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Abstract. We show that computing the majority of n copies of a boolean function g has
randomised query complexity R(Maj ◦ gn) = Θ(n · R1/n(g)). In fact, we show that to obtain a
similar result for any composed function f ◦ gn, it suffices to prove a sufficiently strong form of
the result only in the special case g = GapOr.

1 Introduction
In boolean function complexity theory, a typical direct sum problem asks: For a given boolean
function g : {0, 1}m → {0, 1}, how much harder is it to compute g on n separate inputs, that is,
computing gn(x1, . . . , xn) := (g(x1), . . . , g(xn)), compared to computing g on a single input? For
randomised query complexity, a complete answer was recently obtained by Blais and Brody [BB19]
(improving on [JKS10, BK18]). They showed that the most obvious way to compute gn is optimal:
Evaluate each copy of g separately with a “reduced” error probability � 1/n so that, by a union
bound, the n-bit output will be correct with high probability. More precisely, their result states

∀g : R(gn) = Θ(n · R1/n(g)). (Direct sum)
Here we used standard notation: R(g) := R1/3(g) where Rε(g) denotes the ε-error query complexity
of g, that is, the least number of queries a randomised algorithm (decision tree) must make to the
input bits xi ∈ {0, 1} of an unknown input x ∈ {0, 1}m in order to output g(x) with probability at
least 1− ε (where the probability is over the internal randomness of the algorithm). Similarly, Rε(g)
denotes the ε-error expected query complexity of g where we measure the expected (rather than
worst-case) number of queries made by the algorithm. See Section 2 for precise definitions.

How far can we push the direct sum result? What if, instead of all the n output bits of gn, we
only wanted to compute their parity? In other words, what is the randomised query complexity of
the composed function Xor ◦ gn? Do we still have to compute each g with reduced error? Brody et
al. [BKLS20] provided an affirmative answer:

∀g : R(Xor ◦ gn) = Θ(n · R1/n(g)). (Xor Lemma)
More generally, we can ask the following question.
Problem 1. For which n-bit outer functions f (assume R(f) = Θ(n) for simplicity) and inner
functions g does the composed function f ◦ gn necessitate error reduction?

There is no conjectured characterisation for when error reduction is necessary. To showcase the
subtlety of this question, we mention that f = Or, despite having a highly “sensitive” input x = 0n,
never necessitates error reduction. By now, there are many proofs [FRPU94, KK94, New09, GS10,
BGKW20] showing that R(Or ◦ gn) = O(n · R(g)) for every g.

Our goal in this paper is to make further progress on Problem 1.
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1.1 Our results

Our main result is to prove tight bounds for composing with the n-bit majority function Maj. This
in particular confirms a conjecture made in [BB19, BGKW20].

Theorem 1 (Maj lemma). R(Maj ◦ gn) = Θ(n · R1/n(g)) for every partial function g.

Previously, Ben-David et al. [BGKW20] proved Theorem 1 in the special case g = GapOr.
Here GapOr = GapOrm is the m-bit partial function defined by GapOr(x) = Or(x) on inputs
of Hamming weight |x| ∈ {0,m/2} and is undefined otherwise. This is a particularly clean example
of a function whose query complexity behaves as (assuming m ≥ log(1/ε))

Rε(GapOr) = Θ(log(1/ε)).

We prove Theorem 1 by a direct reduction to this previous result! Our more general result says,
informally, that error reduction is necessary for any composed function f ◦ gn if it is necessary in
the special case g = GapOr. Our key conceptual insight is to formulate a sense in which every g
can be “simulated” by GapOr. There is, however, a slight technical caveat. For the reduction to
work, we need to assume that the lower bound for f ◦GapOrn holds not only against randomised
decision trees but also against a more powerful model called ε-approximate nonnegative degree deg+

ε

(aka conical junta degree, partition bound), which we will recall in Section 2.

Theorem 2 (Reduction to GapOr). Suppose that a function f satisfies deg+
ε (f ◦ hn) ≥ Ω(n logn)

for some constant ε > 0 and for both h ∈ {GapOrlogn,¬GapOrlogn}. Then

∀g : R(f ◦ gn) = Ω(n · R1/n(g)).

Theorem 1 follows immediately by combining Theorem 2 with [BGKW20, Theorem 4], which
proved the required nonnegative degree lower bound for Maj ◦GapOrn (we only note that their
proof works equally well for ¬GapOr in place of GapOr). In fact, the nonnegative degree lower
bound holds more generally for any (2n+ 1)-bit outer function that agrees with Maj on inputs of
weight n and n+ 1. For example, Xor is such a function, and hence the Xor lemma of Brody et
al. [BKLS20] can be recovered using Theorem 2. However, the original proof in [BKLS20] is much
simpler than ours, and moreover, the result of [BKLS20] actually characterises Rε(Xor ◦ gn) for
all ε > 0 while we focus on the bounded-error case ε = 1/3.

Our goal for the rest of the paper is to prove Theorem 2.

Optimality? We note that our choice of GapOr in Theorem 2 is optimal at least in the sense
that it cannot be replaced with the more symmetric alternative GapMaj, which is defined by
GapMajm(x) = Majm(x) on inputs of weight |x| ∈ {m/3, 2m/3} and undefined otherwise. There
are known examples of partial f (but no known total ones) for which GapOr does not need error
reduction while GapMaj does [BGKW20, Section 4]. We suspect however that other aspects of
Theorem 2 can be improved; see Section 1.4 for open problems.

