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Abstract
How difficult is it to compute the communication complexity of a two-argument total Boolean
function f : [N ]× [N ]→ {0, 1}, when it is given as an N ×N binary matrix? In 2009, Kushilevitz
and Weinreb showed that this problem is cryptographically hard, but it is still open whether it is
NP-hard.

In this work, we show that it is NP-hard to approximate the size (number of leaves) of the
smallest constant-round protocol for a two-argument total Boolean function f : [N ]× [N ]→ {0, 1},
when it is given as an N × N binary matrix. Along the way to proving this, we show a new
deterministic variant of the round elimination lemma, which may be of independent interest.
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1 Introduction

Suppose you are given a N ×N Boolean matrix representing a (total) two-player communica-
tion problem. How difficult is it to determine the (deterministic) communication complexity
of this matrix?

In 2009, Kushilevitz and Weinreb [39] studied this question and showed that, under a
cryptographic assumption, no polynomial-time algorithm can compute the communication
complexity of a given total two-player function. They left open the question of whether this
problem is NP-hard.

Our main result is that the problem of determining the minimum number of leaves in an
d-round communication protocol for a given (total, two player) function is NP-hard, for all
integer constants r ≥ 3.

1.1 Motivation
Determining the difficulty of computing communication complexity is an interesting, basic
question in its own right. However, the aforementioned paper of Kushilevitz and Weinreb
— which gave the first non-trivial results on this problem — was also motivated by the
broader implications this question could have for communication complexity. This fits into
an even broader motif that has become prominent in recent years: using “meta-questions” to
investigate various aspects of complexity theory.

For example, Kushilevitz and Weinreb argue that understanding the intractability of
computing communication complexity can help “explain the difficulty of analyzing the
communication complexity of certain functions.” Towards this end, their cryptographic
hardness result exhibits a family of functions whose communication complexity we are
unlikely to ever gain a complete understanding of (since determining their communication
complexity is crytographically hard).
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Kushilevitz and Weinreb also used the meta-complexity lens to shed light on one of the
oldest questions in communication complexity: the log-rank conjecture of Lovasz and Saks
[41]. If the log-rank conjecture is true, then it yields a simple polynomial-time approximation
algorithm for computing communication complexity (simply output the logarithm of the
rank of the input matrix). A natural question is whether one can get a better approximation
algorithm. Kushilevitz and Weinreb introduced a plausible conjecture that would imply that
the log-rank conjecture, if true, yields an optimal polynomial-time approximation. On the
other hand, a strong enough hardness of approximation result could actually disprove the
log-rank conjecture (conditioned on P 6= NP). Thus, understanding the inapproximability
of computing communication complexity seems closely related to resolving the log-rank
conjecture.

Finally, Kushilevitz and Weinreb’s paper also introduced a remarkable new technique,
showing for the first time how one could devise a total two-player Boolean function whose
communication complexity was strongly tied to the Boolean-formula complexity of another,
related function. Prior to their work, connections had only been known between Boolean-
formula complexity and the communication complexity of search problems [35] and were not
known for decision problems.

Thus, it is plausible that proving NP-hardness results for computing communication
complexity could reveal further insights in communication complexity and lead to the
development of useful new techniques. Indeed, our constant-round NP-hardness result
led us to prove an interesting new direct-sum/round-elimination result in deterministic
communication complexity, which we state in the following section.

1.2 Our Results

In order to state our results formally, we fix some notation. If f : [a] × [b] → {0, 1} is a
two-player Boolean-valued function, then

CA
d (f) denotes its d-round deterministic communication complexity, namely, the smallest

number of bits communicated in a d-round protocol that computes f , where Alice speaks
in the first round,
LA
d (f) denotes the minimum number of leaves in a d-round protocol that computes f

where Alice speaks first,
CB
d (f) and LB

d (f) denote the analogous notions where Bob speaks first, and
CA
d,ε(f), CB

d,ε(f), LA
d,ε(f) and LB

d,ε(f) denote the analogous notions but where the protocol
is probabilistic, and is allowed to err with probability ≤ ε.

Our first result shows that computing 3-round deterministic communication complexity
is NP-hard. We construct a reduction from the chromatic number problem to the problem
of computing 3-round deterministic communication complexity. Our reduction attains the
following hardness:

I Theorem 1 (Informal version of Theorem 18). It is NP-hard to approximate LA
3 (f) to within

a factor of N1/8, and CA
3 (f) to within an additive term of 1

8 logN ,1 when given a function
f : [N ]× [N ]→ {0, 1}.

1 Since CA
3 (f) ≤ logN + 1, this implies it is hard to approximate CA

3 (f) to within a multiplicative factor
of 1 + 1

8 .
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We then work to prove NP hardness for all constants d ≥ 3 by induction on d, using
Theorem 1 as a base case. Thus, in our inductive step, our goal is to show that computing
d-round communication complexity reduces to computing (d + 1)-round communication
complexity.

A natural approach would be to use the round elimination lemma [46, 62]. This lemma
says that given a two-player function f , one can create a new function F such that the
(d+1)-round communication complexity of F is closely related to the d-round communication
complexity of f .

There are a few difficulties in using round elimination. For one, going from f to F in
round elimination requires a dramatic blow up of the input size of the function. As a result,
any reduction based on typical round elimination seems to require a superpolynomial running
time.

A more significant issue is that round elimination only works for probabilistic protocols,
not deterministic protocols. So, in order to use round elimination, we would actually need a
much stronger version of Theorem 1 for our base case: that it is hard to distinguish protocols
that have small three-round deterministic communication complexity from protocols that
require large three-round randomized communication complexity. As it turns out, we can
“almost” prove such a result (see Section 6):

I Theorem 2. There exist positive constants γ and δ such that the following holds. There
exists a deterministic quasipolynomial-time algorithm that, on input x ∈ {0, 1}∗, outputs a
communication matrix M ∈ {0, 1}N×N and a number k ∈ N, with k ≤ N = |x|O(1), such that

1. if x is a YES instance of SAT, then LB
3 (M) ≤ O(k) and CB

3 (M) ≤ log k +O(1), and
2. if x is a NO instance of SAT, then LB

3,N−δ (M) ≥ Ω(Nγ · k) and CB
3,N−δ (M) ≥ log k + γ ·

logN −O(1).

Unfortunately, the hardness parameters we obtain are not enough to make the round-
elimination approach work. If in the above theorem we could have chosen γ ≥ c · δ for an
arbitrarily large constant c, then we would be able to use round elimination to show that
CA
d (f) is NP-hard for any constant number of rounds d, under subexponential-time reductions

(this is proven in Section 7). If we could make the error parameter constant instead of N−δ,
then we would be able to show that CA

d (f) is NP-hard under quasipolynomial-time reductions.
We leave proving a version of Theorem 2 with these stronger parameters as an open problem.

In light of these difficulties, a natural question is whether there exists an alternative to
round elimination that works with deterministic protocols. Ideally, this alternative method
would also avoid introducing a subexponential blowup. Towards this end, we prove a new
result in deterministic communication complexity that gives us a tight relation between the
minimum number of leaves in a d-round protocol for f , and the minimum number of leaves
in a (d+ 1)-round protocol for a related function F . This function F is a kind of “direct sum”
of f with the “XOR-equality” function. It should be remarked that the direct-sum property
is known to fail for general deterministic protocols [56], so we cannot, for example, replace
XOR-equality with another arbitrary function with the same communication complexity.
The formal statement of our result is as follows:

I Lemma 3. Let d ≥ 3. Given an arbitrary two-player total Boolean function f : [a]× [b]→
{0, 1}, define the function F : ([k]× [a])× ([k]× [b]× {0, 1} × {0, 1})→ {0, 1} given by

F (x0, x1; y0, y1, z, i) =
{

XorEqk(x0; y0, z) , if i = 0
f(x1; y1) , if i = 1,
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where, in turn, XorEqk : [k]× ([k]× {0, 1})→ {0, 1} is given by

XorEqk(x; y, z) =
{
z if x 6= y.

1− z if x = y.

Then

min{4k, 2k − 2 + LB
d (f)} ≤ LA

d+1(F ) ≤ 2k + LB
d (f)

The last two inequalities can be seen as saying that LA
d+1(F )−2k is a good approximation

of LB
d (f), for k ≥ LB

d (f). Thus, it is natural to view Lemma 3 not just as a direct-sum-type
result, but also as a kind of round elimination lemma, since it relates the (d + 1)-round
communication complexity of F with the d-round communication complexity of f .

Lemma 3 has a few significant differences from the classical round elimination lemma.
First, while the classical lemma only applies to probabilistic protocols, Lemma 3 works in
the deterministic case.

Second, Lemma 3 is more efficient in the number of inputs of F relative to f . Using
the classical round elimination lemma would require at least a quasipolynomial blowup in
going from f to F , but a quadratic blowup suffices for Lemma 3. This allows us to build a
polynomial-time NP-hardness reduction instead of the superpolynomial-time reduction that
would follow from the randomized round-elimination approach.

Third, our proof of Lemma 3 looks very different than the classical proof of the round
elimination lemma, which is almost entirely information-theoretic.2 Our proof is instead
more combinatorial and builds on a fooling set argument. We sketch the proof of Lemma 3
in Section 1.5.

Using Theorem 1 and Lemma 3, we obtain our main theorem:

I Theorem 4. For any d ≥ 3 there exists a constant ∆d > 0 such that the following holds. If
there exists a polynomial-time algorithm which, when given a total two-player Boolean-valued
function f : [N ] × [N ] → {0, 1} represented as a Boolean matrix of dimensions N × N ,
approximates LA

d (f) within a factor of 1 + ∆d, then P = NP.

1.3 Meta-Complexity

Our work fits into a now well-established theme in computational complexity theory of
studying “meta-complexity questions.” Historically, this kind of question was first studied
by Soviet cyberneticians beginning in the 1950s, who were particularly interested in the
problem of circuit minimization: the (“meta-complexity”) task of computing the smallest
circuit for a prescribed Boolean function [63]. At the time, this was considered to be among
the least likely computational task to have better-than-brute-force algorithms. Reportedly,
Levin delayed the publication of his work on NP-completeness, because he was hoping to
show the NP-hardness of this problem [12].

