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Abstract

Proving circuit lower bounds has been an important but extremely hard problem for decades.
Although one may show that almost every function f : Fn

2 → F2 requires circuit of size
Ω(2n/n) by a simple counting argument, it remains unknown whether there is an explicit func-
tion (for example, a function in NP) not computable by circuits of size 10n. In fact, a 3n− o(n)
explicit lower bound by Blum (TCS, 1984) was unbeaten for over 30 years until a recent break-
through by Find et al. (FOCS, 2016), which proved a (3 + 1

86 )n− o(n) lower bound for affine
dispersers, a class of functions known to be constructible in P.

In this paper, we prove a stronger lower bound 3.1n − o(n) for affine dispersers. To get
this result, we strengthen the gate elimination approach for (3 + 1

86 )n lower bound, by a more
sophisticated case analysis that significantly decreases the number of bottleneck structures in-
troduced during the elimination procedure. Intuitively, our improvement relies on three obser-
vations: adjacent bottleneck structures becomes less troubled; the gates eliminated are usually
connected; and the hardest cases during gate elimination have nice local properties to prevent
the introduction of new bottleneck structures.

1 Introduction

Proving circuit lower bounds has been an important but extremely hard problem for decades.
Indeed, strong lower bounds have already been shown since seventy years ago for circuits size
even slightly smaller then optimal, say 2n

10n by a simple counting argument [Sha49], but the proof
does not give any explicit function (for example, computable in NP or even P) with large circuit
complexity. Even though most people believe nowadays that NP ⊈ P/poly, we are still unable to
prove much weaker lower bounds such as NEXP ⊈ TC0 or NP ⊈ SIZE[10n].

The attempts of finding functions computable in small uniform classes such as NP that require
relatively large circuit size complexity go back to 1960s, starting from the 2n−O(1) lower bound
for

⊕
(xi ∧ xj) proved by Kloss and Malyshev [KM65]. Another 2n−O(1) lower bound was given

later by Schnorr [Sch74]. Soon after, this lower bound was pushed up to 2.5n−O(1) for certain
symmetric functions by Stockmeyer [Sto77] and a slightly weaker 2.5n− o(n) for combinations of
storage access functions by Paul [Pau77]. The latter one was then improved by Blum [Blu84] to
3n− o(n) with a slightly modified function, which stood unbeaten for over thirty years. It was not
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until 2015 when Find, Golovnev, Hirsch, and Kulikov [FGHK16] proved a
(
3 + 1

86

)
n− o(n) lower

bound for affine dispersers (which is a class of functions computable in polynomial time), following
an alternative 3n− o(n) lower bound for the same function by Demenkov and Kulikov [DK11].
Based on a similar argument, Golovnev and Kulikov [GK16] proved that any quadratic disperser of
appropriate parameters requires circuits of 3.11 size, but no explicit constructions are known for
the parameters desired up to now.

Following the
(
3 + 1

86

)
n− o(n) lower bound for affine dispersers on B2 circuits by Find, Golovnev,

Hirsch, and Kulikov [FGHK16], we strengthen the lower bound to 3.1n− o(n) with a more sophis-
ticated case analysis building upon their proof.

Theorem 1.1 (Main theorem). Assume that C is a B2 circuit computing an affine disperser for
sublinear dimension, then C has size at least 3.1n− o(n). ♢

The key ingredient of our proof is a case study on the local topology of a topological minimal ∧
gate in the circuit, and show that in each case the local part can be handled to meet our require-
ments. We will explain this intuition in Section 1.2 and make it formal in Section 4.

1.1 Related models

Computation models are essential when we talk about the complexity of concrete problems. In this
paper, our interest is in single-output circuits with gates of fan-in 2 computing arbitrary functions
out of B2 ≜ F2 ×F2 → F2. For the sake of clarity, this model is called B2 circuit.

Even if the usage of linear gates (⊕,≡) is banned in the circuit (which are called U2 circuits),
significantly better lower bounds are still unknown. For this model, Schnorr [Sch76] first proved
a 3n−O(1) lower bound for parity, which was later pushed up to 4n−O(1) by Zwick [Zwi91] on
certain symmetric functions. Later, Lachish and Raz [LR01] gave a 4.5n− o(n) lower bound for
strongly two-dependent functions, which was soon improved to 5n− o(n) by Iwama and Morizumi
[IM02].

Since it is proven hard to show circuit lower bound for general models such as B2 and U2
circuit, efforts have been made on many more restricted models in the past few decades. For
example, detecting the existence of a large clique in a graph is known to require exponential
size of monotone circuits that only involve AND and OR gates of fan-in 2 [Raz85; AB87]. Note
that it is a rather weak model, since monotone circuits can only compute monotone functions, i.e.
f (x1, . . . , xn) ≤ f (y1, . . . , yn) if xi ≤ yi for all i.

Another restricted model of interest is the formulas, which are circuits such that each gate has
fan-out at most 1. Explicit formula lower bounds have strong connections to the longstanding
open problem P vs NC1. For De Morgan formulas, Subbotovskaya [Sub61] proved an Ω(n1.5)
lower bound for parity function, which was improved to Ω(n2) later by [Khr71b] for the same
function but via a different method. Khrapchenko [Khr71a] further formalize this method and get
quadratic lower bounds for many different functions. However, it is hard to get a super-quadratic
lower bound with it. To break this barrier, Andreev [And87] applied random restrictions on the
model, and proved an Ω(n2.5−o(1)) lower bound for a cleverly constructed hard function known as
Andreev function. By analyzing the shrinkage exponent, this lower bound was eventually improved
to Ω(n3−o(1)) by [Tal14], following [IN93; PZ93]. Similar to the story of circuit lower bound, there
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is also a huge gap between what we believe (P ⊈ NC1) and what we can prove (a function in P

with Ω(n3−o(1)) formula size lower bound).

On low depth circuits, exponential lower bounds against AC0 circuits have even been known
for parity functions for a long time [Yao85; Hås86]. Generalizing this result, similar lower bounds
can be shown for MODp functions against AC0[q] circuits (AC0 circuits with MODq gates) with
p ̸= q being two primes [Raz87; Smo87]. However, their methods cannot be generalized to the
cases when q is not prime. Indeed, the relationship between NEXP and even AC0[6] is unknown for
years. This was recently been solved by the seminal work by Williams [Wil13], who established
a connection between circuit analysis algorithms and circuit lower bounds. By this algorithmic
approach, Williams [Wil14] finally proved NTIME[2n] ⊈ ACC0 by showing an algorithm for #SAT
of ACC0 circuits, which was later strengthened to NQP ⊈ ACC0 by Murray and Williams [MW20].
In fact, algorithmic lower bound applies to any well-behaved (for example, evaluatable in P, close
under negation and conjunction) circuit class with efficient circuit analysis algorithm (for example,
Circuit SAT or similar problems like Gap-UNSAT, see [MW20]). This gives us a novel way towards
stronger lower bound for larger circuit classes, but we are still unable to get nontrivial circuit
analysis algorithms even for many weak circuit classes such as TC0.

1.2 Gate elimination

Gate elimination is currently our only weapon to prove unconditional explicit lower bounds for
general Boolean circuits. The best lower bounds currently known for both B2 and U2 rely on gate
elimination, while unconditional circuit lower bounds based on other methods seem too ad-hoc
for further improvements. The intuition of gate elimination is to add restrictions to the input
variables until we get a trivial circuit. If it is possible to find a function f : Fn

2 → F2 and a class of
restrictions R to the inputs, such that any r(n) restrictions cannot make the function trivial, and
adding a restriction can eliminate δ gates for any circuit C computing f restricting to R, we can
then obtain a δ · r(n) lower bound for this function by induction on n.

To make a trivial example, let us consider the parity function
⊕

n(x1, . . . , xn) = x1⊕ x2⊕ · · · ⊕
xn, which keeps non-constant even if we substitute constant values to n− 1 of the variables. To-
gether with the observation that substituting each variable by a constant will make its descendants
useless1, and can hence be removed from the circuit, we can prove that any circuit computing

⊕
n

needs at least n− 1 gates. In fact, this lower bound can be improved to 3(n− 1) for U2 circuit with
a slightly more involved case analysis.

One may notice that simple constant substitutions are unable to give us non-trivial lower
bounds for B2 circuits because of the existence of linear gates ⊕ and ≡. As an extension of the
parity function, affine dispersers are functions that keep non-constant even after many affine substi-
tutions of form

xj ←
⊕
xi∈Fj

xi ⊕ c

for some xj, Fj and c. A 3n − o(n) lower bound for affine dispersers is given by Demenkov and
Kulikov [DK11]. For short, they prove that three gates can be eliminated by cleverly performing an

1In fact, we shall formally name this case degenerate later in our paper, and the word useless will be used to represent
a specific case. For details, see Section 3.3.
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affine substitution to a variable, therefore an affine disperser that survives n− o(n) substitutions
has circuit complexity 3n− o(n).

Remark. Strong circuit lower bounds proved by gate elimination usually involve a tedious case
analysis. Moreover, it seems hopeless to prove a superlinear circuit lower bound by gate elim-
ination since it only concentrates on local structures of a circuit. This idea was formally shown
recently in Golovnev, Hirsch, Knop, and Kulikov [GHKK18], who gave a limitation on the gate
elimination method. Still, we have no better methods right now. One attempt to bypass this
obstacle was recently presented by Golovnev, Kulikov, and Williams [GKW21], who showed a
relationship between general circuits of small size and constant depth circuits of exponential size,
inspired by the classical low depth reduction by Valiant [Val77]. In particular, they proved that a
strong exponential lower bound against depth 3 circuits would imply a 3.9n lower bound against
general B2 circuits. Whether this approach can indeed lead to new lower bounds is still open.

1.3 The (3 + 1
86)n− o(n) lower bound

The main obstacle for us to prove a lower bound greater than 3n for affine dispersers is the struc-
ture shown in Figure 12. Simple substitutions to x and y will not allow us to remove more than
3 useless gates from the circuit. The pivotal idea in [FGHK16] is to explicitly take the number of
such troubled structures into account. Following the notations in their paper, we call the gate G a
troubled gate. This idea works based on two observations.

Ob1. There are not too many troubled gates in the circuits initially. More precisely, any circuit
computing an sufficiently strong affine disperser contains at most n

2 + o(n) troubled gates.

Ob2. The number of troubled gates introduced while eliminating a gate from the circuit is bounded
by a constant (which is 4 in [FGHK16]).

∧G1

y2x2

Figure 1: Main obstacle against the 3n barrier.

∧

⊕D2

z1

∧E1

y

G1 yy CB

y2x2

y

Figure 2: Even harder structure requiring
quadratic substitution.

To properly utilize this, they define a quantity called complexity measure, which is the weighted
sum of the size of the circuit and the number of troubled gates. Instead of directly counting the
number of gates eliminated while adding each restriction, we calculate the decrement of complex-
ity measure, i.e., we show that we can either reduce the size of the circuit a lot, or remove three

2For simplicity, we use superscripts after the labels of variables and gates to specify their out degrees.
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gates while reducing the number of troubled gates. With the help of Ob2, a complexity measure
lower bound for the original circuit can be obtained. Then by Ob1, we can translate this into a
circuit size lower bound.

However, there is still a case shown in Figure 2 that even this argument does not work, since
we can neither eliminate sufficiently many gates nor reduce the number of troubled gates. To
handle this case, [FGHK16] tries to use the quadratic substitution of form

xj ← ((xi ⊕ c1) ∧ (xk ⊕ c2))⊕ c3.

The restrictions applied to the circuit and the function therefore consist of both affine equations
and quadratic equations with some structural constraints (in fact, the quadratic ones can be viewed
as delayed affine substitutions). Formally, they define read-once depth-two quadratic source (or rdq-
source for short) to represent this structure. By taking the number of quadratic equations into
account in the complexity measure, we can finally resolve this issue.