1.2 Techniques: Leaf Lemma

Our main technical contribution, which might be of independent interest, is what we call Leaf
Lemma. It states that every boolean function g admits a balanced input distribution µ = 1

2(µ0 +µ1),
where µi is a distribution supported on g−1(i), and a “hard side” b ∈ {0, 1} satisfying the following:
If we run a decision tree of shallow depth � Rε(g) on a random input x ∼ µ then we will typically
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reach a leaf ` making one-sided error, that is, if the leaf ` is reached by x ∼ µb with probability p,
then ` is also reached by x ∼ µ1−b with probability at least ε · p. Interestingly, this property is
inherently one-sided and the choice of the hard side b depends on the function g. For example,
GapOr and ¬GapOr have distinct hard sides. See our proof overview in Section 3 for more details.

1.3 Other related work

Complexity of composition. A major theme in boolean function complexity theory is to understand
the complexity of the composition f ◦ gn in terms of the complexities of its two constituent functions.
It has been long known that many well-studied complexity measures behave multiplicatively under
composition. For example, deterministic query complexity satisfies D(f ◦ gn) = D(f) D(g) [Sav02],
quantum query complexity satisfies Q(f ◦ gn) = Θ(Q(f) Q(g)) [Rei11, LMR+11], and yet more
examples (degree, certificate complexity, sensitivity) are discussed in [Tal13]. An interesting exception
to this rule is randomised query complexity, where we can have two types of counter-examples.

• Super-multiplicative: There are functions f and g such that R(f ◦ gn) ≥ ω(R(f) R(g)). For
example, this happens whenever f necessitates error reduction for g = GapOr.

• Sub-multiplicative: Recent work [GLSS19, BB20a] has found surprising examples of partial f
and g such that R(f ◦ gn) ≤ o(R(f) R(g)).

It is still open to quantify the extent to which multiplicativity can fail. For example, it has not
been ruled out that R(f ◦ gn) ≥ R(f) R(g)/poly(logn) for all partial functions. It is also possible
that a strict multiplicative lower bound holds for all total functions. This latter question is known
as the randomised composition conjecture (for total functions) and it has been studied in a long line
of work [BK18, AGJ+17, GLSS19, BDG+20, BB20a, BB20b].

Noisy decision trees. Necessity of error reduction is closely related to the model of “noisy decision
trees” [FRPU94, EP98, DR08, GS10]. In this model, the goal is to compute a boolean function f
given noisy query access to its input bits. A single query to an input variable xi returns its
correct value with probability 2/3 (say) and the opposite value 1− xi with probability 1/3. This
model is effectively equivalent to computing f ◦ GapMajn in the standard query model. With
this interpretation, one of the results of [FRPU94] states that R(Maj ◦GapMajn) = Θ(n logn).
We note that this is weaker (in two respects) than the result deg+

ε (Maj ◦GapOrn) = Θ(n logn)
from [BGKW20], which we used to derive our main result (although see Problem 2 below).

1.4 Open problems

How optimal is Theorem 2? We suspect that our assumption about nonnegative degree is an artifact
of our proof and can be relaxed as follows.

Problem 2. Show that the hypothesis in Theorem 2 can be weakened to R(f ◦ hn) ≥ Ω(n logn).

Whether we need to assume hardness for both GapOr and its negation, we do not know.

Problem 3. Are there examples of f with R(f ◦GapOrn) ≥ ω(R(f ◦ ¬GapOrn))?

Theorem 2 could be useful in showing tight composition results for yet more outer functions.
For example, consider the well-studied partial function SqrtGapMajn (often called simply the gap
majority function) defined as Majn but restricted to inputs of Hamming weight |x| /∈ n/2±

√
n.

Problem 4. Show R(SqrtGapMaj ◦ gn) = Θ(n · R1/n(g)) for every g.
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2 Query complexity basics
We study partial boolean functions f : {0, 1}n → {0, 1, ∗}. The domain of the function is dom(f) :=
f−1({0, 1}) and the inputs f−1(∗) are undefined. We say f is total if dom(f) = {0, 1}n. For partial
functions f and g, their composition f ◦ gn is defined by (f ◦ gn)(x1, . . . , xn) := f(g(x1), . . . , g(xn))
if xi ∈ dom(g) for all i ∈ [n]; otherwise (f ◦ gn)(x1, . . . , xn) := ∗. Standard references for boolean
function complexity are [BdW02, Juk12].

Decision trees. A (deterministic) decision tree t is an algorithm for computing a boolean function
on an unknown input x ∈ {0, 1}n. The algorithm repeatedly queries the input variables xi ∈ {0, 1}
in some order (which can depend on outcomes of queries made so far) until eventually producing an
output t(x). Such an algorithm can be represented as a binary tree, with internal nodes labelled
with variables xi, outgoing edges of the internal nodes labelled with query outcomes (xi = 0 and
xi = 1), and leaves labelled with output values. Each input x determines a unique root-to-leaf path,
obtained by following the query outcomes consistent with x. The most important cost measure
of t is its depth, denoted depth(t), which is the longest root-to-leaf path in the tree and equals
maxx q(t, x) where q(t, x) denotes the number of queries made by t on input x.

