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Abstract

We study the complexity of proving that a sparse random regular graph on an odd
number of vertices does not have a perfect matching, and related problems involving each
vertex being matched some pre-specified number of times. We show that this requires proofs
of degree Ω(n/ log n) in the Polynomial Calculus (over fields of characteristic 6= 2) and Sum-
of-Squares proof systems, and exponential size in the bounded-depth Frege proof system.
This resolves a question by Razborov asking whether the Lovász-Schrijver proof system
requires nδ rounds to refute these formulas for some δ > 0. The results are obtained by a
worst-case to average-case reduction of these formulas relying on a topological embedding
theorem which may be of independent interest.
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1 Introduction

Proof complexity is the study of certificates of unsatisfiability, initiated by Cook and Reckhow
[CR79] as a program to separate NP from coNP. The main goal of this program is to prove size
lower bounds on proofs of unsatisfiability of logical formulas. This is a daunting job – indeed
we are far from proving general size lower bounds on certificates of unsatisfiability. As an
intermediate step we study proof systems with restricted deductive power and prove size lower
bounds for such restricted certificates of unsatisfiability. The most studied such proof system
is resolution [Bla37] which is fairly well understood by now, see e.g., the proof complexity book
by Kraj́ıček [Kra19].

But resolution is by far the only proof system. A closely related and quite general proof sys-
tem is the bounded depth Frege proof system [CR79] which manipulates propositional formulas
of bounded depth. While we have some results for the bounded depth Frege proof system, in this
introduction we instead focus on two other systems as these were the primary motivation behind
our work. These are the two (incomparable) Polynomial Calculus (PC) [CEI96, ABSRW04] and
Sum-of-Squares (SoS) [Sho87, Par00, Las01] proof systems. These proof systems do not rely on
propositional logic, like resolution or Frege, but rather on algebraic reasoning and are examples
of so-called semi-algebraic proof systems (see e.g. [GHP02]).

Both PC and SoS provide refutations of (satisfiability of) a set of polynomial equations
Q = { qi(x) = 0 | i ∈ [m] } over n variables x1, . . . , xn. In the case of PC, these polynomials can
be over any field F (finite or infinite), and in the case of SoS, these polynomials are over R. A
key complexity measure of a PCF or SoS refutation of Q is its degree, defined as the maximum
degree of any polynomial appearing in the refutation. The degree of refuting Q in PCF or SoS,
which we denote by Deg(Q `PCF ⊥) and Deg(Q `SoS⊥) respectively, is the minimum degree of
any PCF or SoS refutation of Q. For Boolean systems of equations, meaning that Q contains
the equations x2

i − xi = 0 for all i ∈ [n], strong enough degree lower bounds imply size lower
bounds in both PCF [CEI96, IPS99] and SoS [AH19], where the size of a refutation is the total
number of monomials appearing in it.

There is by now a large number of lower bound results for both PC, e.g., [Raz98, IPS99,
BGIP01, AR01, GL10, MN15], and SoS, e.g., [Gri01, Sch08, MPW15, BHK+16, KMOW17,
AH19, Pot20, AGK20], with SoS in particular having received considerable attention in recent
years due to its close connection to the Sum-of-Squares hierarchy of semidefinite programming,
a powerful “meta-algorithm” for combinatorial optimization problems [BS14].

In this paper we study the power (or lack thereof) of these proof systems when it comes to
refuting the perfect matching formula PM(G) defined over sparse random graphs G = (V,E) on
an odd number of vertices. This formula can be viewed as a system of linear equations over R on
a set of Boolean variables: for each edge e ∈ E there is a variable xe ∈ {0, 1} (indicating whether
the edge is used in the matching) and for each vertex v ∈ V there is an equation

∑
e3v xe = 1.

Apart from being a natural well-studied problem on its own, the perfect matching formula is
interesting because of its close relation to two other widely studied families of formulas, namely
the pigeonhole principle (PHP), and Tseitin formulas.

PHP asserts that m pigeons cannot fit in n < m holes (where each hole can fit at most one
pigeon). This can be viewed as a bipartite matching problem on the complete bipartite graph
with m+ n vertices, where each vertex on the large side (with m vertices) must be matched at
least once, and each vertex on the small side (with n vertices) can be matched at most once.
There are many variants of PHP (see e.g. the survey [Raz02]), and the one closest to the perfect
matching formula is the so-called “onto functional PHP”, in which each vertex on both sides
must be matched exactly once (rather than at least/at most once). Equivalently, this formula is
simply the perfect matching formula on a complete bipartite graph with n+m vertices. While
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most variants of PHP are hard for PC [Raz98, MN15], the onto functional PHP variant is in
fact easy to refute in PC over any field [Rii93]. In SoS, all variants of PHP are easy to refute
[GHP02].

The Tseitin formula over a graph G claims that there is a subgraph of G such that each
vertex has odd degree. As the sum of the degrees of a graph is even, this formula is not satisfiable
if G has an odd number of vertices. In contrast to the PHP, the Tseitin formula is (almost)
always hard: for PCF over fields F of characteristic distinct from 2 [BGIP01, AR01] and SoS
[Gri01] these formulas require linear degree if G is a good vertex expander. We cannot hope to
prove degree lower bounds over fields of characteristic 2 as the constraints become linear and
we can thus refute the Tseitin formula using Gaussian elimination. As the perfect matching
formula PM(G) implies the Tseitin formula, PC over fields of characteristic 2 can also easily
refute PM(G) for G with an odd number of vertices.

In summary, the perfect matching formula lies somewhere in between PHP and Tseitin,
of which the former is easy to refute in SoS (and easy to refute in PC in the onto functional
variant), and the latter is hard to refute in SoS (as well as in PC with characteristic 6= 2). Hence
it is natural to wonder whether SoS or PC requires large degree to refute the perfect matching
formula over non-bipartite graphs.

The case of perfect matching in the complete graph on an odd number of vertices (sometimes
called the “MOD 2 principle”) is well-understood in both PC [BGIP01] and SoS [Gri01, Pot17],
requiring degree Ω(n) in both proof systems unless the underlying field of PC is of characteristic
2. For sparse graphs, less is known. Buss et al. [BGIP01] obtained worst-case lower bounds
in PC showing that there exist bounded degree graphs on n vertices requiring Ω(n) degree
refutations. This is obtained by a reduction from Tseitin formulas and while the work of Buss
et al. outdates the current interest in the SoS system, it is not hard to see that the same
reduction yields a similar Ω(n) degree lower bound for SoS (details provided in Appendix A).

However, for random graphs G little is known about the hardness of the perfect matching
formula and, e.g., Razborov [Raz17] asked whether it is true that the Lovász-Schrijver hierarchy
[LS91] (which is weaker than SoS) requires nε rounds to refute the perfect matching principle
on a random sparse regular graph with high probability.

1.1 Our results

We show that indeed the perfect matching principle requires large size on random d-regular
graphs (for some constant d) in the Sum-of-Squares, Polynomial Calculus, and bounded-depth
Frege proof systems. Our results apply more generally to Tseitin-like formulas defined by linear
equations over the reals induced by some graph, so let us now define these.

For a graph G = (V,E) and integer vector b ∈ ZV , consider the system of linear equations
over the reals having a variable xe for each e ∈ E, and the equation

∑
e3v xe = bv for each

v ∈ V . Let Card(G, b) denote this system of linear equations along with the Boolean constraints
xe ∈ {0, 1} (viewed as a quadratic equation x2

e − xe = 0) for each edge – in Section 2.2 the
encoding is discussed in more detail. Note that Card(G,~1) corresponds to the perfect matching
problem in G and in general Card(G, b) can be viewed as asserting that G has a “matching”
where each vertex is matched exactly bv times. Note that whenever

∑
v∈V bv is odd, Card(G, b)

is unsatisfiable (since the equations imply
∑

v bv = 2
∑

e xe which is even)1.
We focus on the special case of Card(G, b) where G is d-regular and b = ~t = (t, t, . . . , t) is

the all-t vector for some t ∈ [d]. If in this scenario both n and t are odd (implying d is even)
then as observed above Card(G,~t) is unsatisfiable. On the other hand if n is odd and t is even

1As pointed out to us by Aleksa Stanković, decidability of Card(G, b) is in polynomial time as a non-optimal
solution always has an augmenting path along which it can be improved.
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then Card(G,~t) is always satisfiable (because such G admits a 2-factorization). The remaining
case when n is even may be either satisfiable or unsatisfiable, but for a random d-regular G with
d ≥ 3, Card(G, t) will be satisfiable with high probability (because such G can be partitioned
into perfect matchings with high probability).

If we let FD denote a Frege system restricted to depth-D formulas (see Section 2.1), then
our main theorem is as follows.

Theorem 1.1. There is a constant d0 such that for all constants d ≥ d0 and t ∈ [d], the
following holds with high probability over a random d-regular graph G on n vertices.

1. Deg(Card(G,~t) `PCF ⊥) = Ω(n/ log n) whenever char(F) 6= 2.

2. Deg(Card(G,~t) `SoS⊥) = Ω(n/ log n).

3. There is a δ > 0 such that Size(Card(G,~t) `FD
⊥) = exp

(
Ω(nδ/D)

)
, for all D ≤ δ logn

log logn .

The interesting case of the above theorem is when both n and t are odd so that Card(G, t)
is unsatisfiable; in the other cases Card(G,~t) is satisfiability with high probability and the lower
bounds are vacuous.

By known size-degree tradeoffs for Polynomial Calculus [IPS99, CEI96] and Sum-of-Squares
[AH19] the degree lower bounds in Theorem 1.1 imply near-optimal size lower bounds of
exp

(
Ω(n/ log2 n)

)
.

Apart from the perfect matching formula, another special case of Card(G,~t) is the so-
called even coloring formula, introduced by Markström [Mar06], which is the case when t =
deg(v)/2. An open problem of Buss and Nordström ([BN21], Open Problem 7.7) asks whether
these formulas are hard on expanders for Polynomial Calculus over fields of characteristic 6= 2.
Theorem 1.1 partially resolves this open problem, establishing that it is hard on random graphs
(rather than on all expanders).

We will give a more detailed overview of how the results are obtained in Section 1.3 below,
but for now let us mention that we obtain them using embedding techniques. In particular for,
say, the SoS lower bound, our starting point is the Ω(n) worst-case degree lower bound in sparse
graphs, and we then prove that these hard instances can be embedded in a random d-regular
graph in such a way that the hardness of refuting the formula is preserved.

To achieve this, one of the components we need is a new graph embedding theorem which may
be of independent interest. Very loosely speaking, we show that any bounded-degree graph with
O(n/ log n) edges can be embedded as a topological minor in any bounded-degree α-expander
on n vertices and sufficiently many edges. In addition, for our application to perfect matching
(and more generally the Card(G,~t) formulas), we need to be able to control the parities of the
path lengths used in the topological embedding, and we show that as long as large linear sized
subgraphs contain odd cycles of length Ω(1/α), this is indeed possible.

Somewhat informally, we prove the following.

Theorem 1.2 (Informal statement of Theorem 3.3). Let G be a constant degree α-expander
on n vertices. If H is a graph with at most εn

logn edges and ∆(H)� α2 · d(G), then G contains
H as a topological minor. Furthermore, if all large vertex induced subgraphs of G contain odd
cycles of length Ω(1/α), then one can choose the parities of the length of all the paths in the
embedding of H.

This generalizes various classical results of a similar flavor (e.g. [KR96, KN19, CN19, Kri19]).
See the next subsection for a discussion comparing these (and other) existing embedding results
to ours.

3



As a further illustration of the applicability of this theorem we partially resolve a question of
Filmus et al. [FLM+13]. They prove that with high probability for random d-regular graphs G,
where d ≥ 4, PC requires space Ω(

√
n) to refute the Tseitin formula, and conjecture that PC in

fact requires space Ω(n). On the other hand, Galesi et al. [GKT19] considered it plausible that
the Ω(

√
n) bound is optimal. We (almost) resolve this question by proving Ω(n/ log n) space

lower bounds for the Tseitin formula defined on vertex expanders, but only of large enough
(constant) average degree.

Theorem 1.3. For all α > 0 there is a d0 such that the following holds. Let G be a constant
degree α-expander of average degree at least d0. Then over any field F it holds that PCF requires
space Ω(n/ log n) to refute the Tseitin formula defined on G.

Unlike Theorem 1.1, vertex expansion is sufficient and we require no randomness. This
lower bound is obtained by embedding a worst-case instance, due to Filmus et al., into a vertex
expander. We provide more details in Section 6.1.

1.2 Related work

Proof Complexity Lower Bounds Using Embedding Techniques To the best of the
authors knowledge there are only two other papers that consider embedding arguments in proof
complexity, both in connection with Frege systems rather than semi-algebraic systems like PC
or SoS. The first one is the paper by Pitassi et al. [PRST16], showing that the Tseitin formula is
hard for Frege up to depth Θ(

√
log n). This paper was followed up by a paper of H̊astad [H̊a17]

improving the previous lower bounds from super-polynomial to exponential and pusing the
depth to Θ(log n/ log logn). This was in turn followed up by Galesi et al. [GIRS19] relating the
hardness of Tseitin to treewidth, again using embedding arguments.

Connection to Constraint Satisfaction Problems For a k-ary predicate P : {0, 1}k →
{0, 1}, an instance of the CSP(P ) problem consists of a set of constraints over n Boolean
variables x1, . . . , xn, each constraint being an application of P on a list of k variables. The
Card(G,~t) formulas we study can be viewed as instances of CSP(P ) where each variable appears
in exactly 2 constraints and P : {0, 1}d → {0, 1} is the constraint that exactly t of the d inputs
are 1.