1.4 Our improvements

The main bottleneck of their proof is the number of troubled gates introduced in one elimination
(see Ob2). Find, Golovnev, Hirsch, and Kulikov [FGHK16] showed that each elimination can only
introduce at most 4 troubled gates, which is in fact over-estimated. By a much more sophisticated
analysis, we can significantly strengthen this upper bound on the number of troubled gates intro-
duced, resulting in a stronger circuit lower bound. Generally speaking, our proof builds upon the
following three observations.

Pairing troubled gates The first essential observation is that troubled gates will no longer bother
us if they are adjacent. Indeed, if two troubled gates share a common variable and form the
structure in Figure 3, we can handle them easily. We call this structure troubled pairs. We notice
that if these cases are ruled out, then each elimination can only introduce 2 troubled gates.

∧G1 ∧ G′1

y2x2 z2

Figure 3: A pair of adjacent troubled gates.

x

A ∧

B CD

E F

A G

B CD

E F

to be eliminated

Figure 4: Eliminated gates are local.

The gates eliminated are connected [FGHK16] argued the introduction of troubled gates for
each elimination separately. However, we observe that the gates to be eliminated in a single substi-
tution usually form a highly local structure, and have good properties such as connectivity. Take
Figure 4 for example, which we will formally handle by Case 3 later in our proof, we can substitute
a constant to x to eliminate the gates G, A, B and C. By noticing that these gates form a connected
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subgraph, many troubled gates will not be introduced in each elimination. By a more rigorous
analysis, almost every elimination will only introduce one troubled gate.

Bottleneck structures have good local properties By looking into the cases, the major bottleneck
preventing us from better lower bounds is the case shown in Figure 2 (which introduces quadratic
substitutions), and the cases eliminating quadratic substitutions. However, these cases all have
very special local structures, so that we can either argue that some places will never introduce
troubled gates, or we can rule out the cases when too many troubled gates are formed by showing
that these cases can be easily handled in other ways. For example, in Figure 2, by doing a quadratic
substitution, although 5 gates are eliminated, we can show that at most one troubled gate can be
introduced in overall, which happens while eliminating the descendent of E.

Since the first two observations are graph-theoretical properties independent of the concrete
function computed, we formalize them as the normalization lemma formally presented in Lemma
3.11. With this lemma and the third observation, we reformulate the case analysis for (3 + 1

86 )n
circuit lower bound and resolve several bottleneck cases. This leads to the 3.1n− o(n) circuit lower
bound if we choose optimal parameters to define the complexity measure.

1.5 Outline

In Section 2 we define basic concepts and operations for gate elimination. In Section 3 we formally
define troubled gates, troubled pairs and the normalization lemma. Finally we present the complete
proof of the 3.1n− o(n) circuit lower bound in Section 4.

2 Preliminaries

In this section we define basic concepts and operations required by gate elimination. The defini-
tions and propositions in this section has been introduced in [FGHK16] for (3 + 1

86 )n circuit lower
bound. For the convenience of the reader, we keep their notations on circuit, substitutions, etc.
Readers that are not familiar with complexity theory are referred to [AB09] for the definition of
standard notations like P, NP, AC0, etc.

2.1 Basic concepts

A circuit is an acyclic directed graph, in which each vertex is either a variable or a gate. For variables,
the corresponding vertices must have in-degree 0. Each gate is labelled with an arbitrary function
out of a class of boolean functions C, usually called the basis of the circuit. The size of the circuit
means the number of gates in it. The basis we are interested in, called B2, contains all F2

2 → F2
functions. Hence in the rest of the paper, we will abuse the notation ‘circuit’ to mean B2 circuits, if
no other clarifications are specified.

Based on the functionality, we can classify all 16 kinds of gates in B2 circuits into 4 types:

Trivial gate The outputs of these functions are independent of the inputs, i.e., f (x, y) = c. They
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are constant functions, and hence can in fact be replaced by a constant. However, to better
illustrate our proof, we explicitly keep them in the circuit.

Degenerate gate These functions depend on exactly one of the inputs, i.e., f (x, y) = (x ∧ c1) ⊕
(y ∧ ¬c1) ⊕ c2. A degenerate gate outputs one of the inputs or its negation, hence we can
remove the gate and modify its descendants so that the circuit is simplified. Nevertheless,
we keep them for the same reason.

⊕-type gate These functions are affine functions depending on both inputs, i.e., f (x, y) = x⊕ y⊕
c.

∧-type gate These functions are quadratic functions depending on both inputs, i.e., f (x, y) =
((x⊕ c1) ∧ (y⊕ c2))⊕ c3.

A gate (or a variable) is called a k-gate (or a k-variable), if it has out-degree exactly k. We add
a superscript + after k (say k+ gate) to mean that it has out-degree at least k. k− gates and k−

variables are defined similarly.

For the convenience of case analysis, we will extensively use the following graphical represen-
tation of circuit (see Figure 5). The input variables are labeled with x1, x2, . . . , xn inside the circle.
The type of function computed by a gate is also marked inside the circle. The name and out-degree
are included beside a node if necessary. Note the different circles in the graph may represent the
same gate or input variable, unless we clarify it explicitly.

x12+ x2 x3 x4 T1+

∧ ∧

⊕ ⊕A2− B1

∧

Figure 5: Local topology of a B2 circuit.

2.2 Affine disperser

The hard functions we utilize are those which keeps non-constant when many affine constraints
such as x1 ⊕ x3 ⊕ x7 = 1 are introduced. We formally define such functions below.

Definition 2.1 (Affine disperser). A function f : Fn
2 → F2 is called an affine disperser for dimen-

sion d, if it is not a constant function when the inputs are restricted to any d dimensional affine
subspace of Fn

2 . ♢

An affine disperser for dimension d is not constant when inputs are restricted to the solutions
of a system of linear equations with d free variables. It can be considered as a generalization of the
xor function, which is not trivial after assigning constant values to n− 1 input variables.

For our lower bounds, affine dispersers for sublinear dimension are enough. Explicit con-
structions of these functions are already given in [Li11; BK12; Li15]. More precisely, there exists a
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polynomial time algorithm A(n, x) such that for each n, A(n, ·) : Fn
2 → F2 is an affine disperser

for sublinear dimension.

2.3 Read-once depth-two quadratic source

In order to perform gate elimination, we need to add restrictions to inputs to simplify the circuit.
To simplify our proof, we use, instead of affine restrictions, a slightly stronger class of restriction
called read-once depth-two quadratic source (or rdq-source) which was introduced in [FGHK16].

Definition 2.2 (Rdq-source). Let X = {x1, . . . , xn} be the set of variables and F, L, Q be a disjoint
partition of X, containing free, linear and quadratic variables, respectively. An rdq-source is defined
as the partition (F, L, Q) together with the following system of equations.

1. For each quadratic variable xj ∈ Q, there is a quadratic equation

xj = ((xi ⊕ c1) ∧ (xk ⊕ c2))⊕ c3,

where xi, xk are free variables and c1, c2, c3 are constants. In addition, the variables at the
right-hand side of the quadratic equations are disjoint.

2. For each linear variable xj ∈ L, there is an affine equation

xj =
⊕
xi∈Fj

xi ⊕
⊕

xk∈Qj

xk ⊕ c1,

where Fj ⊆ F, Qj ⊆ Q and c1 is a constant. Note that we do not require Fj or Qj to be disjoint
here. Linear variables are also called affine variables in this paper.

The dimension of an rdq-source is defined as the number of free variables. ♢

An rdq-source of dimension d defines a subset of Fn
2 of size 2d, since the values of linear and

quadratic variables are uniquely determined by the values of free variables. Intuitively one may
consider an rdq-source by a depth-two circuit containing a quadratic layer and an affine layer (see
Figure 6).

x1 x2 x3 x4 x5

∧x6 ∨x7

⊕x8 ≡x9

quadratic layer

affine layer

Figure 6: Rdq-source as depth-two circuit.

Rdq-source is said to be read-once since the variables at the right-hand sides of quadratic equa-
tions are disjoint, or equivalently, each free variable is read at most once by quadratic equations.
A free variable is called protected if it occurs at the right-hand side of an quadratic equation, and
the free variables that are not protected are called unprotected. The two (protected) variables occur
in the same quadratic equation is said to be coupled with each other.

8



Rdq-source is said to be a source since it specify a subset of Fn
2 on which the circuit should

agree with the function it computes. Let f : Fn
2 → F2 be a function and C be a circuit. Let R

be an rdq-source on n variables. We say C compute f restricting to R (or C computes f |R), if the
following two conditions hold.

1. Linear and quadratic variables in R are 0-variables in C.

2. C computes f on all tuples of inputs satisfying the system of linear equations in R.

Proposition 2.3. An rdq-source of dimension 2d contains an affine subspace dimension d. Hence
an affine disperser for dimension d is not constant restricting to rdq-source of dimension 2d. ♢

Proof. An rdq-source of dimension 2d contains 2d free variables and at most d quadratic equa-
tions, since each quadratic equation contains two free variables. For each affine equation depend-
ing on free variables xi and xk, we further assign xi = 0 such that it becomes an affine equation.
We then obtain an rdq-source of dimension ≥ d without quadratic variable, which is exactly an
affine subspace of dimension ≥ d. □

2.4 Substitutions

Let C be a circuit computing f |R for a function f and an rdq-source R, we can further restrict R to
a smaller source R′ by adding or modifying equations, and obtain a smaller circuit C′ computing
f |R′ by removing redundant gates from C. This operation is called a substitution. If the restriction
is denoted by xj = g(xi1 , xi2 , . . . , xik) for a function g, we call it a g-substitution to xj.

In order to define the modification of circuit after substitutions, we slightly extend the defini-
tion of circuits to involve constants of in-degree 0. In such case, a gate can be fed by gates, variables
or constants3. In particular, a gate fed by a constant is either trivial or degenerate. Constants will
be removed by normalization rules, which will be described in Section 3.3.

In this paper, we will use the following four types of substitutions.

Constant substitution. Let xj be an arbitrary free variable, we can substitute xj ← c1 for constant
c1. For the circuit, all the descendants of xj are rewired to be fed by a constant c1. Since xj is now
a 0-variable, we can make it a linear variable by introducing an affine equation xj = c1. All its
occurrence in linear and quadratic equations are replaced by the constant c1, so that the system of
equations remains to be a valid rdq-source.

Affine substitution to couples. Let xj, xk be a couple of free (protected) variables that occurs in
the same quadratic equations for xi ∈ Q. We can substitute xj ← xk ⊕ c1 for constant c1, if it
is possible to make xj a 0-variable after appropriate rewiring4. All the occurrence of xj in linear

3Note that the size of a circuit still refers to the number of gates involved; the constants as well as the variables are
not counted.

4For rewiring we mean that, in order to make xj a 0-variable, all its descendants in the original circuit should be fed
by another variables. For instance, if an affine substitution xj ← xk ⊕ 1 is performed, we can use the negation of xk to
denote xj. More precisely, we can rewire all the gates fed by xj to be fed by xk, and change the function computed by
these gates accordingly, to replace xj by xk ⊕ 1.
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and quadratic equations are replaced by xk ⊕ c1, and in particular, the quadratic equation for xi
becomes an affine equation, hence xi becomes a linear variable.

Affine substitution. Let xj be an unprotected free variable and xk be a free variable. We can
substitute xj ← xk ⊕ c1 for constant c1, and make xj a 0-variable by appropriate rewiring. By this,
we means to unfold xj to be xk ⊕ c1 at all its occurrence in the original affine equations. Clearly xj
becomes an affine variable with the equation xj = xk ⊕ c1, the validity of having no occurrence in
quadratic equations is guaranteed since it is originally unprotected.

Quadratic substitution. Let xj, xi, xk be unprotected free variables. We can substitute

xj ← ((xi ⊕ c1) ∧ (xk ⊕ c2))⊕ c3

for constants c1, c2 and c3, if it is possible to make xj a 0-variable after appropriate rewiring. Sim-
ilarly, xj becomes a quadratic variable. It is easy to see that the equations containing xj at the
right-hand sides are still valid.

Since each type of substitution eliminates exactly one free variable, with Proposition 2.3, we
immediately get the following fact.

