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Abstract

Weighted pseudorandom generators (WPRGs), introduced by Braverman, Cohen
and Garg [BCG20], is a generalization of pseudorandom generators (PRGs) in which
arbitrary real weights are considered rather than a probability mass. Braverman et
al. constructed WPRGs against read once branching programs (ROBPs) with near-
optimal dependence on the error parameter. Chattopadhyay and Liao [CL20] some-
what simplified the technically involved BCG construction, also obtaining some im-
provement in parameters.

In this work we devise an error reduction procedure for PRGs against ROBPs.
More precisely, our procedure transforms any PRG against length n width w ROBP
with error 1/poly(n) having seed length s to a WPRG with seed length s + O(log w

ε ·
log log 1

ε ). By instantiating our procedure with Nisan’s PRG [Nis92] we obtain a WPRG
with seed length O(log n · log(nw) + log w

ε · log log
1
ε ). This improves upon [BCG20]

and is incomparable with [CL20].
Our construction is significantly simpler on the technical side and is conceptually

cleaner. Another advantage of our construction is its low space complexity O(log nw)+
poly(log log 1

ε ) which is logarithmic in n for interesting values of the error parameter
ε. Previous constructions (like [BCG20, CL20]) specify the seed length but not the
space complexity, though it is plausible they can also achieve such (or close) space
complexity.
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1 Introduction

1.1 A brief account of space-bounded derandomization

Understanding the role that randomness plays in computation is of central importance
in complexity theory. While randomness is provably necessary in many computational
settings such as cryptography, PCPs and distributed computing, it is widely believed that
randomness adds no significant computational power to neither time- nor space-bounded
algorithms. Remarkably, proving such a statement for time-bounded algorithms implies
circuit lower bounds which seem to be out of reach of current proof techniques [NW94,
IKW02, KI04].

On the other hand, there is no known barrier for proving such a statement in the space-
bounded setting. Indeed, while we cannot even rule out a scenario in which randomness
“buys” exponential time, the space-bounded setting is much better understood. Savitch’s
theorem [Sav70] already implies that any one-sided error randomized algorithm can be
simulated deterministically with only a quadratic overhead in space, namely RL ⊆ L2.
The (possibly) stronger inclusion BPL ⊆ L2 can be proven easily through a variant
of Savitch’s theorem and also follows from [BCP83]. Using pseudorandom generators,
Nisan [Nis92, Nis94] devised a time-efficient derandomization with quadratic overhead
in space, concretely, BPL ⊆ DTISP(poly(n), log2 n). Focusing solely on space, the state
of the art result was obtained by Saks and Zhou [SZ99] that build on Nisan’s work to de-
terministically simulate two-sided error space s randomized algorithms in space O(s3/2),
thus, establishing that BPL ⊆ L3/2.

1.2 Pseudorandom generators for ROBPs

Space-bounded algorithms are typically studied by considering their non-uniform coun-
terparts. A length n, width w read-once branching program (ROBP) is a directed graph
whose nodes, called states, are partitioned to n + 1 layers, each consists of at most w
states. The first layer contains a designated “start” state, and the last layer consists of
two states labeled ’accept’ and ’reject’. From every state but for the latter two, there are
two outgoing edges, labeled by 0 and 1, to the following layer.1 On input x ∈ {0, 1}n, the
computation proceeds by following the edges according to the labels given by the bits of
x starting from the start state. The string x is accepted by the program if the computation
ends in the accept state.

A well-known fact (see, e.g., [Gol08, Chapter 5], and [AB09, Chapter 14.4.4]) is that any
space s randomized algorithm in the Turing model can be simulated by a length n, width
w ROBP with n,w = 2O(s). Thus, one approach to derandomize two-sided error space-
bounded algorithms is to construct, in bounded space, a distribution of small support that
“looks random” to any such ROBP. We say that a distributionD on n-bit strings is (n,w, ε)

1For simplicity, here we only consider ROBPs with two outgoing edges. Larger out-degrees (or alphabet)
can also be considered and is in fact crucial for obtaining our result even if one is only interested in the
binary case.

1



pseudorandom if for every length n, width w ROBP, the path induced by an instruction
sequence that is sampled from D has, up to an additive error ε, the same probability to
end in the accept state as a truly random path. A truly random path corresponds to a
path picked uniformly at random from the 2n possible paths. An (n,w, ε) pseudorandom
generator (PRG) is an algorithm PRG : {0, 1}s → {0, 1}n that when fed with s uniformly
random bits has an output distribution that is (n,w, ε) pseudorandom. We refer to the
input to PRG as the seed.

Derandomizing using a PRG is straightforward. By iterating over all seeds and gen-
erating the corresponding instruction sequences, one can calculate the fraction of those
paths that end in the accept state. This way, one obtains an ε-approximation to the prob-
ability of reaching the accept state while taking a truly random path in the program. The
space overhead consists of the seed length s (as an iterator is maintained) and the space
of the PRG.

One can prove the existence of an (n,w, ε) PRG with seed length O(log(nw/ε)). The
proof is via the probabilistic method and has no guarantee on the space complexity of the
PRG. As such, it is not useful for the purpose of derandomization. In his seminal work,
Nisan [Nis92] devised a PRG with seed length s = O(log n·log(nw/ε)) and space complex-
ity O(log(nw/ε)). Setting n,w = 2Θ(s) and ε to a small constant, the seed length is O(s2)
indeed yields derandomization with quadratic overhead in space. Saks and Zhou [SZ99]
applied Nisan’s generator in a far more sophisticated way than the naı̈ve derandomiza-
tion, in particular exploiting its low space complexity, so to obtain their result.

