
Almost Optimal Super-Constant-Pass Streaming

Lower Bounds for Reachability

Lijie Chen∗ Gillat Kol† Dmitry Paramonov‡

Raghuvansh R. Saxena§ Zhao Song¶ Huacheng Yu‖

Abstract

We give an almost quadratic n2−o(1) lower bound on the space consumption of any

o(
√

log n)-pass streaming algorithm solving the (directed) s-t reachability problem.

This means that any such algorithm must essentially store the entire graph. As

corollaries, we obtain almost quadratic space lower bounds for additional fundamental

problems, including maximum matching, shortest path, matrix rank, and linear

programming.

Our main technical contribution is the definition and construction of set hiding

graphs, that may be of independent interest: we give a general way of encoding a set

S ⊆ [k] as a directed graph with n = k1+o(1) vertices, such that deciding whether i ∈ S
boils down to deciding if ti is reachable from si, for a specific pair of vertices (si, ti) in

the graph. Furthermore, we prove that our graph “hides” S, in the sense that no low-

space streaming algorithm with a small number of passes can learn (almost) anything

about S.

∗MIT. lijieche@mit.edu
†Princeton University. gillat.kol@gmail.com
‡Princeton University. dp20@princeton.edu
§Princeton University. rrsaxena@princeton.edu
¶Institute for Advanced Study. zhaos@ias.edu
‖Princeton University. yuhch123@gmail.com

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 27 (2021)

Contents

1 Introduction 1

1.1 Our Results . 1

1.1.1 Lower Bound for s-t Reachability . 1

1.1.2 Lower Bounds for Additional Streaming Problems 3

2 Technical Overview 4

2.1 Set-Hiding Graphs Against One-Pass Algorithms 5

2.1.1 A New Communication Problem . 5

2.1.2 Constructing the Set-Hiding Graph 6

2.2 Generalizing to p Passes . 9

3 Preliminary 11

3.1 Notation . 11

3.2 Layered Graphs and Layer-Arrival Model . 12

3.3 Ruzsa-Szemerédi Graphs . 13

3.4 Indistinguishability and The Hybrid Argument 14

3.5 Set-Encoding/Perm-Encoding Graphs and Set-Hiding/Perm-Hiding Generators 15

3.5.1 Set-Encoding Graphs and Perm-Encoding Graphs 15

3.5.2 Set-Hiding Generators and Perm-Hiding Generators 16

4 Construction of Set-Hiding Generators 16

5 Lower Bounds for Multi-Pass Streaming Algorithms 19

5.1 s-t Reachability and s-t Undirected Shortest-Path 20

5.2 Bipartite Perfect Matching . 21

5.3 Matrix Rank . 23

5.4 Linear Programming . 24

6 The Communication Lower Bound 26

6.1 Notation . 27

6.2 Spectral Norm of N> . 28

6.3 Proof of Theorem 6.1 . 31

7 Indistinguishability of Set-Hiding-Game 34

8 Operations on Set-Encoding Graphs 40

8.1 The AND/OR Operation on Set-Encoding Graphs 40

8.2 The XOR Operation on Set-Encoding Graph Pairs 41

i

9 Set-Hiding Generators from Perm-Hiding Generators 44

9.1 Construction of Container Graphs Using Ruzsa-Szemerédi Graphs 44

9.2 Index-Encoding Graphs . 45

9.3 Index-Hiding Generators . 46

9.4 Construction of Set-Hiding Generators . 47

10 Perm-Hiding Generators from Set-Hiding Generators 55

10.1 Decomposition of Permutations via Low-depth Sorting Networks 56

10.2 Perm-Hiding Generators for Permutations in Perm(M) 56

10.3 Construction of Perm-Hiding Generators . 58

ii

1 Introduction

Graph streaming algorithms are designed to process massive graphs and have been studied

extensively over the last two decades. This study is timely as huge graphs naturally arise

in many modern applications, particularly in those with structured data representing the

relationships between a set of entities (e.g., friendships in a social network). A graph

streaming algorithm is typically presented with a sequence of graph edges in an arbitrary

order and it can read them one-by-one in the order in which they appear in the sequence.

We want the algorithm to only make one or few passes through the edge sequence and use

limited memory, ideally much smaller than the size of the graph.

Much of the streaming literature was devoted to the study of one-pass algorithms, and

for many basic graph problems Ω(n2) lower bounds were shown, where n is the number

of vertices. This implies that the trivial algorithm that stores the entire graph and then

uses an offline algorithm to compute the output is essentially optimal. Such quadratic lower

bounds were shown for maximum matching and minimum vertex cover [FKM+04, GKK12],

s-t reachability and topological sorting [CGMV20, FKM+04, HRR98], shortest path and

diameter [FKM+04, FKM+09], minimum or maximum cut [Zel11], maximal independent set

[ACK19b, CDK19], dominating set [AKL16, ER14], and many others.

Recently, the multi-pass streaming setting received quite a bit of attention. For some

graph problems, it was shown that going from a single pass to even a few passes can

reduce the memory consumption of a streaming algorithm dramatically. For example, semi-

streaming algorithms (which are algorithms that only use Õ(n) space and are often considered

“tractable”) with few passes were designed for various graph problems previously shown to

admit quadratic lower bounds for single pass streaming. These include a two-pass algorithm

for minimum cut in undirected graphs [RSW18], an O(1)-pass algorithm for approximate

matching [GKMS19, GKK12, Kap13, McG05], an O(log log n)-pass algorithm for maximal

independent set [ACK19b, CDK19, GGK+18], and O(log n)-pass algorithms for approximate

dominating set [AKL16, CW16, HPIMV16] and weighted minimum cut [MN20].

1.1 Our Results

1.1.1 Lower Bound for s-t Reachability

Our main result is a near-quadratic lower bound on the space complexity of any streaming

algorithm that solves s-t reachability (a.k.a, directed connectivity) and uses o(
√

log n) passes:

Theorem 1.1 (Reachability). Any randomized o(
√

log n)-pass streaming algorithm that,

given an n-vertex directed graph G = (V,E) with two designated vertices s, t ∈ V , can

determine whether there is a directed path from s to t in G requires n2−o(1) space.

The s-t reachability problem is amongst the most basic graph problems and was also one

of the first to be studied in the context of streaming [HRR98]. Prior to our work, an almost-

quadratic lower bound was only known for two-pass streaming algorithms by the very recent

1

breakthrough of [AR20]. Prior to that, a quadratic lower bound was shown for one-pass

streaming [HRR98, FKM+09]. For p-pass streaming algorithms with p ≥ 3, the best space

lower bound was Ω(n1+1/(2p+2)) [GO16]. We mention that the hard instance constructed

and analyzed by [AR20] is easy (admits a semi-streaming algorithm), even with only three

passes. Additionally, the hard instance used by [GO16] to prove their lower bound against

p-pass streaming algorithms can be solved in n1+1/Ω(p) space with a single pass and with

Õ(n) space with p+ 1 passes. Thus, Theorem 1.1 cannot be shown using the hard instances

constructed by previous papers, and we indeed design a very different instance.

Using a slightly different instance, the techniques used to prove Theorem 1.1 also give a

non-trivial lower bound for more than o(
√

log n) passes. Specifically, we obtain a lower bound

of n1+1/O(log logn) on the space used by any streaming algorithm with o(log n/(log log n)2)

passes (see Remark 5.2). For p satisfying p = ω(log log n) and p = o(log n/(log log n)2),

this improves over the Ω(n1+1/(2p+2)) lower bound of [GO16]. Still, proving super-linear n1+ε

space lower bounds for nε-pass streaming algorithms solving s-t reachability with ε > 0 is a

great problem that we leave open. (Note that with O(n)-passes, semi-streaming is possible

by implementing a BFS search).

Since the s-t reachability problem is a special case of the s-t minimum cut problem

in directed graphs, the lower bound in Theorem 1.1 can also be applied to minimum cut.

We note that space efficient algorithms are known for the undirected versions of both these

problems: s-t connectivity (the undirected version of s-t reachability) has a one-pass semi-

streaming algorithm (e.g., by maintaining a spanning forest [FKM+04]) and there is also a

two-pass streaming algorithm for s-t minimum cut in undirected graphs that only requires

O(n5/3) space ([RSW18], see also [ACK19a]).

Technique: Set Hiding. We derive Theorem 1.1 as a special case of a more general

framework: given a set S ⊆ [k], we are able to construct a random graph GS that “hides” S,

in the sense that for any two different sets S and S ′, no small-space streaming algorithm with

a small number of passes can distinguish between GS and GS′ with any reasonable advantage.

The graph GS we construct has only n = k1+o(1) vertices, out of which k are “designated

source vertices” U = {u1, · · · , uk} and k are “designated sink vertices” V = {v1, · · · , vk}.
There is a directed path from the source ui to the sink vi in GS if and only if i ∈ S. See

Section 2 for a detailed sketch of this construction.

Theorem 1.1 now follows by the following argument: let s := u1 and t := v1 and observe

that G[k] has a directed path from s to t, while G∅ does not. This suggests that any algorithm

for s-t reachability can also distinguish between G[k] and G∅, violating the hiding property,

which is impossible for a small-space algorithm with a small number of passes. In fact, this

argument proves a stronger statement: the s-t reachability problem remains hard even under

the promise that in the n-vertex input graph, either there are no paths from s to t or there

are at least k = n1−o(1) such paths, that are vertex disjoint1. This stronger statement allows

1To get this, start with the graph G[k] and add two vertices, a global source s and a global sink t. Add

2

us to obtain lower bounds for approximate versions of related graph problems (with modest,

sub-constant approximation factors), as detailed below.

1.1.2 Lower Bounds for Additional Streaming Problems

Matching, shortest path, and rank. As in the case of the two-pass lower bound for

s-t reachability proved by [AR20], Theorem 1.1 also implies multi-pass lower bounds for

the shortest path length, maximum bipartite matching size, and matrix rank problems. This

can be shown by (by now standard) reductions: s-t reachability � shortest path, and s-t

reachability � maximum matching � matrix rank.

Theorem 1.2 (Shortest path). Any randomized o(
√

log n)-pass streaming algorithm that,

given an n-vertex undirected graph G = (V,E) and two designated vertices s, t ∈ V , can

output the length of the shortest path connecting s and t in G requires n2−o(1) space.

Theorem 1.3 (Matching). Any randomized o(
√

log n)-pass streaming algorithm that, given

an n-vertex undirected bipartite graph G = (LtR,E) can determine whether G has a perfect

matching requires n2−o(1) space.

Theorem 1.4 (Matrix rank). Any randomized o(
√

log n)-pass streaming algorithm that,

given the rows of a matrix M ∈ Fn×nq where q = ω(n), can determine whether the matrix has

full rank requires n2−o(1) space.

When it comes to lower bounds, the state of affairs for (exact) shortest path, maximum

matching, and matrix rank is similar to that of s-t reachability: Ω(n2) for one-pass

streaming [FKM+04, CCHM14], Ω(n2−o(1)) for two passes [AR20], and Ω(n1+1/(2p+2)) for

any p ≥ 3 [GO16]. On the upper bound front, semi-streaming algorithms with O(
√
|E|)

passes are known for (weighted) maximum matching [LSZ20], and with O(
√
n) passes for

shortest path [CFCHT20]. Understanding the pass-space trade-offs for these problems is a

great goal.

Lower bounds for approximation algorithms. Our proofs of the above theorems also

give some non-trivial results in the approximation setting. Specifically, for constant p, our

almost quadratic lower bounds continue to hold even for p-pass algorithms that only give a

(1 + ω(log n)−2p)-approximation to the length of the shortest s-t path (see Theorem 5.1), or

a (1 + 2−Ωp(
√

logn))-approximation to the size of the maximum matching or to the rank of

a given matrix (see Theorem 5.3 and Corollary 5.6). These lower bounds for approximate

maximum matching and approximate matrix rank are possible because our lower bound for

s-t reachability holds even when there are many (vertex) disjoint paths from s to t (see

Section 1.1.1). In the reduction from s-t reachability to maximum matching, the number

of such paths translates into the difference in the size of the maximum matchings that the

streaming algorithm is unable to distinguish between.

directed edges from s to every ui and from every vi to t.

3

u1 v1

u2 v2

u3 v3

u4 v4

U V

3 /∈ S
7

1 ∈ S

2 ∈ S

4 ∈ S

Figure 1: A graph that encodes the set {1, 2, 4} using the reachability from U to V . Vertex ui
cannot reach vj for i 6= j.

Since Oε(1)-pass semi-streaming algorithms for (1 + ε)-approximations to the size of

the maximum matching and single-source shortest path are known [McG05, BKKL17], our

above lower bounds for these problems cannot be strengthened to deal with constant ε.

A polynomial (but sub-linear) lower bound of n1−εΩ(1/p)
on the space complexity of p-pass

streaming algorithms that obtain a (1 + ε)-approximation of maximum matching and of

matrix rank was very recently proved by [AKSY20].

Lower bounds for additional problems. Via other known reductions, the lower bound

in Theorem 1.1 can be shown to imply lower bounds for additional streaming problems,

such as estimating the number of reachable vertices from a given source [HRR98] and

approximating the minimum feedback arc set [CGMV20].

We also consider the linear programming feasibility (LP feasibility) problem, where given a

set of n linear constraints (inequalities) over d variables, one needs to decide if all constraints

can be satisfied simultaneously. We prove that Theorem 1.1 implies a similar lower bound

for the LP feasibility problem with d ≈ n, see Theorem 5.7 (for the low dimension d � n

regime, see [AKZ19, CC07]). To this end, we devise a reduction from s-t reachability to LP

feasibility that exploits the fact that our hard s-t reachability instance is a layered graph2.

2 Technical Overview

Our proof proceeds by designing a carefully structured hard instance for s-t reachability.

The key component in our lower bound proof is a construction that hides a set in a random

(directed) graph from streaming algorithms. Specifically, let S ⊆ [n] be a set, and U, V be

two sets of n vertices. We will construct a random graph, possibly adding more vertices,

such that ui (the i-th vertex in U) cannot reach vj (the j-th vertex in V) for any i 6= j;

2While there are known reductions from s-t reachability to LP feasibility, to the best of our knowledge,
our reduction is the only one that is both deterministic and generates Θ(n) dense constraints with super
small coefficients ({0, 1,−1} coefficients), as opposed to polynomially large ones.

4

and ui can reach vi if and only if i ∈ S (see Figure 1). That is, the graph encodes the set

S using the reachability from U to V . The most important feature of this random graph

construction is that (with a proper ordering of its edges in a stream) any p-pass (for some

small p) low-space streaming algorithm A cannot “learn anything” about S, in the sense

that for any S1 and S2, A cannot distinguish between the random graphs generated based

on S1 or S2 except with probability at most 1/n. We call such a random graph a Set-Hiding

graph.3

Assuming such a graph construction, the s-t reachability lower bound follows easily. To

see this, we set S1 := ∅ and S2 := {1}, let the source s be u1 and the sink t be v1. Then in a

Set-Hiding graph that hides S1, s cannot reach t; and in a Set-Hiding graph that hides S2, s

can reach t. But any p-pass low-space streaming algorithm cannot distinguish between the

two cases. In particular, it is impossible for such an algorithm to solve s-t reachability. In

the following, we will focus on the construction of such Set-Hiding graphs.

2.1 Set-Hiding Graphs Against One-Pass Algorithms

Let us for now set the goal to constructing graphs that hide a set S from any low-space

one-pass streaming algorithm, as a demonstration of the idea.

2.1.1 A New Communication Problem

The problem. It turns out that the indistinguishablility stems from the hardness of the

following one-way communication problem:

• Alice gets nK sets (T
(k)
j)(j,k)∈[n]×[K] (think of K = log n), which are subsets of [n];

• Bob gets K indices j1, . . . , jK ∈ [n] and K permutations π1, . . . , πK on [n];

• Alice sends a single message to Bob, whose goal is to learn the set

S :=
K⊕
k=1

πk(T
(k)
jk

),

where ⊕ of sets is defined as the coordinate-wise XOR of their indicator vectors, and

π(T) := {π(a) : a ∈ T}.
In other words, Alice gets K collections of sets, each collection consists of n sets, and each

set is over [n]. Then Bob picks one set from each collection, permutes the sets according to

his input, and he wishes to know the ⊕ of the K permuted sets.

Lower bound. We prove that for any two sets S1 and S2, if Alice’s message has only n1.99

bits (note that her input has n2K bits), Bob is not able to distinguish between S = S1 and

3In the formal proof, the collection of 2n such random graphs, one for each subset of [n], is called a
Set-Hiding generator, and a single (deterministic) graph encoding a set is called a Set-Encoding graph. We
will not differentiate between the two when discussing the intuition in this section.

5

S = S2, except with probability exponentially small in K.4 Note that we prove a much

stronger form of lower bound than just a lower bound on the error probability of computing

S, such an indistinguishability lower bound is crucial to obtain the Set-Hiding property of

our graph construction.

The communication lower bound proof uses an XOR lemma for the INDEX problem,

which we prove in this paper. Suppose the players only focus on deciding whether 1 ∈ S,

then Alice’s input can be viewed as K arrays of length n2, where the k-th array is the

concatenation of the n indicator vectors 1(T
(k)
j) for j ∈ [n], and Bob’s input chooses one

entry from each array. The bit indicating 1 ∈ S is precisely the XOR of the K chosen bits,

i.e., the XOR of the π−1
k (1)-th bit in T

(k)
jk

for k ∈ [K] (observe that both the index jk and

the random permutation πk in the definition of the communication problem are needed to

ensure that Alice doesn’t know what entry is chosen by Bob in array k).

The standard INDEX lower bound shows that for one array, if the communication

is less than n1.99, from Bob’s view the chosen bit is still close to uniform, with bias at

most n−Ω(1). If the players handle all K arrays independently, then the K chosen bits

are independent from Bob’s view. Therefore, their XOR has bias at most n−Ω(K), by the

standard result on the XOR of independently random bits. In general, an XOR lemma

states that this bias bound holds even for generic protocols. We prove such an XOR lemma

for INDEX by showing a discrepancy bound (a similar discrepancy bound was (implicitly)

proved in [GPW17, GKMP20] using a different argument). Finally, we apply this XOR

lemma and a hybrid argument to prove the indistinguishability of any two sets S1 and S2.

See Section 6 for the XOR lemma for INDEX, and Section 7 for the communication lower

bound.

2.1.2 Constructing the Set-Hiding Graph

To construct the Set-Hiding graph that hides a set S, we first generate (T
(k)
j)(j,k), (jk)k, (πk)k

according to the hard input distribution for the communication problem, conditioned on the

final set being S, i.e., S =
⊕K

k=1 πk(T
(k)
jk

). Then, we will construct a graph that mimics

the computation of
⊕K

k=1 πk(T
(k)
jk

), and use the hardness of this communication problem to

argue that low-space streaming algorithms cannot learn anything about S.

Representing index selection – graphs for (T
(k)
1 , . . . , T

(k)
n) and T

(k)
jk

. To this end, we

do this computation bottom-up, and let us first see how to “compute” the set T
(k)
jk

for each

k, i.e., select the jk-th set from the collection (T
(k)
1 , . . . , T

(k)
n). This is done using a similar

4Careful readers may have noticed that the statement as written here is technically false, as Alice could
send the parity of the size for each set, taking nK � n1.99 bits. In this case, Bob learns the parity of S,
falsifying the statement for S1, S2 with different parities. In the actual proof, Alice’s sets as well as Bob’s

permutations will be over [4n], and the set S is defined to be
⊕K

k=1 πk(T
(k)
jk

) restricted to the first n elements
[n]. It resolves the above parity issue, and the indistinguishability holds in this case. The arguments below
follow as well.

6

u1 v1

u2 v2

u3 v3

u4 v4

1
∈ Tj

2
∈ Tj

4
∈ Tj

3
/∈ Tj

U V

RS graph

.

.

. .

(a)

U VŨ Ṽ
π−1 π

7

.

.

. .

(b)

Figure 2: In (a), the red and blue boxes correspond to two induced matchings in the RS
graph, thin dashed edges exist in the original RS graph, but are removed according to Tj.

construction to [AR20], which uses the Ruzsa-Szemerédi graphs (RS graphs). The version

we use is a bipartite graph on m vertices, whose edges form a disjoint union of t induced

matchings of size r (i.e., r by r bipartite subgraphs consisting of only r matching edges).

Such graphs were shown to exist for r, t = m · 2−Θ(
√

logm) [RS78].

For each k, we first fix such an RS graph with r, t ≥ n. Then, we associate the j-th

matching with set T
(k)
j , and keep the i-th edge in the matching if and only if i ∈ T (k)

j . The

RS graph encodes the collection (T
(k)
1 , . . . , T

(k)
n). Intuitively, we work with RS graphs as they

allow us to “pack” many sets into a small graph. We select the jk-th set by connecting two

vertex sets U and V to the corresponding matching (see Figure 2a). In this way, ui ∈ U can

reach vi ∈ V if and only if i ∈ T (k)
jk

, i.e., the reachability from U to V encodes the selected

set T
(k)
jk

(in the same way as Set-Hiding graphs would encode S).

Representing permutations: graph for πk(T
(k)
jk

). Next, we implement the permutation

by adding two more layers Ũ and Ṽ , and putting a matching corresponding to π−1
k from Ũ

to U , and a matching corresponding to πk from V to Ṽ . Then the reachability from Ũ to Ṽ

encodes πk(T
(k)
jk

) (see Figure 2b).

