Branching Programs with Bounded Repetitions and Flow Formulas

Anastasia Sofronova ${ }^{1}$
Dmitry Sokolov
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences ${ }^{1}$
St. Petersburg State University ${ }^{\text {A }}$

February 27, 2021

Abstract

Restricted branching programs capture various complexity measures like space in Turing machines or length of proofs in proof systems. In this paper, we focus on the application in the proof complexity that was discovered by Lovasz et al. [Lov+95] who showed the equivalence between regular Resolution and read-once branching programs for "unsatisfied clause search problem" (Search ${ }_{\varphi}$). This connection is widely used, in particular, in the recent breakthrough result about the Clique problem in regular Resolution by Atserias et al. [Ats+18].

We study the branching programs with bounded repetitions, so-called $(1,+k)$-BPs (Sieling [Sie96]) in application to the $\operatorname{Search}_{\varphi}$ problem. On the one hand, it is a natural generalization of read-once branching programs. On the other hand, this model gives a powerful proof system that can efficiently certify the unsatisfiability of a wide class of formulas that is hard for Resolution (Knop [Kno17]).

We deal with $\operatorname{Search}_{\varphi}$ that is "relatively easy" compared to all known hard examples for the $(1,+k)$-BPs. We introduce the first technique for proving exponential lower bounds for the $(1,+k)$-BPs on Search $_{\varphi}$. To do it we combine a well-known technique for proving lower bounds on the size of branching programs [Sie96; SW94; JR98] with the modification of the "closure" technique [Ale +04 ; AR03]. In contrast with the most Resolution lower bounds, our technique uses not only "local" properties of the formula, but also a "global" structure. Our hard examples are based on the Flow formulas introduced in [AR03].

1 Introduction

Branching program is a computational model that generalizes decision tree in the most natural way: the underlying graph of computation can be an arbitrary directed acyclic graph. This is one of the most fundamental models in theoretical computer science: it captures the space complexity of many versions of restricted and unrestricted Turing machines, various proof systems may be described in terms of this model, etc.

A Shannon's style counting argument says that there is a boolean function such that any branching program that computes this function requires an exponential size. However for an explicit function, we are still far from a superpolynomial lower bound, and the best known result is $\frac{n^{2}}{\log ^{2} n}$ due to Nechiporuk [Nec66].

For some applications, it is enough to deal with the restricted models of branching programs and many such models were considered. One of the most popular restrictions is the read-once model of
branching programs [Mas76] where any input bit may be queried at most once during each computation. This model corresponds to the eraser Turing machines. Exponential lower bounds for this model were proven in [Weg88; Žák86]. For capturing more general machines some natural generalization of read-once branching programs were studied. And one of the most important models among these generalizations is the model with bounded repetitions aka $(1,+k)$-BP that was was described in [Sie96]. In this model, we allow our branching programs to requery variables, but on each computation only k input bits may be queried more than one time. There are two natural points of view on this model:
syntactic: if we apply the restriction on every path;
semantic: if we apply the restriction on consistent paths
(for formal definition see section 2.1). The semantic version is more powerful and may capture strong Turing machine models (for details see [JR98]).

Exponential lower bounds on $(1,+k)$-BP were shown in [SŽ97; Sie96; SW94; JR98] for various parameters k. Lower bounds from [JR98] hold for $k=\Omega\left(\frac{n}{\log n}\right)$ and the lower bound from [Juk08] holds even for $k=\Omega(n)$, where n is the number of input bits. We refer the reader to the books [Juk12; Weg00] with the detailed description of results related to branching programs.

Described lower bounds for $(1,+k)$-BP are given for "complicated" functions (usually it is characteristic functions of an error-correcting code with additional properties). In particular, these functions are complicated in terms of the certificate complexity. Unfortunately, for some applications, it is not enough. Following [Lov+95], we have a connection between proof systems and branching programs in application to the "unsatisfied clause search problem". Hence for the lower bounds in proof complexity we want to deal with this search problem, which is an "easy" problem. Namely, it can be described by a small collection of certificates. In this paper we introduce a technique for proving such lower bounds on the semantic $(1,+k)$-BP where $k=\mathcal{O}(\log n / \log \log n)$ where n is the number of variables.

1.1 Search Problem and Proof Systems

Consider a search problem, defined by a relation $S \subseteq \mathcal{J} \times \mathcal{O}$ for some finite sets \mathcal{J} and \mathcal{O}. On input $x \in \mathcal{J}$ the search problem is to find some output in $S(x):=\{o \in \mathcal{O} \mid(x, o) \in S\}$. In this paper we study the "unsatisfied clause search problem" for a CNF formula.

Definition 1.1

A unsatisfied search problem Search $_{\varphi}$ for an unsatisfiable CNF formula $\varphi:=\bigwedge_{i \in I} C_{i}$ on n variables is defined as follows:
input: an n-variable assignment $z \in\{0,1\}^{n}$;
output: an element $i \in I$ such that clause C_{i} of φ is falsified by z.

Informally speaking, we may think that if we can solve the $\operatorname{Search}_{\varphi}$ problem in some computational model \mathfrak{C}, then the description of $C \in \mathfrak{C}$ that solves $\operatorname{Search}_{\varphi}$ is a "certificate of unsatisfiability" of a formula φ. So we may think of this model as a proof system. We do not want to formalize this statement for a general computational model, but we prove the formal statement for the branching programs (see section 5).

The proof system that is defined by the read-once branching programs is equivalent to regular Resolution [Lov+95]. This connection is widely used in proof complexity. As an example, we can consider first lower bounds on the regular Resolution and Resolution proofs of the Weak Pigeonhole Principle [PR04; Raz04], recent breakthrough result: a lower bound on the regular Resolution proofs of the Clique formulas [Ats+18].

The connection between regular Resolution and branching programs makes it interesting to consider some less restricted models of branching programs in application to the Search ${ }_{\varphi}$ problems. Some of these models were considered in [Kno17]. In this paper we focus on $(1,+k)$-BPs. Despite the success in proving lower bounds on the Resolution (and hence read-once programs) the lower bounds for $(1,+k)$-BP on the $\operatorname{Search}_{\varphi}$ are an open question even for $k=1$.

Previous Techniques. The behaviour of branching programs on functions differs from the behaviour on the $\operatorname{Search}_{\varphi}$ problem. For example, the unrestricted programs may solve $\operatorname{Search}_{\varphi}$ for any φ in linear size (we can implement a simple algorithm that checks clauses of φ step by step). Informally speaking, as we said above, the lower bounds for functions on $(1,+k)$-BP [SŽ97; Sie96; SW94; JR98] heavily used the fact that there is no efficient description of these functions in terms of certificates. However Search $_{\varphi}$ is defined by a small set of certificates. Considering this difference, it is unclear how to use the classical techniques for our problem.

Another issue is that $(1,+k)$ - BP is much stronger than general Resolution on some classes of formulas [Kno17] even for small constant k and syntactic model. This is a crucial observation and it means that we cannot directly apply general techniques for proving lower bounds in proof complexity like [BW01; AR03] etc., since these techniques cannot distinguish between considered classes of formulas and other hard examples for Resolution. Hence if we want to prove lower bound for $(1,+k)$ - BP on Search $_{\varphi}$ we need some additional arguments in comparison to Resolution lower bounds.

1.2 Our results

The main result is an exponential lower bound on the size of $(1,+k)$-BPs in application to $\operatorname{Search}_{\varphi}$ for $k=\mathcal{O}\left(\frac{\log n}{\log \log n}\right)$.

Theorem 1.2

For all $k_{0} \in \mathbb{N}$ there is an unsatisfiable formula φ on n variable of size $n^{\mathcal{O}\left(k_{0}\right)}$ such that any semantic $\left(1,+k_{0}\right)$-BP solving $\operatorname{Search}_{\varphi}$ requires size $\exp \left[\Omega\left(\frac{n}{2^{O\left(k_{0}\right)}}\right)\right]$.

We also show that $(1,+k)$-BPs define a proof system in terms of Cook-Reckhow definition [CR79] $(1,+k)$-BP-PS (see section 5). That is a generalization of the result from [Kno17], where it was shown only for ℓ-CNF where ℓ is an absolute constant.

Theorem 1.3

A syntactic $(1,+k)$-BP-PS is a proof system in terms of Cook-Reckhow definition for any constant $k \in \mathbb{N}$.

1.3 Technique

The key ingredients for the lower bound are:
garlands: aka (s, ℓ)-chains, that is a standard technique for proving lower bounds on the branching programs [SŽ97; Sie96; SW94; JR98; Juk12];
closure: a technique that allows to make large partial restriction and keep the search problem hard for branching programs (and proof systems) [Ale+04; AR03];
amplification: a trick from [Ale+07] that makes formula hard for regular Resolution (and read-once branching programs) and help us to force the branching program to use the repetitions in a very structured way;

Flow-Cut: the famous Theorem [FF56] that shows the duality between the maximum flow and the minimum cut, that we use to extend partial assignments to total assignments with good properties.

Let us introduce a general sketch of the proof. In section 4.1 we define an unsatisfiable formula Flow $_{G}$ [AR03] that states: in graph G we have a source of a flow but there is no sink. We require graph G to be an algebraic expander, but, in fact, we need two properties:

- G is a combinatorial expander; namely, each set of vertices of the size at most $r=\Omega\left(\frac{n}{\log n}\right)$ has a lot of neighbours (this is a "local" property, since we care only about small enough sets);
- max-balanced-cut of the graph G is large enough (this is a "global" property of the graph G), where "balanced" means that each piece has size at least $\Omega(r)$.

It is not clear how to show the lower bound for this formula itself and we amplify Flow $_{G}$ formulas by using the trick from [Ale+07]. Denote the result of amplification by φ.

1. For the sake of contradiction we assume that we have a small $(1,+k)$-BP solving Search $_{\varphi}$. We generate a big family of paths and, using the upper bound on the size of our program, we find some paths in the program that form a "garland" structure (see section 4). This idea is similar to the idea from [JR98].
2. These paths correspond to some assignments and we keep our formula "hard" under these assignments. To do it we use a modification of the "closure" technique [AR03] (an easier version of this iterative modification was used in [Sok20]). Here we use a combinatorial expansion of the graph G.
3. By using the fact that we deal with an amplified version of Flow $_{G}$ we show that from the end point of paths that form the garland we cannot reach any leaf that is marked by one of the clauses from some set $T \subseteq \varphi$. Here we use the fact that k is small enough.
4. To conclude the proof, we use the Max-Flow Min-Cut Theorem (and global properties of our graph) to show that there should be some path from the garland to some clause from the set T.

See section 4 for more details.

2 Preliminaries

Let X be a set of boolean variables. For a variable $x \in X$ we denote $x^{1}:=x$ and $x^{0}:=\neg x$. We say that $\alpha: X \rightarrow\{0,1, *, ?\}$ is a generalized partial assignment and α assigns or touches $x \in X$ iff $\alpha(x) \in\{0,1, ?\}$. And an assignment γ is an instance of α iff:

- $\alpha(x) \in\{0,1, *\}$ implies $\gamma(x)=\alpha(x)$;
- $\alpha(x)=$? implies $\gamma(x) \in\{0,1\}$.

If α and β are two partial assignments to variables from the set X, we say that a generalized partial assignment $\alpha \cup \beta: X \rightarrow\{0,1, *, ?\}$ is a joint assignment iff:

- if $\alpha(x)=a$ and $\beta(x) \in\{a, *\}$, then $\alpha \cup \beta(x)=a$;
- if $\beta(x)=a$ and $\alpha(x) \in\{a, *\}$, then $\alpha \uplus \beta(x)=a$;
- if $\alpha(x)=a$ and $\beta(x)=1-a$, then $\alpha \cup \beta(x)=$?;
- if $\alpha(x)=\beta(x)=*$, then $\alpha \cup \beta(x)=*$,
where $a \in\{0,1\}$.
We will also use the famous Max-Flow Min-Cut Theorem.

Theorem 2.1 (Max-Flow Min-Cut [FF56])

Let $G:=(V, E)$. For any $s, t \in V$ the maximum value of an $s-t$ flow is equal to the minimum capacity over all s - t cuts.

2.1 Branching programs

Let $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of propositional variables and \mathcal{O} be a finite set. A branching program is a directed acyclic graph with one source. Every vertex of the graph is labeled by a variable from X, or by an element of the set \mathcal{O} with respect to the following properties:

- if a vertex is labeled by $o \in \mathcal{O}$, then it is a sink;
- if a vertex is labeled by a variable, then it has exactly two outgoing edges: one edge is labeled by 0 and the other one is labeled by 1.

