
Depth lower bounds in Stabbing Planes for combinatorial
principles

Stefan Dantchev
Department of Computer Science

Durham University, UK
s.s.dantchev@durham.ac.uk

Nicola Galesi
Department of Computer Science
Sapienza Università di Roma, IT

nicola.galesi@uniroma1.it

Abdul Ghani
Department of Computer Science

Durham University, UK
abdul.ghani@durham.ac.uk

Barnaby Martin
Department of Computer Science

Durham University, UK
barnaby.d.martin@durham.ac.uk

February 20, 2021

Abstract

We prove logarithmic depth lower bounds in Stabbing Planes for the classes of combinatorial
principles known as the Pigeonhole principle and the Tseitin contradictions. The depth lower bounds
are new, obtained by giving almost linear length lower bounds which do not depend on the bit-size
of the inequalities and in the case of the Pigeonhole principle are tight.

The technique known so far to prove depth lower bounds for Stabbing Planes is a generalization
of that used for the Cutting Planes proof system. In this work we introduce two new approaches
to prove length/depth lower bounds in Stabbing Planes: one relying on Sperner’s Theorem which
works for the Pigeonhole principle and Tseitin contradictions over the complete graph; a second
proving the lower bound for Tseitin contradictions over a grid graph, which uses a result on essential
coverings of the boolean cube by linear polynomials, which in turn relies on Alon’s combinatorial
Nullenstellensatz.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 22 (2021)

1 Introduction

Finding a satisfying assignment for a propositional formula (SAT) is a central component for many
computationally hard problems. Despite being older than 50 years and exponential time in the worst-
case, the DPLL algorithm [6, 7, 17] is the core of essentially all high performance modern SAT-solvers.
DPLL is a recursive boolean method: at each call one variable x of the formula F is chosen and the
search recursively branches into the two cases obtained by setting x respectively to 1 and 0 in F . On
UNSAT formulas DPLL performs the worst and it is well-known that the execution trace of the DPLL
algorithm running on an unsatisfiable formula F is nothing more than a treelike refutation of F in the
proof system of Resolution [17] (Res).

Since SAT can be viewed as an optimization problem the question whether Integer Linear Program-
ming (ILP) can be made feasible for satisfiability testing received a lot of attention and is considered
among the most challenging problems in local search [18, 10]. One proof system capturing ILP ap-
proaches to SAT is Cutting Planes, a system whose main rule implements the rounding (or Chávtal cut)
approach to ILP. Cutting planes works with integer linear inequalities of the form ax ≤ b, with a, b in-
tegers, and, like resolution, is a sound and complete refutational proof system for CNF formulas: indeed
a clause C = (x1 ∨ . . . ∨ xr ∨ ¬y1 ∨ . . . ∨ ¬ys) can be written as the integer inequality y− x ≤ s− 1.

Beame et al. [2], extended the idea of DPLL to a more general proof strategy based on ILP. Instead
of branching only on a variable as in resolution, in this method one considers a pair (a, b), with a ∈ Zn

and b ∈ Z, and branches limiting the search to the two half-planes: ax ≤ b − 1 and ax ≥ b. A path
terminates when the LP defined by the inequalities in F and those forming the path is infeasible. This
method can be made into a refutational treelike proof system for UNSAT CNF’s called Stabbing planes
(SP) ([2]) and it turned out that it is polynomially equivalent to the treelike version of Res(CP), a proof
system introduced by Krajı́ček [12] where clauses are disjunction of linear inequalities.

In this work we consider the complexity of proofs in SP focusing on the length, i.e. the number of
queries in the proof; the depth (called also rank in [2]), i.e. the length of the longest path in the proof
tree; and the size, i.e. the bit size of all the coefficients appearing in the proof.

1.1 Previous works and motivations

Lower bounds for size can be obtained in SP, but in a limited way: in [2] it is proven that size S and
depth D SP refutations imply treelike Res(CP) proofs of size O(S) and width O(D); Kojevnikov [11],
improving the interpolation method introduced for Res(CP) by Krajı́ček [12], gave exponential lower
bounds for treelike Res(CP) when the width of the clauses (i.e. the number of linear inequalities in a
clause) is bounded by o(n/ log n). Hence these lower bounds are applicable only to very specific classes
of formulas (whose hardness comes from boolean circuit hardness) and only to SP refutations of low
depth.

Nevertheless SP appears to be a strong proof system. Firstly notice that the condition terminating a
path in a proof is not a trivial contradiction like in resolution, but is the infeasibility of an LP, which is
only a polynomial time verifiable condition. Hence linear size SP proofs might be already a strong class
of SP proofs, since they can hide a polynomial growth into one final node whence to run the verification
of the terminating condition. At present we know that:

1. SP polynomially simulates CP (Theorem 4.5 in [2]). Hence in particular the PHPmn can be refuted
in SP by a proof of size O(n2) ([5]). Furthermore it can be refuted by a O(log n) depth proof
since polynomial size CP proofs, by Theorem 4.4 in [2], can be balanced in SP 1.