1.3 Pseudorandom pseudo-distributions for ROBPs

Braverman et al. [BCG20] introduced the notion of a pseudorandom pseudo-distribution
(PRPD) generalizing pseudorandom distributions.

Definition 1 (pseudorandom pseudo-distribution). Let ρ1, . . . , ρ2s ∈ R and p1, . . . , p2s ∈
{0, 1}n. The sequence D̃ = ((ρ1, p1), . . . , (ρ2s , p2s)) is an (n,w, ε) pseudorandom pseudo-
distribution (PRPD) if for every length n, width w ROBP, the sum of all ρi-s for which the
respective paths pi end in the accept state is an ε-approximation to the probability of ending at the
accept state by taking a truly random path in the program.

Note that Definition 1 allows the weights ρi to take both positive and negative values.
These values are not necessarily bounded by 1 in absolute value, nor by any constant for
that matter, and they do not necessarily sum up to 1. Nevertheless, the definition requires
that the numbers cancel out nicely so that summing the weights of the respective paths
that arrive to the accept state yields an ε-approximation for the probability of arriving to
the accept state by taking a truly random path (and, in particular, the sum is a number in
[−ε, 1 + ε]). Analogous to a PRG, an (n,w, ε) weighted pseudorandom generator (WRPG) is
an algorithm WPRG : {0, 1}s → R× {0, 1}n whose output, when fed with a uniform seed,
is an (n,w, ε) PRPD.
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A WPRG that can be computed in bounded space suffices to derandomize two-sided
error randomized algorithms. Indeed, the straightforward derandomization using a pseu-
dorandom (proper) distribution, which sums the probability mass of the relevant paths,
works just as well for pseudo-distributions as one can sum up the weights ρi which, in a
sense, generalize the probability mass. Of course, the space requirement now depends on
the bit complexity of the weights as well.

1.4 The error parameter

Braverman et al. [BCG20] constructed a WPRG that has seed length with an improved–
in fact near-optimal–dependence on the error parameter ε. Their WPRG has seed length
O(log2 n · log logn

1
ε

+ log n · logw + log w
ε
· log log w

ε
). For the purpose of derandomization,

the error parameter is anyhow taken to be constant, and so the necessity of such an im-
provement may seem moot. However, by inspecting Nisan’s recursive construction one
can see that the log2 n term in the seed length appears due to the way the error evolves
throughout the recursion. Hence, a construction which allows for a more delicate error
analysis is called for. Furthermore, the Saks-Zhou construction applies Nisan’s PRG in a
setting in which ε� 1/n for obtaining their result. It was observed [BCG20] that improv-
ing upon [SZ99] can be obtained by constructing a PRG having seed length with better
dependence on both w, ε, even when retaining the log2 n dependence.

Interestingly (and unfortunately), the log2 n term in the BCG construction appears for
a completely different reason. In short, unlike prior works [Nis92, INW94] that maintain
a list of instructions throughout the recursion, BCG maintains a more involved structure
consisting of several lists of lists. Maintaining the invariant on this complex structure is
the reason for the log2 n term in the seed of BCG’s construction.

As hinted above, the BCG construction is quite involved. In a subsequent work Chat-
topadhyay and Liao [CL20] somewhat simplified the BCG construction also obtaining
slight improvement in parameters. In particular, the seed length obtained by [CL20] is
O(log n · log nw · log log nw + log 1

ε
). Additionally, Hoza and Zuckerman [HZ20] obtained

a significantly simpler construction of hitting sets against ROBPs. Their construction has
seed length O( 1

max(1,log logw−log logn)
· log n · log nw+ log 1

ε
). Although hitting sets are weaker

objects than PRPDs that are aimed for the derandomization of one sided error random-
ized algorithms, a subsequent work by Cheng and Hoza [CH20] showed how to deran-
domize two sided error randomized algorithms using hitting sets. While this is an illu-
minating result, we stress that most known constructions of PRGs, WPRGs and hitting
sets make use of compositions (either directly or indirectly) and HSGs do not compose
well, and so it is very much desired to devise new techniques for constructing PRGs and
WPRGs.
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1.5 Our contribution

This work further focuses on the error parameter of PRPDs. As our main result, we obtain
an error reduction procedure. That is, we devise an algorithm that transforms, in a black-
box manner, a PRG with a modest error parameter ε0 to a WPRG with a desired error
parameter ε, having comparable seed length and with a near optimal dependence on ε.

Theorem 2 (main result (see also Corollary 15)). Suppose PRG is an (n,w, n−2) PRG com-
putable in space m. Then, for every ε there exists an (n,w, ε) WPRG with seed length

s = s0 +O

(
log

w

ε
· log logn

1

ε

)
.

that is computable in space O(m+ (log log w
ε
)3).

When instantiated with Nisan’s PRG [Nis92] our error reduction procedure yields
WPRGs with a seed that is slightly shorter than [BCG20] and is incomparable to [CL20].

Corollary 3 (see also Corollary 16). There exists an (n,w, ε) WPRG with seed length

O

(
log n · log nw + log

w

ε
· log logn

1

ε

)
computable in space O

(
log nw +

(
log log w

ε

)3
)

.

Our error reduction procedure as well as the resulting WPRG are significantly sim-
pler than [BCG20, CL20]. Moreover, the underlying ideas are different and conceptually
cleaner. More generally, it is much preferred to have a black-box error reduction proce-
dure rather than a specific explicit construction. On top of the insights obtained, such
a modularization has the potential of being instantiated in different settings such as for
regular and permutation ROBPs or for bounded-width ROBPs.