Since then, meta-complexity questions have become so pervasive, that there are few
unsolved problems in computational complexity which are not touched by meta-complexity
results. For example:

2 Indeed, using information theoretic techniques, like the chain rule and Pinsker’s inequality, seems to
require a superpolynomial blowup.

CVIT 2016
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The relativization barrier [14], and related algebrization barrier [1], imply that a number
of proof techniques will be insufficient to settle most uniform complexity-class separation
questions.
When thinking about circuit lower-bounds above TC0, the natural proofs barrier [60, 50]
also immediately excludes us from considering many properties which might, at a first
glance, plausibly imply hardness of a given Boolean function.
It is known that the complexity measures we are interested in understanding, such as the
number of leaves in Boolean formulae, are inherently non-convex [34] and non-submodular
[59], and thus cannot, for example, be approximated by convex programming or by certain
rank-based measures.
Lower-bounds that mildly improve classic lower-bounds (e.g. super-linear lower-bounds
against NC1 [11], lower-bounds against one-pass streaming algorithms [44]) or lower-
bounds for certain problems (e.g. k-vertex cover [54, 55]) against complexity classes for
which we already have lower-bounds, could be “magnified” to solve longstanding open
problems.
Just recently, the existence of one-way functions is now known to be equivalent to the
average-case hardness of computing polytime-bounded Kolmogorov complexity [40].

In this paper, we contribute to one of the lines of research inscribed in this theme.
Generically, fixing a complexity measure C, we can define a “meta”-problem MPC where a
task T is the input to the problem MPC , and the problem MPC is to compute C(T ), namely,
the C-complexity of T . The “meta”-question is then: what is the computational complexity
of MPC?

1.3.1 Previous work

This meta-question has been studied in many previous works. Most of these works deal
with the case where T is the truth table of a Boolean function and the complexity measure
C = SIZE is the size of the smallest circuit computing T ; in this case MPSIZE is denoted
MCSP, which stands for “Minimum Circuit-Size Problem.” The question originally posed
by Levin is whether MCSP is NP-complete, and this is the main unresolved question in this
area.

We seem far from settling this question, but MCSP is known to be hard for various other
classes [54, 22, 54, 5, 6]. It is also known that MCSP is not NP-hard under various weak
reductions [48, 33, 48, 27, 26, 8, 10]. MCSP has many natural connections to other areas,
such as cryptography [57, 61], natural proofs [61], hardness magnification [53, 45], learning
[18], and proof complexity [37, 47]). A few variants of MCSP are known to be NP-hard,
including some relativized versions of MCSP [9, 26, 31], a conditional version of MCSP [28],
and MCSP for multi-output functions [30]. For more information on recent research, see
Allender’s recent survey [4] and the references therein.

Thus far, relatively few works have focused on proving the NP-hardness of computing
other complexity measures. The NP-hardness of computing the size of the smallest DNF
for a given function (given as a truth table) was first established by Masek, already in 1978
[43]. A series of subsequent works later improved this result to give near-optimal hardness-
of-approximation [19, 64, 21, 7, 36]. More recently, it was shown to be NP-hard to compute
the size of the smallest DNF-of-XORs [25]. Other works have established NP-hardness of
the task of finding an optimal algorithm, such as finding the smallest decision tree for a
given partial function [23], finding the weights of a neural network (with a fixed topology)
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that computes a given function [32, 16], or finding the smallest straight-line program for
computing a given linear form [17].

A special reference should be made to the previous work by one of the authors [29], where
it was shown that it is NP-hard to approximate the size of the smallest AC0-formula of a total
function given as a truth-table, with an approximation factor of 1±∆d, where ∆d depends on
the depth d. Our paper is inspired by this earlier paper, and our work can be seen as proving
an analogous result for constant-round protocols for total Boolean functions, to the result
proven in [29] for constant-round protocols for Karchmer–Wigderson games. The high-level
idea of the proof is similar, as well: we first prove hardness for constant depth, and then show
how to reduce the depth-d problem to the depth-(d + 1) problem. However, the required
techniques are completely different, both for establishing the base case and the inductive
step. The depth 2 problem is already hard in the case of minimizing Boolean formulas, but it
can be solved in polynomial time in the case of communication complexity. Hence, our first
hard case is the depth 3 case. Our proof of the inductive depth-d to depth-(d+ 1) reduction
is also very different, and we further discuss the differences in Section 1.5.

1.4 Outline of the Paper

We arrived at our proofs by starting with simple cases and building up to more complicated
cases. We begin in Section 3 by showing the NP-hardness of approximating the 3-round
communication complexity of total, multi-output functions, i.e., total two-player functions
f : [a]× [b]→ [`]. This problem has a nice combinatorial interpretation (see Proposition 11),
and it turns out to be NP-hard to approximate by a simple reduction from graph coloring.
The proof is an interesting combination of an NP-hardness reduction with a communication-
complexity lower-bound argument.

We then prove in Section 4 that 3-round communication complexity is also hard to
approximate for Boolean functions f : [a]× [b] → {0, 1}. The reduction is inspired by the
multi-output case, but it requires us to devise a particular kind of gadget. The existence of
such a gadget could have been proven by the probabilistic method, and this would make the
reduction a randomized reduction, but the construction can instead be derandomized using
universal sets [51], and this results in a deterministic reduction. So this result combines an
NP-hardness reduction, a communication complexity lower bound, and a derandomization
result.

Once we had the proof for 3 rounds, we had the idea to use round-elimination to prove
the result for any number of rounds. For this, it was clear that we required hardness of
approximation for randomized communication complexity. We then eventually show, in
Section 6, that it is hard to approximate the 3-round randomized communication complexity
in a low error regime. The parameters we obtain are just shy of what would be necessary to
show strong hardness of approximation for d-round communication complexity, for any d. We
still conjecture that better parameters can be obtained, and we show in Section 7 that our
conjecture would imply that d-round communication complexity is NP-hard to approximate,
by a reduction from the (d− 1)-round case. Improving the parameters in our lower bound is
left as an open problem.

But before we delve into the randomized case, we finish the proof of our main theorem in
Section 5. There we show our deterministic round-elimination lemma (Lemma 3), and use it
to show that the smallest number of leaves in a constant-round communication protocol is
NP-hard to approximate.

CVIT 2016



23:8 Hardness of Constant-round Communication Complexity

1.5 Sketch of Lemma 3
In this subsection we sketch the proof of our deterministic round-elimination lemma, Lemma 3.
Let us restate it here:

I Lemma 3. Let d ≥ 3. Given an arbitrary two-player total Boolean function f : [a]× [b]→
{0, 1}, define the function F : ([k]× [a])× ([k]× [b]× {0, 1} × {0, 1})→ {0, 1} given by

F (x0, x1; y0, y1, z, i) =
{

XorEqk(x0; y0, z) , if i = 0
f(x1; y1) , if i = 1,

where, in turn, XorEqk : [k]× ([k]× {0, 1})→ {0, 1} is given by

XorEqk(x; y, z) =
{
z if x 6= y.

1− z if x = y.

Then

min{4k, 2k − 2 + LB
d (f)} ≤ LA

d+1(F ) ≤ 2k + LB
d (f)

The upper bound is the easy direction (it follows from XorEqk having a 2k leaf 2-round
Alice-first protocol), so here we focus on how to prove the lower bound.

High Level Ideas. At a high level, our lower bound proof works by showing that any
protocol for computing F must do one of two things:

compute XorEqk “twice,” or
compute XorEqk “once” and (mostly) separately compute f in d rounds.

These two scenarios correspond to the 4k and 2k − 2 + LB
d (f) parts of the lower bound

respectively.
It is worth noting that an approach similar to this was used in [29] to prove a lower

bound that related the depth-d and depth-d+ 1 formula complexity of two functions. Indeed,
our proof was partly inspired by the proof in [29]. We note, however, that the proof in [29]
differs significantly in how it implements this high level approach. We highlight a few of
these differences:

The proof of the lower bound in [29] is based on the probabilistic method (in particular,
showing that some random subformulas have nice properties). Our lower bound does not
involve the probabilistic method and is instead based on fooling sets.
[29] relies on a complicated formalization of computing g “twice” that involves computing
a large one-sided approximation of g with a non-deterministic formula. On the other
hand, our formalization of computing XorEqk “twice” is to contain twice as many leaves
as it would take to compute XorEqk exactly in a three-round protocol.
[29] uses a random function g instead of the XorEqk function.
Our lemma is tight up to an additive 2 term, while the lower bound in [29] is only known
to be tight up to a multiplicative (1± o(1)) factor.

Another important aspect of our proof is how we make use of the XorEqk function. The
key property used about the XorEqk function is that it has a tight fooling set lower bound:
i.e., a fooling set lower bound that shows it requires exactly 2k leaves to compute. (The
equality function has a tight fooling set lower bound for its 1-leaves, but not for its 0-leaves.
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XorEqk is a modification of the equality function that “symmetrizes” the function enough
that we get a tight fooling set for both the 1 and 0 leaves.) This tight fooling set severely
limits the structure of monochromatic combinatorial rectangles in F , which we use in both
cases of our proof.

Proof Sketch. Suppose that π is a (d+ 1)-round Alice-first protocol for F . We split into
cases depending on how Alice partitions her inputs in the first round of the protocol.

Recall that Alice gets an input (x0, x1) ∈ [k] × [a]. Let P = {P1, . . . , P|P|} be Alice’s
partition of her inputs [k]× [a] in the first round of the protocol. We say that P is good if
there exists a x?0 ∈ [k] such that {x0} × [a] ⊆ Pq for some q. (The reason behind choosing
this to be our definition of good is that it implies that one can obtain a round d protocol for
solving f by considering the subprotocol of π obtained by restricting x0 = x?0).

If P is not good, then for each x0 ∈ [k] there are distinct x′1, x′′1 ∈ [a] such that (x0, x
′
1)

and (x0, x
′′
1) are contained in different parts in Alice’s partition. Consequently, any leaf in

π that contains an input where Alice’s input is (x0, x
′
1) must be distinct from any leaf in

π that contains an input where Alice’s input is (x0, x
′′
1). We combine this “distinct leaves”

property with the fooling set for XorEqk in order to show that the protocol must spend twice
as many leaves as is optimal for computing XorEqk. Intuitively, this is because when i = 0,
F computes XorEqk(x0; y0, z), which doesn’t depend on the value of x1. Thus, every element
(x0; y0, z) of a fooling set for XorEqk can be used to produce two distinct leaves in π: one leaf
for when Alice gets the input (x0, x

′
1) and one leaf for when Alice gets the input (x0, x

′′
1).