Representing XOR: graph for
⊕K

k=1 πk(T
(k)
jk

). The last step is to mimic the computation

of ⊕ of K sets. We have constructed K graphs such that in k-th graph, the reachability

from Uk to Vk encodes πk(T
(k)
jk

). We wish to combine them into a single graph, containing U

and V as subsets of vertices, such that the reachability from U to V encodes ⊕Kk=1πk(T
(k)
jk

).

The main idea is to use the fact that there exists an {∧,∨,¬}-formula of size O(K2) that

computes the XOR of K-bit. For x1, . . . , xK ∈ {True,False}, we can write x1⊕x2⊕· · ·⊕xK

7

Ua Va(= Ub) Vb

Ta Tb

7

7

7

.

.

(a)

Ua(= Ub) Va(= Vb)

7

7

7

Ta

Tb

.

.

. .

(b)

Figure 3: (a) shows a graph computing Ta ∧ Tb, and (b) shows a graph computing Ta ∨ Tb.

as a small Boolean formula F which only uses AND, OR and NOT gates. Moreover, we can

assume that the NOTs are only applied on the xi. F will be applied to the sets πk(T
(k)
jk

)

coordinate-wisely, computing ⊕Kk=1πk(T
(k)
jk

). We are going to construct the graph recursively

according to F .

For an AND gate in F , suppose its two operands are Ta and Tb, and we have constructed

a graph containing Ua and Va as subsets of vertices that encodes Ta using the reachability

from Ua to Va, and a graph containing Ub and Vb that encodes Tb using the reachability from

Ub to Vb. Then the coordinate-wise AND of Ta and Tb (equivalently, the intersection) can be

computed by merging Va and Ub into one set (see Figure 3a). For an OR gate in F with two

operands Ta and Tb, their coordinate-wise OR (equivalently, the union) can be computed

by merging Ua and Ub into one set, and merging Va and Vb into one set (see Figure 3b).

Eventually, we either reach an input variable corresponding to a graph that encodes one

πk(T
(k)
jk

), which we have already constructed, or reach the negation of an input variable,

which corresponds to the complement of one πk(T
(k)
jk

). It suffices to also construct a graph

that encodes [n] \ πk(T (k)
jk

) for each k. Note that [n] \ πk(T (k)
jk

) = πk([n] \ T (k)
jk

). Therefore,

this can be done by applying the construction in the last paragraph on the complement of

input sets ([n] \ T (k)
j)(j,k) (and with the same indices jk and permutations πk).

The order of edges in the stream. The above construction generates a graph that

encodes the set S =
⊕K

k=1 πk(T
(k)
jk

), which we wanted to hide. To determine the order of

its edges in the stream, observe that the edges in all RS (sub)graphs only depend on the

sets (T
(k)
j)(j,k), and the rest of the graph only depends on the indices (jk)k and permutations

(πk)k. Hence, in the stream, we will first give all edges in the RS graphs, then all remaining

8

edges. By the standard reduction from one-way communication to streaming algorithms and

the hardness of the communication problem, we prove that S is hidden from any n1.99-space

one-pass streaming algorithm.

2.2 Generalizing to p Passes

Hiding the selected sets. The lower bound for the one-way communication problem uses

the fact that Alice does not know the indices and permutations. Equivalently, the streaming

algorithm does not know the parts encoding (jk)k and (πk)k when it sees the RS graphs,

which encode (T
(k)
j)(j,k). However, this is not the case if the algorithm can read the stream

even just twice, as it can remember the indices and permutations in the first pass so that the

second time it sees the RS graphs, it already knows which sets are selected. To generalize

our hard instance to p passes, the main idea is to also hide the indices and permutations,

from (p− 1)-pass streaming algorithms.

More specifically, we wish to construct subgraphs (gadgets) that serve the same

purposes as the parts encoding the indices and permutations (in terms of reachability), but

additionally, for any (jk)k, (πk)k and (j′k)k, (π
′
k)k, any low-space (p−1)-pass algorithm should

not be able to distinguish between the subgraphs constructed based on them. Suppose we

have such gadgets, then we may apply the one-way communication lower bound to the p-th

pass (after replacing the edges from U to the RS graph and from the RS graph to V in

Figure 2a by such gadgets, and replacing the edges from Ũ and U and the edges from V to

Ṽ in Figure 2b). This is because when the streaming algorithm sees (T
(k)
j)(j,k) for the p-th

time, it has only scanned the parts encoding the indices and permutations p−1 times (recall

that (T
(k)
j)(j,k) appears before all indices and permutations in the stream), and is not able to

learn anything about them. Therefore, the one-way communication lower bound still holds.

Perm-Hiding graphs. To construct such subgraphs, we construct a gadget that allows us to

hide each permutation or index separately. To be more precise, given a permutation π on [n],

we want to construct a (random) graph containing X and Y as subsets of vertices, such that

for each i ∈ [n], the only vertex in Y that ui can reach is vπ(i) (the “indices” are special cases

of the “permutations”, and they can also be hidden using such gadgets, see Section 9.3).

Moreover, for any π1, π2, any (p− 1)-pass low-space streaming algorithm cannot distinguish

between the graphs generated from π1 and π2. We call such random graphs the Perm-Hiding

graphs.

Hiding structured permutations via Set-Hiding graphs. We first show that (assuming

n is even) if π is structured such that for each i, either π(2i) = 2i and π(2i+ 1) = 2i+ 1, or

π(2i) = 2i+ 1 and π(2i+ 1) = 2i (i.e., for each i, π either swaps 2i and 2i+ 1, or maps both

to themselves), then we can construct a Perm-Hiding graph for π using the Set-Hiding graphs

against (p− 1)-pass streaming algorithms. To see this, we add two extra layers X̃, Ỹ of sizes

9

x2i+1 y2i+1

x2i y2i

...
...

...
...

X Y

x̃2i,1

x̃2i,2

ỹ2i,1

ỹ2i,2

X̃ Ỹ

...
...

...
...

(a)

x2i+1 y2i+1

x2i y2i

...
...

...
...

X Y

x̃2i,1

x̃2i,2

ỹ2i,1

ỹ2i,2

X̃ Ỹ

...
...

...
...

(b)

Figure 4: (a) shows the graph that does not swap 2i and 2i + 1, (b) shows the graph that

swaps 2i and 2i+ 1. The edges from X to X̃ and the edges from Ỹ to Y are fixed.

2n between X and Y . Denote the vertices in X̃ and Ỹ by x̃j,1, x̃j,2 and ṽj,1, ṽj,2 respectively

for j ∈ [n]. For all i, we add the following edges from X to X̃ and from Ỹ to Y :

• from x2i to x̃2i,1, x̃2i,2, from x2i+1 to x̃2i+1,1, x̃2i+1,2, and

• from ỹ2i,1, ỹ2i+1,1 to y2i, from ỹ2i,2, ỹ2i+1,2 to y2i+1.

Now if we add an edge from x̃2i,1 to ỹ2i,1 and an edge from x̃2i+1,2 to ỹ2i+1,2, then x2i reaches

y2i and x2i+1 reaches y2i+1 (see Figure 4a); if we add an edge from x̃2i,2 to ỹ2i,2 and an edge

from x̃2i+1,1 to ỹ2i+1,1, then x2i reaches y2i+1 and x2i+1 reaches y2i (see Figure 4b). In the

other words, such a permutation can always be implemented by placing a set of parallel

edges from X̃ to Ỹ . Therefore, to hide π, it suffices to put a Set-Hiding graph between X̃

and Ỹ to hide the corresponding set over [2n]. Since by the guarantee of Set-Hiding graphs,

no low-space algorithm can distinguish between any two sets, we prove that any such two

permutations cannot be distinguished.

Similarly, if there is a set of fixed ≤ n/2 disjoint pairs of coordinates such that π may only

swap two coordinates in a pair, then the same argument from the last paragraph shows that

such permutations can be hidden from (p− 1)-pass streaming algorithms as well, assuming

Set-Hiding graphs.

Hiding general permutations. Finally, we use the fact that there exists d = O(log n)

fixed sets of ≤ n/2 disjoint pairs,5 such that every permutation π can be decomposed into

π = πd ◦ · · · ◦ π2 ◦ π1, where πi may only swap (a subset of) the pairs in the i-th set (e.g.,

this is a corollary of the existence of O(log n)-depth sorting networks [AKS83]). The final

5It is important that the sets do not depend on π.

10

Perm-Hiding graph consists of d blocks concatenated with identity matchings, where the i-th

block applies the construction from the last paragraph to swap pairs in the i-th set. For each

πi, we hide a set in the block using Set-Hiding. By a standard hybrid argument, we conclude

that no two permutations can be distinguished.

Putting it together. Overall, the p-pass Set-Hiding graphs use the structure from

Section 2.1, together with (p − 1)-pass Perm-Hiding graphs. The (p − 1)-pass Perm-Hiding

graphs, in turn, use (p − 1)-pass Set-Hiding graphs, which are constructed recursively. One

may verify that the size of the graph blows up by a factor of 2Θ(
√

logn) in each level of

recursion, due to the parameters in RS graphs. Hence, when p = o(
√

log n), the final graph

size N is at most n1+o(1), implying the space lower bound of N1.99. See Section 9 for the

formal construction of Set-Hiding graphs, Section 10 for the construction of Perm-Hiding

graphs, and Section 4 for the recursive construction that combines them.

Acknowledgments

The authors would like to thank Sepehr Assadi for useful discussions.

Lijie Chen is supported by an IBM Fellowship. Zhao Song is supported in part by Schmidt

Foundation, Simons Foundation, NSF, DARPA/SRC, Google and Amazon AWS.

3 Preliminary

3.1 Notation

We often use bold font letters (e.g., X) to denote random variables, and calligraphic font

letters (e.g., X) to denote distributions. For two random variables X and Y , and for

Y ∈ supp(Y), we use (X|Y = Y) to denote X conditioned on Y = Y . For two lists a and

b, we use a ◦ b to denote their concatenation.

For two distributions D1 and D2 on set X and Y respectively, we use D1 ⊗D2 to denote

their product distribution over X×Y , and ‖D1−D2‖TV to denote the total variation distance

between them.

Let n ∈ N. We use [n] to denote the set {1, . . . , n}. For two sets A,B ⊆ [n], we use A∧B
and A ∨ B to denote the intersection and the union of A and B, respectively. We also use

¬nA to denote the set [n] \A, and A⊕B to denote the set of elements appearing in exactly

one of A and B (i.e., the symmetric difference of the sets A and B). Note that

A⊕B = (A ∧ ¬nB) ∨ (¬nA ∧B).

When it is clear from the context, we drop the subscript in ¬n for simplicity.

11

We also use Perm([n]) to denote the set of permutations on [n]. For a predicate P , we

use 1(P) to denote the corresponding Boolean value of P , that is, 1(P) = 1 if P is true, and

0 otherwise.

3.2 Layered Graphs and Layer-Arrival Model

In this paper we will mostly consider directed layered graphs whose edges are always from

one layer to its succeeding layer. We will also associate an edge-layer ordering to the

layered graph G, which will be very convenient when we are working with graph streaming

algorithms.

Directed Layered Graphs. Formally, a directed layered graph G is a triple (~V , ~E, ~̀),

such that:

• ~V = (Vi)
k
i=1 is the collection of G’s layers, where k is the number of layers in G;

• ~̀ = (`i)
k−1
i=1 and ~E = (Ei)

k−1
i=1 is a list of disjoint sets of edges on the vertex set

V =
⋃k
i=1 Vi. For each i ∈ [k − 1], Ei is the set of all the edges in G between V`i

and V`i+1. All the indices `i are distinct integers in [k − 1].

For each i ∈ [k − 1], we call the set of edges between Vi and Vi+1 the i-th edge-layer of

G. That is, ~̀ specifies an ordering of edge-layers of G, we will call it the edge-layer ordering

of G. We remark that unless some edge-layers are empty, the edge list vector ~E always

uniquely determines the ordering ~̀. In most cases we will just specify the edge list vector ~E

and the ~̀ will be determined from the context.

We will use E(G), ~V (G), k(G) and ~̀(G) to denote the set of edges, the list of layers of

G, the number of layers in G and the edge-layer ordering of G, respectively. For i ∈ [k],

we use Vi(G) to denote the vertex set of the i-th layer of G. We also use V (G) to denote⋃k
i=1 Vi(G).

We say a layered graph G is an (NG, kG, ~̀G) graph, if G has NG vertices, kG layers and

its edge-layer ordering is ~̀G.

For a layered graph G, we use First(G) to denote V1(G) and Last(G) to denote Vk(G)(G)

for convenience. For each layer, we index all the vertices by consecutive integers starting

from 1. For a set S of vertices from a single layer of G (that is, S ⊆ Vi for some i ∈ [k]), we

use S[i] to denote the vertex with the i-th smallest index in S.

We note that a directed bipartite graph (all edges go from the left side to the right side)

is a directed layered graph with two layers (for which the list ~E only contains a single set

of all edges in the graph, and ~̀ = (1)). Unless explicitly stated otherwise, we will always

use layered graphs or bipartite graphs to refer to their directed versions. (The only place we

study undirected graphs is in Section 5.1 and Section 5.2.)

12

Concatenation of two layered graphs. For two layered graphs G1 and G2 such that

|Last(G1)| = |First(G2)|, we use H = G1 � G2 to denote their concatenation by identifying

Last(G1) and First(G2). That is, for each i ∈ [|Last(G1)|], we identify the vertex Last(G1)[i]

and First(G2)[i]. We also set ~E(H) = ~E(G1) ◦ ~E(G2) to specify the edge-layer ordering of H.

The layer-arrival model. Our lower bounds actually hold for the layer-arrival setting,

which is stronger than the usually studied edge-arrival or vertex-arrival models. In the

following we formally define this model.

Definition 3.1 (Layer-arrival model). Given a layered graph G = (~V , ~E = (Ei)
k−1
i=1 ,

~̀) of k

layers, a randomized p-pass streaming algorithm A with space s in the layer-arrival setting

works as follows:

• The algorithm makes p-pass over the graph, each pass has (k − 1) phases. Hence,

there are (k − 1) · p phases in total. The algorithm starts with memory state w0 = 0s.

Additionally, at the beginning A can draw an unbounded number of random bits, from

a fixed distribution Drand. These random bits are read-only and A can always access

them freely.6

• For i ∈ [p] and j ∈ [k − 1], let t = (i − 1) · (k − 1) + j. In the t-th phase, A can

use unlimited computational resource to compute another state wt of s bits, given the

previous state wt−1 together with the edge set Ej. (Note that wt is indeed a random

variable depending on wt−1 and Ej, since A is randomized.)

• Finally, A’s output only depends on the last state wp(k−1) and its random bits.

In other words, the streaming algorithm is allowed to access the graph layer by layer,

and can use unlimited computational resources to process each layer. The only constraint is

that it can restore at most s bits of information after processing one layer.

Clearly, lower bounds for graph streaming algorithms in the layer-arrival model

immediately imply the same lower bounds for graph streaming algorithms in the edge-arrival

model or vertex-arrival model.

3.3 Ruzsa-Szemerédi Graphs

A bipartite graph GRS = (L t R,E) is a called an (r, t)-Ruzsa-Szemerédi graph (RS graph

for short) if its edge set E can be partitioned into t induced matchings M1, . . . ,Mt, each of

size r.

We will use the original construction of RS graphs due to Ruzsa and Szemerédi [RS78]

based on the existence of large sets of integers with no 3-term arithmetic progression, proven

by Behrend [Beh46].

6That is, randomness is free for A and are not charged in the space complexity of A. This is very
important for the hybrid argument used in this paper, see Section 3.4.

13

Proposition 3.2 ([RS78]). There is an absolute constant cRS ≥ 1 such that, for all

sufficiently large n, there is an integer N ≤ n1+cRS/
√

logn such that there are (n, n)-RS graphs

with N vertices on each side of the bipartition.

For convenience, we define NRS(n) = n1+cRS/
√

logn. We also need the following

construction of RS graphs with different parameters by [FLN+02].

Proposition 3.3 ([FLN+02]). There is an absolute constant cRS
2 > 0 such that, for all

sufficiently large n, there are (n, nc
RS
2 / log logn)-RS graphs with 4n vertices on each side of the

bipartition.

3.4 Indistinguishability and The Hybrid Argument

We say two distributions on layered graphs D1 and D2 are ε-indistinguishable for p-pass

streaming algorithms with space s in the layer-arrival model, if for every p-pass streaming

algorithm A with space s in the layer-arrival model, it holds that

‖A(D1)− A(D2)‖TV ≤ ε,

where for each i ∈ [2], A(Di) is the output distribution of A given an input graph drawn

from Di.
Note that the above notation of indistinguishability also generalizes to streaming

algorithms in the edge-arrival model or vertex-arrival model. But throughout this paper

we will mostly study indistinguishability with respect to multi-pass streaming algorithms in

the layer-arrival model. Hence, we will just omit the model name whenever it is clear from

the context.

Given t layered graphs G1, . . . , Gt. They can be treated as a single input to a p-pass

streaming algorithm A as follows: there are p passes, in each pass A process (the edges of)

G1, . . . , Gt in order. We use (G1, . . . , Gk)seq to denote this new input to A.

The following lemma shows that the standard hybrid argument also applies to the setting

of multi-pass graph streaming algorithms. The hybrid argument will be used throughout our

proofs, and we give a proof here for completeness.

Lemma 3.4 (Hybrid argument for multi-pass streaming algorithms). Let k be a positive

integer. Let ε ∈ Rk
≥0 denote k parameters. Let (D1,D′1), (D2,D′2), . . . , (Dk,D′k) be k pairs of

distributions over layered graphs. Suppose for each i ∈ [k], Di and D′i are εi-indistinguishable

for p-pass streaming algorithms with space s, then (D1, . . . ,Dk)seq and (D′1, . . . ,D′k)seq are

‖ε‖1-indistinguishable for p-pass streaming algorithms with space s.7

Proof. Our proof is based on a standard hybrid argument. For each j ∈ {0, 1, . . . , k}, let

Hj = (D1, . . . ,Dj,D′j+1, . . . ,D′k)seq.

7(D1, . . . ,Dk)seq denotes the distribution obtained by for each i ∈ [k], independently drawing Di ← Di,
and outputting (D1, . . . , Dk)seq.

14

Observe that H0 = (D′1, . . . ,D′k)seq and Hk = (D1, . . . ,Dk)seq. Let A be a p-pass streaming

algorithms with space s.

We claim that for each j ∈ [k],

‖A(Hj)− A(Hj−1)‖TV ≤ εj.

Assuming the claim above holds, the lemma follows from the triangle inequality.

To prove the claim above, we show how to construct another streaming algorithm B with

the same pass and space complexity as A, such that ‖A(Hj) − A(Hj−1)‖TV = ‖B(Dj) −
B(D′j)‖TV. Given an input graph G, B first draws graphs G1 ∼ D1, . . . , Gj−1 ∼ Dj−1,

and then draws graphs Gj+1 ∼ D′j+1, . . . , Gk ∼ D′k. B then simulates A on the input

(G1, . . . , Gj−1, G,Gj+1, . . . , Gk).

Recall that our definition of randomized streaming algorithms (see Definition 3.1) allows

unbounded randomness from any fixed distribution (which are independent from the input

distribution), and the random bits are not counted in space usage. The k−1 sampled graphs

of B are then regarded as B’s randomness. Hence, B has the same pass and space complexity

of A. Moreover, one can see that B(Dj) distributes as A(Hj) and B(D′j) distributes as

A(Hj−1). Since Dj and D′j are εj-indistinguishable for p-pass streaming algorithms with

space s, we have

‖A(Hj)− A(Hj−1)‖TV = ‖B(Dj)−B(D′j)‖TV ≤ εj,

which completes the proof of the claim.

3.5 Set-Encoding/Perm-Encoding Graphs and Set-Hiding/Perm-Hiding

Generators

3.5.1 Set-Encoding Graphs and Perm-Encoding Graphs

The following two special layered graphs will be studied throughout the paper.

Definition 3.5 (Set-Encoding graphs and Perm-Encoding graphs).

1. (Set-Encoding Graphs) For a set S ⊆ [n], we say a layered graph G with first and last

layer each having exactly n vertices is a Set-Encn(S) graph (i.e., a Set-Encoding graph

for the set S). If for each (i, j) ∈ [n]× [n], First(G)[i] can reach Last(G)[j] if and only

if i = j and i ∈ S.

2. (Perm-Encoding Graphs) For a permutation π : [n] → [n], we say a layered graph G

with first and last layer each having exactly n vertices is a Perm-Encn(π) graph (i.e.,

a Perm-Encoding graph for the permutation π). If for each (i, j) ∈ [n]× [n], First(G)[i]

can reach Last(G)[j] if and only if π(i) = j.

15

3.5.2 Set-Hiding Generators and Perm-Hiding Generators

Note that a single Set-Encoding graph (resp. Perm-Encoding graph) just encodes a set,

and does not hide it. Now we formally define Set-Hiding generators and Perm-Hiding

generators, which generate distributions over Set-Enc/Perm-Enc graphs that hides the

encoded set/permutation from multi-pass streaming algorithms.

Definition 3.6 (ε-secure Set-Hiding generators). Let n ∈ N, and let G be a function from

subsets of [n] to distributions over layered graphs. We say G is ε-Set-Hiding for subsets of

[n] against p-pass algorithms with space s, if the following statements hold:

1. For every S ⊆ [n], G(S) is a distribution over Set-Encn(S) graphs.

2. For every two sets S, T ⊆ [n], the distributions G(S) and G(T) are ε-indistinguishable

for p-pass streaming algorithms with space s.