Our error reduction procedure borrows ideas from the line of work concerning deter-
ministic space-efficient graph algorithms, in particular a recent work by Ahmadinejad,
Kelner, Murtagh, Peebles, Sidford and Vadhan [AKM+20] (which, in turn, is based on an
exciting line of work on nearly-linear time graph algorithms, deterministic or otherwise.
See [CKP+16, CKP+17] and references therein).

Independently, Pyne and Vadhan [PV21] also used the Richardson iteration to obtain
a WPRG for polynomial-width branching programs, and furthermore used that to obtain
new results for permutation BPs.

1.6 An overview of our construction

Let PRG : {0, 1}s → {0, 1}n be an (n,w, ε0) PRG whose error we wish to reduce. Let A =
(A1, . . . , An) be the w×w stochastic matrices that correspond to a length n width w ROBP.
That is, Ai = 1

2
(A

(0)
i + A

(1)
i ) where A(0)

i is the Boolean stochastic matrix that encodes the
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edges leaving layer i that are labeled with 0 and A
(1)
i encodes the edges labeled with 1.

Define the (n+1)w×(n+1)w lower triangular block matrixB as follows. For a, b ∈ [n+1],
a > b, and σ ∈ {0, 1}s, let

B[a, b] = E
σ∈{0,1}s

[
A(PRG(σ)`)
a · · ·A(PRG(σ)1)

b

]
.

Further, B[a, a] = Iw. Since PRG has error ε0, for every block B[a, b] with a > b, ‖B[a, b]−
Aa · · ·Ab‖ ≤ ε0. Following [AKM+20] we observe that by denoting

L =


I 0 . . . 0 0
−A1 I . . . 0 0

0 −A2
. . . 0 0

...
... . . . ...

...
0 0 . . . −An I

 ,

one has that

L−1 =


I 0 . . . 0 0
A1 I . . . 0 0

A2A1 A2
. . . 0 0

...
... . . . ...

...
An . . . A1 An . . . A2 . . . An I

 .

Thus, ‖B−L−1‖ ≤ (n+ 1)ε0. That is, the crude error PRG can be used to approximate L−1

by applying it to all subprograms of the original ROBP.
Richardson iteration is a method for improving a given approximation to an inverse

of a matrix. This method is frequently used to construct a preconditioner to a Laplacian
system. To describe this method, let L = I − A. For k ≥ 1 define the matrix

R =
k∑
i=0

(I −BL)iB. (1)

It can be shown that ‖R− L−1‖ ≤ (n + 1) (2(n+ 1)ε0)k+1. Thus, by taking ε0 = n−2 and
k = O(logn

1
ε
), one obtains approximation ‖R − L−1‖ ≤ ε. In particular, the lower left

block of R is an ε-approximation of the desired product An · · ·A1.
We further develop Equation (1). Let ∆ = I −BL. One can show that

∆[a, b] =

{
B[a, b+ 1] · Ab −B[a, b] a > b,

0 a ≤ b.
(2)

Substituting this back to R, for a > b we have that

R[a, b] = B[a, b] +
k∑
i=1

∑
a>`i>···>`1≥b

∆[a, `i] ·∆[`i, `i−1] · · ·∆[`2, `1] ·B[`1, b].
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If we further let C0[a, b] = B[a, b+ 1] · Ab and C1[a, b] = B[a, b] then

R[a, b] = B[a, b] +
k∑
i=1

∑
a>`1>···>`i≥b

∑
t1,...,ti∈{0,1}

(−1)t1+···+ti · Cti [a, `i] · · ·Ct1 [`2, `1] ·B[`1, b]. (3)

By extending the definition of ROBPs to arbitrary alphabets (rather than binary) we
observe that each summand in Equation (3) can be realized by a ROBP. Our construction
thus uses an auxiliary PRG that ε′ fools each summand and hence ε′nO(k) ≈ ε′ ·poly(1

ε
) ap-

proximates R which, in turn, ε approximates L−1 yielding overall an O(ε) approximation.
As the ROBP that correspond to each summand is short (recall i ≤ k = O(logn

1
ε
) � n),

a short seed is required even for the high accuracy ε′ = poly(ε) that we require. We in-
voke [INW94] as our auxiliary PRG as it has good dependence on the alphabet size which,
in our case, is comparable to the seed of the crude PRG that we started with. We remark
that the weights in our PRPD are used so to mimic Equation (3). Indeed, on top of the
sign, there are

(
n
i

)
summands that correspond to partition to i + 1 segments and so the

weights are used for creating the appropriate scaling between different values of i.

Discussion. While C1[a, b] = B[a, b] is obtained by PRG, C0[a, b] is computed by follow-
ing the instructions of PRG for all but the first step. For the latter, we use a fresh random
bit. Namely, consider a thought experiment in which we use a new–more expensive–PRG
PRG′ : {0, 1}s+1 → {0, 1}` that is defined by PRG′(σ, p) = p ◦ PRG(σ)[1,`−1], where σ : {0, 1}s
and p ∈ {0, 1}. The matrix ∆[a, b] = C1[a, b]−C0[a, b] then compares the better approxima-
tion C1[a, b] with the “actual” approximation C0[a, b]. From this perspective, Equation (3)
suggests interpreting the Richardson iteration as a linear combination with±1 coefficients
(as determined by (−1)t1+···+ti) of approximations of An · · ·A1 where each approximation
is partition to segments (encoded by `1 > · · · > `i). In segment j, according to the value
tj , the relevant sequence of instructions is obtained either from the original PRG or via
the refined one PRG′.