On the other hand, suppose P is good. Then {x?0}× [a] ⊆ Pq for some q. As a result, the
d round Bob-first subprotocol of π, given when Alice is restricted to an input in Pq, computes
f when we set x0 = x?0 and i = 1. This implies that π must have at least LB

d (f) leaves.
In fact, the goodness of P implies a stronger statement: that π contains at least LB

d (f)
many leaves which contain an input where x0 = x?0. This is crucial because only two elements
of the fooling set for XorEqk satisfy x0 = x?0. Consequently, one can show that, in order to
compute XorEqk when i = 0, π must have 2k − 2 leaves that do not contain any input where
x0 = x?0. Putting the two bounds together, we get a 2k − 2 + LB

d (f) lower bound on the
number of leaves in π.

1.6 Concluding remarks and open problems

In this work we make a significant step towards showing that computing communication
complexity is NP-hard, by proving it is hard to compute the smallest size of a constant-round
protocol for a given function.

There are a few natural open questions suggested by our paper. The biggest question
is whether the unbounded-round case is also NP-hard. But even in the constant-round
setting, we would like to prove better hardness of approximation for protocol size, and we
would like to prove unconditionally that communication complexity is NP-hard. Proving
Conjecture 33 would give us both of these results for subexponential-time reductions. Can
we get such hardness using polynomial-time reductions, as well? On the other hand, one can
also ask: do there exist non-trivial polynomial-time approximation algorithms for computing
constant-round communication complexity? It is worth noting that the log-rank conjectures
gives a candidate approximation algorithm for computing communication complexity with
no bound on the number of rounds.

A crucial ingredient in our hardness result is a deterministic version of the round
elimination lemma, which is proved using entirely different techniques than the original

CVIT 2016
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version. Does this deterministic version have other applications? Can the new ideas in our
proof be used to prove other interesting statements?

2 Preliminaries

For a positive integer n, we let [n] denote the set {1, . . . , n}.

Binomial Coefficients and Projections. The binomial coefficient
(
n
k

)
equals the number of

distinct subsets of [n] with exactly k elements. Similarly,
(
n
≤k
)
denotes the number of distinct

subsets of [n] that have at most k elements. Finally,
([n]
k

)
denotes the set of all subsets of [n]

with exactly k elements.
If x ∈ {0, 1}n and S = {i1, . . . , ik} ⊆

([n]
k

)
, then xS ∈ {0, 1}k denotes the projection of x

to S, given by xS = xi1 . . . xik .

Entropy, Mutual Information, Pinsker’s inequality. We describe the notation we will use
for various information-theoretic quantities, and some basic facts about them. We will not
define the notions here, or prove the basic facts. See [58] for a reference that uses these
notions in the context of communication complexity. Given a random variable x ∈ X, we
denote its entropy by H(x). Given random variables x,y, z, we will denote the mutual
information between x and y, given z, by I(x : y | z). It always holds that I(x : y) ≤ H(y).
If we have random variables x1, . . . ,xn,y, we then have the chain rule:

I(x1, . . . ,xn : y) =
n∑
i=1

I(xi : y | x<i),

where x<i = x1, . . . ,xi−1. If two random-variables x and y have I(x : y) ≤ 2ε2, then
Pinsker’s inequality implies (by concavity) that if we compute the average, over the choice y
for y, statistical distance between the distribution of x, and the distribution of x conditioned
on y = y, then this average is less than ε.

Communication complexity. We assume basic familiarity with communication complexity
[38]. We write the definitions here for clarity.

I Definition 5 (Protocol). Let A,B,Z be finite sets. A deterministic protocol π over
A× B × Z is a rooted tree:

Each node v is associated with a rectangle π−1(v) = A×B, with A ⊆ X and B ⊆ Y.
Each non-leaf node v, associated with a rectangle π−1(v) = A×B, is labeled by either (a)
a partition A =

⋃
· c∈Pv Ac of A, in which case we say it is Alice’s node or (b) a partition

B =
⋃
· c∈Pv Bc of B, in which case we say it is Bob’s node.

Each leaf node is labeled by an element of the output domain Z
The rectangle associated with the root is the input domain A× B.
If a non-leaf node v of Alice is associated with rectangle π−1(v) = A×B and (a) labeled
by a partition A =

⋃
· c∈Pv Ac of A, then for each c ∈ Pv there will be one child vc of v,

which will be associated with the rectangle π−1(vc) = Ac ×B; similarly for Bob’s nodes.

We let the leaf complexity of π, written L(π), be the number of leaf nodes of π. We let the
round complexity of π, written R(π), be the height of π, i.e., the maximum number of edges
in any root-to-leaf path of π.
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A root-to-leaf path v1 → · · · → vk+1 is said to have communication length
∑k
i=1dlog |Pvi |e

(where |Pvi |, as defined above, is the number of parts in the partition of A or B associated
with node vi). We then let the communication complexity of π, written C(π), be the maximum
communication length of any root-to-leaf path of π.

Given (a, b) ∈ A × B, we let π(a, b) denote the (unique) leaf v of π having (a, b) ∈ π−1(v).
For z ∈ Z, we may write π(a, b) = z to mean that the leaf π(a, b) is labeled by z.

A randomized protocol over A× B × Z is a distribution over deterministic protocols over
A×B×Z. We will use a boldface Greek letter, such as π, to denote a protocol sampled from
this distribution. We then let L(π) be the maximum L(π) over all π in the support of π, and
likewise for R(π) and C(π).

I Definition 6. A function f : A×B → Z is said to be computed by a deterministic protocol
π over A × B × Z if we have f(a, b) = π(a, b) for every (a, b) ∈ A × B. Furthermore, if
ε ∈ [0, 1], then f is said to be computed with error ε by a randomized protocol π if, for every
(a, b) ∈ A× B, Pr[π(a, b) = f(a, b)] > 1− ε (the probability is over the choice of π).

We may then define:

LA
d (f) is the minimum leaf complexity L(π) among all deterministic protocols π that

compute f , and have round complexity R(π) ≤ d, and such that the root node of π is
Alice’s. LB

d (f) is defined likewise, but for protocols where the root node is Bob’s.
LA
d,ε(f) is the minimum L(π) among all randomized protocols π that compute f with error
ε, and have R(π) ≤ d, and such that the root node of π is (always) Alice’s. LB

d,ε(f) is
defined likewise for randomized protocols where the root node is (always) Bob’s.
CA
d , CB

d , CA
d,ε, CB

d,ε are defined analogously where the communication complexity C(π)
replaces the leaf complexity L(π).

Since the communication transcript of a given run of protocol determines the leaf, it must
follow that:

I Proposition 7. For any protocol π, log L(π) ≤ C(π).

Chromatic number All our NP-hardness reductions are from the chromatic number problem:

I Definition 8 (Chromatic number). A coloring of an undirected graph G, is a partition of
the vertices such that no edge has both endpoints in the same part. The chromatic number of
a graph G, denoted χ(G), is the smallest number of parts in a coloring of G.

The NP-hardness of approximating the chromatic number has been established by a series
of results [42, 24, 20], culminating in a paper by Zuckerman [65], where the following was
proven:

I Theorem 9 (Hardness For Chromatic Number). For every ε > 0, there is a deterministic
polynomial time algorithm that on an input x ∈ {0, 1}∗ outputs a graph G on n vertices such
that

if x is a YES instance of SAT, then χ(G) ≤ nε, and
if x is a NO instance of SAT, then χ(G) ≥ n1−ε.

CVIT 2016



23:12 Hardness of Constant-round Communication Complexity

3 Warmup: deterministic 3-round protocols, large output alphabet

In this section, we show that it is NP-hard to approximate the deterministic 3-round
communication complexity of a given matrix over a large alphabet.

We start by observing that deterministic 3-round communication complexity may be
approximated by a very simple combinatorial quantity.

I Definition 10. Let A,B,Z be finite sets, and let M be an A × B matrix over Z. Let
P = {Pi}i∈[k] be a partition of (the columns) B for some k ∈ N. (That is, ∅ 6= Pi ⊆ B,⋃
i∈[k] Pi = B and Pi ∩ Pj = ∅ for every i 6= j.) For a subset P ⊆ B of columns, we denote

by CostM (P) the number of distinct rows of M restricted to columns in P , i.e.,

CostM (P) = |{xP ∈ ZP | x ∈ ZB is a row of M}|.

We further define CostM (P) to be
∑k
i=1 CostM (Pi).

I Proposition 11. Let f : A × B → Z be a function and M be the A × B communication
matrix (with entries in Z) that corresponds to f . Let q ∈ N be the maximum number of
distinct values in a single row of M . We then have

L ≤ LB
3 (f) ≤ L · q, where L = min

P
CostM (P),

and where the minimum is taken over all partitions P of B. Furthermore we have that

logL ≤ CB
3 (f) ≤ logL+ log q +O(1).

Proof. It may be easily seen that LA
2 (f) is lower-bounded by the number of distinct rows

in the communication matrix of f . Because if Alice’s partition of the rows includes a part
with two different rows, then Bob’s ensuing partition of the columns cannot avoid having
a non-monochromatic column. It then follows that, if we have a 3-round protocol π where
Bob speaks first, and P is Bob’s partition of the columns in the first round, then CostM (P)
is a lower-bound on smallest number of leaves that π needs to use to compute f , and thus
LB

3 (f) ≥ L. The lower-bound on CB
3 (f) now follows from Proposition 7.

Conversely, it is also easy to see that LA
2 (f) is upper-bounded by q times the number of

distinct rows in the communication matrix of f . The protocol that achieves this bound has
Alice tell which kind of row she has, and now in each rectangle the rows are all equal, hence
Bob can just tell Alice the color of his column in this row, of which there are q possibilities.
Thus LB

3 (f) ≤ L · q, and the same protocol shows that CB
3 (f) ≤ logL+ log q +O(1). J

In general, the approximate factor q of Proposition 11 can be as large as |Z|. However,
in the following construction, we will construct a matrix where each row has at most q = 3
distinct values; in this case, Proposition 11 guarantees that minP CostM (P) provides a
3-factor approximation of L3(M).