A randomised decision tree T is a distribution over deterministic decision trees t ∼ T . We say T
computes f : {0, 1}n → {0, 1, ∗} with error ε if for every x ∈ dom(f) we have Pt∼T [t(x) = f(x)] ≥ 1−ε.
There are two cost measures for T : the (worst-case) depth is the maximum depth of any decision
tree in the support of T ; the expected depth is maxx Et∼T [q(t, x)]. The ε-error query complexity of f ,
denoted Rε(f), is the least depth of a randomised decision tree that computes f with error ε. The
ε-error expected query complexity, denoted Rε(f), is defined analogously.

Error reduction. It is well known that the error probability of an algorithm (computing a boolean-
valued function) can be reduced from any constant 1/2− δ, where δ > 0, to any other constant ε > 0
by repeating the algorithm constantly many times (in fact, O(log(1/ε)/δ2) many) and outputting the
majority answer. Hence we often set ε := 1/3 and omit ε from notation. In this bounded-error regime,
we have R(f) ≤ R(f) ≤ O(R(f)) where the second inequality follows by truncating executions that
query many more bits than the expectation. For vanishing ε = o(1) (as n → ∞), it is possible
that Rε(f) ≤ o(Rε(f)). For example, consider the partial 2n-bit function f where the task is to
distinguish inputs of the form x0n from inputs of the form 0nx with the promise that |x| = n/2. We
have R1/n(f) = O(1) while R1/n(f) = Θ(logn). In this small-error regime, the following fine-grained
error reduction calculation will be useful.

Claim 3. Rεk(f) ≤ 4k · Rε(f) for every k ≥ 1 and ε ≤ 1/16.

Proof. Suppose T computes f with error ε and consider the algorithm T ′ that runs T 4k − 1 times
and outputs the majority answer. Then T ′ errs iff at least 2k of the runs err. This happens with
probability at most ∑4k−1

i=2k
(4k−1

i

)
εi(1− ε)4k−1−i ≤ 24kε2k ≤ εk.

Leaf indicators. Let t be a decision tree with n-bit inputs. We denote by L(t) the set of its leaves
and by `tx ∈ L(t) the unique leaf reached on input x. We often identify a leaf ` ∈ L(t) with its
associated leaf indicator function ` : {0, 1}n → {0, 1} defined by `(x) := 1 iff input x reaches leaf `.
Thus each ` is simply a conjunction of at most depth(t) literals (xi or x̄i) determined by the unique
root-to-` path in t. If t outputs boolean values, we let A(t) ⊆ L(t) denote the set of accepting leaves,
that is, those that output 1. Since the leaf indicators have pairwise disjoint supports, we can write
the function computed by t as

t(x) = ∑
`∈A(t) `(x). (1)
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Nonnegative degree. Let p : {0, 1}n → R≥0 be a nonnegative function. We say p is a nonnegative
d-junta if it depends on at most d of its variables. For example, if t is a depth-d decision tree, then
each ` ∈ L(t) is a nonnegative d-junta. More generally, we say that p is a conical junta of degree d
if it can be written as a conical combination of nonnegative d-juntas, that is, p(x) = ∑

i aiqi(x)
where ai ≥ 0 are nonnegative scalars and the qi are nonnegative d-juntas. For example, the function
computed by t is a degree-d conical junta, as given by the expression (1). The nonnegative degree
of p, denoted deg+(p), is the least d such that p is a degree-d conical junta.

Let f : {0, 1}n → {0, 1, ∗} be a partial function. We say that p ε-approximates f if p(x) ∈ f(x)±ε
for every x ∈ dom(f). The ε-approximate nonnegative degree of f , denoted deg+

ε (f), is the least
degree of a conical junta that ε-approximates f . For example, if T is a depth-d randomised ε-error
decision tree for f , then there exists a degree-d conical junta pT that ε-approximates f , namely,

pT (x) := Et∼T [t(x)] ∈ f(x)± ε.

This shows that deg+
ε (f) ≤ Rε(f). The gap betweeen deg+

1/3(f) and R(f) can be huge for partial
functions. For example, consider the n-bit UniqueOr defined by UniqueOr(x) = Or(x) for inputs
of weight |x| ∈ {0, 1} and undefined othwerwise. Then deg+(UniqueOr) = 1 (computed by ∑i xi)
while R(UniqueOr) = Θ(n). For total functions, the gap is at most polynomial [BdW02].

Nonnegative degree has been studied under many names: (one-sided) partition bound [JK10],
WAPP query complexity [GLM+16, BGKW20], and query complexity “in expectation” [KLdW15].

3 Proof overview
Here we outline the proof of Theorem 2. We phrase the proof in the contrapositive: Supposing
that T is a randomised decision tree computing f ◦ gn of shallow depth � n · R1/n(g) we construct
an approximate conical junta for f ◦GapOrn (or f ◦ ¬GapOrn) of degree � n logn.

Our overview is in two parts.

(§3.1) We first formulate our main technical lemma called Leaf Lemma and its generalisation
Multileaf Lemma. They describe what typical leaves of T look like: they are noisy, meaning
that they make noticeable errors in predicting the outputs of many copies of g. The proofs
of these lemmas will occupy the remaining sections of this paper.

(§3.2) Then we use Multileaf Lemma to prove Theorem 2. A notable component of this part of
the proof is showing how the acceptance probabilities of noisy leaves can be “simulated” by
low-degree conical juntas in the domain of f ◦GapOrn.