1.7 A comparison with [BCG20]

It is worthwhile to explore the differences between the BCG construction [BCG20] (and
the followup work of Chattopadhyay and Liao [CL20] which uses similar ideas) and ours
and to point out the aspects of our work that we find similar to the work of Cheng and
Hoza [CH20], and of Hoza and Zuckerman [HZ20]. We start by giving a brief overview
of the BCG construction.

1.7.1 A brief overview of BCG

In constructions prior to [BCG20] (e.g., [Nis92, INW94]), a list of instructions is main-
tained with the property that given a ROBP A1, . . . , An, averaging over the products cor-
responding to the instructions yields the desired approximation to the product An · · ·A1.
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The key idea suggested in [BCG20] is to maintain not a single list whose average yields
the desired approximation but rather several lists of instructions L0, L1, . . . , Lk such that
averaging according to the instructions in L0 yields a modest approximation; averaging
according to L0∪L1 yields a more refined approximation, and so forth. Averaging accord-
ing to the instructions given by L0 ∪ · · · ∪ Lk gives the desired approximation. Thus, L0

can be thought of as a crude approximation, L1 a first order correction term, L2 a second
order correction term, etc.

To implement this idea, weights were introduced and, moreover, each list but for L0

was in itself a list of lists, or bundles. The different instructions in a bundle did not carry
useful information by themselves and it is the bundle which has the desired properties.
Lists that correspond to higher error terms requires the expensive use of bigger bundles
and larger weights, and so a delicate use of balanced and unbalanced samplers is em-
ployed in [BCG20] in order to maintain the desired invariant throughout the recursion
and assuring that the bundles and weights do not get too large.

1.7.2 Comparison with BCG

Our work, in comparison, goes back to the use of a single list as in [Nis92, INW94]. We do
not need to maintain several lists, let alone lists of bundles. This makes our construction
significantly simpler and, in particular, spares us from the delicate application of different
types of samplers. The only component we do need are weights, both positive and neg-
ative that are unbounded in absolute value. However, it is straightforward to pinpoint
the weights used by our construction (see Equation (12)) whereas in [BCG20] the weights
are computed via a recursive algorithm. As a result, it is difficult to argue about them.
We believe that the simpler and more explicit structure of our construction would enable
future works to combine our construction with other ideas for the purpose of obtaining
improved constructions and derandomization results.

The common theme to both our construction and BCG is working with cancellations.
We “read of” Richardson iteration what cancellations to consider. As we discussed in the
end of Section 1.6, we interpret Richardson iteration as comparing a PRG with the PRG
obtained by replacing the first bit by a fresh truly random bit. The BCG construction, on
the other hand, “plant” cancellations by considering two samplers–one more refined than
the other–and encode their difference in their lists (this requires the introduction of bun-
dles). So, in a sense, BCG’s cancellations are obtained by comparing one approximation
to another where both approximations are obtained via samplers whereas we make use
of one approximation coming from a PRG and another that is obtained by replacing the
first bit by a fresh truly uniform bit. The way we combine these is dictated by Richardson
iteration.

1.7.3 Common aspects with [HZ20, CH20]

For their derandomization result, Cheng and Hoza [CH20] introduce the notion of local
consistency. Informally, the authors consider the difference between applying a generated
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sequence of instructions (via a hitting set) to that obtained by the generated sequence
when replacing the last bit with a fresh truly random bit. This is somewhat reminisce
to the way we read the cancellations of the Richardson iteration. However, while local
consistency is used for making decisions once a ROBP is given, we combine the analog
sequences using the Richardson iterator in a block-box matter.

The construction of Hoza and Zuckerman [HZ20] also shares similar aspects with
ours. There, they start with a modest-error PRG to get an ε-error hitting set by running
the PRG for k = logn(1/ε) times according to partitions of [n] to k segments, resembling
what we do. Instead of drawing the PRG’s seeds uniformly at random, they derandomize
the construction using a hitter. We note however, that their analysis is very different from
ours, and uses a progress measure concerning reaching an accepting state.

2 Preliminaries

2.1 Matrices, branching programs, and space complexity

A matrix is Boolean if all its entries are in {0, 1}, and stochastic if all its entries are non-
negative and the sum of each column is 1. Denote by BSto(w) the set of w × w boolean
stochastic matrices. We will denote by ‖·‖ the induced `1 norm, i.e., ‖A‖ = maxj

∑
i |Ai,j|.

We will often work with block matrices. For instance, we may interpret A ∈ Rnm×nm

as an n × n matrix with entries which are m ×m matrices. Whenever this interpretation
is clear, we let A[i, j] be the (i, j)-th block. In this example, A[i, j] ∈ Rm×m.

Definition 4 (branching program). Let Σ be some alphabet and let n,w ∈ N. An (n,Σ, w)
branching program (BP) is a sequence B = (B1, . . . , Bn), where each Bi : Σ→ BSto(w).

For b ≤ a we let B[b,a] be the (a− b+ 1,Σ, w) BP (Ba, . . . , Bb).

Definition 5. The value of an (n,Σ, w) BP B = (B1, . . . , Bn) on x = (x1, . . . , xn) ∈ Σn,
denoted val(B, x), is the realized w × w matrix of B when fed by x, i.e.

val
(
B, x

)
= Bn(xn) ·Bn−1(xn−1) · · ·B1(x1).