CSP problems have been extensively studied throughout the years, and fairly general con-
ditions under which CSP(P ) is hard for PC and SoS are known [AR01, KMOW17]. To be more
accurate, these results are for the more general CSP(P±) problem in which each constraint is
an application of P on k literals rather than variables. In particular, Alekhnovich and Razborov
[AR01] showed that if P is, say, 8-immune2 over the underlying field F, then any PCF refutation
of a random CSP(P±) instance with a linear number of constraints requires degree Ω̃(n). For
SoS, Kothari et al. [KMOW17] showed that, if there exists a pairwise uniform distribution3

µ over {0, 1}k supported on satisfying assignments of P , then with high probability a random
CSP(P±) instance on m = ∆n constraints needs degree Ω̃(n/∆2) to be refuted by the SoS proof
system.

The predicates we study are linear equations over R and are neither immune nor do they
support a pairwise uniform distribution. As such, our results provide CSP lower bounds that fall
outside the immunity and pairwise independence frameworks, which are the source of a majority

2P is r-immune over F if there is no degree-r polynomial q : {0, 1}k → F such that for all satisfying assignments
α ∈ {0, 1}k of P it holds that q(α) = 0)

3A distribution µ over {0, 1}k is said to be pairwise uniform if for all 1 ≤ i < j ≤ k, the marginal distribution
of µ restricted to coordinates i and j is uniform.
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of existing CSP lower bounds in PC and SoS. To the authors best knowledge the only other
attempt to overcome this framework in the average-case setting is the paper by Deshpande
et al. [DMO+19], showing lower bounds for the basic SDP of random regular instances of
CSP(NAE±3 ), where NAE3 is the not-all-equal predicate on three bits. In contrast to their work
we show (almost) linear degree lower bounds for the stronger Sum-of-Squares hierarchy, but
only for a very wide predicate of some large (but constant) arity.

Embedding Theorems There is a rich literature on embeddings of graphs as minors or
topological minors into expander graphs. We focus here on the ones most closely related to
Theorem 1.2.

The classical result of Kleinberg and Rubinfeld [KR96] shows that a regular expander G on n
vertices contains every graph H with O(n/polylog(n)) vertices and edges as a minor. Krivelevich
and Nenadov [KN19] simplified and strengthened this by improving the bound on the size of H
to O(n/ log n). These results differ from ours in two key ways: (i) we want topological minors,
and (ii) we want to be able to control the parities of the path lengths in the embedding. We
now discuss these two aspects separately.

Results on topological minors, while somewhat less common, also exist. A result similar
to ours is the result of Broder et al. [BFSU96] that with high probability the random graph
G(n,m) on n vertices and m = Ω(n log n) edges contains any graph H with ∆(H) = O(m/n)
and at most O(n/ log n) edges (and at most n/2 vertices) as a topological minor.

For our second property, the possibility to choose the parities of the paths used in the
topological embedding, we are not aware of any previous work studying this question. A related
notion are so called odd minors which are more general than topological minors with odd length
paths. This notion has been considered in connection with a strengthening of Hadwiger’s
Conjecture, see e.g., the survey by Seymour [Sey16]. This line of research mostly considers
complete odd minors, e.g., [GGR+09], and thus is not directly applicable to our situation.

Recently Draganić et al. [DKN20] independently obtained a new embedding theorem similar
to ours. They assume the somewhat stronger property that the host graph G is a spectral
expander but also obtain a stronger conclusion: each path of the topological embedding is
of equal (odd) length and the embedding even works in an adversarial setting. Namely, the
adversary is allowed to fix the embedding of the vertices, as long as no neighborhood in G
contains too many vertex embeddings.

Extended Formulations There has been a fair amount of work studying the extension com-
plexity of the perfect matching polytope [Yan88, Rot17], but these lower bounds do not have
any direct implications for the PC and SoS degree of the perfect matching formula. Let us
elaborate.

Suppose we have a convex polytope P consisting of many facets. A natural question is
whether there is simpler polytope Q in a higher dimensional space so that P is the “shadow”
of Q, or a bit more formal that there is a linear projection π such that π(Q) = P. Such a
Q is then called a linear extension of P and the extension complexity of a polytope P is the
minimum number of facets of any linear extension of P.

Rothvoss [Rot17] proved that the perfect matching polytope of a complete n-node graph has
extension compexity exp(Ω(n)) for n even. This result is incomparable to our lower bounds:
as the graphs we consider do not contain a perfect matching, their perfect matching polytope
is empty and thus has extension complexity 0. Furthermore, rather than linear programs, i.e.,
polytopes, we consider semidefinite programs which are more expressive.
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1.3 Overview of Proof Techniques

As previously mentioned, our high level approach is to first obtain worst-case perfect matching
lower bounds and to then embed these into the Card(G,~t) formula for G a random regular
graph. The worst-case lower bounds are obtained by a gadget reduction from Tseitin to perfect
matching, due to Buss et al. [BGIP01]. Using known lower bounds for the Tseitin formula in
the corresponding proof systems [BGIP01, Gri01, H̊a17] we then obtain the desired worst-case
lower bounds for the perfect matching formula.

A näıve attempt to obtain average-case lower bounds from a sparse worst-case instance H on
n vertices is to topologically embed the worst-case instance into a random regular graph G on
O(n log n) vertices using Theorem 1.2. One would then like to argue that PM(G) is hard. But
having a worst-case instance as a topological minor is not sufficient to conclude that PM(G) is
hard. For instance G may contain an isolated vertex and it is then trivial to refute PM(G). On
the other hand if we could guarantee that there is a perfect matching m in the subgraph of G
induced by the vertices not used in the embedding of H, we can conclude that PM(G) is hard:
hit the formula with the restriction corresponding to the matching m and we are basically left
with the worst-case formula.

Thus if we can ensure that H is a topological minor of G with the two additional properties
that (i) every path used in the embedding of H has odd length, and (ii) there exists a perfect
matching in the subgraph of G induced by the vertices not used in the embedding of H, then we
obtain average-case lower bounds for the perfect matching formula PM(G) ≡ Card(G,~1). The
lower bounds for Card(G,~t) for t > 1 can then be obtained by a reduction to the t = 1 case:
after fixing the value of the edges in bt/2c cycle covers of G to 1, a restriction of Card(G,~t) is
obtained which behaves like Card(G′,~1) for a somewhat sparser random regular graph G′.

Let us elaborate a bit further on the properties required from the topological minor of H
in G. As mentioned previously, our embedding theorem can ensure that all paths are of odd
length. To ensure the second property, we in fact do not embed H directly into G but rather
into a suitably chosen vertex induced subgraph G[T ] with the crucial property that for any set
of vertices U ⊆ T of odd cardinality the induced subgraph G[V \U ] has a perfect matching. As
the embedding of H will consist of an odd number of vertices we then obtain property (ii) above.
Since we now want to apply Theorem 1.2 not to G but to G[T ], we have to ensure that G[T ]
satisfies all the conditions of that theorem. We prove what we refer to as the Partition Lemma,
which asserts that an induced subgraph G[T ] exists that satisfies both the perfect matching
property described above, as well as all conditions of Theorem 1.2. The proof of the Partition
Lemma relies primarily on the Lovász Local Lemma and spectral bounds to obtain the desired
properties.

For the proof of our embedding theorem (Theorem 1.2), we extend an argument due to
Krivelevich and Nenadov [KN19] (see also [Kri19]) for ordinary minors (rather than topological
minors). In order to obtain a minor embedding of H in G, the idea there is to embed the vertices
one by one from H in G while maintaining an “unused” subgraph G′ of G which is a slightly
worse expander than G is. During this process it may happen that some vertex embedding
cannot be connected to a neighbor. If this happens, the embedding of that vertex is removed
and it needs to be embedded again.

In order to obtain topological embeddings, we need to adapt this procedure. Since we now
want vertex-disjoint paths connecting the embedded vertices, we would ideally like to embed
each vertex of H as a large star, and then embed the edges of H as paths connecting different
leaves of these stars. In order to make this work out, rather than embedding the vertices as actual
stars, we embed them as “star-like” subgraphs of G (more precisely defined in Definition 5.6)
that consist of a central vertex connected to many large vertex-disjoint connected subgraphs
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of G and show (Lemma 5.7) that we can always embed the vertices of H as such “star-like”
subraphs of G.

With this in place, obtaining control of the parities of the path lengths used in the embedding
(under the assumption on odd cycles in Theorem 1.2) is relatively straightforward: almost by
definition, when embedding an edge of H into a path of G, we can route it via an odd cycle
and can then choose which of the two halves of the odd cycles to use, obtaining two possible
embeddings with different path length parity, and can choose the one with the appropriate
parity.

1.4 Organization

We give some preliminaries in Section 2, formally defining the used proof systems and encodings
used, and recalling some general background results. In Section 3 we provide most of the proof of
Theorem 1.1 while deferring the proofs of two key results, the aforementioned Partition Lemma
and our embedding theorem. The proof of the Partition Lemma is given in Section 4, and the
proof of the embedding theorem can be found in Section 5.

In Appendix A we recall the reduction of Buss et al. [BGIP01] from Tseitin to perfect
matching and show that it yields lower bounds not only for Polynomial Calculus but also for
Sum-of-Squares and bounded depth Frege.

Acknowledgements. The authors are grateful to Susanna de Rezende, Johan H̊astad, Jakob
Nordström, Dmitry Sokolov and Aleksa Stanković for helpful discussions. In particular we
would like to thank Jakob Nordström who suggested to consider the even coloring formula and
brought the problem about Polynomial Calculus space to our attention.

2 Preliminaries

Natural logarithms (base e) are denoted by ln, whereas base 2 logarithms are denoted by log. For
integers n ≥ 1 we introduce the shorthand [n] = {1, 2, . . . , n} and sometimes identify singeletons
{u} by the element u. For a set U we denote the power set of U by 2U and a transversal A of
a family of sets B = {B1, B2, . . . Bn} is a set such that there is a bijective function f : A → B
satisfying that a ∈ f(a) for all elements a ∈ A.

2.1 Proof Systems

Let P = {p1 = 0, . . . , pm = 0} be a system of polynomial equations over the set of variables
X = {x1, . . . , xn, x̄1, . . . , x̄n}. Each pi is called an axiom, and throughout the paper we always
assume P includes all axioms x2

i − xi and x̄2
i − x̄i, ensuring that the variables are boolean, as

well as the axioms 1− xi − x̄i, making sure that the “bar” variables are in fact the negation of
the “non-bar” variables.

Sum-of-Squares (SoS) is a static semi-algebraic proof system. An SoS proof of f ≥ 0 from
P is a sequence of polynomials π = (t1, . . . , tm; s1, . . . , sa) such that∑

i∈[m]

tipi +
∑
i∈[a]

s2
i = f . (1)

The degree of a proof π is

Deg(π) = max{max
i∈[m]

deg(ti) + deg(pi),max
i∈[a]

2 deg(si)} . (2)
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An SoS refutation of P is an SoS proof of −1 ≥ 0 from P, and the SoS degree to refute P is
the minimum degree of any SoS refutation of P: if we let π range over all SoS refutations of P,
we can write Deg(P `SoS⊥) = minπ Deg(π).

Definition 2.1 (Pseudoexpectation). A degree d pseudo-expectation for P is a linear operator
Ẽ on the space of real polynomials of degree at most d, such that

(i) Ẽ[1] = 1,

(ii) Ẽ[tp] = 0 for all polynomials t and p ∈ P with deg(t) + deg(p) ≤ d, and

(iii) Ẽ[s2] ≥ 0 for all polynomials s of degree deg(s) ≤ d/2.

It is easy to check that if there is a degree d pseudo-expectation for P, then there is no SoS
refutation of P of degree at most d: if Ẽ is applied to both sides of (1), where f = −1, then the
right side is equal to −1 while the left is greater or equal to 0.

The size of an SoS refutation π, Size(π), is the sum of the number of monomials in each
polynomial in π and the size of refuting P is the minimum size over all refutations Size(P `SoS

⊥) = minπ Size(π).

Polynomial Calculus is a dynamic proof system operating on polynomial equations over a
field F. Let P be over F. Polynomial Calculus over F (PCF) consists of the derivation rules

• linear combination
p = 0 q = 0

αp+ βq = 0
, where p, q ∈ F[X] and α, β ∈ F, and

• multiplication
p = 0
xp = 0

, where p ∈ F[X] and x ∈ X.

A PC refutation of P is a sequence of polynomials π = t1, . . . , t` such that t` = 1 and each
polynomial ti is either in P or can be derived by one of the derivation rules from earlier
polynomials. The degree of a refutation is the maximum degree appearing in the sequence
Deg(π) = maxi∈[`] Deg(ti) and the PCF degree of refuting P is the minimum degree required of
any refutation Deg(P `PCF ⊥) = minπ Deg(π). Similarly, the size of a refutation π is the sum of
the number of monomials in each line of π and the PCF size of refuting P is the minimum size
required of any refutation Size(P `PCF ⊥) = minπ Size(π).

Frege System Let us describe a Frege system due to Shoenfield, as presented in [UF96].
As Frege systems over the basis ∨, ∧ and ¬ can polynomially simulate each other [CR79], the
details of the system are not essential and hold for any Frege system over the mentioned basis.