1Another way of proving this result is using Theorem 4.8 in [2] stating that if there are length L and space S CP refuta-
tions of a set of linear integral inequalities, then there are depth O(S logL) SP refutations of the same set of linear integral
inequalities; and then use the result in [9] (Theorem 5.1) that PHPmn has polynomial length and constant space CP refutations.

2

2. Beame et al. in [2] proved the surprising result that the class of Tseitin contradictions Ts(G,ω)
over any graph G of maximum degree D, with an odd charging ω, can be refuted in SP in size
quasipolynomial in |G| and depth O(log2 |G|+D).

Depth lower bounds for SP are proved in [2]:

1. a Ω(n/ log2 n) lower bound for the formula Ts(G,w) ◦ VERn, composing Ts(G,ω) (over an
expander graph G) with the gadget function VERn (see Theorem 5.7 in [2] for details); and

2. a Ω(
√
n log n) lower bound for the formula Peb(G) ◦ INDnl over n5 + n log n variables obtained

by lifting a pebbling formula Peb(G) over a graph with high pebbling number, with a pointer
function gadget INDnl (see Theorem 5.5. in [2] for details).

Similarly to size, these depth lower bounds are also applicable only to very specific classes of for-
mulas. In fact they are obtained by extending to SP the technique introduced by Krajı́ček [13] for CP of
reducing shallow proofs of a formula F to efficient real communication protocols computing a related
search problem and then proving that such efficient protocols cannot exist.

Despite the fact that SP is at least as strong as CP, in SP the known lower bounds techniques are
derived from those of treelike CP. Hence finding other techniques to prove depth and size lower bounds
for SP is important to understand its proof strength. For instance, unlike CP where we know tight
Θ(log n) rank bounds for the PHPmn [3, 16] and Ω(n) rank bounds for Tseitin contradictions [3], for SP
no depth lower bound is at present known for purely combinatorial statements.

In this work we address such problems.

1.2 Contributions and techniques

The main original motivation of this work was to prove depth lower bounds in SP for truly combinatorial
statements, like Ts(G,w) or PHPmn , which we know to be efficiently provable, but on which we cannot
use methods reducing to the complexity of boolean functions, like the ones mentioned above. We present
two new methods for proving depth lower bounds in SP which in fact are the consequence of proving
length lower bounds. Our bounds are numerically weak (almost linear for the length and logarithmic for
the depth), but for the PHPmn they give optimal depth lower bounds from length lower bounds that do
not depend on the bit-size of the coefficients. We prove:

1. an optimal Ω(log n) lower bound for the depth of SP proofs of the PHPmn .

2. an Ω(log n) lower bound for the depth of SP proofs of Ts(G,ω), whenG is a n×n grid graphHn

or the complete graph Kn. These last results must be compared with the O(log2 n) upper bound
for Ts(Hn, ω) given in [2].

Our results are derived from the following initial geometrical observation: let S be a space of
admissible points in {0, 1, 1/2}n satisfying a given unsatisfiable system of integer linear inequalities
F(x1, . . . , xn). In a SP proof for F , at each branch Q = (a, b) the set of points in the slab(Q) = {s ∈
S : b − 1 < ax < b} does not survive in S. At the end of the proof on the leaves, where we have
infeasible LP’s, no point in S can survive the proof. So it is sufficient to find conditions such that, under
the assumption that a proof of F is “small”, even one point of S survives the proof. In pursuing this
approach we use two methods.

The antichain method. Here we use a well-known bound based on Sperner’s Theorem [4, 20] to
upper bound the number of points in the slabs where the set of non-zero coefficients is sufficiently large.
Trading between the number of such slabs and the number of points ruled out from the space S of
admissible points, we obtain the lower bound.

3

We initially present the method and the Ω(log n) lower bound on a set of unsatisfiable integer linear
inequalities - the Simple Pigeonhole Principle (SPHP) - capturing the core of the counting argument
used to prove efficiently the PHP in CP. Since SPHPn has rank 1 CP proofs, it entails a strong separation
between CP rank and SP depth. We then apply the method to PHPmn and to Ts(Kn, ω).

The covering method. The antichain method appears too weak to prove size and depth lower bounds
on Ts(G,w), when G is for example a grid or a pyramid. To solve this case, we consider another
approach that we call the covering method: we reduce the problem of proving that one point in S survives
from all the slab(Q) in a small proof of F , to the problem that a set of polynomials which essentially
covers the boolean cube {0, 1}n requires at least n polynomials, which is a well-known problem [1, 14].
For this reduction to work we have to find a high dimensional projection of S covering the boolean cube
and defined on variables effectively appearing in the proof. We prove that matchings inG work properly
to this aim on Ts(G,ω). Since the grid Hn has large matchings, we can obtain the lower bound on
Ts(Hn, ω).

The paper is organized as follows: We give the preliminary definitions in the next section and then
we move to other sections: one on the lower bounds by the antichain method and the other on lower
bounds by the covering method.