If B is the empty sequence, we set val(∅, x) = Iw.

Definition 6 (weighted PRG). We sayW is an (n,Σ, w, ε)-WPRG against BPs with seed length
s if:

• W = (I, µ) where I : {0, 1}s → Σn and µ : {0, 1}s → R, and,

• For every (n,Σ, w) BP B = (B1, . . . , Bn), it holds that∥∥∥∥ E
x∈{0,1}s

[
µ(x) · val

(
B, I(x)

)]
− E

x∈Σn

[
val
(
B, x

)]∥∥∥∥ ≤ ε.
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When µ ≡ 1, we say that W is a PRG.

For 1 ≤ ` ≤ n we let G` : {0, 1}s0 → Σ` be the first ` symbols of the output of G. Note
that if G : {0, 1}s0 → Σn is an (n,Σ, w, ε) PRG then G` is an (`,Σ, w, ε) PRG.

We say f : Λ1 → Λ2 is computable in space s, if given x ∈ Λ1 and index j, f(x)j ∈ Λ2

can be computed in additional work space that consists of s bits. We will use the following
well known theorem regarding the space complexity of compositions.

Theorem 7. Let f1, f2 : {0, 1}? → {0, 1}? be two functions that can be computed in s1, s2 : N→
N space such that s1(n), s2(n) = Ω(log n). Then, on input x, f2 ◦ f1 : {0, 1}? → {0, 1}? can be
computed using O(s1(|x|) + s2(|f1(x)|)) space.

2.2 Known PRG constructions

Theorem 8 ([Nis92, Nis94]). For any positive integers n, w, any error parameter ε > 0 and any
alphabet Σ, there exists an (n,Σ, w, ε) PRG with seed length

s = O

(
log n · log

nw|Σ|
ε

)
,

computable in space min
{
O
(

log nw|Σ|
ε

)
, O
(

log n · log log nw|Σ|
ε

)}
.

Theorem 9 ([INW94]). For any positive integers n, w, any error parameter ε > 0 and any
alphabet Σ, there exists an (n,Σ, w, ε) PRG with seed length

s = log |Σ|+O
(

log n · log
(nw
ε

))
,

computable in space O
(

log n ·
(

log log nw|Σ|
ε

)2
)

.

Theorem 8 is derived almost directly from [Nis92, Nis94], and Theorem 9 follows from
[INW94], except for the space complexity which is implicit in those works and also de-
pends on the specific implementation. For completeness, we give the proof of Theorem 8
in Appendix B.1, and of Theorem 9 in Appendix B.3.

3 Richardson Iteration

Let A be an invertible n× n real matrix, and assume that B approximates A−1, concretely,
‖B − A−1‖ ≤ ε0 for some sub-multiplicative norm. Richardson iteration is a method for
obtaining a more refined approximation of A−1 given access to the crude B as well as to
the original matrix A.

9



Lemma 10. Let L ∈ Rm×m be an invertible matrix and A ∈ Rm×m such that ‖L−1 − A‖ ≤ ε0.
For any nonnegative integer k, define

R(A,L, k) =
k∑
i=0

(I − AL)iA.

Then, ‖L−1 − R(A,L, k)‖ ≤ ‖L−1‖ · ‖L‖k+1 · εk+1
0 .

The proof is deferred to Appendix A.
Following [AKM+20] we will be interested in the following instantiation of the Richard-

son iteration. LetM = (M1, . . . ,Mn) be a sequence ofw×wmatrices. Following [AKM+20]
we consider the (n+ 1)w × (n+ 1)w matrix

M =


0 0 . . . 0 0
M1 0 . . . 0 0
0 M2 . . . 0 0
...

... . . . ...
...

0 0 . . . Mn 0

 . (4)

The Laplacian of M is L = I(n+1)w−M , and we treat L as an (n+ 1)× (n+ 1) block matrix.
The following claim follows by a simple calculation.

Claim 11. For i, j ∈ [n+ 1], the (i, j)-th block of L−1 is given by

L−1[i, j] =


Mi−1 · · ·Mj i > j,

Iw i = j,

0 i < j.

Richardson for branching programs. Let B = (B1, . . . , Bn) be an (n,Σ, w) BP and let
Mi = Eσ∈Σ[Bi(σ)] be the corresponding transition matrices. Thus, approximating the
transition probabilities of B,

E
x∈Σn

[
val
(
B, x

)]
= Mn · · ·M1,

amounts to approximating the lowest leftmost entry L−1[n+ 1, 1].

Claim 12. Let B = (B1, . . . , Bn) be an (n,Σ, w) BP. Set Mi = Eσ∈Σ[Bi(σ)] and L as in Equa-
tion (4). Also, let G : {0, 1}s → Σn be an (n,Σ, w, ε0) PRG and consider

A[a, b] =

{
Ex∈{0,1}s

[
val
(
B[b,a−1], Ga−b(x)

)]
a > b

0 a < b
(5)

Then, ∥∥L−1 − R(A,L, k)
∥∥ ≤ (n+ 1) · (2ε0)k+1.

10



Let A as in Equation (5) and write R(A,L, k) =
∑k

i=0 ∆iA where ∆ = I − AL. Denote
A′ = A− I , i.e., A′ is the part of A below the main diagonal. Then,

∆ = I − AL = I − A(I −M) = (I − A) + AM = AM − A′.

In block notation, for a, b ∈ [n+ 1], following Equation (4),

AM [a, b] =
n+1∑
i=1

A[a, i]M [i, b] = A[a, b+ 1]M [b+ 1, b] = A[a, b+ 1] ·Mb.