Definition 3.7 (ε-secure Perm-Hiding generators). Let n ∈ N, and let G be a function from

Perm([n]) to distributions over layered graphs. We say G is ε-Perm-Hiding for permutations

in Perm([n]) against p-pass algorithms with space s, if the following statements hold:

1. For every π ∈ Perm([n]), G(π) is a distribution over Perm-Encn(π) graphs.

2. For every two permutations π1, π2 ∈ Perm([n]), the distributions G(π1) and G(π2) are

ε-indistinguishable for p-pass streaming algorithms with space s.

For a generator G as in Definition 3.6 and Definition 3.7, we say G always outputs

(NG, kG, ~̀G) graphs, if for all possible inputs x, the distribution G(x) is supported on NG-

vertex layered graphs with kG layers and edge-layer ordering ~̀G.

Remark 3.8. The property that G always outputs (NG, kG, ~̀G) graphs for some triple

(NG, kG, ~̀G) is pretty strong since it forces G to always output graphs with the same number

of vertices, the same number of layers and the same edge-layer ordering. We remark here

that all our constructions in this paper have this property.

For simplicity, we will often use GSH
n (resp. GPH

n) to denote an ε-Set-Hiding (resp.

ε-Perm-Hiding) generator G for subsets of [n] (resp. permutations in Perm([n])). We may also

write GSH
n,p (resp. GPH

n,p) to indicate that the generator is against p-pass streaming algorithms.

4 Construction of Set-Hiding Generators

In this section, we will give a construction of the Set-Hiding generators, which summarizes

some key technical lemmas that will be proved in the later sections.

Now we are ready to state the main theorem of this section.

16

Theorem 4.1 (Main Theorem). There is a constant c > 1 and an integer N0 ∈ N such

that for every p ∈ N and every integer n satisfying n ≥ N0 and p ≤ c−1 ·
√

log n,

there is a generator GSH
n,p such that: (1) it always outputs (NGSH , kGSH , ~̀GSH) graphs, where

NGSH ≤ c · n1+cp/
√

logn and kGSH ≤ c · (c log n)2p; (2) it is (n−1)-Set-Hiding against p-pass

streaming algorithms with space n2.

We remark that Theorem 4.1 is all we need to prove the lower bounds for streaming

algorithms in Section 5. The rest of this section is a proof of Theorem 4.1, with key technical

lemmas proved in later sections.

Overview of the construction. Our construction works recursively. The base case will

be generators against 0-pass streaming algorithms. Clearly, trivial constructions suffice for

this base case since 0-pass streaming algorithms cannot read the input at all.

Next, for the case against p-pass streaming algorithms, Lemma 4.2 shows how to

construct Set-Hiding generators against p-pass streaming algorithms from Perm-Hiding

generators for (p − 1)-pass streaming algorithms, and Lemma 4.3 shows how to construct

Perm-Hiding generators against p-pass streaming algorithms from Set-Hiding generators for

p-pass streaming algorithms. The formal proofs of Lemma 4.2 and Lemma 4.3 can be found

in Section 9 and Section 10, respectively.

Lemma 4.2 (From Perm-Hiding generators to Set-Hiding generators). Let n be a sufficiently

large integer. Let p, s ∈ N such that 2p · s ≤ 1
20
n2 log n, and let N = NRS(4n). Let

ε ∈ [0, 1) such that ε ≥ 1/n10. Suppose there is a generator GPH
N,p−1 which always

outputs (NGPH , kGPH , ~̀GPH) graphs and is (ε/ log2 n)-Perm-Hiding against (p−1)-pass streaming

algorithms with space 2p · s. Then there is a generator GSH
n,p such that: (1) it always outputs

(NGSH , kGSH , ~̀GSH) graphs, where NGSH = O(NGPH · log2 n) and kGSH = O(kGPH · log n); (2) it is

ε-Set-Hiding against p-pass streaming algorithms with space s.

Lemma 4.3 (From Set-Hiding generators to Perm-Hiding generators). Let n be a sufficiently

large integer. Let s ∈ N and let ε ∈ [0, 1). Suppose there is a generator GSH
3n,p which

always outputs (NGSH , kGSH , ~̀GSH) graphs and is (ε/ log2 n)-Set-Hiding against p-pass streaming

algorithms with space s. Then there is a generator such that: (1) it always outputs

(NGPH , kGPH , ~̀GPH) graphs where NGPH = O(NGSH · log n) and kGPH = O(kGSH · log n); (2) it

is ε-Perm-Hiding against p-pass streaming algorithms with space s.

Finally, Theorem 4.1 follows by applying Lemma 4.2 and Lemma 4.3 repeatedly.

Proof of Theorem 4.1. Let N0 be a sufficiently large constant to be specified later. We will

set N0 so that Lemma 4.2 and Lemma 4.3 holds for all integers n ≥ N0. Let c ≥ 2 be a

sufficiently large constant to be specified later.

We will prove the theorem by induction on p. The theorem trivially holds when p = 0:

since 0-pass streaming algorithm cannot read anything from the input, given an input subset

S, one can simply output a bipartite graph of size (n, n) such that the i-th vertex on the

17

left side is connected to the i-th vertex on the right side if and only if i ∈ S. Clearly, this

output is a Set-Encn(S) graph.

Now, suppose the theorem holds for p − 1, we show it holds for p as well. We fix an

n ≥ N0 such that p ≤ c−1 ·
√

log n, and we will show how to construct the desired generator

GSH
n,p. Let n2 = NRS(4n) and n1 = 3n2. We proceed as follows:

1. Since n1 ≥ n ≥ N0, it follows that (p − 1) ≤ c−1 ·
√

log n1. Hence, by the

induction hypothesis, there is a generator GSH
n1,p−1 such that: (1) it always outputs

(N(1), k(1), ~̀(1)) graphs, where N(1) ≤ c · n1+c(p−1)/
√

logn1

1 and k(1) ≤ c · (c log n1)2(p−1);

(2) it is ε(1)-Set-Hiding against (p− 1)-pass streaming algorithms with space n2
1, where

ε(1) = 1/n1.

2. Since n2 ≥ N0 and n1 = 3n2, combining Lemma 4.3 with the generator GSH
n1,p−1, there

is a generator GPH
n2,p−1 such that: (1) it always outputs (N(2), k(2), ~̀(2)) graphs where

N(2) ≤ O(N(1) · log n2) and k(2) ≤ O(k(1) · log n2); (2) it is ε(2)-Perm-Hiding against

(p− 1)-pass streaming algorithms with space n2
1, where ε(2) = ε(1) · (log n2)2.

3. Since n ≥ N0 and n2 = NRS(4n), combining Lemma 4.2 with the generator GPH
n2,p−1

and the fact that 2p · n2 ≤ 1
20
n2 log n and n2

1 ≥ 2p · n2, there is a generator GSH
n,p such

that: (1) it always outputs (N(3), k(3), ~̀(3)) graphs, where N(3) ≤ O(N(2) · log2 n) and

k(3) ≤ O(k(2) · log n); (2) it is ε(3)-Set-Hiding against p-pass streaming algorithms with

space n2, where ε(3) = ε(2) · (log n)2.

Now we verify that the last generator GSH
n,p satisfies our requirements. Noting that

log n2 = O(log n), it follows that

N(3) ≤ O
(
c · log3 n · n1+c(p−1)/

√
logn1

1

)
. (1)

Setting N0 to be sufficiently large, we have n1 = 3 ·NRS(4n) ≤ n1+2cRS/
√

logn, and hence

log n1 ≤ log n+ 2cRS ·
√

log n. (2)

Taking log of both sides of Equation 1, it follows that

logN(3) ≤ O(1) + 3 log log n+ log n1 + c(p− 1) ·
√

log n1. (3)

Setting N0 to be sufficiently large and noting that
√
x+ 2cRS

√
x ≤

√
x + 2cRS for any

x > 0, it follows from Equation 2 that√
log n1 ≤

√
log n+ 2cRS. (4)

Plugging Equation 2 and Equation 4 in Equation 3 and setting c to be sufficiently large,

18

we have

logN(3) ≤ O(1) + 3 log log n+ log n+ 2cRS ·
√

log n+ c(p− 1) · (
√

log n+ 2cRS)

≤ log n+ (3cRS + c(p− 1)) ·
√

log n+ c(p− 1) · 2cRS

≤ log n+ (5cRS + c(p− 1)) ·
√

log n (cp ≤
√

log n)

≤ log n+ cp ·
√

log n. (c is sufficiently large)

Noting that log n2 = O(log n) and setting c to be sufficiently large, it follows that

k(3) ≤ O(log2 n · k(1)) ≤ (c/10 log2 n) · c · (c log n1)2(p−1)

≤ (c/10 log2 n) · c · (c log n)2(p−1) ·
(

1 +
2cRS

√
log n

)2(p−1)

(Equation 2)

≤ c · (c log n)2p. (p ≤ c−1
√

log n and c is sufficiently large)

Finally, since n1 = 4NRS(4n) ≥ n1+Ω(1/
√

logn), setting N0 to be sufficiently large, we also

have ε(3) = 1/n1 · (log n2)2 · (log n)2 ≤ 1/n. This completes the proof.

Finally, we remark that if we use Remark 9.10 in place of Lemma 4.2 and proceed similarly

as in the proof of Theorem 4.1, we have the following different construction of Set-Hiding

generators instead.

Remark 4.4. There is an absolute constant c ∈ (0, 1) such that, for every p(n) =

o(log n/ log log n), for every sufficiently large integer n, there is a generator GSH
n,p(n) such

that: (1) it always outputs (NGSH , kGSH , ~̀GSH) graphs, where NGSH ≤ n · (log n)O(p(n)); (2) it is

(n−1)-Set-Hiding against p-pass streaming algorithms with space n1+c/ log logn.

5 Lower Bounds for Multi-Pass Streaming Algorithms

In this section, we show that Theorem 4.1 implies our lower bounds for multi-pass streaming

algorithms.

• In Section 5.1, we prove the lower bounds for s-t reachability and s-t undirected

shortest-path.

• In Section 5.2, we prove our lower bounds for (approximate) bipartite perfect matching.

• In Section 5.3, we prove our lower bounds for estimating the rank of a matrix.

• In Section 5.4, we prove our lower bounds for linear programing in the row-streaming

model.

19

5.1 s-t Reachability and s-t Undirected Shortest-Path

As already discussed in Section 2, Theorem 4.1 directly implies the following lower bounds

for s-t reachability and s-t undirected shortest-path against multi-pass streaming algorithms.

Theorem 5.1 (Detailed version of Theorem 1.1 and Theorem 1.2). The following statements

hold.

1. Given an n-vertex directed graph G = (V,E) with two designated vertices s, t ∈ V ,

no randomized o(
√

log n)-pass streaming algorithm with space n2−ε for some constant

ε > 0 can determine whether s can reach t in G with probability at least 2/3.

2. Given an n-vertex undirected graph G = (V,E) and two designated vertices s, t ∈ V ,

no randomized o(
√

log n)-pass streaming algorithm with space n2−ε for some constant

ε > 0 can output the length of the shortest s-t path in G.

Moreover, for p(n)-pass streaming algorithms where p(n) = o(
√

log n), the lower bound

above for s-t undirected shortest-path still holds if the algorithm is only required to

compute an (1+ω(log n)−2p(n2))-approximation to the length of the shortest path between

s and t.

Proof. We first prove the theorem for s-t reachability, and then show how to adapt the proof

for s-t undirected shortest-path.

Lower bounds for s-t reachability. Suppose for the sake of contradiction that there is

p(n) ≤ o(
√

log n) and a constant ε > 0 such that there is a p(n)-pass streaming algorithm

AstReach with n2−ε space, which solves s-t reachability for n-vertex graphs with probability

at least 2/3. We further assume that AstReach outputs 1 if it determines that s can reach t,

and 0 otherwise.

By Theorem 4.1 and noting that p(n2) ≤ o(
√

log n), there is m(n) = n1+o(1) such that for

every sufficiently large n, there is a generator GSH
n,p(n2) which always outputs (m(n), kGSH , ~̀GSH)

graphs and is (1/10)-Set-Hiding for subsets of [n] against p(n2)-pass streaming algorithms

with space n2. For a layered graph G in the support of GSH
n,p(∅) or GSH

n,p({1}), we set

s = First(G)[1] and t = Last(G)[1] (s and t do not depend on the choice of graph G).

Since AstReach solves s-t reachability with probability at least 2/3, it follows that

Pr
G←GSH

n,p({1})
[AstReach(G) = 1] ≥ 2/3 and Pr

G←GSH
n,p(∅)

[AstReach(G) = 0] ≥ 2/3.

The above means that ‖AstReach(GSH
n,p(∅)) − AstReach(GSH

n,p({1}))‖TV ≥ 1/3. This contradicts

the fact that GSH
n,p(n2) is (1/10)-Set-Hiding against p(n2)-pass algorithms with space n2, since

AstReach takes p(m) ≤ p(n2) passes and m2−ε ≤ n2 space.

20

Lower bounds for s-t undirected shortest-path. We will use the same reduction

in [AR20, Theorem 6]. Again suppose for the sake of contradiction that there is a p(n)-

pass streaming algorithm AstUpath with n2−ε space, which solves s-t undirected shortest-path

for n-vertex graphs with probability at least 2/3.

Recall that GSH
n,p(n2) always outputs graphs with exactly kGSH layers. Let G be the

undirected version of the layered graph G in the support of GSH
n,p(∅) or GSH

n,p({1}) (that is,

G is obtained by removing the directions on all edges of G), we claim that s can reach t in

G if and only if the shortest path between s and t in G has length exactly kGSH − 1.

To see the claim above, note that (1) the shortest path between s and t in G has length

at least kGSH−1, since there are kGSH layers in G; (2) if s can reach t in G, then the same path

gives us a (kGSH − 1)-length path from s to t in G, and vice versa. Therefore, AstUpath can

be similarly used to distinguish the distributions GSH
n,p(∅) and GSH

n,p({1}). Applying a similar

argument as in the case of s-t reachability gives us the desired lower bound for s-t undirected

shortest-path.

Finally, AstUpath is in fact only required to distinguish between (1) the shortest path

between s and t in G has length exactly kGSH − 1 and (2) the shortest path between s and t

in G has length at least kGSH . By Theorem 4.1 it holds that kGSH ≤ O(log n)2p(n2). Hence, it

suffices for AstUpath to compute a (1 + (kGSH)−1) approximation to the shortest path between

s and t in G, and the theorem is proved by noting ω(logm(n))2p(n2) ≥ kGSH (recall that G

has m(n) vertices).

Remark 5.2. If we apply Remark 4.4 instead of Theorem 4.1 in the proof of Theorem 5.1,

then it follows that s-t reachability or s-t undirected shortest-path cannot be solved by

o(log n/(log log n)2)-pass streaming algorithms with n1+o(1/ log logn) space.

Proof sketch. We will just sketch the proof for s-t reachability here. The proof for s-t

undirected shortest-path is identical. Suppose for the sake of contradiction that there is

p(n) ≤ o(log n/(log log n)2) and s(n) = n1+o(1/ log logn) such that there is a p(n)-pass streaming

algorithm AstReach with s(n) space, which solves s-t reachability with probability at least 2/3.

Let c ∈ (0, 1) be the absolute constant in Remark 4.4. By Remark 4.4 and noting

p(n2) ≤ o(log n/ log log n), there is m(n) = n1+o(1/ log logn) such that for every sufficiently

large n, there is a generator GSH
n,p(n2) which always outputs m(n)-vertex graphs and is

(1/10)-Set-Hiding against p(n2)-pass streaming algorithms with space n1+c/ log logn. Noting

that p(m(n)) ≤ p(n2) and s(m(n)) ≤ n1+c/ log logn and applying the same argument as

in Theorem 5.1, we can use AstReach to break the generator GSH
n,p(n2), which finishes the

proof.

5.2 Bipartite Perfect Matching

Next we turn to prove our lower bounds for bipartite perfect matching against multi-

pass streaming algorithms. In this subsection we will focus on the edge-arrival setting

21

for streaming algorithms, since we will consider bipartite graphs, which only has a single

edge-layer.

Theorem 5.3 (Detailed version of Theorem 1.3). No o(
√

log n)-pass streaming algorithm

with n2−ε space for some ε > 0 can determine whether a bipartite graph G = (LtR,E) with

|L| = |R| = n has a perfect matching with probability at least 2/3.

Moreover, for p(n)-pass streaming algorithms where p(n) = o(
√

log n), the lower bound

above still holds if the algorithm is only required to distinguish with probability at least 2/3

between (1) G has a perfect matching of size n and (2) G has no matching of size at least

n · (1− δ(n)), for some δ(n) = 2−cp(n
2)/
√

logn, where c > 1 is an absolute constant.

Proof. We will adapt a folklore reduction from reachability to perfect matching, which is

also used in [AR20, Theorem 5].

Suppose for the sake of contradiction that there is p(n) ≤ o(
√

log n) and a constant ε > 0

such that there is a p(n)-pass streaming algorithm Amatching with n2−ε space, which determines

whether a bipartite graph has a perfect matching or not with probability at least 2/3. By

Theorem 4.1 and noting that p(n2) ≤ o(
√

log n), there is m(n) = n1+o(1) and such that for

every sufficiently large n, there is a generator GSH
n,p(n2) which always outputs (m(n), kGSH , ~̀GSH)

graphs and is (1/10)-Set-Hiding for subsets of [n] against p(n2)-pass streaming algorithms

with space n2.

For a layered graph G in the support of GSH
n,p(n2)(∅) or GSH

n,p(n2)([n]), let Vmid =⋃kGSH−1

i=2 Vi(G). That is, Vmid is the set of vertices in the middle layers of G. We will construct

a bipartite graph H = (L tR,EH)8 as follows:

Bipartite Perfect Matching from Set-Hiding Generators

1. For every vertex v ∈ Vmid, we add a vertex v` to L and a vertex vr to R. For

every vertex s ∈ First(G), we add a vertex s` to L. For every vertex t ∈ Last(G),

we add a vertex tr to R.

2. Next we enumerate all the (directed) edges (u, v) in G according to their ordering

in ~E(G), with ties broken according the lexicographically ordera: for each edge

(u, v) ∈ E(G), we add an edge (u`, vr) to EH . (Note that vertices in First(G)

has no incoming edges, and vertices in Last(G) has no outgoing ones.) For every

vertex v ∈ Vmid, we also add an edge (v`, vr) to EH .

aThat is, we first enumerate edges in E1(G) in lexicographical order, then edges in E2(G) and so
on.

From the construction above, one can verify easily that |L| = |R| = |Vmid|+n = m(n)−n.

Let nH = |L|. The following claim is crucial for the proof.

Claim 5.4.
8EH here is a list of edges, which specify the order that the streaming algorithms read the graph.

22

1. If G is a Set-Encn([n]) graph, then H has a perfect matching of size nH .

2. if G is a Set-Encn(∅) graph, then all matchings in G have at most |Vmid| = nH − n

edges.

To see Item (1) of Claim 5.4, consider the matching M = {(v`, vr) : v ∈ Vmid}. Note that

|M | = |Vmid| = nH − n, and the only unmatched vertices are s` and tr for s ∈ First(G) and

t ∈ Last(G). For every s ∈ First(G) and t ∈ Last(G), any augmenting path of this matching

M in H between s` and tr corresponds to a directed path from s to t in G. If G is a

Set-Encn([n]) graph, we can find |First(G)| disjoint augmenting paths, in which the i-th path

is from First(G)[i] to Last(G)[i].
9 This means that H has a matching of size |M | + n = nH ,

which is a perfect matching.

For Item (2) of Claim 5.4, if G is a Set-Encn(∅) graph, then no augmenting path between

the unmatched vertices s` and tr can be found, since for every (i, j) ∈ [n] × [n], First(G)[i]

cannot reach First(G)[j]. Hence, M is a maximum matching of H.

Note that H can be generated “on the fly” in the streaming setting. Hence, since Amatching

takes p(|L|) ≤ p(n2) passes and (|L|)2−ε ≤ m(n)2−ε ≤ n2 space. By Claim 5.4, Amatching can

be used to distinguish between the distributions GSH
n,p(n2)(∅) and GSH

n,p(n2)([n]), contradicts the

security of the generator. This proves the first part of the theorem.

Finally, note that Amatching is indeed only required to distinguish between (1) H has

perfect matching of size |L| = m(n) − n and (2) H has no matching of size greater than

|Vmid| = m(n) − 2n. By Theorem 4.1, we have m(n) ≤ c · n1+cp(n2)/
√

logn for some constant

c > 1, the second part of the theorem then follows.

Remark 5.5. Consider the edge list EH constructed in the proof of Theorem 5.3, for every

left vertex u` ∈ L, its adjacent edges (u`, vr) are listed consecutively in EH . (Except for the

edge (u`, v`), which is an auxiliary edge that does not depend on the given graph G.)

5.3 Matrix Rank

Estimating the rank of an n × n matrix is an important problem in the streaming

setting. There has been several results studying this problem, and we refer the readers

to [BS15, LW16, AKL17, AKSY20] for details. In the following we present a lower bound

for the rank estimation problem.

The following corollary follows from Theorem 5.3 and the well-known reduction from

computing the size of maximum matching for bipartite graphs to computing the rank of

matrices (see, e.g., [MR95, Page 167] and [LP09]), we will consider the row streaming model

9By the definition of a Set-Encn([n]) graph, for each i ∈ [n], there exists a directed path Pi from First(G)[i]
to Last(G)[i] in G. We further observe that these n paths are vertex-disjoint. Since otherwise, if Pi shares a
vertex v with Pj for i 6= j, then it means that First([G])[i] can first reach v and then reach Last(G)[j], which
contradicts the definition of Set-Encn([n]) graphs.