2 Preliminaries

We use [n] for the set {1, 2, . . . , n}, Z/2 for Z ∪ (Z + 1
2) and Z+ for {1, 2, . . .}.

2.1 Proof systems

Here we recall the definition of the Stabbing Planes proof system from [2].

Definition 1. A linear integer inequality in the variables x1, . . . , xn is something of the form
∑n

i=1 aixi ≥
b, where each ai and b are integral. A set of such inequalities is said to be unsatisfiable if there are no
0/1 assignments to the x variables satisfying each inequality simultaneously.

Note that we reserve the term infeasible, in contrast to unsatisfiable, for (real or rational) linear programs.

Definition 2. Fix some variables x1, . . . , xn. A Stabbing Planes (SP) proof of a set of integer linear
inequalities F is a binary tree T , with each node labeled with a query (a, b) with a ∈ Zn, b ∈ Z.
Out of each node we have an edge labeled with ax ≥ b and the other labeled with its integer negation
ax ≤ b − 1. Each leaf ` is labeled with a LP system P` made by a nonnegative linear combination of
inequalities from F and the inequalities labelling the edges on the path from the root of T to the leaf `.

If F is an unsatisfiable set of integer linear inequalities, T is a Stabbing Planes (SP) refutation of F
if all the LP’s P` on the leaves of T are infeasible.

Definition 3. The slab corresponding to a query Q = (a, b) is the set slab(Q) = {x ∈ Rn : b − 1 <
ax < b} satisfying neither of the associated inequalities.

Since each leaf in a SP refutation is labelled by an infeasible LP, throughout this paper we will
actually use the following geometric observation on SP proofs T : the set of points in Rn must all be
ruled out by a query somewhere in T . In particular this will be true for those points in Rn which satisfy
a set of integer linear inequalities F and which we call feasible points for F .

Fact 1. The slabs associated with a SP refutation must cover the feasible points of F . That is,

{y ∈ Rn : ay ≥ b for all (a, b) ∈ F} ⊆
⋃

(a,b)∈F

{x ∈ Rn : b− 1 < ax < b}

4

The length of a SP refutation is the number of queries in the proof tree. The depth of a SP refutation
T is the longest root-to-leaf path in T . The size (respectively depth) of refuting F in SP is the minimum
size (respectively depth) over all SP refutations of F . We call bit-size of a SP refutation T the total
number of bits needed to represent every inequality in the refutation.

Definition 4 ([5]). The Cutting Planes (CP) proof system is equipped with boolean axioms and two
inference rules:

Boolean Axioms Linear Combination Rounding

x≥0 −x≥−1
ax≥c bx≥d
αax+βbx≥αc+βd

αax≥b
ax≥db/αe

where α, β, b ∈ Z+ and a,b ∈ Zn. A CP refutation of some unsatisfiable set of integer linear inequali-
ties is a derivation of 0 ≥ 1 by the aforementioned inference rules from the inequalities in F .

A CP refutation is treelike if the directed acyclic graph underlying the proof is a tree. The length of
a CP refutation is the number of inequalities in the sequence. The depth is the length of the longest path
from the root to a leaf (sink) in the graph. The rank of a CP proof is the maximal number of rounding
rules used in a path of the proof graph. The size of a CP refutation is the bit-size to represent all the
inequalities in the proof.

2.2 Restrictions

Let V = {x1, . . . , xn} be a set of n variables and let ax ≤ b be a linear integer inequality. We say that a
variable xi appears in, or is mentioned by a query Q = (a, b) if ai 6= 0 and does not appear otherwise.

A restriction ρ is a function ρ : D → {0, 1}, D ⊆ V . A restriction acts on a half-plane ax ≤ b
setting the xi’s according to ρ. Notice that the variables xi ∈ D do not appear in the restricted half-plane.

By T �ρ we mean to apply the restriction ρ to all the queries in a SP proof T . The tree T �ρ defines
a new SP proof: if some Q�ρ reduces to 0 ≤ −b, for some b ≥ 1, then that node becomes a leaf in
T �ρ. Otherwise in T �ρ we simply branch on Q�ρ. Of course the solution space defined by the linear
inequalities labelling a path in T �ρ is a subset of the solution space defined by the corresponding path in
T . Hence the leaves of T �ρ define an infeasible LP.

We work with linear integer inequalities which are a translation of families of CNFs F . Hence
when we write F�ρ we mean the applications of the restriction ρ to the set of linear integer inequalities
defining F .

3 The antichain method

This method is based on Sperner’s theorem. Using it we can prove depth lower bounds in SP for PHPmn
and for Tseitin contradictions Ts(Kn, ω) over the complete graph. To motivate and explain the main
definitions, we use as an example a simplification of the PHPmn , the simplified Pigeonhole principle
SPHPn, which has some interest since, as we will show it exponentially separates CP rank from SP
depth.

3.1 Simplified Pigeonhole Principle

As mentioned in the Introduction, the SPHPn intends to capture the core of the counting argument used
to prove efficiently the PHP in CP.