Thus,

∆[a, b] =

{
A[a, b+ 1] ·Mb − A[a, b] a > b,

0 a ≤ b.
(6)

Going back to R(A,L, k), for a > b we have that

R(A,L, k)[a, b] = A[a, b] +
k∑
i=1

∑
a>ri>···>r1≥b

∆[a, ri] ·∆[ri, ri−1] · · ·∆[r2, r1] · A[r1, b]. (7)

If we further let C0[a, b] = A[a, b+ 1] ·Mb and C1[a, b] = A[a, b], then

R(A,L, k)[a, b] = A[a, b]+ (8)∑
t∈{0,1}i

a>ri>···>r1≥b

∑
t1,...,ti∈{0,1}

(−1)t1+···+ti · Cti [a, ri] · · ·Ct1 [r2, r1] · A[r1, b].

4 The Construction

4.1 Black-box error reduction

Let G : {0, 1}s0 → Σn be an (n,Σ, w, εG) and Gaux : {0, 1}saux → ({0, 1}s0 × Σ)k+1 be a
(k + 1, {0, 1}s0 × Σ, w, εaux) PRG. Also, for t ∈ {0, 1} and σ ∈ Σ we let

Gt,`(x, σ) =

{
σ ◦G`−1(x) t = 0,

G`(x) t = 1.
(9)

We now define the WPRG (I, µ) : {0, 1}s → Σ× R. The seed x ∈ {0, 1}s to our WPRG
is interpreted as follows.

• The first log(k + 1) bits encode i ∈ {0, . . . , k}.

• The next log
(
n
i

)
bits encode a sequence ` = (`0, `1, . . . , `i) such that `0 + · · ·+ `i = n,

`i, . . . , `1 > 0, and `0 ≥ 0.

11



• The next i bits are denoted by t = t = (t1, . . . , ti) ∈ {0, 1}i.

• The next saux bits are denoted by xaux ∈ {0, 1}saux .

Overall, we can write x = (i, `, t, xaux), and the WPRG (I, µ) has seed length

s = saux +O(k log n). (10)

For brevity we sometimes omit the dependence of i, (`0, . . . , `i), (t1, . . . , ti), and xaux on x.
We define I and µ as follows.

I(x) =

{
Gn(Gaux(xaux)0) i = 0,

Gti,`i(Gaux(xaux)i) ◦ · · · ◦Gt1,`1(Gaux(xaux)1) ◦G`0(Gaux(xaux)0) otherwise.
(11)

µ(x) =

{
k + 1 i = 0,

(k + 1) ·
(
n
i

)
· 2i · (−1)t1+···+ti otherwise.

(12)

where Gaux(xaux)j denotes the j’th symbol in Gaux(xaux) ∈ ({0, 1}s0 × Σ)k+1.
The weights are chosen so that the approximation yielded by the above WPRG is a

derandomized version of Equation (8) for (a, b) = (n + 1, 1). Note that in Equation (8)
we used r1, . . . , ri which partitioned the interval [n+ 1, 1], while in Equation (12) we used
`0, . . . , `i that sum to n. This is merely an alternative way of writing the sum – the `i-s are
the sum of differences of the ri-s.

4.2 Correctness

In this section we use the same notation as in Section 3.

Lemma 13. Let 0 < ε < ε0 = 1
4n

and let k = log1/ε0(1/ε). Suppose

• G : {0, 1}s0 → Σn is an
(
n,Σ, w, εG = ε0

2(n+1)

)
PRG, and,

• Gaux : {0, 1}saux → ({0, 1}s0 × Σ)k+1 is a (k + 1, {0, 1}s0 × Σ, w, εaux = ε3) PRG.

Then, (I, µ) is an (n,Σ, w, ε) WPRG with seed length s = saux + O(log(1/ε)) computable in
space O(space(Gaux) + space(G) + log s).

Proof. Assume k, G and Gaux are as in the hypothesis of the lemma. The space complexity
follows from Theorem 7 and the seed length was analyzed in Equation (10). We are left to
prove that (I, µ) is an (n,Σ, w, ε) WPRG. Fix any (n,Σ, w) BP B = (B1, . . . , Bn). Let A be
the (n+ 1)w × (n+ 1)w lower triangular block matrix in which

A[a, b] = E
x∈{0,1}s0

[
val
(
B[b,a−1], Ga−b(x)

)]

12



for a > b, and A[a, a] = Iw. Since G is
(
n,Σ, w, εG = ε0

2(n+1)

)
PRG we have that∥∥L−1[a, b]− A[a, b]

∥∥ ≤ εG

and ‖L−1 − A‖ ≤ (n+ 1)εG. By our choice of µ,

E
x∈{0,1}s

[
µ(x) · val

(
B, I(x)

)]
=

k∑
i=0

∑
t,`

(−1)t1+···+ti · E
xaux

[
val
(
B, I(i, `, t, xaux)

)]
,

and

R(A,L, k)[n+ 1, 1] = A[n+ 1, 1]+

k∑
i=1

∑
t,r

(−1)t1+···+ti · Cti [n+ 1, ri] · · ·Ct1 [r2, r1] · A[r1, 1],

where `0 + · · ·+ `i = n and n+ 1 > ri > · · · > r1 ≥ 1. We soon prove:

Claim 14. For every fixed i ∈ {0, . . . , k}, t ∈ {0, 1}i, and ` such that `0 + · · ·+ `i = n∥∥∥∥ E
xaux

[
val
(
B, I(i, `, t, xaux)

)]
− Cti [n+ 1, ri] · · ·Ct1 [r2, r1] · A[r1, 1]

∥∥∥∥ ≤ εaux,

where rj = 1 + `0 + · · ·+ `j−1.