I Theorem 12. Given an undirected graph G = ([n], E) with n vertices and |E| = m > 0
edges, one may construct in deterministic polynomial time a function fG : [a] × [n] →
{0, 1, . . . , `}, with ` = m2n, k =

√
n` = mn and a = `+m · k2, such that

χ(G) · ` ≤ LB
3 (fG) ≤ χ(G) · 6`.

Furthermore, we also have

logχ(G) + log ` ≤ CB
3 (fG) ≤ logχ(G) + log `+O(1).
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Proof. We let A` denote the `× 1 column vector,

A` =

1
...
`

 .
We let Bk and Ck denote the k2 × 1 column vectors

Bk =



1
...
1
...
k
...
k


, Ck =



1
...
k
...
1
...
k


,

where each value i ∈ [k] appears k times. Given an edge {v, w} ∈ [n]× [n], with v < w, we
define the k2 × n matrix M so that

M{v,w} =
[

0 . . . 0 Bk 0 . . . 0 Ck 0 . . . 0
]
,

where Bk appears in the v-th column and Ck in the w-th column. Finally, let E = {e1, . . . , em}
denote the edges of G; then we define the a× n communication matrix fG so that

fG =


A` · · · A`

Me1
...

Mem

 ∈ {0, 1, . . . , `}a×n,
where a = ` + m · k2. Observe that each row of fG has at most q = 3 distinct values;
thus, Proposition 11 provides a 3-factor approximation. We now show the stated inequality,
namely, that

χ(G) · ` ≤ LB
3 (fG) ≤ χ(G) · 2q`.

The upper-bound is easy to see. Given a coloring of G into χ(G) colors, we may take the
3-round protocol π where Bob first tells Alice which color his vertex has. This partitions
the columns by a partition P = {Pc}c∈[χ(G)] formed of the various color classes of our
coloring. Fix any color c and consider CostfG(Pc). Since Pc is an independent set of G, the
Ck and Bk columns of each Mei sub-matrix will always be placed in different parts; therefore,
CostfG(Pc) ≤ `+mk, where the first term counts the number of rows in A` and the second
term counts the number of distinct rows in Mei restricted to columns of Pc for each i ∈ [m].
Using Proposition 11, we obtain

LB
3 (fG)/d ≤ CostfG(P) =

∑
c

CostfG(Pc) ≤ χ(G) · (`+mk) = χ(G) · 2`,

and Proposition 11 also gives us

CB
3 (fG) ≤ logχ(G) + log `+O(1).

For the other direction, let π be any 3-round protocol for fG. The first round of π
partitions the columns of fG, which is to say, it partitions the vertices of G by some partition
P = {Pi}i∈I . We claim that χ(G) · ` ≤ CostfG(P) by analyzing the following two cases.

CVIT 2016



23:14 Hardness of Constant-round Communication Complexity

1. If the partition P does not form a coloring of G, then there must exist an edge {v, w}
such that the v-th column and the w-th column of G are placed in the same part Pi.
This means that the Ck and Bk columns of the M{v,w} sub-matrix are both placed in Pi.
In this case, we have CostfG(Pi) ≥ k2 ≥ n · ` ≥ χ(G) · `, and thus the lower bound holds.

2. Otherwise, suppose that the partition P does form a coloring of G. Then the number of
parts is ≥ χ(G), and so just the contribution from the first ` rows gives us CostfG(P) ≥
χ(G) · `.

The lower-bounds on LB
3 (fG) and CB

3 (fG) then follow from Proposition 11. J

The following corollary shows that it is NP-hard to approximate LB
3 (f), for a given total two

player function f : [N ]× [N ]→ [N ], with an approximation ratio better than (roughly) N 1
5 .

I Corollary 13. For every L ⊆ {0, 1}∗ in NP and every constant ε > 0, there exists a
polynomial-time algorithm that, on input x ∈ {0, 1}∗, outputs a communication matrix
M ∈ [N ]N×N such that if x ∈ L then LB

3 (M) ≤ N , and if x /∈ L then LB
3 (M) > N

6
5−ε.

Proof. We compose the hardness of approximation result for chromatic number in Theorem 9
with the reduction of Theorem 12, padding the communication matrix with all-0 columns to
make it square (since Bob speaks first, this adds at most one leaf), so the communication
matrix of f is an N ×N matrix with N = a = Θ(n5). The parameters then come from the
fact that n = Θ(N 1

5 ). J

Using the bounds on CB
3 instead of the bounds on LB

3 from Theorem 12, we conclude that it
is NP-hard to approximate CB

3 (f), for a given total two player function f : [N ]× [N ]→ [N ],
with an approximation ratio better than (roughly) 6

5 . More precisely:

I Corollary 14. For every L ⊆ {0, 1}∗ in NP and every ε > 0, there exists a polynomial-time
algorithm that, on input x ∈ {0, 1}∗, outputs a communication matrix M ∈ [N ]N×N such
that if x ∈ L then CB

3 (M) ≤ logN , and if x /∈ L then CB
3 (M) > ( 6

5 − ε) logN .

4 Hardness for deterministic 3-round protocols

Building on the proof ideas presented in Section 3, in this section, we prove NP-hardness
of approximating the communication complexity of deterministic 3-round protocols. A key
building block is to use the notion of universal set.

I Definition 15 (Universal set). Let r, c, k ∈ N, and let M ∈ {0, 1}r×c be a matrix whose
columns are M (1), . . . ,M (c). We say that M is (c, k)-universal if, for every set {y1, . . . , yk} ⊆
[c] of k columns of M , the matrix[

M (y1) . . . M (yk)]
has 2k distinct rows. The set of all the rows of M is called a (c, k)-universal set.

We use the explicit construction of a universal set due to [49].

I Lemma 16 (Naor, Schulman and Srinivasan [51]). There exists a deterministic algorithm
that, given c and k ∈ N, outputs a (c, k)-universal matrix M ∈ {0, 1}r×c such that r =
2k+O(log k)2 · log c in time a polynomial in c and 2k.

Now we state the main result of this section.
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I Theorem 17. Let ε > 0 be an arbitrary constant. Given an undirected graph G = ([n], E)
with n vertices and |E| = m > 0 edges, one may construct in deterministic polynomial time
a function fG : [a]× [b]→ {0, 1} and a number ` ∈ N, with a, b, ` = O(n8), such that

χ(G) · ` ≤ LB
3 (fG) ≤ χ(G) · `1+ε

and

logχ(G) + log ` ≤ CB
3 (fG) ≤ logχ(G) + (1 + ε) · log `.

The idea of the proof is to build upon the reduction in the proof of Theorem 12, by
replacing each column with entries from [`] with a block of columns that have entries from
{0, 1}. The difficulty in making this work is that a partition of the columns might not respect
our blocks and could place columns from the same block into different parts. We solve this
by thinking as follows. Either the partition is large, meaning it has many parts, so the
protocol also has many leaves, which proves our lower bound, or otherwise for any block Cv
of columns the part Pi which has most columns from Cv has many columns from Cv; we
may then act as if “Cv was placed in Pi”.

Proof. Let t, k, c ∈ N be parameters chosen later. Let A ∈ {0, 1}r×c and M ∈ {0, 1}s×c be
the (c, t)-universal and (c, k)-universal matrices, respectively, that are constructed by the
polynomial-time deterministic algorithm of Lemma 16; then we have r = 2(1+o(1))·t · log c
and s = 2(1+o(1))·k · log c.

Let x1, . . . , xs be the rows of M . We then let B and C denote the s2 × c matrices

B =



x1
...
x1
...
xs
...
xs


, C =



x1
...
xs
...
x1
...
xs


,

where a row xi appears s times for each i ∈ [s]. Given an edge {v, w} ∈ [n]× [n], with v < w,
we define the s2 × c · n matrix:

M{v,w} =
[

0 . . . 0 B 0 . . . 0 C 0 . . . 0
]
,

where B appears in the v-th block of c columns and C in the w-th block of c columns.
Finally, let E = {e1, . . . , em} denote the edges of G; then we define the (r +m · s2)× c · n
communication matrix fG so that

fG =


A . . . A

Me1
...

Mem

 ∈ {0, 1}(r+m·s2)×c·n.

Let ` := 2t. Let P be a partition of the columns of fG that minimizes CostfG(P). We
now show that, for a suitable choice of t, k and c,

χ(G) · ` ≤ CostfG(P) ≤ χ(G) · `1+o(1).
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This will complete the proof, because Proposition 11 shows that, for a binary matrix fG,
CostfG(P) is a 2-factor approximation of LB

3 (fG) and log CostfG(P) is an approximation of
CB

3 (fG) up to an additive O(1) term. We will choose the parameters t, k and c so that the
following conditions are satisfied.

Condition 1. r +ms ≤ `1+o(1).
Condition 2. c ≥ n` ·max{t, k}.
Condition 3. 22k ≥ n`.

Given that Condition 1 is satisfied, the complexity upper-bounds are easy to see. Let P
be a coloring of G that partitions the vertex set into χ(G) parts. Since no class contains an
edge, the C and B sub-matrices of each Mei sub-matrix will always be placed in different
parts, and we thus have

Cost(P) ≤ χ(G) · (r +ms) ≤ χ(G) · `1+o(1).

For the other direction, we will lower-bound Cost(P) for every partition P. To begin, if
the number of parts is |I| ≥ n`, then we must conclude that Cost(P) ≥ n` ≥ χ(G) · `, as
desired.

Otherwise, |I| ≤ n`. Then for every block of columns v ∈ [n] there must exist a part
Pi(v) which contains at least c/|I| ≥ c/n` columns from the v-th block. Observe that
c/n` ≥ max{t, k} by Condition 2.

Now, either the mapping v 7→ i(v) is a valid coloring of G or not. First, suppose that the
mapping v 7→ i(v) is not a valid coloring of G, meaning that there exists an edge {v, w} ∈ E
such that i = i(v) = i(w). Then the v-th column block and the w-th column block each
have at least max{t, k} columns in the same part Pi. This will mean that the C and B

sub-matrices of the M{v,w} sub-matrix each have at least k columns in Pi. But then, since
M is (c, k)-universal, it follows from Condition 3 that Cost(P) ≥ Cost(Pi) ≥ 22k ≥ n`.

