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Abstract

A recent paper of Braverman, Cohen, and Garg (STOC 2018) introduced the concept of
a weighted pseudorandom generator (WPRG), which amounts to a pseudorandom generator
(PRG) whose outputs are accompanied with real coefficients that scale the acceptance probabil-
ities of any potential distinguisher. They gave an explicit construction of WPRGs for ordered
branching programs whose seed length has a better dependence on the error parameter ε than
the classic PRG construction of Nisan (STOC 1990 and Combinatorica 1992).

In this work, we give an explicit construction of WPRGs that achieve parameters that are
impossible to achieve by a PRG. In particular, we construct a WPRG for ordered permuta-
tion branching programs of unbounded width with a single accept state that has seed length
Õ(log3/2 n) for error parameter ε = 1/ poly(n), where n is the input length. In contrast, re-
cent work of Hoza et al. (ITCS 2021) shows that any PRG for this model requires seed length
Ω(log2 n) to achieve error ε = 1/poly(n).

As a corollary, we obtain explicit WPRGs with seed length Õ(log3/2 n) and error ε =
1/ poly(n) for ordered permutation branching programs of width w = poly(n) with an arbi-
trary number of accept states. Previously, seed length o(log2 n) was only known when both
the width and the reciprocal of the error are subpolynomial, i.e. w = no(1) and ε = 1/no(1)

(Braverman, Rao, Raz, Yehudayoff, FOCS 2010 and SICOMP 2014).
The starting point for our results are the recent space-efficient algorithms for estimating

random-walk probabilities in directed graphs by Ahmadenijad, Kelner, Murtagh, Peebles, Sid-
ford, and Vadhan (FOCS 2020), which are based on spectral graph theory and space-efficient
Laplacian solvers. We interpret these algorithms as giving WPRGs with large seed length, which
we then derandomize to obtain our results. We also note that this approach gives a simpler
proof of the original result of Braverman, Cohen, and Garg, as independently discovered by
Cohen, Doron, Renard, Sberlo, and Ta-Shma (CCC 2021).
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1 Introduction

The notion of a pseudorandom generator (PRG) [BM84, Yao82, NW94] is ubiquitous in the-
oretical computer science, with vast applicability in cryptography and derandomization. (See the
texts [Gol10, Vad12] for more background on pseudorandomness.) A recent work of Braverman,
Cohen, and Garg [BCG18] introduced the following intriguing generalization of a PRG, in which
we attach real coefficients to the outputs of the generator:

Definition 1.1. Let B be a class of boolean functions B : {0, 1}n → {0, 1}. An ε-weighted
pseudorandom generator (WPRG) for B is a function (G, ρ) : {0, 1}s → {0, 1}n ×R such that
for every B ∈ B, ∣∣∣∣ E

x←U{0,1}n
[B(x)]− E

x←U{0,1}s
[ρ(x) ·B(G(x))]

∣∣∣∣ ≤ ε.
The value s is the seed length of the WPRG, and n is the output length of the WPRG. We say
that the WPRG is (mildly)1 explicit if given x, G(x) and ρ(x) are computable in space O(s),
and ρ(x) has absolute value at most 2O(s).

Above and throughout, we use the standard definition of space-bounded complexity, which
counts the working, read-write memory of the algorithm, and does not include the length of the
read-only input or write-only output, which can be exponentially longer than the space bound.

In the original work of Braverman, Cohen, and Garg [BCG18] and previous versions of this
paper [PV21a], generators as above were called pseudorandom pseudodistributions (PRPDs).
The terminology of weighted pseudorandom generators (WPRGs) was introduced by Cohen et
al. [CDR+21], and we find it more intuitive (and it avoids the double use of the ‘pseudo-’ prefix).

With Definition 1.1, a PRG is a special case of a WPRG with ρ(x) = 1. The power of WPRGs
comes from allowing the coefficients to be negative, which yields cancellations. Indeed, an explicit
ε-WPRG with seed length s in which all of the coefficients are nonnegative can be converted into
an explicit O(ε)-PRG with seed length O(s+ log(1/ε)) (see Appendix C).

A general WPRG can be converted into a linear combination of two unweighted generators.
That is, for every explicit WPRG (G, ρ) : {0, 1}s → {0, 1}n × R, there are explicit generators
G+ : {0, 1}s′ → {0, 1}n and G− : {0, 1}s′ → {0, 1}n with seed length s′ = O(s + log(1/ε)) and
coefficients ρ+, ρ− ∈ R≥0 such that for every function B : {0, 1}n → {0, 1}, we have:

E
x
[ρ(x) ·B(G(x))] = ρ+ · E

x
[G+(x)]− ρ− · E

x
[G−(x)]± ε.

(See Appendix C).
The motivation for WPRGs is that they can be used to derandomize algorithms in the same

way as a PRG: we can estimate the acceptance probability of any function B ∈ B by enumerating
over the seeds x of the WPRG (G, ρ) and calculating the average of the values ρ(x) · B(G(x)).
Furthermore, [BCG18] observe that if (G, ρ) is an ε-WPRG for a model then G is an ε-hitting
set generator (HSG). That is, if B is any function in B with Pr[B(Un) = 1] > ε, then there
exists an x ∈ {0, 1}s such that B(G(x)) = 1.

Given this motivation, it is natural to ask whether WPRGs are more powerful than PRGs. That
is, can ε-WPRGs achieve a shorter seed length than ε-PRGs for a natural computational model B?
(There are simple constructions of artificial examples, one of which we give in Appendix C.) As

1We consider this definition to correspond to mild explicitness because requiring that the generator be computable
in space linear in its seed length only implies that it is computable in time exponential in its seed length (i.e. time
polynomial in the size of its truth table), which is mildly explicit according to the terminology in [Vad12]. Strong
explicitness, in contrast, would require that each bit of the truth table is computable in time polynomial in s.

1



discussed below, Braverman, Cohen, and Garg [BCG18] gave an explicit construction of WPRGs
achieving a shorter seed length than the best known construction of PRGs for ordered branching
programs, but not beating the best possible seed length for that model (given by a non-explicit
application of the Probabilistic Method). In this work, we give an explicit construction of WPRGs
for a natural computational model (ordered permutation branching programs of unbounded width)
with a seed length that beats all possible PRGs for that model.

1.1 Ordered Branching Programs

The work of Braverman, Cohen, and Garg [BCG18], as well as our paper, focuses on WPRGs
for classes B of functions computable by ordered branching programs, a nonuniform model that
captures how a space-bounded randomized algorithm accesses its random bits.

Definition 1.2. An (ordered) branching program B of length n and width w computes a
function B : {0, 1}n → {0, 1}. On an input σ ∈ {0, 1}n, the branching program computes as
follows. It starts at a fixed start state v0 ∈ [w]. Then for r = 1, . . . , n, it reads the next symbol
σr and updates its state according to a transition function Br : [w] × {0, 1} → [w] by taking
vt = Br(vt−1, σt). Note that the transition function Br can differ at each time step.

The branching program accepts σ, denoted B(σ) = 1, if vn ∈ Vacc, where Vacc ⊆ [w] is the set
of accept states, and otherwise it rejects, denoted B(σ) = 0. Thus an ordered branching program
is specified by the transition functions B1, . . . , Bn, the start state v0 and the set Vacc of accept
states.

An ordered branching program of length n and width w can compute the output of an algorithm
that uses logw bits of memory and n random bits, by taking the state at each layer as the contents
of memory at that time. We note that we can convert any ordered branching program into one
with a single accept state by collapsing all of Vacc to a single state.

Using the probabilistic method, it can be shown that there exists an ε-PRG for ordered branch-
ing programs of length n and width w with seed length s = O(log(nw/ε)). The classic construction
of Nisan [Nis92] gives an explicit PRG with seed length s = O(log n · log(nw/ε)), and this bound
has not been improved except for extreme ranges of w, namely when w is at least quasipolynomi-
ally larger than (n/ε) [NZ96, Arm98, KNW08] or when w ≤ 3 [BDVY09, SZ11, GMR+12, MRT19].
Braverman, Cohen, and Garg [BCG18] gave an explicit construction of a WPRG that achieves
improved dependence on the error parameter ε, with seed length

s = Õ (log n · log(nw) + log(1/ε)) .

In particular, for error ε = n− logn and width w = poly(n), their seed length improves Nisan’s from
O(log3 n) to Õ(log2 n). Chatthopadhyay and Liao [CL20] gave a simpler construction of WPRGs
with a slightly shorter seed length than [BCG18], with an additive dependence on O(log(1/ε))
rather than Õ(log(1/ε)).

1.2 Permutation Branching Programs

Due to the lack of progress in constructing improved PRGs for general ordered branching programs
as well as some applications, attention has turned to more restricted classes of ordered branching
programs. In this work, our focus is on permutation branching programs:

Definition 1.3. An (ordered) permutation branching program is an ordered branching
program B where for all t ∈ [n] and σ ∈ {0, 1}, Bt(·, σ) is a permutation on [w].
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This can be thought of as the computation being time-reversible on any fixed input σ. We
note that we cannot assume without loss of generality that a permutation branching program has
a single accept state, as merging a set of accept states will destroy the permutation property.
Nevertheless, ordered permutation branching programs with a single accept state can compute
interesting functions, such as testing whether a

∑
i∈S xi ≡ 0 (mod m), for any m ≤ w and any

S ⊆ [n]. An ordered permutation branching program with a single accept state can also test
whether x|T = π(x|S) for any permutation π : {0, 1}` → {0, 1}` and any two subsets S, T ⊆ [n] of
size ` such that all elements of T are larger than all elements of S, provided that w ≥ 2` [HPV21].

Previous works on various types of PRGs for permutation branching programs [RV05,RTV06,
BRRY10, KNP11, De11, Ste12, HPV21] have achieved seed lengths that are logarithmic or nearly
logarithmic in the length n of the branching program, improving the log2 n bound in Nisan’s
generator. In particular, Braverman, Rao, Raz, and Yehudayoff [BRRY10] gave a PRG for the
more general model of regular branching programs (with an arbitrary number of accept states)
with seed length

s = O (log n · (logw + log(1/ε) + log log n)) .

For getting a HSG, they also showed how how to eliminate the log log n and log(1/ε) terms at the
price of a worse dependence on w,2 achieving a seed length of

s ≤ log(n+ 1) · w.

For the specific case of permutation branching programs, Koucký, Nimbhorkar, and Pudlák [KNP11],
De [De11], and Steinke [Ste12] showed how to remove the log log n term in the Braverman et al.
PRG at the price of a worse dependence on w, achieving seed length

s = O(log n · (poly(w) + log(1/ε))).

Most recently, Hoza, Pyne, and Vadhan [HPV21] showed that the dependence on the width w could
be entirely eliminated if we restrict to permutation branching programs with a single accept state,
constructing a PRG with seed length

s = O(log n · (log log n+ log(1/ε)).

In particular, they show that this seed length is provably better than what is achieved by the
Probabilistic Method; that is, a random function with seed length o(n) fails to be a PRG for
unbounded-width permutation branching programs with high probability. Like the prior PRGs for
bounded-width permutation branching programs, the seed length has a term of O(log n · log(1/ε)).
However, in contrast to the bounded-width case, this cannot be improved to O(log(n/ε)) by a
non-explicit construction. Hoza et al. prove that seed length Ω(log n · log(1/ε)) is necessary for
any ε-PRG against unbounded-width permutation branching programs. For hitting-set generators
(HSGs), they show that seed length O(log(n/ε)) is possible via the Probabilistic Method, thus
leaving an explicit construction as an open problem.

1.3 Our Results

In this paper, we construct an explicit WPRG for permutation branching programs of unbounded
width and a single accept state that beats the aforementioned lower bounds for PRGs:

2The lack of dependence on ε can be explained by the observation of Braverman et al. that any regular branching
program that has nonzero acceptance probability has acceptance probability at least 1/2w−1, so WLOG ε > 1/2w,
i.e. w > log(1/ε).
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Theorem 1.4. For all n ∈ N and ε ∈ (0, 1/2), there is an explicit ε-WPRG (and hence ε-HSG)
for ordered permutation branching programs of length n, arbitrary width, and a single accept state,
with seed length

s = O
(

log(n)
√

log(n/ε)
√

log log(n/ε) + log(1/ε) log log(n/ε)
)
.

In particular, when ε = 1/poly(n), we achieve seed length Õ(log3/2 n), while a PRG requires
seed length Ω(log2 n) [HPV21].

As noted in [HPV21], an ε-WPRG for branching programs with a single accept state is also an
(a·ε)-WPRG for branching programs with at most a accept states. For bounded-width permutation
branching programs, we can take a = w and obtain:

Corollary 1.5. For all n,w ∈ N and ε ∈ (0, 1/2), there is an explicit ε-WPRG (and hence ε-HSG)
for ordered permutation branching programs of length n and width w (and any number of accept
states), with seed length

s = O
(

log(n)
√

log(nw/ε)
√

log log(nw/ε) + log(w/ε) log log(nw/ε)
)
.

In particular for w = poly(n) and ε = 1/ poly(n), we achieve seed length Õ(log3/2 n). Note that
the previous explicit PRGs (or even HSGs) for permutation branching programs (as mentioned in
Subsection 1.2) achieved seed length o(log2 n) only when both w = no(1) and ε = 1/no(1). With

seed length o(log2 n), Corollary 1.5 can handle width as large as w = nΩ̃(logn) and error as small

as ε = 1/n−Ω̃(log(n)). We summarize these results in a table.

Citation Type Model Seed Length

Non-explicit (folklore) PRG General Θ(log(nw/ε)
[Nis92, INW94] PRG General O(log n · log(nw/ε))

[BRRY10] PRG Regular Õ(log n · log(w/ε))
[BRRY10] HSG Regular log(n+ 1) · w

[KNP11,De11,Ste12] PRG Permutation O(log n · (poly(w) + log(1/ε))

[BCG18,CL20], Thm 4.1 WPRG General Õ(log n · log nw + log(1/ε))

[HPV21] PRG Permutation (1 accept) Θ̃(log n · log(1/ε))
Non-explicit [HPV21] HSG Permutation (1 accept) O(log(n/ε))

Theorem 1.4 WPRG Permutation (1 accept) Õ(log n
√

log(n/ε) + log(1/ε))

Corollary 1.5 WPRG Permutation Õ(log n
√

log(nw/ε) + log(w/ε))

2 Overview of Proofs

The starting point for our results are the recent space-efficient algorithms for estimating random-
walk probabilities in directed graphs by Ahmadenijad, Kelner, Murtagh, Peebles, Sidford, and
Vadhan [AKM+20], which are based on spectral graph theory and space-efficient Laplacian solvers.
We interpret these algorithms as giving WPRGs with large seed length, which we then derandomize
to obtain our results.

The specific problem considered by Ahmadenijad et al. is the following: given a directed graph
G = (V,E), two vertices s, t ∈ V , a walk-length k ∈ N, and an error parameter ε > 0, estimate the
probability that a random walk of length k started at s ends at t to within ±ε. Such an algorithm
can be applied to the following graph in order to estimate the acceptance probability of an ordered
branching program:
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Definition 2.1. Given a length n, width w branching programB with transition functions (B1, . . . , Bn)
with start vertex v0 ∈ [w], and a single accept vertex vacc, the (layered) graph associated with
B is the graph G with vertex set {0, 1, . . . , n}× [w] and directed edges from (i−1, v) to (i, Bi(v, 0))
and (i, Bi(v, 1)) for every i = 1, . . . , n and v ∈ [w].

Applying the algorithms of Ahmadenijad et al. to the graph G with s = (0, v0), t = (n, vacc), and
k = n, we obtain an estimate of the acceptance probability of B to within ±ε, just like an ε-WPRG
for B would allow us to obtain. But a WPRG (G, ρ) is much more constrained than an arbitrary
space-efficient algorithm, which can directly inspect the graph. Instead, a WPRG is limited to
generating S = 2s walks of length n in the layered graph, described by sequencesG(x1), . . . , G(xS) ∈
{0, 1}n of edge labels, and then combining the indicators B(G(x1)), . . . , B(G(xn)) of whether the
walks ended at t via a linear combination with fixed coefficients ρ(x1), . . . , ρ(xS) ∈ R.

Note that if B is a permutation branching program, then the graph G above is 2-regular (except
for layer 0 which has no incoming edges and layer n which has no outgoing edges). Thus, the
basis for Theorem 1.4 is the (main) result of Ahmadenijad et al., which applies to regular (or more
generally, Eulerian) directed graphs G. However, they also give a new algorithm for estimating
random-walk probabilities in arbitrary directed graphs. This algorithm is not as space-efficient
as the ones for regular graphs, but is significantly simpler, so we begin by describing how to
obtain a WPRG based on that algorithm. The resulting WPRG matches the parameters of the
WPRG of Braverman, Cohen, and Garg [BCG18], but has a significantly simpler proof (and is also
simpler than the construction of Chatthopadhyay and Liao [CL20]). A similar construction was
independently discovered by Cohen, Doron, Renard, Sberlo, and Ta-Shma [CDR+21].

2.1 WPRG for Arbitrary Ordered Branching Programs

Let B be an arbitrary width w, length n ordered branching program, with associated layered graph
G as in Definition 2.1. The algorithm of Ahmadenijad et al. starts with the (n + 1)w × (n + 1)w
random-walk transition matrix W of G, which has the following block structure:

W =


0 B1 0 · · · 0
0 0 B2 · · · 0
...

. . .
...

0 0 0
. . . Bn

0 0 0 · · · 0


Here entry ((i, u), (j, v)) is the probability that taking one random step in G from vertex (i, u) ends
at (j, v). Thus Bi is the w × w transition matrix for the random walk from layer i − 1 to i in
the branching program. (Note that the matrix W is not quite stochastic due to layer n having no
outgoing edges.)

Ahmadenijad et al. consider the Laplacian L = I(n+1)w −W. Its inverse L−1 = (I(n+1)w −
W)−1 = I(n+1)w + W + W2 + W3 + · · · sums up random-walks of all lengths in G, and thus has
the following form:

L−1 =


B0...0 B0...1 B0...2 · · · B0...n

0 B1...1 B1...2 · · · B1...n
...

. . .
...