23

in which the streaming algorithms get the rows of the matrix one by one in some arbitrary

order.

Corollary 5.6 (Detailed version of Theorem 1.4). No o(
√

log n)-pass streaming algorithm

with n2−ε space for some ε > 0 can determine whether a given matrix M ∈ Fn×nq for some

prime power q = ω(n) has full rank with probability at least 2/3.

Moreover, for p(n)-pass streaming algorithms where p(n) = o(
√

log n), the lower bound

above still holds if the algorithm is only required to distinguish with probability at least 2/3

between (1) rank(M) = n and (2) rank(M) ≤ n · (1 − δ(n)), for some δ(n) = 2−cp(n
2)/
√

logn,

where c > 1 is an absolute constant.

Proof. For a bipartite graph G = (L t R,E) where L = {u1, . . . , un} and R = {v1, . . . , vn},
we consider the Edmonds matrix M defined over the variables ~x = (xi,j)(i,j)∈[n]×[n]:

M(i, j) :=

{
xi,j if (ui, vj) ∈ E,

0 otherwise.

Let q = ω(n) be a prime power. We know that rank(M) (rank of M over the

polynomial ring Z[~x] = Z[x1,1, . . . , xn,n]) equals the size of the maximum matching in

H. For a vector ~r = (ri,j)(i,j)∈[n]×[n] ∈ Fn×nq , we use M(~r) to denote the matrix over Fq
obtained by substituting xi,j by ri,j for each (i, j) ∈ [n] × [n]. Applying the Schwartz-

Zippel lemma, it holds that if all the ri,j are i.i.d. uniform distributed over Fq, then

Pr~r[rank(M(~r)) = rank(M)] ≥ 1− o(1).

Therefore, computing the size of the maximum matching in G can be reduced to

computing the rank of M(~r) over Fq. The proof is then finished by combing Theorem 5.3

and Remark 5.5.

5.4 Linear Programming

Linear programming (LP) is a fundamental problem in optimization. The fastest LP

solver for general dense matrix is due to [JSWZ20]. It takes nω time with O(n2)

space, where ω ≈ 2.37286 is the exponent of current matrix multiplication [AW21].

For the situation where LP has roughly n constraints/variables, it is not known how to

extend the classical result [JSWZ20] into streaming setting with o(n) passes and o(n2)

space. For matrix related problems such as linear regression and low-rank approximation

[CW09, CW13, NN13, BWZ16, SWZ17], there are two natural streaming models: the row

model and the entry model. In the following we will focus on the row model, which is

discussed below.

The row streaming model for LP. Our lower bounds holds for the feasibility of LP in

the row streaming model: in which the streaming algorithms get the constraints of the LP

one by one in some arbitrary order, and is required to decide whether all the constraints

24

can be simultaneously satisfied. Note that algorithms in the entry streaming model for LP

also work in the row streaming model, hence our lower bounds hold for the entry streaming

model as well.

Theorem 5.7. No o(
√

log n)-pass algorithm with n2−ε space for some ε > 0 in the row

streaming model can determine if a linear program of n variables and n constraints with

coefficients in {0, 1} is feasible or not.

Proof. We will show a reduction from s-t reachability over layered graphs to the feasibility

of an LP instance. Consider a layered graph G with n vertices and let s and t be two vertices

in G. We construct the following linear program P with n variables:

LP from s-t Reachability

1. Variables: For each vertex v of G, we add a variable xv to P . Note that as in

the standard formulation of LP, all xv are non-negative.

2. Constraints: For each vertex v of G such that v 6= s, we add a constraint

xv ≥
∑

u: edge (u, v) ∈ E(G)

xu

to P .

We also add two constraints xt ≤ 0 and xs ≥ 1 to P .

3. Constraints Ordering: The constraints xt ≤ 0 and xs ≥ 1 come first. Note

that each of the other constraints correspond to one vertex v and all its incoming

edges, which are all in the same edge-layer of G. We say that this edge-layer

is the corresponding edge-layer of that constraint. Then we list all the other

constraints in the ordering of their corresponding edge-layers in ~̀(G) (with ties

broken arbitrarily).

Clearly, one can see that if s can reach t in G, then xs ≥ 1 implies xt ≥ 1 as well, and

the LP instance P is not feasible. On the other hand, if s cannot reach t in G, then one can

construct an assignment to all variables x so that for every vertex v which is not reachable

from s, xv is set to 0. Hence, xt = 0 as well and P is then feasible.

Finally, since the LP instance can be generated “on the fly”, an algorithm deciding

whether P is feasible in the row streaming model also implies a streaming algorithm deciding

whether s can reach t in G in the layer-arrival model. The proof is then completed by

applying Theorem 5.1.

25

6 The Communication Lower Bound

In this section, we define the Ind⊕ problem. We directly define a distributional version of

the Ind⊕ problem parametrized by integers n, t,K > 0. Our distribution is tailored to make

the reductions in the subsequent sections easier.

Hard Input Distribution DInd⊕

n,t,K for the (n, t,K)-Ind⊕ problem

• Construction:

– Draw K indices ~i = (ik)k∈[K] from the set [2n] uniformly at random.

– Draw K indices ~j = (jk)k∈[K] from the set [t] uniformly at random.

– Draw t ·K vectors ~X = (Xk,j)k∈[K],j∈[t] uniformly at random from {0, 1}2n

conditioned on ‖Xk,j‖1 = n for all k ∈ [K] and j ∈ [t].

• Alice’s Input: The vectors ~X.

• Bob’s Input: The indices ~j and ~i.

• Problem: Output
∏K

k=1(−1)Xk,jk,ik .

The Ind⊕ is hard for one-way communication protocols from Alice to Bob. Formally, we

prove the following theorem.

Theorem 6.1 (Communication complexity of Ind⊕). Let n, t,K > 1000 be integers. Define

δ = 100
K

and C to be the largest even integer at most 1
10
·(2nt)1−5δ and assume that tK ≤ 10C.

For all one-way randomized protocols Π from Alice to Bob for the (n, t,K)-Ind⊕ problem

satisfying CC(Π) ≤ C · log n, we have:10

Pr
(~X,~j,~i)∼DInd⊕

n,t,K

(
Π(~X,~j,~i) =

K∏
k=1

(−1)Xk,jk,ik

)
≤ 1

2
+

1

(2nt)20 .

The proof Theorem 6.1 spans the rest of this section. Fix n, t,K, δ, C as in the

theorem statement. The main idea in the proof is to upper bound the discrepancy of the

‘communication matrix’M of the Ind⊕ problem, i.e., the matrix whose rows are indexed by

Alice’s inputs ~X and columns are indexed by Bob’s inputs (~j,~i) and the value at row ~X and

columns (~j,~i) is the just the “correct” output when Alice’s input is ~X and Bob’s input is

(~j,~i). For convenience sake, we shall actually considerM to be a matrix with rows indexed

by the set Z =
(

({0, 1}2n)
t
)K

, even though some elements in Z can never be an input for

Alice in our hard distribution.

10The notation Π(~X,~j,~i) denotes the distribution of the output of the protocol Π when run with the

inputs (~X,~j,~i).

26

One standard way of upper bounding the discrepancy ofM is to upper bound the spectral

norm ofM>. This may seem promising at first, as the spectral norm of the matrixM> can

be computed exactly, and equals
√
|Z|. Indeed, as the entries ofM lie in {−1, 1}, each row

of M> has entries in {−1, 1}, implying that the `2-norm of each row is
√
|Z|. Using the

observation that the rows ofM> are orthogonal, we can conclude that the spectral norm of

M> is M as well. However, this computation of the spectral norm of M> gives a rather

weak bound on the discrepancy of M, and we need to take a different approach.

Our approach uses the observation that in order to get a bound on the discrepancy,

we only need to bound
∥∥M>v

∥∥
2

for vectors v that (in particular) represent a probability

distribution, i.e., vectors with unit `1-norm and non-negative entries. In general, getting such

a bound is much weaker than getting a bound on the spectral norm which is equivalent to

bounding
∥∥M>v

∥∥
2

for all vectors v. However, for Hadamard (or more generally, orthogonal)

matrices the two approaches are the same. Thus, if the matrix M> were Hadamard, our

approach will not yield bounds better than those obtained from the spectral norm.

Even though the matrixM> is not Hadamard, it does come close, as it is a matrix with

entries in {−1, 1} and orthogonal rows, and the only reason it is not a Hadamard matrix is

that it is not square. In other words, the matrix M> can be equivalently described as the

Hadamard matrix with some of the rows removed. This means that any advantage that we

get from the vector v representing a probability distribution needs to come from the fact

that the matrix M> does not have all the rows of the Hadamard matrix.

To quantify this advantage, we add the ‘missing’ rows to the matrix M> and measure

the increase in
∥∥M>v

∥∥
2
. More precisely, we work with the matrix N>, defined to be the

matrix M> with its columns tensored C times. Tensoring the columns in this way makes

sure that N> has more rows than M>, and moreover, each “extra” row is either identical

to one of the previous rows, or corresponds to a fresh row of the Hadamard matrix. When

a new row is identical to one of the previous rows, it ends up hurting the bound that we

get, but when it is fresh, it makes the matrix N> look more like a Hadamard matrix for

which the spectral norm based analysis is tight. Our bound on C in Theorem 6.1 ensures

that the gains are more than the losses, and get a discrepancy bound strong enough to prove

Theorem 6.1.

In Section 6.2 below, we upper bound the spectral norm of N>, and in the following

Section 6.3, we wrap up the proof of Theorem 6.1. We note that, in the actual proof, we do

not derive a bound for
∥∥M>v

∥∥
2

in terms of
∥∥N>v∥∥

2
for vectors v that represent probability

distributions. Instead, we show Lemma 6.5 that bounds the discrepancy directly using our

bound on the spectral norm of N>. Lemma 6.5 relies on M and N being nicely related, or

more specifically, N> being M> with its columns tensored C times.

6.1 Notation

We use X to denote the set of all possible inputs for Alice and Y to denote the set of all

possible inputs for Bob. Observe that |Y| = (2nt)K . As above, Z ⊃ X will denote the

27

set Z =
(

({0, 1}2n)
t
)K

. For convenience, we shall treat Bob’s input as a single vector

I = (~j,~i) ∈ Y and we shall often write Xk,Ik instead of Xk,jk,ik and (~X, I) instead of (~X,~j,~i).

and We shall also use ~I = (Ic)c∈[C] = (~jc,~ic)c∈[C] to denote an element in YC . This will

correspond to Bob’s input being tensored C times.

As above, we shall use M to denote the communication matrix of the Ind⊕ problem,

and N to denote the matrix M with its rows tensored C times. Thus, N> is M> with its

columns tensored C times. Formally, we have for all ~X ∈ Z, I ∈ Y , and ~I ∈ YC that

M ~X,I =
K∏
k=1

(−1)Xk,Ik and N ~X,~I =
C∏
c=1

K∏
k=1

(−1)Xk,Ic,k . (5)

6.2 Spectral Norm of N>

The goal of this section is to show the following bound:

Lemma 6.2 (Spectral norm of N>). For all |Z|-dimensional vectors v, we have:∥∥N>v∥∥
2
≤ (20ntC)

CK
4 ·
√
|Z| · ‖v‖2.

Recall that the rows ofN> are such that each pair of rows is either identical or orthogonal.

The following definition captures when they are identical. For ~I ∈ YC let N~I denote column
~I of N (equivalently, row ~I of N>). For all ~I, ~I ′ ∈ YC and k ∈ [K], define the 2C-length

sequence Seq~I,~I′(k) to be:

Seq~I,~I′(k) = I1,k, · · · , IC,k, I ′1,k, · · · , I ′C,k. (6)

We say that the sequence Seq~I,~I′(k) is ‘balanced’ if no element in the sequence is repeated

an odd number of times, and say it is ‘unbalanced’ otherwise.

Lemma 6.3 (Rows of N>). For all ~I, ~I ′ ∈ YC, we have N~I = N~I′ if and only if Seq~I,~I′(k)

is balanced for all k ∈ [K]. Moreover, we have:

N>~I N~I′ =

{
|Z|, if N~I = N~I′

0, if N~I 6= N~I′

Proof. Suppose first that Seq~I,~I′(k) is balanced for all k ∈ [K]. For all ~X ∈ Z, we have:

N ~X,~I · N ~X,~I′ =
C∏
c=1

K∏
k=1

(−1)Xk,Ic,k ·
C∏
c=1

K∏
k=1

(−1)
Xk,I′

c,k (Equation 5)

=
K∏
k=1

(−1)
∑C
c=1 Xk,Ic,k+Xk,I′

c,k

28

= 1. (Equation 6 and Seq~I,~I′(k) is balanced for all k ∈ [K])

As the entries of N are from {−1, 1}, we can conclude that N ~X,~I = N ~X,~I′ for all ~X ∈ Z
implying that N~I = N~I′ . For the “moreover” part, note that N~I = N~I′ together with the

fact that the entries of N are from {−1, 1} implies that N>~I N~I′ = |Z|, as desired.

Next, assume that there exists k? ∈ [K] such that Seq~I,~I′(k
?) is unbalanced. It is sufficient

to show that N>~I N~I′ = 0 as it implies N~I 6= N~I′ . We have:

N>~I N~I′ =
∑
~X∈Z

N ~X,~I · N ~X,~I′

=
∑
~X∈Z

C∏
c=1

K∏
k=1

(−1)Xk,Ic,k ·
C∏
c=1

K∏
k=1

(−1)
Xk,I′

c,k (Equation 5)

=
∑
~X∈Z

K∏
k=1

(
C∏
c=1

(−1)Xk,Ic,k

)
·

(
C∏
c=1

(−1)
Xk,I′

c,k

)
.

To continue, we recall that Z =
(

({0, 1}2n)
t
)K

.

N>~I N~I′ =
K∏
k=1

∑
Xk∈({0,1}2n)t

(
C∏
c=1

(−1)Xk,Ic,k

)
·

(
C∏
c=1

(−1)
Xk,I′

c,k

)
.

We conclude that N>~I N~I′ = 0 follows if we show that the factor corresponding to k? above is

0. We do this using the fact that Seq~I,~I′(k
?) is unbalanced. Thus, there exists an element I?

that is repeated an odd number of times in Seq~I,~I′(k
?). For X ∈ ({0, 1}2n)

t
, let X−I? denote

the vector X with the coordinate I? removed. We have:

∑
X∈({0,1}2n)t

(
C∏
c=1

(−1)
XIc,k?

)
·

(
C∏
c=1

(−1)
XI′

c,k?

)

=
∑

XI?∈{0,1}

∑
X−I?∈{0,1}2nt−1

(
C∏
c=1

(−1)
XIc,k?

)
·

(
C∏
c=1

(−1)
XI′

c,k?

)

=

 ∑
XI?∈{0,1}

(−1)XI?

×
 ∑
X−I?∈{0,1}2nt−1

 C∏
c=1

Ic,k? 6=I?

(−1)
XIc,k?

 ·
 C∏

c=1
I′
c,k?
6=I?

(−1)
XI′

c,k?




(Equation 6 and I? that is repeated an odd number of times in Seq~I,~I′(k
?))

= 0.

29

If the rows ofN> were mutually orthogonal, thenN>N would be a scaled identity matrix

implying that ‖N v‖2 =
√
|Z| · ‖v‖2 for all

∣∣YC∣∣-dimensional vectors v. However, some rows

of N> are identical, and therefore, we have the following weaker lemma

Lemma 6.4 (Repeated rows in N>). For all
∣∣YC∣∣-dimensional vectors v satisfying for all

~I, ~I ′ ∈ YC that N~I = N~I′ =⇒ v~I = v~I′, we have:

‖N v‖2 ≤ (20ntC)
CK

4 ·
√
|Z| · ‖v‖2.

Proof. By Lemma 6.3, we have:

‖N v‖2
2 = v>N>N v =

∑
~I∈YC

∑
~I′∈YC

v~I · v~I′ ·
(
N>~I N~I′

)
=
∑
~I∈YC

∑
~I′∈YC
N~I=N~I′

v~I · v~I′ · |Z|.

Under the conditions of the lemma, this gives:

‖N v‖2 ≤

√√√√√(max
~I∈YC

∣∣∣{~I ′ ∈ YC | N~I = N~I′}
∣∣∣) · |Z| ·

∑
~I∈YC

v~I · v~I


≤ ‖v‖2 ·

√(
max
~I∈YC

∣∣∣{~I ′ ∈ YC | N~I = N~I′}
∣∣∣) · |Z|.

The lemma thus, follows once we show that for any ~I ∈ YC at most (20ntC)
CK

2 values

of ~I ′ ∈ YC satisfy N~I = N~I′ . Using Lemma 6.3, this is equivalent to showing that at most

(20ntC)
CK

2 values of ~I ′ ∈ YC satisfy the property that Seq~I,~I′(k) is balanced for all k ∈ [K].

Using the fact that Seq~I,~I′(k) is determined by the values I1,k, · · · , IC,k, I ′1,k, · · · , I ′C,k (see

Equation 6), we get that it is sufficient to show that for any k and any values of I1,k, · · · , IC,k,
at most (20ntC)

C
2 values of I ′1,k, · · · , I ′C,k make the sequence Seq~I,~I′(k) balanced. To this end,

fix k and values I1,k, · · · , IC,k. We (over) count the number of values of I ′1,k, · · · , I ′C,k that

make the sequence Seq~I,~I′(k) balanced as follows:

• Count the number of different multi-sets I ′1,k, · · · , I ′C,k. As I ′c,k for all c ∈ [C], is an

element of [t] × [2n], a multi-set is equivalently defined by 2nt non-negative integers

{zi}i∈[t]×[2n] such that
∑

i∈[t]×[2n] zi = C. Moreover, the condition that Seq~I,~I′(k) is

balanced translates to zi being odd for those i that appear an odd number of times in

I1,k, · · · , IC,k and even for those i that appear an even number of times in I1,k, · · · , IC,k.
Let there be D values of i of the former type and assume without loss of generality

that these are the D lexicographically smallest values. This means that we want to

count the number of non-negative integer solutions of
∑

i∈[t]×[2n] zi = C such that D

lexicographically smallest variables are odd, and the rest are even.

This is equivalent to counting the non-negative integer solutions of
∑

i∈[t]×[2n] zi = C−D
2

,

30

and by a standard argument11, equal to(
2nt+ C−D

2
− 1

C−D
2

)
≤
(

2nt+ C
2

C
2

)
≤
(

20nt

C

)C
2

.

• Permute the multi-set in at most C! ≤ CC ways.

Overall, we get that:

max
~I∈YC

∣∣∣{~I ′ ∈ YC | N~I = N~I′}
∣∣∣ ≤ (20nt

C

)C
2

· CC ≤ (20ntC)
C
2 ,

finishing the proof.

We finish this section by showing Lemma 6.2

Proof of Lemma 6.2. Fix v. We have:

∥∥N>v∥∥
2

=
v>NN>v
‖N>v‖2

≤
‖v‖2

∥∥NN>v∥∥
2

‖N>v‖2

(Cauchy-Schwarz inequality)

≤ (20ntC)
CK

4 ·
√
|Z| · ‖v‖2. (Lemma 6.4)

6.3 Proof of Theorem 6.1

Proof of Theorem 6.1. As a randomized protocol Π is simply a distribution over

deterministic protocols, it is sufficient to prove the theorem for all deterministic protocols

Π from Alice to Bob. Fix such a protocol Π and assume without loss of generality that

CC(Π) = C · log n. We also assume, without loss of generality that the messages in Π are

from the set
[
2CC(Π)

]
. For m ∈

[
2CC(Π)

]
, define the set Xm ⊆ X to be the subsets of inputs

for which Alice sends the message m. In particular, we have that the sets X1, · · · ,X2CC(Π)

form a partition of the set X . Also, for m ∈
[
2CC(Π)

]
and z ∈ {−1, 1}, let Ym,z ⊆ Y be the

set of inputs for Bob for which he outputs z on receiving message m from Alice. Note that,

11We provide the argument here for completeness. The claim is that, for n, r > 0, the number of non-
negative integer solutions of

∑
i∈[n] zi = r is equal to

(
n+r−1

r

)
. Indeed, writing every solution in unary with

the different variables separated by zeros gives a binary string of length n+ r− 1 with n− 1 zeros, and every
such string corresponds to a solution. Thus, the number of solutions is equal to the number of strings, which
is equal to

(
n+r−1

r

)
.

31

for all m ∈
[
2CC(Π)

]
, the sets Ym,−1 and Ym,1 from a partition of Y . We derive:

Pr
(~X,I)∼DInd⊕

n,t,K

(
Π(~X, I) =

K∏
k=1

(−1)Xk,Ik

)
=

1

|X | · |Y|
·
∑
~X∈X

∑
I∈Y

1
(

Π(~X, I) =M ~X,I

)
(Equation 5)

=
1

|X | · |Y|
·

∑
m∈[2CC(Π)]

∑
z∈{−1,1}

∑
~X∈Xm

∑
I∈Ym,z

1
(

Π(~X, I) =M ~X,I

)
.

Next, note by the definition of Xm and Ym,z that Π(~X, I) = z for all ~X ∈ Xm, I ∈ Ym,z.
This gives:

Pr
(~X,I)∼DInd⊕

n,t,K

(
Π(~X, I) =

K∏
k=1

(−1)Xk,Ik

)
=

1

|X | · |Y|
·
∑

m∈[2CC(Π)]

∑
z∈{−1,1}

∑
~X∈Xm

∑
I∈Ym,z

1
(
z =M ~X,I

)
.