Next, suppose that i : [n] → P does form a coloring of G. Then there exist at least
χ(G) parts Pi each receiving at least t columns from some column block, and so, since A is
(c, t)-universal, the contribution from the A columns give us Cost(P) ≥ χ(G) · 2t = χ(G) · `.

This will give us the theorem, and all we are left to do is ensure that the various conditions
can be met: We define t so that ` = 2t satisfies that ` ≤ (nm2)1+ε/2 < 2`. To meet Condition
3, let k be the smallest integer satisfying that n` ≤ 22k. Let c := n` · max{t, k} so that
Condition 2 is satisfied. Finally, observe that Condition 1 is satisfied because

r +ms ≤ `1+o(1) · log c+m · 2(1+o(1))·k · log c ≤ `1+o(1) +m(n`) 1
2 +o(1) · log c ≤ `1+ε,

where the last inequality holds for all large n,m. J

We can now prove that LA
3 and CA

3 are hard to approximate, also for Boolean functions.

I Theorem 18. For every constant ε > 0, there exists a deterministic quasipolynomial-time
algorithm that, on input x ∈ {0, 1}∗, outputs a communication matrix M ∈ {0, 1}N×N and a
number k ∈ N, with k ≤ N = |x|O(1), such that

1. if x is a YES instance of SAT, then LB
3 (M) ≤ k and CB

3 (M) ≤ log k, and
2. if x is a NO instance of SAT, then LB

3 (M) ≥ N 1
8−ε ·k and CB

3 (M) ≥ log k+ ( 1
8 − ε) logN .
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Proof. We combine the two reductions of Theorems 9 and 17, which we invoke with the same
parameter ε. Fix any input x and let G be an n-vertex graph that is produced by the reduction
of Theorem 9 on input x. Let M ∈ {0, 1}a×b be the communication matrix of fG, and
` ∈ N, be given by the reduction of Theorem 17 on input G, and set N = max(a, b) = O(n8),
k = nε · `1+ε. We may assume that a = b without loss of generality, since otherwise we may
pad M with all-0 rows or all-0 columns, and this changes the leaf complexity by at most a
factor of 2, and the communication complexity by at most 1 bit, so this change makes no
difference to the result.

We verify that the inequalities are satisfied for M : If x ∈ L, then we have LB
3 (M) ≤

χ(G) · `1+ε ≤ nε · `1+ε = k. If x 6∈ L, then we have LB
3 (M) ≥ χ(G) · ` ≥ n1−ε · ` ≥ N 1

8−O(ε) ·k.
Similar inequalities hold for CB

3 (M). Since ε can be arbitrarily small, we may ignore the
constant factors. J

5 From 3-rounds to multiple rounds using deterministic round
elimination

In this section we show how we can use an oracle for computing LB
d+1 in order to compute LA

d .
The gadget in our reduction involves a special function, XorEqk, which is a small modification
of the standard Equality function.

I Definition 19. The function XorEqk : [k]× ([k]× {0, 1})→ {0, 1} is given by

XorEqk(x; y, z) =
{
z if x 6= y.

1− z if x = y.

The key property of XorEqk is that it has a fooling set lower bound that is tight. In
particular, {(x; y, z) : x = y} is a fooling set of cardinality 2k, and there is a 2-round protocol
for solving XorEqk with 2k leaves (where Alice just sends her full input to Bob, and he replies
with the output).

I Lemma 20 (Fooling set lower-bound for XorEqk). Let π be a protocol for solving the function
f : ([k]× [a])× ([k]× {0, 1})→ {0, 1} given by f(x0, x1; y, z) = XorEqk(x0; y, z).3 Then

π(x0, x1; y, z) 6= π(x′0, x′1; y′, z′)

if either

y = x0 6= x′0, or
y = x0 = x′0 and z 6= z′.

Proof. First, suppose for contradiction that π(x0, x1; y, z) = π(x′0, x′1; y′, z′) and y = x0 6= x′0.
Since leaves are combinatorial rectangles, we can infer that π(x′0, x′1; y, z) = π(x0, x1; y, z).
But since y = x0 6= x′0, we know that

f(x0, x1; y, z) = 1− z 6= z = f(x′0, x′1; y, z)

so this contradicts that π(x0, x1; y, z) is a monochromatic leaf.
Similarly, if y = x0 = x′0 and z 6= z′, then we have f(x0, x1; y, z) 6= f(x′0, x′1; y′, z′), so

π(x0, x1; y, z) 6= π(x′0, x′1; y′, z′) by monochromaticness. J

3 In our definition of f , the input x1 does not affect the output of the function. The fact that this lemma
holds even when there is an extraneous input like x1 will be used later.
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The main technical portion of our reduction is the following deterministic variant of the
round-elimination lemma.

I Lemma 21 (Restatement of Lemma 3). Let d ≥ 3. Let f : [a] × [b] → {0, 1}. Let
F : ([k]× [a])× ([k]× [b]× {0, 1} × {0, 1})→ {0, 1} be given by

F (x0, x1; y0, y1, z, i) =
{

XorEqk(x0; y0, z) , if i = 0
f(x1; y1) , if i = 1.

Then we have

min{4k, 2k − 2 + LB
d (f)} ≤ LA

d+1(F ) ≤ 2k + LB
d (f).

Proof. The upper bound comes from the protocol where Alice skips the first round of
communication, Bob sends i to Alice and begins running the best d-round Bob-first protocol
for XorEqk or f , based on whether i = 0 or i = 1. In particular, we have that

LA
d+1(F ) ≤ LB

d (XorEqk) + LB
d (f) ≤ 2k + LB

d (f),

where the last upper bound uses that d ≥ 3.
We now argue the lower bound. Suppose π is a (d+ 1)-round Alice-first protocol for F .

Let L = {`1, . . . , `L(π)} denote the set of leaves of π.
Our arguments split into two cases depending on whether there is a good input x0 ∈ [k].

We say an input x0 ∈ [k] is good if all of Alice’s inputs that begin with x0 are placed in
a single partition. More formally, let P = {P1, . . . , P|P|} be the partition of Alice’s inputs
corresponding to the first round of π. We say x0 ∈ [k] is good if there exists a q ∈ [|P|] such
that {x0} × [a] ⊆ Pq.

Case 1: There is a good input.

Suppose that there exists a good input x?0 ∈ [k] such that {x?0} × [a] ⊆ Pq for some q. Let
Lx?0 be the set of leaves of π that contain an input where x0 = x?0, that is,

Lx?0 = {` ∈ L : ∃(x1, y0, y1, z, i) with π(x∗0, x1; y0, y1, z, i) = `}

and let Lx?0 denote the complementary set of leaves, that is Lx?0 = L \ Lx?0 . We will show
that |Lx?0 | ≥ LB

d (f) and that |Lx?0 | ≥ 2k − 2. As a result, we get that

L(π) ≥ |Lx?0 |+ Lx?0 ≥ LB
d (f) + 2k − 2,

as desired.
First, we show that |Lx?0 | ≥ LB

d (f). Let π′ be the d-round Bob-first subprotocol of π given
when Alice says that her input is in Pq at the first round. Since {x?0} × [a] ⊆ Pq, it follows
that π′ computes f(x1, y1) on input (x?0, x1; y0, y1, 0, 1) for all x1 ∈ [a] and y1 ∈ [b]. This
yields a d-round Bob-first protocol for computing f , and therefore, the number of leaves in
π′ containing the input x?0 must be at least LB

d (f). Hence, |Lx?0 | ≥ LB
d (f).

Next, we argue that |Lx?0 | ≥ 2k − 2. Consider the set of leaves given by

{π(x0, x1; y0, y1, z, i) : i = 0, x0 = y0 ∈ [k] \ {x?0}, y1 = 1, z ∈ {0, 1}}.

If we consider the restriction of π to the inputs y1 = 1 and i = 0, we can apply Lemma 20 to
conclude that all 2k − 2 leaves in this set are in Lx?0 and are pairwise distinct.
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Case 2: No good input

Now we consider the case where there is no good input. For each x0 ∈ [k], we define a
set Ax0 ⊆ [a] of cardinality 2 as follows. Since x0 ∈ [k] is not good, there exists a pair
(x1, x

′
1) ∈ [a]2 such that π(x0, x1; y0, y1, z, i) 6= π(x0, x

′
1; y0, y1, z, i) for all y0, y1, z and i. Let

Ax0 = {x1, x
′
1}. This completes our definition of Ax0 .

We claim that the 4k inputs in the following set are all in pairwise distinct leaves:

W = {(x0, x1, y0, y1, z, i) : x0 = y0 ∈ [k], i = 0, x1 ∈ Ax0 , y1 = 1, z ∈ {0, 1}}.

To see this, suppose that w 6= w′ for some w,w′ ∈ W . Let w = (x0, x1; y0, y1, z, i) and
w′ = (x′0, x′1; y′0, y′1, z′, i′). We prove π(w) 6= π(w′) by considering the following three cases.

1. If x0 = x′0 and x1 6= x′1, then we know that {x1, x
′
1} = Ax0 . By the construction of Ax0 ,

we can conclude that π(w) 6= π(w′).
2. If x0 = x′0 and x1 = x′1, then we must have x0 = y0 = x′0 and z 6= z′ since w 6= w′; using

Lemma 20, we conclude that π(w) 6= π(w′).
3. Lastly, suppose that x0 6= x′0. If we consider the restriction of π to the inputs y1 = 1 and

i = 0, we can apply Lemma 20 to conclude that π(w) 6= π(w′).

J

Using this lower bound, we show one can approximately compute round-d complexity
given an oracle that approximately computes round-(d + 1) complexity. We consider the
following notion of approximation.

I Definition 22. For every constant ε > 0, we say that an oracle O is a (1+ε)-approximation
of a function L(·) if there exists a constant c such that, for all g in the domain of L(·),

L(g) ≤ O(g) ≤ (1 + ε) · L(g) + c.