0 0 0
. . . Bn−1...n

0 0 0 · · · Bn...n

 ,
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where
Bi...j = Bi+1Bi+2 · · ·Bj .

In particular, the (0, n)’th block of L−1 gives the random-walk probabilities from layer 0 to
layer n, and thus the acceptance probability of G is exactly the (v0, vacc)’th entry of the (0, n)’th
block of L−1. Therefore, the task reduces to producing a sufficiently good estimate of L−1.

Ahmadenijad et al. estimate L−1 in two steps. First, they observe that the Saks–Zhou deran-
domization of logspace [SZ99] can be used to produce, in deterministic space O(log(nw)

√
log(n)),

approximations B̃i...j of the blocks Bi...j to within entrywise error 1/ poly(nw), resulting in an
approximate pseudoinverse

L̃−1 =



B̃0...0 B̃0...1 B̃0...2 · · · B̃0...n

0 B̃1...1 B̃1...2 · · · B̃1...n
...

. . .
...

0 0 0
. . . B̃n−1...n

0 0 0 · · · B̃n...n


, (1)

with the property that ∥∥∥I(n+1)w − L̃−1L
∥∥∥

1
≤ 1/nw,

where ‖ · ‖1 denotes the `1 operator norm on row vectors, ie ‖M‖1 = supx 6=0 ‖xM‖1/‖x‖1.

Next, Ahmadenijad et al. reduce the approximation error to an arbitrary ε < 1/(nw)O(1) by
using preconditioned Richardson iterations, as captured by the following lemma:

Lemma 2.2 (preconditioned Richardson iteration, [AKM+20] Lemma 6.2). Let ‖ · ‖ be a submulti-
plicative norm on N ×N real matrices. Given matrices A,P0 ∈ RN×N such that ‖IN −P0A‖ ≤ α
for some constant α > 0, let Pm =

∑m
i=0(IN −P0A)iP0. Then ‖IN −PmA‖ ≤ αm+1.

Setting N = (n + 1)w, A = L, P0 = L̃−1, and α = 1/nw, and m = O(lognw(1/ε)), we obtain

L̃ε = Pm such that ‖IN − L̃εL‖1 ≤ ε/(nw)O(1), which implies that L̃ε and L−1 are entrywise equal
up to ±ε, for

L̃ε =
m∑
i=0

(IN − L̃−1L)iL̃−1 (2)

In particular, the (v0, vacc)’th entry of the (0, n)’th block of L̃ε is an estimate of the acceptance

probability of the branching program to within ±ε. Computing L̃ε from L and L̃−1 can be done
in space O((log nw) · logm), yielding Ahmadenijad et al.’s space bound of

O(log(nw)
√

log(n) + (log nw) · log lognw(1/ε)).

Now we show how, with appropriate an modification, we can interpret this algorithm of Ah-
madenijad et al. as a WPRG (albeit with large seed length). We replace the use of the Saks–Zhou
algorithm (which requires looking at the branching program) with Nisan’s pseudorandom genera-

tor. Specifically, we take B̃i...j to be the matrix whose (u, v)’th entry is the probability that, if we
start at state u in the the i’th layer and use a random output of Nisan’s pseudorandom generator

to take j − i steps in the branching program, we end at state v in the j’th layer. For B̃i...j to ap-
proximate Bi...j to within error ±1/poly(nw) as above, Nisan’s pseudorandom generator requires
seed length

sNisan = O(log(j − i) · log nw) = O(log n · log nw).
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Observe that for every i, B̃i...i = Iw = Bi...i. Without loss of generality, we may also assume that

B̃(i−1)...i = B(i−1)...i, since taking one step only requires one random bit.

Next, we observe from Equation 2 that the matrix L̃ε is a polynomial of degree 2m+ 1 in the

matrices L and L̃−1. In particular the (0, n)’th block of L̃ε is a polynomial of degree at most 2m+1

in the matrices B̃i...j . Specifically, using the upper-triangular structure of the matrices L and L̃−1

and noting that the product of d (n+ 1)× (n+ 1) block matrices expands into a sum of (n+ 1)d−1

terms, each of which is a product of d individual blocks, we show:

Observation 2.3. The (0, n)’th block of L̃ε is equals the sum of at most (n + 1)O(m) terms, each
of which is of the form

± B̃i0···i1B̃i1···i2 · · · B̃ir−1···ir , (3)

where 0 = i0 < i1 < i2 < · · · < ir = n and r ≤ 2m+ 1.

Notice that, up to the sign, each term as expressed in Equation (3) is the transition matrix for
a pseudorandom walk from layer 0 to layer n of the branching program, where we use r ≤ m + 1
independent draws from Nisan’s generator, with the j’th draw being used to walk from layer ij−1

to layer ij . In particular, the (v0, vacc) entry of Equation (3) equals the acceptance probability of
the branching program on such a pseudorandom walk (up to the ± sign). Thus the algorithm now
has the form required of a WPRG.

The seed length for the WPRG is the sum of the seed length ssum needed to select a random
term in the sum (using the coefficients of the WPRG to rescale the sum into a expectation) and
the seed length sterm to generate a walk for the individual term. To select a random term in the
sum requires a seed of length

ssum = log nO(m) = O(m · log(n)) = O(lognw(1/ε) · log(n)) = O(log(1/ε)).

The seed length needed for an individual term is at most

sterm = O(m) · sNisan = O(lognw(1/ε) · log(n) · log nw) = O(log(1/ε) · log(n)).

The latter offers no improvement over Nisan’s PRG. (Recall that ε < 1/nw.) To obtain a shorter
seed length, we just need to derandomize the product in Equation (3). Instead of using r indepen-
dent seeds, we use dependent seeds generated using the Impagliazzo–Nisan–Wigderson pseudoran-
dom generator [INW94]. Specifically, we can produce a pseudorandom walk that approximates the
product to within entrywise error ±γ using a seed of length

s′term = sNisan +O((log r) · log(rw/γ)).

The entrywise error of γ in each term may accumulate over the nO(m) terms, so to achieve a WPRG
error of O(ε), we should set γ = ε/nO(m) = 1/εO(1). Recalling that r ≤ 2m + 1 = O(lognw(1/ε)),
we attain a seed length of

ssum + s′term = O(log(1/ε)) +O(log n · log nw) +O(log lognw(1/ε) · log(1/ε))

= O(log n · log nw + log(1/ε) · log lognw(1/ε)),

which slightly improves over the bound of Braverman, Cohen, and Garg [BCG18], and is incompa-
rable to that of Chattopadhyay and Liao [CL20]. Specifically, our first term of O(log n · log nw) is
better than [CL20] by a factor of log log(nw), but our second term of O(log(1/ε) · log lognw(1/ε))
is worse by a factor of log lognw(1/ε).
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2.2 WPRG for Permutation Branching Programs

Now we give an overview of our WPRG for permutation branching programs, as stated in Theo-
rem 1.4. This is based on the the algorithm of Ahmademnijad et al. that estimates random-walk
probabilities in regular (or even Eulerian) digraphs with better space complexity than the algo-
rithm described in Subsection 2.1. As before, we will review their algorithm as applied to the
((n+1) ·w)-vertex graph G associated with an ordered branching program B of length n and width
w. Since we assume that the branching program B is a permutation program, the graph G will
be 2-regular at all layers other than 0 and n. For the spectral graph-theoretic machinery used by
Ahmadenijad et al., it is helpful to work with random-walk matrices that correspond to strongly
connected digraphs, so we also add a complete bipartite graph of edges from layer n back to layer
0, resulting in the following modified version of the matrix W:

W0 =


0 B1 0 · · · 0
0 0 B2 · · · 0
...

. . .
...

0 0 0
. . . Bn

Jw 0 0 · · · 0

 , (4)

where the Jw in the lower-left corner is the w×w matrix in which every entry is 1/w (corresponding
to the complete bipartite graph we added). Notice that the matrix Jw is identically zero when
applied to any vector that is orthogonal to the uniform distribution, so it is not very different than
having 0 in the lower-left block as we had before. Indeed, the powers of W look as follows:

W2
0 =


0 0 B0..2 0 0
... 0 0

. . . 0

0
... Bn−2..n

Jw 0 0 · · · 0
0 Jw 0 · · · 0

 , . . . ,W
n
0 =


0 0 · · · 0 B0..n

Jw 0 0

0
. . . 0

... 0 Jw 0 0
0 0 0 Jw 0

 (5)

where
Bi...j = Bi+1Bi+2 · · ·Bj .

Notice in particular that Wn+1
0 will be a block-diagonal matrix with Jw’s on the diagonal (i.e.

Wn+1
0 = In+1 ⊗ Jw), and thus has no dependence on the branching program B.
Now the Laplacian I(n+1)w −W0 is no longer invertible (the uniform distribution is in the

kernel). In [AKM+20], they instead estimate the Moore-Penrose pseudoinverse of I(n+1)w −W0.
We instead scale W0 by a factor c = 1−1/(n+1), and consider the Laplacian L0 = I(n+1)w−cW0.
Looking ahead, this scaling factor ensures that the condition number of L0 depends only on n,
allowing us to obtain a seed length independent of w. Then, by the expressions above for the
powers of W0, it can be shown that from

L−1
0 = I(n+1)w + cW0 + c2W2

0 + c3W3
0 + . . .

we can compute B0..n, which appears in Wn
0 with a scaling factor cn ≥ 1/4.

So again to estimate the acceptance probability of B, it suffices to compute a sufficiently good

approximation to L−1
0 . As before, it suffices to compute a matrix L̃−1

0 such that ‖IN − L̃−1
0 L0‖ ≤ α

for some constant α < 1 and a submultiplicative matrix norm ‖ · ‖, because then we can use
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preconditioned Richardson iterations (Lemma 2.2) to estimate L0 to within arbitrary entrywise
accuracy.

Unfortunately, we don’t know how to directly obtain such an initial approximation L̃−1
0 effi-

ciently enough for our result. Instead, following Ahmadenijad et al., we tensor W0 with a sufficiently
long directed cycle. Specifically, we let Ci be the directed cycle on 2i vertices, and consider Cq for
q = log(n+ 1) (which we assume is an integer WLOG). We consider the cycle lift, whose transition
matrix is

Cq ⊗W0 =


0 W0 0 · · · 0
0 0 W0 · · · 0
...

. . .
...

0 0 0
. . . W0

W0 0 0 · · · 0

 ,

Then, we seek to invert the Laplacian L = I2qN − cCq ⊗W0. Similarly to the above, we have:

L−1 = (I2qN − cCq ⊗W0)−1

=
(
I2qN − cn+1Cn+1

q ⊗Wn+1
0

)−1 ·
(
I2qN + cCq ⊗W0 + c2C2

q ⊗W2
0 + · · · cnCn

q ⊗Wn
0

)
=

(
I2qN − cn+1Cn+1

q ⊗ (In+1 ⊗ Jw)
)−1 ·

(
I2qN + cCq ⊗W0 + c2C2

q ⊗W2
0 + · · · cnCn

q ⊗Wn
0

)
.

Thus, letting

M = I2qN − cn+1Cn+1
q ⊗ (In+1 ⊗ Jw) = I2qN − cn+1I2q ⊗ (In+1 ⊗ Jw),

which has no dependence on the branching program, we have:

M · L−1 = I2qN + cCq ⊗W0 + c2C2
q ⊗W2

0 + · · · cnCn
q ⊗Wn

0

=


IN cW0 c2W2

0 · · · cnWn
0

cnWn
0 IN cW0 · · · cn−1Wn−1

0
...

. . .
...

c2W2
0 c3W3

0 c4W4
0

. . . cW0

cW1
0 c2W2

0 c3W3
0 · · · IN


Thus, if we can accurately estimate L−1, we can obtain an accurate estimate of Wn

0 , whose
upper-right block equals B0..n and thus contains the acceptance probability of the branching pro-
gram.

To compute an approximate inverse of L = I2qN − cCq ⊗W0, Ahmadenijad et al. provide a
recursive formula expressing (I2qN − cCq⊗W0)−1 in terms of (I2q−1N − c2Cq−1⊗W2

0)−1 and some
applications of the matrix W0. That is, computing the inverse of the Laplacian of the cycle lift of
W0 reduces to computing the inverse of the Laplacian of a cycle lift of W2

0 with a cycle of half the
length. At the bottom of the recursion (after q levels of recursion), we need to compute the inverse
of

IN − c2qW2q

0 = IN − cn+1Wn+1
0 = IN − cn+1In+1 ⊗ Jw,

which is easy (and does not depend on the branching program). The resulting formula for (I2qN −
cCq ⊗W0)−1 is a polynomial in W0,W

2
0,W

4
0, . . . ,W

2q−1

0 . However, computing these high powers
of W0 exactly is too expensive in space usage.
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Thus, instead Ahmadenijad et al. use the derandomized square [RV05] which allows for com-
puting a sequence W0,W1, . . . ,Wq where Wi a sparsification of W2

i−1 with the property that Wq

can be constructed in deterministic space

O(log nw + q · log(1/δ))

for an error parameter δ, rather than the space O(q · log nw) of exact repeated squaring. They
also introduce a new notion of spectral approximation, called unit-circle approximation, and show
that the derandomized square Wi is a unit-circle approximation of W2

i−1 to within error δ. Using
repeated derandomized squaring in the recursion, Ahmadenijad et al. obtain an approximate inverse

L̃−1 with the properties that:

1. The N ×N blocks of M · L̃−1 are each of the form Wi1Wi2 · · ·Wir where r = O(q)

2. There is a submultiplicative matrix norm ‖·‖F such that ‖I2qN−L̃−1L‖F = O(q2δ). Moreover,
achieving an ε/ poly(n) approximation in F-norm implies an ε approximation of M · L−1 in
max-norm. Ahmadenijad et al. actually lose a factor of poly(nw) in moving from F-norm to
approximation in max-norm, but we improve this bound to poly(n) by our choice of scaling
factor c = 1− 1/(n+ 1).

Item 1 allows for constructing M · L̃−1 from W0,W1, . . . ,Wq in space

O(log q · log nw).

By Item 2, if we take δ < 1/O(q2), we can apply preconditioned Richardson iterations (Lemma 2.2)

with degree m = O(log(n/ε)/ log(1/qδ)) to obtain L̃ε = Pm such that M · L̃ε approximates ML−1

to within entrywise error ε. The preconditioned Richardson iterations have an additive space cost
of:

O(logm · log nw).

Taking δ = 1/O(q2) and recalling that q = log(n+ 1), the final space complexity is

O(log(nw) + q log q) +O(log q · log nw) +O(log log(n/ε) · log nw) = O(log nw · log log(n/ε)).

To view this algorithm as a WPRG for permutation branching programs, we use the equivalence
between the Impagliazzo–Nisan–Wigderson (INW) generator on permutation branching programs
and the derandomized square of the corresponding graph, as established in [RV05,HPV21]. Using
this correspondence, the matrix Wi has the same structure as W2i (see Equation 5), except that

each block of the form Bj..j+2i is replaced with a matrix B̃j..j+2i that is the transition matrix of a
pseudorandom walk from layer j of the branching program to layer j+2i using the INW generator.
The seed length to generate this pseudorandom walk is

sINW = O(q log(q/δ)),

which, as highlighted in [HPV21], is independent of the width w of the branching program. This is
the place where we use the fact that B is a permutation branching program rather than a regular
branching program. Even though the algorithm Ahmadenijad et al. works for regular directed
graphs (and hence regular branching programs), the derandomized square operations used in that
case can no longer be viewed as being obtained by using a pseudorandom generator to derandomize
walks in the graph.

Then, again assuming without loss of generality that ˜B(j−1)...j = B(j−1)...j for j = 1, . . . , n, we
have the following analogue of Observation 2.3:
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Observation 2.4. The upper-right w ×w block of M · L̃ε equals the sum of at most nO(m) terms,
each of which is of the form

± B̃i0···i1B̃i1···i2 · · · B̃ir−1···ir , (6)

where 0 = i0 < i1 < i2 < · · · < ir = n and r = O(qm).

As in Subsection 2.1, the algorithm now has the form required of a WPRG and our only
remaining challenge is to keep the seed length small. The seed length for the WPRG is the sum of
the seed length needed to select a random term in the sum (using the coefficients of the WPRG to
rescale the sum into a expectation) and the seed length to generate a walk for the individual term.
To select a random term in the sum requires a seed of length

ssum = log(nO(m)).

The seed length needed for an individual term is at most

sterm = O(qm) · sINW,

which again would be too expensive for us. To derandomize the product in Equation (6), we
again use the INW generator, but rely on the analysis in [HPV21] for permutation branching
programs to maintain a seed length that is independent of the width. Specifically, we can produce
a pseudorandom walk that approximates the product to within entrywise error ±γ using a seed of
length

s′term = sINW +O((log r) · log(log(r)/γ)) = sINW +O(log qm · log(log(qm)/γ)).

The entrywise error of γ in each term may accumulate over the nO(m) terms, so to achieve a WPRG
error of O(ε), we should set γ = ε/nO(m), which means that s′term ≥ ssum.

All in all, we attain a seed length of

ssum + s′term = O(m log n) + sINW +O((log qm) · log(log(qm)/γ))

= O(q log(q/δ)) + Õ(m log n) +O(log qm · log(n/ε))

= Õ

(
log n · log(1/δ) +

log(n/ε)

log(1/(δ log n))
· log n+ log log(n/ε) · log(n/ε)

)
Optimizing the choice of δ as δ = exp(−Θ̃(

√
log(n/ε))), we get a seed length of

Õ(log n
√

log(n/ε) + log(1/ε)).

Note that the choice of δ here is much smaller than in the Ahmadenijad et al. algorithm, which
used δ = 1/polylog(n). The reason we need the smaller choice of δ is to reduce the effect of the
log(nO(m)) price we pay in ssum and s′term, which does not have an analogue in the algorithm of
Ahmadenijad et al.