As we have at most (k + 1)nk2k summands, we see that∥∥∥∥ E
x∈{0,1}s

[
µ(x) · val

(
B, I(x)

)]
− R(A,L, k)[n+ 1, 1]

∥∥∥∥ ≤ (k + 1)nk2k · εaux

≤ n2k

2
· εaux ≤

ε

2
.

It therefore follows from Claim 12 that∥∥∥∥R(A,L, k)[n+ 1, 1]− E
x∈Σn

[
val
(
B, x

)]∥∥∥∥ ≤ (n+ 1)(2(n+ 1)εG)k+1

≤ 2n · εk+1
0 ≤ 2nε0ε =

ε

2
,

which together completes the proof.

Proof of Claim 14. Fix i ∈ {0, . . . , k}, `0 + · · · + `i = n, and t ∈ {0, 1}i and recall that
rj = 1 + `0 + · · · + `j−1. We define a (k + 1, {0, 1}s0 × Σ, w) BP B′ = (B′0, . . . , B

′
k) (that

depends on i, `, and t) such that for all j = 0, ..., k,

B′j(x, σ) =


val
(
B[rj ,rj+1−1], σ ◦G`j−1(x)

)
j > 0, t = 0,

val
(
B[rj ,rj+1−1], G`j(x)

)
j > 0, t = 1,

val
(
B[1,r1−1], G`0(x)

)
j = 0.

(13)

We stress that B′j is a BP because a product of Boolean stochastic matrices is Boolean
stochastic. The claim now follows since Gaux is a (k + 1, {0, 1}s0 × Σ, w, εaux) PRG.
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4.3 The final construction

We now instantiate Lemma 13 withGaux being the INW PRG from Theorem 9 andG being
an arbitrary PRG. The reason for using the INW generator is its additive dependence on
log |Σ|.

Corollary 15. Let G : {0, 1}s0 → Σn be an (n,Σ, w, εG). Then, for any error parameter 1
4n

>
ε > 0 there exists an (n,Σ, w, ε) WPRG with seed length

s0 +O

(
log

w

ε
· log logn

1

ε

)
computable in space O

(
space(G) + log logn(1/ε) ·

(
log log w

ε

)2
)

.

Had we used Nisan’s PRG from Theorem 8 instead of INW then the seed length would
deteriorate to

O

(
s0 · log logn

1

ε
+ log

w

ε
· log logn

1

ε

)
.

Corollary 15 can be interpreted as an error reduction procedure for PRGs with a slight
overhead in the seed and space complexity. We proceed by applying this error reduction
to Nisan’s PRG from Theorem 8.

Corollary 16. For any positive integers n, w, any error parameter 1
4n
> ε > 0 and any alphabet

Σ, there exists an (n,Σ, w, ε) WPRG with seed length

O

(
log n log(nw|Σ|) + log

w

ε
· log logn

1

ε

)
computable in space O

(
log(nw|Σ|) + log logn(1/ε) ·

(
log log w

ε

)2
)

.

Note that for ε which is not tiny the space complexity is dominated by the first term.

Specifically, for ε > 2−2log1/3 n , w < 22log1/3 n the space complexity is indeed O(log(nw|Σ|)).
Had we used INW instead, the space complexity would deteriorate to

O

(
log n ·

(
log log

nw|Σ|
ε

)2

+ log
w

ε
· log logn

1

ε

)
.
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A Proof of Lemma 10

We restate Lemma 10.

Lemma 17. Let L ∈ Rm×m be an invertible matrix and A ∈ Rm×m such that ‖L−1 − A‖ ≤ ε0.
For any nonnegative integer k, define

R(A,L, k) =
k∑
i=0

(I − AL)iA.

Then, ‖L−1 − R(A,L, k)‖ ≤ ‖L−1‖ · ‖L‖k+1 · εk+1
0 .

16



Proof. For any matrix Z, the matrices I and Z commute, and so by a straightforward
induction,

I −
k∑
i=0

(I − Z)iZ = (I − Z)k+1.

In particular, for Z = AL,

I − R(A,L, k) · L = (I − AL)k+1.

Thus, ∥∥L−1 − R(A,L, k)
∥∥ =

∥∥(I − R(A,L, k) · L) · L−1
∥∥

≤
∥∥L−1

∥∥ · ‖I − R(A,L, k) · L‖
≤
∥∥L−1

∥∥ · ‖I − AL‖k+1

=
∥∥L−1

∥∥ · ∥∥(L−1 − A) · L
∥∥k+1

≤
∥∥L−1

∥∥ · ‖L‖k+1 · εk+1
0 .

B The space complexity of some pseudo-random objects

In this section we show how to achieve the space complexity declared in Theorem 8 and
Theorem 9. For the INW generator we choose a specific implementation with a small
space complexity. The constructions are well known, and the variant of INW we use was
explored by [HV06]. We give it here for completeness.

