7 to verify our claim.

Lemma A.1 (CKKPPRS18 Lemma 2.3). Consider a sequence of m-by-m matrices S(0), . . . ,S(m)

such that

1. S(i) has nonzero indices only on the indices [i+ 1,m]

2. The left-right kernels of S(i) are equal, and after restricting S(i) to the indices [i+ 1,m], the
kernel of the resulting matrix equals the coordinate restriction of the vectors in the kernel of
S(0).

3. The symmetrization of each S(i), denoted US(i), is positive semi-definite.

Let M = M(0) = S(0) and define M(1), . . . ,M(m) iteratively by

M(i+1) = M(i) + (S(i+1) − Sc(M(i), [i+ 1,m]))

If for a subsequence of indices 1 = i0 < i1 < . . . < ipmax associated scaling parameters 0 <

θ0, . . . , θpmax−1 < 1/2 such that
∑pmax−1

p=0 θp = 1, and some global error 0 < ε < 1/2, we have for
every 0 ≤ p < pmax:

||U+/2

S(ip)
(M(ip) −M(ip+1))U

+/2

S(ip)
|| ≤ θpε

then for a matrix-norm defined from the symmetrization of the S(ip) matrices and the scaling pa-
rameters

F =
∑

0≤p<pmax

θpUS(ip)

we have:

1. For each 0 ≤ i ≤ pmax,
||F+/2(M−M(i))F+/2||2 ≤ ε

2. The final matrix M(pmax) satisfies

M(pmax)TF+M(pmax) � 1

40p2
max

F.

We require one more basic derivation and two statements on unit circle equivalence.

Lemma A.2 ([AKM+20] Lemma D.4). Let L(i) be the 2qN × 2qN matrices defined in Section 5,
then

L(i+1) − L(i) =

[
0 0
0 −Cq−i−1 ⊗ ci+1Wi+1 + Cq−i−1 ⊗ ci+1W

2
i

]
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Lemma A.3 ([AKM+20] Corollary 4.6). Let W̃,W ∈ CN×N be possibly asymmetric matrices such

that W̃
◦
≈ε W. For all k ∈ N let C(k) be the transition matrix for the directed cycle on k vertices.

Then C(k) ⊗ W̃
◦
≈ε C(k) ⊗W.

Lemma A.4 ([AKM+20] Lemma 3.8). Let W̃,W ∈ CN×N be possibly asymmetric matrices. Then

W̃
◦
≈ε W if and only if

∣∣∣∣∣∣U+/2
IN−W(W̃ −W)U

+/2
IN−W

∣∣∣∣∣∣
2
≤ ε.

We are now prepared to prove the result.

Lemma 5.15 ([AKM+20] Lemma 6.7). Let S0, . . . ,S(q) and L(0), . . . ,L(q) be defined as in Equa-
tion (7) and Equation (6) respectively. Then for

F =
2

q

q∑
i=0

US(i)

we have:

• For each 0 ≤ i ≤ q, ∣∣∣∣∣∣F+/2(L− L(i))F+/2
∣∣∣∣∣∣

2
≤ ε/q,

• The final matrix L(q) satisfies

L(q)TF+L(q) � 1

40q2
F.

Proof. From S(i)’s and L(i)’s we build a sequence of Ŝ(j)’s and M̂(j)’s that satisfy the conditions
of Lemma A.1, and using that we derive the statement of the lemma. For 0 ≤ i < q, and 0 ≤ j <
2q−i−1N , define ai = (2q − 2q−i)N , Ŝ(aq) = S(q), and

Ŝ(ai+j) =

{
S(i) if j = 0

Sc(M̂ai+j−1, [ai + j − 1, 2qN ]) otherwise

and
M̂(h+1) = M̂(h) + (Ŝ(h+1) − Sc(M̂(h), [h+ 1, 2qN ]))

Note that Ŝ’s satisfy all the three premises in Lemma A.1. First Ŝ(i) has non-zero entries only
on the indices [i + 1, 2qN ]. Further as all Ŝ(i)’s are symmetric diagonally dominant due to the
scaling factor, the kernel properties are trivially satisfied and UŜ(i) is PSD, so all premises of the

lemma hold. Next we show that for all i’s L(i+1) approximates L(i) in the norm defined by US(i) .
By Lemma A.2,

L(i+1) − L(i) =

[
0 0
0 −Cq−i−1 ⊗ ci+1Wi+1 + Cq−i−1 ⊗ ci+1W

2
i

]
Now, given ci+1Wi+1

◦
≈ε/q ci+1W

2
i , by Lemma A.3 and Lemma A.4 we obtain

||U+/2

Sc(S(i),Hi)
(L(i+1) − L(i))U

+/2

Sc(S(i),Hi)
||2 ≤ ε/q

where Hi are the indices used for the ith Schur complement. Then since USc(S(i),Hi)
� 2US(i) ,

||U+/2

S(i) (L(i+1) − L(i))U
+/2

S(i) ||2 ≤ 2ε/q
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By construction, we have Ŝ(ai) = S(i) and M̂(ai) = L(i) for all 0 ≤ i ≤ q. Therefore, we have

||U+/2

Ŝ(ai)
(M̂(ai+1) − M̂(ai))U

+/2

Ŝ(ai)
||2 ≤ 2ε/q

Thus by Lemma A.1 for F = 2
q

∑q
i=0 US(i) we obtain

||F+/2(L− L(i))F+/2||2 ≤ ε ∀0 ≤ i ≤ q

and

L(q)TF+L(q) � 1

40q2
F.
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