2.3 Perspective

Some intuition for the ability of WPRGs to beat the parameters of PRGs can come from the study
of samplers [Gol97]. A sampler for a class F of functions f : {0, 1}m → R is randomized algorithm
Samp that is given oracle access to a function f ∈ F and, with probability at least 1− δ, outputs
an estimate of E[f(Un)] to within additive error ±ε. Most often, the class F is taken to be the class
of all bounded functions f : {0, 1}m → [0, 1], but some works have considered the general definition
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and other classes, such as the class F of unbounded functions f such that the random variable
f(Un) has subgaussian tails [Bla18, Agr19]. Two key complexity parameters of a sampler are its
randomness complexity (the number of coin tosses it uses, typically as a function of m, δ, and ε)
and its sample complexity (the number of queries it makes to oracle f). An averaging sampler is one
that has a restricted form, where it uses its coin tosses to generate (possibly correlated) samples
x1, . . . , xS , and then outputs the average of f on the samples, i.e. (f(x1) + · · ·+ f(xS))/S.

As noted by Cheng and Hoza [CH20], PRGs and WPRGs can be viewed as deterministic
averaging samplers (i.e. with randomness complexity and failure probability zero). Specifically, a
PRG G : {0, 1}s → {0, 1}m for a class F is a deterministic averaging sampler for the class F with
sample complexity S = 2s. Indeed, the sampler simply outputs the set of all S = 2s outputs of G.
A WPRG as a more general form of a nonadaptive deterministic sampler for the class F , one that
is restricted to output a linear combination of the function values.

So comparing the power of PRGs vs. WPRGs is a special case of the more general problem of
comparing the power of averaging samplers vs. more general nonadaptive samplers. In this more
general framing, there are some natural examples of classes F where nonadaptive samplers can
have smaller sample complexity than any averaging sampler. Specifically, if we consider the class F
of unbounded functions f : {0, 1}m → R with bounded variance, i.e. Var[f(Un)] ≤ 1, then the best
sample complexity for an averaging sampler is min{Θ̃(1/ε2δ), 2Θ(m)}. (Essentially, Chebychev’s
Inequality is tight for such functions.) However, there is a nonadaptive sampler with sample
complexity O(log(1/δ)/ε2), namely the median-of-averages sampler, which outputs the median of
O(log(1/δ)) averages, with each average being on O(1/ε2) samples (see Appendix C).

This example suggests two areas of investigation. First, can we gain further benefits in seed
length by considering further generalizations of PRGs that are allowed to estimate acceptance
probability with more general functions than linear combinations (or possibly even with adap-
tive queries)? Some examples are the line of work on converting hitting-set generators for cir-
cuits [ACR98, ACRT99, BF99, GVW11] or ordered branching programs [CH20] into deterministic
samplers. Second, is there a benefit in the study of samplers in restricting attention to ones that
output linear combinations like WPRGs? Perhaps these still retains some of the useful composition
properties and connections to other pseudorandom objects that are enjoyed by averaging samplers
(cf. [Zuc97,Vad12,Agr19]), while allowing for gains in sample and/or randomness complexity.

2.4 Organization of the Remaining Sections

In Section 3 we introduce arithmetic over WPRGs and the view of branching programs as matrix
valued functions. In Section 4 we prove Theorem 4.1, using a simple analysis that introduces pre-
conditioning methods. In Section 5 we prove Theorem 1.4, using more sophisticated preconditioning
tools from [AKM+20] and [CKP+17] and the analysis of the INW PRG from [HPV21].

3 Preliminaries

Following [RSV13], we will view branching programs not as boolean functions, but as matrix-valued
functions B : {0, 1}n → Rw×w where B[s]i,j = 1 if the branching program started at state i ends at
state j upon reading input s. In all cases, we will index the rows and columns of matrices starting
from zero.

Definition 3.1. Let B be a width w, length n branching program with transition functions
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B1 . . . , Bn. For t ∈ [n] let Bt : {0, 1} → Rw×w be defined as

Bt[s]a,b =

{
1 if Bt(a, s) = b

0 otherwise

For 0 ≤ i < j ≤ n let Bi..j be defined via matrix multiplication as

Bi..j [si+1 . . . sj ] = Bi+1[si+1] · · ·Bj [sj ]

and let B = B0..n. Observe that Bi..j [si+1 . . . sj ]u,v = 1 if and only if B reaches state v in layer j
when started in state u in layer i and reading (si+1 . . . sj). Define the constant function on zero
bits Bi,i[] = Iw for all i. This is purely for cleanliness of later derivations.

We now formally defined weighted distributions.

Definition 3.2. A weighted distribution (aka pseudodistribution) on {0, 1}n is a jointly
distributed random variable (X,Y ) taking values in {0, 1}n × R. For a function f : {0, 1}n → Rd,
f [(X,Y )] denotes the random variable Y · f(X) and f [(X,Y )] its expectation. For a weighted
generator (G, ρ) : {0, 1}s → {0, 1}n × R we write f [(G, ρ)] as shorthand for f [(G(Us), ρ(Us))] =
E[ρ(Us) · f(G(Us))]. We say a weighted generator (G, ρ) is r-bounded if |ρ| ≤ r.

We can now define matrix valued functions evaluated on distributions or weighted distributions.
We write Un = U{0,1}n for convenience.

Definition 3.3. Let (X,Y ) be a weighted distribution on {0, 1}n and ‖ · ‖ a norm on w × w
matrices and let B be a class of length n, width w ordered branching programs. We say that (X,Y )
is ε-pseudorandom for B with respect to ‖ · ‖ if for all B ∈ B we have∥∥B[(X,Y )]−B[Un]]

∥∥ ≤ ε.
A weighted PRG generates a weighted distribution, exactly analogous to a PRG generating a

distribution.

Definition 3.4. A weighted generator (G, ρ) : {0, 1}s → {0, 1}n × R is ε-pseudorandom for B
with respect to ‖·‖ if the weighted distribution (G(Us), ρ(Us)) is ε-pseudorandom for B with respect
to ‖ · ‖. That is, for all B ∈ B, ‖B[(G, ρ)] − B[Un]‖ ≤ ε. We also say (G, ρ) is an ε-weighted
pseudorandom generator (ε-WPRG) for B with respect to ‖ · ‖.

To use this definition, we need to select a matrix norm. We will work with several different
norms on matrices A ∈ Rw×w. Some examples include:

• ‖A‖max = maxi,j |Ai,j |

• ‖A‖1 = maxx∈Rw−{0} ‖xA‖1/‖x‖1 = maxi ‖Ai,·‖ where Ai,· is the ith row of A.

• ‖A‖2 = maxx∈Rw−{0} ‖xA‖2/‖x‖2 = σmax(A) where σmax(A) is the maximum singular value
of A.

Above and throughout the paper, all vectors are row vectors.

Lemma 3.5. Suppose (X,Y ) is ε-pseudorandom for a class B of branching programs with respect
to ‖ · ‖max. Then
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1. (X,Y ) is ε-pseudorandom for the class of boolean functions (according to Def 1.1) obtained
by selecting B ∈ B, choosing any start vertex v0 ∈ [w] and a single accept vertex vacc ∈ [w].

2. (X,Y ) is w · ε-pseudorandom for the class of boolean functions (again according to Def 1.1)
obtained by selecting B ∈ B, choosing any start vertex v0 ∈ [w] and a set Vacc ⊆ [w] of accept
vertices.

Proof. Unwinding the definitions we have ‖E[Y ·B[X]]− E[B[Un]]‖max ≤ ε, which implies

|E[Y ·B[X]v0,vacc ]− E[B[Un]v0,vacc ]| ≤ ε

for all states v0, vacc. Since B[s]v0,vacc : {0, 1}n → {0, 1} is precisely the boolean function obtained
by choosing start vertex v0 and accept vertex vacc for B, this shows the first bound. For the second
case, enumerating over all states v ∈ Vacc and applying a union bound completes the proof.

Thus, our end goal is to construct WPRGs with respect to ‖ · ‖max. But at intermediate
stages in our analysis we work with other norms, such as the `2 and `1 norms, because they are
submultiplicative (i.e. ‖AB‖ ≤ ‖A‖ · ‖B‖) and max-norm is not.

We can define rules for “arithmetic” on WPRGs, which naturally translate into operations on
matrix forms. Below and throughout the paper, all logs are base 2.

Definition 3.6 (Sum Rule for WPRGs). Given WPRGs Fa = (Ga, ρa), Fb = (Gb, ρb) each with
seed length s, let Fa + Fb be the WPRG with seed length s+ 1, where for (x, y) ∈ {0, 1}s × {0, 1}
we define

(Fa + Fb)((x, y)) =

{
(Ga(x), 2ρa(x)) y = 1

(Gb(x), 2ρb(x)) y = 0

Lemma 3.7. For WPRGs Fa, Fb as defined above, for every branching program B

B[Fa] + B[Fb] = B[Fa + Fb].

Furthermore, if Fa and Fb are explicit then Fa+Fb is, and if Fa and Fb are r-bounded then Fa+Fb
is 2r-bounded.

Proof. The explicitness and boundedness properties are immediate from the definition. Then:

B[Fa] + B[Fb] = E
x←Us

ρa(x)B[Ga(x)] + E
x←Us

ρb(x)B[Gb(x)]

=
1

2s+1

∑
x∈{0,1}s

(2ρa(x)B[Ga(x)] + 2ρb(x)B[Gb(x)])

= B[Fa + Fb]

We frequently take sums over large collections of WPRGs, so we state a recursive definition of
the addition rule.

Proposition 3.8. Let {Fi : {0, 1}s → {0, 1}n : i ∈ [V ]} be a set of (explicit) WPRGs where given
i, Fi can be evaluated in space O(s). Then

∑V
i=1 Fi is an explicit 2V−bounded WPRG with seed

length s+ dlog(V )e.

Proof. We can recursively construct the WPRGs Fa =
∑bV/2c

i=1 Fi and Fb =
∑V

i=bV/2c+1 Fi, which
by induction have seed length at most s + dlog(V/2)e, and apply Definition 3.6 (padding the
seed length of Fb to make it equal to the seed length of Fa if necessary) to obtain seed length
s+ dlog(V/2)e+ 1 = s+ dlog(V )e.
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Definition 3.9 (Product Rule for WPRGs). Given WPRGs Fa = (Ga, ρa), Fb = (Gb, ρb) each with
seed length s and output lengths n, n′ respectively, let FaFb be the WPRG with seed length 2s and
output length n+ n′, where for (x, y) ∈ {0, 1}s × {0, 1}s we define

(FaFb)((x, y)) = (Ga(x)‖Gb(y), ρa(x)ρb(y))

where ‖ denotes concatenation. We define the product of a WPRG Fa and scalar λ ∈ R as
(λFa)(x) = (Ga(x), λ · ρa(x)).

Lemma 3.10. For WPRGs Fa, Fb as defined above, for every pair of branching programs B,B′ of
lengths n, n′ and equal width w,

(BB
′
)[FaFb] = B[Fa]B

′
[Fb].

Furthermore, if Fa and Fb are explicit then FaFb is, and if Fa and Fb are r-bounded then FaFb is
r2-bounded.

Proof. The explicitness and boundedness properties are immediate from the definition. Then:

B[Fa]B
′
[Fb] = E

x←Us
ρa(x)B[Ga(x)] E

y←Us
ρb(y)B′[Gb(y)]

= E
x,y←Us

ρa(x)ρb(y)B[Ga(x)]B′[Gb(y)]

= (BB
′
)[FaFb]

We implicitly define the sum and product of WPRGs with different seed lengths, by first padding
the shorter seed to equal that of the longer.

4 Pseudodistributions for General Branching Programs

We first develop the WPRG for general ordered branching programs, as it outlines the some of the
ideas and constructions used in our main result (Theorem 1.4) but with simpler analysis.

Theorem 4.1. For all n,w ∈ N and ε ∈ (0, 1/2), there exists an explicit ε-WPRG for the class of
ordered branching programs of length n and width w with respect to ‖ · ‖max with seed length

s = O(log(n) log(nw) + log(1/ε) log lognw(1/ε)).

Moreover, the generator is poly(1/ε) bounded.

4.1 A WPRG With Large Seed Length

In this subsection, we construct an explicit WPRG for ordered branching programs with large seed
length.

Lemma 4.2. Given n,w ∈ N and ε ∈ (0, 1/2), define ` = dlognw(1/ε)e + 1. Then there exists
an explicit weighted generator GEN0 such that GEN0 is ε-pseudorandom for the class of ordered
branching programs of length n and width w with respect to ‖ · ‖max and

GEN0 =
∑
i∈[V ]

τi · Pi,1Pi,2 · · ·Pi,k

such that:
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1. V = nO(`) = poly(1/ε)

2. k = O(`)

3. For all i, τi ∈ {−1, 1}.

4. For all i, j, Pi,j is an (unweighted) PRG with seed length s = O(log n · log(nw)).

5. Given i ∈ [V ] and j ∈ [k], τi and Pi,j are evaluatable in space O(s+ log V ).

Applying the sum and product rules to the output of the lemma, we obtain an ε-WPRG for
ordered branching programs with seed length O(` · log n · log(nw)) = O(log(nw/ε) log n), no better
than the Nisan PRG. However, since k = O(lognw(1/ε)) we will later apply standard derandom-
ization results to shrink the seed length of each summand.

The pseudorandom generators Pi,j in Lemma 4.2 are instantiations of Nisan’s classic generator:

Theorem 4.3 ([Nis92]). For all n,w and ε ∈ (0, 1/2), there exists an explicit ε-PRG for the class
of ordered branching programs of length n and width w with respect to ‖ · ‖max with seed length
s = O(log n · log(nw/ε)).

We will use Nisan’s generator to approximate the random walk matrix of an arbitrary branching
program B.

Definition 4.4. Let R be the trivial PRG on one bit. Given n,w ∈ N, for every length n, width
w branching program B, define the random walk matrix W of B as the (n+ 1)× (n+ 1) block
matrix

W =


0 B0..1[R] 0 0

0 0
. . . 0

0 0 0 Bn−1..n[R]
0 0 0 0

 .
And the Laplacian L of B as

L = I(n+1)w −W =


Iw −B0..1[R] 0 0

0 Iw
. . . 0

0 0 Iw −Bn−1..n[R]
0 0 0 Iw

 .
The inverse of the Laplacian of B holds information about random walk probabilities, which

we will exploit.

Remark 4.5. Let L be the Laplacian of a length n, width w branching program B. Then L−1 has
the form:

L−1
i,j =


Bi..j [Uj−i] i < j

Iw i = j

0 i > j

.

Note in particular that the (0, n) block of L−1 equals B[Un], the distribution of truly random
input over the branching program. To obtain a high quality estimate of L−1, we first obtain a weak
estimate by substituting truly random input for the output of Nisan’s PRG.
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Proposition 4.6. Let L be the Laplacian of a length n, width w branching program B. Then for
every k ∈ [n], let NISk be the PRG obtained from Theorem 4.3 with width w, length r and error
δ = 1/4n2w2. Then define

L̃−1
i,j =


Bi..j [NISj−i] i < j

Iw i = j

0 i > j

.

Let Err = I(n+1)w − L̃−1L. Then ‖Err‖1 ≤ 1/2nw.

Note that the set of PRGs NISr have no dependence on the branching program B. To prove
the error matrix has small norm, we describe its structure.

Lemma 4.7. Given n,w ∈ N, let L be the Laplacian of a length n, width w branching program B,

and let L̃−1 and Err be as defined in Proposition 4.6. Then viewing Err ∈ R(n+1)w×(n+1)w as an
(n+ 1)× (n+ 1) block matrix, we have:

Erri,j =

{
Bi..j [NISj−i−1R−NISj−i] i < j

0 i ≥ j
.

Proof. We first consider when i < j:

Erri,j = −(L̃−1L)i,j

= −
n∑
k=0

L̃−1
i,kLk,j

= −
(
L̃−1

i,j · Lj,j + L̃−1
i,j−1 · Lj−1,j

)
= −Bi..j [NISj−i] · Iw + Bi..j−1[NISj−i−1]Bj−1..j [R]

= Bi..j [NISj−i−1R−NISj−i]

And for i = j:

Erri,i = I(n+1)w − (L̃−1L)i,i

= I(n+1)w −
n∑
k=0

L̃−1
i,kLk,i

= Iw − L̃−1
i,iLi,i

= 0

And the i > j case is immediate, so Err has the desired form.

We can then prove the proposition.

Proof of Proposition 4.6. We bound the 1 norm of each block of Err then take a union bound
over the at most n nonzero blocks in each row. Diagonal and lower triangular blocks of Err are
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identically zero from Lemma 4.7. For every i < j we have

‖Erri,j‖1 = ‖Bi..j [NISj−i−1R−NISj−i]‖1 (Lemma 4.7)

≤ ‖Bi..j [NISj−i−1R]−Bi..j [Uj−i]‖1 + ‖Bi..j [Uj−i]−Bi..j [NISj−i]‖1
≤ ‖Bi..j−1[NISj−i−1]−Bi..j−1[Uj−i−1]‖1 · ‖Bj−1..j [U1]‖1

+ ‖Bi..j [Uj−i]−Bi..j [NISj−i]‖1 (Submultiplicativity)

≤ w · ‖Bi..j−1[NISj−i−1]−Bi..j−1[Uj−i−1]‖max

+ w · ‖Bi..j [Uj−i]−Bi..j [NISj−i]‖max

≤ 1

4n2w
+

1

4n2w
=

1

2n2w
. (Theorem 4.3)

Where the third inequality uses that Bj−1..j [U1] is row-stochastic and ‖A‖1 ≤ w · ‖A‖max for every
w × w matrix A. Thus ‖Err‖1 ≤ n · (1/2n2w) = 1/2nw as desired.

Therefore, by replacing truly random input with a PRG of the correct length we obtain a weak
approximation of L−1. Following [AKM+20] we use preconditioned Richardson iteration to boost
this to a high quality approximation, and by describing this output in terms of a WPRG prove
Lemma 4.2.

Lemma 2.2 (preconditioned Richardson iteration, [AKM+20] Lemma 6.2). Let ‖ · ‖ be a submulti-
plicative norm on N ×N real matrices. Given matrices A,P0 ∈ RN×N such that ‖IN −P0A‖ ≤ α
for some constant α > 0, let Pm =

∑m
i=0(IN −P0A)iP0. Then ‖IN −PmA‖ ≤ αm+1.