Proposition 2.4. An affine disperser for dimension d if not trivial after performing n− 2d substi-
tutions. Hence an affine disperser for sublinear dimension is not trivial after performing n− o(n)
substitutions. ♢

Note that by performing a substitution, we will always disconnect the newly introduced non-
free variable from the circuit by appropriate rewiring. So throughout the process, all variables
with non-zero out-degrees should be free variables.

2.5 Cyclic circuit

Substitution to variables will make their descendants trivial or degenerate so that can be removed
from the circuit. However, the local topology near the inputs may not be good enough to eliminate
sufficiently many gates. For example, if the inputs only feed⊕-type gates and are all 3−-variables,
it will be hard to eliminate more than three gates. In general, it will be hard to eliminate more
gates if every ∧-type gate is far from the inputs.

The solution to this issue, proposed by Find, Golovnev, Hirsch, and Kulikov [FGHK16], is to
generalize the circuit so that we can substitute constant values to gates apart from variables. This
will allow us to substitute a constant value to the input of gates we want even if it is a gate, in
order to trivialize it and further remove its descendants. To support this operation, we allow the
circuit to contain cycles of ⊕-type gates.

Definition 2.5 (Cyclic xor-circuit and semicircuit). A cyclic xor-circuit is a directed graph of ⊕-
type gates and input variables, which may involve cycles. A cyclic xor-circuit may have arbitrarily
many output gates. Furthermore, we define a semicircuit to be the composition of a cyclic xor-
circuit C1 and a circuit C2 (i.e. the outputs of C1 may feed C2). ♢
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A cyclic circuit is a reasonable computation model only if its behavior (i.e. the output of each
gate) is uniquely determined given any inputs. Let C be a cyclic xor-circuit containing gates
{G1, G2, . . . , Gm}, such that Gi is fed by Ii and Ji and computes a function fi ∈ {⊕,≡}. Note
that Ii and Ji may be constants, variables or gates. This circuit corresponds to a system of linear
equations {Gi = fi(Ii, Ji)}|mi=1, where the input variables are viewed as constants. It can be rep-
resented as Ag = b, where g = [G1, G2, . . . , Gm]⊤ and b consists of constants and variables. The
cyclic xor-circuit C is said to be fair if A is of full rank, i.e. this system of linear equation has unique
solution for any assignment of input variables. A semicircuit is fair if the cyclic xor-circuit is fair.

Proposition 2.6. Let C be a fair semicircuit and R be an rdq-source. A g-substitution (out of the
four types in Section 2.4) to xj that does not introduce cycles is valid. That is, it produces an
rdq-source R′ that further restrict R to the subset where xj = g(xi, xk, . . . , xl). The circuit C′ after
substitution is still a fair semicircuit computing f |R′ . ♢

For simplicity, we abuse the notation circuit to mean fair semicircuit in the rest of the paper.

2.6 Substitution to gate: xor-reconstruction

We now introduce the operation for substituting constant values to gates, which is called xor-
reconstruction. Let C be a circuit, and G be a topologically minimal ∧-type gate5 fed by I1 and I2,
where I1 is a gate. The subcircuit computing I1 does not involve ∧-type gates, so that it is a cyclic
xor-circuit. We can trivialize G by substituting constant value of I1 in the cyclic xor-circuit.

Proposition 2.7. Let I be a gate in a fair cyclic xor-circuit computing an affine function that de-
pends on xi, then there exists a path from xi to I in the circuit. ♢

Proof. Let X be the set of gates unreachable from xi. It is easy to verify that the subcircuit contain-
ing the gates in X is a fair semicircuit, whose inputs are variables except for xi. In such case, the
output of gates in X are uniquely determined by the assignment of variables except for xi. Since I
depends on xi, we then conclude that I /∈ X . □

Let I be a gate in a cyclic xor-circuit that depends on xi. By Proposition 2.7, there is a path from
xi to I, say

x = I0 → I1 → I2 → · · · → Ik = I.

Assume that Ij computes a linear function f j ∈ {⊕,≡} of Ij−1 and Tj, where T1, T2, . . . , Tk are not
necessarily distinct. The output of the gates on this path satisfies the following system of linear
equations. 

I1 = f1(I0, T1)

I2 = f2(I1, T2)

. . .
Ik = fk(Ik−1, Tk)

(1)

5If a circuit does not contain an ∧-type gate, it computes an affine function of variables so that can be trivialized by
a single affine substitution. Hence during the gate elimination procedure, we may assume that there exists an ∧-type
gate.
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Since linear functions are invertible, we can rewrite the equation Ij = f j(Ij−1, Tj) as Ij−1 = gj(Ij, Tj)
for some linear function gj ∈ {⊕,≡}, so that the system of linear equations is as follow.

Ik−1 = gk(Ik, Tk)

Ik−2 = gk−1(Ik−1, Tk−1)

. . .
I0 = g1(I1, T1)

(2)

This system of linear equations naturally corresponds to a circuit where I = Ik becomes an ‘input’
and xi = I0 becomes a gate. To substitute I ← b, we only need to replace the gate Ik with a constant
b, replace the variable xi with a gate Z, and rewire the circuit according to this system of linear
equations (see Figure 7).

⊕Ik = fk(Ik−1, Tk)

⊕Ik−1 = fk−1(Ik−2, Tk−1)

...

⊕I1 = f1(I0, T1)

xi

Ik

Ik−1

I1

Tk

Tk−1

T1

b

⊕ Ik−1 = gk(Ik, Tk)

...

⊕ I1 = g2(I2, T2)

⊕ I0 = g1(I1, T1)
Z

Ik−1

I1

Tk

Tk−1

T1

substitution I←b−−−−−−−−−→

Figure 7: Xor-reconstruction.

Proposition 2.8. Let I be a gate in a fair cyclic xor-circuit C computing f , the xor-reconstruction
produce a fair xor-circuit C′ computing f |I=b. ♢

Proof. It is easy to see that the system of linear equation corresponding to C′ is equivalent to that
of C, while the only difference is that the output of I is fixed to be b. □

We now formulate the xor-reconstruction for semicircuit. Let C be a circuit computing f |R for
a function f and an rdq-source R. Let I be an ⊕-type gate in the cyclic xor-circuit involved in C.

Constant substitution to gate. If I depends on an unprotected variable xi, we can substitute
I ← b for constant b. More precisely, we further restrict R to R′ by making xi a linear variable with
proper affine equation, and perform xor-reconstruction to C to obtain C′ computing f |R′ .

3 Troubled gates and normalization lemma

The main technical ingredient in Find, Golovnev, Hirsch, and Kulikov [FGHK16] allowing us to
bypass the 3n barrier is to consider the introduction and destruction of the bottleneck structure,
which is called troubled gate in their paper. Informally speaking, they argue that for each substitu-
tion, one may either eliminate k > 3 gates while introducing at most 4k troubled gates, or eliminate
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exactly 3 gates while destructing one troubled gate without forming any additional troubled gates.
With this intuition they perform an amortized analysis to this gate elimination procedure, where the
number of troubled gates is considered as the potential of the circuit.

We notice that their 4k upper bound for the introduction of troubled gates is not tight. We
strengthen their analysis in two dimensions, which will be presented in this and the subsequent
section.

1. We notice that adjacent troubled gates form a nicer structure, we called troubled pairs, whose
eliminations are no longer troubled. This tells us that only those troubled gates not contained
in pairs are truly troubled. From this intuition we may improve the 4k bound to 2k, without
diving into the case analysis.

2. The original 4k bound is obtained by counting the number of troubled gates introduced dur-
ing the elimination of each gate separately. In their case analysis, however, we actually elim-
inate the gates from a compact local structure, so that we can perform a more fine-grained
analysis. To capture the effect of local structure, we reformulate the normalization procedure
(i.e. the procedure that eliminate gates), which will be used in a systematic reexamination of
the case analysis in [FGHK16] later.

3.1 Troubled gates, troubled pairs and potential

Definition 3.1 (Troubled gate). A gate G is called troubled if it is an ∧-type 1-gate fed by two 2-
variables (see Figure 8). Two troubled gates are called adjacent if they share at least one common
input variable. ♢

Such a structure is troubled since there is no obvious way of eliminating more than three gates
per substitution to the variables. For example, by substituting proper constant value to x in Figure
8, we can trivialize G while making the descendants of x and G degenerate, but still eliminating
only three gates.

Definition 3.2 (Troubled pair). A troubled pair (G, G′) is a pair of adjacent troubled gates (see Fig-
ure 9). The input variables that feed both G and G′ are called inner variables, and the variables that
feed one of G and G′ are called boundary variables. ♢

∧G1

y2x2

Figure 8: A troubled gate G.

∧G1 ∧ G′1

y2x2 z2

Figure 9: A troubled pair (G, G′).

Note that it might be the case that x = z in Figure 9, i.e. a troubled pair (G, G′) may contain
two inner variables and no boundary variable. Such a troubled pair without boundary variable is
said to be compact.
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Later analysis in Section 3.4 will show that a troubled pair is actually a nice structure for gate
elimination. If we maintain a disjoint set of troubled pairs, only troubled gates that are not con-
tained in it will bother us. This motivates us to define the notion of packing.

Definition 3.3 (Packing). Let C be a circuit and T be the set of all troubled pairs. A subset of
disjoint troubled pairs P ⊆ T is called a packing of C, and each troubled pair (G, G′) ∈ P is called
a pack. By disjoint, we mean that each gate can be contained in at most one pack. A packing is
called maximal if there is no packing containing it. ♢

Definition 3.4 (Truly troubled gate). Let C be a circuit and P be a packing. A gate is said to be
truly troubled if it is a troubled gate that does not contained in a pack. ♢

Similar to Find, Golovnev, Hirsch, and Kulikov [FGHK16], we will analyze the introduction
and destruction of truly troubled gates during gate elimination. However, a truly troubled gate
can be introduced either directly or by unpacking a pack, and the latter case usually leads to
tedious case study. For technical convenience, we will analyze the change of potential defined as
follow.

Definition 3.5 (Potential). Let C be a circuit and P be a packing. We define the potential Φ(C,P)
as the number of truly troubled gates plus |P|, or equivalent, as the number of troubled gates
minus |P|. ♢

If G is a truly troubled gate introduced by unpacking (G, G′) ∈ P , its couple G′ will not be
troubled, unless the inner variables do not feed G′ any more. We will show it later that the special
case cannot happen in our proof. In such case, the potential increment can only be caused by
directly introduced truly troubled gates or packs.

3.2 Circuit complexity measure

Recall that to perform an amortized analysis to the number of gates eliminated, we define the
circuit complexity measure as a linear combination of the number of gates and bottlenecks.

Definition 3.6 (Circuit complexity measure). Let C be a circuit, P be a packing and R be an rdq-
source. The circuit complexity measure µ(C,P , R) is defined as

µ(C,P , R) ≜ g + αI · i + αQ · q + αϕ ·Φ(C,P),

where g is the number of gates, i is the number of influential inputs and q is the number of quadratic
equations. An input is called influential if it is either a 1+-variable or protected. Note that αI , αQ
and αϕ are positive constants that will be chosen later. ♢

We will analyze the complexity measure decrement during gate elimination procedure to ob-
tain a complexity measure lower bound, which will be translated to a circuit size lower bound by
an upper bound of the potential. This is possible since we have the following crucial observation.

Lemma 3.7 (Lemma 3 in [FGHK16]). Let C be a circuit computing an affine disperser for dimen-
sion d, then the number of troubled gates is at most n

2 + 5d
2 . ♢
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Corollary 3.8. Let C be a circuit computing an affine disperser for dimension d. For all packing P
of C, Φ(C,P) ≤ n

2 + 5d
2 . ♢

Proof. For any packing P of C, the potential Φ(C,P) equals to the number of troubled gates
minus |P|. Since the number of troubled gates is at most n

2 + 5d
2 by Lemma 3.7, we also have

Φ(C,P) ≤ n
2 + 5d

2 . □

With Corollary 3.8 and Definition 3.6, we immediately get the following theorem.