Schoenfield’s Frege system works over the basis ∨ and ¬. We treat the conjunction A∧B as
an abbreviation for the formula ¬(¬A∨¬B) and let 0, 1 denote “false” and “true” respectively.
If A is a formula over variables p1, . . . , pm, and σ maps the variables p1, . . . , pm to formulas
B1, . . . , Bm, then σ(A) is the formula obtained from A by replacing the variable pi with Bi =
σ(pi) for all i ∈ [m].

A rule is a sequence of formulas written as A1, . . . , Ak ` A0. If every truth assignment
satisfying all of A1, . . . , Ak also satisfies A0, then the rule is sound. A formula C0 is inferred from
C1, . . . , Ck by the rule A1, . . . , Ak ` A0 if there is a function σ mapping the variables p1, . . . , pm,
over which A0, . . . , Ak are defined, to formulas B1, . . . , Bm such that for all i ∈ {0, . . . , k} it
holds that Ci = f(Ai).
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The Frege system F that we consider consists of the following rules:

` p ∨ ¬p Excluded Middle,

p ` q ∨ p Expansion rule,

p ∨ p ` p Contraction rule,

p ∨ (q ∨ r) ` (p ∨ q) ∨ r Associative rule,

p ∨ q,¬p ∨ r ` q ∨ r Cut rule.

An F-refutation of an unsatisfiable formula A = C1 ∧ . . . ∧ Cm is a sequence of formulas
F1, F2, . . . , F` such that F` = 0 and every formula Fi is either one of C1, . . . , Cm or inferred
from formulas Fj1 , . . . , Fjk earlier in the sequence by a rule in F. As F is sound and complete
a formula A has a refutation if and only if it is unsatisfiable.

The size of a formula is the number of connectives in the formula and the size of a refutation
π, denoted by Size(π), is the sum of the sizes of all formulas in the refutation. The depth of π
is the maximum depth of any formula F ∈ π. We denote by Fd the proof system F restricted
to formulas of depth at most d.

2.2 Propositional Formulas

As we are only interested in constant degree graphs all our axioms are of constant size. Hence
the precise encoding of the axioms is not significant as we can change the encoding in constant
size/degree.

As the encoding is not essential, we view a propositional formula F over the Boolean variables
x1, . . . , xn as a family of functions F = {f1, . . . , fm} where each fi : {0, 1}n → {True,False} is
a function that depends on a constant number of variables. The formula F is satisfied by an
assignment α ∈ {0, 1}n if under α all functions evaluate to True: fi(α) = True for all i ∈ [m].

For a map ρ : {x1, . . . , xn} → {0, 1, x1, . . . , xn, x̄1, . . . , x̄n} and a function f : {0, 1}n →
{True,False}, denote by f

∣∣
ρ

the function defined by f
∣∣
ρ
(x1, . . . , xn) = f(ρ(x1), . . . , ρ(xn)). We

extend this notation to formulas in the obvious way, i.e., F
∣∣
ρ

= {f1

∣∣
ρ
, f2

∣∣
ρ
, . . . , fm

∣∣
ρ
}.

Two formulas F and F ′ are equivalent, denoted by F ≡ F ′ if the formulas are element-
wise equivalent, disregarding functions that are constant True. We say that a formula F ′ is
a subformula of F if there is a map ρ : {x1, . . . , xn} → {0, 1, x1, . . . , xn, x̄1, . . . , x̄n} such that
F ′ ≡ F

∣∣
ρ
. The following lemma states that a formula F is at least as hard as any of its

subformulas.

Lemma 2.2. Let F ,F ′ be formulas such that F ′ is a subformula of F and each axiom of F
depends on a constant number of variables. Then,

(i) for any field F it holds that Deg(F `PCF ⊥) ∈ Ω
(
Deg(F ′ `PCF ⊥)

)
,

(ii) Deg(F `SoS⊥) ∈ Ω
(
Deg(F ′ `SoS⊥)

)
, and

(iii) for all d ≥ 2 it holds that Size(F `Fd
⊥) ∈ Ω

(
Size(F ′ `Fd+1

⊥)
)
.

Proof. Suppose we have a refutation π of F in one of the mentioned proof systems. We want to
show that if we hit the proof with the restriction ρ such that F

∣∣
ρ
≡ F ′ then we obtain a proof

π′ = π
∣∣
ρ

of F ′.
First we need to ensure that we can derive all the axioms of F ′. These may be encoded in a

different manner, but as these proof systems are implicationally complete, and each axiom only
depends on a constant number of variables, this can be done in constant degree (constant size).
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This shows that the SoS degree of the resulting refutation is at most a constant factor larger.
For Polynomial Calculus and Frege the statement is readily verified by an inductive argument
over the proof.

For concreteness let us also define the encoding of the formulas that we are interested in.

Perfect Matching and Card(G,~b) The Perfect Matching formula PM(G) encodes the claim
that the graph G contains a perfect matching. For every edge e ∈ E(G) introduce a boolean
variable xe ∈ {0, 1} and add for every vertex v ∈ V (G) an axiom claiming that precisely one
incident edge is set to true. As a polynomial over R, we encode this claim as

qPMv =
∑
e3v

xe − 1 , (3)

which is satisfied under an assignment α if qPMv (α) = 0. Over other fields we encode this as a
sum over indicator polynomials (see example for Tseitin below). For the Frege proof system we
encode the vertex axiom as the propositional formula

qPMv =
∨
e3v

xe ∧
∧
e,e′3v
e 6=e′

x̄e ∨ x̄e′ . (4)

The formula Card(G,~b) is encoded in a similar fashion: in the polynomial encoding replace
the 1 with bv, whereas in the propositional encoding we let the later ∧ range over edge-tuples
of size bv + 1.

Tseitin Formula The Tseitin formula τ(G) claims that the edges of the graph G can be
labeled by 0, 1 such that the number of 1-labeled edges incident to any vertex is odd. For every
edge e ∈ E(G) introduce a boolean variable ye ∈ {0, 1}, denote the set of variables corresponding
to edges incident to v by Yv = {ye | v ∈ e} and let Av ⊆ {0, 1}Yv contain all assignments to
the variables Yv that set an odd number of variables to 1. We encode the claim that an odd
number of edges incident to v ∈ V (G) are set to 1 as the polynomial

qτv =
∑
α∈Av

1{Yv=α} − 1 , (5)

where 1{Yv=α} =
∏

y∈Yv
α(y)=1

y
∏

y∈Yv
α(y)=0

ȳ is the indicator polynomial that is 1 iff the variables in Yv

are set according to α. As before, we also add the boolean axioms to ensure that the variables
take values in {0, 1}.

For the Frege system we encode the claim that an odd number of edges incident to v ∈ V (G)
is set to 1 as the propositional formula

qτv =
∨
α∈Av

1{Yv=α} , (6)

where the indicator is now encoded as the formula 1{Yv=α} =
∧

y∈Yv
α(y)=1

y
∧

y∈Yv
α(y)=0

ȳ.
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2.3 Graph Theory

This paper only considers simple, undirected graphs: all graphs have no self-loops nor multiple
edges. For a graph G = (V,E) the neighborhood of a vertex u ∈ V is N(u) = { v ∈ V |
{u, v} ∈ E }, the neighborhood of a set of vertices U ⊆ V is N(U) =

⋃
u∈U N(u) and for

sets U,W ⊆ V (G) the neighborhood of U in W is N(U,W ) = N(U) ∩ W . We denote by
deg(v) = |N(v)| the degree of a vertex v ∈ V , by ∆(G) the maximum degree, δ(G) the minimum
degree and by d(G) the average degree of G. The edges between two vertex sets U,W ⊆ V
are denoted by E(U,W ) = { {u,w} ∈ E | u ∈ U,w ∈ W }. For a set U ⊆ V , we denote by
G[U ] = (U,E(U,U)) the induced subgraph of U in G. For a set T ⊆ V we also use G \ T as a
shorthand for the induced subgraph G[V \ T ].

A graph G on n vertices is an α-expander (has vertex expansion α) if for all sets U ⊆ V (G)
of size |U | ≤ n/2 it holds that |N(U, V \U)| ≥ α|U |. We denote the uniform distribution over d-
regular graphs on n vertices by G(n, d) and tacitly assume throughout this paper that nd is even.
A graph G contains H as a topological minor if there is an injective map σ : V (H)→ V (G) and
for every (u, v) ∈ E(H) there is a path puv ⊆ G from σ(u) to σ(v) that is pairwise vertex-disjoint
with all other paths except in the endpoints.

2.4 Probabilistic Bounds

We use the following version of the multiplicative Chernoff bound.

Theorem 2.3 (Chernoff). Suppose X1, . . . , Xn are independent random variables taking values
in {0, 1}. Let X denote their sum and let µ = E[X]. Then, for and 0 ≤ δ ≤ 1 we have

Pr[|X − µ| ≥ δµ] ≤ 2 exp(−δ2µ/3) .

We also need a similar bound for Poisson random variables.

Theorem 2.4 ([MU05], Theorem 5.4). Let X be a Poisson random variable with parameter µ.
If x > µ, then

Pr[X ≥ x] ≤ e−µ
(eµ
x

)x
.

Finally we also need the following form of the Lovász Local Lemma.

Lemma 2.5 (LLL; [AS00], Lemma 5.1.1). Let A1, A2, . . . , An be events in an arbitrary prob-
ability spacce. A directed graph D = (V,E) on the set of vertices V = {1, 2, . . . n} is called a
dependency digraph for the events A1, . . . , An if for each i, 1 ≤ i ≤ n, the event Ai is mutually
independent of all the events {Aj | (i, j) 6∈ E}. Suppose that D = (V,E) is a dependency
digraph for the above events and suppose there are real numbers x1, . . . xn such that 0 ≤ xi < 1
and Pr[Ai] ≤ xi

∏
(i,j)∈E(1− xj) for all 1 ≤ i ≤ n. Then Pr[∧ni=1Āi] ≥

∏n
i=1(1− xi).
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3 Average-Case Lower Bounds

In this section we establish our main result Theorem 1.1 giving average-case lower bounds in
PC, SoS and bounded depth Frege for the Card(G,~t) formulas.

3.1 Lower Bounds for Perfect Matching

Recall that we aim to prove that any sparse graph H (in particular a graph where PM(H) is
hard to refute) can be topologically embedded into a random graph such that all paths in the
embedding have odd length. In order to do this, we need to assume that the graph is far from
bipartite (since otherwise H would need to be bipartite as well, and PM(H) is easy for bipartite
graphs). Furthermore our embedding theorem relies on all large induced subgraphs of G having
sufficiently large maximum degree. The two following definitions capture that both properties
hold for all large induced subgraphs of G.

Definition 3.1. A graph G on n vertices is (κ, d)-max-degree-robust if for all U ⊆ V (G) of size
|U | ≥ κn it holds that maximum degree of the induced subgraph G[U ] is at least ∆(G[U ]) ≥ d.

Definition 3.2. A graph G on n vertices is (κ, `)-odd-cycle-robust if for all U ⊆ V (G) of size
|U | ≥ κn it holds that the induced subgraph G[U ] contains an odd cycle C of length at least
|C| ≥ ` that is also bounded in length by |C| ≤ 2 · diam(G[U ]) + 1.

Both properties are clearly monotone in κ: if the properties hold for som κ0 > 0, then they
also hold for all κ ≥ κ0. With these definitions at hand we can state our embedding theorem.

Theorem 3.3 (Embedding Theorem). For α > 0 there are ε, n0 > 0 such that the following
holds. Let G be an α-expander on n > n0 vertices, let k ≥ 6, and H be a graph on at most
εn/k log n vertices and edges. If G is (1−4/k, 550∆(H)/α2)-max-degree-robust, then G contains
H as a topological minor. Furthermore, if G is also (1 − 2/k, 1 + 2/α)-odd-cycle-robust, then
one can choose the parities of the length of all the paths in the embedding of H.

Let us highlight that k may depend on the graph G. The proof of the embedding theorem
can be found in Section 5.

As mentioned before we need to ensure that once we obtain an embedding of the worst-case
graph H in G, that there is a matching in the graph G with the embedding of H removed. To
ensure this we will in fact not embed H directly in G but rather in a subgraph of G: first we
identify a set of vertices T ⊆ V (G) such that no matter what set U ⊆ T of odd cardinality
is removed from G, the graph G \ U still contains a perfect matching. We then proceed to
show that the graph G[T ] satisfies all the properties required in order to embed H into it. The
following lemma captures these properties.

Lemma 3.4 (Partition Lemma). There is a d0 such that for all d > d0 there is an n0 such that
the following holds. Let n > n0 be odd and G ∼ G(n, d). Then, asymptotically almost surely,
there is a set T ⊆ V (G) of size |T | ≥ n/8 such that G[T ] is a 1/3-expander, (1/2, 7)-odd-cycle-
robust, (1/3, d/32)-max-degree-robust and for any set U ⊆ T of odd cardinality it holds that
G \ U has a perfect matching.

The partition lemma is proved in Section 4. The constants in Lemma 3.4 are rather arbi-
trarily chosen and their precise values are not significant – the interested reader can find the
precise dependencies between them in the proof. With Theorem 3.3 and Lemma 3.4 at hand,
we can now easily state and prove our lower bounds for the perfect matching formula (i.e., the
special case t = 1 of Theorem 1.1).
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Theorem 3.5. There is a d0 and an ε > 0 such that for all d > d0 the following holds. For n
and n′ ≤ εn

logn both odd, let G ∼ G(n, d) and H be any graph on n′ vertices of degree ∆(H) ≤ 5.
Then, asymptotically almost surely, PM(H) is a subformula of PM(G).