Every branching program B defines a function $f_{B}:\{0,1\}^{n} \rightarrow \mathcal{O}$. We assume that every input $z \in\{0,1\}^{n}$ induces a path from source to sink in a natural way. If this path ends in a vertex with a label $o \in \mathcal{O}$ then we define $f_{B}(z):=o$.

We say that B is a branching program for the relation $S \subseteq\{0,1\} \times \mathcal{O}$ iff f_{B} is consistent with S : namely if $f_{B}(z)=o$ then $(z, o) \in S$.

Let D be a branching program and q be a path in it from the root to some node p. The subprogram of D with the root p we denote by $D(p)$ and define as a subgraph of D that is reachable from p. Also for a partial assignment ρ we define a branching program $\left.D\right|_{\rho}$ as the following transformation applied to D :

- for each variable y to which ρ assigns a value a, contract edges $y=a$ and delete edges $y=\neg a$;
- delete all vertices that are unreachable from the root.

These operations only decrease the size of the program.
If p is a consistent path in a branching program, we denote a partial assignment that corresponds to this path by τ_{p}.

Let us also define some classical restrictions of the general branching programs.

Definition 2.2

Let B be a branching program. We say that B is a (syntactic) read-once branching program or 1-BP iff on every path from the source to a sink we can see each variable at most once.

We say that B is a $(1,+k)$-BP iff on every path p from the source to a sink there is a set of variables X_{p} of size at most k such that all other variables appear in p at most once. And we can twist this definition a little bit and say that B is a semantic $(1,+k)$-BP iff on every consistent path from p source to sink there is a set of variables X_{p} of size at most k such that all other variables appear in p at most once.

If a branching program B computes a boolean function, we say that it is satisfiable iff f_{B} is not identically zero.

Theorem 2.3 (Savický [Sav98])

There is an algorithm the check a satisfiability of a syntactic $(1,+k)$ - BP in time $\mathcal{O}\left[\left(\frac{4 e n}{k}\right)^{k} s n\right]$.

The following algorithm also will be useful for us.

Theorem 2.4 (Savický [Sav98])

The test whether an input branching program is a syntactic $(1,+k)$-BP can be done in time $\mathcal{O}\left[\left(\frac{3 e n}{k+1}\right)^{k+1} s\right]$.

The next observation is natural and extremely useful for proving lower bounds.

Lemma 2.5

Let D be a $(1,+k)$-BP for Search $_{\varphi}, p$ be a consistent path from the root to some node v. If p has a variable x queried more than one time on it then $\left.D(v)\right|_{\tau_{p}}$ is a $(1,+(k-1))$-BP for the Search $_{\left.\varphi\right|_{\tau_{p}}}$. The result holds for both: semantic and syntactic models.

Proof. A program $\left.D(v)\right|_{\tau_{p}}$ is a program for the $\operatorname{Search}_{\left.\varphi\right|_{\tau_{p}}}$ by the correctness of the program D. Consider a path s in D from v to some leaf. Let X_{s} be a set of variables that are queried more than one time on s. If $\left|X_{s}\right|=k$ and $x \notin X_{s}$, the path $p s$ has at least $k+1$ variables that are queried more that one time. This is a contradiction. If $\left|X_{s}\right|=k$ and $x \in X_{s}$, note that in $\left.D(v)\right|_{\tau_{p}}$ we contract all edges that correspond to the x variable and hence we transform this path into a path with at most $k-1$ repetitions.

3 Expanders

We are given a graph $G:=(V, E)$. For two subsets of vertices A, B we write $E(A, B)$ to denote the set of pairs (v, e) where $v \in A, e$ is an edge that is incident to v and e connects v with some vertex in B. We will think about it as about set of edges between A and B, but if A and B intersect we count edges within intersection twice. We also use a shortcut notations $E(S):=E(S, V)$ and $\bar{S}:=V \backslash S$. If the graph we consider is unclear from the context we specify it as a subscript: $E_{G}(A, B)$.

Remark 3.1

Assuming that G is Δ-regular graph this definition allows us to use natural equalities:

- $|E(S)|=\Delta|S|$;
- $|E(A, \bar{A})|=\Delta|A|-|E(A, A)|$.

We write $\mathrm{N}_{G}(v)$ to denote the set of neighbours of v in the graph G. We extend this notion to sets and denote by $\mathrm{N}_{G}(S):=\{v \mid \exists u \in S,(u, v) \in E\}$ the neighbourhood of a set of vertices $S \subseteq V$.

A graph $G:=(V, E)$ is an (n, Δ, α)-algebraic expander (or just expander), if:

- $|V|=n$;
- the degree of any vertex $v \in V$ equals Δ;
- the absolute value of the second largest eigenvalue of the adjacency matrix of G is at most $\alpha \Delta$.

Lemma 3.2 (Mixing Lemma [AC88])

Let $G:=(V, E)$ be an (n, Δ, α)-expander. For any two subsets $A, B \subseteq V$ the following holds:

$$
\left||E(A, B)|-\frac{\Delta|A||B|}{n}\right| \leq \alpha \Delta \sqrt{|S||T|}
$$

We also need combinatorial edge expansion. We say that $G:=(V, E)$ satisfies (r, β)-(edge) expansion property for some $r, \beta>0$, if for all $S \subseteq V$ of size at most r holds $E(S, \bar{S}) \geq \beta \Delta|S|$. The Mixing Lemma says that any expander graph satisfies expansion property for suitable parameters.

Corollary 3.3

If $G:=(V, E)$ is an (n, Δ, α)-expander, then for any $0<\beta<1-\alpha$ the graph G satisfy $((1-\alpha-\beta) n, \beta)$-expansion property.

Proof. Consider some $A \subseteq V$ of size at most $(1-\alpha-\beta) n$. Note that $|E(A, \bar{A})|=\Delta|A|-|E(A, A)|$. By Mixing Lemma:

$$
|E(A, A)| \leq \frac{\Delta|A|^{2}}{n}+\alpha \Delta|A|=\Delta|A|\left(\frac{|A|}{n}+\alpha\right) \leq \Delta|A|(1-\beta)
$$

Hence $|E(A, \bar{A})| \geq \beta \Delta|A|$ by Remark 3.1.
The "vertex analog" of the next proposition is well known in the literature (for example [GMT09]). We turn it into edge version.

Proposition 3.4

Let $G:=(V, E)$ be a graph of degree Δ. If G satisfies (r, β)-expansion property then for any set $S \subseteq V$ of size $k \leq r$ there is an enumeration $v_{1}, v_{2}, \ldots, v_{k} \in S$ and a sequence $R_{1}, \ldots, R_{k} \subseteq$ $E(S)$ such that:

- $R_{i}=E\left(\left\{v_{i}\right\}, V \backslash\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}\right)$;
- $\left|R_{i}\right| \geq \beta \Delta$.

Proof. We create this sequence in reversed order. Since $|S| \leq r$, it holds that $|E(S, \bar{S})| \geq \beta \Delta|S|$ and there is a vertex $v_{k} \in S$ such that $\left|E\left(\left\{v_{k}\right\}, \bar{S}\right)\right| \geq \beta \Delta$. Let $R_{k}:=\left|E\left(\left\{v_{k}\right\}, \bar{S}\right)\right|$, and repeat the process for $S \backslash\left\{v_{k}\right\}$.

4 Lower bounds for $(1,+k)$-BP

In this section, we will prove the following theorem:

Theorem 1.2

For all $k_{0} \in \mathbb{N}$ there is an unsatisfiable formula φ on n variable of size $n^{\mathcal{O}\left(k_{0}\right)}$ such that any semantic $\left(1,+k_{0}\right)$-BP solving Search $_{\varphi}$ requires size $\exp \left[\Omega\left(\frac{n}{2^{O\left(k_{0}\right)}}\right)\right]$.

Let us describe the main ideas used in the proof. To prove this Theorem we would like to construct an exponentially big set of paths, which cannot be compactly "glued" together in $(1,+k)$ - BP , correctly solving $\operatorname{Search}_{\varphi}$.

To give a detailed plan we need an auxiliary definition.

Definition 4.1

A ℓ-garland in a branching program is a pair of paths (a, b) from the root such that $a:=$ $v_{0} a_{1} v_{1} a_{2} v_{2} a_{3} \ldots a_{\ell} v_{\ell}$ and $b:=v_{0} b_{1} v_{1} b_{2} v_{2} b_{3} \ldots b_{\ell} v_{\ell}$ where a_{i}, b_{i} are possibly empty paths and paths $v_{j} a_{j+1} v_{j+1}$ and $v_{j} b_{j+1} v_{j+1}$ are different for all $0 \leq j<\ell$ (see fig. 11).

Figure 1: 2-garland
Let us consider the detailed plan.

1. By induction on k we want to show that $\operatorname{Search}_{\left.\varphi\right|_{\rho}}$ is hard for $(1,+k)$-BP even after some "good" restriction ρ.
2. For the sake of contradiction we assume that we have a small $(1,+k)$-BP solving $\operatorname{Search}_{\left.\varphi\right|_{\rho}}$. In the section 4.2.1 we generate a family of paths starting from the root of the program and find in this family a $(k+1)$-garland (see fig. 11). This idea is similar to [JR98].
3. To argue that we can find a garland we generate exponentially many paths by walking from root (section 4.2). During this process, we have to make sure that on these paths our branching program cannot determine an answer (that would mean that we cannot walk anymore). To avoid it we use the "closure" technique that is motivated by technique from [Ale+04; AR03] and avoid "local contradictions". And hence we have to choose the formula φ very carefully, but we still have some freedom.
4. If we found a repetition while constructing a garland, we use Lemma 2.5 and apply induction hypothesis. This is a place where we use that formula φ is still hard even after the restriction.
5. In the section 4.3 we combine different parts of garland and argue about the reachability of certain leaves. We have to make sure that the paths we consider are consistent and that when we reach the endpoint of the garland, formula φ remains hard. We achieve it by using the following properties.

- We have already removed repetitions from the garland by using Lemma 2.5 and induction hypothesis.
- To show that combinations of different parts of the garland give us consistent paths we equip the closure technique by the notion of "strongly satisfied" (see Section 4.1.1) constraints. This is the second place that requires specific properties of the formula φ.

At the end of this section, we will have a set of clauses $\mathfrak{C} \subseteq \varphi$ such that leaves marked by elements of this set should be unreachable from the endpoint of the garland.
6. For the last part (section 4.4) we consider an arbitrary path r in our garland and note that $\varphi \backslash \mathfrak{C}$ is a satisfiable formula even under the restriction τ_{r}. It is hard to show this property for the formulas that encode natural combinatorial principles. We use the trick from [Ale+07] to change the formula φ to make sure that \mathfrak{C} is large enough.
Here we use the global structure of our formula φ (in our case we use the Max-Flow Min-Cut Theorem) to satisfy all clauses in $\varphi \backslash \mathfrak{C}$.

We start with defining the hard formulas on a suitable expander graph.

4.1 Hard Formulas

Let $G:=(V, E)$ be a directed graph. Each edge $e \in E$ has the corresponding variable x_{e}, where $x_{e}=1$ indicates that a flow of size 1 is going through an edge e. Let u be an arbitrary, but fixed vertex of the graph.

The formula Flow $_{G, u}$ consists of the following constraints written in CNF for all $v \in V$:

$$
\sum_{e \in E: \mathrm{st}(e)=v} x_{e}-\sum_{e \in E: \operatorname{en}(e)=v} x_{e} \geq c(v)
$$

where $e=(\operatorname{st}(e), \operatorname{en}(e))$ and $c: V \rightarrow\{0,1\}$ is a labeling function:

- $c(v)=0$, for all $v \in V \backslash\{u\} ;$
- $c(u)=1$.

This formulas states: for all vertices in the graph the flow is non-negative, and at least for one vertex it is strictly positive. It is easy to see that $\mathrm{Flow}_{G, u}$ is unsatisfiable. We omit index u since in our applications it is an arbitrary vertex.

We use the most naive CNF encoding of these constraints. We represent each constraint separately. Consider a vertex $v \in V$ and a set of edges $E_{v}:=\left\{e_{1}, e_{2}, \ldots, e_{s}\right\} \subseteq E$ that are incident to v. Let $\rho_{v}: E_{v} \rightarrow\{0,1\}$ be an assignment that violates the constraint in v. In this case we add to the formula a clause C :

$$
x_{e_{1}}^{1-\rho\left(x_{e_{1}}\right)} \vee x_{e_{2}}^{1-\rho\left(x_{e_{2}}\right)} \vee \ldots \vee x_{e_{s}}^{1-\rho\left(x_{e_{s}}\right)}
$$

and we also say that this assignment has a gap:

$$
g\left(\rho_{v}\right):=c(v)-\sum_{e \in E: \mathrm{st}(e)=v} \rho_{v}\left(x_{e}\right)+\sum_{e \in E: \operatorname{en}(e)=v} \rho_{v}\left(x_{e}\right) .
$$

For our purpose we consider Flow $_{G}$ based on expanders. To be precise, we start with a graph G that is an (n, Δ, α)-expander, where $\Delta=\Theta(\log n)$ and α is some fixed constant, and replace each undirected edge by two directed edges (we say that these edges are dual). The exact value of Δ depends on a value of k.