B.1 Nisan’s Generator

Proof sketch of Theorem 8. We are given parameters n,Σ, w, ε. We set X = [A] for A =
O
(
nwΣ
ε

)
. We let H be a 2-universal family of hash functions over X where |H| = A2 and

h(x), for h ∈ H and x ∈ X , can be computed in space O(log log |X|) (see [Nis92, Nis94]).
Nisan’s generator interprets the seed as y, h1, . . . , hlogn, where y ∈ X , and h1, . . . , hlogn ∈

H. For j ∈ [n], the j-th symbol in the output of the generator is hb11

(
hb22

(
· · ·hblog n

logn (y)
))

,

where (b1, . . . , blogn) ∈ {0, 1}logn is the binary representation of j, and hb is either h, if b = 1,
or the identity function, if b = 0. Given y, h1, . . . , hlogn, j = (b1, . . . , blogn) we can compute
the j-th output symbol in the following two alternative ways.

• We can successively compute hbjj
(
· · ·hblog n

logn (y)
)

for j = log n, . . . , 1, each time keep-
ing the current X-symbol. This takes

O

(
log

nw|Σ|
ε

+ log log n+ log log |X|
)

= O

(
log

nw|Σ|
ε

)
space.
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• Alternatively, we can do the above computation using composition of space bounded
reductions, resulting in space complexity

O(log n · log log |X|) = O

(
log n · log log

nw|Σ|
ε

)
.

B.2 A high min-entropy extractor

To apply INW, we need a space-efficient seeded extractor with a small entropy loss in the
high min-entropy regime. Goldreich and Wigderson [GW97] gave such a construction
utilizing a regular expander G = (V,E) with a small normalized second eigenvalue. For
our expander, we choose a Cayley graph over the commutative group Zn2 with a gener-
ator set S ⊆ {0, 1}n that is λ-biased. It is well known that Cay(Zn2 , S) has normalized
second largest eigenvalue at most λ. For the λ-biased set we choose a construction from
[AGHP92]. Altogether, this unfolds for the following.

• For the λ-biased set S, first pick q to be the first power of two larger than n
λ

. The
set S is of cardinality q2. For every α, β ∈ Fq there is an elements sα,β ∈ Zn2 where
(sα,β)i = 〈αi, β〉, such that multiplication is in Fq and the inner product is over Z2.
[AGHP92] showed the set is λ-biased.

• We let G = (V,E) with V = Zn2 and (x, y) ∈ E iff x+ y ∈ S. G is a λ-expander.

The extractor GW : {0, 1}n × [D] → {0, 1}n is defined by letting G(x, i) be the i-th
neighbour of x in the graph G.

Claim 18. Let 0 < ∆ < n and set G and GW as above. Then, GW : {0, 1}n × [D] → {0, 1}n is
a (k = n − ∆, ε) extractor with seed length d = O(∆ + log n

ε
) and space complexity O(log n ·

log(∆ + log(n/ε))).

Proof.

Correctness. The expander mixing lemma shows that GW is an (n − ∆, ε = O(2∆/2λ))
extractor.

Seed length. The seed length of this extractor is log |S| = O(log n
λ
) = O(log n2∆

ε
) = O(∆ +

log n
ε
).

Space complexity. The space complexity of computing GW(x, y) given x and y, is the
space needed to compute sy ∈ S from y = (α, β) ∈ F2

q , plus the space needed to
compute x + sy. The dominating step in computing sy is computing αi (for i ≤ n)
which can be done inO(log n log log q) with space composition. Altogether, the space
needed is O(log n · log log n

λ
) = O

(
log n · log log n2∆

ε

)
.
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We note that Healy and Viola [HV06] gave an extremely efficient implementation of
the above AGHP generator, yielding a better space complexity of O(log(n + log q))
to compute 〈αi, β〉. However, in our overall setting of parameters it will make neg-
ligible difference.

We remark that by using expanders with better dependence betweenD and λ, one can
get d = O(∆ + log 1

ε
), but here we care more about the space complexity, and log n factors

are negligible for us.

B.3 The INW Generator

Proof sketch of Theorem 9. We consider the INW generator [INW94] instantiated with ex-
tractors (as, e.g., in [RR99]). We are given parameters n,Σ, w, and ε = εINW . We set
parameters ∆ = logw+O(log n

ε
), and d as the seed length for the extractor of Claim 18 for

length n, error εExt = ε
n

and ∆. We let s = log |Σ|+ log n · 2d and we assume s ≤ n. We let
`i = s− i ·∆ for 0 ≤ i ≤ n.

Given a seed x ∈ {0, 1}s we view the computation of INW(x) as a full binary tree of
depth log n. Nodes in level i of the tree are labeled by strings of length `i. The root (at
level 0) is labeled by x (of length `0 = s). Given any internal node in level i ∈ {0, . . . , log n}
labeled by some string z ∈ {0, 1}`i , we write z = z1 ◦z2 with zi ∈ {0, 1}`i+1 and z2 ∈ {0, 1}d.
The left child of z is labeled with z1, and the right child of z is labeled with Exti(z1, z2),
where Exti is given by Claim 18 for ∆, length `i+1 and error εExt (notice that since `i < n, d
bits suffice for the seed). INW(x) is the concatenation of the leaf’s labels, from left to right,
truncating outputs to log |Σ| bits.

Given an index j ∈ [n], computing INW(x)j ∈ Σ can be done by walking down the
computation tree, and each time either truncating a string or invoking an extractor. By
composition of space bounded reductions the space complexity of the construction is log n
times the space complexity of the worst extractor used. That is, log n·log `0·log(∆+log `0

εExt
).

Plugging-in ∆ and εExt, the space complexity is bounded by

O
(

log n · log `0 · log log
nw

ε

)
= O

(
log n · log

(
log |Σ|+ log n log

nw

ε

)
· log log

nw

ε

)
= O

(
log n ·

(
log log

nw|Σ|
ε

)2
)
.
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