3.1 Statement of Leaf Lemma

Example. We build up to the statement of Leaf Lemma by first considering the prototypical
example g = GapOrm. Define two distributions µ0 and µ1 so that µi is uniform over GapOr−1

m (i).
Namely, µ0 places probability 1 on the input 0m and µ1 is uniform over x of weight |x| = m/2.
Suppose t is a deterministic decision tree of shallow depth d� m trying to compute GapOrm. For
a leaf ` ∈ L(t) and any input distribution µ we write for short

`(µ) := Ex∼µ[`(x)] = Px∼µ[`(x) = 1].

What do the typical leaves look like when we run t on a random input x ∼ µi for i ∈ {0, 1}?

• Easy side i = 1. The tree will query a 1-bit after about 2 queries in expectation. Such leaves `
are safe to output 1 as they know GapOr(x) = 1 for certain: `(µ0) = 0 and `(µ1) > 0.
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• Hard side i = 0. Here every query returns 0 and we reach a leaf ` reading d many 0s. Although
the leaf ` can be quite confident that the input x was sampled from µ0 rather than µ1, some
uncertainty remains: `(µ0) = 1 and `(µ1) ≥ ε for ε := 2−Ω(d).

In both cases, we have `(µ1) ≥ ε · `(µ0) and we say that ` is (one-sidedly) noisy. We now formalise
how every g gives rise to such noisy leaves.

General case. Fix a partial function g : {0, 1}m → {0, 1, ∗}. Let µ = 1
2(µ0 + µ1) be a balanced

distribution where µi is supported on g−1(i). For a leaf ` over m bits, a “hard side” b ∈ {0, 1}, and
an error parameter ε ≥ 0, we define

` is (ε, µ, b)-noisy def⇐⇒ `(µ1−b) ≥ ε · `(µb).

Our Leaf Lemma says that every partial function g admits a hard distribution µ = 1
2(µ0 + µ1)

such that if we run a shallow decision tree t on a random input x ∼ µ, the leaf reached `tx will
typically be noisy. For simplicity of notation, for small quantities a, b ∈ [0, 1], we write a� b (resp.
a≪ b) to mean a ≤ cb (resp. ac ≤ b) for a sufficiently small constant c > 0.
Leaf Lemma. For every partial g and 0 < ε ≪ δ � 1, there exists a distribution µ = 1

2(µ0 + µ1)
over dom(g) and a hard side b ∈ {0, 1} such that for every deterministic tree t and i ∈ {0, 1}:

Ex∼µi [q(t, x)]
Rε(g)

≪ δ =⇒ Px∼µi [ `tx is (ε, µ, b)-noisy ] ≥ 1− δ.

Leaf Lemma is our main technical contribution. The proof appears in Section 4. To whet the
reader’s appetite, we highlight two interesting challenges that make the lemma non-trivial.
(C1) Which side is hard? We need to somehow tease out a hard side for an arbitrary g and this

can even depend on the choice of µ. For example, consider g(b, x) := b⊕GapOr(x) where
b ∈ {0, 1}. Rather than µ assigning b at random, the distribution can fix b to either 0 or 1,
which reduces g to either GapOr or ¬GapOr (two functions with distinct hard sides).

(C2) Behaviour of typical leaves. The existence of µ is often proved using various minimax theorems
(we use one due to Blais and Brody [BB19]). These theorems typically guarantee that any
shallow decision tree incurs error at least ε on average relative to µ. This does not rule out
the following bad scenario: the tree could make error 1/2 on 2ε fraction of the leaves reached
and no error on 1− 2ε fraction of the leaves—here the typical leaves are not noisy!

In order to use Leaf Lemma in the context of composed functions, we generalise it to the direct
sum setting where the inputs come from dom(gn) := dom(g)n. Let ` be a leaf over nm bits and
write `(x) = ∏

i∈[n] `i(xi) where xi ∈ {0, 1}m and each `i is over m bits. We define

` is (δ, ε, µ, b)-noisy def⇐⇒ `i is (ε, µ, b)-noisy for at least (1− δ)n many i ∈ [n].

Our generalised lemma says that we will typically reach a noisy leaf if we run a shallow decision
tree on a random input from the product distribution µy := µy1 × · · · × µyn where y ∈ {0, 1}n.
Multileaf Lemma. For every partial g and 0 < ε≪ δ � 1, there exists a distribution µ = 1

2(µ0 +µ1)
over dom(g) and a hard side b ∈ {0, 1} such that for every deterministic tree t taking inputs from
dom(gn) and having depth(t)/(nRε(g)) ≪ δ,

∀y ∈ {0, 1}n : Px∼µy [ `tx is (δ, ε, µ, b)-noisy ] ≥ 1− δ.

Given Leaf Lemma the proof of the generalisation is not difficult: we can use linearity of
expectation to see that the expected number of queries t makes to most copies of g is low, and hence
we can apply Leaf Lemma for those copies. The details appear in Section 5.
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3.2 Proof of Theorem 2

We conclude this overview section with a proof of Theorem 2 using Multileaf Lemma. We start with
a lemma that shows how the noisy leaves in the domain of gn can be “simulated” by low-degree
conical juntas in the domain of GapOrn. For simplicity, we state the lemma assuming a hard side
b = 0; an analogous lemma holds for b = 1 by replacing GapOr with ¬GapOr.