I Corollary 23. Let 0 < ε < 1
8 . Given an oracle computing a (1 + ε)-approximation of

LA
d+1(·) and a function f : [a]× [b]→ {0, 1}, one can deterministically compute a (1 + 4ε)-

approximation of LB
d (f) in time (ab)O(1)

Proof. First, we give the reduction algorithm and then we prove its correctness. Suppose O
is an oracle that computes an approximation of LA

d+1(·) satisifying, for all functions g,

LA
d+1(g) ≤ O(g) ≤ (1 + ε)LA

d+1(g) +O(1).

For a positive integer k, let Fk : ([k]× [a])× ([k]× [b]× {0, 1} × {0, 1})→ {0, 1} be given by

Fk(x0, x1; y0, y1, z, i) =
{

XorEqk(x0; y0, z) , if i = 0
f(x1; y1) , if i = 1.

The reduction computes

v := max{O(Fk)− 2(1 + ε)k : k ∈ [ab]},

and outputs v′ := (v + 2)/(1− 2ε). It is easy to see that this reduction runs in time (ab)O(1).
To prove the correctness of the reduction, we claim that

LB
d (f) ≤ v′ ≤ (1 + 4ε) · LB

d (f) +O(1)
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for all functions f .
From Lemma 21, we know that for all k

O(Fk)− 2(1 + ε)k ≤ (1 + ε)LA
d+1(Fk)− 2(1 + ε)k +O(1) ≤ (1 + ε)LB

d (f) +O(1)

so we have that

v′ = v + 2
1− 2ε ≤

1 + ε

1− 2ε · L
B
d (f) +O(1) ≤ (1 + 4ε) · LB

d (f) +O(1),

where the last inequality holds because ε < 1/8.
On the other hand, if k = LB

d (f), we have from Lemma 21 that

O(Fk)− 2(1 + ε)k ≥ LA
d+1(Fk)− 2(1 + ε)k

≥ min{4k, 2k − 2 + LB
d (f)} − 2(1 + ε)k

= min{4LB
d (f), 3LB

d (f)− 2} − 2(1 + ε)LB
d (f)

= 3LB
d (f)− 2− 2(1 + ε)LB

d (f)
≥ (1− 2ε)LB

d (Fk)− 2.

Since k = LB
d (f) ≤ ab, we conclude that v′ = (v + 2)/(1− 2ε) ≥ LB

d (Fk). J

Combining Corollary 23 with the hardness result for the d = 3 case in Theorem 18, we
get that computing Ld is NP-hard (under a polynomial-time truth-table reduction).

I Corollary 24. For any integer d ≥ 3, there exists an ε > 0 such that given access to an
oracle that computes a (1 + ε)-approximation of LA

d , one can compute any language in NP in
polynomial time.

6 Hardness for randomized 3-round protocols

In this section we prove that it is NP-hard to distinguish whether a function having short
deterministic 3-round communication protocols, from a function needs long randomized
3-round protocols with a small error.

I Definition 25. The (normalized) Hamming distance of two strings m1,m2 ∈ {0, 1}c,
denoted ∆(m1,m2) is the fraction of bit-positions where m1 and m2 differ.

I Definition 26. Let r, c ∈ N, and let M ∈ {0, 1}r×c be a matrix whose columns are
M (1), . . . ,M (c). Then M is called a (t, k, ε)-gadget if for every set S = {s1, . . . , st} ⊆ [c] of
t (distinct) columns of M , the matrix

MS =
[
M (s1) . . . M (st)

]
has at least k rows which are pairwise ε-far in Hamming distance. Meaning, there are k rows
m1, . . . ,mk ∈ {0, 1}t of MS such that ∆(mi,mj) ≥ ε for all i, j ∈ [k], i 6= j.

I Lemma 27. Let 10 log r ≤ c� 2 r
10 ; then a uniformly random matrix M ∈ {0, 1}r×c is a

(10 log r, 2
3r, 1/10)-gadget.

Proof. The proof is a standard use of the probabilistic method [13], but let us check the
parameters. We choose each entry of M uniformly at random, and we wish to prove that
M is a (t, k, 1/10)-gadget with high probability. Fix any set S of t = 10 log r columns —
there are

(
c
t

)
many such sets. Imagine we choose r rows sequentially, uniformly at random.
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Whenever we pick a new row, we call “good” row if it is 1
10 -far, in Hamming distance, of

any of the previously picked rows. If this does not hold, we call the row “bad”. We wish to
upper-bound the probability of seeing fewer than k = 2

3r good rows. Notice that the number
of t-bit strings in the 1

10 -Hamming-ball around the rows we have seen so far, is less than

p = r

(
t

≤ t/10

)
2 t

10 ≤ r · 2(H2( 1
10 )+ 1

10 )·t ≤ r · 20.57·t ≤ r7,

where H2(p) is the binary entropy function. So the probability of seeing another bad row is
less than p · 2−t ≤ r−3. Hence, the probability of seeing more than r

3 bad rows, is less than
(r−3) r3 = r−r. It then follows by a union bound that M will fail to be a (t, k, 1

10 )-gadget,
with probability no greater than(

c

t

)
r−r

which is close to 0 provided that c� 2 r
10 . J

We now make the observation that it is possible for a constant-depth to decide, in an
approximate sense, whether a given matrix is a good enough gadget. Since there exists an
explicit pseudorandom generator for AC0 with polylog seed length [52], a good gadget can
be found in deterministic quasi-polynomial time.

I Corollary 28. Let 10 log r ≤ c� 2 r
11 . One can obtain a matrix M ∈ {0, 1}r×c which is a

(10 log r, 2
3r, 1/10)-gadget, via a deterministic algorithm running in time 2polylog(r·c).

Proof. We will show that there exists a constant-depth circuit C of size quasipolynomial in r
and c, having r×c inputs, with the property that every matrixM ∈ {0, 1}r×c with C(M) = 1
is a (10 log r, 2

3r, 1/10)-gadget, and such that Pr[C(M) = 1] = 1− o(1). Corollary 28 follows
because there exists an explicit pseudorandom generator G = {Grc : {0, 1}(log rc)O(1) →
{0, 1}r×c}r,c∈N for AC0 [52].

The circuit checks that every set S of t = 10 log r columns has at least 2
3r good rows, in

the same sense as described in the proof of Lemma 27. This is strong enough to ensure that
the input is a (t, k, 1

10 )-gadget, and it suffices to present a quasipolynomial-size circuit to
check this property, since the number of such sets S is itself quasipolynomial.

We cannot check this property exactly, but we can check this property approximately.
Using approximate counting [2, 3], a polynomial-size constant-depth circuit D may, given
two strings x, y ∈ {0, 1}t, give us D(x, y) = 1 if ∆(x, y) ≥ 1

10 + ε, and D(x, y) = 0 if
∆(x, y) ≤ 1

10 , where ε > 0 can be chosen to be any arbitrarily small constant. A row xi will
be called good if D(xi, xj) = 1 for all previous rows xj with j < i. Again using approximate
counting, and letting MS denote the sub-matrix of M restricted to the columns in S, we
may construct a circuit TS with TS(M) = 1 if at least ( 2

3 + ε)r of the rows of MS are good,
and with TS(M) = 0 if fewer than 2

3r of the rows of MS are good. The extra ε will still
allow for the previous probability bounds to hold, and if TS(M) = 1 for all S, then M is a
(t, k, 1

10 )-gadget. J

We now show that a simple lower bound on two round communication complexity.

I Lemma 29. If M ∈ {0, 1}r×c is a matrix containing r rows x1, . . . , xr ∈ {0, 1}c, all pairs
of which are ε-far in Hamming distance, then for δ = ε

8

LA
2,δ(M) ≥ 1

2r,

and the hard distribution witnessing this is uniform over the rows and columns of M .
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Proof. Let us take an arbitrary matrix M ∈ {0, 1}r×c, and think about its LB
1 -complexity.

We first observe that the LB
1 -protocol for M which has the smallest possible error is the

single-bit protocol where Bob sends the majority of his column to Alice, meaning, he sends 1
if and only if half or more of the entries in his column are 1. Hence, the smallest error which
a deterministic LB

1 -protocol can make when computing M under the uniform distribution is
precisely the error of this smallest-error protocol, which is

Err(M) = min
z∈{0,1}c

1
r

r∑
i=1

∆(xi, z).

Indeed, the z giving the minimum is the column-wise majority of M .
Now, suppose ∆(xi, xj) ≥ ε for all i, j ∈ [r], i 6= j. If we have an LA

2 -protocol π for M
which partitions the rows of F into fewer than r

2 parts, then there must exist r
2 rows of M

which get placed in a part that contains at least one other row of M . If we have a part
which has p rows placed together, then by the triangle inequality this means that, for any
z ∈ {0, 1}c, we must have ∆(xi, z) ≥ ε

2 for at least p− 1 values of i (if z is ε
2 -close to one of

the xi, it must be ε
2 -far from all other xi in the same part, since they are pairwise distant).

Hence if M ′ is any part of M in the partition, having more than one row, we have

Err(M ′) ≥ p− 1
p

ε

2 ≥
ε

4

But since 1/2 of the rows get placed together with other rows, the total error incurred by π
on M is at least ε

8 . J

We now show the following hardness result.

I Theorem 30. Let 0 < δ < 1 be given. Given an undirected graph G = ([n], E) with n
vertices and |E| = m > 0 edges, one may construct in deterministic quasipolynomial time a
function fG : [a]× [b]→ {0, 1} and a number ` ∈ N, with a, b, ` = O(n27), such that

LB
3,n−δ(fG) = Ω(n δ

16−1 · χ(G) · `),
CB

3,n−δ(fG) ≥ δ
16 logn+ logχ(G)− logn+ log `−O(1),

LB
3 (fG) = O(χ(G) · `), and

CB
3 (fG) = logχ(G) + log `+O(1).

Proof. The construction is the same as in Theorem 17, but where use (t, k, ε)-gadgets instead
of universal sets, and Lemma 29 instead of Proposition 11. The function fG is defined exactly
as in the proof of Theorem 17, but we use the gadgets from Corollary 28, namely, we set
` = m4n4 and c = n2`2, and we choose A ∈ {0, 1}r×c to be an (O(log r), 2

3r, 1/10)-gadget,
and we choose B,C ∈ {0, 1}s×c to be an (O(log s), 2

3s, 1/10), where r = ` = m4n4 and
s = m3n3. This choice obeys the two conditions:

Condition 1. r +ms = O(`).
Condition 2.