As both z andM ~X,I take values in {−1, 1}, we have that 1
(
z =M ~X,I

)
= 1

2
·
(

1 + z · M ~X,I

)
.

Plugging in, we get:

Pr
(~X,I)∼DInd⊕

n,t,K

(
Π(~X, I) =

K∏
k=1

(−1)Xk,Ik

)
=

1

|X | · |Y|
·

∑
m∈[2CC(Π)]

∑
z∈{−1,1}

∑
~X∈Xm

∑
I∈Ym,z

1

2
·
(

1 + z · M ~X,I

)

=
1

2
+

1

2 · |X | · |Y|
·

∑
m∈[2CC(Π)]

∑
z∈{−1,1}

z ·

 ∑
~X∈Xm

∑
I∈Ym,z

M ~X,I


≤ 1

2
+

1

2 · |X | · |Y|
·

∑
m∈[2CC(Π)]

∑
z∈{−1,1}

∣∣∣1(Xm)>M1(Ym,z)
∣∣∣, (As z ∈ {−1, 1})

where 1(Xm) denotes the |Z|-dimensional indicator vector for the set Xm and 1(Ym,z) denotes

the |Y|-dimensional indicator for the set Ym,z.
Next, call a pair (m, z) ∈

[
2CC(Π)

]
×{−1, 1} “Alice-atypical” if |Xm| ≤ |X | · 2−2·CC(Π) and

“Bob-atypical” if |Ym,z| ≤ |Y|1−δ. Note that a pair (m, z) may be both Alice-atypical and

Bob-atypical. We call a pair that is neither Alice-atypical nor Bob-atypical a “typical” pair.

The following holds for all typical pairs.

Lemma 6.5 (Property of typical pairs). For all typical pairs (m, z), we have:∣∣∣1(Xm)>M1(Ym,z)
∣∣∣ ≤ (2nt)−50 · 2

CC(Π)
C · |Xm| · |Ym,z|.

32

We show Lemma 6.5 later but assuming it for now, we have:

Pr
(~X,I)∼DInd⊕

n,t,K

(
Π(~X, I) =

K∏
k=1

(−1)Xk,Ik

)
≤ 1

2
+

1

2 · |X | · |Y|
·

∑
(m,z)∈[2CC(Π)]×{−1,1}

(m,z) typical

∣∣∣1(Xm)>M1(Ym,z)
∣∣∣

+
1

2 · |X | · |Y|
·

∑
(m,z)∈[2CC(Π)]×{−1,1}

(m,z) Alice-atypical

∣∣∣1(Xm)>M1(Ym,z)
∣∣∣

+
1

2 · |X | · |Y|
·

∑
(m,z)∈[2CC(Π)]×{−1,1}

(m,z) Bob-atypical

∣∣∣1(Xm)>M1(Ym,z)
∣∣∣.

Using Lemma 6.5 on the first term and the trivial bound of |Xm| · |Ym,z| on the other terms,

we get:

Pr
(~X,I)∼DInd⊕

n,t,K

(
Π(~X, I) =

K∏
k=1

(−1)Xk,Ik

)
≤ 1

2
+

1

2 · |X | · |Y|
·

∑
(m,z)∈[2CC(Π)]×{−1,1}

(m,z) typical

(2nt)−50 · 2
CC(Π)
C · |Xm| · |Ym,z|

+
1

2 · |X | · |Y|

 ∑
(m,z)∈[2CC(Π)]×{−1,1}

(m,z) Alice-atypical

|Xm| · |Ym,z|+
∑

(m,z)∈[2CC(Π)]×{−1,1}
(m,z) Bob-atypical

|Xm| · |Ym,z|


≤ 1

2
+

1

2 · |X | · |Y|
·

∑
(m,z)∈[2CC(Π)]×{−1,1}

(m,z) typical

(2nt)−50 · 2
CC(Π)
C · |Xm| · |Ym,z|

+
1

2 · |X | · |Y|

 ∑
(m,z)∈[2CC(Π)]×{−1,1}

(m,z) Alice-atypical

|X | · |Ym,z|
22·CC(Π)

+
∑

(m,z)∈[2CC(Π)]×{−1,1}
(m,z) Bob-atypical

|Xm| · |Y|1−δ


(Definition of Alice-atypical and Bob-atypical)

≤ 1

2
+

1

2CC(Π)
+

1

|Y|δ
+

1

2 · |X | · |Y|
·

∑
(m,z)∈[2CC(Π)]×{−1,1}

(2nt)−50 · 2
CC(Π)
C · |Xm| · |Ym,z|

≤ 1

2
+

1

2CC(Π)
+

1

|Y|δ
+ (2nt)−50 · 2

CC(Π)
C

33

≤ 1

2
+

1

(2nt)20 ,

as CC(Π) ≤ C · log n and C ≥ 1
20
· (2nt)1−5δ and |Y| = (2nt)K and δ = 100

K
finishing the

proof.

We now show Lemma 6.5.

Proof of Lemma 6.5. In this proof, we use 1
(
YCm,z

)
denotes the

∣∣YC∣∣-dimensional indicator

for the set YCm,z. As C > 0, we have that the function xC is convex. This gives:(
1

|Xm|
· 1(Xm)>M1(Ym,z)

)C
≤ 1

|Xm|
· 1(Xm)>N1

(
YCm,z

)
(Jensen’s inequality)

≤ 1

|Xm|
·
∥∥1(YCm,z)∥∥2

∥∥N>1(Xm)
∥∥

2

(Cauchy-Schwarz inequality)

≤ 1

|Xm|
·
∥∥1(YCm,z)∥∥2

· (20ntC)
CK

4 ·
√
|Z| · ‖1(Xm)‖2.

(Lemma 6.2)

Next, we use the fact that (m, z) is typical to get |Xm| ≥ |X |·2−2·CC(Π) ≥ |Z|·2−2·CC(Π)·(3n)−tK

and |Ym,z| ≥ |Y|1−δ ≥ (20ntC)
K
2 · (2nt)

3δK
2 . Plugging in:(

1

|Xm|
· 1(Xm)>M1(Ym,z)

)C
≤ (3n)

tK
2 · 2CC(Π) · |Ym,z|C · (2nt)−

3δCK
4

≤ (2nt)−50C · 2CC(Π) · |Ym,z|C . (As tK ≤ 10C and δ = 100
K

)

Rearranging gives the result.

7 Indistinguishability of Set-Hiding-Game

We will consider the following one-way communication problem Set-Hiding-Gamen,t,K defined

as follows.

Definition 7.1. For integers n, t,K > 0. Set-Hiding-Gamen,t,K is defined as the following

one-way communication game: Alices gets t ·K sets ~T = (Tk,j)(k∈[K],j∈[t]), each being a subset

of [4n], and Bob gets K indices ~j = (jk)k∈[K] and K permutations ~π = (πk)k∈[K], each being

a permutation on [4n].

Alice sends a message to Bob, and the goal of the game is to output(
K⊕
k=1

πk(Tk,jk)

)
∩ [n].

34

Hard Input Distribution Dhard
n,t,K(T) to Set-Hiding-Game

• Parameters: A set T ⊆ [n].

• Construction:

– Sample K indices ~j = (jk)k∈[K] uniformly at random from [t].

– Sample K permutations ~π = (πk)k∈[K] on the set [4n] uniformly at random.

– Sample n · K bits ~b = (bk,i)k∈[K],i∈[n] from {0, 1} uniformly at random

conditioned on
⊕K

k=1 bk,i = 1(i ∈ T) for all i ∈ [n].

– Sample t ·K sets ~T = (Tk,j)k∈[K],j∈[t], where each Tk,j ⊆ [4n], as follows:

∗ For k ∈ [K], j ∈ [t] \ {jk}, sample the set Tk,j uniformly conditioned on

|Tk,j| = 2n.

∗ For k ∈ [K], sample the set Tk,jk uniformly at random conditioned on:

· |Tk,jk | = 2n.

· For all i ∈ [n], we have π−1
k (i) ∈ Tk,jk if and only if bk,i = 1.

• Alice’s Input: The t ·K sets ~T .

• Bob’s Input: The indices ~j and the permutations ~π.

Observation 7.2 (Property of Set-Hiding-Game). For every triple (~T ,~j, ~π) in the support of

Dhard
n,t,K(T), it holds that (

K⊕
k=1

πk(Tk,jk)

)
∩ [n] = T.

Lemma 7.4 below captures the indistinguishability of the Set-Hiding-Game. The crux of

this lemma is the communication lower bound shown in Theorem 6.1. We shall use it in the

following form:

Corollary 7.3 (Lower bound of Communication complexity of Ind⊕). Let n, t,K > 1000

be integers. Define δ = 100
K

and C = 1
20
· (2nt)1−5δ and assume that tK ≤ 10C. For all

one-way randomized protocols Π from Alice to Bob for the (n, t,K)-Ind⊕ problem satisfying

CC(Π) ≤ C · log n, we have:∥∥∥∥∥Π

(
DInd⊕

n,t,K |
K∏
k=1

(−1)Xk,jk,ik = 1

)
− Π

(
DInd⊕

n,t,K |
K∏
k=1

(−1)Xk,jk,ik = −1

)∥∥∥∥∥
TV

≤ 2

(2nt)20 .

Lemma 7.4 (Indistinguishability of Set-Hiding-Game). Let n, t,K > 1000 be integers and

S, T ⊆ [n] be sets. Define δ = 100
K

and C = 1
20
· (2nt)1−5δ and assume that tK ≤ 10C. For

all one-way randomized protocols Π from Alice to Bob for the Set-Hiding-Game satisfying

35

CC(Π) ≤ C · log n, we have:

∥∥Π
(
Dhard
n,t,K(S)

)
− Π

(
Dhard
n,t,K(T)

)∥∥
TV
≤ 1

(2nt)15 .

Proof. Fix a protocol Π and define the sets Z0 = S and Zi = (T ∩ [i]) ∪ (S \ [i]) for all

i ∈ [n]. In order to show the lemma, we show that for all i ∈ [n], we have:

∥∥Π
(
Dhard
n,t,K(Zi−1)

)
− Π

(
Dhard
n,t,K(Zi)

)∥∥
TV
≤ 2

(2nt)20 . (7)

The lemma then follows by adding Equation 7 for all i ∈ [n] and using the triangle inequality.

Henceforth, we focus on showing Equation 7. Fix an i? ∈ [n] and observe that Equation 7 is

trivial if Zi?−1 = Zi? . We therefore assume otherwise. For convenience, define Z?
1 = Zi? \{i?}

and observe that Zi?−1 = Z?
1 ∪ (S ∩ {i?}). and Zi? = Z?

1 ∪ (T ∩ {i?}). As we assume that

Zi?−1 6= Zi? , we must have that one of the sets Zi?−1 and Zi? must be Z?
1 and the other one

must be Z?
1 ∪ {i?}. It shall be convenient to denote Z?

−1 = Z?
1 ∪ {i?}. Rewriting Equation 7

in this notation, we get that we need to show:∥∥Π
(
Dhard
n,t,K(Z?

1)
)
− Π

(
Dhard
n,t,K(Z?

−1)
)∥∥

TV
≤ 2

(2nt)20 . (8)

We shall show Equation 8 with the help of the protocol Ψ for the (n+ 1, t,K)-Ind⊕ problem

defined below:

By definition, Ψ is a protocol for the (n + 1, t,K)-Ind⊕ problem satisfying CC(Ψ) ≤
C · log n. We shall consider the protocol Ψ when the inputs are drawn from the distribution

DInd⊕

n+1,t,K . For z ∈ {−1, 1}, define the event Ez over the randomness in the distribution

DInd⊕

n+1,t,K as:

Ez :=

[
K∏
k=1

(−1)Xk,jk,ik = z

]
. (9)

Next, for inputs ~X for Alice and ~i,~j for Bob, define Ψmid(~X,~i,~j) to be the joint distribution

of the tuple (~T , ~π,~j) that the protocol Ψ uses as input for the protocol Π in Line 5. Moreover,

for a distribution D over the inputs (~X,~i,~j), let Ψmid(D) denote the distribution of the tuple

(~T , ~π,~j) that the protocol Ψ uses as input for the protocol Π in Line 5 when the inputs

(~X,~i,~j) are sampled from D. The following is the main property satisfied by Ψ.

Lemma 7.5 (Property of Ψ). For all z ∈ {−1, 1}, it holds that:

Ψmid(DInd⊕

n+1,t,K | Ez) = Dhard
n,t,K(Z?

z).

We prove Lemma 7.5 later but use it now to finish the proof of Lemma 7.4. We have by

Lemma 7.5 that:

36

Algorithm 1 Protocol Ψ.

Input: Alice’s input is vectors ~X = (Xk,j)k∈[K],j∈[t] satisfying Xk,j ∈ {0, 1}2(n+1) and

‖Xk,j‖1 = n+1 for all k ∈ [K] and j ∈ [t]. Bob’s input is vectors~i ∈ [2(n+1)]K ,~j ∈ [t]K .

1: For k ∈ [K], j ∈ [t], using public randomness, sample a permutation σk,j on [4n].

2: For k ∈ [K], Bob, using his private randomness, samples a permutation πk on [4n]
uniformly at random conditioned on:

• πk(σk,jk(ik)) = i?.

• For all a < i? ∈ [n], πk(σk,jk(2(n+ 1) + a)) = a.

• For all a > i? ∈ [n], πk(σk,jk(2(n+ 1) + a− 1)) = a.

3: For k ∈ [K], a ∈ [n] \ {i?}, using public randomness, sample a bit bk,a from {0, 1}
uniformly at random conditioned on

⊕K
k=1 bk,a = 1(a ∈ Z?

1) for all a ∈ [n] \ {i?}.

4: For k ∈ [K], j ∈ [t], Alice constructs the set Tk,j ⊆ [4n] privately as follows:

• For i ∈ [2(n+ 1)], we have 1(σk,j(i) ∈ Tk,j) = Xk,j,i.

• For all a < i? ∈ [n], b ∈ {0, 1}, we have

1(σk,j(2(n+ 1) + a+ (n− 1)(1− b)) ∈ Tk,j) = 1(b = bk,a).

• For all a > i? ∈ [n], b ∈ {0, 1}, we have

1(σk,j(2(n+ 1) + a+ (n− 1)(1− b)− 1) ∈ Tk,j) = 1(b = bk,a).

5: Alice and Bob run the protocol Π with inputs ~T = (Tk,j)k∈[K],j∈[t] and ~π = (πk)k∈[K],~j
respectively. They output 1 if Π outputs Z?

1 and −1 if Π outputs Z?
−1.

∥∥Π
(
Dhard
n,t,K(Z?

1)
)
− Π

(
Dhard
n,t,K(Z?

−1)
)∥∥

TV

=
∥∥∥Π
(

Ψmid(DInd⊕

n+1,t,K | E1)
)
− Π

(
Ψmid(DInd⊕

n+1,t,K | E−1)
)∥∥∥

TV
.

To continue, note that in Line 5, that the protocol Ψ simply runs the protocol Π on the

inputs sampled from Ψmid(·), and outputs z if and only if the protocol Π outputs Z?
z . This

means that we can continue as:∥∥Π
(
Dhard
n,t,K(Z?

1)
)
− Π

(
Dhard
n,t,K(Z?

−1)
)∥∥

TV
=
∥∥∥Ψ
(
DInd⊕

n+1,t,K | E1

)
−Ψ

(
DInd⊕

n+1,t,K | E−1

)∥∥∥
TV

≤ 2

(2nt)20 , (Corollary 7.3)

as required to show Equation 8.

37

Proof of Lemma 7.5. Fix z ∈ {−1, 1}. Observe that Algorithm 1 has variables bk,a for all k ∈
[K], a ∈ [n]\{i?}. We also define the variables bk,i? = Xk,jk,ik for all k ∈ [K]. These variables

are not known to Alice or Bob and only used for the purpose of analysis. We consider the

distribution Dhard
n,t,K(Z?

z) as a distribution over tuples (~j, ~π,~b, ~T) and Ψmid(DInd⊕

n+1,t,K | Ez) as a

joint distribution over all the variables in Algorithm 1 and show the stronger statement that

the distribution of the tuple (~j, ~π,~b, ~T) is identical in both the distributions. This is done in

several steps.

The marginal distribution of ~j is identical. In the distribution Dhard
n,t,K(Z?

z), the

marginal distribution of ~j is simply the uniform distribution over [t]K . As Algorithm 1 does

not affect the variables~j, the marginal distribution of~j in the distribution Ψmid(DInd⊕

n+1,t,K | Ez)
is the same as that in the distributionDInd⊕

n+1,t,K | Ez, which is also uniform over [t]K , as desired.

Conditioned on ~j, the marginal distribution of ~π is identical. The marginal

distribution of ~π in the distribution Dhard
n,t,K(Z?

z) | ~j is such that each coordinate is

independently uniform over all permutations on [4n]. To show that the marginal distribution

of ~π in the distribution Ψmid(DInd⊕

n+1,t,K | Ez) | ~j is identical, we in fact consider the stronger

conditioning Ψmid(DInd⊕

n+1,t,K | Ez) |~i,~j. Observe that the latter is just Ψmid(DInd⊕

n+1,t,K | Ez,~i,~j).
Next, note from Line 1 and Line 2 that all the coordinates of ~π in the distribution

Ψmid(DInd⊕

n+1,t,K | Ez,~i,~j) are independent and it suffices to show that each one of them is a

uniformly random permutation over [4n]. For this, fix a coordinate k ∈ [K] and note that

the marginal distribution of πk in the distribution Ψmid(DInd⊕

n+1,t,K | Ez,~i,~j) is simply uniform

conditioned on:

• σk,jk(ik) = π−1
k (i?).

• For all a < i? ∈ [n], σk,jk(2(n+ 1) + a) = π−1
k (a).

• For all a > i? ∈ [n], σk,jk(2(n+ 1) + a− 1) = π−1
k (a).

As σk,jk is a uniformly random permutation on [4n], it follows that πk is also a uniformly

random permutation on [4n].

Conditioned on ~j, ~π, the marginal distribution of ~b′ = (bk,i)k∈[K],i∈[n]\{i?} is identical.

The marginal distribution of ~b′ in the distribution Dhard
n,t,K(Z?

z) | ~j, ~π is uniform conditioned

on
⊕K

k=1 bk,i = 1(i ∈ Z?
z) for all i ∈ [n] \ {i?}. Using Line 3 and the fact that

1(i ∈ Z?
1) = 1(i ∈ Z?

z) for all i ∈ [n] \ {i?}, the marginal distribution of ~b′ in the distribution

Ψmid(DInd⊕

n+1,t,K | Ez) | ~j, ~π is identical

38

Conditioned on ~j, ~π,~b′, the marginal distribution of (bk,i?)k∈[K] is identical. The

marginal distribution of (bk,i?)k∈[K] in the distribution Dhard
n,t,K(Z?

z) | ~j, ~π,~b′ is simply the

uniform distribution conditioned on
⊕K

k=1 bk,i? = 1(i? ∈ Z?
z). To show that the marginal

distribution of (bk,i?)k∈[K] in the distribution Ψmid(DInd⊕

n+1,t,K | Ez) | ~j, ~π,~b′ is identical, we in

fact consider the stronger conditioning Ψmid(DInd⊕

n+1,t,K | Ez) |~i,~j, ~π,~b′. Observe that the latter

is just Ψmid(DInd⊕

n+1,t,K | Ez,~i,~j) | ~π,~b′.
Now using the fact that Line 1, Line 2, and Line 3 can be carried out without knowing

Alice’s input we conclude that the marginal distribution of (bk,i?)k∈[K] in the distribution

Ψmid(DInd⊕

n+1,t,K | Ez,~i,~j) | ~π,~b′ is the same as in the marginal distribution of Xk,jk,ik in

the distribution DInd⊕

n+1,t,K | Ez,~i,~j which by definition is uniformly random conditioned on⊕K
k=1 Xk,jk,ik = 1(i? ∈ Z?

z).

Conditioned on ~j, ~π,~b, the marginal distribution of ~T ′ = (Tk,j)k∈[K],j∈[t]\{jk} is

identical. The marginal distribution of ~T ′ in the distribution Dhard
n,t,K(Z?

z) | ~j, ~π,~b is simply

uniform conditioned on each coordinate being of size 2n. To show that the marginal

distribution of ~T ′ in the distribution Ψmid(DInd⊕

n+1,t,K | Ez) | ~j, ~π,~b is identical, we consider

the stronger conditioning Ψmid(DInd⊕

n+1,t,K | Ez) | Υ1, where:

Υ1 = (Υ1,1,Υ1,2) where Υ1,1 =
(
~j,~i, ~X

)
and Υ1,2 =

(
~π,~b′, (σk,jk)k∈[K]

)
.

As Υ1,1 determines Ez, the latter is the same as Ψmid(DInd⊕

n+1,t,K | Υ1,1) | Υ1,2
12. Observe

that under this conditioning, whether or not σk,j(i) ∈ Tk,j is fixed (see Line 4) for all

k ∈ [K], j ∈ [t] \ {jk} and i ∈ [4n], and the only randomness in ~T ′ is over the choice of

(σk,j)k∈[K],j∈[t]\{jk}. As these chosen uniformly and independently, we have that the marginal

distribution of each coordinate of ~T ′ in the distribution Ψmid(DInd⊕

n+1,t,K | Υ1,1) | Υ1,2 is simply

uniform (and independent) conditioned on each coordinate being of size 2n, as desired.