Theorem 3.9. Assume that computing a function f : Fn
2 → F2 requires complexity µ(C,P ,∅) ≥

µ0 for any circuit C and packing P , we must have |C| ≥ µ0 − αI · n− αϕ(
n
2 + d). Furthermore, if f

is an affine disperser for sublinear dimension and µ0 = δn− o(n), we have

|C| ≥
(

δ− αI −
αϕ

2

)
n− o(n). ♢

3.3 Normalization of circuits

After substitutions are applied to the circuit, some gates may become obviously redundant (for
example, a gate fed by a constant becomes trivial or degenerate). These gates will be eliminated by
applying the following five normalization rules. A circuit is called normalized if no normalization
rule can apply to it. Also, we will carefully analyze the complexity measure decrement for each
normalization. Based on this analysis, we will refine the case study in the original (3+ 1

86 )n proof,
which leads to our new 3.1n circuit lower bounds.

Recall that the potential may increase by direct introduction of packs and troubled gates, or by
destruction of a pack (G1, G2) such that they become non-adjacent troubled gates. We will show
in Proposition 3.10 that the latter case is impossible. So in the following analysis we only consider
potential increment caused by direct introduction of packs and troubled gates.

Rule 1. Let G be a 0-gate fed by I1 and I2. Clearly, G can be removed, and the out-degree of I1
and I2 are decreased by one. Newly introduced troubled gate can only be I1, I2, or the gate fed
them. Since troubled gates are fed by 2-variables, I1 (or I2) can feed at most two troubled gates.
If there are two newly introduced troubled gates fed by I1 (or I2), we pack them together. In such
case, each input of G can produce a troubled gate or a pack, hence ∆Φ ≤ 2, which means that
∆µ ≥ 1− 2αϕ.

Rule 2. Let G be a trivialized gate fed by a constant b6, it can be removed and its descendants
become fed by a constant c instead (see Figure 10). If the other input I1 of G is not a constant, its
out-degree is decreased by one and a troubled gate may be introduced. Clearly a newly introduced
troubled gate is either I1 or a gate fed by I1, so that similar to Rule 1, we can see that ∆Φ ≤ 1. Hence
∆µ ≥ 1− αϕ.

6Rigorously speaking, G is not a trivial gate under our definition, since the function on it may still be non-trivial.
Here what we actually mean is that G becomes trivial after we substitute b into the function on G. In the rest of the
paper, we will intensively use the similar abuse of notation for a cleaner argument.
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∧G

b

y

yI1

y

c

y

y

y

I1

Figure 10: Rule 2.

Rule 3. Let G be a degenerate gate fed by a constant b7 and another node I1. Then we can always
eliminate G and rewire the circuit in some way, such that the descendants of G becomes directly
fed by I1 (see Figure 11). If G computes the negation of I1, the functions of the descendants should
be modified accordingly. In particular, if G is the output gate, we make I1 the output gate and
change the function computed by I1 and its descendants properly. Similar to Rule 2, the gates
that may become trouble are either I1 or fed by I1 after the normalization, hence ∆Φ ≤ 1 and
∆µ ≥ 1− αϕ.

∧G

b

y

yI1

y

c

y

y

y

I1

Figure 11: Rule 3.

Rule 4. A gate is called useless if it is a 1-gate with only descendant Q, such that another input
of Q also feeds G. We may eliminate G and rewire the nodes feeding it to feed Q (see Figure 12).
Now we show that ∆Φ ≤ 1. If I2 is a gate, it is the only gate that may become trouble; otherwise
if it is a variable, newly introduced troubled gates must be fed by it, forming a troubled gate or a
pack. Hence ∆µ ≥ 1− αT.

yI1 y I2

y Q

yG1

yI1 y I2

y Q

y

Figure 12: Rule 4.

Rule 5. Let G be a gate whose inputs coincide8, we make it degenerate (or trivial) by changing
one (or both) of its input to a constant, and eliminate it via Rule 2 or Rule 3. By the analysis above,
∆Φ ≤ 1 and ∆µ ≥ 1− αϕ.

Proposition 3.10. If a pack (G1, G2) is destructed after applying a normalization rule, at least one
of them becomes non-troubled, hence potential increment can only be caused by direct introduc-
tion of troubled gates or packs. ♢

7Note that Rule 2 and Rule 3 only eliminate trivialized or degenerate gates that are fed by a constant. Most trivial
and degenerate gates in our proof are eliminated in such fashion, except for Case 0 and some cases using affine or
quadratic substitutions.

8Note that this rule is necessary, since Rule 3 may introduce such gates.
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Proof. Towards a contradiction, we assume that (G1, G2) is destructed such that G1 and G2 remain
troubled. Clearly the inner variable of the pair must change its descendants, since otherwise this
pack is not necessarily destructed. The normalization rules, however, only change the descendants
of the gates that feeds a gate to be eliminated. Hence at least one of G1 and G2 is eliminated, which
leads to contradiction. □

We summarize the results above in the following lemma.

Lemma 3.11 (Normalization lemma). Let β be the complexity measure decrement for each nor-
malization rule. For Rule 1 we have β ≥ 1 − 2αϕ, and for other rules we have β ≥ 1 − αϕ.
Moreover, suppose that the eliminated gate G is fed by I1 and I2, the potential increment is caused
only by direct introduction of troubled gates or packs, which are either I1 (or I2) or fed by them
after the normalization. ♢

Note that αϕ will be chosen to be smaller than 1
2 , so that β ≥ 0. Since normalization will

decrease the complexity measure, it will not bother us to assume that the circuit is normalized
during gate elimination procedure.

3.4 Troubled pair elimination

Now we show that troubled pairs are actually not troubled. That is, we can remove them by appro-
priate substitutions, such that the complexity measure decrement per substitution is sufficiently
large. We will call this operation troubled pair elimination in the rest of the paper.

Lemma 3.12 (Troubled pair elimination). Let C be a circuit computing f |R for function f and rdq-
source R. Let P be a non-empty packing of C. Assume that f is not trivial under two substitutions.
Then it is possible to perform substitutions such that complexity measure decrement per substitu-
tion is at least

δp = min
{

3
2

αI , 3− 3αϕ + αI + αQ

}
.

♢

Proof. Let (G1, G2) ∈ P be a pack. We first consider the case that (G1, G2) is not compact (see
Figure 13). Let y be the inner variable and {x, z} be the boundary variables.

1. If y is protected, we perform appropriate constant substitution to y such that G1 is trivialized.
Also, G2 and the only descendants of G1 are degenerate. We then normalize the circuit
so that three gates are eliminated and ∆Φ ≤ 3. Since we substitute constant value to a
protected variable, a quadratic equation and an influential input are killed, decreasing the
total complexity measure by ∆µ ≥ 3− 3αϕ + αI + αQ.

2. If y is unprotected, we perform appropriate constant substitution to x and z such that both
G1 and G2 are trivialized (i.e. they have a fixed output independent of the assignments of
variables). In such case, all three variables become non-influential, which leads to a total
complexity measure decrement ∆µ ≥ 3αI .

Now we assume that (G1, G2) is a compact pack fed by x and y (see Figure 14).
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∧G1
1

H1

∧ G1
2

H2

y2x2 z2

constant substitution
one quadratic equation killed

trivialize degenerate

degenerate

(a) Case when y is protected

∧G1
1

H1

∧ G1
2

H2

y2x2 z2constant
substitution

constant
substitution

trivialize trivialize

isolated

(b) Case when y is unprotected

Figure 13: Troubled pair elimination: incompact case.

1. If one of x and y is protected we may perform constant substitution (like the first case above)
such that ∆µ ≥ 3− 3αϕ + αI + αQ.

2. Otherwise, both x and y are unprotected. By enumerating the functions computed by G1
and G2, one can verify that either a constant substitution (to x or y) or an affine substitution
y← x⊕ b will trivialize both gates. We then replace G1 and G2 by constants such that x and
y becomes non-influential. Hence we decrease the complexity measure ∆µ ≥ 2αI >

3
2 αI . □

∧G1
1

H1

∧ G1
2

H2

y2x2

constant substitution
one quadratic equation killed

trivialize degenerate

degenerate

(a) Case when y is protected.

∧G1
1

H1

∧ G1
2

H2

y2x2

constant substitution
or affine substitution

trivialize trivialize

(b) Case when both x and y are unprotected.

Figure 14: Troubled pair elimination: compact case.

Note that the bounds in Lemma 3.12 are not tight. However, we will later show that this is not
the bottleneck of our proof, hence improving it is not essential.

4 Proof of 3.1n− o(n) circuit lower bound

In this section we present the proof of 3.1n− o(n) circuit lower bound for affine dispersers. For
short, we strengthen the analysis of (3 + 1

86 )n − o(n) lower bound in [FGHK16] by improving
the upper bounds of the number of troubled gates introduced, with the help of Lemma 3.11 and
Lemma 3.12. We can then prove a 3.1n− o(n) circuit lower bound by choosing optimal parameters.

Theorem 4.1. Let C be a circuit computing an affine disperser f for dimension d. For all packing
P of C, we have µ(C,P ,∅) ≥ δ(n− 2d− 2), where

δ ≜ αI + min
{

αI

3
, 2− 2αϕ + αQ, 4− 4αϕ, 3 + αϕ, 5− αQ,

5− 2αϕ + αQ

2

}
.

♢
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The proof of Theorem 4.1 requires tedious case analysis, which will be discussed in Section 4.1.
Intuitively, it means that we can perform substitutions to the circuit such that it is simplified, by
(1) making variables non-influential (i.e. αI

3 ), (2) eliminating many gates (i.e. 4β and 5− αQ), or (3)
eliminating gates and removing quadratic equations (i.e. 2− 2αϕ + αQ and 1

2 (5− 2αϕ + αQ)).

Remainder of Theorem 1.1 (Main Theorem). Assume that C is a B2 circuit computing an affine
disperser for sublinear dimension, then C has size at least 3.1n− o(n). ♢

Proof. We strengthen the theorem to prove lower bounds for semicircuits instead of B2 (acyclic)
circuits. Let C be a circuit computing an affine disperser f for sublinear dimension. By Theorem
3.9 and 4.1, we have |C| ≥

(
δ− αϕ

2 − αI

)
n− o(n). Now we need to determine αϕ, αQ, αI ≥ 0. To

choose optimal parameters, we solve the following linear program.

max . δ−
αϕ

2
− αI

s.t. δ ≤ αI + min
{

αI

3
, 2− 2αϕ + αQ, 4− 4αϕ, 3 + αϕ, 5− αQ,

5− 2αϕ + αQ

2

}
αϕ, αQ, αI ≥ 0,

αϕ ≤
1
2

.

The optimal solution is αϕ = 0.2, αI = 9.6, αQ = 1.8 and δ = 12.8, which gives

|C| ≥
(

δ−
αϕ

2
− αI

)
n− o(n) = 3.1n− o(n). □

4.1 Proof of Theorem 4.1

Remainder of Theorem 4.1. Let C be a circuit computing an affine disperser f for dimension d.
For all packing P of C, we have µ(C,P ,∅) ≥ δ(n− 2d− 2), where

δ ≜ αI + min
{

αI

3
, 2− 2αϕ + αQ, 4− 4αϕ, 3 + αϕ, 5− αQ,

5− 2αϕ + αQ

2

}
.

♢

Proof. By Lemma 2.3, the affine disperser f is not trivial under n − 2d substitutions (out of the
four types in Section 2.4 and xor-reconstruction in Section 2.6). Let R be the rdq-source that will
be updated by substitutions during gate elimination. To prove the theorem, it is sufficient to
show that we can perform at least n− 2d− 2 substitutions to the circuit such that the complexity
decrement per substitution is at least δ.

Now we prove by case analysis that if k < n− 2d− 2 substitutions has been applied to the cir-
cuit such that the resulting circuit C computes f |R with packing P , either it is possible to simplify
the circuit (i.e. decrease the complexity measure) without performing substitution, or it is possible
to perform 1 ≤ t ≤ 3 substitutions with complexity measure decrement ≥ δ per substitution,
while the simplified circuit C′ remains to compute f restricting to the updated rdq-source. Note
the the function is not trivial after performing these substitutions, so the output gate of the circuit
will not be trivialized.
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Case 0. Now we firstly simplify the circuit such that it does not have obvious redundancy.