Remark 4.2

We consider only proper partial assignments ρ that satisfy the following property for all pairs of dual edges $\left(e, e^{\prime}\right)$:

- $\rho\left(x_{e}\right) \in\{0,1\}$ iff $\rho\left(x_{e^{\prime}}\right) \in\{0,1\}$;
- if $\rho\left(x_{e}\right)=1$ then $\rho\left(x_{e^{\prime}}\right)=0$.

We also identify $\operatorname{supp}(\rho)$ with an undirected set of edges that are assigned by ρ.

To make the formula somewhat "confusing" for $(1,+k)-\mathrm{BP}$, we would like to add more variables to clauses. These variables do not really affect the physical meaning of the formula, but make it hard for $(1,+k)$-BP to extract additional information from repetitions on paths. This transformation is sensitive to the exact CNF encoding of the constraints that is written above.

Definition 4.3

Let $G:=(V, E)$ be an undirected graph and \mathcal{C}_{v} be a subset of clauses corresponding to vertex v in Flow ${ }_{G}$. Let $\eta_{v}^{k}: \mathcal{C}_{v} \rightarrow\binom{E}{k}$ be a mapping, and $\eta^{k}:=\left\{\eta_{v}^{k} \mid v \in V\right\}$ be a family of such mappings. We define $\mathrm{Flow}_{G}^{\eta^{k}}$ the following way:

- for each $v \in V$ we consider each $C \in \mathcal{C}_{v}$;
- we take $\eta_{v}^{k}(C)=\left\{e_{1}, \ldots, e_{k}\right\}$, which is a set of k edges;
- we replace C by $2^{2 k}$ clauses of the form:

$$
C \vee \bigvee_{i} x_{s_{i}}^{a_{i}} \vee x_{s_{i}^{\prime}}^{a_{i}^{\prime}}
$$

enumerated by $a_{i}, a_{i}^{\prime} \in\{0,1\}$, where $i \in[k]$ and s_{i}, s_{i}^{\prime} are directed copies of the edge e_{i}.

As described in the plan, at some point in the proof we would like to construct an assignment that leaves certain clauses (to which a certain set of variables was added) unsatisfied. For our purpose, we would like those clauses to "strongly unsatisfy" the condition in their vertices.

Let us describe the construction of η^{k}. Assume that $\Delta \geq 50 \cdot k \log n$. For each $v \in V$ we define η_{v} independently. We will be interested in adding variables to clauses which correspond to large incoming flow.

1. Let us consider a set of clauses \mathcal{C} that corresponds to v and a proper partial assignment on edges incident to v with gap equal to $\frac{\Delta}{4}+1$.
2. Note that $|\mathcal{C}| \geq\binom{\Delta}{\Delta / 4} \geq 4^{\Delta / 4} \geq n^{4 k}$. The first inequality holds since we can choose arbitrary $\Delta / 4+1$ incoming edges to obtain the desired gap and set all other incident edges to zero.
3. There are at most $\binom{n \Delta}{k} \leq\left(\frac{n \Delta e}{k}\right)^{k} \leq n^{2 k}$ different sets of k edges. Hence we can choose a subset of $B \subseteq \mathcal{C}$ and define η_{v}^{k} to be a bijection between B and all possible choices of sets of k edges.

Note that the existence of $(1,+k)$-BP of size S solving Search $_{\text {Flow }_{G}^{\eta^{k}}}\left(\right.$ for any $\left.\eta^{k}\right)$ implies the existence of $(1,+k)$-BP of size S solving Search Flow $_{G}$.

4.1.1 Locally Consistent Assignments

We need a notion of "good assignments", i.e. assignments that reduce Flow $_{G}$ formulas to smaller, but "equally hard" instances.

Let $G:=(V, E)$ be a graph. A proper assignment $\rho \delta$-satisfies a set of vertices $U \subseteq V$ iff for all $v \in U$ the following holds:

- ρ assigns all edges that are incident to v;
- ρ satisfies the constraint for v;
- $\sum_{e \in E: \operatorname{st}(e)=v} \rho\left(x_{e}\right) \geq \delta \cdot \Delta$.

We also say that a proper assignment ρ is (r, δ, β)-locally consistent iff there is a set of vertices V_{ρ} of size at most r such that:

- $\rho \delta$-satisfies V_{ρ};
- $\left(V \backslash V_{\rho}, E \backslash \operatorname{supp}(\rho)\right)$ satisfies (r, β)-expansion property.

Remark 4.4

If ρ is an (r, δ, β)-locally consistent assignment for some $\beta>0$, then V_{ρ} is uniquely defined.

Proof. For the sake of contradiction assume that there are two candidates A, B. Wlog $A \backslash B \neq \emptyset$. Pick an arbitrary vertex $v \in A \backslash B$. Since A satisfies the required properties, ρ assigns all edges that are incident to v, which contradicts the fact that $(V \backslash B, E \backslash \operatorname{supp}(\rho))$ satisfies (r, β)-expansion property.

4.2 Proof of Theorem 1.2

Let G be an (n, Δ, α)-expander and $\eta^{k_{0}+1}$ be a mapping defined in section 4.1. In this section we prove an exponential lower bound on Search $\operatorname{Flow}_{G}^{\eta^{k_{0}+1}}$ for $\left(1,+k_{0}\right)$-BP. We assume that n is large enough.

Let us fix some parameters:

- $\Delta=100 k_{0} \log n$ and $\Delta>200 ;$
- $\alpha:=0.01$ is the second eigenvalue of the normalized adjacency matrix of G;
- $r:=\frac{n}{\Delta}$ and $\beta:=0.96$ is the "combinatorial expansion" of the graph G;
- $\beta^{\prime}:=0.95$ is an expansion parameter that we try to maintain after removing some vertices and edges from G;
- $\nu_{k}:=\left(\frac{1}{4}\left(\beta-\beta^{\prime}\right)\right)^{k+3}$ is a scaling factor that indicates the fraction of edges that we want to assign in our partial assignment.

Note that $r \ll(1-\beta-\alpha) n=0.03 \cdot n$ and hence by Corollary 3.3 G satisfies (r, β)-expansion property, hence we can use all combinatorial expansion properties and tools.

To formulate the induction hypothesis we need one more definition. Let $M \subseteq E$ and ρ is a proper assignment. We say that ρ is γ-minimal local consistent extension or (mlce) on M iff:

- ρ is $(r, 0.6, \gamma)$-locally consistent assignment;
- $\operatorname{supp}(\rho)=M \cup E\left(V_{\rho}\right)$;
- $\left|E\left(V_{\rho}, \overline{V_{\rho}}\right) \backslash M\right|<\gamma \Delta\left|V_{\rho}\right|$.

Informally we may think about it in the following way: after we assign edges from M somehow, ρ should assign also V_{ρ} as a "minimal" set of vertices to take care of in order to be locally consistent.

Let $\varphi:=\operatorname{Flow}_{G}^{\eta^{k_{0}+1}}$. By induction on $k \leq k_{0}$ we show the following statement. For all sets of edges $M \subseteq E$ of size at most $\nu_{k} \Delta r$ and all β^{\prime}-mlce ρ on M any $(1,+k)$-BP for $\operatorname{Search}_{\left.\varphi\right|_{\rho}}$ has size at least $2^{\frac{\nu_{k}}{4(k+1)^{2}} \Delta r}$.

Fix some $M, \rho, 0 \leq k \leq k_{0}$ and for the sake of contradiction assume that we have a $(1,+k)$-BP D of size $2^{\frac{\nu_{k}}{4(k+1)^{2}} \Delta r}$ for $\left.\operatorname{Search}_{\varphi}\right|_{\rho}$.

4.2.1 Construction of the Garland

To fulfill our plan of the proof, described at the beginning of the section, we start constructing the garland by obtaining an exponentially big set of paths with the corresponding assignments. Let us remind that $|M| \leq \nu_{k} \Delta r$ and ρ is β^{\prime}-mlce on M.

We say that triple $\left(p, U_{p}, \sigma_{p}\right)$ is γ-good iff:

- p is a path from the root of the branching program;
- U is a subset of edges such that corresponding variables are queried on p, so-called "branching variables";
- σ_{p} is a partial assignment such that:
- σ_{p} extends $\rho \cup \tau_{p}$;
- σ_{p} is a γ-mlce on $M \cup U_{p}$;
- $\sigma_{p} 0.8$-satisfies $V_{\sigma_{p}} \backslash V_{\rho}$,
where τ_{p} is an assignment that corresponds to p.
We maintain the set of β^{\prime}-good triples \mathcal{P} and an auxiliary set \mathcal{S} of triples that appear in the set \mathcal{P} at some moment during the process. In the beginning of our construction $\mathcal{P}:=\{(\emptyset, \emptyset, \rho)\}$ and $\mathcal{S}:=\mathcal{P}$.

We repeat the following process while we have at least one triple $\left(p, U_{p}, \sigma_{p}\right) \in \mathcal{P}$ such that $\left|U_{p}\right| \leq$ $\nu_{k} \Delta r$.

Consider the triple described above. Let v be the end of p and x_{e} be the variable asked in v.

1. If x_{e} was queried on p we stop the process. In this case we return "Repetition" and we remember the path p.
2. Erase the triple $\left(p, U_{p}, \sigma_{p}\right)$ from \mathcal{P}.
3. If $\sigma_{p}\left(x_{e}\right) \in\{0,1\}$, then we continue along the edge $x_{e}=\sigma_{p}\left(x_{e}\right)$. Consider a path p^{\prime} that is the extension of p along this edge, $U_{p^{\prime}}:=U_{p}$ and $\sigma_{p^{\prime}}:=\sigma_{p}$. Put $\left(p^{\prime}, U_{p^{\prime}}, \sigma_{p^{\prime}}\right)$ into \mathcal{P} and \mathcal{S} and repeat the process from the beginning.
4. If $\sigma_{p}\left(x_{e}\right)=*$, then it is a "branching node", and we call this step a branching step.
(a) Let p^{\prime} be a path obtained by continuing p along the edge $x_{e}=0$, and $p^{\prime \prime}$ be a path obtained by continuing p along the edge $x_{e}=1$.
(b) $U_{p^{\prime}}:=U_{p} \cup e, U_{p^{\prime \prime}}:=U_{p} \cup e$.
(c) $\tau^{\prime}:=\sigma_{p} \cup\left\{x_{e}=0, x_{e^{\prime}}=0\right\}, \tau^{\prime \prime}:=\sigma_{p} \cup\left\{x_{e}=1, x_{e^{\prime}}=0\right\}$, where $x_{e^{\prime}}$ is a dual edge.
(d) $\left(p^{\prime}, U_{p^{\prime}}, \tau^{\prime}\right)$ is $\left(\beta^{\prime}-0.01\right)$-good triple. We extend an assignment τ^{\prime} to make this triple β^{\prime}-good. For the formal statement see Lemma 4.5. Here we describe an idea. Let $R \subseteq E$ be a set of edges that are unassigned by τ^{\prime} (or $\tau^{\prime \prime}$), and $B \subseteq V \backslash V_{\sigma_{p}}$ be the maximal set of vertices that satisfies:

- $|B| \leq r$;
- $|E(B, \bar{B}) \cap R| \leq \beta^{\prime} \Delta|B|$.

Let κ be an assignment on variables that correspond to edges in the set $E(B) \backslash \operatorname{supp}\left(\tau^{\prime}\right)$ such that $\tau^{\prime} \cup \kappa 0.8$-satisfies the constraints for all $v \in B$. This assignment κ always exists (and moreover it is independent of the value of x_{e}, but we do not use this fact).
(e) We denote $\sigma_{p^{\prime}}:=\tau^{\prime} \cup \kappa, \sigma_{p^{\prime \prime}}:=\tau^{\prime \prime} \cup \kappa$ and put $\left(p^{\prime}, U_{p^{\prime}}, \sigma_{p^{\prime}}\right)$ and $\left(p^{\prime \prime}, U_{p^{\prime \prime}}, \sigma_{p^{\prime \prime}}\right)$ into \mathcal{P} and into \mathcal{S}.

To conclude the construction we want to show the following claims.