Conditioned on ~j, ~π,~b, ~T ′, the marginal distribution of (Tk,jk)k∈[K] is identical. The

marginal distribution of (Tk,jk)k∈[K] in the distribution Dhard
n,t,K(Z?

z) | ~j, ~π,~b, ~T ′ is simply

uniform conditioned on:

• For all k ∈ [K], |Tk,jk | = 2n.

• For all k ∈ [K], i ∈ [n], we have π−1
k (i) ∈ Tk,jk if and only if bk,i = 1.

To show that the marginal distribution of (Tk,jk)k∈[K] in the distribution Ψmid(DInd⊕

n+1,t,K |
Ez) | ~j, ~π,~b, ~T ′ is identical, we consider the stronger conditioning Ψmid(DInd⊕

n+1,t,K | Ez) | Υ2

where:

Υ2 = (Υ2,1,Υ2,2) where Υ2,1 =
(
~j,~i, ~X

)
and Υ2,2 =

(
~π,~b′, ~T ′, (σk,j)k∈[K],j∈[t]\{jk}

)
.

12The distribution DInd⊕
n+1,t,K | Υ1,1 is actually just a point mass.

39

As Υ1,1 determines Ez, the latter is the same as Ψmid(DInd⊕

n+1,t,K | Υ2,1) | Υ2,2.13 Observe from

Line 4 that under this conditioning whether or not σk,jk(i) ∈ Tk,jk is fixed for all i ∈ [4n]

and the only randomness (Tk,jk)k∈[K] is the randomness in σk,jk . Also, observe from Line 2

that the marginal distribution of σk,jk in the distribution Ψmid(DInd⊕

n+1,t,K | Υ2,1) | Υ2,2 is

independent for all k ∈ [K] and simply uniform conditioned on:

• σk,jk(ik) = π−1
k (i?).

• For all a < i? ∈ [n], σk,jk(2(n+ 1) + a) = π−1
k (a).

• For all a > i? ∈ [n], σk,jk(2(n+ 1) + a− 1) = π−1
k (a).

This implies that the marginal distribution of (Tk,jk)k∈[K] in the distribution Ψmid(DInd⊕

n+1,t,K |
Υ2,1) | Υ2,2 is also independent for all k ∈ [K] and uniform conditioned on

• |Tk,jk | = 2n.

• 1
(
π−1
k (i?) ∈ Tk,jk

)
= bk,i? .

• For all a < i? ∈ [n], 1
(
π−1
k (a) ∈ Tk,jk

)
= bk,a.

• For all a > i? ∈ [n], 1
(
π−1
k (a) ∈ Tk,jk

)
= bk,a.

This can be rewritten as uniform conditioned on

• |Tk,jk | = 2n and

• for all i ∈ [n], 1
(
π−1
k (i) ∈ Tk,jk

)
= bk,i,

as desired.

8 Operations on Set-Encoding Graphs

In this section we present several operations on Set-Encoding graphs, which will be the

building blocks for the more sophisticated construction in Section 9.

This section is organized as follows: In Section 8.1, we present the AND operation and the

OR operation on Set-Encoding graphs. In Section 8.2, we first formally define Set-Encoding

graph pairs, and then present the XOR operation on them.

8.1 The AND/OR Operation on Set-Encoding Graphs

In the following, we specify the AND and OR operations on Set-Encoding graphs.

13The distribution DInd⊕
n+1,t,K | Υ2,1 is actually just a point mass.

40

Construction of Graphs Set-Enc-AND(GS, GT) and Set-Enc-OR(GS, GT)

• Input: For two sets S, T ⊆ [n]. We are given a Set-Encn(S) graph GS and a

Set-Encn(T) graph GT .

• Assumption: We assume that GS and GT are both (N, k, ~̀) graphs.

• Construction of Set-Enc-AND(GS, GT): Set-Enc-AND(GS, GT) = GS � GT .

For simplicity we will also use GS ∧GT to denote Set-Enc-AND(GS, GT).

• Construction of Set-Enc-OR(GS, GT): We build a graph H with first layer

and last layer both having n vertices. We add a copy of GS and a copy of GT

in H, between the first and the last layer of H. Now for convenience we will use

GS and GT to denote the corresponding subgraphs in H. H is then specified as

follows:

1. Auxiliary Edges: We add a matching between (1) First(H) and First(GS);

(2) First(H) and First(GT); (3) Last(GS) and Last(H); (4) Last(GT) and

Last(H). That is, in case (1), for each i ∈ [n], we add an edge from First(H)[i]

to First(GS)[i]; we add edges similarly in the other three cases.

Let Efirst be the set of the edges added to H in Case (1) and Case (2) above,

and Elast be the set of the edges added to H in Case (3) and Case (4) above.

2. Layers: The graph H has k + 2 layers. For each i ∈ [k], we set

Vi+1(H) = Vi(GS) ∪ Vi(GT).

3. Edge-layer ordering: Now we set ~E(H) as a list of k + 1 sets of edges

such that ~E(H)1 = Efirst, ~E(H)2 = Elast, and ~E(H)i+2 = (~ES)i ∪ (~ET)i for

each i ∈ [k − 1]. ~̀(H) is set accordingly.

We output Set-Enc-OR(GS, GT) = H. For simplicity we will also use GS ∨ GT

to denote Set-Enc-OR(GS, GT).

The following two observations are in order.

Observation 8.1 (AND/OR operations on two Set-Encoding graphs).

1. GS ∧GT is an (N ′, k′, ~̀′) graph, where N ′ = 2N − n, k′ = 2k − 1 and ~̀′ only depends

on ~̀.

2. GS ∨GT is an (N ′, k′, ~̀′) graph, where N ′ = 2N + 2n, k′ = k + 2 and ~̀′ only depends

on ~̀.

8.2 The XOR Operation on Set-Encoding Graph Pairs

Next, we formally define Set-Encn(S) graph pairs.

41

Definition 8.2 (Set-Encn(S) graph pairs). A pair of graph pairS = (GS, G¬S) is a

Set-Encn(S) graph pair, if the following two conditions hold:

1. GS is a Set-Encn(S) graph and G¬S a Set-Encn(¬S) graph.

2. GS and G¬S have the same number of layers and the same edge-layer ordering

(~̀(GS) = ~̀(G¬S)).

For two layered graphs G1 and G2 with the same number of layers and the same edge-layer

ordering, we use

[
G1

G2

]
to denote the graph H constructed by merging G1 and G2 in parallel.

That is: (1) H has the same number of layers and the same edge-layer ordering as G1 (and

G2); (2) Let k be the number of layers in H. For each i ∈ [k], Vi(H) = Vi(G1) ∪ Vi(G2); (3)

For each i ∈ [k − 1], Ei(H) = Ei(G1) ∪ Ei(G2).

We say pairS is an (N, k, ~̀) graph pair, if both of the graphs in pairS are (N, k, ~̀) graphs.

For a distribution Dpair on Set-Encn graph pairs, we use stack(Dpair) to denote the distribution

obtained by drawing (A,B)← Dpair, and outputting

[
A

B

]
.

Construction of Graph Pairs Set-Enc-XOR(pairS, pairT)

• Input: For two sets S, T ⊆ [n]. We are given a Set-Encn(S) graph pair

pairS = (GS, G¬S) and a Set-Encn(T) graph pair pairT = (GT , G¬T).

• Assumption: We assume that both of pairS and pairT are (N, k, ~̀) graph pairs.

• Output: We set

GS⊕T = (GS ∧G¬T) ∨ (G¬S ∧GT),

and

G¬(S⊕T) = (GS ∧GT) ∨ (G¬S ∧G¬T).

We output Set-Enc-XOR(pairS, pairT) = (GS⊕T , G¬(S⊕T)). For simplicity, we will

also use pairS ⊕ pairT to denote Set-Enc-XOR(pairS, pairT).

We make the following observation, which follows immediately from Observation 8.1.

Observation 8.3 (The XOR operation on two Set-Encoding graph pairs). pairS ⊕ pairT is a

Set-Encn(S ⊕ T) graph pair. Moreover, pairS ⊕ pairT is also an (N ′, k′, ~̀′) graph pair, where

N ′ = 4N , k′ = 2k + 1 and ~̀′ only depends on ~̀.

Construction of Graph Pairs
⊕K

k=1 pairi

• Input: Let K ∈ N be a power of 2. (If the number of graph pairs is not a power

of 2, we can always pad some dummy Set-Encn(∅) pairs to make it a power of 2.

42

This only causes a constant blow-up on the size of the final graph.)

For K sets S1, . . . , SK ⊆ [n], we are given a Set-Encn(Si) graph pair pairi =

(GSi , G¬Si) for each i ∈ [K].

• Assumption: We assume that all the K graph pairs are (N, k, ~̀) graph pairs.

• Output: If K = 2, we output pair1⊕pair2. Otherwise, letting pairA =
⊕K/2

i=1 pairi
and pairB =

⊕K/2
i=1 pairi+K/2, we output pairA ⊕ pairB.

The following observation follows immediately from Observation 8.3.

Observation 8.4 (The XOR operation on a list of Set-Encoding graph pairs).
⊕K

k=1 pairi
is a Set-Encn(

⊕K
k=1 Si) graph pair. It is also an (N ′, k′, ~̀′) graph pair where N ′ = K2 · N ,

k′ = K · (k + 1)− 1 and ~̀′ only depends on ~̀.

For a list of n distributions (Dpair
i)ni=1, we define

⊕n
i=1D

pair
i as the distribution obtained

by drawing pairi ← D
pair
i independently, and outputting ⊕ni=1pairi. The following lemma will

be useful for analyzing our construction in Section 9.

Lemma 8.5 (The XOR operation preserves indistinguishability). Let n be a power of 2,

let ~Dpair = (Dpair
i)ni=1 and ~Epair = (Epair

i)ni=1 be two list of distributions on Set-Encn graph

pairs. We further assume that all graph pairs in the support of the distributions in ~Dpair

and ~Epair are (N, k, ~̀) graph pairs. Let ε ∈ Rn
≥0 be n non-negative parameters. If for each

i ∈ [n], stack(Dpair
i) and stack(Epair

i) are εi-indistinguishable for p-pass streaming algorithms

with space s, then stack(
⊕n

i=1D
pair
i) and stack(

⊕n
i=1 E

pair
i) are ‖ε‖1-indistinguishable for p-

pass streaming algorithms with space s.

Proof. Clearly, the lemma is trivial when n = 1. In the following we will prove the general

case when n is an arbitrary power of 2 by induction.

Let n be a power of 2 which is at least 2. By the induction hypothesis, we know that the

lemma holds for n/2. We set

(X ,Y ,Z,W) =

 n/2⊕
i=1

Dpair
i ,

n/2⊕
i=1

Dpair
i+n/2,

n/2⊕
i=1

Epair
i ,

n/2⊕
i=1

Epair
i+n/2

 ,

ε(1) = (εi)
n/2
i=1 and ε(2) = (εi+n/2)

n/2
i=1. Since the lemma holds for n/2, it follows that: (1)

stack(X) and stack(Z) are ‖ε(1)‖1-indistinguishable; (2) stack(Y) and stack(W) are ‖ε(2)‖1-

indistinguishable.

Let X ← X , and we write X = (X+,X−) to denote the two components of X (note

that these two components may not be independent). Similarly, we define random variables

Y ,Z and W , and their components.

43

By definition, the distribution stack(
⊕n

i=1D
pair
i) samples X ← X , Y ← Y independently

and outputs

X ⊕ Y =

[
(X+ ∧ Y−) ∨ (X− ∧ Y+)

(X− ∧ Y−) ∨ (X+ ∧ Y+)

]
.

Similarly, the distribution stack(
⊕n

i=1 E
pair
i) samples Z ← Z, W ← W independently and

outputs

Z ⊕W =

[
(Z+ ∧W−) ∨ (Z− ∧W+)

(Z− ∧W−) ∨ (Z+ ∧W+)

]
.

Ignoring the fixed auxiliary edges added in the Set-Enc-OR operation, one can see

that a streaming algorithm A reading samples from stack(
⊕n

i=1D
pair
i) is essentially reading

(

[
X+

X−

]
,

[
Y+

Y−

]
)Seq and similarly reading samples from stack(

⊕n
i=1 E

pair
i) is equivalent to

reading (

[
Z+

Z−

]
,

[
W+

W−

]
)Seq.14

Noting that

[
X+

X−

]
distributes as stack(X) (and the same holds for Y , Z andW), and the

pairs (stack(X), stack(Z)) and (stack(Y), stack(W)) are ‖ε(1)‖1- and ‖ε(2)‖1-indistinguishable,

respectively. Applying the hybrid argument (Lemma 3.4) proves the base case.

9 Set-Hiding Generators from Perm-Hiding Generators

In this section we present a construction of Set-Hiding generators from Perm-Hiding

generators, and prove Lemma 4.2.

This section is organized as follows: In Section 9.1, we construct the container graphs

using the well-known Ruzsa-Szemerédi graphs. In Section 9.2, we define the Index-Encoding

graphs and show that they can be used as selectors for the container graphs. In Section 9.3,

we construct Index-Hiding generators from Perm-Hiding generators. In Section 9.4, we present

the construction for Set-Hiding generators from Perm-Hiding generators.

9.1 Construction of Container Graphs Using Ruzsa-Szemerédi

Graphs

Notation for Ruzsa-Szemerédi (RS) graphs. Before constructing the container graphs

we need, we introduce some notation for RS graphs first. Recall that NRS(n) = n1+cRS/
√

logn

so that for sufficiently large n, there exists an (n, n)-RS graph [RS78] with NRS(n) vertices

on both sides. More specifically, we use RSn to denote an (n, n)-RS graph with NRS(n)

14See Section 3.4 for the definition of (

[
X+

X−

]
,

[
Y+

Y−

]
)Seq and (

[
Z+

Z−

]
,

[
W+

W−

]
)Seq.

44

vertices on both sides. For each i ∈ [n], we construct two indexing functions

RS(i)
n -IndexL,RS(i)

n -IndexR : [n]→
[
NRS(n)

]
as follows: for each j ∈ [n], RS(i)

n -IndexL(j) (resp. RS(i)
n -IndexR(j)) is set to the index of the

j-th vertex in the left (resp. right) side of the i-th matching in RSn. In other words, the i-th

matching in RSn consists of n edges {(RS(i)
n -IndexL(j),RS(i)

n -IndexR(j))}j∈[n].

Construction of container graphs. We will need the following construction involving

RS graphs. Given n sets T1, . . . , Tn ⊆ [m] such that n ≤ m, we define the graph

G = Containerm((Ti)
n
i=1), which is a bipartite graph having N = NRS(m) vertices on each

side, as follows: For each (i, j) ∈ [n] × [m], let a = RS(i)
m -IndexL(j) and b = RS(i)

m -IndexR(j),

we add an edge between First(G)[a] and Last(G)[b] if and only if j ∈ Ti. Note that the edge

layer ordering for container graphs is trivial as there is only one layer.

9.2 Index-Encoding Graphs

Now we define the following two types of Index-Encoding graphs, which will be used to “select”

one set from a container graph Containerm((Ti)
n
i=1).

Definition 9.1 (Left-Index-Encoding graphs and Right-Index-Encoding graphs). For n,m ∈ N
such that n ≤ m, and for an injective function f : [n]→ [m]:

1. (Left-Index-Encoding Graphs) We say a layered graph G is an LIndex-Encn,m(f) graph

(i.e., a Left-Index-Encoding graph for the function f), if (1) |First(G)| = n and

|Last(G)| = m and (2) for each (i, j) ∈ [n] × [m], First(G)[i] can reach Last(G)[j] if

and only if f(i) = j.

2. (Right-Index-Encoding Graphs) We say a layered graph G is an RIndex-Encm,n(f)

graph (i.e., a Right-Index-Encoding graph for the function f), if (1) |First(G)| = m and

|Last(G)| = n and (2) for each (j, i) ∈ [m]× [n], First(G)[j] can reach Last(G)[i] if and

only if f(i) = j.

Index-Encoding graphs as selectors. The following lemma formally states how to use

two Index-Encoding graphs to select a set out of the n sets stored in a container graph

Containerm((Ti)
n
i=1).

Lemma 9.2 (Selecting a set in a container graph). Let n,m ∈ N such that n ≤ m, and let

(Ti)
n
i=1 be n subsets of [m]. Let i ∈ [n] and N = NRS(m). Suppose the following hold:

1. GL is an LIndex-Encm,N(RS(i)
m -IndexL) graph;

2. GR is an RIndex-EncN,m(RS(i)
m -IndexR) graph;

45

3. GM = Containerm((Ti)
n
i=1).

Then GL �GM �GR is a Set-Encm(Ti) graph.

Proof. Let G = GL � GM � GR. From now on we will use GL, GM and GR to denote the

corresponding subgraphs in G.

Since First(G) = First(GL) and Last(G) = Last(GR), each of First(G) and Last(G) has

exactly m vertices. Now for each (a, b) ∈ [m] × [m], by Definition 9.1, First(G)[a] can only

reach First(GM)[x] where x = RS(i)
m -IndexL(a), and only Last(GM)[y] can reach Last(G)[b] where

y = RS(i)
m -IndexR(b). From the construction of container graph GM , First(GM)[x] can reach

Last(GM)[y] if and only if both a = b and a ∈ Ti. Therefore, G is a Set-Encm(Ti) graph.

9.3 Index-Hiding Generators

Similar to Definition 3.6 and Definition 3.7, we can define Left-Index-Hiding generators and

Right-Index-Hiding generators as follows.

Definition 9.3 (ε-secure Index-Hiding generators). Let n,m ∈ N such that n ≤ m, and

let G be a function from injective functions from [n] → [m] to distributions over layered

graphs. We say G is ε-Left-Index-Hiding (resp. ε-Right-Index-Hiding) for injective functions

from [n]→ [m] against p-pass algorithms with space s, if the following statements hold:

1. For every injective function f : [n]→ [m], G(f) is a distribution over LIndex-Encn,m(f)

(resp. RIndex-Encm,n(f)) graphs.

2. For every two injective functions f1, f2 : [n] → [m], the distributions A(G(f1)) and

A(G(f2)) are ε-indistinguishable for p-pass streaming algorithms A with space s.

Similar to GSH
n,p and GPH

n,p, for simplicity, we will often use GLIH
n,m (resp. GRIH

m,n) to denote

an ε-Left-Index-Hiding (resp. ε-Right-Index-Hiding) generator for injective functions from

[n]→ [m]. We may also write GLIH
n,m,p (resp. GRIH

m,n,p) to indicate that the generator is against

p-pass streaming algorithms.

Next, we show how to construct Index-Hiding generators from Perm-Hiding generators.

Construction of GLIH
n,m,p and GRIH

m,n,p for p-Pass Streaming Algorithms

• Input: An injective function f : [n] → [m]. The security parameter ε, pass

number p and space s.

• Assumption: There is a generator GPH
m,p which always outputs (NGPH , kGPH , ~̀GPH)

graphs and is ε-Perm-Hiding against p-pass algorithms with space s.

• Construction:

1. (GLIH
n,m,p) Draw π as a uniformly random permutation on [m] conditioning

46

on that π(i) = f(i) for every i ∈ [n]. Let G ← GPH
m,p(π). Delete the

vertices First(G)[n+1], . . . ,First(G)[m] from G together with all edges adjacent

to them. GLIH
n,m,p(f) then outputs G.

2. (GRIH
m,n,p) Draw π as a uniformly random permutation on [m] conditioning on

that π(f(i)) = i for every i ∈ [n]. Let G ← GPH
m,p(π). Delete the vertices

Last(G)[n+1], . . . , Last(G)[m] fromG together with all edges adjacent to them.

GLIH
n,m,p(f) then output G.

Lemma 9.4 (From Perm-Hiding generators to Index-Hiding generators). Let n,m, p, s ∈ N
such that n ≤ m. Let ε ∈ [0, 1). Suppose there is a generator GPH

m,p which always

outputs (NGPH , kGPH , ~̀GPH) graphs and is ε-Perm-Hiding against p-pass streaming algorithms

with space s. Then, the generator GLIH
n,m,p (resp. GRIH

m,n,p) as defined above always outputs

(NGPH − (m − n), kGPH , ~̀GPH) graphs and is ε-Left-Index-Hiding (resp. ε-Right-Index-Hiding)

against p-pass streaming algorithms with space s.

Proof. The security of GLIH
n,m,p and GRIH

m,n,p follows directly from the assumed security of

GPH
m,p. Also, from the construction of GLIH

n,m,p and GRIH
m,n,p, it is clear that we delete exactly

(m − n) vertices from the output graph of GPH
m,p, hence GLIH

n,m,p and GRIH
m,n,p always output

(NGPH − (m− n), kGPH , ~̀GPH) graphs.

9.4 Construction of Set-Hiding Generators

Now we are ready to present our construction of Set-Hiding generators from Perm-Hiding

generators.

Construction of GSH
n,p for p-Pass Streaming Algorithms

• Input: A set S ⊆ [n]. The security parameter ε, pass number p and space s.

• Assumption: Let N = NRS(4n). There is a generator GPH
N,p−1 which always

outputs (NGPH , kGPH , ~̀GPH) graphs and is ε0-Perm-Hiding against (p − 1)-pass

algorithms with space 2p · s, where ε0 = ε/ log2 n.

• Setup: Let GLIH
4n,N,p−1 and GRIH

N,4n,p−1 be the resulting ε0-Left-Index-Hiding generator

and ε0-Right-Index-Hiding generator from Lemma 9.4, respectively.