Definition 5. The SPHPn is the following unsatisfiable family of inequalities:∑n
i=1 xi ≥ 2

xi + xj ≤ 1 (for all i 6= j ∈ [n])

5

Lemma 1. SPHPn has a rank 1 CP refutation, for n ≥ 3.

Proof. Let S :=
∑n

i=1 xi (so we have S ≥ 2). We fix some i ∈ [n] and sum xi + xj ≤ 1 over all
j ∈ [n] \ {i} to find S + (n− 2)xi ≤ n− 1. We add this to −S ≤ −2 to get

xi ≤
n− 3

n− 2

which becomes xi ≤ 0 after a single cut. We do this for every i and find S ≤ 0 - a contradiction when
combined with the axiom S ≥ 2.

It is easy to see that SPHPn has depth O(log n) proofs in SP, either by a direct proof or appealing
to the polynomial size proofs in CP of the PHPmn ([5]) and then using the Theorem 4.4 in [2] informally
stating that “CP proofs can be balanced in SP”.

Corollary 1. The SPHPn has Stabbing Planes refutations of depth O(log n).

We will prove that this depth is tight.

3.2 Sperner’s Theorem

Let a ∈ Rn. The width w(a) of a is the number of non-zero coordinates in a. The width of a query
(a, b) is w(a).

Let n ∈ N. Fix W ⊆ [0, 1] ∩ Q+ of finite size k ≥ 2 and insist that 0 ∈ W . We also insist that,
if wm is the maximal element in W , that W is closed under the map x → wm − x. The W ’s we work
with in this paper are {0, 1/2} and {0, 1/2, 1}. We disallow (for example) {0, 1/3, 1} as it is not closed
under x→ 1− x.2

Definition 6. A (n,W)-word is an element in Wn.

We consider the following extension of Sperner’s theorem.

Theorem 1 ([15, 4]). Fix some t ≥ 2, t ∈ N. For the pointwise ordering of [t]f , any antichain has size
at most tf

√
6

π(t2−1)f (1 + o(1)).

We will use the simplified bound that any antichain A has size |A| ≤ tf√
f

.

Lemma 2. Let a ∈ Zn and |W | = k ≥ 2. The number of (n,W)-words s such that as = b, where
b ∈ Q is at most kn√

w(a)
.

Proof. Assume for a moment that the ai’s are non-negative. Let Ia = {i ∈ [n] : ai 6= 0}. Notice that
|Ia| = w(a). For a (n,W)-word s, let s̃ = proj�Ia (s) be the projection of s on the set of coordinates
Ia. s̃ is a (w(a), k)-word and we claim that the set of such s̃ forms an antichain on [k]w(a). Let
Js̃ = {i ∈ Ia|s̃i 6= 0}. Since as = b, then

∑
i∈Js̃ ais̃i = b. By the non-negativity of the ai’s it

follows that if Js̃ ⊂ Jt̃, then
∑

i∈Js̃ ais̃i <
∑

i∈Jt̃
ait̃i. Hence the set of Js̃ forms an antichain on

[k]w(a) induced from the s̃. That is, we have at most kw(a)/
√
w(a) such Js̃, each the result of projecting

at most 2n−w(a) solution (n,W)-words.
To justify the assumption that all ai’s are non-negative, we show how to repeatedly replace the pair

a, b with a new pair a′, b′, where w(a′) = w(a) and the number of (n,W)-words s such that as = b is
the same as those with a′s = b′. We do this until a is nonnegative and the upper bound applies.

2Although we note that the following proofs can be modified to work without this demand of closure.

6

Let wm be the maximum element in W and write as =
∑n

i∈1 aisi. Say that a1 < 0. Then we simply
replace s1 with wm − s1, and replace a and b with the result of rearranging

a1(wm − s1) +
n∑

1=2

aisi = b which is − a1s1 +
n∑

1=2

aisi = b− a1wm.

So let a′ = (−a1, a2, . . . , an) and b′ = b− a1wm. It is important to note that the pairs a, b and a′, b′

have the same number of solutions inWn. This can be seen by mirroring the first coordinate aroundwm:
the vector x = (x1, . . . , xn) is a solution to

∑n
i∈1 aixi = b if and only if x′ = (x′1 = wm − x1, x′2 =

x2 . . . , x
′
n = xn) is a solution for

−a1x′1 +
n∑

1=2

aix
′
i = −a1(wm − x1) +

n∑
1=2

aixi =
n∑

1=1

aixi − a1wm = b− a1wm = b′.

3.3 Large admissibility

A (n,W)-word s is admissible for an unsatisfiable set of integer linear inequalities F over n variables
if s satisfies all constraints of F . A set of (n,W)-words is admissible for F if all its elements are
admissible. A(F ,W) is the set of all admissible (n,W)-words for F .