- Repetition case. In the first case of the proof (if we have a repetition) we can reduce the problem to a lower bound on $(1,+(k-1))$-BP.
- Correctness. The branching step can be done and triples $\left(p^{\prime}, U_{p^{\prime}}, \sigma_{p^{\prime}}\right)$ and $\left(p^{\prime \prime}, U_{p^{\prime \prime}}, \sigma_{p^{\prime \prime}}\right)$ satisfy the required properties.
- Garland extraction. Among these paths we can find an k-garland (a, b) and a locally consistent extension of ρ.

Correctness. We show that if we have a triple $\left(p, U_{p}, \tau_{p}\right)$ which is β^{\prime}-good then after processing it with our algorithm we also put in our sets β^{\prime}-good triples. Let us formulate the general Lemma that helps us with it.

Lemma 4.5

Let $\left(p, U_{p}, \sigma_{p}\right)$ and $\left(q, U_{q}, \sigma_{q}\right)$ be 0.9 -good triples. Then there is an assignment κ such that:

- for any γ that is an instance of $\sigma_{p} \uplus \sigma_{q}$ an assignment $\gamma \cup \kappa$ is a β^{\prime}-mlce on $\operatorname{supp}\left(\sigma_{p}\right) \cup$ $\operatorname{supp}\left(\sigma_{q}\right)$;
- $|\operatorname{supp}(\gamma \cup \kappa)| \leq \nu_{k-1} \Delta r$.

Moreover if $p=q$ then triple $\left(p, U_{p}, \sigma_{p} \cup \kappa\right)$ is β^{\prime}-good.

Proof. The proof was motivated by the closure technique developed in [AR03; Ale+04]. For the full version of the proof see Appendix A.

If the branching step was not done, then we do not change U and τ, and we extend the path p according to the assignment τ hence the triple remains β^{\prime}-good. We are left with the branching step. Note that ($p^{\prime}, U_{p^{\prime}}, \tau^{\prime}$) is 0.9 -good and we apply Lemma 4.5 to a pair composed of two identical triples ($p^{\prime}, U_{p^{\prime}}, \tau^{\prime}$) and obtain κ that satisfies the required properties.

Repetition case. First let us note that if there is a repetition, then $k>0$. Suppose we found a repetition while considering a triple $\left(p, U_{p}, \sigma_{p}\right)$. The size of $M \cup U_{p}$ is at most $2 \nu_{k} \Delta r$ and σ_{p} is β^{\prime}-mlce on $M \cup U_{p}$. Let v be an end node of p. The program $\left.D(v)\right|_{\sigma_{p}}$ is a $(1,+(k-1))$-BP for $\operatorname{Search}_{\text {Flow }\left._{G}^{\eta^{k}}\right|_{\sigma_{p}}}$ by Lemma 2.5. Thus by induction hypothesis we have a lower bound of $2^{\frac{\nu_{k-1}}{4 k^{2}} \Delta r} \geq 2^{\frac{\nu_{k}}{4(k+1)^{2}} \Delta r}$ on the size of $\left.D(v)\right|_{\sigma_{p}}$ and in this case we are done.

Garland extraction. The following Lemma gives us a pair of triples $\left(p, U_{p}, \sigma_{p}\right),\left(q, U_{p}, \sigma_{q}\right) \in \mathcal{P}$ such that (p, q) forms a $(k+1)$-garland.

Lemma 4.6

There are $\left(p, U_{p}, \sigma_{p}\right),\left(q, U_{q}, \sigma_{q}\right) \in \mathcal{S}$ such that (p, q) forms a $(k+1)$-garland.

Proof. For the proof see Appendix B.
To continue the proof we need some additional property that we can "avoid repetitions" in this garland. We say that there is a repetition in a garland $p=v_{0} p_{1} v_{1} p_{2} v_{2} p_{3} \ldots p_{k_{0}+1} v_{k_{0}+1}$ and $q=v_{0} q_{1} v_{1} q_{2} v_{2} q_{3} \ldots q_{k_{0}+1} v_{k_{0}+1}$ iff there is path in the garland, i.e. path r of the form
$v_{0} r_{1} v_{1} r_{2} v_{2} r_{3} \ldots r_{k_{0}+1} v_{k_{0}+1}$, such that some variable is queried more than one time on it, where $r_{i} \in\left\{p_{i}, q_{i}\right\}$.

Consider a path r in our garland (p, q) that contains a repetition and $r^{\prime} \subseteq r$ the largest initial segment of r without repetitions. Let v be its end node. We apply Lemma 4.5 to triples $\left(p, U_{p}, \sigma_{p}\right),\left(q, U_{q}, \sigma_{q}\right)$, which gives us assignment κ, and choose a instance γ of $\sigma_{p} \cup \sigma_{q}$ that is consistent with $\tau_{r^{\prime}}$. Moreover, $|\operatorname{supp}(\gamma \cup \kappa)| \leq \nu_{k-1} \Delta r$, and $\gamma \cup \kappa$ is a $\beta^{\prime}-$ mlce on $\operatorname{supp}\left(\sigma_{p}\right) \cup \operatorname{supp}\left(\sigma_{q}\right)$. Hence by Lemma 2.5 we can use the induction hypothesis for $(1,+k-1)$ - $\left.\mathrm{BP} D(v)\right|_{\tau_{r^{\prime}}}$ and formula $\left.\varphi\right|_{\gamma \cup \kappa}$. The size of $\left.D(v)\right|_{\tau_{r^{\prime}}}$ is at least $2^{\frac{\nu_{k-1}}{4 \alpha^{2}} \Delta r} \geq 2^{\frac{\nu_{k}}{4(k+1)^{2}} \Delta r}$.

For the rest of the proof we can assume that on any path r of the form described above there are no repetitions.

4.3 Unreachable Leaves

Let us summarize what we have from the previous section. We created a pair of triples: $\left(p, U_{p}, \sigma_{p}\right)$ and $\left(q, U_{q}, \sigma_{q}\right)$ such that:

- (p, q) forms $\left(k_{0}+1\right)$-garland:
- $p=v_{0} p_{1} v_{1} p_{2} v_{2} p_{3} \ldots p_{k_{0}+1} v_{k_{0}+1} ;$
- $q=v_{0} q_{1} v_{1} q_{2} v_{2} q_{3} \ldots q_{k_{0}+1} v_{k_{0}+1}$;
- $\left(p, U_{p}, \sigma_{p}\right)$ and $\left(q, U_{q}, \sigma_{q}\right)$ are β^{\prime}-good;
- there are no repetitions on any path in the garland (p, q).

We use Lemma 4.5 for $\left(p, U_{p}, \sigma_{p}\right)$ and $\left(q, U_{q}, \sigma_{q}\right)$ and get an assignment κ. Let us fix an assignment γ that is an instance of $\sigma_{p} \cup \sigma_{q}$ consistent with:

- τ_{p};
- values in σ_{q} that do not contradict τ_{p}
and denote $\zeta:=\gamma \cup \kappa$. Note that, by construction:
- $|\zeta| \leq \nu_{k-1} \Delta r ;$
- $|\zeta|$ is $\left(r, 0.6, \beta^{\prime}\right)$-locally consistent.

In this section we describe a set of clauses that should be unreachable from the vertex $v_{k_{0}+1}$. Note that on each segment of a garland $\left(v_{i} p_{i} v_{i+1}, v_{i} q_{i} v_{i+1}\right)$ we query at least one variable in both assignments τ_{p} and τ_{q} and get the different values. Denote any variable that satisfies this property by x_{i}.

We remind that $\varphi:=\operatorname{Flow}_{G}^{\eta^{k_{0}+1}}$. Let $\mathfrak{D}, \mathfrak{C}$ be the subsets of clauses:

$$
\mathfrak{D}:=\left\{D \in \text { Flow }_{G} \mid \text { for every } e \text { that corresponds to some } x_{i}: e \in \eta^{k_{0}+1}(D)\right\} .
$$

and

$$
\mathfrak{C}:=\{C \in \varphi \mid C \text { is obtained from some } D \in \mathfrak{D} \text { by the amplification trick }\} .
$$

For the sake of contradiction suppose that there is a path s from $v_{k_{0}+1}$ such that:

- s is a consistent path and τ_{s} is consistent with ζ and hence $p s$ is also consistent;
- s ends in a clause $C \in \mathfrak{C}$.

Consider a family of paths $r_{i}:=v_{0} p_{1} v_{1} p_{2} v_{2} p_{3} \ldots p_{i-1} v_{i-1} q_{i} v_{i} p_{i+1} q_{i+1} p_{i+2} \ldots p_{k_{0}+1} v_{k_{0}+1}$, where $i \in\left[k_{0}+1\right]$. All paths r_{i} are consistent since there are no repetitions in the garland (p, q). Hence if r_{i} is inconsistent with s then on s we requery some variable x_{i}^{\prime} from the segment $v_{i-1} q_{i} v_{i}$ and get an inconsistent value.

By construction, τ_{s} is consistent with ζ, and $\zeta:=\gamma \cup \kappa$, where γ is an instance of $\sigma_{p} \uplus \sigma_{q}$. If x_{i}^{\prime} appeared in $v_{i-1} q_{i} v_{i}$, but not in $v_{i-1} p_{i} v_{i}$ (note that it cannot appear in any other segment of the garland, since there are no repetitions on the garland), then $\left(\sigma_{p} \cup \sigma_{q}\right)\left(x_{i}^{\prime}\right) \in\left\{\sigma_{q}\left(x_{i}^{\prime}\right), ?\right\}$ and $\tau_{p}\left(x_{i}^{\prime}\right)=*$ thus $\gamma\left(x_{i}^{\prime}\right)=\sigma_{q}\left(x_{i}^{\prime}\right)$ by the choice of γ. It follows that $\zeta\left(x_{i}^{\prime}\right)=\sigma_{q}\left(x_{i}^{\prime}\right)$ as well, and since τ_{s} is consistent with ζ, we cannot obtain an inconsistent with $\tau_{q_{i}}$ value for x_{i}^{\prime} while requerying it. Hence x_{i}^{\prime} had appeared in $v_{i-1} p_{i} v_{i}$ as well, and on s we requeried a variable from $v_{i-1} p_{i} v_{i}$ in consistent way. Moreover if all paths from some set $\left\{r_{i}\right\}_{i \in L}$ where $L \subseteq\left[k_{0}+1\right]$ are inconsistent with s we requery at least $|L|$ variables from the path p on the path s. Hence at least one of the paths $r_{i_{0}}$ is consistent with s, where $i_{0} \in\left[k_{0}+1\right]$ (or on the path $p s$ we requery at least $k_{0}+1$ variables).

Remark 4.7

This is the only place there we use the property that there are no repetitions on the garland.

Consider two paths $p s$ and $r_{i_{0}} s$:

- these paths are consistent;
- $\tau_{p s}\left(x_{i_{0}}\right) \neq \tau_{r_{i_{0}} s}\left(x_{i_{0}}\right)$.

These properties imply that clause C is not a legal answer for at least one these paths, and we have a contradiction with the assumption that there is a consistent path from $v_{k_{0}+1}$ to this clause. That gives us the desired description of leaves that should be unreachable for $v_{k_{0}+1}$.

To conclude the proof it remains to show that there should be a path from $v_{k_{0}+1}$ to at least one leaf marked by a clause $C \in \mathfrak{C}$. We do it in the next section.

4.4 Directing the Flow

Let us remind that we deal with $\varphi:=\operatorname{Flow}_{G}^{\eta^{k_{0}+1}}$. To show that there is a path consistent with ζ from $v_{k_{0}+1}$ to a leaf with a label $C \in \mathfrak{C}$ we show that $\left.(\varphi \backslash \mathfrak{C})\right|_{\zeta}$ is satisfiable and hence there should be an extension of ζ that violates only clauses from \mathfrak{C}.

Remark 4.8

If we do not care about assignment ζ, the statement is trivial, since φ is so-called minimally unsatisfiable formula (that becomes satisfiable after removing any clause). But ζ transforms our formula to "heavily unsatisfiable" formula, since $\zeta 0.6$-satisfies a lot of vertices (that was the crucial property that we used to create a garland).

Note that by construction of $\eta^{k_{0}+1}$ for each $v \in V$ there exists a clause $D \in \mathfrak{D}$ that had originated from the constraint for v. For each v, we pick any such clause and denote it by D_{v}. We divide the rest of the proof into two parts.

1. "Local part". We find a carefully chosen large enough set of vertices $U \in V$ and an assignment $\tau \supseteq \zeta$ such that there is a set $V_{\tau} \supseteq\left(U \cup V_{\zeta}\right)$:

- $\left(V \backslash V_{\tau}, E \backslash \operatorname{supp}(\tau)\right)$ satisfies $\left(r, \beta^{\prime}\right)$-expansion property;
- for all $v \in U$ the assignment τ violates D_{v} and hence τ assigns all edges incident to v;
- for all $v \in V_{\tau} \backslash U$ the assignment τ satisfies constraint for v.