Using the graphs from Appendix A (i.e., the graphs from Theorems A.1, A.3 and A.4) as
our choice of H and combining Theorem 3.5 with Lemma 2.2 finishes the proof of Theorem 1.1
for the perfect matching formula.

Proof of Theorem 3.5. Let G ∼ G(n, d) as in the statement. Apply Lemma 3.4 to G and to
obtain a set T with the mentioned properties. Apply Theorem 3.3 to G[T ] and the graph H to
obtain a topological embedding BH ⊆ G[T ] of H in G, where all paths in BH are of odd length.

We now construct a restriction ρ to apply Lemma 2.2. As all paths are of odd length, we
see that the number of vertices |V (BH)| is odd. Hence Lemma 3.4 guarantees that there exists
a perfect matching m in the graph G′ = G \ V (BH). The restriction ρ sets all variables outside
of BH to 0 or 1 depending on whether the edge e ∈ m.

For each path puv ∈ BH connecting two embedded vertices, pick an edge euv on this path as
a “representative”. The function ρ maps variables corresponding to edges e on the path puv to
xeuv if there is an odd number of edges between e and euv on the path puv and to x̄euv otherwise.
By inspection we see that PM(H) is a subformula of PM(G) as claimed.

3.2 Lower Bounds for Card(G,~t)

In the following we prove the average-case lower bounds on the Card(G,~t) formulas for G ∼
G(n, d). We consider the special case when n and t ≤ d are odd and thus d even. Without loss
of generality, assume that t ≤ d/2: otherwise “flip” the roles of 0 and 1.

The idea is to split the edge set of the graph G into bt/2c 2-regular graphs G1, . . . , Gbt/2c
and one d0-regular graph G0, where d0 = d − 2bt/2c. Then we want to set all variables that
correspond to an edge in any of the 2-regular graphs G1, . . . , Gbt/2c to 1 so that we are left
with the perfect matching formula PM(G0), on which we will embed the worst-case instance of
Appendix A.

In order to be able to apply Theorem 3.5 to PM(G0), we need to argue that G0 is a random
d0-regular graph. Also, we need to show that it is in fact possible to decompose a random
d-regular into bt/2c 2-regular graphs plus a d0-regular graph. For this, we use the notion of
contiguity. Intuitively, two sequences of probability measures are contiguous, if all properties
that hold with high probability in one also hold with high probability in the other measure.

Definition 3.6. Let (Pn)∞1 and (Qn)∞1 be two sequences of probability measures, such that for
each n, Pn and Qn both are defined on the same measurable space (Ωn,Fn). The two sequences
are contiguous if for every sequence of sets (An)∞1 , where An ∈ Fn, it holds that

lim
n→∞

Pn(An) = 0⇔ lim
n→∞

Qn(An) = 0 .

We denote contiguity of two sequences by Pn ≈ Qn.

For two random graphs Gn and Hn on n vertices, we denote by Gn ⊕ Hn the union of two
independent samples conditioned on the result being simple. If Gn = G(n, d) and Hn = G(n, d′)
are uniform distributions over random regular graphs we can think of this as a proccess where
we first sample G ∼ Gn and then repeatedly sample H ∼ Hn until the union of G and H is
simple.

Theorem 3.7 (Corollary 9.44, [JLR00]). For all constants d ≥ 3, m ≥ 1 and d1, . . . , dm ≥ 1
satisfying d =

∑m
i=1 di it holds that

G(n, d1)⊕ · · · ⊕ G(n, dm) ≈ G(n, d) .
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In other words, if we can show that e.g. SoS requires linear degree for a formula over
G ∼ G(n, d0)⊕

⊕
i∈bt/2c G(n, 2) with high probability, then this also holds for the same formula

over graphs G ∼ G(n, d). Implementing our idea in the former probability distribution is
straightforward and we have the following theorem.

Theorem 3.8. There is a d0 and an ε > 0 such that for all d ≥ d0 the following holds. Let
n, n′ ≤ εn

logn and t ∈ [d] all be odd, let G ∼ G(n, d) and H be a graph on n′ vertices of degree

∆(H) ≤ 5. Then, asymptotically almost surely, PM(H) is a subformula of Card(G,~t).

Analogously to how Theorem 3.5 implied the t = 1 case of Theorem 1.1, this theorem implies
the general case of Theorem 1.1.

Proof of Theorem 3.8. As n is odd d must be even. Note that we may assume that t ≤ d/2:

if t > d/2, let us flip the role of 1 and 0 in the formula to obtain Card(G,
−−→
d− t). Let d0 =

d− 2bt/2c ≥ d/2 and sample

G′ = G0 ∪
⋃

1≤i≤bt/2c

Gi ∼ G(n, d0)⊕
⊕

1≤i≤bt/2c

G(n, 2) . (7)

By Theorem 3.7, if we show the statement for G′, then it also holds for G ∼ G(n, d).
Set all variables in G1, . . . Gbt/2c to 1. When Card(G,~t) is hit with this restriction we are left

with the formula PM(G0). As G0 is distributed according to G(n, d0), we may apply Theorem 3.5
to conclude that PM(H) is a subformula of Card(G,~t).

4 Proof of the Partition Lemma

In this section we prove Lemma 3.4, restated here for convenience.

Lemma 3.4 (Partition Lemma). There is a d0 such that for all d > d0 there is an n0 such that
the following holds. Let n > n0 be odd and G ∼ G(n, d). Then, asymptotically almost surely,
there is a set T ⊆ V (G) of size |T | ≥ n/8 such that G[T ] is a 1/3-expander, (1/2, 7)-odd-cycle-
robust, (1/3, d/32)-max-degree-robust and for any set U ⊆ T of odd cardinality it holds that
G \ U has a perfect matching.

We proceed as follows. First, we partition V (G) = S
.
∪T into two sets such that every vertex

v ∈ V (G) has a good fraction of its neighbors in S.

Definition 4.1. A (c, ε)-degree-balanced cut of a graph G is a partition S
.
∪ T = V (G) of the

vertices of G such that:

1.
∣∣|S| − cn∣∣ ≤ εn

2. for every vertex u ∈ V , the fraction of u’s neighbors that are in S is at least c− ε and at
most c+ ε.

It turns out that in random regular graphs any (c, ε)-degree-balanced cut possesses the
properties needed in the Partition Lemma, as summarized in the following lemma.

Lemma 4.2. For all constants c, ε, d > 0, satisfying c > 1/2 + ε and d ≥ max
{

8
(c−1/2−ε)2 ,

4
ε2

}
the following holds. Let n be odd and G ∼ G(n, d). Then, asymptotically almost surely as
n→∞, for any (c, ε)-degree-balanced cut (S, T ) of G it holds that

(i) the graph G is
(
κ, d
(
κ−

√
1−κ
κd

))
-max-degree-robust for all constants κ ∈ [0, 1],
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(ii) the graph G is (4/
√
d, `)-odd-cycle-robust, for any ` = O(1),

(iii) the graph G[T ] is an α-expander, where α = 1−c−2ε
2(1−c−ε) , and

(iv) the graph G \ U has a perfect matching for any U ⊆ T of odd cardinality.

Deferring the proof of this lemma to Section 4.2, let us first show that (c, ε)-degree-balanced
cuts always exist in regular graphs of large enough degree.

Lemma 4.3. For all c ∈ [0, 1], ε > 0 there is a d0 ∈ O
(
c
ε2

log2( c
ε2

)
)

such that the following
holds. For every d > d0, every d-regular graph G has a (c, ε)-degree-balanced cut.

Proof. Independently include every vertex v ∈ V (G) in S with probability c. Let Au denote
the bad event that

∣∣|N(u, S)| − cd
∣∣ ≥ εd. By Theorem 2.3, we have

Pr[Au] ≤ 2 exp(−ε2d/3c) . (8)

Note that the event Au depends only on Av for v within distance 2 of u in G, and there are at
most d2 many such v’s. We want to apply Lemma 2.5 to the events {Av | v ∈ V (G)} and xv = x
for some parameter x. The local lemma conditions then require Pr[Au] ≤ x(1 − x)d

2
and this

right hand side is maximized at x = 1
d2+1

where, using the bound 1−x = 1−1/(d2+1) ≥ e−1/d2 ,
it becomes

x · (1− x)d
2

=
1

d2 + 1
·
(

1− 1

d2 + 1

)d2
≥ 1

d2 + 1
· 1

e
.

For large enough d = Ω( c
ε2

log( c
ε2

)), this is much larger than Pr[Au] ≤ 2 exp(−ε2d/3c) so by
Lemma 2.5 we conclude that Pr[∧v∈V (G)Āv] > (1 − x)n ≥ exp(−2n

d2
). All that remains is to

argue that there is a positive probability that both this happens as well as the size of S being
close to cn. In particular if Pr

[∣∣|S| − cn∣∣ ≥ εd] < Pr[∧v∈V (G)Āv], the lemma follows.
By Theorem 2.3, the size |S| of S is in [cn±εn] except with probability at most 2 exp(−ε2n/3c).

Hence it is sufficient that 2 exp(− ε2n
3c ) < exp(−2n

d2
), and for d �

√
c/ε this clearly holds. This

concludes the proof.

With Lemmas 4.2 and 4.3 at hand, proving the Partition Lemma simply boils down to
choosing appropriate values for the different constants.

Proof of Lemma 3.4. Fix c = 3/4, ε = κ = 1/16 and ` = 7. Let (S, T ) be the (c, ε)-degree-
balanced cut as guaranteed to exist in G by Lemma 4.3. The cut (S, T ) satisfies all the properties
of Lemma 4.2. Hence all that remains is to verify that the constants were chosen appropriately.

(i) G[T ] is (1/3, d/32)-max-degree-robust: we have that |T | ≥ (1 − c − ε)n = 3n/16. Thus
if the graph G is (1/16, d/32)-max-degree-robust, the statement follows. Observe that for
our choice of κ and d large enough (e.g. d ≥ 214 suffices) it holds that

d

(
κ−

√
1− κ
κd

)
= d

(
1

16
−
√

15

d

)
≥ d/32.

(ii) G[T ] is (1/2, 7)-odd-cycle-robust: as we may assume that d ≥ 64, this property is satisfied.

(iii) G[T ] is a 1/3-expander: the expansion α guaranteed by Lemma 4.2 is

α =
1− c− 2ε

2(1− c− ε)
=

1/8

3/8
= 1/3 .

The statement follows.

All that remains is to prove Lemma 4.2. In the following section we recall some results from
spectral graph theory needed for the proof of Lemma 4.2 which is then given in Section 4.2.
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4.1 Spectral Bounds

Let us establish some notation and recall some results from spectral graph theory.
We denote the adjacency matrix of a graph G by AG and by LG its Laplacian LG = DG−AG

(where DG is the diagonal matrix containing the degrees of the vertices of G). For a matrix
A ∈ Rn×n, denote by λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) the eigenvalues of A in non-decreasing
order.

The edge expansion of a graph G on n vertices is

Φ(G) = min
U⊆V (G)
|U |≤n/2

|E(U, V (G) \ U)|
|U |

. (9)

It is well-known that if the second smallest eigenvalue of the laplacian is large, then the
graph is a good expander. Note that the following theorem does not require that G is regular.

Theorem 4.4 ([Moh89]). For all graphs G it holds that λ2(LG)
2 ≤ Φ(G).

Corollary 4.5. All graphs G have vertex expansion λ2(LG)
2∆(G) .

Proof. As every vertex has at most ∆(G) neighbors, the neighborhood of every set U , satisfying
|U | ≤ n/2, is of size at least Φ(G)/∆(G). The statement follows from Theorem 4.4.

Recall that regular random graphs are very good spectral expanders. For the sake of con-
ciseness, let λ = max{|λ1(AG)|, |λn−1(AG)|}.

Theorem 4.6 ([Fri08]). Let d ≥ 3 and nd be even. Then, for G ∼ G(n, d) it holds asymptoti-
cally almost surely that λ ≤ 2

√
d− 1 + o(1).

Another well-known result from spectral graph theory is that the smallest eigenvalue of the
adjacency matrix puts a limit on the maximum size of an independent set.

Theorem 4.7 (Hoffman’s bound). Let G be a d-regular graph on n vertices. If S ⊆ V (G) is
an independent set of G, then

|S| ≤ − n · λ1(AG)

d− λ1(AG)

Corollary 4.8. Let G be a d-regular graph on n vertices. For any set S ⊆ V (G) it holds that

if |S| > −2·n·λ1(AG)
d−λ1(AG) , then G[S] is not bipartite.

Proof. For the sake of contradiction suppose that there is an S ⊆ V (G) such that G[S] is

bipartite and |S| > −2·n·λ1(AG)
d−λ1(AG) . Let us denote the partition by S = A

.
∪B. W.l.o.g., assume that

|A| ≥ |S|/2 and apply Theorem 4.7 to A to conclude that − n·λ1(AG)
d−λ1(AG) < |A| ≤ −

n·λ1(AG)
d−λ1(AG) .

Let us recall the mixing lemma; it states that between linearly sized sets of vertices there
are about as many edges as expected in a random regular graph.

Lemma 4.9 (Expander Mixing Lemma [HLW06]). Let G be a d-regular graph on n vertices.
Then for all S, T ⊆ V (G): ∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ λ√|S||T | .
We also rely on the following theorem that relates the spectrum of the Laplacian and the

existence of a perfect matching.
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Theorem 4.10 ([BH05]). Let G be a graph on n vertices. If n is even and λn(LG) ≤ 2λ2(LG),
then G has a perfect matching.