Case 0.1. If the circuit is not normalized, we normalize it while ∆µ ≥ 0.

Case 0.2. Assume that there is a gate in the acyclic part of the circuit, such that the output gate
is not reachable from it. We find a topologically maximal one G. It is easy to see that G
is a 0-gate. We can then remove it by normalization Rule 1, with complexity decrement
∆µ ≥ 1− 2αϕ ≥ 0.

Case 0.3. If there is a gate G outputing a fixed constant c for any assignment to the variables,
we directly replace it by c. Similar to the normalization rules, replacing a gate by a con-
stant will increase the potential by at most two (one for each of the inputs of G). Hence a
gate is removed while ∆Φ ≤ 2, which means that ∆µ ≥ 1− 2αϕ ≥ 0.
Similarly, if there is a gate G fed by I1 and I2 that computes a function that only depends
on I1, we rewire the circuit such that G is fed by I1 and a constant 0 (this operation
increase the potential by at most one, like the normalization rules). We can then make
G degenerate by changing its function properly, so that G can be removed by Rule 3. A
gate is removed while ∆Φ ≤ 2, which means that ∆µ ≥ 1− 2αϕ ≥ 0.

Case 0.4. The circuit has a non-empty packing, then by Lemma 3.12, we can perform substi-
tutions such that ∆µ ≥ δp ≥ δ per substitution.

From now on, the circuit is normalized with an empty packing, and the output of each gate depends on
both of its inputs.

Case 1. There is a protected variable feeding two gates or an ∧-type gate. We substitute an
appropriate constant to it, so that a quadratic equation and a free variable is killed, while
eliminating at least two gates via Rule 2 and Rule 3. This will decrease the measure by
∆µ ≥ 2− 2αϕ + αI + αQ ≥ δ, which is enough for our argument.

Case 2. There is a protected 0-variable p. Suppose that its couple in the quadratic equation is q.
Then we perform constant substitution to q, making the quadratic equation an affine one.
Since both p and q becomes non-influential, we have ∆µ ≥ 2αI ≥ δ.

From now on, all protected variables are 1-variables each feeding an ⊕-type gate.

Case 3. There is a variable x feeding an ∧-type gate G, such that the total out-degree of x and G
is at least 4. We perform appropriate constant substitution to x to trivialize G, while at least 3
descendants of x and G are degenerate. If a gate is fed by both G and x (i.e. double counted),
it is then trivialized and its descendants are degenerated. To sum up, at least four gates are
eliminated by Rule 2 and Rule 3, so ∆µ ≥ 4− 4αϕ + αI ≥ δ.

After this case, all variables feeding ∧-type gates have out-degree 1 or 2.

Case 4. There is an ∧-type gate G fed by two variables x and y, and x is a 1-variable. Note that
both x and y are unprotected by Case 1. We perform appropriate constant substitution to y
such that G is trivialized, making both x and y non-influential. Hence ∆µ ≥ 2αI ≥ δ.

Case 5. There is an ∧-type gate G fed by two 2-variable x and y. By Case 3, G must be a 1-gate,
and hence troubled (see Figure 15). Since the circuit is normalized we know that B ̸= D and
C ̸= D. From Case 1, we know that both x and y are unprotected free variables. Clearly,
substituting appropriate constant to x (or y) will trivialize G, further removing B (or C), D
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and G by normalization. If no troubled gates are introduced during eliminating these three
gates, we will obtain ∆µ = 3 + αϕ + αI ≥ δ.

For the rest part of this case, we assume that at least one troubled gate is introduced when we substitute
a constant to x (or y) and eliminate the three gates in arbitrary order.

∧

yD

G1 yy CB

y2x2

Figure 15: Case 5.

Case 5.1. When B = C, we can always apply a constant substitution to x or y, or an affine
substitution x ← y⊕ c, such that both G and B outputs a fixed constant regardless of the
inputs9. We can replace them by constants, making both x and y non-influential. Hence
∆µ ≥ 2αI ≥ δ.

Case 5.2. When D feeds both B and C, we perform constant substitution to x to trivialize G,
and eliminate G, D and B in order. By normalization lemma, the only node that may
become or feed a troubled gate is the other input I of D. Furthermore, if I is a gate,
then by the observation that its out-degree is not decreased during this process, it cannot
become troubled. Hence to introduce a troubled gate, I must be a variable u and B must
feed another ∧-type gate E (see Figure 16).
Note that C ̸= E since E is fed by B but C is not. After the normalization, u should
be a 2-variable feeding exactly C and E, hence B should be a 1-gate originally. Instead
of substituting to x, we substitute appropriate constant to z and y so that both E and G
are trivialized, then eliminate B by Rule 1. These two substitutions kill three influential
inputs x, y and z, hence ∆µ ≥ 3

2 αI ≥ δ per substitution.

∧

yD

G1

yy

∧

z

u

CB1

E

y2
x2 constant substitution

constant substitution

trivialized

becomes 0-gate

trivialized

isolated

Figure 16: Case 5.2.

After this subcase, we can assume that D does not feed one of B or C.

Case 5.3. If C feeds D and D feeds B (see Figure 17), after substituting constant to x, we can
eliminate G, D and B in order. By normalization lemma, the only nodes that may become

9This can be checked by enumerating over all possible truth tables.
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or feed troubled gates are y and c, while none of them can be like that. Hence no troubled
gate is introduce, contradicting with our assumption.

∧

yD

G1 yy CB

y2x2 become 1-gate
cannot feed troubled gatesconstant substitution

trivialized
degenerate

degenerate

Figure 17: Case 5.3.

After this subcase, we can assume that D is disconnected (in both directions) with one of B and
C. By symmetry, we further assume that D is disconnected with B.

Case 5.4. Suppose that B is fed by x and I1, and D is fed by G and I2. We now substitute
constant value to x to trivialize G. By normalization lemma, a newly introduced troubled
gate is either one of I1 and I2, or fed by I1 or I2 after the normalization. Since B and D
are disconnected, the out-degree of I1 and I2 are not decreased, hence they cannot be
newly introduced troubled gates unless their inputs are involved in this normalization.
We then conclude that a newly introduced troubled gate must be fed by I1 or I2 after the
normalization.

Case 5.4.1. Assume that the troubled gate E is fed by I2 = z. Clearly E must be an ∧-type
1-gate. Since B and D are disconnected, D must feed E before the normalization (see
Figure 18).
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Figure 18: Case 5.4.1.

Case 5.4.1.1. If z is a 2-variable, D must be a 1-gate to make E troubled. In this case,
the other input of E is either a variable or B, which passes a variable to it after x
is substituted by constant.
Case 5.4.1.1.1. If the other input of E is a variable t (see Figure 19), we substi-

tute a constant to it so that E is trivialized, and eliminate E, D, G and the
descendant of E in order. By normalization lemma, one may easy to verify
that ∆Φ ≤ 1 (which corresponds to the other input of the descendant of E).
Hence ∆µ ≥ 4− αϕ + αI ≥ δ.
Now we assume that other input of E is B, which is fed by x and another variable
t (see Figure 20). The variable t is passed to E while degenerating B. Notice that
x must be unprotected by Case 1.
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Case 5.4.1.1.2. If B is an ∧-type gate, then we can substitute constant values to
t and y to trivialize B and G, making x a 0-variable. Hence ∆µ ≥ 3

2 αI ≥ δ.
Case 5.4.1.1.3. If B is an ⊕-type gate, then we can substitute x ← t⊕ c such that

the output of B is fixed regardless of the inputs. This allows us to replace B
by a constant. If c is chosen appropriately, we can even trivialize E, further
removing D and G by Rule 1, and degenerate the descendent of E by Rule 3.
Notice that only t and the other input of the descendent of E can introduce
troubled gates (y and z will not since they are 2-variable), hence we have
∆µ ≥ αI + 5− 2αϕ ≥ δ.
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constant substitution
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trivializeddegenerate
another input: ∆Φ≤1

Figure 19: Case 5.4.1.1.1.
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Figure 20: Case 5.4.1.1.2 and 5.4.1.1.3.

In the rest of Case 5.4.1, we can assume that z is a 1-variable. To make E troubled,
D must be a 2-gate (see Figure 21).

Case 5.4.1.2. If D is an ∧-type gate, we substitute constant value to z to trivialize D,
and eliminate D, G and the two descendants of D in order. Since the elimination
of G will not cause potential increment and the other gates are removed by Rule
2 and Rule 3, we can see that ∆Φ ≤ 3, hence ∆µ ≥ 4− 3αϕ + αI ≥ δ.

Case 5.4.1.3. In the case that z is protected, after constant substitution to x, trivial-
izing G and then degenerating B and D, we can further substitute a constant
to z such that E is trivialized, which will degenerate the descendant of E and
z (which was passed from D). During the whole process, 6 gates are removed
while introducing at most 6 troubled gates since all gates are removed via Rule
2 and Rule 3. A quadratic equation involving z is also removed. So in a nutshell,

∆µ ≥
6− 6αϕ + 2αI + αQ

2
=

2− 2αϕ + αI + αQ

2
+

4− 4αϕ + αI

2
≥ δ

per substitution.
Case 5.4.1.4. Assume that z is unprotected and D is an ⊕-type gate (see Figure 22).

Since x and y feed an ∧-type gate G, they should also be unprotected (see Case
1). In this case, we can perform a quadratic substitution z ← ((x ⊕ c1) ∧ (y⊕
c2)) ⊕ c3 for appropriate constants, such that the output of D is a constant b
insensitive to the inputs, which trivializes E. Then we normalize the circuit in
the following order.

1. Replace D by the constant b, which would not increase the potential.
2. Eliminate G via Rule 1, which would not increase the potential either, since

both x and y become 1-variable.
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3. Eliminate E via Rule 2, which again introduces no potential increment. This
is because, similar to Case 5.4.1.1, the other input of E is either B or a variable
t. In the former case, B is fed by 1-variable x, hence cannot be troubled. In
the latter case, t itself becomes a 1-variable after eliminating E, introducing
no troubled gates.

4. Eliminate the descendent of D via Rule 3. We will argue at the end of this case
that it can be ensured that this does not increase the potential.

5. Eliminate the descendent of E via Rule 3, increasing the potential by at most
1.

Moreover, this case will destruct an originally (truly) troubled gate G, which
reduces the potential by 1.
So in a nutshell, we can eliminate 5 gates with the net potential change ∆Φ ≤ 0,
which guarantees complexity measure decrement ∆µ ≥ 5− αQ + αI ≥ δ.
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Figure 21: Case 5.4.1.2 and 5.4.1.3.
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Figure 22: Case 5.4.1.4.
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Figure 23: Hard cases of Case 5.4.1.4.

To finish, we now rule out all the cases that the elimination of the descendent of D would
introduce a troubled gate.
As shown in Figure 23, we label the descendent of D as F, and the troubled
gated introduced in the elimination of F as A. Since replacing D by constant
and eliminating G, E will not pass any node to another, F must be directly fed
by some variable u, and A must be directly fed by D and a 2+-variable v.
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Similarly to Case 5.4.1.1, by our very first assumption that E will become trou-
bled if we perform constant substitution to x, there is a variable t either directly
feeds E or passes to E while degenerating B. We now study these cases sepa-
rately.
Case 5.4.1.4.1. Firstly, we consider the cases when t feeds B and B feeds E (See

Figure 23a).
Case 5.4.1.4.1.1. If B is a 1-gate, then we can substitute appropriate con-

stants to y and z such that G, D and E are all trivialized. Then the
out-degree of B will be reduced to 0, hence can be removed by Rule
1. All of these will make x a 0-variable, so we make 3 variables non-
influential by 2 substitutions, resulting in ∆µ ≥ 3

2 αI ≥ δ.
For the rest of Case 5.4.1.4.1, we can assume that B is a 2-gate, so t is a
1-variable (since t becomes troubled by constant substitution to x).

Case 5.4.1.4.1.2. If B is an ∧-type gate, then t is unprotected (see Case 1).
In this case, we can trivialize B by constant substitution to x, making t
non-influential. This can give us ∆µ ≥ 2αI ≥ δ.