For this part we use the simplified version of technique used for the garland creation.
2. "Global part". By using Max-Flow Min-Cut Theorem we show that τ can be extended to total assignment that satisfies constraints for vertices whose constraints are neither satisfied nor falsified by τ yet.

Since we satisfy all the constraints of $\left(\operatorname{Flow}_{G} \backslash \mathfrak{D}\right)_{\zeta}$ this assignment also satisfies all constraints in $\left.(\varphi \backslash \mathfrak{C})\right|_{\zeta}$ by the construction of the formula φ (clauses of φ are the weakened versions of the clauses Flow $_{G}$).

Before we proceed with the proof let us define the "overflow".

Definition 4.9

The overflow introduced by a locally consistent assignment σ is:

$$
\text { of }_{\sigma}:=1+\sum_{v \in V_{\sigma}}\left(\sum_{e \in E: \mathrm{st}(e)=v} x_{e}-\sum_{e \in E: \operatorname{en}(e)=v} x_{e}-c(v)\right) .
$$

Note that of ${ }_{\zeta} \leq|\zeta|+1 \leq \nu_{k-1} \Delta r+1$.

Local part. We start with the local part of the proof. In the beginning of our construction $U_{0}:=\emptyset$, $\tau_{0}:=\zeta, V_{\tau_{0}}:=V_{\zeta}$ and $i:=0$.

We repeat the following process while of $\tau_{i}>0$.

1. Choose a vertex u_{i} that is untouched by τ_{i}.
2. Let $\rho_{u_{i}}$ be an assignment to edges that are incident to u_{i} such that $D_{u_{i}}$ is unsatisfied by $\rho_{u_{i}}$.
3. $\tau^{\prime}:=\tau_{i} \cup \rho_{u_{i}}$. Since u_{i} is untouched by τ_{i} there is no intersection between $\rho_{u_{i}}$ and τ_{i}.
4. Let $H_{i} \subseteq V \backslash V_{\tau_{i}}$ be the maximal set of vertices that satisfies:

- $\left|H_{i}\right| \leq r$;
- $\left|E\left(H_{i}, \overline{H_{i}} \backslash\left\{u_{i}\right\}\right) \backslash \operatorname{supp}\left(\tau_{i}\right)\right| \leq \beta^{\prime} \Delta\left|H_{i}\right|$.

Let κ_{i} be an assignment on variables that correspond to edges in the set $E(H) \backslash \operatorname{supp}\left(\tau^{\prime}\right)$ such that for all $v \in H_{i}$:

$$
\sum_{e \in E: \operatorname{st}(e)=v}\left(\tau^{\prime} \cup \kappa_{i}\right)\left(x_{e}\right)-\sum_{e \in E: \operatorname{en}(e)=v}\left(\tau^{\prime} \cup \kappa_{i}\right)\left(x_{e}\right)=c(v)
$$

5. $U_{i+1}:=U_{i} \cup\left\{u_{i}\right\}, \tau_{i+1}:=\tau^{\prime} \cup \kappa_{i}$ and $V_{\tau_{i+1}}:=V_{\tau_{i}} \cup H_{i} \cup\left\{u_{i}\right\}$.
6. $i:=i+1$.

Let ℓ be a number of iterations in this process. Let $U:=U_{\ell}$ and $\tau:=\tau_{\ell}$.
At first we give an upper bound on ℓ. Since for all i an assignment κ_{i} exactly satisfies vertices in H, inclusion of H into V_{τ} does not change the overflow. Assignment $\rho_{u_{i}}$ violates $D_{u_{i}} \in \mathfrak{D}$ and by definition of $\eta^{k_{0}+1}$:

$$
-\frac{\Delta}{4}-1 \leq \sum_{e \in E: \mathrm{st}(e)=u_{i}} \rho_{u_{i}}\left(x_{e}\right)-\sum_{e \in E: \operatorname{en}(e)=u_{i}} \rho_{u_{i}}\left(x_{e}\right) \leq-\frac{\Delta}{4}
$$

Hence on each iteration of $\tau_{\tau_{i+1}} \leq$ of $_{\tau_{i}}-\frac{\Delta}{4}$ and $|U| \leq \frac{4|\zeta|}{\Delta}$ and $-\frac{\Delta}{4}-1 \leq$ of $\mathcal{F}_{\tau} \leq 0$.

Lemma 4.10

For all $i \leq \ell$:

- κ_{i} exists;
- $\left|V_{\tau_{i}}\right| \leq \frac{1}{\left(\beta-\beta^{\prime}\right) \Delta}\left(\operatorname{supp}(\zeta)+\Delta\left|U_{i}\right|\right)$ and hence $\left|\tau_{i}\right| \leq \frac{2}{\left(\beta-\beta^{\prime}\right)}\left(|\operatorname{supp}(\zeta)|+\Delta\left|U_{i}\right|\right)$;
- $\left(V \backslash V_{\tau_{i}}, E \backslash \operatorname{supp}\left(\tau_{i}\right)\right)$ satisfies $\left(r, \beta^{\prime}\right)$-expansion property.

Proof. This Lemma may be considered as simplified version of Lemma 4.5. For the proof see Appendix A.

To conclude the construction note that $\tau_{i} \leq \frac{10}{4} \nu_{k-2} \Delta r \leq \frac{\Delta}{4} r$ for all $i \leq \ell$ and we always can find the vertex untouched by τ_{i}.

Remark 4.11

This is the only place where we use that $r \leq \frac{n}{\Delta}$.

Global part. Let $B:=V_{\tau} \backslash V_{\zeta}$. For the vertex $v \in V$ the overflow of v is defined in the following way:

$$
\operatorname{of}(v):=-\sum_{\substack{e \in \operatorname{supp}(\tau) \\ \operatorname{st}(e)=u}} \tau\left(x_{e}\right)+\sum_{\substack{e \in \operatorname{supp}(\tau) \\ \operatorname{en}(e)=u}} \tau\left(x_{e}\right)+c(v) .
$$

We want to create an auxiliary graph. Let $F^{+}:=\left\{v \in V \backslash V_{\tau} \mid\right.$ of $\left.(v)>0\right\}$ and $F^{-}:=\left\{v \in V \backslash V_{\tau} \mid\right.$ of $(v)<0\}$. See fig. 2 .

Figure 2: Set after assignment

Figure 3: Graph G^{\prime} with cuts

We define a graph $G^{\prime}:=\left(V^{\prime}, E^{\prime}\right)$ on vertices $V^{\prime}:=\left(V \backslash V_{\tau}\right) \cup\{s\} \cup\{t\}$, where s is a source and t is a sink. Edges E^{\prime} include four groups:

- $E \backslash \operatorname{supp}(\tau) ;$
- we connect s with all $v \in F^{+}$by of (v) number of edges;
- we connect t with all $v \in F^{-}$by $-\operatorname{of}(v)$ number of edges;
- if of ${ }_{\tau}<0$ we choose an arbitrary set of vertices $S \in V \backslash V_{\tau}$ of size $\left|\mathrm{of}_{\tau}\right|$ and connect all $v \in S$ with s by one more edge.

See fig. 3.

Remark 4.12

1. $\operatorname{deg}(s)=\operatorname{deg}(t)$;
2. If $A \subseteq V^{\prime}$ then $E(\{s\}, A) \leq \frac{\Delta}{4}+1+\sum_{v \in A}$ of (v) and $E(\{t\}, A)=-\sum_{v \in A}$ of (v).

Proof. The first property follows from the construction of τ and the second one follows from definition of G^{\prime}.

Let $f:=\operatorname{deg}(s)$. To conclude the proof we want to show that there is an $s-t$ flow in G^{\prime} of size f (assuming that capacity of each edge is 1) and that if this flow exists, then we have an extension of τ that satisfies Flow $_{G} \backslash \mathfrak{D}$. As we mention above together these facts imply that $\left.\left(\right.$ Flow $\left._{G} \backslash \mathfrak{D}\right)\right|_{\tau}$ is satisfiable hence $\left.\left(\mathrm{Flow}_{G} \backslash \mathfrak{D}\right)\right|_{\zeta}$ is satisfiable and $\left.(\varphi \backslash \mathfrak{C})\right|_{\zeta}$ is also satisfiable hence there is a path from $v_{k_{0}+1}$ to a leaf marked by some $C \in \mathfrak{C}$ which is a contradiction with an existence of a garland and an assumption about size of the branching program.

We start with the second part. Suppose that we have a flow of size f. Fix the flow that achieves this value. We define a total proper assignment $\sigma \supseteq \tau$ in the natural way. Consider an edge $e \in E^{\prime} \cup E$ and $a=(u, v), a^{\prime}=(v, u)$ its directed copies. If there is a flow on the edge e :

- from u to v then $x_{a}=1$ and $x_{a^{\prime}}=0$;
- from v to u then $x_{a}=0$ and $x_{a^{\prime}}=1$.
otherwise we set $x_{a}=0$ and $x_{a^{\prime}}=0$.
Note that $f=\operatorname{deg}(s)$ hence we use all edges that connect s with other vertices to push the flow. That implies for all $v \in V \backslash V_{\tau}$:

$$
\sum_{\substack{e \in \operatorname{supp}(\sigma) \backslash \operatorname{supp}(\tau) \\ \operatorname{st}(e)=v}} \sigma\left(x_{e}\right)+\sum_{\substack{e \in \operatorname{supp}(\sigma) \backslash \operatorname{supp}(\tau) \\ \operatorname{en}(e)=v}} \sigma\left(x_{e}\right)=|E(s, v)|=\operatorname{of}(v)
$$

and hence

$$
\sum_{e \in E: \mathrm{st}(e)=v} \sigma\left(x_{e}\right)+\sum_{e \in E: \operatorname{en}(e)=v} \sigma\left(x_{e}\right)=c(v) .
$$

and constraints for all vertices in $V \backslash V_{\tau}$ are satisfied, but τ itself satisfied all constraints in Flow ${ }_{G} \backslash \mathfrak{D}$ that correspond to vertices in V_{τ}. Altogether it says that σ satisfies all constraints in Flow $_{G} \backslash \mathfrak{D}$ as desired.

It remains to show that we have an s - t flow of size f in G^{\prime}. To do it we use the Max-Flow Min-Cut Theorem and show that minimal s - t cut has size f. Consider such a cut (S, T), where S, T are disjoint subsets of V^{\prime} such that $s \in S$ and $t \in T$. We consider two cases:

- either S or T is small enough, then we use the $\left(r, \beta^{\prime}\right)$-expansion property that we have after removing $\operatorname{supp}(\tau)$ and V_{τ} from G;
- S and T are large enough, then we use the Mixing Lemma to show that even removing $\operatorname{supp}(\tau)$ from G cannot destroy balanced cuts.
see fig. 3 .
Consider an arbitrary $s-t$ cut $S \cup T$. Let $J:=S \backslash\{s\}$ and $K:=T \backslash\{t\}$ (see fig. (4). Consider the following cases.

Figure 4: Graph s - t cut

1. If $J=\emptyset$ or $K=\emptyset$ then size of (S, T) cut equals $\operatorname{deg}(s)$ or $\operatorname{deg}(t)$ respectively and we are done.
2. $0<|J| \leq r$ or $0<|K| \leq r$. Wlog assume that $|J| \leq r$. Note that:

$$
E_{G^{\prime}}(S, T)=E_{G^{\prime}}(\{s\}, K)+E_{G^{\prime}}(\{t\}, J)+E_{G^{\prime}}(J, K)
$$

$E_{G^{\prime}}(\{s\}, K)=\sum_{v \in F^{+} \cap K}$ of (v), so by Remark 4.12 to give a lower bound on the size of cut it is enough to show that $E_{G^{\prime}}(J, K) \geq \frac{\Delta}{4}+1+\sum_{v \in F^{+} \cap J} \operatorname{of}(v)$. But $\left(V \backslash V_{\tau}, E \backslash \operatorname{supp}(\tau)\right)$ satisfies $\left(r, \beta^{\prime}\right)$-expansion property. Hence

- for all $v \in V \backslash V_{\tau}:|\operatorname{of}(v)| \leq 0.1 \cdot \Delta$;
- $\left|E_{G^{\prime}}(J, K)\right| \geq 0.9 \cdot \Delta|J|$,
that implies that $\left|E_{G^{\prime}}(J, K)\right|-\frac{\Delta}{4}-1 \geq 2 \sum_{v \in F^{+} \cap J} \operatorname{of}(v)$.