Proof. We have IN−PmA = (IN−P0A)m+1, and then the proof follows by the submultiplicativity
of ‖ · ‖.

We now apply this to boost our weak estimate of L−1 to a strong estimate.

Lemma 4.8. For every n,w ∈ N and ε ∈ (0, 1/2), set ` = dlognw(1/ε)e + 1. Then for every

length n, width w ordered branching program B with Laplacian L, let L̃−1 and Err be defined as in
Proposition 4.6. Then ∥∥∥∥∥∑̀

i=0

Erri · L̃−1 − L−1

∥∥∥∥∥
max

≤ ε/2.

Proof. We apply Lemma 2.2 with A = L, P0 = L̃−1, ‖ · ‖ = ‖ · ‖1 and α ≤ 1/2nw (which follows

from Proposition 4.6) and obtain Pm =
∑`

i=0 Erri · L̃−1 satisfying ‖I−PmL‖1 ≤ ε/2nw. Finally,

‖Pm − L−1‖max ≤ ‖Pm − L−1‖1
= ‖(I−PmL)L−1‖1
≤ ‖I−PmL‖1 · ‖L−1‖1
≤ ε

2nw
(n+ 1)

Given this error guarantee, it remains to interpret the “output” of Richardson iteration in
an oblivious manner. Intuitively, taking powers of the Err matrix corresponds to concatenating
WPRGs to create more complex WPRGs on layers. We first define an index set for products of
combinations of WPRGs. The index set is equivalent to all possible divisions of the layers {0, . . . , t}
for all t ≤ n into at most ` sections.
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Definition 4.9. Given n, ` ∈ N, define the index set Vn,` as

Vn,` = {(d1, . . . dr) : di ∈ Z+, 0 ≤ r ≤ `,
r∑
i=1

di ≤ n}.

For σ = (d1, . . . , dr) ∈ Vn,` we write |σ| = r. Note that this includes the empty tuple where r = 0.

Then the nonzero summands in the output of preconditioned richardson iteration correspond
to WPRGs indexed by Vn,`.

Lemma 4.10. For all n,w, ` ∈ N, let Vn,` be defined as in Definition 4.9 with the same n and
` and for all k ∈ [n] let NISk be defined as in Proposition 4.6 with the same n,w. For all σ =
(d1, . . . , dr) ∈ Vn,`, let l =

∑r
i=1 di and define the WPRG (using the sum and product rules of

Def. 3.6 and Def. 3.9)

Mσ =

r∏
i=1

(NISdi−1R−NISdi) NISn−l .

Then for every length n, width w branching program B with Laplacian L, let Err and L̃−1 be
defined as in Proposition 4.6. Then we have(∑̀

r=0

Errr · L̃−1

)
0,n

=
∑

σ∈Vn,`

B[Mσ].

Proof. Fix any 1 ≤ r ≤ `. Then:

(Errr · L̃−1)0,n

=
∑

li∈{0..n}r
Err0,l1

(
r−1∏
i=1

Errli,li+1

)
L̃−1

lr,n

=
∑

0=l0<...<lr≤n

(
r−1∏
i=0

Errli,li+1

)
L̃−1

lr,n (Lemma 4.7)

=
∑

0=l0<...<lr≤n

(
r−1∏
i=0

Bli..li+1
[NISli+1−li−1R−NISli+1−li ]

)
Blr..n[NISn−lr ] (Lemma 4.7)

=
∑

0=l0<...<lr≤n
B

[(
r−1∏
i=0

NISli+1−li−1R−NISli+1−li

)
NISn−lr

]
(Definition 3.9)

=
∑

(di)i∈[r]:l=
∑r
i=1 di≤n

B

[(
r∏
i=1

NISdi−1R−NISdi

)
NISn−l

]

=
∑

σ∈Vn,`,|σ|=r

B[Mσ]

For r = 0 we have
(Err0 · L̃−1)0,n = L̃−1

0,n = B[NISn] = B[M()].

Thus, (∑̀
r=0

Errr · L̃−1

)
0,n

=
∑̀
r=0

∑
σ∈Vn,`,|σ|=r

B[Mσ] =
∑

σ∈Vn,`

B[Mσ].
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Furthermore, this family of WPRGs is of the form required for Lemma 4.2.

Corollary 4.11. Given n,w, ` ∈ N, let Vn,` be defined as in Definition 4.9 with the same n and
` and let {Mσ : σ ∈ Vn,`} be defined as in Lemma 4.10 with the same n,w, `. For all σ =
(d1, . . . , dr) ∈ Vn,` we have

Mσ =
∑

x∈{0,1}r
τσ,x · Pσ,x,1 · · ·Pσ,x,r+1,

where for all σ, x, i, τσ,x ∈ {−1, 1} and Pσ,x,i is an explicit PRG with seed length s = O(log n ·
log(nw)). Furthermore given σ = (d1, . . . , dr) ∈ Vn,`, x ∈ {0, 1}r and i ∈ [r + 1], τσ,x can be
computed and Pσ,x,i can be evaluated in space O(s+ log(|Vn,`| · r)).

Proof. For all σ ∈ Vn,` and x ∈ {0, 1}r, let τσ,x = (−1)
∑r
i=1 xi . For all i ∈ [r], define

Pσ,x,i =

{
NISdi−1R xi = 0

NISdi xi = 1

and letting l =
∑r

i=1 di, define Pσ,x,r+1 = NISn−l. Then by construction

Mσ =
∑

x∈{0,1}r
τσ,x · Pσ,x,1 · · ·Pσ,x,r+1.

Given any σ, x, i we have from Theorem 4.3 and Definition 3.9 that Pσ,x,i is an explicit PRG with
the desired seed length.

We can now prove the main lemma of this subsection.

Lemma 4.2. Given n,w ∈ N and ε ∈ (0, 1/2), define ` = dlognw(1/ε)e + 1. Then there exists
an explicit weighted generator GEN0 such that GEN0 is ε-pseudorandom for the class of ordered
branching programs of length n and width w with respect to ‖ · ‖max and

GEN0 =
∑
i∈[V ]

τi · Pi,1Pi,2 · · ·Pi,k

such that:

1. V = nO(`) = poly(1/ε)

2. k = O(`)

3. For all i, τi ∈ {−1, 1}.

4. For all i, j, Pi,j is an (unweighted) PRG with seed length s = O(log n · log(nw)).

5. Given i ∈ [V ] and j ∈ [k], τi and Pi,j are evaluatable in space O(s+ log V ).

Proof. Note that we can assume ε = 1/nΩ(1) since otherwise the statement is satisfied by a single
Nisan PRG. Let {Mσ : σ ∈ Vn,`} be defined as in Lemma 4.10 with the same n, `, and let

{τσ,x · Pσ,x,1 · · ·Pσ,x,r+1 : σ ∈ Vn,`, x ∈ {0, 1}|σ|}
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be the family obtained from Corollary 4.11 ranging over σ. Then let [V ] be the set of terms (σ, x),
let k = r + 1 = O(`), and define

GEN0 =
∑
i∈[V ]

τi · Pi,1 · · ·Pi,k.

All explicitness and seed length conditions are satisfied from Corollary 4.11, and we have V =
nO(`) = poly(1/ε) and GEN is 2V = poly(1/ε) bounded as desired. Now fix an arbitrary length

n, width w branching program B with Laplacian L and let L̃−1 and Err be as defined as in
Proposition 4.6. Then

ε/2 ≥

∥∥∥∥∥∥
(∑̀
i=0

Erri · L̃−1

)
0,n

−
(
L−1

)
0,n

∥∥∥∥∥∥
max

(Lemma 4.8)

=

∥∥∥∥∥∥
∑

σ∈Vn,`

B[Mσ]−
(
L−1

)
0,n

∥∥∥∥∥∥
max

(Lemma 4.10)

=

∥∥∥∥∥∥B
 ∑
σ∈Vn,`

Mσ

−B[Un]

∥∥∥∥∥∥
max

(Remark 4.5)

=

∥∥∥∥∥∥B
∑
i∈[V ]

τi · Pi,1 · · ·Pi,k

−B[Un]

∥∥∥∥∥∥
max

(Corollary 4.11)

=
∥∥B[GEN0]−B[Un]

∥∥
max

4.2 Shorter Seed Length via Derandomized PRG Products

In this section, we apply standard derandomization results (namely the INW generator) to reduce
the seed length of the WPRG in Lemma 4.2. Specifically, we derandomize the products of PRGs
Pi,1 · · ·Pi,k as follows:

Lemma 4.12. Given w ∈ N and δ ∈ (0, 1/2) and a tuple of PRGs M1, . . . ,Mk where Mi : {0, 1}s →
{0, 1}li and given i, Mi is computable in space O(s), there exists an explicit PRG M̃ : {0, 1}s̃ →
{0, 1}l for l =

∑k
i=1 li such that for every length l, width w ordered branching program B, we have

‖B[M̃ ]−B[M1 · · ·Mk]‖max ≤ δ

and M̃ has seed length
s̃ = s+O(log k · log(kw/δ)).

This result is obtained from recursive application of the derandomization lemma below. We use
the formulation as stated in Lemma 11 of [CL20], which is an application of the INW generator:

Lemma 4.13 ([INW94]). Let G1 : {0, 1}s → {0, 1}l1 and G2 : {0, 1}s → {0, 1}l2 be explicit
PRGs. Then for every δ ∈ (0, 1/2) there is an explicit PRG G : {0, 1}s′ → {0, 1}l1+l2 where
s′ = s+O(log(w/δ)) such that for every pair of ordered branching programs B, B′ of width w and
lengths l1, l2 respectively, we have∥∥∥(BB

′
)[G]−B[G1]B

′
[G2]

∥∥∥
max
≤ δ.
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Given Lemma 4.12, we can reduce the seed length of all products of PRGs appearing in the
WPRG of Lemma 4.2.

Corollary 4.14. Given w ∈ N and γ ∈ (0, 1/2) and a family of length n WPRGs {τi ·Pi,1 · · ·Pi,k :
i ∈ [V ]} where for all i, j, τi ∈ {−1, 1} and Pi,j is a PRG with seed length s, and given i and j, the
coefficient τi can be computed and the generator Pi,j can be evaluated in space O(s + log V ), then
there is an explicit 2V -bounded WPRG GEN with seed length s + O(log k · log(wkV/γ)) such that
for every length n, width w branching program B,∥∥∥∥∥∥B[GEN]−B

∑
i∈[V ]

τi · Pi,1 · · ·Pi,k

∥∥∥∥∥∥
max

≤ γ.

Proof. For all i ∈ [V ], let GENi be the PRG obtained from applying Lemma 4.12 to Pi,1 · · ·Pi,k
with δ = γ/V . Then GENi is explicit and has seed length s + O(log k · log(wkV/γ)). Finally, we
apply Proposition 3.8 and define

GEN =
∑
i∈[V ]

τi ·GENi .

Then for every length n, width w ordered branching program B,∥∥∥∥∥∥B[GEN]−B

∑
i∈[V ]

τi · Pi1 · · ·Pik

∥∥∥∥∥∥
max

≤
∑
i∈[V ]

∥∥B[GENi]−B [Pi,1 · · ·Pi,k]
∥∥

max

≤ γ

V
· V

and by Proposition 3.8 GEN is explicit and 2V -bounded and has seed length s + O(log(V ) +
log(k) log(wkV/γ)).

4.3 Putting it Together

We are now prepared to prove Theorem 4.1.

Theorem 4.1. For all n,w ∈ N and ε ∈ (0, 1/2), there exists an explicit ε-WPRG for the class of
ordered branching programs of length n and width w with respect to ‖ · ‖max with seed length

s = O(log(n) log(nw) + log(1/ε) log lognw(1/ε)).

Moreover, the generator is poly(1/ε) bounded.

Proof. We assume ε = 1/nΩ(1) since otherwise the statement is satisfied by the Nisan PRG. Ap-
plying Lemma 4.2 with the same n,w and ε, we obtain a generator

GEN0 =
∑
i∈[V ]

τi · Pi,1Pi,2 · · ·Pi,k

satisfying for every branching program B of length n and width w,∥∥B[GEN0]−B[Un]
∥∥

max
≤ ε/2.

Furthermore, the family {τi ·Pi,1Pi,2 · · ·Pi,k : i ∈ [V ]} satisfies the requirements of Corollary 4.14
with V = poly(1/ε) and k = O(lognw(1/ε)) and s = O(log n · log nw). Therefore, let GEN be the
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explicit WPRG obtained from applying Corollary 4.14 to this family with error γ = ε/2. Thus
GEN is explicit, 2V = poly(1/ε) bounded, and has seed length

s = O(log(nw) log(n) + log(w/ε) log lognw(1/ε)).

As the seed length is greater than n otherwise, we can assume log(n) = Ω(log lognw(1/ε)) and
ignore the log(w) log lognw(1/ε) term.

Finally, for every branching program B of length n and width w, we have∥∥B[GEN]−B[Un]
∥∥

max
≤
∥∥B[GEN]−B[GEN0]

∥∥
max

+
∥∥B[GEN0]−B[Un]

∥∥
max

≤ ε

2
+
ε

2

where the final line comes from our choice of error in Corollary 4.14 and Lemma 4.2.

5 Pseudodistributions for Permutation Branching Programs

In this section we prove Theorem 1.4. To do so, we restate it in the language of matrix valued
functions.

Theorem 5.1. For all n ∈ N and ε ∈ (0, 1/2), there exists an explicit ε-WPRG for the class of
permutation branching programs of length n with respect to ‖ · ‖max with seed length

O(log(n)
√

log(n/ε)
√

log log(n/ε) + log(1/ε) log log(n/ε)).

We prove Theorem 5.1 in a similar way to Theorem 4.1, with two major modifications. First, we
use machinery from Ahmadinejad et al. [AKM+20] for a more sophisticated estimate of the norm of
the error matrix Err. Second, we use tools from Hoza, Pyne and Vadhan [HPV21] to derandomize
concatenations of WPRGs in a way that avoids dependence on the width of the branching programs
being fooled.

5.1 A WPRG With Large Seed Length

For the duration of the section we will assume that n + 1 is a power of two. This is without loss
of generality, as any prefix of an ε-WPRG for permutation branching programs must also ε-fool
permutation branching programs, as the final layers could be the identity.

In the next few subsections we prove the following analogue of Lemma 4.2:

Theorem 5.2. Given n ∈ N and ε, δ ∈ (0, 1/2), let ` = dlog1/δ(1/ε)e. Then there exists an explicit
weighted generator GEN0 such that GEN0 is ε ·poly(n)-pseudorandom for the class of permutation
branching programs of length n and arbitrary width with respect to ‖ · ‖max and

GEN0 =
∑
i∈[V ]

τi · Pi,1Pi,2 · · ·Pi,k

such that:

1. V = nO(`)

2. k = O(` · log n)
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3. For all i, τi ∈ {−1, 1}.

4. For all i, j, Pi,j is an (unweighted) PRG with seed length s = O(log n · log(log(n)/δ)).

5. Given i ∈ [V ] and j ∈ [k], τi and Pi,j are evaluatable in space O(s+ log V ).

Applying the sum and product rules to the output of the lemma, we obtain an ε-WPRG for
permutation branching programs with one accept vertex with seed length ω(` · log2 n), worse than
the PRG of [HPV21]. However, since ` · log n is only polylogarithmic in n for our choice of δ, we
can apply derandomization results of [HPV21] to shrink the seed length of each summand.

5.2 The Lift Transition Matrix

Given a branching program B, we define a matrix valued function that holds information about
transitions between all pairs of layers.

Definition 5.3. Given n,w ∈ N and a length n, width w permutation branching program B, define
the lift transition matrix B̂ : {0, 1} → R(n+1)w×(n+1)w by

B̂[s] =


0 B0..1[s] 0 . . . 0

0 0 B1..2[s]
...

...
. . . 0

0 0 Bn−1..n[s]
Jw 0 . . . 0


where we view the output as an (n+ 1)× (n+ 1) block matrix. For all i ∈ N, define B̂(i) : {0, 1}i →
R(n+1)w×(n+1)w as B̂(i)[s1 . . . si] = B̂[s1]B̂[s2] · · · B̂[si].

We start by analyzing the structure of these matrices.

Proposition 5.4. Let B̂ be the lift transition matrix for a length n, width w permutation branching
program. Then for all x ∈ N, s ∈ {0, 1}x and j, k ∈ {0, . . . , n}, let m = j + x mod n+ 1. Then:

(B̂(x)[s])j,k =


0 k 6= m

Jw m ≤ j or x > n

Bj..k[s] j < m and x ≤ n

Proof. The only nonzero blocks of B̂ have index (i, i+ 1 mod n+ 1). Thus,(
B̂(x)[s]

)
j,k

=
∑

j1..jx−1

B̂[s1]j,j1B̂[s2]j1,j2 · · · B̂[sx]jx−1,k

= B̂[s1]j,j+1B̂[s2]j+1,j+2 · · · B̂[sx]j+x−1,k

Where all block indices are written mod n+ 1.
Clearly if k 6= j + x mod n + 1 this is zero. Then if B̂[si]n,0 = Jw appears in this prod-

uct we have (B̂(x)[s])j,k = Jw, as A · Jw = Jw · A = Jw for every doubly stochastic ma-
trix A, and B̂[b]j,j+1 is doubly stochastic for all j, b. Otherwise the product is of the form
Bj..j+1[s1]Bj+1..j+2[s2] · · ·Bj+x−1,j+x[sx] = Bj..j+x[s] as desired.
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Note that when x > n, B̂(x)[s] has no dependence on the branching program B or the input s;
all nonzero blocks equal Jw and the location of those blocks depends only on x and n. In particular,
we have:

Corollary 5.5. Let B̂ be the lift transition matrix for a length n, width w permutation branching
program and let F : {0, 1}s → {0, 1}x, G : {0, 1}s′ → {0, 1}x be arbitrary PRGs. If x > n, then

B̂(x) [F ] = B̂(x) [G].