The following statements consider large induced subgraphs H ⊆ G. Proposition 4.13 states
that if we have good control of the degees in H, then we have good control of the spectrum
of the Laplacian of H in terms of the spectrum of the adjacency matrix of G. The proof uses
Weyl’s theorem and Cauchy’s interlacing theorem, so let us first state these.

Theorem 4.11 (Weyl). Let A,B ∈ Rn×n be Hermitian. Then, for all k ∈ [n],

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B) .

Theorem 4.12 (Interlacing Theorem). Suppose A ∈ Rn×n is symmetric. Let B ∈ Rm×m, with
m < n, be a principal submatrix. Then, for all k ∈ [m],

λk(A) ≤ λk(B) ≤ λk+n−m(A) .

Proposition 4.13. Let G be a graph an n vertices and H be an induced subgraph of G with
m vertices. Then, for all k ∈ [m],

δ(H)− λn−k+1(AG) ≤ λk(LH) ≤ ∆(H)− λm−k+1(AG) .

Proof. By Theorem 4.12, applied to −AG and −AH , we see that for all k ∈ [m]

λk(−AG) ≤ λk(−AH) ≤ λk+n−m(−AG) . (10)

Applying Theorem 4.11 to DH and −AH , we conclude that, for all k ∈ [m]

λk(−AG) + δ(H) = λk(−AH) + λ1(DH) (11)

≤ λk(DH −AH) (12)

≤ λk(−AH) + λn(DH) = λk+n−m(−AG) + ∆(H) . (13)

As λk(−AG) = −λn−k+1(AG) and λk+n−m(−AG) = −λm−k+1(AG), the statement follows.

Before commencing with the proof of Lemma 4.2, let us state two results that are of non-
spectral nature. The following is a theorem by Bollobás which captures the distribution of short
cycles in random regular graphs.

Theorem 4.14 ([Bol01], Corollary 2.19). Let d ≥ 2 and k ≥ 3 be fixed natural numbers and
denote by Yi = Yi(G) the number of i-cycles in a graph G ∼ G(n, d). Then Y3, Y4, . . . Yk are
asymptotically independent Poisson random variables with means λ3, λ4, . . . , λk, where λi =
(d− 1)i/(2i).

Last, we record a simple observation that establishes a relation between the diameter of a
graph and the length of its shortest odd cycle.

Lemma 4.15. Let G be a non-bipartite graph of diameter D. Then G contains an odd cycle
of length at most 2D + 1.

Proof. Let G be a non-bipartite graph of diameter D and denote by C a shortest odd cycle in
G. For the sake of contradiction, suppose |C| > 2D + 1. Hence there are vertices u, v ∈ C at
distance at least D+ 1 on C. As the diameter of G is D, there is a path p from u to v of length
at most D. Let q ⊆ p be a subpath of p such that

1. q only shares its enpoints w0, w1 with C, and

2. the two arcs a0, a1 from w0 to w1 on C are longer than q.

But note that this gives rise to a shorter odd cycle: either a0 ∪ q or a1 ∪ q is an odd cycle, of
length less than C. This is in contradiction to the initial assumption that C is a shortest odd
cycle. The statement follows.
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4.2 Proof of Lemma 4.2

Recall that by Theorem 4.6, with high probability all but the largest eigenvalue of the adjacency
matrix of G are bounded in magnitude by 2

√
d− 1+o(1). Let us argue each property separately.

(i) Apply the mixing lemma (Lemma 4.9) to the graph G to conclude that for any set U of
size |U | ≥ κn it holds that

|E(U, V (G) \ U)| ≤ κn · d
(
(1− κ) +

√
1− κ
κd

)
.

As G is a d-regular graph, we conclude that the average degree in G[U ] is at least d(κ−√
1−κ
κd ), as required.

(ii) Recall that a sum of independent Poisson variables X1, . . . , Xk with means µ1, . . . , µk is
again a Poisson variable with mean

∑
i∈[k] µi. Hence the number of cycles in G of length

at most ` is, according to Theorem 4.14, a Poisson random variable Y with mean

µ =
∑̀
i=3

(d− 1)i

2i
≤ 2d` . (14)

Theorem 2.4 then tells us that

Pr[Y ≥ log n] ≤ e−µ
(

eµ

log n

)logn

<
1

n
, (15)

where the strict inequality holds for n large enough. Hence we may assume that Y < log n,
which implies that at most ` · log n vertices belong to cycles of length at most `.

We also know that all but the largest eigenvalue of the adjacency matrix of G are bounded
in magnitude by 2

√
d− 1+o(1). Apply Corollary 4.8 to conclude that no subset U ⊂ V (G)

of size at least |U | ≥ 3 n√
d

induces a bipartite subgraph, in other words any such G[U ]

contains an odd cycle.

As there are so few vertices in short cycles, for n large enough, we see that all sets of at
least a 4√

d
fraction of the vertices contains an odd cycle C of length at least |C| ≥ `.

Applying Lemma 4.15 to G[U ] we see that C can be chosen such that |C| ≤ 2·diam(G[U ])+
1. The claim follows.

(iii) Applying Proposition 4.13 to G and G[T ], we see that

λ2(LG[T ]) ≥ δ(G[T ])− λn−1(AG) . (16)

Every vertex v ∈ T has degree at least (1− c− ε)d in G[T ]. Furthermore, as λn−1(AG) is
bounded by 2

√
d− 1 + o(1) and we assumed that d ≥ 4/ε2, we obtain that λ2(LG[T ]) ≥

(1−c−2ε)d. Applying Corollary 4.5, we conclude that G[T ] has vertex expansion at least
1−c−2ε

2(1−c−ε) .

(iv) Let U ⊆ T of odd cardinality be as in the statement, and denote by m the number of
vertices in G \ U . By Theorem 4.10, it is sufficient to establish the bound λm(LG\U ) ≤
2λ2(LG\U ) on the eigenvalues of the Laplacian of G \ U . Applying Proposition 4.13 to
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G\U , we can bound these eigenvalues in terms of the eigenvalues of the adjacency matrix
of G, obtaining

λm(LG\U ) ≤ d− λ1(AG) and (17)

λ2(LG\U ) ≥ (c− ε)d− λn−1(AG) . (18)

As λ1(AG) and λn−1(AG) are both bounded in absolute value by 2
√
d− 1 + o(1) we thus

conclude
2λ2(LG\U )− λm(LG\U ) ≥ (2(c− ε)− 1)d− 2

√
d− 1− o(1).

Since c > 1/2 + ε and we assumed that d ≥ 8
(c−1/2−ε)2 , we have that λm(LG\U ) ≤

2λ1(LG\U ) as desired.

5 Embedding Theorem

In this section we prove our embedding theorem (Theorem 3.3). Before starting with the proof,
let us establish some notation and recall some facts from graph theory.

5.1 Further Graph Theory Preliminaries

In a graph G = (V,E) on n vertices a vertex set S ⊆ V is a balanced separator in G if there is
a partition V = A

.
∪B

.
∪ S of the vertex set of G such that |A|, |B| ≤ 2n/3, and G has no edges

between A and B. For a path p in G we denote by |p| the number of edges and by V (p) ⊆ V (G)
the set of vertices of p. For two vertices vertices u, v ∈ V (p), we let p[u, v] denote the subpath
of p between (and including) the vertices u and v. The distance between two vertices u, v ∈ V
is the length of the shortest path from u to v and the distance between two sets U,W ⊂ V is
the minimum distance between any pair of vertices u ∈ U and w ∈W . Let diam(G) denote the
diameter of G, that is, the maximum distance between any two vertices in G. For a vertex set
U ⊆ V , and an integer r ∈ N, let BG

r (U) ⊆ V (G) be the ball around U of radius r in G: BG
r (U)

contains all vertices v ∈ V that are at distance at most r from U .
It is well-known that vertex expanders have small diameter.

Lemma 5.1 ([Kri19]). Let G be an α-expander on n vertices. Then the diameter of G is upper

bounded by
⌈2(logn−1)

log(1+α)

⌉
+ 1 = Oα(log n).

As this constant will show up in a few places, let Dø
α = 2

log(1+α) + 3 and hence diam(G) ≤
Dø
α · log n, if G is an α-expander.

The following lemma states that even if a small set of vertices is removed from a vertex
expander, large sets remain well connected by short paths.

Lemma 5.2. Let G be an α-expander on n vertices. Then for all r ≥ 0 and all disjoint

S, T ⊆ V (G) satisfying |T | ≥ 2
α |S| it holds that |BG\S

r (T )| ≥ min{n/2, (1 + α/2)r|T |}.

Proof. Using expansion and |S| ≤ α
2 |T | ≤

α
2 |B

G\S
r (T )| we have that for all r ≥ 0

|BG\S
r+1 (T )| ≥ (1 + α)|BG\S

r (T )| − |S| ≥ (1 + α/2)|BG\S
r (T )| ,

unless B
G\S
r (T ) is already as large as n/2.

A simple consequence of this is that two large sets are connected by short paths even after
the removal of a small set of vertices.
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Corollary 5.3. Let G be an α-expander on n vertices. Then for all sets S, T, U ⊆ V (G)
satisfying S ∩ (T ∪ U) = ∅ and |T |, |U | ≥ 2

α |S| it holds that in G \ S the distance between T
and U is at most Dø

α/2 log n.

Proof. Apply Lemma 5.2 to S, T and r = d logn
log(1+α/2)e to conclude that at distance r from T

there are at least n/2 vertices in the graph G \S. Applying the same argument to U and S, we
see that also from U there are at least n/2 vertices reachable by length r paths in G \ S. But
this implies that there is a path of length at most 2r + 1 ≤ Dø

α/2 log n between T and U .

Large vertex expansion implies that balanced separators are large: the next lemma makes
this well-known connection precise.

Lemma 5.4. Let G be an α-expander on n vertices, and let S be a balanced separator in G.
Then |S| ≥ αn

3(1+α) .

Proof. Let S be a balanced separator in G of size |S| = s, separating A and B, with |A| = a,
|B| = b. Without loss of generality assume that a ≤ b ≤ 2n/3. Clearly, a + s ≥ n/3. Further,
NG(A) ⊆ S, and since a ≤ n/2, by expansion, we get that s ≥ αa. In other words, s/α ≥ a,
which when substituted into a+ s ≥ n/3 yields s(1 + 1/α) ≥ n/3.

Finally we have the following lemma on vertex-disjoint paths in expanders.

Lemma 5.5 ([FK19]). Let G = (V,E) be an α-expander and let A,B ⊆ V be two vertex sets
of sizes |A|, |B| ≥ t for some t > 0. Then G contains at least tα

1+α vertex-disjoint paths between
A and B.

5.2 Proof of Theorem 3.3

We now proceed with the proof of Theorem 3.3, restated here for convenience.

Theorem 3.3 (Embedding Theorem). For α > 0 there are ε, n0 > 0 such that the following
holds. Let G be an α-expander on n > n0 vertices, let k ≥ 6, and H be a graph on at most
εn/k log n vertices and edges. If G is (1−4/k, 550∆(H)/α2)-max-degree-robust, then G contains
H as a topological minor. Furthermore, if G is also (1 − 2/k, 1 + 2/α)-odd-cycle-robust, then
one can choose the parities of the length of all the paths in the embedding of H.

When embedding a high degree vertex x ∈ V (H) into G, we want to find a vertex v ∈ V (G)
of high degree such that many neighbors are connected to large, disjoint sets of vertices. These
large sets are very useful as they guarante that there are many vertices to which we can connect
a vertex embedding. The following definition makes this intuition precise.

Definition 5.6 (Cross). An (r, s)-cross in a graph G = (V,E) is a tuple (v,U), where v ∈ V is
a vertex and U ⊆ 2V consists of r pairwise disjoint vertex sets U ⊆ V \{v}, each of size |U | = s,
such that N(v) ∩ U 6= ∅ and the graph G[U ] is connected. We refer to v as the center of the
cross and to U as the branches of the cross.

The following lemma shows that crosses always exist in expanders with sufficiently large
maximum degree.

Lemma 5.7. For all β > 0 and γ = β
3(1+β) the following holds. Let G be an β-expander on n

vertices that is (1 − 2/k, (1 + 1/β)r)-max-degree-robust, for some k ≥ 3 and r > 0 such that

r ≤ γ3n
k(1+γ) . Then G contains an (r, s)-cross, for all s that satisfy r · s ≤ γ2n

k(1+γ) .

20



The proof is an adaptation of a proof by Krivelevich and Nenadov [KN19] and is deferred
to Section 5.3. We also have the following lemma which is what allows us to choose the path
length parities in the “furthermore” part of Theorem 3.3. It states that if there is an odd cycle
in the graph, then there is an odd and even path between any vertex u and a large enough set
A of vertices. Note that this does not necessarily hold if A is too small: the vertex u may have
degree 1 and A may be the single neighbor of u. Similarly a lower bound on the length of the
odd cycle is needed.

Lemma 5.8. For all β > 0 the following holds. Let G be an β-expander on n vertices that
contains an odd cycle of length ` ≥ 1 + 2/β. Then, for all u ∈ V (G) and A ⊆ V (G), of size
|A| ≥ (Dø

β log n+ 1)(1 + 2/β), there is a vertex v ∈ A such that u and v are connected by both

an odd and an even path, each of length at most (15Dø
β/2/β) log n+ `.