√
c/2 ≥ n · `.

The upper-bound is given by the same protocol as in the proof of Theorem 17, where
Condition 1 gives us improved parameters. We are left to prove the lower-bound. This is
proven via Yao’s principle. The hard distribution µ for fG is chosen as follows:

With probability 1/2 we will let the input (x, y) be a uniformly chosen row x among
the first r rows, and a uniformly chosen column. I.e. a uniform entry of the [A . . . A]
sub-matrix of fG.
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And with probability 1/2 we choose an edge {v, w} uniformly at random from the edges
of G, and then choose a uniform entry among the B and C sub-matrices of the M{u,v}
sub-matrix of fG.

Now suppose we are given a deterministic LB
3 -protocol π with L leaves, which computes

fG with error ≤ n−δ under the distribution µ. We will then show that one of two things must
happen: either (1) π has L� n` leaves, or (2) π gives us a coloring of G with ≤ 3

`n
1− 1

16 δL

colors. In both cases it must follow that L = Ω(n δ
16−1 · χ(G) · `).

Indeed, we will show that either (1) π has L� n` leaves, or (2’) π gives us a coloring of
a graph G′, which has ≤ 1

`L colors, where G′ is obtained from G by removing ≤ n−
1
8 δ|E|

edges. We will then make use of the following:

B Claim 31. If G′ is obtained from G by removing ≤ n−δ · |E| edges, then any coloring of
G′ with C colors will induce a coloring of G with 3n1− δ2C colors.

Proof. Let N = n−δ/2 · n. Split the vertices of G into two sets: V1 contains those vertices of
G where we have removed ≥ N edges, and V2 contains the remaining vertices. We have that
|V1| ≤ 2N , otherwise too many edges would have been removed.

So let α′ : [n] → [C] be a C-coloring of G′. We then construct a coloring α : [n] →
[2N + C · (N + 1)], as follows. We first color each vertex of V1 by its own color. Then
we greedily color each vertex v ∈ V2 by a color α(v) = (α′(v), β(v)), such that the second
coordinate β(v) ∈ [N + 1] does not appear as the second coordinate of any neighbours w ∈ V2
of v which we have already colored. There will always exist such a β because the number of
new neighbors of v, when going from G′ to G, is ≤ N . This is a coloring of G with ≤ 3C ·N
colors, as promised. C

Now, look at the marginal distribution of µ over the columns of fG. Then each block of
columns of fG corresponding to a vertex v gets probability mass exactly:

1
2n + 1

2
deg(v)
2|E| . (∗)

Let us now remove high-error columns, as follows. We first remove from fG all column blocks
v where the error probability of π, conditioned on Bob’s input being a column of v, is greater
than n−δ/2. Since the error probability of π is ≤ n−δ, then by Markov’s inequality, the total
probability mass removed in this way is less than n−δ/2. By (∗), removing all such vertices v
from G will remove fewer than n−δ/2 · 4|E| ≤ 4n−δ/2n edges in total.

Now we do similarly inside each block. For each surviving column block v we know that
the error probability inside it (i.e. conditioned on getting a column inside the block) is
≤ n−δ/2. Let us then remove every column y where the error probability of π, conditioned
on Bob’s input being y, is greater than 2n−δ/2. Notice that, within each block, every column
gets the same probability. Hence, again by Markov’s inequality, by removing these high-error
y we have removed fewer than 1

2c columns from each block. We are left with a sub-matrix of
fG where, in each column, π has error probability less than n−δ/4, and where each surviving
column block v has ≥ 1

2c columns.
We now remove some further columns, which we will call leftover columns. To begin,

we remove enough columns from each surviving block so that there are exactly 1
2c columns

in each block. We do this so we don’t have to think about having a different number of
surviving columns among different blocks.

Now let P = {P1, . . . , P|P|} be the partition of the surviving columns of fG which is
induced by the first round of π. If |P| ≥

√
c/2 � n` (by Condition 2), then we have
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established (1). Otherwise, we must show (2’). If |P| ≤
√
c/2, then for each column block v

there exists a part Pi(v) of P having at least
√
c/2 columns from the v-th block. Let us then

remove from Pi(v) more columns from the v-th block, so that, for every surviving v, Pi(v)
always contains exactly

√
c/2 columns from the v-th block.

We then consider the partition P ′ containing exactly the parts Pi(v) for surviving v,
but without any of the columns we have removed thus far, namely, without the high-error
columns and without the leftover columns. Let f ′G equal to fG, but restricted to the surviving
columns. Since the error probability of π was ≤ 2n−δ/2 on every surviving column, then π
will still have error probability ≤ 2n−δ/2 on f ′G.

We now remove high-error rows. We first remove each row-block M{v,w} such that the
error of π on M{v,w} is greater than 2n−δ/4. Again by Markov’s inequality, in doing so we
remove ≤ n−δ/4|E| more edges.

Now let E′ be the set of surviving edges {v, w} such that i(v) = i(w) (i.e. E′ contains
the low-error edges which violate the coloring constraint). Fix any edge {v, w} ∈ E′, and
let L be the number of leaves in the 2-round sub-protocol inside part Pi(v) = Pi(w). If
L ≥ 1

2s
2 = Ω(n`), we then have proven that π has Ω(n`) leaves, and we are done; otherwise,

suppose L < 1
2s

2 leaves. Now notice that, by the gadget property, the surviving columns of
the B and C sub-matrices of any such block each have 2

3s rows which are pairwise 1
10 -distant

in Hamming distance; hence the sub-matrix [BC] within M{u,v} containing the surviving
columns, must have at least ( 2

3s)
2 rows which are 1

20 -distant in Hamming distance. It then
follows from Lemma 29 that the probability of error within M{u,v} is ≥ 1/20

8 = 1
160 . And

this would happen for every edge {u, v} ∈ E′.
It then follows that E′ is small. Indeed, if we had |E′| > n−δ/8 · |E|, then the total error

of π on the surviving sub-matrix would be ≥ Ω(n−δ/8), and since this sub-matrix has Ω(1) of
the total mass of the original matrix, this would contradict π’s claimed overall error bound.
So we are forced to conclude that |E′| ≤ n−δ/8 · |E|.

We may then remove all the sub-matrices M{v,w} corresponding to edges {v, w} ∈ E′.
It then follows that the partition P ′ is a coloring of the resulting sub-graph G′. Hence
|P ′| ≥ χ(G′), which by Claim 31 means |P ′| ≥ n

δ
16−1χ(G). Now, within each part Pi of

P ′, the corresponding A sub-matrix still needs to be solved by an LA
2 -protocol with error

≤ 2n−δ/4, which can only be done with ` leaves, again by Lemma 29. Hence the total number
of leaves is Ω(n δ

16−1χ(G)`). J

We can then improve upon Theorem 18, and prove that it is NP-hard, under quasipolynomial-
time reductions, to distinguish whether a given communication matrix has small deterministic
communication complexity, versus large low-error randomized communication complexity. In
the next section, we will show that a small improvement of the parameters of the following
corollary4 would be enough to show strong hardness-of-approximation for any number of
rounds.

I Corollary 32. There exist positive constants γ and δ such that the following holds. There
exists a deterministic quasipolynomial-time algorithm that, on input x ∈ {0, 1}∗, outputs a
communication matrix M ∈ {0, 1}N×N and a number k ∈ N, with k ≤ N = |x|O(1), such that

1. if x is a YES instance of SAT, then LB
3 (M) ≤ O(k) and CB

3 (M) ≤ log k +O(1), and

4 As we will see, it would be enough if γ could be made arbitrarily larger than δ.
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2. if x is a NO instance of SAT, then LB
3,N−δ (M) ≥ Ω(Nγ · k) and CB

3,N−δ (M) ≥ log k + γ ·
logN −O(1).

Proof. We will choose δ3 = δ > 0 to be a sufficiently small constant. We combine the two
reductions of Theorems 9 and 30, which we invoke with parameter ε = δ/64. Fix any input
x and let G be an n-vertex graph that is produced by the reduction of Theorem 9 on input
x. We have n = |x|O(1) since the reduction of Theorem 9 is polytime. Let M ∈ {0, 1}a×b be
the communication matrix of fG, and ` ∈ N, be given by the reduction of Theorem 17 on
input G, and set N = max(a, b) = O(n27), k = nε · `. We may assume that a = b without
loss of generality, since otherwise we may pad M with all-0 rows or all-0 columns, and this
changes the leaf complexity by at most a factor of 2, and the communication complexity by
at most 1 bit, while leaving the error parameter intact.

We verify that the inequalities are satisfied for M : If x ∈ L, then we have LB
3 (M) =

O(χ(G) · `) = O(k). If x 6∈ L, then we have

LB
3,n−δ(M) = Ω(n δ

16−1χ(G) · `)

= Ω(n δ
16−ε · `)

= Ω(n δ
16−2ε · k)

= Ω(n δ
32 · k)

= Ω(N
δ

32×27 · k)

Similar inequalities hold for CB
3 (M). So we set γ = δ

32×27 . J

7 From 3-rounds to multiple rounds using round elimination

We would now like to prove that constant-round communication complexity is NP-hard, for
any number of rounds. However, the result we proved in Corollary 32 is not enough. We
conjecture that the parameters in that result can be improved, as follows

I Conjecture 33. For any constant C ≥ 1, there exist positive constants γ, δ ∈ (0, 1] with
γ ≥ C · δ such that the following holds. There exists a deterministic quasipolynomial-time
algorithm that, on input x ∈ {0, 1}∗, outputs a communication matrix M ∈ {0, 1}N×N and a
number k ∈ N, with k ≤ N = |x|O(1), such that

1. if x is a YES instance of SAT, then LB
3 (M) ≤ O(k) and CB

3 (M) ≤ log k +O(1), and
2. if x is a NO instance of SAT, then LB

3,N−δ (M) ≥ Ω(Nγ · k) and CB
3,N−δ (M) ≥ log k + γ ·

logN −O(1).