3. $|J|>r,|K|>r$. Wlog assume that $|J| \leq|K|$. By Mixing Lemma:
$\left|E_{G}(J, \bar{J})\right|=\Delta|J|-E_{G}(J, J) \geq \Delta|J|-\frac{\Delta}{n}|J|^{2}-\alpha \Delta|J| \geq \Delta|J|-|J|-\alpha \Delta|J| \geq 0.9 \cdot \Delta r$,
and

$$
\left|E_{G^{\prime}}(J, K)\right| \geq\left|E_{G}(J, \bar{J})\right|-|\operatorname{supp}(\tau)| \geq 0.6 \cdot \Delta r
$$

On the other hand:

$$
\begin{aligned}
f=\sum_{v \in F^{+}} \text {of }(v) & = \\
\sum_{v \in F^{+}}\left(-\sum_{\substack{e \in \operatorname{supp}(\tau) \\
\operatorname{st}(e)=u}} \tau\left(x_{e}\right)+\sum_{\substack{e \in \operatorname{supp}(\tau) \\
\operatorname{en}(e)=u}} \tau\left(x_{e}\right)+c(v)\right) & \leq \\
|\operatorname{supp}(\tau)| & \leq \frac{\Delta}{4} r .
\end{aligned}
$$

Hence in all cases (S, T) has size at least f which by Max-Flow Min-Cut Theorem implies the existence of flow in G^{\prime} of size at least f. That as mentioned above implies the desired lower bound on the size of branching program.

5 Cook-Reckhow Proof Systems

In this section we illustrate that syntactic $(1,+k)$-BP give us a proof system in terms of Cook-Reckhow. This result is a generalization of the same result for formulas of bounded width [Kno17]. We start with the most general definition of a proof system for a language of unsatisfiable formulas.

Definition 5.1 (Cook, Reckhow [CR79])

A proof system is a polynomial-time algorithm $\Pi(\varphi, w)$ that satisfies two properties:
correctness: if there is some $w \in\{0,1\}^{*}$ such that $\Pi(\varphi, w)=1$ then φ is unsatisfiable;
soundness: if φ is an unsatisfiable boolean formula then there is a string $w \in\{0,1\}^{*}$ such that $\Pi(\varphi, w)=1$.

We say that w is a witness of unsatisfiability of φ.
$(1,+k)$-BP can be used to define a natural proof system. We assume that the witness of unsatisfiability of a CNF formula φ is a description of a $(1,+k)-\mathrm{BP}$ that solves $\operatorname{Search}_{\varphi}$ problem; denote it by $(1,+k)$-BP-PS. This definition is equivalent to the definition of $(1,+k)$-BP-PS from [Kno17] but we erase some technicalities.

For our purpose we need to show that there is a polynomial-time algorithm that checks whether a given description is a $(1,+k)$ - BP and that it solves $\operatorname{Search}_{\varphi}$.

Lemma 5.2

There is an algorithm that for given syntactic $(1,+k)$-BP of size s and boolean CNF formula φ with m clauses and n variables checks whether this program solves $\operatorname{Search}_{\varphi}$ in time $\mathcal{O}\left[\left(\frac{4 e n}{k}\right)^{k} s n^{2} m\right]$.

We defer the proof of this Lemma to section 5.1 .

Theorem 1.3

A syntactic $(1,+k)$-BP-PS is a proof system in terms of Cook-Reckhow definition for any constant $k \in \mathbb{N}$.

Proof. Given a description of a branching program B we can use an algorithm from Theorem 2.4 to check whether it is $(1,+k)$-BP. After that we can use an algorithm from Lemma 5.2 to check whether this program solves Search $_{\varphi}$ problem. If k is an absolute constant both algorithms work in time $\operatorname{poly}(|\varphi|,|B|)$.

5.1 Proof of Lemma 5.2

Fix some syntactic $(1,+k)$-BP B and some CNF formula $\varphi:=\bigvee_{i=1}^{m} C_{i}$. Leaves of B are marked by clauses of φ. We construct an auxiliary branching programs B_{i} that are obtained by replacing the labels C_{i} of sinks by 1 and other labels by 0 .

The clause C is a solution of the $\operatorname{Search}_{\varphi}$ problem for an assignment z iff $C(z)=0$. Hence B makes a mistake on the assignment z iff the path that corresponds to z ends in sink marked by C and $C(z)=1$. But it means that B makes a mistake iff there is a variable x_{i} such that an assignment $x_{i} \leftarrow z_{i}$ satisfies C and there is a path in B from source to sink labeled by C consistent with an assignment $x_{i} \leftarrow z_{i}$.

Figure 5: Construction of B_{i}

The last observation gives useful criteria of correctness. We have path in B from source to sink that is labeled by C_{i} consistent with some assignment $x_{j} \leftarrow a$ iff $\left.B_{i}\right|_{x_{j} \leftarrow a}$ is satisfiable. We are ready to describe an algorithm:

1. enumerate all clauses $C_{i} \in \varphi$;
2. enumerate variables $x_{j} \in C_{i}$ and consider a constant a such that $\left.C_{i}\right|_{x_{j} \leftarrow a}=1$;
3. check whether $\left.B_{i}\right|_{x_{j} \leftarrow a}$ is satisfiable, if yes return "NO";
4. if B passes all tests then return " B is correct".

The correctness of this algorithm follows from previous observation. And we run satisfiability algorithm at most $n m$ times hence the running time is at most $\mathcal{O}\left[\left(\frac{4 e n}{k}\right)^{k} s n^{2} m\right]$.

6 Open Problems

In conclusion we want to mention some open problems. We start with the obvious ones.

1. Find a formula that is hard for $(1,+k)$-BP where $k:=n^{\varepsilon}$.
2. Find a formula that is hard for read-twice branching programs (programs that on any path may read each variable at most twice).

Another problems are more technical, but in our opinion the solution of these problems may lead to new techniques for proving lower bounds.
3. Find a "natural" formula that is hard for $(1,+k)$-BP for any $k>0$. The main problem with the current bound is that we amplify our formula by an η function. This is an artificial trick that prevents generalization of our main Theorem.
4. More difficult question: can we prove a lower bound on random Δ-CNF formulas? This is a canonical example of the hard formulas. Typically, only the "local" structure is used for proving lower bounds on these formulas, which is one of the important barriers for proving lower bounds on these formulas in AC_{0}-Frege proof system.

Acknowledgements

The authors would like to thank Dmitry Itsykson, Artur Riazanov for fruitful discussions and comments, Edward Hirsch for comments on the draft, Alexander Knop for a statement of the problem.

The research presented in Sections 3 and 4 is supported by Russian Science Foundation (project 18-71-10042).

References

[AC88] Noga Alon and Fan R. K. Chung. "Explicit construction of linear sized tolerant networks." In: Discret. Math. 72.1-3 (1988), pp. 15-19. Dor: 10.1016/0012-365X (88) 90189-6. url: https://doi.org/10.1016/0012-365X (88) 90189-6.
[Ale+04] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. "Pseudorandom Generators in Propositional Proof Complexity." In: SIAM 7. Comput. 34.1 (2004), pp. 67-88. Dor: 10.1137 /S0097539701389944. url: https: / / doi . org/10.1137/ S0097539701389944.
[Ale+07] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. "An Exponential Separation between Regular and General Resolution." In: Theory Comput. 3.1 (2007), pp. 81-102. DoI: $10.4086 /$ toc. 2007.v003a005. url: https://doi.org/10.4086/ toc. 2007.v003a005.
[AR03] Michael Alekhnovich and Alexander A. Razborov. "Lower Bounds for Polynomial Calculus: Non-Binomial Case." In: Proceedings of the Steklov Institute of Mathematics 242 (2003). Available at http://people.cs.uchicago. edu/~razborov/files/misha . pdf. Preliminary version in FOCS '01., pp. 18-35.
[Ats+18] Albert Atserias, Ilario Bonacina, Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and Alexander A. Razborov. "Clique is hard on average for regular resolution." In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. Ed. by Ilias Diakonikolas, David Kempe, and Monika Henzinger. ACM, 2018, pp. 866-877. DoI: $10.1145 / 3188745.3188856$. url: https : //doi.org/10.1145/3188745.3188856.
[BW01] Eli Ben-Sasson and Avi Wigderson. "Short proofs are narrow - resolution made simple." In: f. ACM 48.2 (2001), pp. 149-169. DoI: $10.1145 / 375827.375835$. url: https://doi. org/10.1145/375827.375835.
[CR79] Stephen Cook and Robert Reckhow. "The Relative Efficiency of Propositional Proof Systems." In: fournal of Symbolic Logic 44.1 (Mar. 1979), pp. 36-50. url: https : / / projecteuclid.org:443/euclid.jsl/1183740343.
[FF56] L. R. Ford and D. R. Fulkerson. "Maximal Flow Through a Network." In: Canadian fournal of Mathematics 8 (1956), pp. 399-404. DoI: 10.4153/CJM-1956-045-5.
[GMT09] Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. "Optimal Sherali-Adams Gaps from Pairwise Independence." In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Ed. by Irit Dinur, Klaus Jansen, Joseph Naor, and José Rolim. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 125-139. IsBN: 978-3-642-03685-9.
[JR98] Stasys Jukna and Alexander A. Razborov. "Neither Reading Few Bits Twice Nor Reading Illegally Helps Much." In: Discret. Appl. Math. 85.3 (1998), pp. 223-238. doI: 10 . 1016 / S0166-218X (98) 00042-0. url: https://doi.org/10.1016/S0166-218X (98)000420.
[Juk08] Stasys Jukna. "Expanders and time-restricted branching programs." In: Theor. Comput. Sci. 409.3 (2008), pp. 471-476. Doi: $10.1016 /$ j.tcs. 2008.09.012. url: https://doi.org/ 10.1016/j.tcs.2008.09.012.
[Juk12] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers. Vol. 27. Algorithms and combinatorics. Springer, 2012. ISBN: 978-3-642-24507-7. Doi: 10. 1007/978-3-642-24508-4. url: https://doi.org/10.1007/978-3-642-24508-4.
[Kno17] Alexander Knop. "IPS-like Proof Systems Based on Binary Decision Diagrams." In: Electron. Colloquium Comput. Complex. 24 (2017), p. 179. URL: https://eccc.weizmann.ac.il/ report/2017/179.
[Lov+95] László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. "Search Problems in the Decision Tree Model." In: SIAM 7. Discret. Math. 8.1 (1995), pp. 119-132. Doi: $10.1137 /$ S0895480192233867. url: https://doi.org/10.1137/S0895480192233867.
[Mas76] William Masek. "A fast algorithm for the string editing problem and decision graph complexity." In: Master Thesis, Massachusetts Institute of Technology (1976).
[Nec66] E. I. Nechiporuk. "On a Boolean Function." In: Dokl. Akad. Nauk SSSR 169 (4 1966), pp. 765766.
[PR04] Toniann Pitassi and Ran Raz. "Regular Resolution Lower Bounds For The Weak Pigeonhole Principle." In: Comb. 24.3 (2004), pp. 503-524. DoI: $10.1007 /$ s00493-004-0030-y. URL: https://doi.org/10.1007/s00493-004-0030-y.
[Raz04] Ran Raz. "Resolution lower bounds for the weak pigeonhole principle." In: f. ACM 51.2 (2004), pp. 115-138. DOI: 10.1145/972639.972640. URL: https://doi.org/10.1145/ 972639.972640.
[Sav98] Petr Savický. "A probabilistic nonequivalence test for syntactic ($1,+\mathrm{k}$)-branching programs." In: Electron. Colloquium Comput. Complex. 5.51 (1998). url: http://eccc.hpi-web.de/ eccc-reports/1998/TR98-051/index.html.
[Sie96] Detlef Sieling. "New Lower Bounds and Hierarchy Results for Restricted Branching Programs." In: 7. Comput. Syst. Sci. 53.1 (1996), pp. 79-87. Doi: 10.1006 / jcss . 1996.0050. URL: https://doi.org/10.1006/jcss.1996.0050.
[Sok20] Dmitry Sokolov. "(Semi)Algebraic proofs over ± 1 variables." In: Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020. Ed. by Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy. ACM, 2020, pp. 78-90. Dor: 10.1145/3357713.3384288. url: https://doi.org/10.1145/3357713.3384288.
[SW94] Detlef Sieling and Ingo Wegener. "New Lower Bounds and Hierarchy Results for Restricted Branching Programs." In: Graph-Theoretic Concepts in Computer Science, 20th International Workshop, WG '94, Herrsching, Germany, Fune 16-18, 1994, Proceedings. Ed. by Ernst W. Mayr, Gunther Schmidt, and Gottfried Tinhofer. Vol. 903. Lecture Notes in Computer Science. Springer, 1994, pp. 359-370. Doi: 10.1007/3-540-59071-4_61. url: https ://doi. org/10.1007/3-540-59071-4\%5C_61.
[SŽ97] Petr Savický and Stanislav Žák. "A Lower Bound on Branching Programs Reading Some Bits Twice." In: Theor. Comput. Sci. 172.1-2 (1997), pp. 293-301. Dor: 10. 1016 / S0304-3975(96)00183-1. urL: https://doi.org/10.1016/S0304-3975(96) 00183-1.
[Weg00] Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000. ISBN: 0-89871-458-3. URL: http://ls2-www.cs.uni-dortmund.de/monographs/bdd/.
[Weg88] Ingo Wegener. "On the complexity of branching programs and decision trees for clique functions." In: 7. ACM 35.2 (1988), pp. 461-471. DoI: $10.1145 / 42282.46161$. url: https: //doi.org/10.1145/42282.46161.
[Žák86] Stanislav Žák. "An exponential lower bound for real-time branching programs." In: Information and Control 71.1 (1986), pp. 87-94. ISSN: 0019-9958. DoI: https://doi.org/10. 1016/S0019-9958(86)80018-3. URL: http://www. sciencedirect.com/science/ article/pii/S0019995886800183.