We defer the proof of Lemma 5.8 to Section 5.4.
We now prove Theorem 3.3 with the assumption of odd-cycle-robustness. Furthermore, the

proof makes all paths of odd length, though it is immediate that one can choose the parities.
To get the theorem without the assumption of odd-cycle-robustness, one just has to replace the
application of Lemma 5.8 by any shortest path (which, by Lemma 5.1 is short).

The main idea is due to Krivelevich and Nenadov [KN19] (see also [Kri19]). In contrast to
their work we cannot directly embed the vertices into the graph but rather take a detour by
embedding appropriately sized crosses for each vertex and then connect branches of crosses that
correspond to embeddings of adjacent vertices. The reason for this difference is that the present
theorem deals with topological embeddings rather than plain graph embeddings (the difference
is that in topological embeddings vertices are connected by vertex disjoint paths while in graph
embeddings subgraphs are connected).

In order for this to work we need to make some further changes to the embedding process
used. In their work, three sets of vertices are maintained throughout the process: one set of
“discarded” vertices, one set of vertices used in the embedding, and the remaining set of vertices.
A key invariant maintained is that the set of discarded vertices expand poorly into the set of
remaining vertices, which together with expansion implies that not too many vertices can be
discarded. In our case, some of the discarded vertices may in fact have good expansion into
C, but we can maintain the property that there are not too many such vertices. The details
are worked out in what follows. If the verbal description is ambiguous, there is an algorithmic
description in Appendix B (Algorithm 4).

Formally, the algorithm maintains a partition A
.
∪ A′

.
∪
⋃̇
B∈BB

.
∪ C of the vertices of G.

When the algorithm terminates, every vertex v ∈ V (H) (edge e ∈ E(H), respectively) has a
vertex embedding Bv ∈ B (an edge embedding Be ∈ B) giving a topological embedding of H in
G. Initially, all sets except C = V (G) are empty.

Let β = α
3(1+α) be the constant from Lemma 5.4 for the lower bound on the size of a balanced

separator in an α-expander. At several points in the algorithm we want to ensure that G[C] is
a β-expander. This is achieved by removing any subset U ⊆ C of size |U | ≤ |C|/2 with small
neighborhood |N(U,C \ U)| < β|U | from C and adding it to A (i.e., letting C ← C \ U and
A← A ∪ U). Clearly once there are no sets U ⊆ C left as above, G[C] is a β-expander.

Throughout the algorithm the following invariants are maintained:

(i) C never increases in size and |C| ≥ n(1− 2/k),

(ii) N(A,C) < β|A|,

(iii) |A′| < β|A|/2, and

(iv) G[C] is a β-expander (by restoring expansion as described above whenever needed).
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The algorithm maintains the set I ⊆ V (H) to keep track of the vertices already embedded.
Let r(d) = d(1 + 4/β)− 1 < 25d/α and s =

(
18Dø

β/2/β
)

log n. In what follows we assume ε
is sufficiently small as a function of β.

Fix a vertex x ∈ V (H) \ I not already embedded and apply Lemma 5.7 to G[C] to obtain
a (r(degH(x)), s)-cross Bx. Remove Bx from C and add it to B as the vertex embedding of x
(set C ← C \Bx and B ← B ∪ {Bx}), and restore β-expansion in G[C].

Let us check that all the conditions of Lemma 5.7 are satisfied. First, we need that G[C] is
(1− 2/k, (1 + 3(1 + β)/β)r(degH(x)))-max-degree-robust. We have 1 + 3(1 + β)/β ≤ 22/α and
thus

r(degH(x))(1 + 3(1 + β)/β) ≤ r(∆(H))
22

α
<

550

α2
∆(H).

Furthermore since G is (1− 4/k, 550∆(H)/α2)-max-degree-robust and |C| ≥ (1− 2/k)n, G[C]
is (1− 2/k, 550∆(H)/α2)-max-degree-robust. Second we need to check that

r(degH(x)) ≤ γ3|C|
k(1 + γ)

and r(degH(x)) · s ≤ γ2|C|
k(1 + γ)

,

where γ = β
3(1+β) . Since |C| ≥ (1− 2/k)n and ∆(H) ≤ |V (H)| ≤ εn

k logn the first bound clearly
holds for n large enough, and provided ε is sufficiently small as a function of α the second bound
also holds. Thus we can indeed apply Lemma 5.7 on G[C] with the desired choice of r and s.

After embedding x, we need to connect the embedding Bx to the embeddings of the neigh-
bors NH(x) ∩ I = {y1, . . . , yν} that are already embedded. Suppose, for now, that the ver-
tex embeddings have branches Ux ∈ Bx and Uyi ∈ Byi that are β-expanding into C (i.e.
|N(Ux, C)|, |N(Uyi , C)| ≥ βs), and such that neither of the two branches are already used to
connect x, resp. yi, to a neighbor.

By the assumption on odd-cycle-robustness, we see that G[C] is non-bipartite and contains
an odd cycle c of length

1 + 2/α ≤ |c| ≤ 2 · diam(G[C]) + 1 ≤ 2Dø
β log n+ 1 . (19)

As each branch is rather large, of size s, we can apply Lemma 5.8 to G[C], N(Ux, C) and
N(Uyi , C) to conclude that in G[C] there is an odd path qi connecting Ux to Uyi of length(
18Dø

β/2/β
)

log n ≤ s. Remove qi from C, add it to B as the edge embedding B{x,yi} and restore

β-expansion in G[C]. This process is illustrated in Figure 1 and can be found as pseudo code
in Algorithm 4.

If all branches of a vertex embedding Bz have either too few neighbors in C or are already
adjacent to an edge embedding (i.e., have already been used to embed some other edge), then
we want to remove the embedding of z. This has to be done in a careful manner in order not to
break the invariants. First, move all branches that are not used to connect z to a neighbor to A.
Note that each such branch U satisfies |N(U,C)| < β|U |. Next, move the remaining branches
along with the adjacent edge embeddings to A′. Last, the center of Bz is moved to A′ and z is
removed from I. Note that at most 2(degH(z) − 1)s many vertices are moved to A′: at most
degH(z)− 1 many branches of size s and as many edge embeddings, each again of size at most
s. On the other hand at least(

r(degH(z))− (degH(z)− 1)
)
· s = degH(z) · 4s/β (20)

many vertices are moved to A. Hence the invariant |A′| < β|A|/2 is maintained.
The algorithm terminates the first time either I = V (H) or |A| ≥ n/k. This completes the

description of the algorithm.
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Ux

UyiBx Byi

qi

G[C]

Figure 1: The vertex embedding Bx is connected to Byi by the path qi which connects the two
branches Ux and Uyi . The dotted branches have an edge embedding adjacent and can thus not
be used to connect Byi to Bx.

It remains to argue that it cannot happen that |A| ≥ n/k, in other words that when the
algorithm terminates, all of H is embedded in G. To this end, observe that the size of ∪B∈BB
is upper bounded by

s ·

|E(H)|+
∑

v∈V (H)

r(degH(v))

 < s ·

|E(H)|+ (4/β + 1)
∑

v∈V (H)

degH(v)


≤ s · |E(H)| · 11

β

≤ s · εn

k log n
· 11

β

≤ βn/2k .

Furthermore, while |A| ≤ n/k we have that

|A′| < β|A|/2 ≤ βn/2k .

Note that this also holds the first time |A| becomes larger than n/k. This shows, in particular,
that the invariant |C| ≥ n(1− 2/k) is maintained throughout the execution of the algorithm.

For the sake of contradiction, suppose that the algorithm terminates because of |A| ≥ n/k.
Note that |N(A)| ≤ |A′| + |∪B∈BB| + |N(A,C)| < β(|A| + n/k). We do a case distinction,
depending on the size of |A|. In both cases we derive contradiction and thus show that the
algorithm only terminates after having embedded all of H into G.

Case 1: n/k ≤ |A| ≤ n/2. By expansion and using β < α/3 we have

α|A| ≤ |N(A)| < β(|A|+ n/k) <
α

3
(|A|+ n/k) ,

which together with |A| ≥ n/k yields the desired contradiction.

Case 2: |A| > n/2. Note that the first time |A| ≥ n/k, it also holds that |A| ≤ n(1 + 1/k)/2 as
the sets added to A are of size at most |C|/2 ≤ (n− |A|)/2. Hence we get that

|N(A)| < β
(
n/k + |A|

)
< βn

(
1/k + (1 + 1/k)/2

)
≤ αn

3(1 + α)
,

using that k ≥ 3. Note that N(A) is a balanced separator, separating A from V (G)\A.
But this is a contradiction, since Lemma 5.4 states that any balanced separator of G
has size at least αn

3(1+α) .
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v

Bi

pi
G[C] N(Bi, C)

Figure 2: A cross with center v and branches {V (pi) ∪Bi | i ∈ [r] }.

5.3 Crosses in Expanders

Let us now turn to the proof of Lemma 5.7, restated here for convenience.

Lemma 5.7. For all β > 0 and γ = β
3(1+β) the following holds. Let G be an β-expander on n

vertices that is (1 − 2/k, (1 + 1/β)r)-max-degree-robust, for some k ≥ 3 and r > 0 such that

r ≤ γ3n
k(1+γ) . Then G contains an (r, s)-cross, for all s that satisfy r · s ≤ γ2n

k(1+γ) .

The proof follows a similar algorithm as the proof of Theorem 3.3. In this case we can in
fact more or less use the original argument of Krivelevich and Nenadov [KN19] without any
extensions.

Proof. The high-level idea of the proof is as follows. First, using the embedding argument of
Krivelevich and Nenadov, we will find some number r′ > r pairwise disjoint sets B1, . . . , Br′ of
vertices of G and a final set C such that (i) each Bi is a connected subgraph of G on s vertices,
(ii) the Bis have many neighbors in C, and (iii) G[C] is expanding. Having these subsets, we
can then choose a representative ui ∈ N(Bi, C) of each Bi, take a vertex v ∈ C of high degree
(which exists by the max-degree-robustness of G), and apply Lemma 5.5 to find vertex-disjoint
paths connecting N(v) to the uis. This establishes the existence of a cross with v as the center
and the Bis together with the respective paths as branches. See Figure 2 for an illustration.

Let us proceed with the details. In case there is some ambiguity in the verbal description
there is also a pseudo code description in Appendix B of what follows.

Fix r, set r′ = r(1 + 1/γ) and choose s ∈ N maximal such that s ≤ γn
k·r′ . Note that s ≥ 1/γ

and if the statement holds for this maximal s, then it also holds for smaller values of s, as one
can always shrink the branches to the appropriate size.

Let us describe an algorithm to identify the sets B = {Bi ⊆ V (G) | i ∈ [r′] }. The
algorithm maintains a partition A

.
∪
⋃̇
B∈BB

.
∪ C of the vertices of G. Initially, all sets except

C = V (G) are empty. After running the procedure, the set B contains r′ pairwise vertex-
disjoint sets such that for each Bi ∈ B it holds that |Bi| = s and the induced subgraph
G[Bi] is a single connected component. Further, for all sub families F ⊆ B it holds that∣∣⋃

F∈F N(F,C)
∣∣ ≥ γs|F|. Throughout the execution of the algorithm the following invariants

are maintained

(i) C never increases in size,

(ii) |C| ≥ n(1− 2/k),
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(iii)
∣∣∣⋃̇B∈BB

∣∣∣ ≤ r′ · s ≤ γn/k, and

(iv) N(A,C) < β|A|.

The algorithm terminates if B contains r′ vertex sets as described, or if the size of A reaches
|A| ≥ n/k. The latter case can only occur if there is a small balanced separator in G. But G
is a β-expander, so we know from Lemma 5.4 that there are no small balanced separators and
hence when the algorithm terminates, B must contain r′ sets as described above.

Like in the main algorithm used in the proof of Theorem 3.3, we want to ensure that G[C]
is a γ-expander throughout the algorithm, which is achieved by removing any subset U ⊆ C of
size |U | ≤ |C|/2 with small neighborhood |N(U,C \ U)| < γ|U | from C = C \ U and adding it
to A = A ∪ U .

Repeat the following while there are less than r′ sets in B. Choose a set of vertices U ⊆ C of
size |U | = s such that G[U ] is a single connected component. Remove this set from C = C \U ,
add it to B = B ∪ {U} and restore expansion in G[C]. After expansion is restored, let F ⊆ B
be a maximal (possibly empty) family such that

∣∣⋃
F∈F N(F,C)

∣∣ < γs|F|. Remove F from
B = B \ F , and add these sets to A = A ∪F∈F F .

As mention before, the algorithm terminates once there are either r′ sets in B or the set
A is large |A| ≥ n/k. This completes the description of the algorithm. Let us argue that the
latter cannot happen – for the sake of contradiction, suppose the algorithm terminates because
|A| ≥ n/k. Note that we have |N(A)| ≤ | ∪B∈B B| + |N(A,C)| < γ(|A| + n/k). We do a case
distincion on the size of |A|.

Case 1: n/k ≤ |A| ≤ n/2. By expansion, β|A| ≤ N(A) < γ(|A| + n/k) < β
3 (|A| + n/k) As

|A| ≥ n/k this is a contradiction.

Case 2: |A| ≥ n/2. Note that the first time |A| ≥ n/k, it also holds that |A| ≤ n(1 + 1/k)/2
as the sets added to A are of size at most |C|/2 ≤ (n − |A|)/2. Hence we get (using
k ≥ 3) that

|N(A)| ≤ γ(n/k + |A|) ≤ γn =
βn

3(1 + β)

Note that N(A) is a balanced separator, separating A from V (G) \ A. But this is a
contradiction, since Lemma 5.4 states that any balanced separator of G has size at least
βn

3(1+β) .