Case 5.4.1.4.1.3. When B is an⊕-type gate and t is unprotected, we can first
trivialize G by constant substitution to y, making x a 1-variable, then
trivialize B by affine substitution x ← t. These 2 substitutions make 3
variables (x, y and t) non-influential, hence ∆µ ≥ 3

2 αI ≥ δ.
Case 5.4.1.4.1.4. Assume that B is an ⊕-type gate and t is protected. Note

that the couple of t cannot be x or y since they are unprotected. So
we can first perform a constant substitution to its couple to make t
unprotected, then apply Case 5.4.1.4.1.3. This will allow us to make 4
varialbes non-influential by 3 substitutions, hence ∆µ ≥ 4

3 αI ≥ δ.
Case 5.4.1.4.2. Now we consider the cases when t directly feeds E (See Figure

23b).
After the quadratic substitution of Case 5.4.1.4, A is a troubled gate fed
by u and v, but x and y are 1−-variables, hence u, v and x, y are pairwise
unequal. This ensures that F is neither B nor C. Moreover, z is a 1-variable
feeding D, so u and v will never coincide with z.
Case 5.4.1.4.2.1. Assume that u = t (see Figure 24). Then u is a 2-variable

feeding E and F, hence unprotected (see Case 1). In this case, we can
first perform the constant substitution to x to trivialize G, then remove
B and D by Rule 3. After this, the gates E and F are exactly fed by
two 2-variables z and u, hence we can perform a constant substitution
to z or u, or an affine substitution u ← z ⊕ c for appropriate c, such
that the outputs of both E and F become independent of the inputs.
This allows us to make 3 variables (x, z and u) non-influential with 2
substitutions, resulting in ∆µ ≥ 3

2 αI ≥ δ.
For the rest of Case 5.4.1.4.2, we can assume that u ̸= t.

Case 5.4.1.4.2.2. When F is a 1-gate, we can do a constant substitution to v
such that we are able to replace A by a constant. This would make F a
0-gate, so we can remove it by Rule 1. Furthermore, a descendent of A
can be removed via Rule 3.
Recall that v is a 2+ variable since A will become troubled under quadratic
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Figure 24: Case 5.4.1.4.2.1.

substitution in Case 5.4.1.4. Therefore, there is another descendent of
v that can be removed via Rule 3 (again, if this coincides with the de-
scendent of A, then it would become trivial, further degenerating a
descendent).
The trivialization of A does not introduce any potential, since v is a
constant by then, and F is fed by a ⊕-gate D. The removal of F intro-
duces no potential either, since D is an ⊕-type gate, and u becomes a
1-variable. Each of the elimination of the descendants of A and v can
introduce 1 potential by Rule 2 and Rule 3. Hence during the process, 4
gates are eliminated with ∆Φ ≤ 2, resulting in ∆µ ≥ 4− 2αϕ + αI ≥ δ.
We can now assume that F is a 2+-gate originally. Notice that F can feed
none of G, D or E, so to make A troubled, F is exactly a 2-gate, and u is a
1-variable initially.

Case 5.4.1.4.2.3. Assume that F is an ∧-type gate. Since u ̸= t, we can
substitutes constants to u and t to trivialize E and F. After this, D will
become a 0-gate, and by removing it via Rule 1, we can make z a 0-
gate, and hence non-influential (recall that z being unprotected is the
assumption of Case 5.4.1.4). This allows us to make 3 variables non-
influential by 2 substitutions, giving us ∆µ ≥ 3

2 αI ≥ δ.
Case 5.4.1.4.2.4. Assume that F is an ⊕-type gate and u is unprotected.

Then we can first substitute an appropriate constant to t to trivialize
E. This would make D a 1-gate. Now notice that F = D ⊕ u ⊕ c1 =
G⊕ z⊕ u⊕ c2, so by performing affine substitution z← u⊕ c for arbi-
trary constant c, we can make F = G⊕ c⊕ c2. Therefore, we can rewire
the circuit (i.e. make all descendants of F fed by G directly) such that
the gates D and F are removed, and z and u become 0-variables. In
this way, we make 3 variables non-influential by 2 substitutions, hence
∆µ ≥ 3

2 αI ≥ δ.
Case 5.4.1.4.2.5. If F is an ⊕-type gate and u is protected, then the couple

of u cannot be x, y, z, t or v since none of them is protected. So we
can first substitute a constant to the its couple to make u unprotected,
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Figure 25: Case 5.4.1.4.2.3.

then apply Case 5.4.1.4.2.4. By this, we use 3 substitutions to make 4
variables non-influential, hence ∆µ ≥ 4

3 αI ≥ δ.
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Figure 26: Case 5.4.1.4.2.4.

Case 5.4.2. We now assume that the troubled gate E does not get a variable from D, and
hence is fed by I1 = t from B. In this case, the other input of E must be a variable z
(see Figure 27).
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Figure 27: Case 5.4.2.

Case 5.4.2.1. If B is a 2+-gate, then it must be ⊕-type (see Case 3). Since x must be
unprotected (see Case 1), we can substitute x ← t ⊕ c such that the output of
B is fixed regardless of the inputs. We can then replace B by a constant. If c
is chosen appropriately, we can even further trivialize E. Note that we rewire
the circuit such that G is fed by t instead of x to make x disconnected with the
circuit, which will not introduce troubled gates. Since E and two descendants
of them are removed by Rule 2 and Rule 3, and we can carefully check that
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the replacement of B by a constant can introduce only 1 potential increment
(caused by t), the overall potential increment is bounded by ∆Φ ≤ 4, hence
∆µ ≥ 4− 4αϕ + αI ≥ δ.

Case 5.4.2.2. If B is a 1-gate, we substitute constant values to z and y to trivialize
both E and G. This will make B a 0-gate, so can be further removed by Rule 1.
Note that z, y and x become non-influential, which means that ∆µ ≥ 3

2 αI ≥ δ
per substitution.

From now on, no ∧-type gate is directly fed by two variables. Let G be a topologically minimal ∧-
type gate fed by I1 and I2 (G exists since the function can be trivialized by a single affine substitution
otherwise). Clearly I1 and I2 are computed by a fair cyclic-xor circuit, hence we can perform xor-
reconstruction to them.

Case 6. Let x be a protected variable. By Case 1 and Case 2, it is a 1-variable feeding an ⊕-type
gate P. Now we try to substitute x ← d and normalize the circuit. At least P will be eliminated
by Rule 3. We now rule out all cases when this operation does not give ∆µ = 1 + αI + αQ.

Case 6.1. Assume that another gate Q is eliminated during normalization. Furthermore, we
assume that it is the second gate (P is the first one) to be eliminated. Now we show that
Q is not eliminated by Rule 1.

1. If P is the output gate, after it is removed by Rule 3, Q will be the output gate, so that
it should not be removed by Rule 1.

2. If P is not the output gate, after it is removed by Rule 3, the out-degree of Q would
never decrease, hence cannot be removed by Rule 1.

The elimination of these two gates produce ∆Φ ≤ 2 by normalization lemma, which
means that ∆µ ≥ 2− 2αϕ + αQ + αI ≥ δ.

Case 6.2. Assume that P is the only gate eliminated, and ∆Φ = 1 (by normalization lemma,
∆Φ ≤ 1). We now argue that this case can be avoided. Let R be the other input of P apart
from x. To produce potential increment, R is either an ∧-type gate or a variable.

Case 6.2.1. Assume that R is an ∧-type gate which is troubled after this normalization.
We argue that it is originally troubled, hence it does not produce potential increment.
By Rule 3, it does not get new inputs, and the out-degrees of the variables feeding
it do not decrease. If it is indeed a newly introduced troubled gate, its out-degree
must decrease, which means that P can only be an output gate and R is originally a
2-gate. However, the output gate P is not reachable from the other descendant of R
(otherwise there is a cycle containing an ∧-type gate), which is impossible by Case
0.2.

Case 6.2.2. Assume that R = u is a variable. Since its out-degree does not decrease dur-
ing Rule 3, to feed troubled gates, it must be a 2−-variable before the normalization.
Case 6.2.2.1. Assume that u is an unprotected 1-variable (see Figure 28). Let y be

the couple of x. We substitute constant value to y to make x unprotected. Then
we perform affine substitution x ← u such that P is trivialized. These two
substitutions make three variables x, y and u non-influential, resulting in ∆µ ≥
3
2 αI ≥ δ per substitution.

Case 6.2.2.2. Assume that u is a protected 1-variable, such that x and u are coupled
with each other (see Figure 28). We perform affine substitution x ← u to them,
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trivializing P. Both of x and u become non-influential, resulting in ∆µ ≥ 2αI ≥
δ.

Case 6.2.2.3. Assume that u is a protected 1-variable with couple v ̸= x (see Figure
28). Let y be the couple of x. We perform constant substitution to y and v to
make both x and u unprotected. Then we perform affine substitution x ← u to
trivialize P. These three substitutions make four variables, x, y, u and v non-
influential, ∆µ ≥ 4

3 αI ≥ δ.
Case 6.2.2.4. Assume that u is a 2-variable, which means that P must be a 1-gate (see

Figure 29). Let A be the other descendant of u and B be the descendant of P.
Note that A ̸= B since otherwise P is useless. Similar to Case 6.2.1, A cannot be
the newly introduced troubled gate, so B is. In such case, B is an ∧-type gate fed
by P and a variable t. We substitute appropriate constant value to t to trivialize
B, which allows us to further remove P by Rule 1. We then substitute constant
value to the couple of x to make it unprotected. These two substitutions make
three variables (x, t and the couple of x) non-influential, resulting in ∆µ ≥ 3αI

2 .
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x1 u

Pprotected


unprotected 1-variable
protected: couple of x
protected: couple v ̸= x

Figure 28: Case 6.2.2.1 ∼ 6.2.2.3
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Figure 29: Case 6.2.2.4

From now on, we assume that substituting constant value to a protected variable will eliminate exactly
one gate without introducing any troubled ones, hence ∆µ = 1 + αI + αQ.

Case 7. Assume that I1 = x is a 2-variable and I2 = Q is a 1-gate (see Figure 30). Note that x
is unprotected (Case 1) and does not feed Q (otherwise Q is useless). We perform constant
substitution to x to trivialize G and eliminate four gates in total: G, Q and two descendants
of G and x. We now show that ∆Φ ≤ 4.

1. Since Q is eliminated by Rule 1, it has ∆Φ ≤ 2.

2. Since G is trivialized and both of its inputs neither become nor feed troubled gates, it has
∆Φ ≤ 0.

3. Since the other two gates are removed by Rule 3, each of them have ∆Φ ≤ 1.

Hence ∆µ ≥ 4− 4αϕ + αI ≥ δ in total.
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Figure 30: Case 7.

29



Case 8. Without loss of generality, we assume that Q = I2 is a gate, while P = I1 can be either a
gate or a variable. If P is a gate, we further assume that the out-degree of P is not larger than
Q. By the minimality of G, Q computes some affine function.

Case 8.1. Assume that Q computes an affine function depending on some unprotected variable
x. By Proposition 2.7, there is a path from x to Q. We shall substitute an appropriate
constant to Q via xor-reconstruction (see Section 2.6), such that G is trivialized. Now we
exploit the type of node P to show that this will decrease the complexity measure by at
least δ.

Case 8.1.1. Assume that Q is a 2+-gate. After the xor-construction, it is replaced by a
constant b feeding at least three gates (see Figure 31). Since we remove the gate Q
while adding a new gate Z (see Figure 7), without introducing any new troubled
gates (recall that the circuit has an empty packing originally due to Case 0.4), the
potential remains unchanged. We then normalize the circuit such that the three de-
scendants of b and at least one descendant of G are removed by Rule 2 and Rule 3.
Hence ∆Φ ≤ 4, so that ∆µ ≥ 4− 4αϕ + αI ≥ δ.
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Figure 31: Case 8.1.1.