Proof. By Proposition 5.4 the nonzero blocks of B̂(x) [F ] and B̂(x) [G] are located only at indices
i, i+ x mod n+ 1 and are all equal to Jw.

If x < n, we can eliminate the dependence on the generator by multiplying by (In+1 ⊗ Jw).

Corollary 5.6. Let B̂ be the lift transition matrix for a length n, width w permutation branching
program and let F : {0, 1}s → {0, 1}x, G : {0, 1}s′ → {0, 1}x be arbitrary PRGs. Then

(In+1 ⊗ Jw)B̂(x) [F ] = (In+1 ⊗ Jw)B̂(x) [G] .

Proof. By Proposition 5.4 the nonzero blocks of B̂(x) [F ] and B̂(x) [G] are located only at indices
i, i + x mod n + 1 and these blocks are convex combinations of doubly stochastic matrices and
are thus doubly stochastic, so the result follows from the fact that Jw ·A = Jw for every doubly
stochastic matrix A.

These corollaries will enable long outputs to exactly cancel in the error-reduction procedure we
give later.

5.3 Approximating Powers

To analyze the distribution of PRGs over these transition matrices, we introduce the idea of a cyclic
branching program, and recall a consequence of [HPV21].

Definition 5.7. A length n, width w permutation branching program B is cyclic if it has tran-
sition functions B1, . . . , Bn, B0, where B0 is a transition function from layer n to layer 0. Given
a cyclic branching program B, define the cyclic transition matrix as the function B̂ : {0, 1} →
R(n+1)w×(n+1)w where

B̂[s] =


0 B0..1[s] 0 . . . 0

0 0 B1..2[s]
...

...
. . . 0

0 0 Bn−1..n[s]
Bn..0[s] 0 . . . 0

 .

Furthermore, for all i define B̂(i)[s1 . . . si] = B̂[s1] . . . B̂[si].

We then state a convenient form of the main theorem of [HPV21]. To do so, we review the
notion of approximation introduced by Ahmadinejad et al. [AKM+20], which plays a central role
in their analysis. For a complex number z ∈ C we write z∗ to denote the complex conjugate of z
and |z| to denote the magnitude of z. Note that our use of row vectors means the right vector has
the conjugate transpose applied, where in [AKM+20] this is reversed.
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Definition 5.8 (Unit-Circle Approximation [AKM+20]). For A, Ã ∈ CN×N and ε ≥ 0, we say A

is an ε-unit-circle approximation of Ã, denoted A
◦
≈ε Ã, if

∀x, y ∈ CN ,
∣∣∣x(A− Ã)y∗

∣∣∣ ≤ ε

2

(
‖x‖2 + ‖y‖2 −

∣∣∣xÃx∗ + yÃy∗
∣∣∣) .

One nice feature of unit circle approximation is that it is preserved under convex combinations:

Proposition 5.9. Let A, Ã,X, X̃ ∈ CN×N where A
◦
≈ε Ã and X

◦
≈ε X̃. Then for every λ ∈ [0, 1],

λA + (1− λ)X
◦
≈ε λÃ + (1− λ)X̃

Proof. Fix arbitrary ∀x, y ∈ CN , then∣∣∣x(λA + (1− λ)X− (λÃ + (1− λ)X̃))y∗
∣∣∣

≤ λ
∣∣∣x(A− Ã)y∗

∣∣∣+ (1− λ)
∣∣∣x(X− X̃)y∗

∣∣∣
≤ ε

2

(
‖x‖22 + ‖y‖22 − λ

∣∣∣xÃx∗ + yÃy∗
∣∣∣− (1− λ)

∣∣∣xX̃x∗ + yX̃y∗
∣∣∣)

≤ ε

2

(
‖x‖22 + ‖y‖22 −

∣∣∣x(λÃ + (1− λ)X̃)x∗ + y(λÃ + (1− λ)X̃)y∗
∣∣∣) .

As a consequence, multiplying by subunit scalars preserves unit circle approximation.

Corollary 5.10. For A, Ã ∈ CN×N , if A
◦
≈ε Ã, for all c ∈ R with c ∈ [0, 1] we have cA

◦
≈ε cÃ.

Proof. This follows from Proposition 5.9, taking λ = c and X = X̃ = 0.

We can then recall the consequence of [HPV21]. The result uses that cyclic transition matrices
correspond to transition matrices of consistently-labeled graphs, and the correspondence between
the INW generator and the derandomized square of Rozenman and Vadhan [RV05].

Theorem 5.11 (Consequence of [HPV21] Theorem 1.4). For all q ∈ N and ε ∈ (0, 1/2), there is
a family of explicit PRGs INW0, . . . , INWq such that INW0 is the trivial PRG on one bit, and for
all i ∈ [q], INWi has seed length s = O(q · log(1/ε)) and produces 2i bits of output. Furthermore,
for all i ∈ {0, . . . , q − 1}, for every cyclic permutation branching program B with cyclic transition
matrix B̂,

B̂(2i+1) [INWi+1]
◦
≈ε B̂(2i+1) [INWi · INWi] .

We can then write the lift transition matrix of a permutation branching program as the convex
combination of cyclic transition matrices, and by doing so obtain a bound of the same form as
Theorem 5.11.

Definition 5.12. For all n ∈ N and δ ∈ (0, 1/2), let INW0, . . . , INWq be the family of PRGs
obtained from applying Theorem 5.11 with q = log(n+ 1) and error δ = δ/40q2. These generators
have seed length s = O(q log(q/δ)). Then for every length n permutation branching program B
with lift transition matrix B̂, for all i ∈ {0, . . . , q} define

Wi = B̂(2i) [INWi] .

We remark that since INW0 is the trivial PRG on one bit, W0 is defined identically to what
is stated in Subsection 2.2. We now show that these matrices successively approximate each other
with respect to unit circle approximation.
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Lemma 5.13. Given n ∈ N and δ ∈ (0, 1/2) and a length n permutation branching program B, for
all i ∈ {0, . . . , q} let Wi be as defined as in Definition 5.12 with the same n, δ. Then for all i ∈ [q],

Wi
◦
≈ δ

40q2
W2

i−2.

Proof. For all y ∈ [w] let Ây be the cyclic transition matrix of the length n cyclic permutation
branching program Ay, which has transition functions B1, . . . , Bn, A

y
0 where Ay0(v, b) = (v − 1 + y

mod w) + 1. We first claim 1
w

∑w
y=1 Ây[s] = B̂[s]. Fixing arbitrary s, (Ây[s])i,j = B̂[s]i,j for all

y ∈ [w] and all blocks (i, j) 6= (n, 0). For the (n, 0) block, for all u, v ∈ {0, . . . , w − 1}, 1

w

w∑
y=1

Ay[s]


n,0


u,v

= Pr
y∈[w]

[u+ y mod w = v] =
1

w
= (Jw)u,v.

Furthermore by Theorem 5.11, for all y ∈ [w] and i ∈ [q] we have

Â
(2i)
y [INWi]

◦
≈δ/40q2 Â

(2i)
y [INWi−1 · INWi−1].

So we obtain:

Wi = B̂(2i) [INWi]

=
1

w

w∑
y=1

Â
(2i)
y [INWi]

◦
≈δ/40q2

1

w

w∑
y=1

Â
(2i)
y [INWi−1 · INWi−1] (Proposition 5.9)

= B̂(2i) [INWi−1 · INWi−1]

= W2
i−1

5.4 The Cycle-Lift Laplacian

We wish to use this sequence of approximations W0, . . . ,Wq to construct a good approximation
to Wn

0 . To do so, we slightly modify the construction described in Section 6 of [AKM+20]. They
tensor the matrix to be approximated with a cycle of sufficient length (in our case n + 1). To do
so, they first define a series of cycles. Let Ci be the directed cycle on 2i vertices. Without loss of
generality, we use the following ordering of rows and columns of C.

Definition 5.14. Let C0 = [1] and given Ci let Ci+1 =

[
0 I2i

Ci 0

]
.

Now let πr : {0, . . . , 2r − 1} → {0, . . . , 2r − 1} be the bijection from the usual ordering of the
2r-cycle to the indexing in Cr. Specifically, writing u ∈ {0, . . . , 2r− 1} in binary as u = ur−1 . . . u0,
we have πr(u) = u0 . . . ur−1 = u0 · 2r−1 + πr−1(ur−1 . . . u1). From this, we can relate the indexing
of block submatrices to that of a larger matrix:

Claim 5.15. Let M =

[
A0,0 A0,1

A1,0 A1,1

]
be a 2r × 2r matrix. Then for every u, v ∈ {0, . . . , 2r−1 − 1}

and b, c ∈ {0, 1}, we have Mπr(2u+b),πr(2v+c) = (Abc)πr−1(u),πr−1(v).
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Proof. Using the definition of the bijection πr, we have that πr(2u+ b) = b · 2r−1 + πr−1(u), which
is precisely equivalent to selecting a block via b and the row index of the 2r−1× 2r−1 submatrix via
πr−1(u), and the same holds for the column πr(2v + c), so the claim follows.

We now take a Laplacian of Cq ⊗W0 where q = log(n+ 1).

Definition 5.16. Given n ∈ N, δ ∈ (0, 1/2) and a length n permutation branching program B
with lift transition matrix B̂, for all i ∈ {0, . . . , q} let Wi be defined as in Definition 5.12 with the
same n, δ. For convenience we define N = (n + 1)w for the remainder of the section. Then fix
c = 1− 1/(n+ 1) and define the cycle-lift Laplacian of B as

L = L(0) = I2qN −Cq ⊗ cW0.

For convenience, we write ci = c2i . This definition is identical to that in [AKM+20] except
we multiply W0 by a factor strictly less than 1. This makes L invertible, making the analysis
cleaner and providing a bound on the singular values of L that is independent of the width of the
branching program, which enables us to obtain a seed length independent of width. We now detail
the decomposition of this Laplacian using repeated Schur complements, identical to that of Section
6 of [AKM+20].

Let Hq be the set of indices {2q−1N, 2q−1N + 1, . . . , 2qN − 1}, so that the cycle Cq alternates
between Hq and Hc

q . The Schur complement of L onto the set Hq is an |Hq| × |Hq| matrix which
is shown in [AKM+20] to have the following nice form:

Sc(L, Hq) = I2q−1N −Cq−1 ⊗ c2W2
0

This is exactly the Laplacian of the cycle lift of c2W2
0 with Cq−1. We then replace W2

0 with W1

and again take the Schur complement with respect to Hq−1. We repeat this procedure q times
to obtain a decomposition of the original Laplacian L in terms of repeated Schur complements.
Formally, define L(0) = L and for all i ∈ [q] define

L(i) = X1 . . .Xi

[
I(2q−2q−i)N 0

0 I2q−iN −Cq−i ⊗ ciWi

]
Yi . . .Y1 (7)

Where

Xj =

I(2q−2q−j+1)N 0 0

0 I2q−jN 0
0 −Cq−j ⊗ cj−1Wj−1 I2q−jN

 ,Yj =

I(2q−2q−j+1)N 0 0

0 I2q−jN −I2q−j ⊗ cj−1Wj−1

0 0 I2q−jN


Later we will argue that all these L(i)s are good approximations of L (in an appropriate sense).
Moreover, it is easy to compute the inverse of L(q):

(L(q))−1 = Y−1
1 . . .Y−1

q

[
I(2q−1)N 0

0 (IN −C0 ⊗ cqWq)
−1

]
X−1
q . . .X−1

1 . (8)

Where

X−1
j =

I(2q−2q−j+1)N 0 0

0 I2q−jN 0
0 Cq−j ⊗ cj−1Wj−1 I2q−jN

 ,Y−1
j =

I(2q−2q−j+1)N 0 0

0 I2q−jN I2q−j ⊗ cj−1Wj−1

0 0 I2q−jN

 .
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Note that it is easy to invert the final block diagonal matrix at the bottom of the recursion, as

(IN −C0 ⊗ cqWq)
−1 = (IN − cqIn+1 ⊗ Jw)−1 = IN +

( ∞∑
i=1

ciq

)
(In+1 ⊗ Jw)

where the first equality holds because Wq = B̂(2q) [INWq] = In+1 ⊗ Jw (by Corollary 5.6) and the
second because cq < 1. Note that this matrix has no dependence on the branching program B.

We now describe the form of the blocks of (L(q))−1 in terms of the base matrices Wi. To do so,
we define Dr for r ∈ {0, . . . , q}. The rows and columns of Dr correspond to vertices of the original
cycle Cq.

Definition 5.17. Let D0 = (IN − cqIn+1 ⊗ Jw)−1 ∈ RN×N . Given Dr ∈ R2rN×2rN , define

Dr+1 ∈ R2r+1N×2r+1N as

Dr+1 =

[
I2rN + (I2r ⊗ cq−r−1Wq−r+1)Dr(Cr ⊗ cq−r−1Wq−r−1) (I2r ⊗ cq−r−1Wq−r+1)Dr

Dr(Cr ⊗ cq−r−1Wq−r−1) Dr

]
.

Lemma 5.18. We have Dq = (L(q))−1.

Proof. We show by induction that from r = 0 up to q that

(L(q))−1 = Y−1
1 . . .Y−1

q−r

[
I(2q−2r)N 0

0 Dr

]
X−1
q−r . . .X

−1
1 .

This is immediate for D0. Then assuming it holds for Dr, we have:

(L(q))−1 = Y−1
1 . . .Y−1

q−r

[
I(2q−2r)N 0

0 Dr

]
X−1
q−r . . .X

−1
1

= Y−1
1 . . .Y−1

q−r

I(2q−2r+1)N 0 0

0 I2rN 0
0 0 Dr

X−1
q−r . . .X

−1
1

= Y−1
1 . . .Y−1

q−r

I(2q−2r+1)N 0 0

0 I2rN 0
0 Dr(Cr ⊗ cq−r−1Wq−r−1) Dr

X−1
q−r−1 . . .X

−1
1

= Y−1
1 . . .Y−1

q−r−1

[
I(2q−2r+1)N 0

0 Dr+1

]
X−1
q−r−1 . . .X

−1
1

We now show that the blocks of Dq = (L(q))−1 consist essentially of products of Wi’s.

Lemma 5.19. For all r ∈ {0, . . . , q} and u, v ∈ {0, . . . , 2r−1}, let m = 2q−r(v−u mod 2r). Then

(Dr)πr(u),πr(v) = (IN − cqIn+1 ⊗ Jw)−1cmWi1 . . .Wik

for some indices i1, . . . , ik such that
∑k

j=1 2ij = m and k ≤ 2r. Furthermore, given u, v the indices
i1, . . . , ik are computable in space O(log n).

Proof. We prove this using induction from r = 0 up to q. For the base case, there is only one block
u = v = 0 and (D0)π0(0),π0(0) = (IN − cqIn+1 ⊗ Jw)−1 as claimed. Now assume that Dr has the
claimed form.

Let u′, v′ ∈ {0, . . . , 2r+1−1} be arbitrary indices in the index set of Dr+1. We verify (Dr+1)πr+1(u′),πr+1(u′)

has the claimed form via casework. In all cases we take u, v ∈ {0, . . . , 2r − 1}.

29



1. If u′ = 2u+ 1 and v′ ∈ 2v + 1, we have

(Dr+1)πr+1(u′),πr+1(v′) = (Dr)πr(u),πr(v)

= (IN − cqIn+1 ⊗ Jw)−1clW̃

where the first line follows from Definition 5.17 and Claim 5.15. From the inductive as-
sumption, W̃ is a product of matrices Wij with total length l = 2q−r(v − u mod 2r) =
2q−r−1(2v − 1− (2u− 1) mod 2r+1) = 2q−r−1(v′ − u′ mod 2r+1) as desired.

2. If u′ = 2u+ 1 and v′ = 2v, we have

(Dr+1)πr+1(u′),πr+1(v′) = (Dr(Cr ⊗ cq−r−1Wq−r−1))πr(u),πr(v)

= (Dr)πr(u),πr(v−1)cq−r−1Wq−r−1

= (IN − cqIn+1 ⊗ Jw)−1clW̃cq−r−1Wq−r−1

where the second line follows from the fact that (Dr(Cr ⊗ IN ))π(a),π(b) = (Dr)πr(a),πr(b−1)

for all a, b. From the inductive assumption, we have that the product of matrices has length
l + 2q−r−1 = 2q−r(v − 1− u mod 2r) + 2q−r−1 = 2q−r−1(2v − 2− 2u mod 2r+1) + 2q−r−1 =
2q−r−1(2v − (2u+ 1) mod 2r+1) as desired.

3. If u′ = 2u and v′ = 2v + 1, we have

(Dr+1)πr+1(u′),πr+1(v′) = ((I2r ⊗ cq−r−1Wq−r+1)Dr)πr(u),πr(v)

= cq−r−1Wq−r−1(Dr)πr(u),πr(v)

= cq−r−1Wq−r−1(IN − cqIn+1 ⊗ Jw)−1clW̃

= cq−r−1(IN − cqIn+1 ⊗ Jw)−1clWq−r−1W̃ (Corollary 5.6)

From the inductive assumption, we have that the product of matrices has length l+2q−r−1 =
2q−r(v − u mod 2r) + 2q−r−1 = 2q−r−1(2v + 1− 2u mod 2r+1) = 2q−r−1(v′ − u′ mod 2r+1)
as desired.

4. If u′ = 2u and v′ = 2v, we do casework based on if u′ = v′, due to the presence of I2rN in the
relevant quadrant of Dr+1. If u′ 6= v′, we have

(Dr+1)πr+1(u′),πr+1(v′) = ((I2r ⊗ cq−r−1Wq−r+1)Dr(Cr ⊗ cq−r−1Wq−r−1))πr(u),πr(v)

= cq−r−1Wq−r−1(Dr)πr(u),πr(v−1)cq−r−1Wq−r−1

= (IN − cqIn+1 ⊗ Jw)−1clcq−rWq−r−1 · W̃ ·Wq−r−1

Where the second line follows from identical reasoning to Case 2. From the inductive as-
sumption, we have that the product of matrices has length l + 2q−r = 2q−r(v − 1 − u
mod 2r) + 2q−r = 2q−r−1(2v − 2u mod 2r+1) = 2q−r−1(v′ − u′ mod 2r+1) as desired.