It remains to obtain an (r, s)-cross from the sets Bi and the remaining part C. Choose a
vertex v ∈ C of degree at least degG[C](v) ≥ r′. Such a vertex v exists, as |C| ≥ (1 − 2/k)n is
large (second invariant) and the statement assumes that there is a vertex of degree r′ in every
induced subgraph of size at least (1 − 2/k)n. Apply Lemma 5.5 to G[C], the vertex set N(v),
and a transversal of the family {N(B,C) | B ∈ B }. Note that such a transversal exists by
Hall’s marriage theorem, using that s ≥ 1/β and that every subset of B is β-expanding into C.
We conclude that there are pairwise vertex-disjoint paths { pi | i ∈ [r] } each connecting a set
Bi ∈ B to N(v). The cross has center v and branches {V (pi) ∪Bi | i ∈ [r] }. Each branch is of
size at least s. Shrinking the branches to the appropriate size recovers the statement.
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5.4 Odd and Even Paths

In this section we prove Lemma 5.8.

Lemma 5.8. For all β > 0 the following holds. Let G be an β-expander on n vertices that
contains an odd cycle of length ` ≥ 1 + 2/β. Then, for all u ∈ V (G) and A ⊆ V (G), of size
|A| ≥ (Dø

β log n+ 1)(1 + 2/β), there is a vertex v ∈ A such that u and v are connected by both

an odd and an even path, each of length at most (15Dø
β/2/β) log n+ `.

The lemma is a corollary of a more general statement about short paths in α-expanders.
The lemma states that if sets S, T , where |S| & |T |/α, are connected by |T | many short vertex-
disjoint paths, then for any large set U there is again a set of short vertex-disjoint paths that
does not only connect every vertex of T to S but also a vertex from U to S.

In order to state the lemma, let us introduce some notation. For a graph G and vertex sets
S, T ⊆ V (G), denote by LGdisj(T, S) the minimum total length of connecting all vertices of T to
S by pairwise vertex-disjoint paths;

LGdisj(T, S) = min
{ pt|t∈T }

∑
t∈T
|pt| (21)

where { pt | t ∈ T } ranges over all sets of pairwise vertex-disjoint paths such that pt connects t
to S. If no such set of paths exists, the value of the minimum is taken to be ∞. If the graph G
is clear from context, we omit the superscript.

A similar lemma (though without the essential upper bound on the path lengths) has ap-
peared in e.g. [FK19].

Lemma 5.9. Let G be an β-expander on n vertices and S, T ⊆ V (G) satisfy |S| ≥ |T |(1+2/β).
Then every set U ⊆ V (G), of size |U | ≥ (Ldisj(T, S) + |T |)(1 + 2/β), contains a vertex u ∈ U
such that Ldisj(T ∪ {u}, S) ≤ 7(Ldisj(T, S) + |T |)/β + 2Dø

β/2 log n.

Lemma 5.8 follows by a single application of Lemma 5.9.

Proof of Lemma 5.8. Let C denote an odd cycle of length ` ≥ 1 + 2/β, as guaranteed to exist,
and denote by p a shortest path connecting u to C. By Lemma 5.1, we know that |p| ≤ Dø

β log n.
Apply Lemma 5.9 to S = C, T = {u}, pu = p, and U = A. We conclude that there is an odd
and even length path connecting u to A of length `+ (15Dø

β/2/β) log n, as required.

Proof of Lemma 5.9. Denote by P = { pt | t ∈ T } a set of pairwise vertex-disjoint paths of
smallest total length, where the path pt connects t to S. Let V (P) = ∪p∈PV (p) denote all the
vertices in the paths in P. Clearly, |V (P)| = Ldisj(T, S) + |T |. Set m = |V (P)|(1 + 2/β) and

r = d logm
log(1+β/2)e. Note that n ≥ |U | ≥ m and hence r ≤ 1

2D
ø
β/2 log n.

If |S| ≥ m, apply Corollary 5.3 to V (P), S \ V (P) and U \ V (P) to conclude that there is
a path p of length Dø

β/2 log n connecting S \ V (P) to U \ V (P) in G \ V (P). The set P ∪ {p}
clearly satisfies the conclusion of the lemma.

Otherwise, if |S| < m, we want to get into a position where we can again apply Corollary 5.3.
To this end, we define a sequence of sets of vertices S = S0 ⊆ S1 ⊆ . . . ⊆ S` ⊆ V (G) that are
in some sense well-connected to S. We formalize this property after explaining how to obtain
these sets.

The set Si+1 is defined in terms of Si using the following process. Let wti be the last vertex
on the path pt (viewed as a path from S to t) that is in Si and Wi = {wit | t ∈ T }. Suppose
|Si| < m and there is a path of length at most r connecting Si \Wi to V (P) \ Si in the graph
G\Wi . Denote by qi a minimal such path, denote by w the endpoint of qi in V (P)\Si, and let
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Figure 3: Given the set Si, the first figure depicts the process of obtaining the set Si+1. The
following figures indicate how to route the paths, as in the proof of Claim 5.10, depending on
where s? is located.

ti ∈ T be such that w ∈ V (pti). Then, define Si+1 = Si ∪ qi ∪ pti [w
ti
i , w]. Otherwise, if |Si| ≥ m

or there is no such qi, set ` = i and stop the process. There is an illustration of this process in
Figure 3.

The following claim formalizes the well-connectedness property of S`.

Claim 5.10. For every vertex s? ∈ S` \W` it holds that L
G[S`∪V (P)]
disj (T ∪{s?}, S) ≤ LGdisj(T, S)+

|S`| and furthermore the paths achieving this bound are the same as the paths in P outside
S` \W`.

Proof. Proof by induction on i ∈ {0, . . . , `}. The base case i = 0 clearly holds – we have for all

s? ∈ S0 \W0 ⊆ S that L
G[S0∪V (P)]
disj (T ∪ {s?}, S) = LGdisj(T, S).

Suppose the statement is true for some i ∈ {0, . . . ` − 1} and let us prove that is then true

for i+ 1 as well. By the inductive hypothesis, L
G[Si∪V (P)]
disj (T ∪ {si}, S) ≤ LGdisj(T, S) + |Si|, and

this bound can be achieved by a set of paths P ′ which follow P outside Si \Wi.
Fix an arbitrary s? ∈ Si+1 \Wi+1. By the induction hypothesis the claim holds for s? ∈

Si \Wi, so we may assume 4 that either s? ∈ qi, or s? ∈ pti [w
ti
i , w

ti
i+1]. If s? ∈ qi (excluding its

endpoint wtii+1) then we simply extend the path in P ′ ending in si with the subpath of qi from

s? to si, increasing the total length of P ′ by at most |qi|. On the other hand if s? ∈ pti [w
ti
i , w

ti
i+1]

then we reroute the path from ti in P ′ to si via qi and then use the now unused part of pti to
connect s? to S, again increasing the total length of P ′ by at most |qi|. There is an illustration
of the two cases in Figure 3.

In either case, we can connect T and s? to S via vertex-disjoint paths of length at most

L
G[Si+1∪V (P)]
disj (T ∪ {s?}, S) ≤ LGdisj(T, S) + |Si|+ |qi| ≤ LGdisj(T, S) + |Si+1|,

as desired.

It is easy to see that |S`| ≤ 2m+ r: the number of vertices added by pti [w
ti
i , w

ti
i+1] is always

upper bounded by |V (P)| ≤ m. Suppose there is a path p? of length |p?| ≤ Dø
β/2 log n + r

connecting some vertex s? ∈ S` \W` to u? ∈ U \ V (P`) in G \ V (P`). We can then “compose”

4Here we are using that Wi = (Wi−1 \ {wtii−1}) ∪ {w
ti
i }.
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the paths to conclude that

LGdisj(T ∪ {u?}, S) ≤ LG[S`]
disj (W` ∪ {s?}, S) + L

G\(S`\(W`∪{s?}))
disj (W` ∪ {s?}, T ∪ {u?}) (22)

≤ |S`|+ LGdisj(T, S) + |p?| (23)

≤ |S`|+ LGdisj(T, S) +Dø
β/2 log n+ r (24)

≤ 2m+ r + LGdisj(T, S) +Dø
β/2 log n+ r (25)

≤ 7(LGdisj(T, S) + |T |)/β + 2Dø
β/2 log n , (26)

as claimed in the statement.
It remains to establish that such a path p? exists. If |S`| ≥ m, apply Corollary 5.3 to V (P),

S` \W` and U \ V (P) to conclude that there is a path p? of length at most |p?| ≤ Dø
β/2 log n

that connects S` \W` to U \ V (P) in G \ V (P).
Otherwise, by construction, S` \W` cannot reach V (P)\W` within r steps in G\W`. Hence,

to argue that in G \ V (P) the ball of radius r around S` \W` is large, we do not need to apply
Lemma 5.2 to S` \W` and V (P) but in fact can apply it to S` \W` and W`, where we use that
|S` \W`| ≥ |S| − |T | ≥ 2|T |/β. This enables us to grow S` \W` into a set S? of size m. Now
we are in a position to apply Corollary 5.3 to V (P), S? and U \ V (P) to conclude that there
is a path of length at most Dø

β/2 log n that connects S? to U \ V (P) in G \ V (P). Taking an

additional r steps in G[S?], one can reach S` \W`, as required. This concludes the proof of the
lemma.

6 Concluding Remarks

We have established average-case lower bounds for refuting the perfect matching formula and
more generally the Card(G,~t) formula in random d-regular graphs on an odd number of vertices.
Let us conclude by discussing some further loose ends and mention some open problems.

6.1 Polynomial Calculus Space Lower Bounds

The space of a PC refutation π is the amount of memory needed to verify π. The PC space of a
formula F is then the minimum space required for any PC refutation π of F . As this is rather
tangential to the rest of the paper we refer to [FLM+13] for formal definitions. For convenience,
let us restate our result on PC space.

Theorem 1.3. For all α > 0 there is a d0 such that the following holds. Let G be a constant
degree α-expander of average degree at least d0. Then over any field F it holds that PCF requires
space Ω(n/ log n) to refute the Tseitin formula defined on G.

The proof idea is to take the worst-case Tseitin lower bounds from Filmus et al. [FLM+13] for
which PC requires Ω(n) space and embed these into a vertex expander of large enough average
degree. The only compication that arises is that these formulas are defined over multigraphs –
the multigraph H is obtained from an appropriate5 constant degree graph G by doubling each
edge. An inspection of the proof of Theorem 3.3 reveals that H may be a multigraph and we
can thus implement our proof strategy.

Proof Sketch. Consider the worst-case instance H from Filmus et al. [FLM+13] on εn/ log n
vertices, for some small enough ε > 0. Apply Theorem 3.3 to H and G. This gives a topological

5See the proof of Theorem 8 in [FLM+13].
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embedding of H in G, with no control of the parities of the length of the paths. Consider a
restriction ρ that sets the variables outside the embedding of H such that no axiom is falsified
(see, e.g., [PRST16]). By appropriately substituting the variables on each path of the topological
embedding we obtain that the worst-case instance τ(H) is a subformula of τ(G). As a restriction
only reduces the amount of space needed to verify a proof, we see that τ(G) requires PC space
Ω(n/ log n).

6.2 Paths in Expanders

The arguments used in the proof of Theorem 3.3 can be adapted to make partial progress
on a question by Friedman and Krivelevich [FK19]. They asked, given a positive integer q,
whether it is possible to guarantee the existence of a cycle whose length is divisible by q in
every α-expander.

We can show that for all primes q satisfying 1/poly(α)� q �
√
n/ log n, this indeed holds.

In fact, for all a ∈ Zq, we can show that there is a cycle of length a mod q.
The idea is to embed a cycle Cq2 of length q2 into G such that between any two vertices

there are two paths whose length difference is non-zero modulo q. If we can ensure this, as all
0 6= b ∈ Zq are generators, we can choose one path between all embedded vertices such that the
length of the cycle is a mod q for any a ∈ Zq.

In order to obtain paths of different length modulo q, let us embed a cycle ce (of length
� 1/poly(α)) for each edge e = {u, v}. We then want to connect the vertex embeddings Bu, Bv
to ce such that the two resulting paths are of different length modulo q. Note that once a vertex
is connected to the cycle, there are only about 2/q vertices in ce such that both paths are of
equal length modulo q. As q is rather large and thus there are few such “bad” vertices, when
an edge embedding has to be moved to the sets A,A′, we can ensure that the set A′ remains
relatively small compared to A.

6.3 Open Problems

The main concrete problem left open is to reduce the degree of the hard graphs: the embedding
approach taken in the worst-case to average-case reduction results in very large degree d; while
Theorem 1.1 does not give an explicit estimate on d0 one can trace through the proofs and get
an estimate somewhere around 15 000. The main bottleneck that prevents us from reducing
this is the Partition Lemma and in particular the dependence of d0 on c and ε in Lemma 4.3.
If this part could be significantly improved or circumvented we believe that the degree of the
graph could be significantly reduced, although it would still be relatively large (at least a few
hundred). It would be interesting to see what happens for very small degrees such as a 4-regular
graph (recall that since n is odd, d must be even) – is PM(G) hard with high probability even
for these graphs?

Another interesting question is the proof complexity of perfect matching in Polynomial
Calculus over F2 (or any other field of characteristic 2). While PCF2 can refute the perfect
matching formula on an odd number of vertices for parity reasons, the situation is less clear
when the number of vertices is even. Are there graphs G that do not admit perfect matchings
but PCF2 requires exponential size refutations?