The generator GPH
N,p−1 also implies a generator GPH

4n,p−1 which is ε0-Perm-Hiding

against (p− 1)-pass algorithms with space 2p · s.

• Construction:

1. Let K = 1500 · log n.

47

2. Draw (~T , ~π,~j)← Dhard
n,n,K(S) (defined in Section 7).

3. For each k ∈ [K], we draw

(a) G
(k)
pmL ← GPH

4n,p−1(π−1
k); G

(k)
pmR ← GPH

4n,p−1(πk);

(b) G
(k)
idxL ← GLIH

4n,N,p−1(RS
(jk)
4n -IndexL); G

(k)
idxR ← GRIH

N,4n,p−1(RS
(jk)
4n -IndexR);

Then we set

X(k) = G
(k)
pmL �G

(k)
idxL� Container4n((Tk,j)j∈[n]) �G(k)

idxR �G
(k)
pmR,

Y (k) = G
(k)
pmL �G

(k)
idxL� Container4n((¬4nTk,j)j∈[n]) �G(k)

idxR �G
(k)
pmR, and

pairk = (X(k), Y (k)).

4. Let pairxor = ⊕Kk=1pairk, and Gxor be the first graph in pairxor.

5. Edge-Layer Ordering:

We have to adjust the edge-layer ordering in Gxor. There are three possible

types of edge-layers in Gxor (see Claim 9.5): (1) consisting entirely of the

auxiliary edges added in the Set-Enc-OR operations; (2) consisting entirely

of the edges in some copies of Container4n((¬Tk,j)j∈[n]); (3) consisting

entirely of the edges in some copies of G
(k)
pmL, G

(k)
idxL, G

(k)
idxR or G

(k)
pmR.

Let Eaux, EA and EB be the lists of edge-layers in E(Gxor) of type (1), (2)

and (3), respectively. Each of them is ordered according to ~E(Gxor). We

construct another graph Gadjust from Gxor such that they are the same except

for the edge-layer ordering; we set E(Gadjust) = Eaux ◦EA ◦EB, and ~̀(Gadjust)

is set accordingly.

6. Finally, we construct a new graph Gfinal by deleting the vertices

First(Gadjust)[i] and Last(Gadjust)[i] from Gadjust for every i ∈ {n+ 1, . . . , 4n}.

• Output: Finally, GSH
n,p outputs Gfinal.

Reminder of Lemma 4.2. Let n be a sufficiently large integer. Let p, s ∈ N such

that 2p · s ≤ 1
20
n2 log n, and let N = NRS(4n). Let ε ∈ [0, 1) such that ε ≥ 1/n10.

Suppose there is a generator GPH
N,p−1 which always outputs (NGPH , kGPH , ~̀GPH) graphs and is

(ε/ log2 n)-Perm-Hiding against (p − 1)-pass streaming algorithms with space 2p · s. Then

there is a generator GSH
n,p such that: (1) it always outputs (NGSH , kGSH , ~̀GSH) graphs, where

NGSH = O(NGPH · log2 n) and kGSH = O(kGPH · log n); (2) it is ε-Set-Hiding against p-pass

streaming algorithms with space s.

Proof. We begin with some notation. We use ~T to denote (Tk,j)(j,k)∈[n]×[K], ~π to denote

(πi)i∈[K], and ~j to denote (ji)i∈[K]. We also let SAlice and SBob be the sets of all possible ~T

and (~π,~j), respectively.

48

Note that an output graph Gfinal of GSH
n,p can be decomposed into three subgraphs Gfixed,

GA and GB (corresponding to the edge-layers Eaux, EA and EB in the construction), such

that Gfixed is a fixed graph, GA is a deterministic function of ~T and GB is generated from ~π

and ~j. Note that edges comes in the order of Gfixed, GA and GB.

We use GA(~T) to denote the graph GA constructed from ~T , and GB(~π,~j) to denote the

distribution of the graph GB given inputs ~π and ~j. We use supp(GB) to denote the union of

the supports of GB(~π,~j) for every (~π,~j) ∈ SBob.

Gfinal is a Set-Encn(S) graph. We first claim that Gfinal is a Set-Encn(S) graph.

By the definition of GPH
4n,p−1 and Lemma 9.2, it follows that for each k ∈ [K],

pairk is a Set-Enc4n(πk(Tk,jk)) graph pair. Then by Observation 8.4, pairxor is

a Set-Enc4n(
⊕K

k=1 πk(Tk,jk)) graph pair. Therefore, both of Gxor and Gadjust are

Set-Enc4n(
⊕K

k=1 πk(Tk,jk)) graphs.

Finally, since Gfinal is obtained by deleting First(Gadjust)[i] and Last(Gadjust)[i] for every

i ∈ {n + 1, . . . , 4n}, it follows that Gfinal is a Set-Encn(
⊕K

k=1 πk(Tk,jk) ∩ [n]) graph.

From Observation 7.2, S =
⊕K

k=1 πk(Tk,jk) ∩ [n] and the claim is proved.

Structure of the graph Gxor. Next, we need the following claim summarizing the

structure properties of Gxor needed for us.

Claim 9.5 (Structure properties of Gxor). Gxor is an (Nxor, kxor, ~̀xor) graph, where Nxor =

O(log2 n · NGPH) and kxor = O(log n · kGPH). Moreover, there are three possible types of

edge-layers in Gxor: (1) consisting entirely of the auxiliary edges added in the Set-Enc-OR

operations; (2) consisting entirely of the edges in some copies of Container4n((¬Tk,j)j∈[n]);

(3) consisting entirely of the edges in some copies of G
(k)
pmL, G

(k)
idxL, G

(k)
idxR or G

(k)
pmR.

In the following, we prove Claim 9.5. Note that the container graphs

Container4n((Tk,j)j∈[n]) and Container4n((¬4nTk,j)j∈[n]) each has 2N vertices. By the

properties of GPH
4n,p−1, GLIH

4n,N,p−1 and GRIH
N,4n,p−1, it follows that for each k ∈ [K], pairk is an

(Npair, kpair, ~̀pair) graph pair, where Npair = O(NGPH +N) = O(NGPH), kpair = O(kGPH) and ~̀pair

only depends on ~̀GPH .

By Observation 8.4 and noting thatK = O(log n), it follows thatGxor is an (Nxor, kxor, ~̀xor)

graph, where Nxor = O(log2 n·NGPH) and kxor = O(log n·kGPH). This proves the first statement

of Claim 9.5. For the moreover part, note that for each k ∈ [K], edge-layers in both graphs in

pairk are either type (2) or type (3). Since all the graph pairs pairk have the same edge-layer

ordering, one can show that
⊕K

k=1 pairk maintains this property by induction. Also, it is

not hard to see that if an edge-layer contains some auxiliary edges added in the Set-Enc-OR

operations, then it consists entirely of auxiliary edges. This completes the proof of Claim 9.5.

It then follows directly from Claim 9.5 that GSH
n,p always outputs (NGSH , kGSH , ~̀GSH) graphs,

where NGSH = O(log2 n ·NGPH), kGSH = O(log n · kGPH).

49

Indistinguishability. To simplify the analysis, in the rest of the proof, we will assume

that GSH
n,p outputs Gadjust instead of Gfinal. This is valid since for every T1, T2 ⊆ [n], this change

will only increase the total variation distance ‖A(GSH
n,p(T1))− A(GSH

n,p(T2))‖TV.

Suppose for the sake of contradiction that GSH
n,p is not ε-Set-Hiding for p-pass streaming

algorithms with space s. That is, there are two subsets T1, T2 ⊆ [n] and a p-pass streaming

algorithm A with space s such that

‖A(GSH
n,p(T1))− A(GSH

n,p(T2))‖TV > ε. (10)

We can further assume without loss of generality that A is a deterministic algorithm.

We will show how to construct a one-way communication protocol from Alice to Bob which

contradicts Lemma 7.4. Setting t = n and K = 1500 · log n in Lemma 7.4, we have the

following claim.

Claim 9.6 (An instantiation of Lemma 7.4). For a sufficiently large integer n. Let

T1, T2 ⊆ [n] be sets. For all one-way randomized protocols Π from Alice to Bob for the

Set-Hiding-Game satisfying CC(Π) ≤ 1
20
n2 log n, it holds that

∥∥Π
(
Dhard
n,n,K(T1)

)
− Π

(
Dhard
n,n,K(T2)

)∥∥
TV
≤ 1

n30
.

In more details, plugging in t = n and K = 1500 · log n in Lemma 7.4, we have

δ = 100
K

= 1
15 logn

and C = 1
20
· (2nt)1−5δ = 1

20
· (2n2)1−1/3 logn ≥ 1

20
n2. We can also verify that

tK ≤ 10C, and Claim 9.6 follows from the fact that C log n ≥ 1
20
n2 log n.

We first consider a faithful simulation of the p-pass algorithm A on the graph Gfinal by

Alice and Bob, specified by Algorithm 2.

The following lemma will be crucial for our proof, and we defer its proof until we finish

the proof of Lemma 4.2.

Lemma 9.7 (Resampling preserves the distributions). There is a mapping Gresamp from

{0, 1}(2p−1)s × SBob to distributions over supp(GB) such that for every distribution D over

SAlice × SBob, letting (~T ,~π,~j)← D, the following two distributions are identical:

1. (The Original Distribution.) Πsim(GA(~T),GB(~π,~j)).

2. (The Resampled Distribution.) Draw M ← Πtrans
sim (GA(~T),GB(~π,~j)), and output

ALast(M ,Gresamp(M ,~π,~j)).

In above ALast(x, y) is the output of the protocol Πsim given the transcript x and Bob’s

graph y. In other words, ALast(x, y) is computed by Bob simulating A using his graph

y and the last state recorded in the transcript x and then outputting A’s output.

The lemma above essentially says that, if Bob has forgotten his graph GB right before

the 2p-th round in the protocol Πsim, using its input (~π,~j) and the transcript M between

Alice and Bob, he can still resample a graph G′B from the distribution Gresamp(M,~π,~j) so

50

Algorithm 2 Protocol Πsim(GA, GB).

Input: Alice gets GA = GA(~T) for some ~T ∈ SAlice, and Bob gets GB ∈ supp(GB).

1: Alice and Bob jointly simulate the algorithm A on the graph Gfixed ∪ GA ∪ GB in 2p
rounds. Alice starts with the initial state of the algorithm A. For each i ∈ [p], Alice and
Bob proceed as follows:

• in the (2i− 1)-th round, Alice simulates A on Gfixed and GA (note that the ordering
of subgraphs is Gfixed, GA and GB) using the initial state of A (if i = 1) or the most
recent state received from Bob (if i > 1), and then sends the final state of A to
Bob;

• in the 2i-th round, Bob simulates A on GB using the most recent received state
from Alice, and sends A’s state back to Alice (if i < p) or outputs A’s output (if
i = p).

The output of the protocol Πsim is the final output of Bob.
Output: We use Πtrans

sim (GA, GB) to denote the concatenation of messages sent between Alice
and Bob in the first (2p − 1) rounds (that is, the transcript of the protocol Πsim), and
Πsim(GA, GB) to denote the output of the protocol given inputs GA and GB. Since A is
deterministic, both of Πtrans

sim (GA, GB) and Πsim(GA, GB) are deterministic functions of GA

and GB.

that continuing the simulation of A with G′B instead of GB does not change the final output

distribution.

In the following we fix a subset S ⊆ [n] and consider a protocol Π for Set-Hiding-Game

with input distribution Dhard
n,n,K(S), specified by Algorithm 3.

We first make three observations:

1. Ooutput-Bob distributes as Π(Dhard
n,n,K(S))15;

2. Greal distributes as GSH
n,p(S), therefore Ooutput-real distributes as A(GSH

n,p(S)) by

Lemma 9.7;

3. CC(Π) ≤ 2p · s ≤ 1
20
n2 log n.

The following claim follows from our assumption on the generator GPH
N,p−1, and we defer

its proof until we finish the proof of Lemma 4.2.

Claim 9.8 (Mreal is close to MAlice). For every (~T , ~π,~j) ∈ supp(Dhard
n,n,K(S)), it holds that∥∥∥[Mreal | (~T ,~π,~j) = (~T , ~π,~j)

]
−
[
MAlice | (~T ,~π,~j) = (~T , ~π,~j)

]∥∥∥
TV

< ε/3.

15Π(Dhard
n,n,K(S)) denotes the distribution of the output of the protocol Π running on the input drawn from

the distribution Dhard
n,n,K(S).

51

Algorithm 3 Protocol Π.

Input: Let ~T = (Tk,j)(j,k)∈[n]×[K], ~π = (πi)i∈[K] and ~j = (ji)i∈[K] be a sample drawn from

Dhard
n,n,K(S). Alice is given ~T ; Bob is given ~π and ~j. Alice then sets GA = GA(~T),

and Bob draws GB from the distribution GB(~π,~j). We use Greal to denote the graph
Gfixed ∪GA ∪GB.

1: Alice draws G̃B from the distribution GB(~πA,~jA), such that ~πA consists of K identity
permutations, and ~jA is the all-one vector of length K. Alice then simulates the protocol
Πsim on the graphsGA and G̃B, to compute the random variableMAlice = Πtrans

sim (GA, G̃B).

We also let Mreal be the random variable Πtrans
sim (GA,GB) (for analysis only).

2: Then Alice sends MAlice to Bob and it takes (2p − 1) · s bits. Bob then draws a graph

G′B from Gresamp(MAlice,~π,~j), and outputs ALast(MAlice,G
′
B).

Output: We use Ooutput-Bob to denote the output of Bob, and we use Ooutput-real to denote
the output of Bob if he received the message Mreal instead of MAlice.

Note that conditioning on (~T ,~π,~j) = (~T , ~π,~j) for a tuple (~T , ~π,~j) ∈ supp(Dhard
n,n,K(S)),

Ooutput-Bob and Ooutput-real are obtained by applying the same randomized procedure to Mreal

and MAlice, respectively.16 By Claim 9.8, it follows that ‖Ooutput-Bob −Ooutput-real‖TV < ε/3.

Recall that Ooutput-Bob distributes as Π(Dhard
n,n,K(S)) and Ooutput-real distributes as

A(GSH
n,p(S)), it follows that

‖Π(Dhard
n,n,K(S))− A(GSH

n,p(S))‖TV < ε/3

for every S ⊆ [n].

Combing with Equation 10 and noting that ε ≥ 1/n10 and n ≥ 3, it follows that

‖Π(Dhard
n,n,K(T1))− Π(Dhard

n,n,K(T2))‖TV > ε/3 >
1

n30
,

contradicting Claim 9.6 since CC(Π) ≤ 1
20
n2 log n.

Now, we first prove Lemma 9.7.

Proof of Lemma 9.7. We begin by introducing some notation.

Notation. For every possible ~T , ~π,~j ∈ SAlice × SBob, we use DMB(~T , ~π,~j) to denote the

following induced joint distribution on {0, 1}(2p−1)s × SBob: we draw GB ← GB(~π,~j), set

M = Πtrans
sim (GA(~T), GB), and output (M,GB).

16In more details, conditioning on (~T ,~π,~j) = (~T , ~π,~j), for every m ∈ {0, 1}(2p−1)·s, we can define Z(m)
be the distribution obtained by drawing GB ← Gresamp(m,~π,~j) and outputting ALast(m,GB). Then MAlice

and Mreal distributes as Z(MAlice) and Z(Mreal), respectively.

52

For a distribution D on SAlice × SBob, let Dorigin(D) and Dresamp(D) be the original

distribution and resampled distribution from the lemma statement, respectively. Using the

above notation DMB, we further define the following two distributions

Horigin(D) = E
(~T ,~π,~j)←D

[DMB(~T , ~π,~j)]

and

Hresamp(D) = E
(~T ,~π,~j)←D

E
(M,GB)←DMB(~T ,~π,~j)

[(M,Gresamp(M,π,~j)],

where (M,Gresamp(M,π,~j)) denotes the distribution obtained by drawing a sample GB ←
Gresamp(M,π,~j) and then output (M,GB). (Gresamp(M,π,~j) will be defined shortly.)

Observe that Dorigin(D) (resp. Dresamp(D)) can be obtained by drawing a sample (M,GB)

from Horigin(D) (resp. Hresamp(D)) and then output ALast(M,GB). Hence, to establish

the theorem, it suffices to construct the function Gresamp so that Horigin(D) is identical to

Hresamp(D), for every distribution D on SAlice × SBob.

Construction of Gresamp. Now we specify our construction of Gresamp. ForM ∈ {0, 1}(2p−1)s,

by the rectangular property of communication protocols, there exists two subsets UM ⊆
{GA(~T) | ~T ∈ SAlice} and VM ⊆ supp(GB), such that Πtrans

sim (GA(~T), GB) = M if and only if

GA(~T) ∈ UM and GB ∈ VM .

We now set Gresamp(M,~π,~j) to be the conditional distribution on the set VM induced by

GB(~π,~j).

The key property of Gresamp. For every possible (~T ,M,~π,~j), we consider the distribution

GB(~T ,M,~π,~j) obtained by outputting GB ← GB(~π,~j) conditioning on the event that

Πtrans
sim (GA(~T), GB) = M . Note that GB(~T ,M,~π,~j) can be undefined if Πtrans

sim (GA(~T), GB) = M

happens with zero probability. The following claim is crucial for us.

Claim 9.9. GB(~T ,M,~π,~j) is either undefined, or equals to Gresamp(M,~π,~j).

Proof. Recall that Πtrans
sim (GA(~T), GB) = M is equivalent to that GA(~T) ∈ UM and GB ∈ VM

for two sets UM and VM . If GA(~T) /∈ UM , GB(~T ,M,~π,~j) is clearly undefined.

Otherwise, we have GA(~T) ∈ UM . In this case we have GB ∈ VM , and one can see that

GB(~T ,M,~π,~j) is the induced conditional distribution of GB(~π,~j) on the set VM , which is

exactly Gresamp(M,~π,~j).

Proof of Correctness For every possible (~T , ~π,~j), note thatDMB(~T , ~π,~j) can alternatively

be generated as follows: draw (M,GB)← DMB(~T , ~π,~j), and then draw G′B ← GB(~T ,M,~π,~j),

and output (M,G′B).

Using the above observation, for every possible distribution D on SAlice × SBob, we have

‖Horigin(D)−Hresamp(D)‖TV

53

≤ E
(~T ,~π,~j)←D

∥∥∥∥DMB(~T , ~π,~j)− E
(M,GB)←DMB(~T ,~π,~j)

[(M,Gresamp(M,π,~j)]

∥∥∥∥
TV

≤ E
(~T ,~π,~j)←D

∥∥∥∥ E
(M,GB)←DMB(~T ,~π,~j)

[(M,GB(~T ,M, π,~j)]− E
(M,GB)←DMB(~T ,~π,~j)

[(M,Gresamp(M,π,~j)]

∥∥∥∥
TV

.

≤ E
(~T ,~π,~j)←D

E
(M,GB)←DMB(~T ,~π,~j)

∥∥∥GB(~T ,M, π,~j)− Gresamp(M,π,~j)
∥∥∥

TV
.

Applying Claim 9.9 to the above equality concludes the proof.

Finally, we prove Claim 9.8.

Proof of Claim 9.8. We first fix a tuple (~T , ~π,~j) ∈ supp(Dhard
n,n,K(S)), and we will condition

on (~T ,~π,~j) = (~T , ~π,~j).

Since the Gfixed part is always fixed, and the GA part is fixed to GA(~T) as we are

conditioning on ~T = ~T , it means that A can be seen as an algorithm reading edge-layers in

GB, in the order specified by ~̀(GB). We use B~T to denote a new streaming algorithm on GB,

which simulates A on Gfixed ∪GA ∪GB, and outputs Πtrans
sim (GA, GB).

We claim that B~T can be implemented by a 2p·s-space, (p−1)-pass algorithm. The space

bound follows from the observation that B~T can use s space to simulate A and (2p − 1) · s
additional space to store the intermediate states appearing in Πtrans

sim (GA, GB). B~T only takes

(p− 1) passes because to compute Πtrans
sim (GA, GB), it does not have to go over GB in the p-th

pass.

Furthermore, noting that G̃B is independent of (~T ,~π,~j), the claim reduces to prove

‖B~T (G̃B)−B~T (GB|(~π,~j) = (~π,~j))‖TV < ε/3.

For (~π,~j) ∈ SBob, for each k ∈ [K], we construct the following distribution P(k)

~π,~j
on graph

pairs:

Construction of The Distribution P(k)

~π,~j

1. Draw G
(k)
pmL ← GPH

4n,p−1(π−1
k) and G

(k)
pmR ← GPH

4n,p−1(πk).

2. Draw G
(k)
idxL ← GLIH

4n,N,p−1(RS
(jk)
4n -IndexL) and G

(k)
idxR ← GRIH

N,4n,p−1(RS
(jk)
4n -IndexR).

3. We set

X(k) = G
(k)
pmL �G

(k)
idxL� Container4n(([4n])j∈[n]) �G(k)

idxR �G
(k)
pmR,

Y (k) = G
(k)
pmL �G

(k)
idxL� Container4n((∅)j∈[n]) �G(k)

idxR �G
(k)
pmR.

In above ([4n])j∈[n] (resp. (∅)j∈[n]) denotes a list of n sets, each being [4n] (resp.

empty set).a

54

4. Output: The graph pair (X(k), Y (k)).

aWe added these dummy container graphs to make sure (X(k), Y (k)) is a graph pair.