The interesting sets W for an unsatisfiable set of integer linear inequalities F are those such that
almost all (n,W)-words are admissible for F . We will apply our method on sets of integer linear in-
equalities which are a translation of unsatisfiable CNF’s generated over a given domain. Typically these
formulas on a size n domain have a number of variables which is not exactly n but a function of n,
ν(n) ≥ n. Hence for the rest of this section we consider F := {Fn}n∈N as a family of sets of unsatis-
fiable integer linear inequalities, where Fn has ν(n) ≥ n variables. We call F an unsatisfiable family.

Consider then the following definition recalling that we denote k = |W |:

Definition 7. F is almost full if |A(Fn,W)| ≥ kν(n) − o(kν(n)).

Notice that, because of the o notation, Definition 7 might be not necessarily true for all n ∈ N, but
only starting from some nF .

Definition 8. Given some almost full family F (over ν(n) variables) we let nF be the natural number
with

kν(n)

|A(Fn,W)|
≤ 2 for all n ≥ nF .

As an example we prove SPHP is almost full (notice that in the case of SPHPn, ν(n) = n).

Lemma 3. SPHPn is almost full.

Proof. Fix W = {0, 1/2} so that k = |W | = 2. Let U be the set of all (n,W)-words with at least four
coordinates set to 1/2. U is admissible for SPHPn since inequalities xi + xj ≤ 1 are always satisfied
for any value in W and inequalities x1 + . . . + xn ≥ 2 are satisfied by all points in U which always
contain four 1/2. By a simple counting argument, in U there are 2n − 4n3 = 2n − o(2n) admissible
(n,W)-words. Hence the claim.

Lemma 4. Let F = {Fn}n∈N be an almost full unsatisfiable family, where Fn has ν(n) variables.
Further let T be a SP refutation of F of minimal width ω. If n ≥ nF then |T | = Ω(

√
w).

7

Proof. We estimate at what rate the slab of the queries in T rule out admissible points in U .
Since all the queries in T have width at least w, according to Lemma 2, each query in T rules out

at most k
ν(n)
√
w

admissible points. By Fact 1 no point survives at the leaves, in particular the admissible
points. Then it must be that

|T |k
ν(n)

√
w
≥ |A(Fn,W)| which means |T | · kν(n)

|A(Fn,W)|
≥
√
w

We finish by noting that, by the assumption n ≥ nF , and then by Definition 8, we have 2 ≥
kν(n)

|A(Fn,W)| .

3.4 Main theorem

We focus on restrictions ρ that after applied on an unsatisfiable family F = {Fn}n∈N, reduce the set F
to another set in the same family.

Definition 9. Let F = {Fn}n∈N be an unsatisfiable family and c a positive constant. F is c-self-
reducible if for any set V of variables, with |V | = t < n/c, there is a restriction ρ with domain V ′ ⊇ V ,
such that Fn�ρ= Fn−ct (up to renaming of variables).

Let us motivate the definition with an example.

Lemma 5. SPHPn is 1-self-reducible.

Proof. Whatever set of variables xi, i ∈ I ⊂ [n] we consider, it is sufficient to set xi to 0 to fulfill
Definition 9.

Theorem 2. Let F := {Fn}n∈N be a unsatisfiable set of integer linear inequalities which is almost
full and c-self-reducible. If Fn defines a feasible LP whenever n > nF , then for n large enough, the
shortest SP proof of Fn is of length Ω(4

√
n).

Proof. Take any SP proof T refuting Fn and fix t = 4
√
n.

The proof proceeds by stages i ≥ 0 where T0 = T . The stages will go on while the invariant
property (which at stage 0 is true since n > nF and c a positive constant)

n− ict3 > max{nF , n(1− 1/c)}

holds.
At the stage i we let Σi = {(a, b) ∈ Ti : w(a) ≤ t2} and si = |Σi|. If si ≥ t the claim is trivially

proven. If si = 0, then all queries in Ti have width at least t2 and by Lemma 4 (which can be applied
since n− ict3 > nF) the claim is proven (for n large enough).

So assume that 0 < si < t. Each of the queries in Σi involves at most t2 nonzero coefficients,
hence in total they mention at most sit2 ≤ t3 variables. Extend this set of variables to some V ′ in
accordance with Definition 9 (which can be done since, by the invariant, ict3 < n/c). Set all these
variables according to self-reducibility of F in a restriction ρi and define Ti+1 = Ti�ρi . Note that by
Definition 9 and by that of restriction, Ti+1 is a SP refutation of Fn−ict3 and we can go on with the next
stage. (Also note that we do not hit an empty refutation this way, due to the assumption that Fn defines
a feasible LP.)

Assume that the invariant does not hold. If this is because n − ict3 < nF then, as each iteration
destroys at least one node,

|T | ≥ i > n− nF

ct3
∈ Ω(n1/4).

8

If this is because n− ict3 < n− n/c, then again for the same reason it holds that

|T | ≥ i > n

c2n3/4
∈ Ω(n1/4).