Theorem 1.1 only gives lower bounds for Card(G, b) when b = ~t is a constant vector (and G
is regular). It would be nice to characterize more generally for which vectors b the formula is
hard. In the analogous setting for Tseitin formulas, the precise charges of the vertices do not
matter, as long as the sum of charges is odd the formula remains hard to refute on a random
graph [BGIP01, Gri01]. In the Card(G, b) case however this is not the case. For instance, if the
vector of target degrees b violates the inequality of the Erdős-Gallai characterization of degree
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sequences then SoS can easily refute Card(G, b). In the case when G is the complete graph this
in fact gives a complete characterization of the easy and hard vectors b but for sparse graphs
the situation is less clear. Is there a nice characterization of vectors b for which Card(G, b) is
hard for SoS with high probability over a random d-regular G?

More broadly, another open problem is to prove SoS lower bounds for random CSPs that
do not support pairwise uniform distributions (c.f. the brief discussion on CSPs in Section 1.2).
Viewed this way, our results establish hardness of random monotone 1-in-k-SAT instances with
two occurrences per variable, for some large constant k. Reducing k corresponds to the afore-
mentioned problem of reducing the degree, but some other natural questions are to look at other
CSPs such as 1-in-k-SAT with negated literals, or to understand the hardness as a function of
the density of the instances.
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[LS91] László Lovász and Alexander Schrijver. Cones of matrices and set-functions and
0-1 optimization. SIAM Journal on Optimization, 1(2):166–190, 1991. 2

[Mar06] Klas Markström. Locality and hard SAT-instances. Journal on Satisfiability,
Boolean Modeling and Computation, 2(1-4):221–227, 2006. 3
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A Worst-Case Lower Bounds

In this section we describe a general reduction from the Tseitin formula to the Perfect Matching
formula as it appeared in [BGIP01] for Polynomial Calculus. We then observe that this reduction
also works for the SoS and bounded depth Frege proof systems.

Starting from a graph G such that the Tseitin formula τ(G) is hard for a proof system P ,
we want to craft a graph H so that PM(H) is hard for P . To simplify the presentation, let us
assume that G is d-regular. As we are interested in unsatisfiable instances, i.e., when G has an
odd number of vertices, we may assume that d is even.

The graph H is a “blow-up” (or “lift”) of G: each vertex in V (G) is lifted to a clique of d+1
vertices and each lifted edge connects a single pair of vertices from the corresponding cliques. If
we denote the lifted vertices of v ∈ V (G) by lift(v) = {(v, ?), (v, 1), . . . , (v, d)}, we add for each
edge {u, v} ∈ E(G), where v is the ith neighbor of u and u is the jth neighbor of v, an edge
{(u, i), (v, j)}. An illustration of the construction of H can be found in Figure 4.

For intuition, let us describe how we would obtain a satisfying assignment to the Perfect
Matching Formula from a hypothetical satisfying assignment to the Tseitin Formula. Set the
lifted edges to the same value as they are set to in the Tseitin Formula. Now observe that each
charge is odd and hence there is an even number of vertices left that are not matched yet in each
lift(v), for v ∈ V (G). As the vertices in lift(v) form a clique, we can select a perfect matching on
these unmatched vertices to obtain a satisfying assignment to the Perfect Matching Formula.

Buss et al. [BGIP01] showed that Polynomial Calculus can simulate this reduction.

Theorem A.1 ([BGIP01]). There are graphs G on an odd number of vertices n and maximum
degree ∆(G) = 5 such that Polynomial Calculus over any field of characteristic different from 2
requires degree Θ(n) to refute PM(G).

What remains is to check that this reduction also gives Perfect Matching worst-case lower
bounds for Sum-of-Squares and bounded depth Frege. This straightforward verification is car-
ried out in the following two sections.
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(a) The graph G. (b) The lift of a single vertex. (c) The lifted graph H.

Figure 4: An illustration of the blow-up construction, starting from a 4-regular graph.

A.1 Sum-of-Squares

A nice property of the Sum-of-Squares system is that if the variables for a formula Q can be
expressed as well-behaved low-degree polynomials in the variables of another formula P for
which a pseudo-expectation exists, then a pseudo-expectation also exists for Q. This property
is well-known but let us state and quickly prove the exact version we need.

Claim A.2. Let P ⊆ R[x1, . . . , xn] and Q ⊆ R[y1, . . . , ym] be two systems of polynomial
equations. Let ẼQ be a degree D pseudo-expectation for Q. Suppose there is a function
f : {x1, . . . , xm} → R[y1, . . . yn], mapping the x variables to polynomials in y of degree at most
t. Extend f to polynomials by applying the function to each variable individually. If f satisfies
that ẼQ[f(r · p)] = 0, for all p ∈ P and r ∈ R[x1, . . . xm] of degree deg(r · p) ≤ D/t, then ẼQ ◦ f
is a degree D/t pseudo-expectation for P.

Proof. As f only maps variables we have that ẼQ[f(1)] = ẼQ[1] = 1. Also, we need to check
that ẼQ[f(s2)] ≥ 0 for s ∈ R[x1, . . . , xm] of degree deg(s) ≤ D/2t. As we apply f individually

to each variable, we can write ẼQ[f(s2)] = ẼQ[
(∑

t∈s f(t)
)2

] ≥ 0, as ẼQ is a degree D pseudo-
expectation.

In order to apply Claim A.2 with Q = τ(G) and P = PM(H), we need to express each
variable from the Perfect Matching formula as a low degree polynomial in the Tseitin variables.

Let us recall some notation. For a vertex v ∈ V (G), let Yv be the set of Tseitin variables
corresponding to edges incident to v and denote by Av all boolean assignments to Yv that satisfy
the vertex axiom of v, i.e., assignments that set an odd number of edges to true. For a Tseitin
variable ye, where e ∈ E(G), let lift(ye) ∈ E(H) denote the lifted edge variable.

With this notation at hand, let us define the function f to use in Claim A.2. Variables that
correspond to lifted edges, xe = lift(ye′) for some e′ ∈ E(G), are set to 1 if and only if ye′ is set
to 1 and the variables in Yv are set according to some assignment in Av

f(xe) =
∑
α∈Av

α(ye′ )=1

1{Yv=α} . (27)

Note that this is a polynomial of degree deg(v) = d in the ye’s. For each assignment α ∈ Av,
set the variables in lift(Yv) according to α and fix a matching mα on the vertices in lift(v) not

35



matched by α. For any edge e ⊆ lift(v), let

f(xe) =
∑
α∈Av
e∈mα

1{Yv=α} . (28)

If we apply f individually to each variable, we claim that for i ∈ {?, 1, . . . , d} and v ∈ V (G) the
polynomial f(qPM(v,i)) is equal to the Tseitin axiom qτv :

f(qPM(v,i)) =
∑
e3(v,i)

f(xe)− 1 (29)

=
∑
α∈Av

α(ye′ )=1

1{Yv=α} +
∑
α∈Av

α(ye′ )=0

1{Yv=α} − 1 (30)

= qτv , (31)

using that the mα are matchings. As Ẽτ(G) maps all axioms multiplied by a low degree polyno-

mial to 0, the same holds for Ẽτ(G) ◦ f and we can thus apply Claim A.2.

We conclude that if there is a degree D pseudo-expectation Ẽτ(G) for the Tseitin Formula

τ(G), then there is a degree D/d pseudo-expectation ẼPM(H) for the Perfect Matching formula
over the lifted graph H. Using Grigoriev’s Tseitin lower bounds [Gri01] we obtain the following
Theorem.

Theorem A.3. There are graphs G on an odd number of vertices n and maximum degree
∆(G) = 5 for which SoS requires degree Θ(n) to refute PM(G).

A.2 Bounded Depth Frege

In this section we intend to prove the following theorem.

Theorem A.4. There is a constant c > 0 such that the following holds. Suppose D ≤ c logn
log logn .

Then there are graphs G on an odd number of vertices n and maximum degree ∆(G) = 5 such
that any depth-D Frege refutation of PM(G) requires size exp(Ω(nc/D)).

As in the previous section we use a function f , mapping Perfect Matching variables to
low depth formulas in the Tseitin Variables, to argue that we can transform a refutation of
PM(H) into a refutation of the Tseitin formula τ(G). Assuming that this can be done, we
use the following recent result of H̊astad about the Tseitin formula over the grid to obtain
Theorem A.4.

Theorem A.5 ([H̊a17]). Suppose that D ≤ logn
59 log logn , then any depth-D Frege refutation of

the Tseitin formula on the n× n grid requires size exp(Ω(n1/58(D+1))).

In the previous section f mapped to polynomials. As we are now working with formulas we
need to translate the polynomials to formulas. This is straightforward; reusing notation from
the previous section, let

f(xe) =
∨
α∈Av

α(ye′ )=1

1{Yv=α} , (32)
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if xe = lift(ye′) is a lifted edge. Else let

f(xe) =
∨
α∈Av
e∈mα

1{Yv=α} . (33)

Suppose there is a depth-D Frege refutation π of the Perfect Matching formula PM(H).
Replace each occurrence of a Perfect Matching variable xe by f(xe) to obtain a depth-(D + 2)
refutation π′. We claim that π′ is a refutation of the Tseitin formula τ(G) of size Od(Size(π)).

To this end we need to argue that f maps Perfect Matching axioms to Tseitin Axioms or
tautologies that are derivable in small size and depth. Analoguous to SoS observe that

f(
∨

e3(v,i)

xe) =
∨

e3(v,i)

f(xe) (34)

=
∨
α∈Av

α(ye′ )=1

1{Yv=α} ∨
∨
α∈Av

α(ye′ )=0

1{Yv=α} (35)

= qτv , (36)

for all v ∈ V (G) and i ∈ {?, 1, . . . , d}. Last we need to show that the axioms x̄e ∨ x̄e′ , for edges
e 6= e′ ∈ E(H) satisfying e ∩ e′ 6= ∅, are mapped to a tautology derivable in small size and
depth. If we let {(v, i)} = e ∩ e′ we can write

f(x̄e ∨ x̄e′) =
(
¬
∨
β∈B

1{Yv=β}
)
∨
(
¬
∨
γ∈C

1{Yv=γ}
)
, (37)

for disjoint subsets B,C ⊆ Av. Observe that this formula is a tautology and defined on d
variables. Thus it is derivable in constant depth and size dependent on d, which is constant in
our case.

B Embedding Algorithm

Algorithm 1 Restores β-expansion of G[C].

1: procedure FixExpansion(G,C,A, β)
2: while G[C] is not a β-expander do
3: U ←any subset of C such that |U | ≤ |C|/2 and |N(U,C \ U)| < β|U |
4: C ← C \ U
5: A← A ∪ U
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Algorithm 2 Finds an (r, s)-cross in an β-expander G as in the proof of Lemma 5.7.

Require: Conditions of Lemma 5.7.
1: procedure EmbedVertex(G, r, s, β, k)
2: γ ← β

3(1+β)

3: s← max{1/γ, s}
4: r′ ← (1 + 1/γ)r
5: A,B ← ∅;C ← V (G)
6: while |B| < r′ do
7: U ←any subset of C such that |U | = s and G[U ] is a single connected component
8: B ← B ∪ {U}; C ← C \ U
9: FixExpansion(G,C,A, γ)

10: F ⊆ B maximal such that | ∪F∈F N(F,C)| < γs|F|
11: B ← B \ F ; A← A ∪F∈F F

12: v ←any C such that degG[C](v) ≥ r′
13: F ← a transversal of {N(B,C) | B ∈ B }
14: { pi | i ∈ [r] } ← from Lemma 5.5 applied to G[C], v and F
15: return {v} ∪ {V (pi) ∪Bi | i ∈ [r] } . Shrink branches appropriately

Algorithm 3 Remove the embedding of vertex x.

1: procedure UnEmbedVertex(A,A′, B,H, I, x)
2: (v,U)← Bx . v is the center and U are the branches of Bx
3: B ← B \Bx; I ← I \ x
4: W ← ∅
5: for all e ∈ E(H) such that x ∈ e and e is embedded do
6: let U ← U be the branch adjacent to Be
7: U ← U \ U
8: B ← B \Be
9: W ←W ∪ U ∪Be

10: A← A ∪ U . First add to A, then to A′ to maintain the invariant
11: A′ ← A′ ∪W ∪ {v}
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Algorithm 4 Embeds H in an α-expander G as in the proof of Theorem 3.3.

1: procedure EmbedGraph(H,G,α)
2: β ← α/3(1 + α)
3: A,A′, B ← ∅;C ← V (G)
4: I ← ∅
5: while I 6= V (H) do
6: x←any V (H) \ I
7: Bx ← EmbedVertex(G[C],degH(x), s, β, k)
8: C ← C \Bx; B ← B ∪Bx; I ← I ∪ x
9: FixExpansion(G,C,A, β)

10: Ufree(K)← branches of the cross K that are not used to connect to a neighbor
11: for all {x, y} ∈ E(H) such that y ∈ I do
12: try
13: Uz ←any Ufree(Bz) such that |N(Uz, C)| ≥ β|Uz| for z ∈ {x, y}
14: catch no such Uz for z ∈ {x, y}
15: UnEmbedVertex(A,A′, B,H, I, z); continue
16: Bxy ← odd path from Lemma 5.8 applied to G[C], N(Ux, C) and N(Uy, C)
17: C ← C \Bxy; B ← B ∪Bxy
18: FixExpansion(G,C,A, β)

19: return B
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