Simulation Lemma. Let ` be a (δ, ε, µ, 0)-noisy leaf over the variables of gn. There exists a conical
junta p` : ({0, 1}logn)n → R≥0 of degree at most n · [δ logn+ log(1/ε)] such that

∀x ∈ dom(GapOrnlogn) : p`(x) = `(µGapOrn
log n(x)).

Proof. We start by defining three conical juntas in the domain of GapOrm for m := logn. Let Smk
be the distribution over multisets obtained by picking k random elements from [m] with replacement.

q1(x) := 2
m

∑
i∈[m] xi of degree 1,

q2(x) := ∏
i∈[m] x̄i of degree m = logn,

q3(x) := ES∼Sm
k

∏
i∈S x̄i of degree k := log(1/ε).

Note the following output values:
∀x ∈ (GapOrm)−1(0) : q1(x) = 0, q2(x) = 1, q3(x) = 1,
∀x ∈ (GapOrm)−1(1) : q1(x) = 1, q2(x) = 0, q3(x) = 2−k = ε.

Let y = (y1, . . . , yn) be the input variables of gn. We write `(y) = ∏
i `i(yi) so that `(µGapOrn

m(x)) =∏
i `i(µGapOrm(xi)). We simulate each factor in this product separately. For i ∈ [n] consider the

function pi : {0, 1}m → R≥0 defined by

pi(x) := `i(µGapOrm(x)).

First note that pi can always be written as a conical combination of q1 and q2 in degree logn.
Moreover, if `i is (ε, µ, 0)-noisy, meaning `i(µ1) ≥ ε · `i(µ0), then we can do better and write pi as a
conical combination of q1 and q3 in degree log(1/ε). We now define p` := ∏

i pi. The claimed bound
on the degree of p` follows because at most δ fraction of the `i are non-noisy.

We are now ready to prove Theorem 2 using Multileaf Lemma and Simulation Lemma.

Proof of Theorem 2. Suppose for contradiction that T is a randomised decision tree for f ◦ gn
having error 1/3 and depth γnR1/n(g) where γ = o(1) as n → ∞. Our goal is to construct an
o(n logn)-degree o(1)-approximate conical junta for f ◦GapOrnlogn (or f ◦ ¬GapOrnlogn).

We make two simplifying assumptions wlog.

1. The randomised tree T has error o(1). To ensure this, we may reduce T ’s error by running
it 1/√γ = ω(1) times. This will yield an o(1)-error tree of depth √γnR1/n(g) = o(nR1/n(g)).

2. There is some ε := 1/no(1) such that T has depth o(nRε(g)). To ensure this, we may apply
Claim 3 to see that γnR1/n(f) ≤ √γnRε(f) ≤ o(nRε(f)) where ε := 1/n4√γ .

We invoke Multileaf Lemma with the above ε ≤ o(1) and δ := max{γc, εc} ≤ o(1) for small
enough constant c > 0. We get a hard distribution µ and a hard side b, say b = 0 (case b = 1 is
similar, but using ¬GapOr), such that the following holds: For every t in the support of T if we run t
on a random input x ∼ µy, where y ∈ {0, 1}n, then the leaf reached `tx will be (δ, ε, µ, 0)-noisy with
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probability 1− o(1). This allows us to effectively ignore non-noisy leaves: denoting by N (t) ⊆ A(t)
the set of accepting leaves that are (δ, ε, µ, 0)-noisy, we have

∀y ∈ {0, 1}n : Ex∼µy [t(x)] = Ex∼µy

[∑
`∈A(t) `(x)

]
(Using (1))

∈ Ex∼µy

[∑
`∈N (t) `(x)

]
± o(1). (2)

We now define the approximating conical junta by

p(x) := Et∼T
[∑

`∈N (t) p`(x)
]
,

where the p` are given by Simulation Lemma. Hence p has degree at most

n · [δ logn+ log(1/ε)] = n · [o(1) logn+ logno(1)] = o(n logn).

We finish the proof of Theorem 2 by verifying that p indeed o(1)-approximates f ◦GapOrnlogn.

∀x : p(x) = Et∼T
[∑

`∈N (t) p`(x)
]

= Et∼T
[∑

`∈N (t) `(µy)
]

(y := GapOrnlogn(x))
= Et∼T

[∑
`∈N (t) Ex′∼µy [`(x′)]

]
= Et∼T

[
Ex′∼µy [∑`∈N (t) `(x′)]

]
∈ Et∼T

[
Ex′∼µy [t(x′)]

]
± o(1) (Using (2))

= Ex′∼µy

[
Et∼T [t(x′)]

]
± o(1)

∈ Ex′∼µy

[
(f ◦ gn)(x′)

]
± o(1) (T has error o(1))

= f(y)± o(1)
= (f ◦GapOrnlogn)(x)± o(1).

4 Proof of Leaf Lemma
We prove Leaf Lemma in three subsections.

(§4.1) We start by recalling a distributional characterisation due to Blais and Brody [BB19] of
expected query complexity Rε using decision trees that can “abort”.

(§4.2) We then formulate a Hard Side Lemma, which encapsulates the core challenge in finding
the hard side of a given function g and from which Leaf Lemma is easy to derive.

(§4.3) Finally, we prove the Hard Side Lemma.