Case 8.1.2. Assume that Q is a 1-gate and P = t is a variable. By Case 1 and Case 7, we
can assume that t is an unprotected 1-variable. Hence the xor-reconstruction will
make both t and x non-influential, resulting in ∆Φ ≥ 2αI ≥ δ.

Case 8.1.3. Assume that both P and Q are 1-gates. After the xor-reconstruction, Q is
replaced by a constant b of out-degree 2 (see Figure 32). We then normalize the
circuit such that G, P, and the other two descendants of b and G are removed. Notice
that this will remove 4 gates in total: P and the descendant of G does not coincide
or there will be a cycle containing ∧-type gate; P and the descendant of b (apart
from G) does not coincide since P has only one descendent which is G before xor-
reconstruction, and if P is fed by b, it should feed Q in the original circuit. We now
show that ∆Φ ≤ 4.
1. P is eliminated by Rule 1, it contributes ∆Φ ≤ 2.
2. G is trivialized and both of its inputs are eliminated, it has ∆Φ ≤ 0.
3. The other two gates are removed by Rule 2 or Rule 3, they contribute ∆Φ ≤ 2 in

total.
Hence ∆µ ≥ 4− 4αϕ + αI ≥ δ.
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Figure 32: Case 8.1.3.

For the rest of Case 8, we assume that for any topologically minimal ∧-type gate G fed by some P
and an ⊕-type gate Q satisfying the assumption at the start of Case 8 (if P is a gate, then the out-
degree of P is not larger than Q), Q computes an affine function depending only on protected
variables. Moreover, if I1 is an ⊕-type gate with out-degree equal to Q, it also computes an
affine function depending only on protected variables.

Case 8.2. Now we assume that Q computes an affine function depending on a set of protected
variables, say I.

Case 8.2.1. Assume that one of P and Q, say Q, is fed by two (protected) variables xj
and xk which are coupled with each other. By Case 1 and Case 2, both of them are
1-variables. We can substitute xj ← xk ⊕ c to trivialize Q and further killing the
quadratic equation containing xj and xk. This will make both of the two variables
non-influential, giving ∆µ ≥ 2αI ≥ δ.

Case 8.2.2. Assume that Q is a 2+-gate. Let xj ∈ I be a protected variable and xk be its
couple. We try to substitute xk ← d and normalize the circuit. After Case 6, exactly
one gate (the descendant of xk) is eliminated and ∆µ = 1 + αI + αQ.
Case 8.2.2.1. If Q is not fed by xk originally, then after the substitution xk ← d, Q

is still a 2+-gate computing affine function which depends on the unprotected
variable xj. We substitute appropriate constant to Q via xor-reconstruction such
that G is trivialized, further degenerating A, B and C (see Figure 33 for the name
of the nodes). We now assume that the elimination of B and G does not increase
the potential (see Figure 33b), and defer the other cases to Case 8.2.5. Hence
the net potential increment is bounded by 2, which gives ∆µ ≥ 4− 2αϕ + αI for
this substitution. Then the two substitutions, in average, produce a complexity
measure decrement ∆µ ≥ 1

2 (5− 2αϕ + 2αI + αQ) ≥ δ.
Case 8.2.2.2. If Q is fed by xk, after the substitution xk ← d and normalization, A

is fed by another input of Q, say Q′. Clearly Q′ is also a 2+-gate depending on
an unprotected variable xj, so we can apply the argument in the previous case
with Q replaced by Q′.

After this subcase, we assume that Q is a 1-gate, hence P is either a variable or a 1-gate.
Case 8.2.3. If P = t is a variable, then it is an unprotected 1-variable by Case 1, Case

3 and Case 7. Let xj ∈ I be a protected variable with couple xk (recall that I is
the set of variables Q depending on). We first substitute constant to xk to make
xj unprotected. After we normalize the circuit, G is fed by t and a gate Q′ (may
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Figure 33: Case 8.2.2.1.

be identical to Q) which computes an affine function depending on xj. Hence by
substituting appropriate constant to Q′ via xor-reconstruction10, we can trivialize G,
hence make three variables t, xj and xk non-influential, which gives ∆µ ≥ 3αI

2 ≥ δ.
Case 8.2.4. Assume that P is an ⊕-type 1-gate. If P computes an affine function depend-

ing on an unprotected variable, we apply Case 8.1.3 by exchanging P and Q. Hence
we assume that both P and Q merely depend on protected variables.

∧

⊕ ⊕

y

y

xj xk

Q1

G

P1

B

couple constant substitution
∆µ≥1+αI+αQ

constant substitution
via xor-reconstruction

∆µ≥4−2αϕ+αI

Figure 34: Case 8.2.4.1.

Case 8.2.4.1. Assume that Q (or P) computes an affine function depending on some
variable xj with a couple xk that does not feed P (or Q). We try to substitute
a constant to xk and normalize the circuit. After Case 6, exactly one gate is
eliminated and ∆µ = 1 + αI + αQ. Hence P (or Q) is still an ⊕-type 1-gate
after the normalization (see Figure 34). Now we have an unprotected variable
xj on which Q (or P) depends, so by substituting appropriate constant to Q
(or P) via xor-reconstruction to trivialize G, we have ∆µ ≥ 4 − 4αϕ + αI for
the substitution similar to Case 8.1.3. If the potential increment ∆Φ ≤ 2 for
this substitution, ∆µ ≥ 4− 2αϕ + αI , then these two substitutions, in average,
produce a complexity measure decrement ∆µ ≥ 1

2 (5 − 2αϕ + 2αI + αQ) ≥ δ.
Hence in the rest part of this case we assume that ∆Φ ≥ 3 for the substitution.

1. Similar to Case 8.2.2.1, we now assume that the elimination of G and B (the
gate on the reversed path from G to x after xor-reconstruction, see Figure 34

10Note that by Case 6, the substitution xk ← d and subsequent normalization will not increase the potential, therefore
the circuit has an empty packing before the xor-reconstruction. In such case, xor-reconstruction will not increase the
potential.
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and 38) does not increase the potential, and defer the other cases to Case 8.2.5.
2. The descendant of G is removed by Rule 2 or 3, so that ∆Φ ≤ 1.
3. Now consider the input of P. To produce ∆Φ ≥ 3, both inputs of P need to

increase the potential by one.
(a) Assume that P is fed by some gate T just before its removal. Since there is a

path from T to G after xor-reconstruction, one may see that G is reachable
from T in the original circuit, therefore T must be an⊕-type gate and cannot
become troubled. This is impossible.

(b) If P is fed by two variables even before the substitution xk ← d, it depends
on them, so both of them are protected variables. By Case 1, they are 1-
variables. They can neither feed nor become troubled gates, so that this
case is impossible.

(c) Assume that P is fed by two gates before the substitutions xk ← d, and
two variables t1 and t2 are passed to it by the degeneracy of B and the
descendant of xk. This will be considered in the following subcases.

(d) Finally, to produce ∆Φ ≥ 3, P should be fed by a variable t1 and an ⊕-
type gate which passes a variable t2 to G via the degeneracy of B and the
descendant P′ of xk. Just before P is eliminated, t2 should be a 3-variable
feeding an ∧-type gate T, which becomes troubled after the elimination of
P. This will be considered in the following subcases.

Case 8.2.4.1.1. If t1 (or t2) is a protected variable, after the normalization it be-
comes a protected variable that either feeds a troubled gate or is the inner
variable of a pack. If we further substitute t1 ← c (or t2 ← c) for appropri-
ate c, we can eliminate at least three gates via Rule 2 or Rule 3, while killing
a quadratic substitution, which produces ∆µ ≥ 3− 3αϕ + αQ + αI . In total,
we perform three substitutions, and produce

∆µ ≥
(1 + αI + αQ) + (4− 4αϕ + αI) + (3− 3αϕ + αQ + αI)

3

≥
2(2− 2αϕ + αI + αQ)

3
+

4− 4αϕ + αI

3
≥ δ

per substitution.
Case 8.2.4.1.2. Assume that both t1 and t2 are passed to P during the degener-

acy of B and the descendent P′ of xk. Without loss of generality, assume
that t2 is passed to P only via B and t1 is passed to P only via P′. By the
general picture of xor-reconstruction (see Figure 7), t2 feeds Q and B feeds
P before the substitution xk ← d (see Figure 35). Note that B must be a gate:
if B = xj, it is a protected 2-variable, which is impossible by Case 1. Since t2
is unprotected, Q does not depend on it. Furthermore, Q = B⊕ t2 ⊕ c1, so
B must depend on t2. Since P = xk⊕ t1⊕ B⊕ c2, we can see that P depends
on t2, which is impossible since P depends on no unprotected variables.

Case 8.2.4.1.3. Finally we assume that one of t1 and t2, say t1, directly feeds
P before the substitution xk ← d. Then t2 either feeds P even before the
substitution xk ← d, or is passed to P via the degenerate gates B and P′.
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• If t2 directly feeds P or is passed to P only via P′, P depends on the
unprotected variable t1, which is impossible by Case 8.1.

• Otherwise, t2 is passed to P by B (alone, or together with P′). Similar to
Case 8.2.4.1.2, t2 feeds Q and B feeds P and Q just after the substitution
xk ← d (see Figure 36). Since P′ is the only degenerate gate at that time,
either B feeds P or B feeds Q directly in the original circuit, say B feeds
P. Now we show that either P or Q depends on an unprotected variable,
so that it is impossible by Case 8.1. If P depends on t1, we immediately
success; otherwise since B feeds P directly in the original circuit, B should
depends on t1, therefore Q depends on t1, no matter whether B feeds Q
directly, or B feeds P′ that further feeds Q.

∧

⊕ ⊕

⊕⊕

xk t1

t2

Q1

G

P1

BP′

Figure 35: Case 8.2.4.1.2.

∧

⊕ ⊕

⊕t1 t2

Q1

G

P1

B

Figure 36: Case 8.2.4.1.3 (just after xk ← d).

After this case, P only depends on the variables whose couples feed Q, and Q only
depends on the variables whose couples feed P.

Case 8.2.4.2. Assume that one of P and Q, say P, is fed by two protected variables xj
and xk (see Figure 37). By Case 8.2.1, we assume that xj and xk are not a couple.
By Case 1, we assume can that both xj and xk are 1-variables. By substituting
constant to both xj and xk, we can trivialize P and G, further eliminating Q and
at least one descendant of G. During this process, the potential increment is
bounded by 3: zero for P and G, two for Q and one for the descendant of A.
Hence we eliminate four gates, kill two quadratic equations and two influential
variables, which gives ∆µ ≥ 1

2 (4− 3αϕ + 2αI + 2αQ) ≥ δ per substitution.

∧

⊕ ⊕

xj xk

y

Q1

G

P1

constant substitution
∆µ≥2+2αQ

trivialized
∆Φ≤0

trivialized
∆Φ≤0

degenerate
∆Φ≤1

becomes 0-gate
∆Φ≤2

Figure 37: Case 8.2.4.2.

Case 8.2.4.3. Finally we assume that both P and Q are fed by at most one variable.
By Case 0.3, both P and Q do not compute a constant value, hence P depends on
at least one (protected) variable xj, whose couple xk feeds Q. The another input
of Q must be a gate R (by Case 8.2.4.2), which do not compute a constant value
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by Case 0.3. Since Q is a 1-gate feeding an ∧-type gate and xk is a 1-variable
(see Case 1), there is no path from xk to R, hence R does not depend on xk. In
such case, Q depends on xk. Let xi be a variable depended by R, which is also
depended by Q. Also, xi ̸= xj, since there is no path from xj to R, but R depends
on xi. This means that Q depends on two protected variables xk and xi that are
not couple of each other, hence P must be fed by two protected variables, which
is impossible by Case 8.2.4.2.

We now handle the situation when ∆Φ > 2 is produced in Case 8.2.2 and Case 8.2.4.
Case 8.2.5. Let xj ∈ I be a protected variable and xk be its couple. By Proposition 2.7,

there exists a path from xj to Q. We substitute xk ← d and normalize the circuit,
such that xj becomes unprotected. By Case 6, the descendant of xk is the only gate to
be eliminated, with no new troubled gate introduced. After this substitution,

• if xk does not feed Q in the original circuit, then Q still feeds G, and its out-degree
does not decrease;

• otherwise the other input Q′ of Q is passed to feed G. Note that Q′ is also an
⊕-type gate, so we identify it with Q later.