Finally, if u′ = v′ we have

(Dr+1)πr+1(u′),πr+1(v′) = (I2rN + (I2r ⊗ cq−r−1Wq−r+1)Dr(Cr ⊗ cq−r−1Wq−r−1))πr(u),πr(v)

= IN + cq−r−1Wq−r−1(Dr)πr(v),πr(v−1)cq−r−1Wq−r−1

= IN + (IN − cqIn+1 ⊗ Jw)−1clcq−rWq−r−1 · W̃ ·Wq−r−1
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Here we have that the product of matrices has length l+2 ·2q−r−1 = 2q−r(v−1−v mod 2r)+
2q−r = 2q−r(2r − 1) + 2q−r = 2q, so we obtain

(Dr+1)πr+1(u′),πr+1(v′) = IN + (IN − cqIn+1 ⊗ Jw)−1clcq−rWq−r−1 · W̃ ·Wq−r−1

= IN + (IN − cqIn+1 ⊗ Jw)−1cq(In+1 ⊗ Jw)

= (IN − cqIn+1 ⊗ Jw)−1

as desired, so Dr+1 has the claimed form.

Finally, given u′, v′ ∈ {0, . . . , 2r+1 − 1} in the index set of Dr+1, the algorithm can determine
which indices u, v corresponding to rows/columns of Dr were used to produce (Dr+1)u′,v′ . Given
this, the machine can determine if Wq−r−1 were left and/or right concatenated in (Dr+1)u′,v′ and
recurse on u, v (and storing if each concatenation occurred requires only two bits per level). Since
this requires storing a constant number of bits per level and the current level r, we require space
O(log n) to output the index set. Furthermore, note that this algorithm does not depend on the
branching program B, only on n and the definition of Cq.

For the remainder of the section we index all relevant block matrices with respect to the con-
ventional ordering of the cycle Cq, dropping the πq notation.

Corollary 5.20. We have

(L−1)0,n = (L(0))−1
0,n = (IN − cqIn+1 ⊗ Jw)−1cnWn

0 .

Proof. If we replace Wi with W2i
0 in the construction above, by Equation 10 of [AKM+20] we have

that L(i) = L for all i, so from Lemma 5.19 and Lemma 5.18 we obtain that L−1 has the desired
form.

With this corollary, we obtain that an accurate estimate of L−1 implies an accurate estimate
of L−1

0,n = (IN − cqIn+1 ⊗ Jw)−1cnWn
0 , and by using Corollary 5.6 we will use this to bound the

distance of the WPRG to Wn
0 .

5.5 Applying Richardson Iteration

From the previous subsection, we obtain a matrix (L(q))−1 which we will show is a good (enough)
approximation of L−1 to apply preconditioned Richardson iterations (Proposition 2.2) to obtain a
very accurate estimate of L−1.

Proposition 5.21. Given n ∈ N and δ, ε ∈ (0, 1/2), let ` = dlog1/δ(1/ε)e. Then for every length n

permutation branching program B, let L be defined as in Definition 5.16 and L(q) as in Equation 7.
Then define Err = I2qN − (L(q))−1L and define

L̃−1 =
∑̀
i=0

Erri · (L(q))−1.

Then ‖L̃−1 − L−1‖max ≤ ε · poly(n).

To prove this, we follow the argument of Ahmedinejad et al. [AKM+20] which in turn is based
on Cohen et al. [CKP+17]. We wish to apply preconditioned Richardson iteration (Lemma 2.2),
but to do so, we must first define an appropriate sub-multiplicative norm.
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• For a matrix A ∈ Cd×d we write A∗ to denote its conjugate transpose and write UA =
(A + A∗)/2 to denote its symmetrization.

• We say a Hermitian matrix A is positive semidefinite (PSD) or write A � 0 if xAx∗ ≥ 0
for all x ∈ Cd. For two Hermitian matrices A, Ã, we use A � Ã to denote A − Ã � 0 and
define � analogously.

• For a PSD matrix H, we define the seminorm induced by H as ‖x‖H =
√
xHx∗ and the

corresponding matrix seminorm as ‖A‖H = maxx 6=0 ‖xA‖H/‖x‖H. Note that ‖ · ‖H is sub-
multiplicative if H is invertible.

We give a basic proposition that allows us to pass from H-norm to 2-norm.

Proposition 5.22. Let H ∈ Cd×d be a Hermitian positive definite matrix with minimum eigenvalue
α and maximum eigenvalue β. Then for every x ∈ Cd, α‖x‖22 ≤ ‖x‖2H ≤ β‖x‖22.

Proof. Let (µi)i∈[d] be an orthonormal eigenbasis for H and λi ∈ R the associated eigenvalues.

Then for every x ∈ Cd,

‖x‖2H = x

(
d∑
i=1

λiµ
∗
iµi

)
x∗ =

d∑
i=1

λi|xµ∗i |2 ≤ β
d∑
i=1

|xµ∗i |2 = β‖x‖22

and the lower bound is nearly identical.

Corollary 5.23. Let H ∈ Cd×d be a Hermitian positive definite matrix with minimum eigenvalue
α and maximum eigenvalue β. Then for every A ∈ Cd×d,

√
α/β‖A‖2 ≤ ‖A‖H ≤

√
β/α‖A‖2.

Proof. Applying the previous proposition twice we have

‖A‖H = max
x 6=0

‖xA‖H
‖x‖H

≤
√
β/αmax

x 6=0

‖xA‖2
‖x‖2

=
√
β/α‖A‖2

and the lower bound is nearly identical.

Using these tools, we can build a positive definite matrix F such that L(q) approximates L−1

with respect to ‖ · ‖F. For all i ∈ {0, . . . , q}, define

S(i) =

[
0 0
0 I2q−iN −Cq−i ⊗ ciWi

]
∈ R2qN×2qN (9)

where the 0 padding is added to make the dimensions of the matrices equal, and recall

US(i) =
1

2

(
S(i) + (S(i))T

)
.

Lemma 5.24. Let S(i) and L(i) be defined as in Equation 9 and Equation 7 respectively. Then
defining F = 2

q

∑q
i=0 US(i), we have that:∥∥∥I2qN − L̃−1L−1

∥∥∥
F
≤ δ.
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We follow the proof of [AKM+20], except that our choice of c makes all of our L(i)s strictly
diagonally dominant. The only aspect of the proof which differs is the observation that Schur
complements of strictly diagonally dominant matrices are strictly diagonally dominant. As such,
we defer the proof to Appendix A.

With our choice of c, we obtain a bound of 1/ poly(n) on the minimum eigenvalue of F.

Lemma 5.25. Let S(i) and L(i) be defined as in Equation 9 and Equation 7 respectively and define
F = 2

q

∑q
i=0 US(i). The eigenvalues of F are contained in [1/q(n+ 1), 3], and ‖L−1‖2 ≤ n+ 1.

Proof. For every v ∈ R2qN with ‖v‖2 = 1 we have

‖vL‖2 = ‖v(I2qN −Cq ⊗ cW0)‖2 ∈ [1− c, 1 + c] ⊂ [1/(n+ 1), 2]

which suffices to bound ‖L−1‖2 as desired. Furthermore, we have

US(0) = I2qN −UCq⊗c0W0

and for all i > 0 we have

US(i) =

[
0 0
0 I2q−iN −UCq−i⊗ciWi

]
and since UCq−i⊗Wi is a stochastic matrix, all eigenvalues of US(i) are contained in [0, 2] for i > 0
and [1− c, 2] for i = 0. Therefore for every v ∈ R2qN we have

‖vF‖2 =

∥∥∥∥∥2

q

q∑
i=0

vUS(i)

∥∥∥∥∥
2

∈ [1/q(n+ 1), 3].

Now that we have this F norm, we can use Richardson iteration to prove the proposition.

Proof of Proposition 5.21. Applying Lemma 2.2 with A = L,P0 = (L(q))−1, m = `, norm ‖ · ‖ =
‖ · ‖F and α = δ, we obtain

∥∥∥I2qN − L̃−1L
∥∥∥
F

=

∥∥∥∥∥I2qN −

(∑̀
i=0

Erri · (L(q))−1

)
L

∥∥∥∥∥
F

= ‖I2qN −PmL‖F ≤ δ` ≤ ε.

Thus, ∥∥∥L−1 − L̃−1
∥∥∥

max
≤
∥∥∥L−1 − L̃−1

∥∥∥
2

=
∥∥∥(L−1 − L̃−1)LL−1

∥∥∥
2

≤
∥∥∥I2qN − L̃−1L

∥∥∥
2
·
∥∥L−1

∥∥
2

≤
(∥∥∥I2qN − L̃−1L

∥∥∥
F
·
√

3q(n+ 1)
)∥∥L−1

∥∥
2

(Proposition 5.23)

≤ ε · poly(n) (Lemma 5.25)

5.6 Interpretation as a Weighted PRG

Now that we have a polynomial in the Wi’s approximating L−1 and thus (L−1)0,n = (IN−cqIn+1⊗
Jw)−1cnWn

0 , to complete the proof of Theorem 5.2 we will interpret the polynomial as (IN−cqIn+1⊗
Jw)−1cnB̂[GEN0] for a WPRG GEN0.
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Lemma 5.26. Given n ∈ N and δ ∈ (0, 1/2), let INWj be as defined as in Definition 5.12 with the
same n and δ. Then for all x, y ∈ {0, . . . , n} there is a product of PRGs

Gx,y = INWi1 · · · INWir

where r ≤ 2q and given x, y the index set i1, . . . , ir is computable in space O(log n). Furthermore,
let m = y − x mod n + 1. Then for every length n permutation branching program B with lift
transition matrix B̂, let L(q) be as defined in Equation 7. Then,

(IN − cqIn+1 ⊗ Jw)−1cmB̂(m) [Gx,y] = (L(q))−1
x,y.

Proof. We apply the previous lemmas on the structure of (L(q))−1:

(L(q))−1
x,y = (D0)x,y (Lemma 5.18)

= (IN − cqIn+1 ⊗ Jw)−1cmWi1 · · ·Wir (Lemma 5.19)

= (IN − cqIn+1 ⊗ Jw)−1cmB̂(2i1 ) [INWi1 ] · · · B̂(2ir ) [INWir ] (Def 5.12)

= (IN − cqIn+1 ⊗ Jw)−1cmB̂(m) [INWi1 · · · INWir ]

where r ≤ 2q and given x, y the index set i1, . . . , ir is computable in space O(log n). Further-
more, as the indices i1, . . . , ir are independent of B, this holds for all such branching programs B
and we conclude.

We can then describe the structure of Err in terms of combinations of these base PRGs.

Lemma 5.27. For every n ∈ N and δ ∈ (0, 1/2) and i, j ∈ {0, . . . , n}, let m = j − i mod n + 1.
Let {Gx,y : x, y ∈ {0, . . . , n}} be defined as in Lemma 5.26 with the same n and δ and recall R
is the trivial PRG on one bit. Then for every length n permutation branching program B, let
Err ∈ R(n+1)N×(n+1)N be the (n+ 1)× (n+ 1) block matrix as defined in Proposition 5.21. Then,

Erri,j =

{
0 i = j

cmB̂(m) [Gi,j−1R−Gi,j ] i 6= j.

Proof. The proof is nearly identical to that of Lemma 4.7. We detail the case where i < j:

Erri,j = −
n∑
k=0

(L(q))−1
i,k · Lk,j

= −
[
(L(q))−1

i,j · Lj,j + (L(q))−1
i,j−1 · Lj−1,j

]
(Definition 5.16)

= −
[
(L(q))−1

i,j · IN + (L(q))−1
i,j−1 · −cW0

]
= (IN − cqIn+1 ⊗ Jw)−1

(
−cj−iB̂(m) [Gi,j ] + cj−i−1B̂(m−1) [Gi,j−1] cW0

)
(Lemma 5.26)

= (IN − cqIn+1 ⊗ Jw)−1cj−i
(
B̂(m) [Gi,j−1R]− B̂(m) [Gi,j ]

)
= cj−iB̂(m) [Gi,j−1R−Gi,j ] (Corollary 5.6).
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and the case i > j is nearly identical. Then for i = j,

Erri,i = IN −
n∑
k=0

(L(q))−1
i,k · Lk,j

= IN −
[
(L(q))−1

i,i · IN + (L(q))−1
i,i−1 · −cW0

]
(Definition 5.16)

= IN − (IN − cqIn+1 ⊗ Jw)−1
[
IN − cn+1B̂(n+1) [Gi,i−1R]

]
(Lemma 5.26)

= IN − (IN − cqIn+1 ⊗ Jw)−1 [IN − cqIn+1 ⊗ Jw] (Corollary 5.5).

= 0

We require one more lemma, which ensures that terms corresponding to WPRGs of length
greater than n fall out of the error reduction procedure.

Lemma 5.28. For every length n permutation branching program B, let Err ∈ R(n+1)N×(n+1)N be
the (n+1)×(n+1) block matrix as defined in Proposition 5.21. For every set of indices 0 = i0, . . . , ir
where there exists j such that ij ≥ ij+1,

r∏
j=1

Errij−1,ij = 0.

Proof. If ij = ij+1 for any j the claim is trivially satisfied, so we assume adjacent indices are
distinct. For j ∈ [r] let xj = ij − ij−1 mod n + 1 and x =

∑r
j=1 xj . By assumption, x ≥ n + 1.

Then

r∏
j=1

Errij−1,ij =

r∏
j=1

cxj B̂(xj)
[
Gir−1,ir−1R−Gir−1,ir−1

]
(Lemma 5.27)

= cxB̂(x)

 r∏
j=1

(
Gir−1,ir−1R−Gir−1,ir−1

)
= 0

Where the final line follows from writing the prior line as a difference of 2r PRGs with positive and
negative sign and applying Corollary 5.6.

We are now ready to describe the entries of L̃−1. We define the index set in an analogous way
to Definition 4.9.

Definition 5.29. For all n, ` ∈ N define the index set Vn,` as

Vn,` = {0 = σ0 < σ1 < · · · < σr ≤ n : σi ∈ Z+, 0 ≤ r ≤ `}.

For σ = (σ0, σ1, . . . , σr) ∈ Vn,` we write |σ| = r. Note that we include the empty tuple (0).

We now index the nonzero summands of the Richardson polynomial, equivalent to Lemma 4.10
with the products of INW PRGs G taking the place of NIS.

Lemma 5.30. For all n, ` ∈ N and δ ∈ (0, 1/2), let {Gx,y : x, y ∈ {0, . . . , n}} be defined as in
Lemma 5.26 with the same n and δ and Vn,` as in Definition 5.29 with the same n, `. Then for
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all σ = (σ0, σ1, . . . , σr) ∈ Vn,`, define the WPRG (using the sum and product rules of Def. 3.6 and
Def. 3.9)

Mσ =
r−1∏
i=0

(Gσi,σi+1−1R−Gσi,σi+1)Gσr,n

where M(0) = G0,n. For every length n permutation branching program B, let Err and (L(q))−1 be
defined as in Proposition 5.21. Then,(∑̀

r=0

Errr · (L(q))−1

)
0,n

= (IN − cqIn+1 ⊗ Jw)−1cn
∑

σ∈Vn,`

B̂(n)[Mσ].

Proof. Fix any r ∈ [`]. Then:

(Errr · (L(q))−1)0,n

=
∑

(ij)∈{0..n}r
Err0,i1

r−1∏
j=1

Errij ,ij+1

 (L(q))−1
ir,n

=
∑

σ∈Vn,`:|σ|=r

(
r−1∏
i=0

Errσi,σi+1

)
(L(q))−1

σr,n (Lemma 5.28)

=
∑

σ∈Vn,`:|σ|=r

r−1∏
i=0

cσi+1−σiB̂(σi+1−σi)
[
Gσi,σi+1−1R−Gσi,σi+1

]
(L(q))−1

σr,n (Lemma 5.27)

= (IN − cqIn+1 ⊗ Jw)−1cn
∑

σ∈Vn,`:|σ|=r

B̂(n) [Mσ] (Lemma 5.26).

Then for r = 0 we have

(L(q))−1
0,n = (IN − cqIn+1 ⊗ Jw)−1cnB̂(n) [G0,n] = (IN − cqIn+1 ⊗ Jw)−1cnB̂(n)

[
M(0)

]
so we conclude.

We then prove an analogue of Corollary 4.11.

Corollary 5.31. Given n, ` ∈ N and δ ∈ (0, 1/2), let Vn,` be defined as in Definition 5.29 with the
same n, ` and {Mσ : σ ∈ Vn,`} as in Lemma 5.30 with the same n, δ. For all σ ∈ Vn,`, let r = |σ|.
Then

Mσ =
∑

x∈{0,1}r
τσ,x · Pσ,x,1 · · ·Pσ,x,k.

Where k ≤ 3q(r + 1) and for all σ, x, i we have that τσ,x ∈ {−1, 1} and Pσ,x,i is an explicit PRG
with seed length s = O(log n · log(log(n)/δ)). Furthermore given σ ∈ Vn,`, x ∈ {0, 1}r and i ∈ [k],
τσ,x can be computed and Pσ,x,i can be evaluated in space O(s+ log |Vn,`|).

Proof. For every σ ∈ Vn,` and x ∈ {0, 1}r, let τσ,x = (−1)
∑r
i=1 xi . For all i ∈ [r], define:

Dσ,x,i =

{
Gσi−1,σi−1R xi = 0

Gσi−1,σi xi = 1
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and define Dσ,x,r+1 = Gσr,n, where by Lemma 5.26 each Dσ,x is a product of at most 3q explicit
PRGs, each with seed length s = O(log n · log(log(n)/δ)), and given σ ∈ Vn,`, x ∈ {0, 1}r and i ∈ [r]
the index set of the PRGs in Dσ,x,i can be computed in space O(log n). Then define:

k∏
j=1

Pσ,x,j =

r+1∏
i=1

Dσ,x,i.