4.1 Distributional characterisation of Rε due to Blais–Brody

A (deterministic) abort-tree t is a decision tree that outputs either a boolean value (0 or 1) or the
abort symbol ⊥. When an abort-tree is trying to compute a boolean function g, we do not consider
the output ⊥ as an “error”; the tree simply gives up on the computation. Indeed, we say that t(x)
errs iff t(x) = 1 − g(x), that is, t(x) 6= ⊥ and t(x) 6= g(x). As before, a randomised abort-tree is
a probability distribution over deterministic abort-trees. For γ ∈ (0, 1) and ε ∈ [0, 1/2) we define
Rγ,ε(g) as the least (worst-case) depth of a randomised abort-tree T such that for all x ∈ dom(g):

Pt∼T [ t(x) = ⊥ ] ≤ γ and Pt∼T [ t(x) errs ] ≤ ε.
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We formulate a distributional version of Rγ,ε(g) as follows. For a distribution µ over dom(g), we
define Dµ

γ,ε(g) as the least depth of a deterministic abort-tree t such that

Px∼µ[ t(x) = ⊥ ] ≤ γ and Px∼µ[ t(x) errs ] ≤ ε.

The following two lemmas from [BB19, §3.1] connect abort-trees and Rε(g).

Lemma 4 (Abort vs. expected depth). For every ε ∈ [0, 1/2) and γ ∈ (0, 1),

γ · Rγ, ε(g) ≤ Rε(g) ≤ 1
1−γ · Rγ, (1−γ)ε(g).

Lemma 5 (Minimax). For every ε ∈ [0, 1/2), γ ∈ (0, 1), and α, β ∈ (0, 1) with α+ β ≤ 1,

maxµ Dµ
γ/α, ε/β(g) ≤ Rγ, ε(g) ≤ maxµ Dµ

αγ, βε(g).

4.2 Statement of Hard Side Lemma

When searching for the hard side of a partial function g under a distribution µ = 1
2(µ0 + µ1), it is

convenient to study a more symmetric notion of noisiness than the one-sided variant defined earlier.
For a leaf ` ∈ L(t) of an abort-tree t, we define the relative error re(`, µ) so that if ` is an aborting
leaf, then re(`, µ) := 0; otherwise

re(`, µ) := min{`(µ0), `(µ1)}
`(µ0) + `(µ1) ∈ [0, 1/2].

This definition captures the best achievable error of a leaf in an abort-tree. Namely, let us say that t
is µ-smart if every non-abort leaf ` ∈ L(t) outputs a boolean value i ∈ {0, 1} that maximises `(µi).
Then for every leaf ` in a µ-smart t we have Px∼µ[ t(x) errs | `tx = ` ] = re(`, µ). An easy calculation
gives the following claim, which we record for future use.

Claim 6. For a µ-smart t we have Px∼µ[ t(x) errs ] = Ex∼µ[re(`tx, µ)].

Another easy calculation shows that relative error implies noisiness.

Claim 7. If re(`, µ) ≥ ε, then ` is (ε, µ, b)-noisy for both b ∈ {0, 1}.

We are now ready to formulate Hard Side Lemma, which isolates the technical challenge (C1)
(discussed in Section 3.1): Every partial function g admits a balanced distribution µ and a hard
side b such that if we run a shallow abort-tree on the hard side µb of µ, then t must either abort
with high probability or we reach a leaf of noticeable error (in expectation).

Hard Side Lemma. For every partial function g and 0 < ε ≪ δ � 1, there exists a distribution
µ = 1

2(µ0 + µ1) over dom(g) and a hard side b ∈ {0, 1} such that for any deterministic abort-tree t
with depth(t)/Rε(g) ≪ δ we have either

Px∼µb [ t(x) = ⊥ ] > 1− δ or Ex∼µb [ re(`tx, µ) ] > ε. (3)

We defer the proof until Section 4.3. We first use the lemma to prove Leaf Lemma, and here is
where we address challenge (C2): we exploit the high abort probability (namely, 1− δ) guaranteed
by Hard Side Lemma to show that typical leaves are noisy.
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Leaf Lemma (restated). For every partial g and 0 < ε ≪ δ � 1, there exists a distribution
µ = 1

2(µ0 + µ1) over dom(g) and a hard side b ∈ {0, 1} such that for every deterministic tree t and
i ∈ {0, 1}:

Ex∼µi [q(t, x)]
Rε(g)

≪ δ =⇒ Px∼µi [ `tx is (ε, µ, b)-noisy ] ≥ 1− δ.

Proof. We observe first that regardless of µ, b, or even the expected depth of t, the lemma holds for
the easy side i = 1− b. Indeed, if we let B ⊆ L(t) denote the set of non-(ε, µ, b)-noisy leaves,

Px∼µ1−b [`tx ∈ B] = ∑
`∈B `(µ1−b) < ε

∑
`∈B `(µb) ≤ ε

∑
`∈L(t) `(µb) = ε ≤ δ.

Let us then focus on the interesting case i = b where the careful choice of µ and b is essential.
We invoke Hard Side Lemma with parameters ε and δ̇ := δ2 (assuming suitably 0 < ε ≪ δ̇ � 1)
to obtain µ and b such that for every abort-tree ṫ with depth(ṫ) ≤ δ̇cRε(g) the property (3) holds
(with dotted parameters). Let x ∼ µb henceforth and write re(`) := re(`, µ) for short. Suppose t
satisfies Ex[q(t, x)] ≤ δ̇c+2Rε(g) (where we chose 2(c+ 2) as the exponent hidden by ≪). Recalling
from Claim 7 that relative error implies noisiness, our goal is to show

Px[ re(`tx) ≥ ε ] ≥ 1− δ. (4)
We convert t into an abort-tree by letting t′ be a modification of t that aborts whenever more
than δ̇cRε(g) queries are made. Using Markov’s inequality and the low expected depth of t,

Px[t′(x) = ⊥] = Px[q(t, x) > δ̇cRε(g)] ≤ Ex[q(t, x)]/δ̇cRε(g) ≤ δ̇2.