Now we substitute appropriate constant to Q to trivialize G via xor-reconstruction
with the variable xj which is now unprotected. Let B be the preceding node of Q on
the path from xj to Q (see Figure 38). We can eliminate G, B and the descendant of
G. We consider the situation when the elimination of B or G produces ∆Φ ≥ 1 (i.e.,
an input of B or G becomes or feeds a troubled gate after the xor-reconstruction and
normalization). Note that we eliminate G first, with B follows, and other gates are
eliminated in arbitrary order.

∧

y ⊕

y

xj

y

Q

G

P

B

unprotected

(a) Before xor-reconstruction.

∧

y b

y

⊕

⊕

2+

Z

G

P

B degenerate
∆Φ≤1

trivialized
∆Φ≤1 degenerate

∆Φ≤1

(b) After xor-reconstruction.

Figure 38: Case 8.2.5.

∧

⊕ ⊕

y

xm xk

Q

G

P′
3+

Figure 39: Case 8.2.5.1.1.

Case 8.2.5.1. Assume that the elimination of G increases the potential by one (see
Figure 38b). By the minimality, in order to produce a potential increment, P
must be a variable xm whose out-degree decreased from 3 to 2. So it should be
a 3-variable after the substitution xk ← d.
Case 8.2.5.1.1. Assume that xm is an 3-variable even before the substitution xk ←

d. By Case 3, it cannot feed G before the substitution xk ← d, hence xm is
passed to G via the degeneracy at substitution xk ← d (see Figure 39). For
simplicity, we label the degenerate gate as P′.
To increase the potential, xm must feed an ∧-type gate T just before G is
eliminated. By the general picture of xor-reconstruction (see Figure 7), it
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should feed T even before the xor-reconstruction, i.e. just after the substi-
tution xk ← d and subsequent normalization. Hence, either xm feeds T
even before the substitution xk ← d, or it is passed to T via the degener-
ate gate P′. The former case is impossible by Case 3, since otherwise xm is
a 3-variable feeding an ∧-type gate T. In the latter case, P′ needs to be a
2+-gate. This is also impossible, since in order to make T troubled while
eliminating G, xm should be a 2 variable after the elimination, hence P′ can
only be 1-gate.

Case 8.2.5.1.2. Assume that xm is a 1-variable before the substitution xk ← d. In
such case, 1-variables xm and xk feed a common ⊕-type gate P′. Similar to
Case 6.2.2.1 ∼ Case 6.2.2.3, we can perform affine substitutions to decrease
the measure by at least ∆µ ≥ 4αI

3 ≥ δ per substitution.
Case 8.2.5.1.3. Assume that xm is a 2-variable originally, whose out-degree is

increased to 3 after the substitution xk ← d. Then P′ must be a ⊕-type (fed
by protected variable xk) 2-gate (to increase the out-degree of xm) fed by
both xm and xk. Note that xm either directly feeds G originally, or is passed
to G via the degenerate of P′.
Case 8.2.5.1.3.1. Assume that xm initially feeds G. To form a troubled gate,

P′ should feed an ∧-type gate T even before the substitution xk ← d
(see Figure 40). We can substitute constant values to xm and xk to triv-
ialize P′, T and G, then degenerate their descendents, so that six gates
are removed by Rule 2 and Rule 3. The complexity measure decrement
per substitution is at least

∆µ ≥
6− 6αϕ + αQ + 2αI

2
=

4− 4αϕ + αI

2
+

2− 2αϕ + αI + αQ

2
≥ δ.

∧

xm ⊕

y

xj

y

⊕

xk

∧ y

Q

G

B

P′

T

Figure 40: Case 8.2.5.1.3.1: before substitution xk ← d.

For the rest of Case 8.2.5.1.3, we assume that xm is passed to G via the degen-
eracy of P′

Case 8.2.5.1.3.2. Assume that Q is a 2-gate. Since P′ is a 2+-gate depending
on an unprotected variable xm (see Case 1), we can apply Case 8.1 with
P′ and Q exchanged (i.e. let Q be P and P′ be Q in Case 8.1). This
obtain a complexity measure decrement ∆µ ≥ δ.

Case 8.2.5.1.3.3. Now we assume that Q is a 3+-gate. We firstly perform
the substitution xk ← d and normalize the circuit, such that P′ is elim-
inated and Q becomes an ⊕-type gate depending on an unprotected
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variable xj. By Case 6, the potential decrement is ∆µ ≥ 1 + αQ + αI .
Then we substitute appropriate constant to Q via xor-reconstruction to
trivialize G, such that five gates are eliminated by Rule 2 and Rule 3:
three descendants of Q, the first gate on the reversed path from Q to xj,
and the descendant of G. These two substitutions, in average, decrease
the potential by

∆µ ≥
(1 + αQ + αI) + (5− 5αϕ + αI)

2

≥
4− 4αϕ + αI

2
+

2− 2αϕ + αI + αQ

2
≥ δ.

We now assume the elimination of B increases the potential by one.
Case 8.2.5.2. Assume that B feeds Q even before the constant substitution xk ← d.

In such case, after the xor-reconstruction, the other input of B apart from b must
be a node D who becomes or feeds a troubled gate. By the general picture
of xor-reconstruction (see Figure 7), D feeds Q before the xor-reconstruction.
This means that in the very beginning, D either directly feeds Q, or feeds the
descendent P′ of xk, and is passed to B at the normalization following xk ← d.
By normalization lemma, it either becomes or feeds a troubled gate T after the
normalization. It cannot be an ∧-type gate by the minimality of G, so D can
only be a variable, say xℓ (see Figure 41 for the circuit before and after xor-
reconstruction).
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y ⊕

y
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y xℓ

Q

G

P

B

unprotected

(a) Before xor-reconstruction.

∧

y b
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⊕

⊕

xℓ

2+

Z

G

P

B degenerate
∆Φ=1

trivialized
∆Φ≤0 degenerate

∆Φ≤1

(b) After xor-reconstruction.

Figure 41: Case 8.2.5.2.

Case 8.2.5.2.1. If xℓ is unprotected, then Q cannot depend on xℓ after Case 8.1.
Since Q computes B⊕ xℓ ⊕ c (or B⊕ xℓ ⊕ xk ⊕ c) for some constant c in the
original circuit, B should depend on xℓ. Now we exploit the local topology
of B and T (the troubled gate introduced) to show that this would not be an
obstacle.
Case 8.2.5.2.1.1. Assume that B is a 0-gate just before it is eliminated, so the

out-degree of xℓ is decreased. In such case, B = Z, otherwise it at least
feeds the next node on the path. This means that B = xj just before
the xor-reconstruction. So at that time, Q is fed by the two variables
xj and xℓ, hence depends on them. However, this means that B cannot
depend on xℓ, which leads to contradiction.

37



For the rest of Case 8.2.5.2.1, we can assume that just before eliminated, B
is a 1+ gate. This means that the elimination of it will not decrease the out-
degree of xℓ. Hence, xℓ should be passed to the newly introduced troubled
gate T during the elimination of B (if xℓ feeds T originally, then T should be
troubled even before the substitutions). In order for T to become a troubled
gate, the other input of it apart from B should be a variable, say t.

Case 8.2.5.2.1.2. If both B and t feeds T even before the substitution xk ← d,
then it is easy to see that T is a topologically minimal ∧-type gate fed
by an ⊕-type gate B depending on the unprotected variable xℓ, which
is impossible.

⊕

∧

t

xℓ

B

T

depends

Figure 42: Case 8.2.5.2.1.2 (B feeds T).

⊕

⊕

∧

xk

t

xℓ

B

T

P′

depends

Figure 43: Case 8.2.5.2.1.3 (B to T via
⊕-type gate).

Case 8.2.5.2.1.3. Assume that B is passed to T when the descendant P′ of
xk degenerates, then t should feed T originally. Since xk is protected, P′

can only be ⊕-type (see Figure 43), then T is a topologically minimal
∧-type gate fed by an ⊕-type gate P′ depending on the unprotected
variable xℓ, which is also impossible.
For the rest of Case 8.2.5.2.1, we assume that t is passed to T when the de-
scendent P′ of xk degenerates. Then B should feed T originally.

Case 8.2.5.2.1.4. If t is a 1-variable (see Figure 44), then we can observe that
P′ is an ⊕-type gate fed by two 1-variables. This allows us to perform
affine substitutions similarly to 6.2.2.1 ∼ Case 6.2.2.3, decreasing the
measure by at least ∆µ ≥ 4αI

3 ≥ δ per substitution.
Case 8.2.5.2.1.5. If t is a 2-variable (see Figure 45), then P′ should be a 1-

gate in order to make T troubled in Case 8.2.5.2.1. Also observe that B
depends on the unprotected variable xℓ, hence is impossible after Case
8.1.

⊕
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⊕

t1 xk

xℓ
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B

T

P′

depends

Figure 44: Case 8.2.5.2.1.4 (t has out-
degree 1).
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y B
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Figure 45: Case 8.2.5.2.1.5 (t has out-
degree 2).
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Case 8.2.5.2.2. Assume that xℓ is protected. Note that the elimination of B in-
creases the potential by 1, which must be related to xℓ. This means that
after the normalization, xℓ either feeds a truly troubled gate, or is an inner
variable of some pack. In either case, xℓ is a protected 2-variable feeding
an ∧-type gate. This allows us to substitute appropriate constant to xℓ to
remove three gates. In total, three substitutions are applied.
1. A constant substitution xk ← d, which gives ∆µ ≥ 1 + αI + αQ.
2. A xor-reconstruction (see Figure 38b), which removes three gates (B, G

and the descendant of G). The elimination of G will not increase the
potential, hence ∆Φ ≤ 2, which gives ∆µ ≥ 3− 2αϕ + αI .

3. A constant substitution xℓ ← c. Three gates are removed by Rule 2 and
Rule 3. Now we argue that ∆Φ ≤ 1, which gives ∆µ ≥ 3− αϕ + αI + αQ.

(a) One of the three eliminated gates is originally a troubled gate fed by xℓ;
we eliminate it first. Since both of its inputs are 2-variables, they cannot
feed troubled gates after the normalization, hence this normalization
causes no potential increment.

(b) The other two eliminated gates will increase the potential by at most 2,
since they are eliminated by Rule 2 and Rule 3.

(c) Note that xℓ either feeds a troubled gate or is the inner variable of a
pack. The substitution xℓ fully destructs the troubled gate or pack,
which decreases the potential by 1.

These three substitutions produce

∆µ ≥
7− 3αϕ + 3αI + 2αQ

3

≥ 2
3

(
5− 2αϕ + 2αI + αQ

2

)
+

2− 2αϕ + αI + αQ

3
≥ δ.
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Figure 46: Case 8.2.5.3.
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Figure 47: Case 8.2.5.4.

Case 8.2.5.3. Assume that B feeds B′ and B′ feeds Q in the original circuit, where B′

is the gate eliminated in substitution xk ← d (see Figure 46). One may carefully
check that the analysis in Case 8.2.5.2 still works. We point out some essential
facts for this case.
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1. Since the normalization of B increases the potential, it is fed by a variable xℓ
just after the xor-reconstruction. It is easy to see that xℓ feeds Q in the original
circuit.

2. If xℓ is unprotected, Q does not depend on it. Since Q = B⊕ xk ⊕ xℓ ⊕ c for
some constant c, B must depend on it. We can also see that B is not a 0-gate
before its elimination, otherwise B = xj and cannot depend on xℓ.

3. If xℓ is protected, we can substitute xℓ to constant after the whole process to
produce sufficient complexity measure decrement.

Case 8.2.5.4. Assume that B feeds Q′ and Q′ feeds Q, where Q is eliminated in sub-
stitution xk ← d, and Q′ takes place of Q (see Figure 47). Similar to the previous
case, one may carefully check that the analysis in Case 8.2.5.2 still works. □
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