We will show that for every two pairs (~π,~j) and (~π′,~j′) from SBob,∥∥∥∥∥B~T

(
stack

(
K⊕
k=1

P(k)

~π,~j

))
−B~T

(
stack

(
K⊕
k=1

P(k)

~π′,~j′

))∥∥∥∥∥
TV

≤ 4 ·K · ε0 < ε/3, (11)

the last inequality above follows from K = O(log n) and ε0 = ε/ log2 n, in the following we

establish the first inequality above.

Note that reading stack(P(k)

~π,~j
) is essentially reading

(
G

(k)
pmL, G

(k)
idxL, G

(k)
idxR, G

(k)
pmR

)
seq

.

Combing the hybrid argument (Lemma 3.4) with the ε0-indistinguishability of GPH
4n,p−1,

GLIH
4n,N,p−1 and GRIH

N,4n,p−1, it follows that∥∥∥B~T

(
stack(P(k)

~π,~j
)
)
−B~T

(
stack(P(k)

~π′,~j′
)
)∥∥∥

TV
≤ 4 · ε0. (12)

Combining Equation 12 and Lemma 8.5 proves Equation 11.

Finally, one can see that G̃B distributes as
(⊕K

k=1P
(k)

~πA,~jA

)
1

if we remove all its dummy

container layers (that is, removing all container layers in the first graph from the graph pair⊕K
k=1P

(k)

~πA,~jA
) and GB|(~π,~j) = (~π,~j) distributes as

(⊕K
k=1P

(k)

~π,~j

)
1

if we also removes all its

dummy container layers. (Recall that now we are assuming GSH
n,p outputs Gadjust instead of

Gfinal to simplify the analysis.) The lemma then follows from Equation 11.

Finally, we remark that if we use the construction of Ruzsa-Szemerédi graphs

in Proposition 3.3, we can prove the following variant of Lemma 4.2.

Remark 9.10 (From Perm-Hiding generators to Set-Hiding generators, Version 2). There is

an absolute constant c ∈ (0, 1) such that the following holds. Let n be a sufficiently large

integer. Let p, s ∈ N such that s ≤ n1+c/ log logn, and let N = 16n. Let ε ∈ [0, 1) such

that ε ≥ 1/n10. Suppose there is a generator GPH
N,p−1 which always outputs (NGPH , kGPH , ~̀GPH)

graphs and is (ε/ log2 n)-Perm-Hiding against (p − 1)-pass streaming algorithms with space

2p·s. Then there is a generator GSH
n,p such that: (1) it always outputs (NGSH , kGSH , ~̀GSH) graphs,

where NGSH = O(NGPH · log2 n) and kGSH = O(kGPH · log n); (2) it is ε-Set-Hiding against p-pass

streaming algorithms with space s.

10 Perm-Hiding Generators from Set-Hiding Generators

In this section, we show how to obtain Perm-Hiding generators from Set-Hiding generators,

and prove Lemma 4.3. The major idea behind our construction is using a sorting network.

55

There is a long list of work studying sorting networks [ON62, Bat68, AKS83, Pat90, AHRV07,

Goo14]. Our results in this section rely on [AKS83].

This section is organized as follows: In Section 10.1, we state a useful lemma which

is proved by the well-known AKS construction of sorting networks. In Section 10.2, we

define and construct Perm(M)-Hiding generators for permutations in Perm(M), where M

is a matching on [n]. Finally, in Section 10.3 we present the construction of Perm-Hiding

generators by composing many Perm(M)-Hiding generators.

10.1 Decomposition of Permutations via Low-depth Sorting

Networks

Let M be a (potentially partial) matching on a graph with vertices set [n] (we will just say

M is matching on [n] for brevity). For convenience, we define a function fM : [n] → [n]

such that: (1) if vertex a is matched to vertex b in the matching M , then fM(a) = b and

fM(b) = a; (2) if vertex a is not matched to any other vertex in the matching M , then

fM(a) = a.

For a matching M on [n], we define Perm(M) to be the set of permutations which can be

implemented via swapping some matched pairs in M . That is, a permutation π ∈ Perm(M)

if and only if for every a ∈ [n], π(a) equals a or fM(a). (Note that for an edge (a, b) ∈M , if

π(a) = fM(a) = b, then since π is a permutation, the foregoing condition forces π(b) = a.)

We need the following lemma from the well-known O(log n)-depth construction of sorting

networks.

Lemma 10.1 ([AKS83]). There exists an absolute constant cAKS > 1 such that for every

integer n, there exist d = cAKS · log n matchings M1,M2, . . . ,Md−1,Md on [n] such that the

following holds: For each permutation π on [n], there exist d permutations π1, π2, . . . , πd−1, πd
such that πi ∈ Perm(Mi) for each i ∈ [d] and π = πd ◦ πd−1 ◦ · · · ◦ π2 ◦ π1.

To utilize the lemma above in our construction, we need the following observation on

Perm-Encoding graphs.

Observation 10.2 (Composition of Perm-Encoding graphs). Let n, d ∈ N, and

π1, π2, . . . , πd−1, πd be d permutations on [n]. Let G1, G2, . . . , Gd−1, Gd be d layered graphs

such that for each i ∈ [d], Gi is a Perm-Encn(πi) graph. Then G1 �G2 � · · · �Gd−1 �Gd is

a Perm-Encn(π) graph for π = πd ◦ πd−1 ◦ · · · ◦ π2 ◦ π1.

10.2 Perm-Hiding Generators for Permutations in Perm(M)

From Lemma 10.1 and Observation 10.2, to construct a Perm-Hiding generator for all

permutations on [n], the first step is to construct a Perm-Hiding generator for all permutations

in a particular set Perm(M), where M is a matching on [n]. We first formulate the formal

definition of such a Perm-Hiding generator.

56

Definition 10.3 (ε-secure Perm-Hiding generators for permutations in Perm(M)). Let n be

an integer and M be a matching on [n]. Let G be a function from permutations in Perm(M)

to distributions over layered graphs. We say G is ε-Perm(M)-Hiding for permutations in

Perm(M) against p-pass algorithms with space s, if the following statements hold:

1. For every π ∈ Perm(M), G(π) is a distribution over Perm-Encn(π) graphs.

2. For every two permutations π1, π2 ∈ Perm(M), the distributions A(G(π1)) and A(G(π2))

are ε-indistinguishable for p-pass streaming algorithms with space s.

Construction of GPH
M,n,p for p-Pass Streaming Algorithms

• Input: A matching M on [n] and a permutation π ∈ Perm(M). The security

parameter ε, pass number p and space s.

• Assumption: There is a generator GSH
3n,p, which always outputs (NGSH , kGSH , ~̀GSH)

graphs and is ε-Set-Hiding against p-pass streaming algorithms with space s. Let

N = 2 · |M | + n ≤ 3n. One can easily construct another generator GSH
N,p from

GSH
3n,p.

• Construction:

1. We first construct a set S of size N as follows: for each a ∈ [n], we add the

pair (a, a) to S; for each edge (a, b) ∈ M (note that a 6= b), we add both

(a, b) and (b, a) to S.

2. Let ψM be a bijection between S and [N] (ψM only depends on the input

M), and let T = {ψM((i, π(i))) : i ∈ [n]}. Note that T ⊆ [N], and we draw

H ∼ GSH
N,p(T).

3. Now we construct a new graph G such that G contains a copy of H, together

with two new layers U and V , each of size n, such that U is the first layer

and V is the last layer.

4. From now on we use H to denote the corresponding subgraph in G. For

each (x, y) ∈ S, letting ` = ψM((x, y)), we add (1) an edge in G from U[x]

to First(H)[`] and (2) an edge from Last(H)[`] to V[y]. Let Efirst be the set of

edges added in Case (1), and Elast be the set of edges added in Case (2).

5. List of edge sets and edge-layer ordering: Let k be the number of

layers in H. Note that G has k+2 layers. Now we set ~E(G) as a list of k+1

sets of edges, such that ~E(G)1 = Efirst, ~E(G)2 = Elast, and ~E(G)i+2 = ~E(H)i
for each i ∈ [k − 1]. ~̀(G) is also set accordingly.

6. Finally, GPH
M,n,p outputs G.

57

Lemma 10.4 (From Set-Hiding generators to Perm(M)-Hiding generators). Let n, s ∈ N and

let ε ∈ [0, 1). Suppose there is a generator GSH
3n,p which always outputs (NGSH , kGSH , ~̀GSH) graphs

and is ε-Set-Hiding against p-pass streaming algorithms with space s. Then, for all matchings

M on [n], there is a generator GPH
M,n,p such that: (1) it always outputs (NGPH , kGPH , ~̀GPH) graphs

where NGPH ≤ O(NGSH + n) and kGPH = kGSH + 2; (2) it is ε-Perm(M)-Hiding against p-pass

streaming algorithms with space s.

Proof. First, for two permutations π1, π2 ∈ Perm(M), the ε-indistinguishability between

GPH
M,n,p(π1) and GPH

M,n,p(π2) follows from the assumption that GPH
3n,p is ε-Set-Hiding. Also, one

can directly verify that number of vertices in the output graphs of GPH
M,n,p is at most NGSH +2n,

and the construction adds exactly two layers (hence kGPH = kGSH + 2).

We still have to verify that for a permutation π ∈ Perm(M), every graph G ∈
supp(GPH

M,n,p(π)) is a Perm-Encn(π) graph. To establish this, we have to verify that for

every a ∈ [n], First(G)[a] can only reach the vertex Last(G)[π(a)] in Last(G). Let T be the

corresponding set in the construction of G, and H be the middle subgraph of G corresponding

to the graph generated by GSH
N,p(T).

From the Step (4) of the construction of G and noting that H is a Set-EncN(T) graph, for

First(G)[a] to reach a vertex Last(G)[b] in Last(G), it has to pass H via two vertices First(H)[`]

and First(H)[`] such that ` ∈ T . Let (x, y) be the pair from S so that ψM((x, y)) = `, it

must be the case that (a, b) = (x, y). Since ` ∈ T , we have b = y = π(x) = π(a). The above

discussion shows if First(G)[a] can reach Last(G)[b] then we have b = π(a). For the other

direction, note that if b = π(a), then First(G)[a] can reach Last(G)[b] through the middle

vertices First(H)[`] and First(H)[`], where ` = ψM((a, π(a))) ∈ T . This completes the proof.

10.3 Construction of Perm-Hiding Generators

Construction of GPH
n,p for p-Pass Streaming Algorithms

• Input: A permutation π ∈ Perm([n]). The security parameter ε, pass number p

and space s.

• Assumption:

There is a generator GSH
3n,p, which always outputs (NGSH , kGSH , ~̀GSH) graphs and is

ε0-Set-Hiding for p-pass streaming algorithms with space s, where ε0 = ε/ log2 n.

• Setup:

1. Let d = cAKS · log n, and fix d matchings M1, . . . ,Md from Lemma 10.1.

2. For each i ∈ [d], let GPH
Mi,n,p

be the ε0-Perm(Mi)-Hiding generator guaranteed

by Lemma 10.4 and the existence of GSH
3n,p.

58

• Construction:

1. Find d permutations π1, . . . , πd such that πi ∈ Perm(Mi) for each i ∈ [d]

and π = πd ◦ · · ·◦π1. (Such d permutations exist from Lemma 10.1. If there

are multiple such d-tuples we pick the lexicographically first one).

2. The final graph is

GPH
M1,n,p

(π1)� · · · � GPH
Md,n,p

(πd).

Reminder of Lemma 4.3. Let n be a sufficiently large integer. Let s ∈ N and

let ε ∈ [0, 1). Suppose there is a generator GSH
3n,p which always outputs (NGSH , kGSH , ~̀GSH)

graphs and is (ε/ log2 n)-Set-Hiding against p-pass streaming algorithms with space s. Then

there is a generator such that: (1) it always outputs (NGPH , kGPH , ~̀GPH) graphs where NGPH =

O(NGSH · log n) and kGPH = O(kGSH · log n); (2) it is ε-Perm-Hiding against p-pass streaming

algorithms with space s.

Proof. Applying Lemma 10.4, one can directly verify that NGPH = O(NGSH · log n) and

kGPH = O(kGSH · log n). Also, since for each i ∈ [d], all outputs of GPH
Mi,n,p

(πi) is a

Perm-Encn(πi) graph, GPH
M1,n,p

(π1)�· · ·�GPH
Md,n,p

(πd) is a Perm-Encn(π) graph, as π = πd◦· · ·◦π1

(Observation 10.2).

Finally, applying a hybrid argument (Lemma 3.4) and noting that by assumption all

generators GPH
Mi,n,p

are ε0-Perm(Mi)-Hiding completes the proof.

References

[ACK19a] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Polynomial pass lower bounds

for graph streaming algorithms. In Proceedings of the 51st Annual ACM

SIGACT Symposium on Theory of Computing (STOC), pages 265–276, 2019.

[ACK19b] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆ + 1)

vertex coloring. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 767–786. SIAM, 2019.

[AHRV07] Omer Angel, Alexander E Holroyd, Dan Romik, and Bálint Virág. Random

sorting networks. Advances in Mathematics, 215(2):839–868, 2007.

[AKL16] Sepehr Assadi, Sanjeev Khanna, and Yang Li. Tight bounds for single-pass

streaming complexity of the set cover problem. In 48th Annual ACM SIGACT

Symposium on Theory of Computing (STOC), pages 698–711. Association for

Computing Machinery, 2016.

59

[AKL17] Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum

matching size in graph streams. In Proceedings of the Twenty-Eighth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1723–1742.

SIAM, 2017.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) sorting

network. In Proceedings of the fifteenth annual ACM symposium on Theory

of computing (STOC), pages 1–9, 1983.

[AKSY20] Sepehr Assadi, Gillat Kol, Raghuvansh R Saxena, and Huacheng Yu. Multi-pass

graph streaming lower bounds for cycle counting, max-cut, matching size, and

other problems. In FOCS. https://arxiv.org/pdf/2009.03038.pdf, 2020.

[AKZ19] Sepehr Assadi, Nikolai Karpov, and Qin Zhang. Distributed and streaming

linear programming in low dimensions. In Proceedings of the 38th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems

(PODS), pages 236–253. ACM, 2019.

[AR20] Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph

streaming algorithms. In FOCS. https://arxiv.org/pdf/2009.01161.pdf,

2020.

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and

faster matrix multiplication. In SODA. https://arxiv.org/pdf/2010.05846.

pdf, 2021.

[Bat68] Kenneth E Batcher. Sorting networks and their applications. In Proceedings

of the April 30–May 2, 1968, spring joint computer conference, pages 307–314,

1968.

[Beh46] Felix A. Behrend. On sets of integers which contain no three terms in

arithmetical progression. Proceedings of the National Academy of Sciences of

the United States of America, 32(12):331, 1946.

[BKKL17] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph

Lenzen. Near-optimal approximate shortest paths and transshipment in

distributed and streaming models. In DISC, volume 91, pages 7:1–7:16, 2017.

[BS15] Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted

matchings in dynamic data streams. In ESA, pages 263–274. 2015.

[BWZ16] Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal

component analysis in distributed and streaming models. In Proceedings of the

forty-eighth annual ACM symposium on Theory of Computing (STOC), pages

236–249, 2016.

60

https://arxiv.org/pdf/2009.03038.pdf
https://arxiv.org/pdf/2009.01161.pdf
https://arxiv.org/pdf/2010.05846.pdf
https://arxiv.org/pdf/2010.05846.pdf

[CC07] Timothy M. Chan and Eric Y. Chen. Multi-pass geometric algorithms. Discret.

Comput. Geom., 37(1):79–102, 2007.

[CCHM14] Rajesh Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza

Monemizadeh. Parameterized streaming: Maximal matching and vertex cover.

In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete

algorithms (SODA), pages 1234–1251. SIAM, 2014.

[CDK19] Graham Cormode, Jacques Dark, and Christian Konrad. Independent sets

in vertex-arrival streams. In 46th International Colloquium on Automata,

Languages, and Programming (ICALP). Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 2019.

[CFCHT20] Yi-Jun Chang, Martin Farach-Colton, Tsan-Sheng Hsu, and Meng-Tsung Tsai.

Streaming complexity of spanning tree computation. In STACS, 2020.

[CGMV20] Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova.

Vertex ordering problems in directed graph streams. In Proceedings of the

Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 1786–1802. SIAM, 2020.

[CW09] Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the

streaming model. In Proceedings of the forty-first annual ACM symposium on

Theory of computing (STOC), pages 205–214, 2009.

[CW13] Kenneth L Clarkson and David P Woodruff. Low rank approximation and

regression in input sparsity time. In Proceedings of the forty-fifth annual ACM

symposium on Theory of Computing (STOC), pages 81–90, 2013.

[CW16] Amit Chakrabarti and Anthony Wirth. Incidence geometries and the pass

complexity of semi-streaming set cover. In Proceedings of the twenty-seventh

annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 1365–

1373. SIAM, 2016.

[ER14] Yuval Emek and Adi Rosén. Semi-streaming set cover. In International

Colloquium on Automata, Languages, and Programming (ICALP), pages 453–

464. Springer, 2014.

[FKM+04] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and

Jian Zhang. On graph problems in a semi-streaming model. In International

Colloquium on Automata, Languages, and Programming (ICALP), pages 531–

543. Springer, 2004.

61

[FKM+09] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and

Jian Zhang. Graph distances in the data-stream model. SIAM Journal on

Computing, 38(5):1709–1727, 2009.

[FLN+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt

Rubinfeld, and Alex Samorodnitsky. Monotonicity testing over general poset

domains. In Proceedings of the thiry-fourth annual ACM symposium on Theory

of computing (STOC), pages 474–483, 2002.

[GGK+18] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and

Ronitt Rubinfeld. Improved massively parallel computation algorithms for mis,

matching, and vertex cover. In Proceedings of the 2018 ACM Symposium on

Principles of Distributed Computing (PODC), pages 129–138, 2018.

[GKK12] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication

and streaming complexity of maximum bipartite matching. In Proceedings of the

twenty-third annual ACM-SIAM symposium on Discrete Algorithms (SODA),

pages 468–485. SIAM, 2012.

[GKMP20] Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting

planes is np-hard. In Proccedings of the 52nd Annual ACM SIGACT Symposium

on Theory of Computing (STOC), pages 68–77. ACM, 2020.

[GKMS19] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson.

Weighted matchings via unweighted augmentations. In Proceedings of the 2019

ACM Symposium on Principles of Distributed Computing (PODC), pages 491–

500, 2019.

[GO16] Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for

multipass graph processing. Algorithmica, 76(3):654–683, 2016.

[Goo14] Michael T Goodrich. Zig-zag sort: A simple deterministic data-oblivious sorting

algorithm running in O(n log n) time. In Proceedings of the forty-sixth annual

ACM symposium on Theory of computing (STOC), pages 684–693, 2014.

[GPW17] Mika Goos, Toniann Pitassi, and Thomas Watson. Query-to-communication

lifting for BPP. In FOCS, 2017.

[HPIMV16] Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. Towards

tight bounds for the streaming set cover problem. In Proceedings of the 35th

ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems

(PODS), pages 371–383, 2016.

[HRR98] Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan.

Computing on data streams. External memory algorithms, 50:107–118, 1998.

62

[JSWZ20] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster

dynamic matrix inverse for faster lps. arXiv preprint arXiv:2004.07470, 2020.

[Kap13] Michael Kapralov. Better bounds for matchings in the streaming model. In

Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete

algorithms (SODA), pages 1679–1697. SIAM, 2013.

[LP09] László Lovász and Michael D Plummer. Matching theory, volume 367. American

Mathematical Soc., 2009.

[LSZ20] S Cliff Liu, Zhao Song, and Hengjie Zhang. Breaking the n-pass barrier: A

streaming algorithm for maximum weight bipartite matching. arXiv preprint

arXiv:2009.06106, 2020.

[LW16] Yi Li and David P Woodruff. On approximating functions of the singular

values in a stream. In Proceedings of the forty-eighth annual ACM symposium

on Theory of Computing (STOC), pages 726–739, 2016.

[McG05] Andrew McGregor. Finding graph matchings in data streams. In

Approximation, Randomization and Combinatorial Optimization. Algorithms

and Techniques, pages 170–181. Springer, 2005.

[MN20] Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential,

cut-query, and streaming algorithms. In Proceedings of the 52nd Annual ACM

SIGACT Symposium on Theory of Computing (STOC), pages 496–509, 2020.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge

University Press, 1995.

[NN13] Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra

algorithms via sparser subspace embeddings. In 2013 ieee 54th annual

symposium on foundations of computer science (FOCS), pages 117–126. IEEE,

2013.

[ON62] Daniel G O’connor and Raymond J Nelson. Sorting system with nu-line sorting

switch, 1962. US Patent 3,029,413.

[Pat90] Michael S Paterson. Improved sorting networks with O(logN) depth.

Algorithmica, 5(1-4):75–92, 1990.

[RS78] Imre Z Ruzsa and Endre Szemerédi. Triple systems with no six points carrying

three triangles. Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai,

18:939–945, 1978.

63

[RSW18] Aviad Rubinstein, Tselil Schramm, and Seth Matthew Weinberg. Computing

exact minimum cuts without knowing the graph. In 9th Innovations in

Theoretical Computer Science (ITCS), page 39. Schloss Dagstuhl-Leibniz-

Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2018.

[SWZ17] Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation

with entrywise l1-norm error. In Proceedings of the 49th Annual ACM SIGACT

Symposium on Theory of Computing (STOC), pages 688–701, 2017.

[Zel11] Mariano Zelke. Intractability of min-and max-cut in streaming graphs.

Information Processing Letters, 111(3):145–150, 2011.

64
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