Where given σ ∈ Vn,` and x ∈ {0, 1}r, every index j ∈ [k] corresponds to a base PRG in the
right hand product (and this PRG is computable in the desired space bound by Lemma 5.26), and
k ≤ (r + 1)3q. Finally, by definition

Mσ =
∑

x∈{0,1}r
τσ,x · Pσ,x,1 · · ·Pσ,x,k.

We next show the family of WPRGs jointly approximate B̂(n) [Un], which holds the distribution
of random walks from layer 0 to layer n in the branching program.

Lemma 5.32. Given n ∈ N and ε, δ ∈ (0, 1/2), let ` = dlog1/δ(1/ε)e and let {Mσ : σ ∈ Vn,`} be
defined as in Lemma 5.30 with the same n, ` and δ. Then for every length n permutation branching
program B with lift transition matrix B̂,∥∥∥∥∥∥

∑
σ∈Vn,`

B̂(n) [Mσ]− B̂(n) [Un]

∥∥∥∥∥∥
max

≤ ε · poly(n).

Proof. Let L̃−1 and L be defined as in Proposition 5.21. We obtain

ε · poly(n)

≥
∥∥∥(L̃−1 − L−1)0,n

∥∥∥
max

(Prop. 5.21)

=
∥∥∥(L̃−1)0,n − (IN − cqIn+1 ⊗ Jw)−1cnWn

0

∥∥∥
max

(Cor 5.20)

=

∥∥∥∥∥∥(IN − cqIn+1 ⊗ Jw)−1cn
∑

σ∈Vn,`

B̂(n) [Mσ]− (IN − cqIn+1 ⊗ Jw)−1cnWn
0

∥∥∥∥∥∥
max

(Lemma 5.30)

=

∥∥∥∥∥∥cn
∑

σ∈Vn,`

B̂(n) [Mσ]− cnB̂(n) [Un]

∥∥∥∥∥∥
max

(Cor. 5.6)

≥ 1

4

∥∥∥∥∥∥
∑

σ∈Vn,`

B̂(n) [Mσ]− B̂(n) [Un]

∥∥∥∥∥∥
max

(c = 1− 1/(n+ 1))

Where the third equality follows from writing∑
σ∈Vn,`

Mσ =
∑

σ∈Vn,`\(0)

Mσ +M(0)

and noting that (In+1⊗Jw)B̂(n)
[∑

σ∈Vn,`\(0)Mσ

]
= 0 by Corollary 5.6 (as all Mσ except M(0) are a

sum over 2|σ| PRGs with positive and negative sign by Corollary 5.31) and (In+1⊗Jw)B̂(n)
[
M(0)

]
=

(In+1 ⊗ Jw)Wn
0 by Corollary 5.6.
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We remark that the exact cancellation of all terms that do not correspond to WPRG outputs
of length n is the motivation for our placement of Jw in the lift transition matrix, rather than some
arbitrary transition function as in [HPV21]. We are now prepared to prove Theorem 5.2.

Theorem 5.2. Given n ∈ N and ε, δ ∈ (0, 1/2), let ` = dlog1/δ(1/ε)e. Then there exists an explicit
weighted generator GEN0 such that GEN0 is ε ·poly(n)-pseudorandom for the class of permutation
branching programs of length n and arbitrary width with respect to ‖ · ‖max and

GEN0 =
∑
i∈[V ]

τi · Pi,1Pi,2 · · ·Pi,k

such that:

1. V = nO(`)

2. k = O(` · log n)

3. For all i, τi ∈ {−1, 1}.

4. For all i, j, Pi,j is an (unweighted) PRG with seed length s = O(log n · log(log(n)/δ)).

5. Given i ∈ [V ] and j ∈ [k], τi and Pi,j are evaluatable in space O(s+ log V ).

Proof. Let {Mσ : σ ∈ Vn,`} be defined as in Lemma 5.30 with the same n, ` and δ, and let

{τi · Pi,1 · · ·Pi,k : σ ∈ Vn,`, x ∈ {0, 1}|σ|}

be the family obtained from Corollary 5.31 ranging over σ. All explicitness and seed length condi-
tions are satisfied by the corollary. Then let [V ] be the set of terms (σ, x) and define

GEN0 =
∑
i∈[V ]

τi · Pi,1 · · ·Pi,k.

All explicitness and seed length conditions are satisfied from Corollary 5.31, and we have V = nO(`)

as desired. Finally, fixing an arbitrary length n permutation branching program B,

ε · poly(n) ≥

∥∥∥∥∥∥
∑

σ∈Vn,`

B̂(n) [Mσ]− B̂(n) [Un]

∥∥∥∥∥∥
max

(Lemma 5.32)

=

∥∥∥∥∥∥
∑
i∈[V ]

B̂(n) [τi · Pi,1 · · ·Pi,k]− B̂(n) [Un]

∥∥∥∥∥∥
max

(Corollary 5.31)

≥

∥∥∥∥∥∥
∑
i∈[V ]

(
B̂(n) [τi · Pi,1 · · ·Pi,k]

)
0,n
−
(
B̂(n) [Un]

)
0,n

∥∥∥∥∥∥
max

=

∥∥∥∥∥∥B
∑
i∈[V ]

τi · Pi,1 · · ·Pi,k

−B[Un]

∥∥∥∥∥∥
max

(Proposition 5.4)

=
∥∥B[GEN0]−B[Un]

∥∥
max

.

38



5.7 Shorter Seed Length Via Derandomized PRG Products

We now have a set of explicit WPRGs whose sum provides a high quality approximation of an
arbitrary permutation branching program of length n. As in Section 4, we wish to decrease the
seed length of each summand. Applying Corollary 4.14 would give a nearly-logarithmic dependence
on width. To obtain a seed length independent of width, we use the main result of [HPV21]. Note
that this is the only case where we deal with branching programs of degree greater than 2:

Theorem 5.33 ([HPV21] Theorem 1.4). For every k, d ∈ N and δ ∈ (0, 1/2), there is an explicit
PRG H : {0, 1}sINW → [d]k with seed length sINW = O(log(d) + log(k)(log(1/δ) + log log(k)) such
that for every permutation branching program B of length k and degree d,∥∥B[H]−B[Un]

∥∥
max
≤ δ.

We now state the inner derandomization lemma, the analogue of Corollary 4.14.

Lemma 5.34. Given γ ∈ (0, 1/2) and a family of length n WPRGs {τi ·Pi,1 · · ·Pi,k : i ∈ [V ]} where
for all ij, τi ∈ {−1, 1} and Pi,j is an explicit PRG with seed length s, and given i, j, the coefficient
τi can be computed and the generator Pi,j can be evaluated in space O(s+log V ), then there exists a
2V -bounded explicit WPRG GEN with seed length O(s+ log k · log(V log(k)/γ)) such that for every
length n permutation branching program B,∥∥∥∥∥∥B[GEN]−B

∑
i∈[V ]

τi · Pi,1 · · ·Pi,k

∥∥∥∥∥∥
max

≤ γ.

Proof. Fix an arbitrary permutation branching program B of length n and width w (and degree
2). Let H : {0, 1}sINW → ({0, 1}s)k be the PRG obtained from applying Theorem 5.33 with k = k,
d = 2s and error δ = γ/V .

Now fix arbitrary i ∈ [V ] and consider the product Pi,1 · · ·Pi,k. For every j ∈ [k] let {lj−1 +
1, lj−1 + 2, . . . , lj} be the bits of the product output by Pi,j , where l0 = 0, and define B′j−1..j [s] =
Blj−1..lj [Pi,j(s)]. Note that this defines a length 1, degree 2s permutation branching program of the
same width as B. Then B′ is a degree 2s, length k permutation branching program. Unrolling the
definition,

γ/V ≥
∥∥∥B′[U[2s]k ]−B

′
[H]
∥∥∥

max

=

∥∥∥∥∥∥
k∏
j=1

E[Blj−1..lj [Pi,j(Us)]]− E
x←UsINW

 k∏
j=1

Blj−1..lj [Pi,j(H(x)j)]

∥∥∥∥∥∥
max

=

∥∥∥∥∥∥B
 k∏
j=1

Pi,j

−B

 k∏
j=1

Pi,j

 ◦H
∥∥∥∥∥∥

max

where H(x)j is the jth symbol output by H on seed x. Then for all i, define

GENi =

 k∏
j=1

Pi,j

 ◦H
which is explicit by composition of space bounded algorithms and has seed length sINW = O(s +
log(k) log(V log(k)/γ)). Finally, we apply Proposition 3.8 and define the explicit WPRG

GEN =
∑
i∈[V ]

τi ·GENi

39



which by the proposition is 2V -bounded and has seed length

sINW +O(log V ) = O(s+ log k · log(V log(k)/γ)).

Finally,∥∥∥∥∥∥B[GEN]−B

∑
i∈[V ]

τi · Pi,1 · · ·Pi,k

∥∥∥∥∥∥
max

=

∥∥∥∥∥∥B
∑
i∈[V ]

τi ·GENi

−B

∑
i∈[V ]

τi · Pi,1 · · ·Pi,k

∥∥∥∥∥∥
max

≤
∑
i∈[V ]

∥∥B[GENi]−B[Pi,1 · · ·Pi,k]
∥∥

max

≤ γ

V
· V

5.8 Putting It Together

We are now prepared to prove our main theorem.

Theorem 5.1. For all n ∈ N and ε ∈ (0, 1/2), there exists an explicit ε-WPRG for the class of
permutation branching programs of length n with respect to ‖ · ‖max with seed length

O(log(n)
√

log(n/ε)
√

log log(n/ε) + log(1/ε) log log(n/ε)).

Proof. Applying Theorem 5.2 with n = n, ε = ε/ poly(n) and δ = δ to be chosen later, we obtain

` = dlog1/δ(n/ε)e = O(log(n/ε)/ log(1/δ))

and a generator

GEN0 =
∑
i∈[V ]

τi · Pi,1Pi,2 · · ·Pi,k

satisfying for every length n permutation branching program B,∥∥B[GEN0]−B[Un]
∥∥

max
≤ ε/2.

Furthermore, the family {τi · Pi,1Pi,2 · · ·Pi,k : i ∈ [V ]} satisfies the requirements of Lemma 5.34
with V ≤ |Vn,`|2` = nO(`) and k ≤ 5 log(n)` and s = O(log n · log(log(n)/δ)). Therefore, let GEN
be the WPRG obtained from applying Lemma 5.34 to this family with error γ = ε/2.

Then unwinding definitions, we obtain∥∥B[GEN]−B[Un]
∥∥

max
≤
∥∥B[GEN]−B[GEN0]

∥∥
max

+
∥∥B[GEN0]−B[Un]

∥∥
max

≤ ε

2
+
ε

2
= ε

where the last line follows from our choice of error in Lemma 5.34 and Theorem 5.2.
It remains to optimize parameters. By Lemma 5.34, GEN is explicit and has seed length

s = O (log(n) log(log(n)/δ) + log(log(n)`)(`+ log(|Vn,`|/ε))) .

Finally, we choose δ = 2−
√

log(n/ε) log log(n/ε). Thus we obtain

` = O
(√

log(n/ε)/
√

log log(n/ε)
)
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which implies log |Vn,`| = O(` log(n)) = O
(

log(n)
√

log(n/ε)/
√

log log(n/ε)
)

, which implies a final

seed length of

s = O
(

log(n) log log(n) + log(n)
√

log(n/ε) log log(n/ε) + log log(n/ε)(`+ log(|Vn,`|/ε))
)

= O

(
log(n)

√
log(n/ε) log log(n/ε) +

log log(n/ε)√
log log(n/ε)

√
log(n/ε) log(n) + log log(n/ε) log(1/ε)

)
= O

(
log(n)

√
log(n/ε)

√
log log(n/ε) + log(1/ε) log log(n/ε)

)
.
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A Proof of Lemma 5.24

We require two prior results. We first recall notation.

• For a matrix A, we use A+ to denote the (Moore-Penrose) pseudo-inverse of A.

• For a PSD matrix X, we let X1/2 to denote the square root of X, which is the unique PSD
matrix such that X1/2X1/2 = X. Furthermore, let X+/2 denote the pseudo-inverse of the
square root of X.

In our case we exclusively work with invertible matrices, so A+ = A−1, but we state the results in
their original forms.

Lemma A.1 ([AKM+20] Lemma 6.7). Let S(0), . . . ,S(q) and L(0), . . . ,L(q) be defined as in Equa-
tion (9) and Equation (7) respectively. Then for

F =
2

q

q∑
i=0

US(i)

we have:
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• For each 0 ≤ i ≤ q, ∥∥∥F+/2(L− L(i))F+/2
∥∥∥

2
≤ δ/40q,

• The final matrix L(q) satisfies

L(q)TF+L(q) � 1

40q2
F.

The lemma is proved in [AKM+20] for Laplacians of cycle lifts of Eulerian graphs without the
scaling factor c. We reproduce the proof in Appendix B, with a small modification to account for
the strictly diagonally dominant S(i)s. We now recall a further lemma required to bound the norm
of Err.

Lemma A.2 ([AKM+20] Lemma D.4). Suppose we are given matrices L, L̃ and a positive semi-
definite matrix F such that ker(F) ⊆ ker(L) = ker(LT ) = ker(L̃) = ker(L̃T ) and

• ‖F+/2(L− L̃)F+/2‖2 ≤ δ,

• L̃F+L̃ � γF,

then ‖Iim(F) − L̃+L‖F ≤ δ
√
γ−1.

We then restate and prove the lemma:

Lemma 5.24. Let S(i) and L(i) be defined as in Equation 9 and Equation 7 respectively. Then
defining F = 2

q

∑q
i=0 US(i), we have that:∥∥∥I2qN − L̃−1L−1

∥∥∥
F
≤ δ.

Proof. We apply Lemma A.2 with δ = δ/40q, L = L, L̃ = L(q) and F = F, all of which are invertible
and thus immediately satisfy the kernel properties, and satisfy the other properties by Lemma A.1,
which gives

‖I2qN − (L(q))−1L‖F ≤ 40qδ/40q = δ.

B Proof of Lemma A.1

Here we reproduce the proof of [AKM+20] Lemma 6.7 to verify our claim. To maintain consistency
with [AKM+20], we return to convention and index matrices starting from 1. We first recall the
formal definition of a Schur complement.

Definition B.1. For a matrix A ∈ CN×N and F,C ⊆ [N ], let AFC be the submatrix induced by
the rows of F and columns of C. If F,C partition [N ] and AFF is invertible, then we denote the
Schur complement of A onto the set C by

Sc(A, C) = ACC −ACFA−1
FFAFC

Furthermore, we reload the definition to make the dimension of Sc(A, C) equal to that of A:

Sc(A, C) =

[
0 0

0 ACC −ACFA−1
FFAFC

]
.
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We then recall the lemma of Cohen et al. that forms the core of the proof:

Lemma B.2 (CKKPPRS18 Lemma 2.3). Consider a sequence of m-by-m matrices S(0), . . . ,S(m)

such that

1. S(i) has nonzero indices only on the indices [i+ 1,m]

2. The left-right kernels of S(i) are equal, and after restricting S(i) to the indices [i+ 1,m], the
kernel of the resulting matrix equals the coordinate restriction of the vectors in the kernel of
S(0).

3. The symmetrization of each S(i), denoted US(i), is positive semi-definite.

Let M = M(0) = S(0) and define M(1), . . . ,M(m) iteratively by

M(i+1) = M(i) + (S(i+1) − Sc(M(i), [i+ 1,m]))

If for a subsequence of indices 1 = i0 < i1 < . . . < ipmax associated scaling parameters 0 <

θ0, . . . , θpmax−1 < 1/2 such that
∑pmax−1

p=0 θp = 1, and some global error 0 < δ < 1/2, we have for
every 0 ≤ p < pmax:

‖U+/2

S(ip)
(M(ip) −M(ip+1))U

+/2

S(ip)
‖ ≤ θpδ

then for a matrix-norm defined from the symmetrization of the S(ip) matrices and the scaling pa-
rameters

F =
∑

0≤p<pmax

θpUS(ip)

we have:

1. For each 0 ≤ i ≤ pmax,
‖F+/2(M−M(i))F+/2‖2 ≤ δ

2. The final matrix M(pmax) satisfies

M(pmax)TF+M(pmax) � 1

10p2
max

F.

We require one more basic derivation and two statements on unit circle equivalence.

Lemma B.3 ([AKM+20] Lemma D.2). Let L(i) be the 2qN × 2qN matrices defined in Equation 7.
Then

L(i+1) − L(i) =

[
0 0
0 −Cq−i−1 ⊗ ci+1Wi+1 + Cq−i−1 ⊗ ci+1W

2
i

]
.

This is proven without the scaling factor ci+1 but the construction is identical.

Lemma B.4 ([AKM+20] Corollary 4.6). Let W̃,W ∈ CN×N be possibly asymmetric matrices such

that W̃
◦
≈δ W. For all k ∈ N let C(k) be the transition matrix for the directed cycle on k vertices.

Then C(k) ⊗ W̃
◦
≈δ C(k) ⊗W.

Lemma B.5 ([AKM+20] Lemma 3.8). Let W̃,W ∈ CN×N be possibly asymmetric matrices. Then

if W̃
◦
≈δ W we have

∥∥∥U+/2
IN−W(W̃ −W)U

+/2
IN−W

∥∥∥
2
≤ δ.
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We are now prepared to prove the result.

Lemma A.1 ([AKM+20] Lemma 6.7). Let S(0), . . . ,S(q) and L(0), . . . ,L(q) be defined as in Equa-
tion (9) and Equation (7) respectively. Then for

F =
2

q

q∑
i=0

US(i)

we have:

• For each 0 ≤ i ≤ q, ∥∥∥F+/2(L− L(i))F+/2
∥∥∥

2
≤ δ/40q,

• The final matrix L(q) satisfies

L(q)TF+L(q) � 1

40q2
F.