Let us devise notation that will help us better understand the difference. We may now
define the following problems:

I Definition 34. In the problem MPLA(d, ε, φ,N), defined for each natural number d ≥ 3,
all ε ∈ [0, 1], φ ≥ 1, and N ∈ N, we are given as input an N ×N Boolean matrix M , and a
natural number 1 ≤ k ≤ N , with the promise that

either LA
d (M) ≤ k,

or LA
d,ε(M) ≥ φ · k

and we wish to decide which is the case. We define MPLB in the same way.
In the problem MPCA(d, ε, φ,K,N), defined for each natural number d ≥ 3, all ε, φ ∈ [0, 1],

and all K,N ∈ N, we are given as input an N ×N Boolean matrix M , and a natural number
1 ≤ k ≤ K, with the promise that
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either LA
d (M) ≤ k,

or LA
d,ε(M) ≥ k + φ ·K

and we wish to decide which is the case. We define MPCB analogously.

Then Corollary 32 and Conjecture 33 tell us that these approximation problems are NP-
hard, for different parameters. In this notation we may restate Corollary 32 and Conjecture 33
as follows:

(Corollary 32) There exist positive constants γ and δ such that MPLA(3, N−δ, Nγ , N)
and MPCA(3, N−δ, γ, logN,N) are NP-hard under deterministic quasipolynomial-time
many-one reductions.
(Conjecture 33) For any constant C ≥ 1, there exist positive constants γ, δ ∈ (0, 1] with
γ ≥ C · δ such that, MPLA(3, N−δ, Nγ , N) and MPCA(3, N−δ, γ, logN,N) are NP-hard
under deterministic quasipolynomial-time many-one reductions.

In the rest of this section, we will use Conjecture 33 and the round elimination lemma to
prove that quasipolynomial-time algorithms for computing constant-round communication
complexity would place all of NP in subexponential time.

We begin by recalling the round-elimination lemma, which was originally proven by
Miltersen, Nisan, Safra, and Wigderson [46] and later improved and simplified by Sen and
Venkatesh [62], using an information-theoretic argument. Sen and Venkatesh’s proof is
already information-theoretic in flavor, but it can be made significantly shorter by using a
nowadays-standard combination of the chain rule and Pinsker’s inequality (see [15, 58]). We
include this shortened proof here, on the one hand so that we can confirm that it works for
leaf complexity, and not just communication complexity, and on the other hand so we can
extract the exact parameters.

I Theorem 35 (Round Elimination Lemma [46, 62]). Let 3 ≤ d ∈ N and let α > 0. Given a
Boolean function f : [a]× [b]→ {0, 1} and a parameter β > 0, we may construct a Boolean
function F : [a]m × ([m]× [b])→ {0, 1}, with m = 1

4β2 (dlog min(a, b)e+ 1), such that

LA
d+1(F ) ≤ m · LB

d (f), LA
d+1,α(F ) ≤ m · LB

d,α(f), LB
d,α(f) ≤ LA

d+1,α−β(F ),

and also

CA
d+1(F ) ≤ CB

d (f)+dlogme CA
d+1,α(F ) ≤ CB

d,α(f)+dlogme CB
d,α(f) ≤ CA

d+1,α−β(F ).

Proof. We define F (x1, . . . , xm; i, y) = f(xi; y). Meaning, Alice is given m Alice-side inputs
x1, . . . , xm ∈ [a] for f , and Bob is given an index i ∈ [m] and a Bob-side input y ∈ [b] for f ,
and they wish to compute f(xi; y).

The upper-bounds on LA
d+1 and CA

d+1 are simple to see. Indeed, a d+ 1 round protocol
where Alice begins to speak may have Alice send nothing in her first round, after which Bob
sends i to Alice and then the players may compute f(x; yi) by executing a d-round protocol
for f . This works whether or not the protocol for f is randomized.

Now to prove the lower-bounds on LA
d+1 and CA

d+1. To prove the lower-bound on the leaf
complexity, we may assume that LA

d+1,α−β(F ) ≤ 2 min(a, b), and to prove the lower-bound
on the communication complexity, we may assume that CA

d+1,α−β(F ) ≤ dlog min(a, b)e+ 1,
since otherwise the respective inequalities are trivial. Let µ be the hard distribution for f .
Construct a distribution µ′ for F by choosing i ∈ [m] uniformly at random, sampling (xi, y)
according to µ, and then sampling each xj with j 6= i from the x-marginal of µ. Now suppose
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we are given a deterministic Alice-first (d+1)-round protocol π′ for F with L(π′) ≤ 2 min(a, b)
leaves and communication complexity C(π′) ≤ dlog min(a, b)e+ 1, and which makes α− β
error (or less) when the input is sampled according to µ′, and let us construct a deterministic
Bob-first d-round protocol π for f having L(π) ≤ L(π′) leaves and communication complexity
C(π) ≤ C(π′), which makes α error when the input is sampled according to µ.

Let (x1, . . . ,xm; i,y) denote random variables sampled according to the distribution µ′,
and let t = t(x1, . . . ,xm) be the message sent in the first round of π′. Let T denote either
log L(π′) or C(π′), so that T ≤ dlog min(a, b)e+ 1. We then have, by the chain rule,

T ≥ H(t) ≥ I(x1, . . . ,xm : t) =
m∑
i=1

I(xi : t | x<i) = m · I(xi : t | i,x<i)

Hence there exists a setting i = i such that

I(xi : t | i = i,x<i) ≤
1
m
T ≤ 2β2.

Let us then fix some setting x<i = x<i which attains the above bound, so that

I(xi : t | i = i,x<i = x<i) ≤ 2β2

By Pinsker’s inequality, this implies that the average, over choices t for t, statistical distance
between xi and xi conditioned on t = t, is at most β. On the other hand, the average error
(of π on µ′) over choices of t for t is at most α− β. By linearity of expectation, the average
sum of the error plus statistical distance is at most α. Let us then fix a choice t for t where
this sum is at most α.

We may then consider the Bob-first d-round protocol π̃ that executes the last d-rounds of
π, for the case when the first message of π is t, where x<i has been fixed to x<i, and each
coordinate of x>i is chosen at random from the x-marginal of µ. Such a protocol will incur
a total error ≤ α, and has fewer leaves ans smaller communication complexity than π′. J

The round-elimination lemma can be used to reduce the computation of complexity on d
rounds to the computation of complexity on d+ 1 rounds, as follows.

I Corollary 36. We may reduce MPLA(d, ε, φ,N) to MPLA(d+ 1, ε2 ,
φ
m , N

m), and we may
reduce MPCA(d, ε, φ,K,N) to MPCA(d + 1, ε2 , φ − 2 logm

K ,K + logm,Nm), where m =
32ε−2 logN , by a many-one reduction computable in time NO(m).

Proof. The reduction is given an N × N communication matrix M , which corresponds
to a Boolean function f : [N ] × [N ] → {0, 1}, and a number k ≤ N . Let F given by
Theorem 35, with parameters m = 32ε−2 logN , α = ε and β = ε

2 . Then the output is a
matrix M ′ ∈ {0, 1}N ′×N ′ where N ′ ≤ Nm, obtained from the communication matrix of F
padded with extra 0-columns to make it into a square matrix.

Then if LA
d (M) ≤ k, we will also have LA

d+1(M ′) ≤ mk. On the other hand, if LA
d,α(M) =

LA
d,ε(M) ≥ φ · k, then LA

d+1, ε2
(M ′) = LA

d+1,α−β ≥ LA
d,ε(M) ≥ φ · k = φ

m ·mk.
Furthermore if CA

d (M) ≤ k, we will also have CA
d+1(M ′) ≤ k + logm. On the other hand,

if CA
d,α(M) = CA

d,ε(M) ≥ k+φ ·K, then CA
d+1, ε2

(M ′) = CA
d+1,α−β ≥ CA

d,ε(M) ≥ k+φ ·K, and

k + φ ·K = k + logm+
(
φ− (1 + φ) logm

K + logm

)
· (K + logm)

≥ k + logm+
(
φ− 2 logm

K

)
· (K + logm). J
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We can now show that if communication complexity CA (and not just leaf complexity
LA) can be computed in quasipolynomial time and Conjecture 33 holds, then all of NP can
be solved in subexponential time, i.e., time 2nε , for any choice ε > 0. A similar result can be
proven for leaf complexity, with better hardness-of-approximation than what is obtained in
Section 5, but we will omit the proof here, because it is very similar, and we already have
the results of Section 5. If the error parameter in Conjecture 33 can be made into a constant,
instead of N−δ, then the same proof will give us quasipolynomial NP-hardness instead of
subexponential. We also omit this proof.

I Theorem 37. If Conjecture 33 holds and CA can be computed in quasipolynomial time,
then all of NP can be computed in subexponential time.

Proof. Conjecture 33 says that a SAT instance of size n reduces to MPCA(3, N−δ, γ, logN,N)
with N = nO(1), for any choice of γ, δ, where δ can be chosen to be arbitrarily small, and γ
can be chosen to be as many times higher than δ as needed. We may now apply Corollary 36
repeatedly. We are only aiming for rough parameters, and so for simplicity, in the first
application, we replace logN factors with Nδ, and in all applications, we replace the 32 factor
with Nδ, as well. We can do this because Nδ � logN , and MPCA(d, ε, φ,K,N) reduces to
MPCA(d, ε, φ′,K,N ′) whenever φ′ ≤ φ and N ′ ≥ N .

We then find that MPCA(3, N−δ, γ, logN,N) reduces to

MPCA(4, 1
2N
−δ, γ − 8δ, (1 + 4δ) logN, 2N

5δ
),

which reduces to

MPCA(5, 2−2 ·N−δ, γ − 16δ, 2N
13δ

),

etc, which reduces to

MPCA(d,C1 ·N−δ, γ − C2δ, (1 + C3δ) logN, 2N
C4δ)

for some positive constants C1, C2, C3, C4 that depend only on df . This problem in turn
reduces to computing CA(f) exactly, on instances f : [N ′]× [N ′]→ {0, 1}, for N ′ = 2NC4δ .
Now suppose we could compute CA(f) exactly in time quasipolynomial in N ′ = 2NC4δ , i.e.,
in time 2NO(C4δ) . Then by choosing δ to be sufficiently small, given that N = nO(1), we could
then solve SAT in time 2nε , for any ε > 0 of our choosing. J
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