Using Lemmas 3 and 5 and the previous Theorem we get:

Corollary 2. The length of any SP refutation of SPHPn is Ω(4
√
n). Hence the minimal depth is Ω(log n).

3.5 Lower bounds for the Pigeonhole principle

Definition 10. The Pigeonhole Principle PHPmn , m > n, is the family of unsatisfiable integer linear
inequalities defined over the variables {Pi,j : i ∈ [m], j ∈ [n]} consisting of the following inequalities:∑n

j=1 Pij ≥ 1 ∀j ∈ [m] (every pigeon goes into some hole)
Pik + Pjk ≤ 1 ∀k ∈ [n], i 6= j ∈ [m] (at most one pigeon enters any given hole)

We present a lower bound for PHPmn closely following that for SPHPn, in which we largely ignore
the diversity of different pigeons (which makes the principle rather like SPHPn).

In this subsection we fixW = {0, 1/2}, and for the sake of brevity refer to (n,W)-words as biwords.

Lemma 6. The PHPmn is almost full.

Proof. We show that there are at least 2mn−1 admissible biwords (for sufficiently large n). For each
pigeon i, there are admissible valuations to holes so that, so long as at least two of these are set to 1/2,
the others may be set to anything in {0, 1/2}. This gives at least 2n − (n + 1) possibilities. Since the
pigeons are independent, we obtain at least (2n − (n + 1))m biwords. Now this is 2mn

(
1− n+1

2n

)m
where

(
1− n+1

2n

)m ∼ e
−(n+1)m

2n whence,
(
1− n+1

2n

)m ≥ e
−(n+2)m

2n for sufficiently large n. It follows
there is a constant c so that:

2mn
(

1− n+ 1

2n

)m
≥ 2mn−

c(n+2)m
2n ≥ 2mn−1

for sufficiently large n.

Lemma 7. The PHPmn is 1-self-reducible (with respect to the subscript n).

Proof. We are given some set I of variables from PHPmn . Let H := {j : Pi,j ∈ I for some i} be the
holes mentioned by I . We simply forbid these holes with the restriction setting Pi,j to 0 for every pigeon
i ∈ [m] and every hole j ∈ H .

Theorem 3. The length of any SP refutation of PHPmn is Ω(n1/4).

Proof. Note that the all 1/2 point is feasible for PHPmn . Then with Lemma 6 and Lemma 7 in hand we
meet all the prerequisites for Theorem 2.

By simply noting that a SP refutation is a binary tree, we get the following corollary.

Corollary 3. The SP depth of the PHPmn is Ω(log n).

9

3.6 Lower bounds for Tseitin contradictions over the complete graph

Definition 11. For a graph G = (V,E) along with a charging function ω : V → {0, 1} satisfying∑
v∈V ω(v) = 1 mod 2. The Tseitin contradiction Ts(G,ω) is the set of linear inequalities which

translate the CNF encoding of ∑
e∈E
e3v

xe = ω(v) mod 2.

for every v ∈ V , where the variables xe range over the edges e ∈ E.

In this subsection we consider Ts(Kn, ω) and ω will always be an odd charging forKn. We letN :=(
n
2

)
and we fixW = {0, 1/2, 1}, k = 3 and for the sake of brevity refer to (n,W)-words as triwords. We

will abuse slightly the notation of Section 3.3 and consider the family {Ts(Kn, ω)}n∈N, ω odd as a single
parameter family in n. The reason we can do this is because the following proofs of almost fullness and
self reducibility do not depend on ω at all (so long as it is odd, which we will always ensure).

Lemma 8. Ts(Kn, ω) is almost full.

Proof. We show that Ts(Kn, ω) has at least c3N admissible triwords, for any constant 0 < c < 1 and
n large enough. We define the assignment ρ setting all edges (i.e. xe) to a value in W = {0, 1, 1/2}
independently and uniformly at random, and inspecting the probability that some fixed constraint for a
node v is violated by ρ.

Clearly if at least 2 edges incident to v are set to 1/2 its constraint is satisfied. If none of its incident
edges are set to 1/2 then it is satisfied with probability 1/2. Let A(v) be the event “no edge incident to
v is set to 1/2 by ρ” and let B(v) be the event that “exactly one edge incident to v is set to 1/2 by ρ”.
Then:

Pr[v is violated] ≤ 1

2
Pr[A(v)] + Pr[B(v)] =

1

2

2n−1

3n−1
+

(n− 1)2n−2

3n−1
= n

2n−2

3n−1
.

Therefore, by a union bound, the probability that there exists a node with violated parity is bounded
above by n2 2

n−2

3n−1 , which approaches 0 as n goes to infinity.

Lemma 9. Ts(Kn, ω) is 2-self-reducible.