Proof. From S(i)’s and L(i)’s we build a sequence of Ŝ(j)’s and M̂(j)’s that satisfy the conditions
of Lemma B.2, and using that we derive the statement of the lemma. For 0 ≤ i < q, and 0 ≤ j <
2q−i−1N , define ai = (2q − 2q−i)N , Ŝ(aq) = S(q), and

Ŝ(ai+j) =

{
S(i) if j = 0

Sc(M̂ai+j−1, [ai + j, 2qN ]) otherwise

and
M̂(h+1) = M̂(h) + (Ŝ(h+1) − Sc(M̂(h), [h+ 1, 2qN ])) ∀0 ≤ h ≤ (2q − 1)N

Note that Ŝ’s satisfy all the three premises in Lemma B.2. First Ŝ(i) has non-zero entries only
on the indices [i + 1, 2qN ]. Furthermore, as Ŝ(i) restricted to the indices [i + 1, 2qN ] is a Schur
complement of a diagonally dominant matrix, which are preserved under Schur complements, all
the restricted Ŝ(i)’s are invertible so the kernel properties are trivially satisfied and UŜ(i) is PSD,

so all premises of the lemma hold. Next we show that for all i’s L(i+1) approximates L(i) in the
norm defined by US(i) . By Lemma B.3,

L(i+1) − L(i) =

[
0 0
0 −Cq−i−1 ⊗ ci+1Wi+1 + Cq−i−1 ⊗ ci+1W

2
i

]
Now, given ci+1Wi+1

◦
≈δ/40q2 ci+1W

2
i by Lemma 5.13 and Corollary 5.10, from Lemma B.4 and

Lemma B.5 we obtain

‖U+/2

Sc(S(i),Hi)
(L(i+1) − L(i))U

+/2

Sc(S(i),Hi)
‖2 ≤ δ/40q2

where Hi are the indices used for the i+ 1st Schur complement. Then since USc(S(i),Hi)
� 2US(i) ,

‖U+/2

S(i) (L(i+1) − L(i))U
+/2

S(i) ‖2 ≤ 2δ/40q2

By construction, we have Ŝ(ai) = S(i) and M̂(ai) = L(i) for all 0 ≤ i ≤ q. Therefore, we have

‖U+/2

Ŝ(ai)
(M̂(ai) − M̂(ai+1))U

+/2

Ŝ(ai)
‖2 ≤ 2δ/40q2

Thus by Lemma B.2 for F = 2
q

∑q
i=0 US(i) we obtain

‖F+/2(L− L(i))F+/2‖2 ≤ δ/40q ∀0 ≤ i ≤ q

and

L(q)TF+L(q) � 1

40q2
F.
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C Proofs of Claims In Introduction

We first show that weighted PRGs that consist entirely of positive coefficients are not substantially
different than unweighted PRGs.

Proposition C.1. Given an explicit WPRG (G, ρ) : {0, 1}s → {0, 1}n×R such that |Ex←Us [ρ(x)]−
1| ≤ ε, there is an explicit PRG F with seed length s′ = s+O(log(1/ε)) such that for any function
B : {0, 1}n → {0, 1},

|E[B(F (Us′))]− E[ρ(Us) ·B(G(Us))]| ≤ 2ε.

Note that if (G, ρ) is an ε-WPRG with all positive coefficients for a class of functions that
contains the constant function B(x) = 1, we have |Ex←Us [ρ(x) · 1] − 1| ≤ ε, so we can apply the
above result and obtain that there exists an explicit 3ε-PRG for the class.

Proof of Proposition C.1. Let µ = Ex←Us [ρ(x)] and define ρT : {0, 1}s → R such that ρT (x) is
equal to ρ(x)/µ rounded up or down to a multiple of 2−d while ensuring that Ex←Us [ρT (x)] = 1.
Choosing d = dlog(1/ε)e, we obtain that for arbitrary B : {0, 1}n → {0, 1},∣∣∣∣ E

x←Us
[ρ(x)B(G(x))]− E

x←Us
[ρT (x)B(G(x))]

∣∣∣∣ =

∣∣∣∣ E
x←Us

[ρ(x)− ρT (x)]

∣∣∣∣
=

∣∣∣∣ E
x←Us

[ρ(x)− ρ(x)/µ+ ρ(x)/µ− ρT (x)]

∣∣∣∣
≤
∣∣∣∣ E
x←Us

[ρ(x)− ρ(x)/µ]

∣∣∣∣+

∣∣∣∣ E
x←Us

[ρ(x)/µ− ρT (x)]

∣∣∣∣
≤ ε+ ε.

So the weighted expectation of (G, ρT ) is within 2ε of that of (G, ρ) on every boolean function.
Then let F : {0, 1}s+d → {0, 1}n be an explicit PRG where for each seed x ∈ {0, 1}s, the output
G(x) appears with multiplicity ρT (x) · 2d among the outputs {F (y)}y∈{0,1}s+d . Again fixing an
arbitrary function B, we have

E
y←Us+d

[B(F (y))] =
1

2s · 2d
∑

y∈{0,1}s×{0,1}d
B(F (y))

=
1

2s

∑
x∈{0,1}s

ρT (x) · 2d

2d
B(G(x))

= E
x←Us

[ρT (x) ·B(G(x))].

So we obtain the desired result. The seed length is s′ = s+ d = s+O(log(1/ε)).

We next prove that an arbitrary explicit WPRG can be decomposed into a linear combination
of two unweighted PRGs:

Proposition C.2. Given an explicit WPRG (G, ρ) : {0, 1}s → {0, 1}n × R and ε > 0, there
are explicit generators G+ : {0, 1}s′ → {0, 1}n and G− : {0, 1}s′ → {0, 1}n with seed length s′ =
O(s+ log(1/ε)) and coefficients ρ+, ρ− ∈ R≥0 such that for every function B : {0, 1}n → {0, 1}, we
have: ∣∣∣E

x
[ρ(x) ·B(G(x))]−

(
ρ+ · E

x
[B(G+(x))]− ρ− · E

x
[B(G−(x))]

)∣∣∣ ≤ ε.
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Proof. Let ρ+ = Ex∈Us [ρ(x) · I[ρ(x) ≥ 0]] and ρ− = −Ex∈Us [ρ(x) · I[ρ(x) < 0]] be the average
magnitude of the positive and negative coefficients respectively (over the entire set of seeds). Then
R+ = (G, ρ

ρ+
I[ρ ≥ 0]) and R− = (G,− ρ

ρ−
I[ρ < 0]) are explicit WPRGs with all non-negative

coefficients and expected weight exactly 1. We then apply Proposition C.1 to R+ with error
ε = ε/2ρ+ and obtain an unweighted WPRG G+ : {0, 1}s′ → {0, 1}n with seed length s′ =
O(s+ log(1/ε)) such that for every B : {0, 1}n → {0, 1},∣∣∣∣ E

x←Us′
[B(G+(x))]− E

x←Us

[
ρ(x)

ρ+
I[ρ(x) ≥ 0]B(G(x))

]∣∣∣∣ ≤ ε

2ρ+

Applying an identical transformation to R− and applying the triangle inequality, we obtain for
every B : {0, 1}n → {0, 1},∣∣∣E
x
[ρ(x) ·B(G(x))]−

(
ρ+ · E

x
[G+(x)]− ρ− · E

x
[B(G−(x))]

)∣∣∣
=
∣∣∣(E

x
[ρ(x)(I[ρ(x) ≥ 0] + I[ρ(x) < 0]) ·B(G(x))]

)
−
(
ρ+ · E

x
[B(G+(x))]− ρ− · E

x
[B(G−(x))]

)∣∣∣
≤
∣∣∣E
x
[ρ(x)I[ρ(x) ≥ 0] ·B(G(x))]− ρ+ · E

x
[B(G+(x))]

∣∣∣+
∣∣∣ρ− · E

x
[B(G−(x))]− E

x
[ρ(x)I[ρ(x) < 0] ·B(G(x))]

∣∣∣
≤ ρ+

(
ε

2ρ+

)
+ ρ−

(
ε

2ρ−

)
Furthermore, note that if (G, ρ) ε-fools the function that accepts on all inputs, it must be the case
that ρ+− ρ− ∈ [1− ε, 1 + ε] and so we can take ρ− = 1− ρ+ at the cost of an additive O(ε) loss in
approximation.

Finally, we give a contrived example of a class for which WPRGs obtain exponentially shorter
seed length than any PRG. We do this by requiring that the class satisfy a functional equation that
WPRGs can exploit but PRGs cannot.

Proposition C.3. Let B be the set of all functions B : {0, 1}n → {0, 1} such that

E[B(Un)] = E[B(US)]− E[B(UT )], (10)

where S = {0n−lognz : z ∈ {0, 1}logn} and T = {1n−lognz : z ∈ {0, 1}logn}. Then there exists an
explicit 0-WPRG for B with seed length O(log n). Furthermore, any 1 − 1/n-PRG for B has seed
length Ω(n).

Proof. Let (G, ρ) : {0, 1}1+logn → {0, 1}n×R be the WPRG where ρ(x) = 2 if x1 = 1 and ρ(x) = −2
if x1 = 0 and G(x) = 0n−lognx2.. logn+1 if x1 = 1 and G(x) = 1n−lognx2.. logn+1 if x1 = 0. Then for
every B ∈ B,∣∣∣∣ E

y←U1+logn

[ρ(y) ·B(G(y))]− E
y←Un

[B(y)]

∣∣∣∣ =

∣∣∣∣( E
y←US

[B(y)]− E
y←UT

[B(y)]

)
− E
y←Un

[B(y)]

∣∣∣∣
= 0.

Now consider an arbitrary PRG F : {0, 1}s → {0, 1}n with seed length s ≤ n−2 log(n). Let Im(F )
be the image of F . Now choose some x∗ ∈ T where Pr[F (Us) = x∗] ≤ 1/|T |, which is always possible
since minx∈T Pr[F (Us) = x] · |T | ≤

∑
x∈T Pr[F (Us) = x] ≤ 1. We now define the function B such

that B(x) = 1 for all x ∈M = (S ∪T ∪ Im(F )) \x∗. Note that {0, 1}n \M ≥ (1− 3/n)2n. We have
that E[B(US)]− E[B(UT )] = 1− (1− 1/n) = 1/n, so set B(x) = 1 at a sufficient number of points
in {0, 1}n \M so that B satisfies Equation (10), and otherwise set B(x) = 0. By construction, B
satisfies Equation (10) with E[B(Un)] = 1/n. However, E[B(F (Us))] = 1, so F is not a 1−1/n-PRG
for the class.
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We now prove facts about samplers for functions with bounded variance. Such functions form a
natural class where general nonadaptive samplers obtain smaller sampler complexity than averaging
samplers.

Definition C.4. An (ε, δ)-nonadaptive sampler G for a class of functions F is a randomized
function that makes nonadaptive queries to f ∈ F and returns as estimate ρ such that, over the
randomness of the algorithm,

Pr[|ρ− E[f ]| ≤ ε] ≥ 1− δ.
We say G is an averaging sampler if G generates (possibly correlated) points x1, . . . , xt in the
domain of f and returns ρ = 1

t

∑t
i=1 f(xi).

We then define the model to study.

Definition C.5. Let F = {f : {0, 1}m → R : Var(f) ≤ 1} be the set of unbounded functions with
variance at most 1.

We first prove that samplers exist with the claimed parameters.

Proposition C.6. There is an averaging sampler for F with sample complexity min{2m, O(1/ε2δ)},
and a nonadaptive sampler with sample complexity min{2m, O(log(1/δ)/ε2)}.
Proof. Fixing ε, δ > 0, first note that if either minimum is 2m the relevant statement is immediate
by querying on all points of {0, 1}m and returning the average, which is exactly the expectation of
the function.

For the averaging sampler, let t = 1/ε2δ. Now fix an arbitrary f ∈ F . The sampler generates t
independent points X1, . . . , Xt from Um. Let Y1, . . . , Yt be the random variables where Yi = f(Xi),
and define Y = 1

t

∑t
i=1 Yi. Then E[Y ] = E[f(Um)] via linearity of expectation and Var(Y ) =

1
t2
∑t

i=1 Var(Yi) = 1/t by independence. Applying Chebyshev’s Inequality to Y , we have for any
k > 0,

Pr

[
|Y − E[f(Um)]| ≥ k√

t

]
≤ 1

k2

and choosing k = 1/
√
δ we obtain

Pr

[
|Y − E[f(Um)]| ≥ 1√

δ
ε
√
δ

]
≤ δ.

Exactly the required condition for the averaging sampler.

For the nonadaptive sampler, choose t = 1/10ε2 and T = 10 log(1/δ). The sampler generates
Xi,j ← Um for i ∈ [t] and j ∈ [T ], and we define define the random variables Yi,j = f(Xi,j). Let
Yj = 1

t

∑t
i=1 Yi,j for all j. Then by Chebyshev, for all j,

Pr[|Yj − E[f(Um)]| ≥ ε] ≤ 1/10.

Note that the Yj are independent and have mean E[f(Um)] for all j. Then define the (independent)
indicator variables Bj = I[|Yj−E[f(Um)]| ≥ ε] and note that E[Bj ] = Pr[|Yj−E[f(Um)]| ≥ ε] ≤ 1/10

for all j. If
∑T

j=1Bj < T/3, we have that the median of the Yj ’s is within ε of E[f(Um)], so the
sampler succeeds. We bound the probability of this failing to occur by Chernoff, where for ρ > 0
we have:

Pr

 T∑
j=1

Bj ≥ T/3

 ≤ Pr

 T∑
j=1

Bj − T/10 ≥ (T/10)ρ

 ≤ exp(−ρ2T/10(2 + ρ)) ≤ δ

Where the final step follows from choosing ρ = 2 and recalling T = 10 log(1/δ).
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Finally, we prove a lower bound on sampler length for averaging samplers:

Proposition C.7. Let A be an (ε, δ) averaging sampler for F . Then A makes t = min{Ω̃(1/ε2δ), 2Ω(m)}
queries.

Proof. We first define our set of test functions. For 1 ≥ ρ ≥ 4/2m to be chosen later, let Fρ ⊂ F
be the class of functions obtained by selecting sets S− ⊆ {0, 1}m and S+ ⊆ {0, 1}m \ S− both of
size b(ρ/2) · 2mc uniformly at random without replacement, and setting

fS−,S+(x) =


1/
√
ρ x ∈ S+

−1/
√
ρ x ∈ S−

0 otherwise.

For all f ∈ Fρ we obtain E[f(Um)] = 0 and Var(f) ≤ (1/
√
ρ)2ρ = 1.

If t ≥ 2m/3−1 the statement is immediately true, so we assume this is not the case. Furthermore,
if δ ≤ 2−m/3 we set δ = 2−m/3, which does not affect the asymptotic lower bound, and likewise if
t ≥ 21/2δ we set δ = 1/2 log t (as decreasing δ cannot affect the bound).

For every random seed σ for the sampler, there is k(σ) ∈ {1, . . . , log t} such that at least t/ log t
of the (not necessarily distinct) points queried by A are queried with multiplicity {2k(σ)−1, . . . , 2k(σ)}
by the pigeonhole principle. Furthermore, there is k ∈ {1, . . . , log t} such that for at least a 1/ log t
fraction of the seeds, k(σ) = k, again via pigeonhole.

Let C(σ) be the event that there are at least t/2k log t distinct points queried by A with
multiplicity at least 2k−1. We have Prσ[C(σ)] ≥ 1/ log t as with probability 1/ log t over the random
seed at least t/ log t of the total points are queried with multiplicities in the range {2k−1, . . . , 2k},
so there are at least t/2k log t distinct points with the desired property.

We now choose ρ = δ log2(t)2k/t (which is valid as ρ ≥ δ/t ≥ 2−2m/3 and ρ ≤ δ log2 t ≤ 1) and
consider the behavior of the sampler on f drawn uniformly at random from Fρ. Fix σ for which
C(σ) occurs and let x1, . . . , xt be the multiset of points queried by A. Let B(σ, f) be the event
that f takes a nonzero value on at least one point queried with multiplicity at least 2k−1. We have

Pr
σ,f

[B(σ, f)] ≥ Pr
σ

[C(σ)] ·
[
1− (1− ρ)t/2

k log2 t
]

≥ Pr
σ

[C(σ)] ·
[
(ρ)(t/2k log t)− ρ2(t/2k log t)2

]
≥ (1/ log t)(δ log(t)/2)

= δ/2.

Where the first line follows because this event becomes strictly less likely if the nonzero points of
f are sampled independently with probability ρ, the second follows from two rounds of inclusion-
exclusion, and the third from the assumption that ρ(t/2k log t) ≤ δ log t ≤ 1/2.

Conditioned on B(σ, f) occurring, WLOG assume x1 is queried with multiplicity at least 2k−1

and f(x1) 6= 0. Letting Y =
∑t

i=1:xi 6=x1 f(xi) be the sum of the queried points excluding x1, we
claim

Pr
f

[f(x1) ≥ 0, Y ≥ 0|B(σ, f)] ≥ 1/8.

As B(σ, f) is independent of the sign of f on all nonzero points, Prf [f(x1) ≥ 0|B(σ, f)] = 1/2.
Since t ≤ 2m/3−1 and there are at least 2m(δ/t) ≥ 2m/3 nonzero points for all f ∈ Fρ, for every f
there is some point x′ not queried by A where f(x′) 6= 0, and

Pr
f

[f(x′) < 0|B(σ, f), f(x1) > 0] ≥ (ρ/2)2m + 1

ρ2m
≥ 1/2.
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Then since we condition on one point of each sign, Ef [Y |f(x1) > 0, f(x′) < 0] = 0 and the
distribution is symmetric, so Prf [f(x1) ≥ 0, Y ≥ 0|B(f, σ)] ≥ 1/4. Thus with probability at least
δ/16, ∣∣∣∣∣1t

t∑
i=1

f(xi)− E[f ]

∣∣∣∣∣ ≥ 2k−1

t
f(x1) =

2k−1

t

√
t

2kδ log2 t

By taking δ ← 20δ we can obtain that this event occurs with probability strictly greater than δ,
and so by the fact that A is an (ε, δ) sampler we obtain the constraint

2ε
√

20δ ≥ 1√
(t/2k) log2 t

≥ 1√
t log2 t

and thus derive t log2 t ≥ 1/80ε2δ, which is implied by t = Ω(1/ε2δ log2(1/εδ)) (with a sufficiently
small constant), so we conclude.

52
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