A Missed Lemmas

A. 1 Lemma 4.5

At first we prove two auxiliary Lemmas.

Lemma A. 1

If $G:=(V, E)$ satisfies (r, a)-expansion property, $M \subseteq E$, and $S \subseteq V$ of size at most r, such that $|E(S, \bar{S}) \backslash M| \leq b \Delta|S|$ then $|S| \leq \frac{|M|}{(a-b) \Delta}$.

Proof. The size of S is at most r, hence:

$$
b \Delta|S| \geq|E(S, \bar{S}) \backslash M| \geq a \Delta|S|-|M|
$$

Thus $|S| \leq \frac{|M|}{(a-b) \Delta}$.

Lemma 4.5

Let $\left(p, U_{p}, \sigma_{p}\right)$ and $\left(q, U_{q}, \sigma_{q}\right)$ be 0.9 -good triples. Then there is an assignment κ such that:

- for any γ that is an instance of $\sigma_{p} \cup \sigma_{q}$ an assignment $\gamma \cup \kappa$ is a β^{\prime}-mlce on $\operatorname{supp}\left(\sigma_{p}\right) \cup$ $\operatorname{supp}\left(\sigma_{q}\right)$;
- $|\operatorname{supp}(\gamma \cup \kappa)| \leq \nu_{k-1} \Delta r$.

Moreover if $p=q$ then triple $\left(p, U_{p}, \sigma_{p} \cup \kappa\right)$ is β^{\prime}-good.

Proof. Let $S:=V_{\sigma_{p}} \cup V_{\sigma_{q}}, E_{\sigma}:=\operatorname{supp}\left(\sigma_{p}\right) \cup \operatorname{supp}\left(\sigma_{q}\right)$ and $B \subseteq V \backslash S$ be the maximal set of vertices that satisfies:

- $|B| \leq r ;$
- $\left|E(B, \bar{B}) \backslash E_{\sigma}\right| \leq \beta^{\prime} \Delta|B|$.

At first we give an upper bound on the size of set B.
Partial assignment σ_{p} is 0.9 -mlce on $M \cup U_{p} . \beta^{\prime} \Delta\left|V_{\sigma_{p}}\right| \geq\left|E\left(V_{\sigma_{p}}, \bar{V}_{\sigma_{p}}\right) \backslash\left(M \cup U_{p}\right)\right|$ and by Lemma A. 1

$$
\left|V_{\sigma_{p}}\right| \leq \frac{\left|M \cup U_{p}\right|}{\left(\beta-\beta^{\prime}\right) \Delta} \leq 2 \frac{\nu_{k}}{\left(\beta-\beta^{\prime}\right)} r \leq \frac{1}{2} \nu_{k-1} r
$$

By analogy the same holds for $V_{\sigma_{q}}$.
The equality $E(B, \bar{B}) \cap E_{\sigma}=E(B, S) \cup\left(E(B) \cap\left|M \cup U_{p} \cup U_{q}\right|\right)$ together with $\left|E(B, \bar{B}) \backslash E_{\sigma}\right| \leq$ $\beta^{\prime} \Delta|B|$ implies:

$$
\left(1-\beta^{\prime}\right) \Delta|B|-\left|M \cup U_{p} \cup U_{q}\right| \leq|E(B, S)|
$$

By Mixing Lemma:

$$
|E(B, S)| \leq \frac{\Delta}{n}|B||S|+\alpha \Delta \sqrt{|S||B|}
$$

For the sake of contradiction assume that $|B| \geq|S|$ thus:

$$
|E(B, S)| \leq \frac{\Delta}{n}|B||S|+\alpha \Delta|B|
$$

Altogether:

$$
\left(1-\beta^{\prime}\right) \Delta|B| \leq \frac{\Delta r}{n} \nu_{k-1}|B|+\alpha \Delta|B|+3 \nu_{k} \Delta r \leq 2 \alpha \Delta|B|
$$

that contradicts the choice of α and β^{\prime}, hence $|B| \leq|S| \leq \nu_{k-1} r$.
At first we show that $\left(V \backslash(S \cup B), E \backslash\left(E_{\sigma} \cup E(B)\right)\right)$ satisfies $\left(r, \beta^{\prime}\right)$-expansion property. By contradiction, suppose that there is a set $B^{\prime} \subseteq V \backslash(S \cup B)$ of size at most r such that $\mid E\left(B^{\prime}, \overline{B^{\prime}}\right) \backslash$ $\left(E_{\sigma} \cup E(B)\right)\left|<\beta^{\prime} \Delta\right| B^{\prime} \mid$.

Again by Lemma A.1 we conclude that:

$$
\left|B^{\prime}\right| \leq \frac{\left|M \cup U_{p} \cup U_{q}\right|+\Delta|S \cup B|}{\left(\beta-\beta^{\prime}\right) \Delta} \leq \nu_{k-1} r+\frac{1}{2} r \leq \frac{3}{4} r .
$$

But it implies that $\left|B \cup B^{\prime}\right| \leq r$, moreover:

$$
\begin{aligned}
\left|E\left(B \cup B^{\prime}, \overline{B \cup B^{\prime}}\right) \backslash E_{\sigma}\right| \leq & \\
\beta^{\prime} \Delta|B|+\beta^{\prime} \Delta\left|B^{\prime}\right|= & \\
\beta^{\prime} \Delta\left|B \cup B^{\prime}\right| . & B \text { and } B^{\prime} \text { are disjoint }
\end{aligned}
$$

That contradicts the choice of B.
Now we find a proper assignment κ on the $E(B) \backslash E_{\sigma}$ such that for all $v \in B$:

$$
\sum_{e \in E: \mathrm{st}(e)=v} x_{e} \geq 0.8 \cdot \Delta .
$$

Since σ_{p} is an $(r, 0.6,0.9)$-locally consistent assignment, then $\left(V \backslash V_{\sigma_{p}}, E \backslash \operatorname{supp}\left(\sigma_{p}\right)\right)$ satisfies $(r, 0.9)$-expansion property. By analogy we have the same property for σ_{q} that implies: $\left(V \backslash S, E \backslash E_{\sigma}\right)$ satisfies ($r, 0.8$)-expansion property. Indeed, consider a set $C \subseteq V \backslash S$ of size at most r :

$$
\begin{aligned}
\left|E(C, \bar{C}) \backslash E_{\sigma}\right| & =|E(C, \bar{C})|-\left|E(C, \bar{C}) \cap E_{\sigma}\right| \\
& \geq|E(C, \bar{C})|-\left|E(C, \bar{C}) \cap \operatorname{supp}\left(\sigma_{p}\right)\right|-\left|E(C, \bar{C}) \cap \operatorname{supp}\left(\sigma_{q}\right)\right| \\
& =\left|E(C, \bar{C}) \backslash \operatorname{supp}\left(\sigma_{p}\right)\right|-0.1 \cdot \Delta|C| \\
& \geq 0.8 \cdot \Delta|C| .
\end{aligned}
$$

By Proposition 3.4 there is an enumeration of vertices in $B: v_{1}, v_{2}, \ldots, v_{|B|} \in B$ and a sequence $R_{1}, \ldots, R_{|B|} \subseteq\left(E(B) \backslash E_{\sigma}\right)$ such that:

- $R_{i}=E\left(\left\{v_{i}\right\}, V \backslash\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}\right) \backslash E_{\sigma} ;$
- $\left|R_{i}\right| \geq 0.8 \Delta$.

We define κ in the following way:

- for an $e \in R_{i}$ we assign corresponding variables to direct the flow outside of the vertex v_{i} (i.e. if e^{\prime} is a directed copy of e that goes outside of v_{i} we set $x_{e^{\prime}}$ to 1 and set the dual edge to 0);
- for all loops inside the set B we assign corresponding variables to 0 .

Let γ be an instance of $\sigma_{p} \cup \sigma_{q}, \zeta:=\gamma \cup \kappa$ and $V_{\zeta}:=S \cup B$. We have already shown that the graph $\left(V \backslash V_{\zeta}, E \backslash \operatorname{supp}(\zeta)\right)$ satisfies $\left(r, \beta^{\prime}\right)$-expansion property. We want to show that vertices in V_{ζ} are 0.6 -satisfied by ζ. Consider three cases.

1. $v \in V_{\rho}$. Both assignments σ_{p} and σ_{q} extend an assignment ρ hence γ agreed with both assignments on edges incident to V_{ρ}. Thus $\gamma 0.6$-satisfies v.
2. $v \in V_{\sigma_{p}} \backslash V_{\rho}$. Let E_{v} be a set of edges that are incident to v. At least $0.8 \cdot \Delta$ of those edges carry outgoing flow from v in σ_{p}. Denote those edges as $E_{\sigma_{p}}$.
If $v \notin V_{\sigma_{q}}$ then σ_{q} may assign at most $0.1 \cdot \Delta$ edges in E_{v}. That means that in γ at least $0.7 \cdot \Delta$ edges from $E_{\sigma_{p}}$ still carry outgoing flow from v.
If $v \in V_{\sigma_{q}}$ then σ_{p} and σ_{q} both 0.8 -satisfy v. Let $E_{\sigma_{q}} \subseteq E_{v}$ be the set of edges that carry outgoing flow from v in σ_{q}. Then $E_{\sigma_{p}} \cap E_{\sigma_{q}} \geq 0.6 \cdot \Delta$, and all those edges carry outgoing flow from v in γ.

Note that if $\sigma_{p}=\sigma_{q}$, then we 0.8 -satisfy v.
3. $v \in V_{\sigma_{p}} \backslash V_{\rho}$. By analogy with the previous case.
4. $v \in B$. We direct the flow on at least $0.8 \cdot \Delta$ edges from E_{v} outside of v hence $\kappa 0.8$-satisfies v.

By construction $V_{\zeta}:=V_{\sigma_{p}} \cup V_{\sigma_{q}} \cup B$ hence $\left|V_{\zeta}\right| \leq \nu_{k-1} r$ and $|\operatorname{supp}(\zeta)| \leq \nu_{k-1} r$. In order to check that ζ is β^{\prime}-mlce note that:

$$
\left|E(B, \bar{B}) \backslash E_{\sigma}\right| \leq \beta^{\prime} \Delta|B| \leq \beta^{\prime} \Delta\left|V_{\zeta}\right|
$$

but

$$
\left|E(B, \bar{B}) \backslash E_{\sigma}\right|=\left|E\left(V_{\zeta}, \overline{V_{\zeta}}\right) \backslash E_{\sigma}\right|
$$

since σ_{p} and σ_{q} together assign all edges that are incident to $V_{\sigma_{p}} \cup V_{\sigma_{q}}$. Thus:

$$
\left|E\left(V_{\zeta}, \overline{V_{\zeta}}\right) \backslash E_{\sigma}\right| \leq \beta^{\prime} \Delta\left|V_{\zeta}\right|
$$

that concludes the proof.
In case of $\left(p, U_{p}, \sigma_{p}\right)=\left(q, U_{q}, \sigma_{q}\right)$ it remains to show that ζ is β^{\prime}-mlce on $M \cup U_{p}$. Again we note that:

$$
\left|E(B, \bar{B}) \backslash E_{\sigma}\right| \leq \beta^{\prime} \Delta|B|
$$

and also

$$
\left|E\left(V_{\sigma_{p}}, \bar{V}_{\sigma_{p}}\right) \backslash E_{\sigma}\right| \leq \beta^{\prime} \Delta\left|V_{\sigma_{p}}\right|,
$$

hence

$$
\left|E\left(V_{\sigma_{p}} \cup B, \overline{V_{\sigma_{p}} \cup B}\right) \backslash E_{\sigma}\right| \leq \beta^{\prime} \Delta\left(\left|V_{\sigma_{p}}\right|+|B|\right) \leq \beta^{\prime} \Delta\left|V_{\sigma_{p}} \cup B\right|
$$

where the last inequality holds since B and $V_{\sigma_{p}}$ are disjoint, that concludes the proof.