Proof. We are given some set of variables I . Each variable mentions 2 nodes, so extend these mentioned
nodes arbitrarily to a set S of size exactly 2|I|, which we then hit with the following restriction: if S is
evenly charged, pick any matching on the set {s ∈ S : w(s) = 1}, set those edges to 1, and set any other
edges involving some vertex in S to 0. Otherwise (if S is oddly charged) pick any l ∈ {s ∈ S : w(s) =
1} and r ∈ [n] \ S and set xlr to 1. {s ∈ S : w(s) = 1} \ l is now even so we can pick a matching as
before. And as before we set all other edges involving some vertex in S to 0. In the first case the graph
induced by [n] \ S must be oddly charged (as the original graph was). In the second case this induced
graph was originally evenly charged, but we changed this when we set xlr to 1.

Lemma 10. For any oddly charged ω and n large enough, all SP refutations of Ts(Kn, ω) have length
Ω(4
√
n).

Proof. We have that the all 1/2 point is feasible for Ts(Kn, ω). Then we can simply apply Theorem 2.

Corollary 4. The depth of any SP refutation of Ts(Kn, ω) is Ω(log n).

10

4 The covering method

In [14] Linial and Radhakrishnan considered the problem of the minimal number of hyperplanes cov-
ering all the points of the cube {0, 1}n. To make the problem meaningful they defined the notion of an
essential covering of {0, 1}n.

Definition 12 ([14]). A set L of linear polynomials with real coefficients is said to be an essential cover
of the cube {0, 1}n if

(E1) for each v ∈ {0, 1}n, there is a p ∈ L such that p(v) = 0,

(E2) no proper subset of L satisfies (E1), that is, for every p ∈ L, there is a v ∈ {0, 1}n such that p
alone takes the value 0 on v, and

(E3) every variable appears (in some monomial with non-zero coefficient) in some polynomial of L.

They also prove the following theorem:

Theorem 4 ([14], Theorem 2). Any essential cover L of the cube with n coordinates satisfies |L| ∈
Ω(
√
n).

4.1 Turning a refutation of Tseitin contradictions into an essential cover of the hyper-
cube

Fix some Ts(G,ω) and a SP refutation T , thought of as a set of queries (a, b). We say that an edge of
G is mentioned in T if the variable xe appears with non-zero coefficient in some query in T .

Lemma 11. For any matching M on the edges of G mentioned in T , where all matched vertices have
degree at least 3, there is an essential cover L of the |M | coordinate hypercube with |L| ≤ |R|.

Proof. Let M be any matching on the edges mentioned in T . Let H ′ be the set of the 2|M | admissible
points for Ts(G,ω) gotten by giving the edges in M any {0, 1} value and setting the rest of the edges to
1/2. (That these are admissible for Ts(G,ω) comes from the fact that, given the degree of G is at least
3, all vertices, including matched ones, are incident to at least two edges set to 1/2.) By Fact 1 all of
these points must have been killed in some query (a, b) in T (i.e. x ∈ slab(a, b))). Hence

x is killed by (a, b)⇔
∑

e∈E(G)

aexe = b+ 1/2⇔
∑
e∈M

aexe = b+ 1/2− (1/2)

 ∑
e∈E(G)\M

ae

This just means that the set

L :=

(ae)e∈M , b+

1

2

1−
∑

e∈E(G)\M

ae

 : (a, b) ∈ R

covers the hypercube H = {0, 1}|M | defined over variables xe, e ∈ M . It remains to show that this

cover is essential:

• (E1) i.e. for each x ∈ H , there is some p ∈ L with p(x) = 0. This is clear and just talked about.

• (E2) i.e. no proper subset satisfies E1. As we are interested in the lower bound, we can just take
subsets if we need to.

• (E3) i.e. every variable appears with non-zero coefficient somewhere in L. This just follows from
M being a subset of the edges mentioned by T .

11

Lemma 12. Pick some set S of vertex-disjoint unit squares (4-cycles) in Hn. Any refutation R of any
Ts(Hn, ω) must mention at least one edge in each square.

Proof. We will use a couple times the following idea due to A. Urquhart in [19]: starting from some
binary assignment to the edges in G, take a path from two vertices u and v, and flip all the edges on
this path. If u and v are distinct, we flip their polarities (as they are incident to exactly one edge that
gets flipped) and no other vertex has its incident charge changed (because they have zero or two incident
edges flipped.) If u = v, then nothing gets its polarity changed. In this way we can find a binary
assignment to the edges of any graph falsifying exactly the parity constraint for a single node v.

So suppose some square s := {a, b, c, d} ⊆ V (Hn) fails to have a single edge mentioned. Find a
binary assignment to the edges falsifying (say) only the parity constraint for a. Modify this assignment
by setting every edge in s to 1/2. This point is admissible - a is incident to two 1/2 edges and so is any
other vertex that has had its incident edges touched. But this admissible point can never be ruled out in
a slab, as it is only fractional on edges not mentioned by R.

Theorem 5. Let ω be an odd charging of Hn. Ts(Hn, ω) requires length Ω(n) to refute in SP.