We also have Px[re(`tx) ≥ ε] ≥ Px[re(`t′x ) ≥ ε] since we only made more executions abort. To
prove (4), suppose for contradiction that Px[re(`t′x ) ≥ ε] < 1 − δ. Let ṫ be a further modification
of t′ that aborts any leaf ` ∈ L(t′) with re(`) ≥ ε. Note that

Px[ṫ(x) = ⊥] ≤ Px[t′(x) = ⊥] + Px[re(`t′x ) ≥ ε] ≤ δ̇2 + 1− δ ≤ 1− δ̇.
Hence we get from (dotted) property (3) that Ex[re(`ṫx)] > ε. But this contradicts the fact that
re(`) < ε for all ` ∈ L(ṫ) by construction. This verifies (4) and concludes the proof.

4.3 Proof of Hard Side Lemma

Let ν be a distribution that witnesses D := maxν′ Dν′

1−δ, ε1/3(g) so that every abort-tree t with
depth(t) < D fails to satisfy at least one of the following:

Px∼ν [ t(x) = ⊥ ] ≤ 1− δ, (5)
Px∼ν [ t(x) errs ] ≤ ε1/3. (6)

As a minor technicality, we re-balance ν. We can write ν = λµ0 + (1− λ)µ1 where λ ∈ (0, 1) and µi
is a distribution supported on g−1(i). We define µ := 1

2(µ0 + µ1) as our balanced distribution.
Assume towards a contradiction that there does not exist a hard side for µ, that is, the claim of

the lemma fails for both b ∈ {0, 1}. This means there exists two abort-trees t0 and t1 of depth at
most δ3Rε(g) (where we chose 3 as the exponent hidden by ≪) such that for both b ∈ {0, 1}:

Px∼µb [ tb(x) = ⊥ ] ≤ 1− δ, (7)
Ex∼µb [ re(`tbx , µ) ] ≤ ε. (8)

We will use t0 and t1 to construct a third tree t that computes g too well relative to ν contradicting
our choice of ν. We may assume wlog that t0 and t1 are µ-smart, since the properties (7)–(8) do not
depend on the boolean leaf-labels (only whether a leaf aborts or not). We now define t as follows:
On input x we run both t0(x) and t1(x); if t0(x) 6= ⊥, we output t0(x); otherwise we output t1(x).
We will show that t has depth(t) < D and satisfies (5)–(6), which will contradict our choice of ν.
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t0 t1
g−1(0) g−1(1) g−1(0) g−1(1)

⊥ (≤ 10%)

⊥
⊥ ⊥ (≤ 10%)

Figure 1: Two trees t0 and t1 in the proof of Hard Side Lemma. The leaves partition dom(g) into subcubes
where grey leaves output ⊥, green leaves output 1, and blue leaves output 0. Hatched regions are error. We
are promised that, e.g., t0 has bounded abort (10% in our figure) over µ0, but not necessarily over µ1.

Tree t is shallow. We have the following chain of inequalities

depth(t) ≤ 2δ3Rε(g) ≤ 32δ3Rε1/4(g) < δ2Rε1/4(g) ≤ R1−δ2, δ2ε1/4(g)
≤ maxν′ Dν′

(1−δ2)2, δ4ε1/4(g) ≤ maxν′ Dν′

1−δ, ε1/3(g) =: D.

The first inequality uses the definition of t. Second uses error reduction (Claim 3 with k := 4). Third
uses δ � 1. Fourth uses Lemma 4 (with γ := 1− δ2). Fifth uses the minimax lemma (Lemma 5
with α := 1− δ2, β := δ2). The final inequality uses ε≪ δ � 1.

Tree t has bounded abort. We verify property (5) by

Px∼ν [t(x) = ⊥] = Px∼ν [t0(x) = ⊥ ∧ t1(x) = ⊥]
= λPx∼µ0 [t0(x) = ⊥ ∧ t1(x) = ⊥] + (1− λ)Px∼µ1 [t0(x) = ⊥ ∧ t1(x) = ⊥]
≤ λPx∼µ0 [t0(x) = ⊥] + (1− λ)Px∼µ1 [t1(x) = ⊥]
≤ 1− δ. (Using (7))

Tree t errs rarely. We start with a claim that says that if the expected relative error is low over
one side µb of µ, then a µ-smart tree errs rarely over the whole distribution µ.

Claim 8. Let t′ be µ-smart and b ∈ {0, 1}. If Ex∼µb [re(`t′x , µ)] ≤ ε then Px∼µ[t′(x) errs] ≤ ε1/2.

Proof. We prove the claim for b = 0 as the other case is analogous. Since t′ and µ are fixed, we
drop them from notation writing re(`) := re(`, µ), `x := `t

′
x , L := L(t′). We argue that relative error

on one side of the distribution must spill over to the other side:

Ex∼µ0 [re(`x)] = ∑
`∈L `(µ0) re(`) ≥ ∑

`∈L `(µ1) re(`)2 = Ex∼µ1 [re(`x)2] ≥ Ex∼µ1 [re(`x)]2.