A. 2 Lemma 4.10

Lemma 4.10

For all $i \leq \ell$:

- κ_{i} exists;
- $\left|V_{\tau_{i}}\right| \leq \frac{1}{\left(\beta-\beta^{\prime}\right) \Delta}\left(\operatorname{supp}(\zeta)+\Delta\left|U_{i}\right|\right)$ and hence $\left|\tau_{i}\right| \leq \frac{2}{\left(\beta-\beta^{\prime}\right)}\left(|\operatorname{supp}(\zeta)|+\Delta\left|U_{i}\right|\right)$;
- $\left(V \backslash V_{\tau_{i}}, E \backslash \operatorname{supp}\left(\tau_{i}\right)\right)$ satisfies $\left(r, \beta^{\prime}\right)$-expansion property.

Proof. We show by induction on i that:

- $\left(V \backslash V_{\tau_{i}}, E \backslash \operatorname{supp}\left(\tau_{i}\right)\right)$ satisfies $\left(r, \beta^{\prime}\right)$-expansion property;
- $\left|E\left(V_{\tau_{i}}, \bar{V}_{\tau_{i}}\right) \backslash\left(\operatorname{supp}(\zeta) \cup E\left(U_{i}\right)\right)\right|<\beta^{\prime} \Delta\left|V_{\tau_{i}}\right| ;$
- $\left|V_{\tau_{i}}\right| \leq \frac{1}{\left(\beta-\beta^{\prime}\right) \Delta}\left(\operatorname{supp}(\zeta)+\Delta\left|U_{i}\right|\right)$ and hence $\left|\tau_{i}\right| \leq \frac{2}{\left(\beta-\beta^{\prime}\right)}\left(|\operatorname{supp}(\zeta)|+\Delta\left|U_{i}\right|\right)$.

Assignment τ_{0} is ζ and ζ is $\left(r, 0.6, \beta^{\prime}\right)$-locally consistent, in particular, $\left(V \backslash V_{\zeta}, E \backslash \operatorname{supp}(\zeta)\right)$ satisfies $\left(r, \beta^{\prime}\right)$-expansion property and $\left.E\left(V_{\zeta}, \bar{V}_{\zeta}\right) \backslash \operatorname{supp}(\zeta)\right)=\emptyset$.

By definition of H_{i} :

$$
\beta^{\prime} \Delta\left|H_{i}\right|>\left|E\left(H_{i}, \bar{H}_{i} \backslash\left\{u_{i}\right\}\right) \backslash \operatorname{supp}\left(\tau_{i}\right)\right| \geq\left|E\left(H_{i}, \bar{H}_{i}\right) \backslash\left(\operatorname{supp}\left(\tau_{i}\right) \cup E\left(H_{i},\left\{u_{i}\right\}\right)\right)\right|
$$

and by Lemma A. 1

$$
\left|H_{i}\right| \leq \frac{\left|\operatorname{supp}\left(\tau_{i}\right) \cup E\left(H_{i}, u_{i}\right)\right|}{\left(\beta-\beta^{\prime}\right) \Delta} \leq \frac{\left|\operatorname{supp}\left(\tau_{i}\right) \cup E\left(H_{i}, u_{i}\right)\right|}{\left(\beta-\beta^{\prime}\right) \Delta} \leq \frac{1}{2} \nu_{k-2}(r+1) .
$$

Hence $\left|H_{i} \cup V_{\tau_{i}} \cup\left\{u_{i}\right\}\right| \leq r$ that together with:

$$
\begin{array}{r}
\left|E\left(H_{i} \cup V_{\tau_{i}} \cup\left\{u_{i}\right\}, \overline{H_{i} \cup V_{\tau_{i}} \cup\left\{u_{i}\right\}}\right) \backslash\left(\operatorname{supp}(\zeta) \cup E\left(U_{i+1}\right)\right)\right| \leq \\
\left|E\left(V_{\tau_{i}}, \overline{H_{i} \cup V_{\tau_{i}}}\right) \backslash\left(\operatorname{supp}(\zeta) \cup E\left(U_{i+1}\right)\right)\right|+\mid E\left(H_{i}, \bar{H}_{i}\right) \backslash\left(\operatorname{supp}(\zeta) \cup E\left(U_{i+1}\right) \cup E\left(V_{\tau_{i}}\right) \mid \leq\right. \\
\beta^{\prime} \Delta\left|V_{\tau_{i}}\right|+\beta^{\prime} \Delta\left|H_{i}\right| \leq \\
\beta^{\prime} \Delta \mid H_{i} \cup V_{\tau_{\tau_{2}} \mid} \leq \\
\beta^{\prime} \Delta\left|H_{i} \cup V_{\tau_{i}} \cup\left\{u_{i}\right\}\right|
\end{array}
$$

implies $\left|V_{\tau_{i+1}}\right|=\left|H_{i} \cup V_{\tau_{i}} \cup\left\{u_{i}\right\}\right| \leq \frac{1}{\left(\beta-\beta^{\prime}\right) \Delta}\left(|\operatorname{supp}(\zeta)|+\Delta\left|U_{i+1}\right|\right)$ by Lemma A.1. Also $\left|\tau_{i+1}\right| \leq$ $\frac{2}{\left(\beta-\beta^{\prime}\right)}\left(|\operatorname{supp}(\zeta)|+\Delta\left|U_{i+1}\right|\right)$ since by construction τ_{i+1} assigns only edges in $\operatorname{supp}(\zeta) \cup E\left(U_{i} \cup V_{\tau_{i+1}}\right)$.

Now we show that a graph $\left(V \backslash V_{\tau_{i+1}}, E \backslash \operatorname{supp}\left(\tau_{i+1}\right)\right)$ satisfies $\left(r, \beta^{\prime}\right)$-expansion property. For the sake of contradiction assume that there is a set $S \subseteq V \backslash V_{\tau_{i+1}}$ of size at most r such that: $E(S, \bar{S}) \backslash$ $\operatorname{supp}\left(\tau_{i+1}\right) \leq \beta^{\prime} \Delta|B|$.

By Lemma A. $1|S| \leq \frac{\left|\operatorname{supp}\left(\tau_{i+1}\right)\right|}{\left(\beta-\beta^{\prime}\right) \Delta} \leq \frac{1}{2} \nu_{k-2}(r+1)$. Hence $\left|H_{i} \cup S\right| \leq r$ that together with:

$$
\begin{array}{r}
E\left(H_{i} \cup S, \overline{H_{i} \cup S} \backslash\left\{u_{i}\right\}\right) \backslash \operatorname{supp}\left(\tau_{i}\right) \mid \leq \\
E\left(H_{i}, \overline{H_{i} \cup S} \backslash\left\{u_{i}\right\}\right) \backslash \operatorname{supp}\left(\tau_{i}\right)\left|+E\left(S, \overline{H_{i} \cup S} \backslash\left\{u_{i}\right\}\right) \backslash \operatorname{supp}\left(\tau_{i}\right)\right| \leq \\
\beta^{\prime} \Delta\left|H_{i}\right|+\beta^{\prime} \Delta|S| \\
\beta^{\prime} \Delta\left|H_{i} \cup S\right|
\end{array}
$$

contradicts the choice of H_{i}.
To conclude the proof we have to show the existence of κ_{i}. Note that $\left(V \backslash V_{\tau_{i}}, E \backslash \operatorname{supp}\left(\tau_{i}\right)\right)$ satisfies $\left(r, \beta^{\prime}\right)$-expansion property. Consider an arbitrary set $B \subseteq V \backslash\left(V_{\tau_{i}} \cup\left\{u_{i}\right\}\right)$ of size at most r :

$$
\left|E(B, \bar{B}) \backslash\left(\operatorname{supp}\left(\tau_{i}\right) \cup E\left(\left\{u_{i}\right\}\right)\right)\right| \geq \beta^{\prime} \Delta|B|-E(B,\{u\}) .
$$

By Mixing Lemma:

$$
|E(B,\{u\})| \leq \frac{\Delta}{n}|B|+\alpha \Delta \sqrt{B} \leq 0.05 \cdot \Delta|B|,
$$

and hence

$$
\left|E(B, \bar{B}) \backslash\left(\operatorname{supp}\left(\tau_{i}\right) \cup E\left(\left\{u_{i}\right\}\right)\right)\right| \geq 0.9 \cdot \Delta|B|
$$

and graph $\left(V \backslash V_{\tau_{i}} \backslash\left\{u_{i}\right\}, E \backslash \operatorname{supp}\left(\tau_{i}\right)\right)$ satisfies $(r, 0.9)$-expansion property.
By Proposition 3.4 there is an enumeration of vertices in $H_{i}: v_{1}, v_{2}, \ldots, v_{\left|H_{i}\right|} \in H_{i}$ and a sequence $R_{1}, \ldots, R_{\left|H_{i}\right|} \subseteq E\left(H_{i}\right) \backslash\left(\operatorname{supp}\left(\tau_{i}\right) \cup E\left(\left\{u_{i}\right\}\right)\right)$ such that:

- $R_{k}=E\left(\left\{v_{k}\right\}, V \backslash\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}\right) \backslash\left(\operatorname{supp}\left(\tau_{i}\right) \cup E\left(\left\{u_{i}\right\}\right)\right) ;$
- $\left|R_{i}\right| \geq 0.9 \cdot \Delta$.

We define κ_{i} for vertices $v_{1}, \ldots, v_{H_{i}}$ step by step, such that κ_{i} on $E\left(v_{k}\right)$ satisfies the constraint:

$$
\sum_{e \in E: \mathrm{st}(e)=v_{k}}\left(\tau^{\prime} \cup \kappa_{i}\right)\left(x_{e}\right)-\sum_{e \in E: \operatorname{en}(e)=v_{k}}\left(\tau^{\prime} \cup \kappa_{i}\right)\left(x_{e}\right)=c\left(v_{k}\right)
$$

Since we have an access to the $0.9 \cdot \Delta$ edges and others are already assigned, we can always choose the right values (loops are always assigned to zero).

B Garland in the Paths

Lemma 4.6

There are $\left(p, U_{p}, \sigma_{p}\right),\left(q, U_{q}, \sigma_{q}\right) \in \mathcal{S}$ such that (p, q) forms a $(k+1)$-garland.

Proof. Note that we can describe elements in \mathcal{P} by a sequence of bits of size $s:=\nu_{k} \Delta r$. Each bit of this sequence describes an assignment for an edge e that we choose on "branching step". From the construction it follows that different sequences generate different paths in the branching program and hence different elements of \mathcal{P}.

Let $s_{k}:=\left\lfloor\frac{s}{k+1}\right\rfloor$. We construct our garland by the iterative algorithm. After i-th iteration we have a set S_{i} of sequences of size $i s_{k}$ such that any two of the corresponding paths form i-garland and all paths end in the same node. The size of S_{i} will be at least $\exp \left[s_{k}-\frac{i}{2 k} s_{k}\right]$ for all $1 \leq i \leq k+1$.

1. For $i=1$ consider all possible strings of length s_{k} and paths that correspond to them. The branching program has size at most $2^{\frac{s_{k}}{2 k}}$, hence there exists a node such that at least $2^{\frac{s_{k}(2 k-1)}{2 k}}$ paths end there. The set S_{1} consists of all corresponding sequences.
2. For the step $i, 2 \leq i \leq k+1$, we consider all sequences in S_{i-1}. Let v be the end node of all paths corresponding to sequences in the set. To each sequence $s \in S_{i-1}$ we append a string u_{s} of s_{k} bits in such a way that for any pair $r, r^{\prime} \in S_{i-1}$ paths that corresponds to $r u_{r}$ and $r^{\prime} u_{r^{\prime}}$ differ at some node after v. Since $2^{s_{k}} \geq\left|S_{i-1}\right|$, it is possible to do this.
For the resulting sequences, we consider the set of the corresponding paths. The set of paths has size at least $2^{\frac{s_{k}(2 k-i+1)}{2 k}}$, and the size of the program is at most $2^{\frac{s_{k}}{2 k}}$. Hence there exists a node such that $2^{\frac{s_{k}(2 k-i)}{2 k}}$ paths end there. Let S_{i} be the set of sequences corresponding to those paths.

After $k+1$ steps we have a set $S_{k+1},\left|S_{k+1}\right| \geq 2$, such that any two sequences in it correspond to $\mathrm{a}(k+1)$-garland.