Proof. Fix some refutation R. We work in the inner (n− 2)× (n− 2) grid - in this grid every node has
degree 4 so we may use Lemma 11. In this grid we can find d := (bn−22 c)

2 vertex-disjoint squares, and
in each such square we can choose (Lemma 12) an edge mentioned in R. As these squares are vertex
disjoint the chosen edges form a matching and Lemma 11 tells us there is some essential cover R of
the d-dimensional hypercube with |R| ≥ |L|. Now due to Theorem 4 we have |L| ∈ Ω(n) and we are
done.

Corollary 5. Ts(Hn, ω) requires depth Ω(log(n)) to refute in SP.

5 Conclusions and acknowledgements

The Ω(log n) depth lower bound for Ts(Hn, ω) is not optimal since [2] proved anO(log2 n) upper bound
for Ts(G,ω), for any bounded-degree G. Even to apply the covering method to prove a depth Ω(log2 n)
lower bound on Ts(Kn, ω) (notice that it would imply a superpolynomial length lower bound), the poly-
nomial covering of the boolean cube should be improved to work on general cubes. To this end the
algebraic method used in [14] should be improved to work with generalizations of multilinear polyno-
mials.

While finishing the writing of this manuscript we learned about [8] from Noah Fleming. We would
like to thank him for answering some questions on his paper [2], and sending us the manuscript [8] and
for comments on a preliminary version of this work.

References

[1] Noga Alon and Zoltán Füredi. Covering the cube by affine hyperplanes. Eur. J. Comb., 14(2):79–
83, 1993.

[2] Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina Kolokolova, Denis Pankratov, Toniann
Pitassi, and Robert Robere. Stabbing planes. In Anna R. Karlin, editor, 9th Innovations in The-
oretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA,
volume 94 of LIPIcs, pages 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

12

[3] Joshua Buresh-Oppenheim, Nicola Galesi, Shlomo Hoory, Avner Magen, and Toniann Pitassi.
Rank bounds and integrality gaps for cutting planes procedures. Theory of Computing, 2(4):65–
90, 2006.

[4] Teena Carroll, Joshua Cooper, and Prasad Tetali. Counting antichains and linear extensions in
generalizations of the boolean lattice, 2009.

[5] W. Cook, C. R. Coullard, and G. Turán. On the complexity of cutting-plane proofs. Discrete Appl.
Math., 18(1):25–38, 1987.

[6] Martin Davis, George Logemann, and Donald W. Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, 1962.

[7] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J. ACM,
7(3):201–215, 1960.

[8] Noah Fleming, Mika Göös, Russell Impagliazzo, Toniann Pitassi, Robert Robere, Li-Yang Tan,
and Avi Wigderson. On the power and limitations of branch and cut. Technical report, 2021.

[9] Nicola Galesi, Pavel Pudlák, and Neil Thapen. The space complexity of cutting planes refutations.
In David Zuckerman, editor, 30th Conference on Computational Complexity, CCC 2015, June
17-19, 2015, Portland, Oregon, USA, volume 33 of LIPIcs, pages 433–447. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2015.

[10] Henry A. Kautz and Bart Selman. Ten challenges redux: Recent progress in propositional reason-
ing and search. In Francesca Rossi, editor, Principles and Practice of Constraint Programming
- CP 2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29 - October 3,
2003, Proceedings, volume 2833 of Lecture Notes in Computer Science, pages 1–18. Springer,
2003.

[11] Arist Kojevnikov. Improved lower bounds for tree-like resolution over linear inequalities. In João
Marques-Silva and Karem A. Sakallah, editors, Theory and Applications of Satisfiability Testing
- SAT 2007, 10th International Conference, Lisbon, Portugal, May 28-31, 2007, Proceedings,
volume 4501 of Lecture Notes in Computer Science, pages 70–79. Springer, 2007.

[12] Jan Krajı́cek. Discretely ordered modules as a first-order extension of the cutting planes proof
system. J. Symb. Log., 63(4):1582–1596, 1998.

[13] Jan Krajı́cek. Interpolation by a game. Math. Log. Q., 44:450–458, 1998.

[14] Nathan Linial and Jaikumar Radhakrishnan. Essential covers of the cube by hyperplanes. Journal
of Combinatorial Theory, Series A, 109(2):331–338, 2005.

[15] Lutz Mattner and Bero Roos. Maximal probabilities of convolution powers of discrete uniform
distributions. Statistics & probability letters, 78(17):2992–2996, 2008.

[16] Mark Nicholas Charles Rhodes. On the chvátal rank of the pigeonhole principle. Theor. Comput.
Sci., 410(27-29):2774–2778, 2009.

[17] John Alan Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23–41, 1965.

[18] Bart Selman, Henry A. Kautz, and David A. McAllester. Ten challenges in propositional rea-
soning and search. In Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence, IJCAI 97, Nagoya, Japan, August 23-29, 1997, 2 Volumes, pages 50–54. Morgan
Kaufmann, 1997.

13

[19] Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987.

[20] Jacobus Hendricus van Lint and Richard Michael Wilson. A Course in Combinatorics. Cambridge
University Press, Cambridge, U.K.; New York, 2001.

14

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