Here the first inequality used `(µ0) ≥ `(µ1) re(`) (from Claim 7) and the second inequality
used Jensen’s inequality. It follows that Ex∼µ1 [re(`x)] ≤ Ex∼µ0 [re(`x)]1/2 ≤ ε1/2 and therefore
Ex∼µ[re(`x)] ≤ ε1/2. The claim then follows from Claim 6.
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We now verify property (6), which concludes the proof of Hard Side Lemma.

Px∼ν [t(x) errs] ≤ Px∼ν [t0(x) errs ∨ t1(x) errs]
≤
∑
b∈{0,1} Px∼ν [tb(x) errs]

= ∑
b∈{0,1} λPx∼µ0 [tb(x) errs] + (1− λ)Px∼µ1 [tb(x) errs]

≤
∑
b∈{0,1} 2Px∼µ[tb(x) errs]

≤
∑
b∈{0,1} 2 · ε1/2 (Claim 8 and (8))

= 4ε1/2

≤ ε1/3. (ε� 1)

5 Proof of Multileaf Lemma
Multileaf Lemma (restated). For every partial g and 0 < ε ≪ δ � 1, there exists a distribution
µ = 1

2(µ0 + µ1) over dom(g) and a hard side b ∈ {0, 1} such that for every deterministic tree t
taking inputs from dom(gn) and having depth(t)/(nRε(g)) ≪ δ,

∀y ∈ {0, 1}n : Px∼µy [ `tx is (δ, ε, µ, b)-noisy ] ≥ 1− δ.

Proof. Apply Leaf Lemma with parameters ε and δ̇ := δ3 (assuming suitably 0 < ε ≪ δ̇ � 1) to
obtain µ = 1

2(µ0 + µ1) and b ∈ {0, 1} that satisfy the lemma for trees of depth at most δ̇cRε(g).
Fix y ∈ {0, 1}n and a deterministic tree t over dom(gn) with depth(t) ≤ δ̇c+4nRε(g) (where we
chose 3(c+ 4) as the exponent hidden by ≪).

Here is the plan for our proof. An input x ∈ dom(gn) can be seen as inducing several subtrees
of t corresponding to distinct coordinates i ∈ [n]. Indeed, define tx,i as the tree over inputs from
dom(g) that is obtained from t by substituting x as its input variables except retaining xi as free
variables. If we can show that tx,i has shallow depth in expectation over an input z ∼ µyi then we
can hope to use Leaf Lemma and argue that the reached leaf `z ∈ L(tx,i) (which is one of the n
components of a leaf of t) is typically (ε, µ, b)-noisy.

Let us formalise this plan. Let x ∼ µy henceforth. For i ∈ [n] we define two events

i-th tree is shallow: Si(x) def⇐⇒ Ez∼µyi [q(tx,i, z)] ≤ δ̇cRε(g),
i-th leaf is noisy: Ni(x) def⇐⇒ `xi ∈ L(tx,i) is (ε, µ, b)-noisy.

Note that Leaf Lemma states Px[Ni | Si] ≥ 1− δ̇. Thinking of Si and Ni as indicator variables, we
define S := 1

n

∑
i Si and N := 1

n

∑
iNi. With this notation, Multileaf Lemma becomes equivalent to

Px[N ≥ 1− δ] ≥ 1− δ. (9)

To show this, we compute as follows (using Claim 9 that is proved below)

Ex[N ] = 1
n

∑
i Px[Ni]

≥ 1
n

∑
i(1− δ̇)P[Si] (Leaf Lemma)

= (1− δ̇)Ex[S]
≥ (1− δ̇)(1− δ̇) (Claim 9)
≥ 1− δ2. (δ̇ := δ3 � 1)

Hence (9) follows by applying Markov’s inequality to the nonnegative random variable 1−N ≥ 0.
This completes the proof apart from the following claim.
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Claim 9. Ex[S] ≥ 1− δ̇.

Proof. Let qi(t, x) denote the number of queries made by t to the i-th component of x. Define xi←z
as a copy of x but where z is inserted at the i-th component. Note that qi(t, xi←z) = q(tx,i, z).
Linearity of expectation gives∑

i∈[n] Ex[qi(t, x)] ≤ depth(t) ≤ δ̇c+4nRε(g). (10)

Define I ⊆ [n] as the set of coordinates i satisfying

Ex [qi(t, x)] ≤ δ̇c+2Rε(g). (11)

We have that |I| ≥ (1 − δ̇2)n as otherwise more than δ̇2n terms in the sum (10) are larger than
δ̇c+2Rε(g) contradicting the upper bound on depth(t). Fix i ∈ I. Sampling x ∼ µy is equivalent to
first taking x ∼ µy, then sampling independently z ∼ µyi , and finally outputting xi←z. Hence

Ex Ez∼µyi [qi(t, xi←z)] = Ex[qi(t, x)] ≤ δ̇c+2Rε(g).

We get from Markov’s inequality and the above that

Px[¬Si] = Px
[
Ez∼µyi [qi(t, xi←z)] > δ̇cRε(g)

]
≤ δ̇2. (12)

In conclusion,

Ex[S] ≥ 1
n

∑
i∈I Px[Si] ≥ 1

n |I| · (1− δ̇2) ≥ (1− δ̇2)2 ≥ 1− δ̇.
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