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Abstract. We prove that all functions that have low degree torus poly-
nomials approximating them with small error also have MidBit+ circuits
computing them. This serves as a partial converse to the result that all
ACC functions have low degree torus polynomials approximating them
with small error, by Bhrushundi, Hosseini, Lovett and Rao (ITCS 2019).
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1 Introduction

Proving lower bounds for boolean circuits has been a major quest in complexity
theory. Much of the recent work, for example [6–9, 13, 14, 17, 18] and reference
therein, has focused on proving lower bounds for constant-depth circuits.

The first lower bounds for constant-depth circuits consisting of AND, OR,
NOT gates were proven by Furst, Saxe and Sipser [10], and independently by
Ajtai [1]. The lower bound was improved by Yao [19], and further improved by
H̊astad [12]. Razborov [15] and Smolensky [16] proved lower bounds for constant-
depth circuits that additionally contain MODp gates where p is a prime. Bar-
rington [3] first posed the question of extending lower bounds to the class ACC,
where MODm gates are allowed for a general m.

Williams [18], in a breakthrough result, proved a lower bound against ACC
circuits, where the hard function comes from non-deterministic exponential time
NEXP. The lower bound was improved to average case by Chen, Oliveira and
Santhanam [8]. The hard function was brought down to non-deterministic quasi-
polynomial time NQP by Murray and Williams [14], which was then improved
to an average case lower bound by Chen [7].

All the above lower bounds for ACC use a conversion of ACC circuits to SYM+

circuits, a result first proven by Beigel and Tarui [4] and subsequently improved

upon by Allender and Gore [2]. SYM+ circuits are depth-two size-O(2(logn)
O(1)

)
circuits where the top gate is a symmetric function and the bottom layer has
AND gates of fan-in (log n)O(1). Green, Köbler and Torán [11] improved the
result to show that the symmetric function implemented by the top gate can be
the MidBit function. We define the MidBit function below.

Definition 1 (MidBit). The MidBit function over the input (x1, . . . , xn) behaves
as follows. Consider the sum of inputs

∑n
i=1 xi and consider it’s binary expansion

b`−1b`−2 . . . b0 with ` = dlog2(n+ 1)e many bits, b0 being the least significant bit.
Then MidBit(x1, x2, . . . , xn) = bb`/2c.
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SYM+ circuits where the top gate implements the MidBit function are called
MidBit+ circuits. The formal definition follows.

Definition 2 (MidBit+). A MidBit+ circuit is a depth-two circuit, with a MidBit

gate of fan-in 2(logn)
O(1)

at the top, and AND gates of fan-in (log n)O(1) at the
bottom.

Green, Köbler and Torán [11] proved that all ACC circuits can be converted
into an equivalent MidBit+ circuit. MidBit+ circuits are seemingly simpler in
structure than ACC circuits, as MidBit+ circuits have a fixed depth of two while
ACC circuits can be of arbitrary constant depth. Understanding the power of
MidBit+ can be important for obtaining ACC lower bounds, as a lower bound
for MidBit+ circuits will automatically translate to a lower bound against ACC
circuits.

1.1 Torus Polynomials

While lower bounds against ACC are known from “high” classes, such as NQP,
such lower bounds are not known from “low” circuit classes, such as TC0, the
class of constant-depth polynomial size circuits consisting of Majority gates. In
other words, it is not yet known whether the containment ACC ⊆ TC0 is strict
or not. Also the lower bounds for some classes contained in ACC were obtained
by using algebraic methods, for example in [15, 16], where it was proved that the
concerned class has low degree polynomial approximations of a particular type.
Such algebraic methods were not known to carry over to ACC until Bhrushundi
et al. [5] introduced torus polynomials, which they proposed as an approach to
solving the ACC vs TC0 problem.

Torus polynomials are polynomials that approximate a function in its frac-
tional part, the integer part is ignored. We first define the torus, based on which
we define torus polynomials.

Definition 3 (Torus). For α, β ∈ R, define α ≡ β mod 1 when α − β ∈ Z
(here mod 1 is an abuse of notation).

Define α mod 1 to be the unique β ∈ [−1/2, 1/2) such that α ≡ β mod 1.

Definition 4 (Torus Polynomial). Let P ∈ R[X1, . . . , Xn] be a real multi-
linear polynomial and f : {0, 1}n → {0, 1} be a boolean function. P is a torus
polynomial approximating f with error ε if

∀x ∈ {0, 1}n,
∣∣∣∣P (x)− f(x)

2
mod 1

∣∣∣∣ ≤ ε
Denote by degε(f) as the smallest possible degree of a torus polynomial approx-
imating f with error ε.

All boolean functions have degree n torus polynomials approximating them
with error 0, by considering their unique multilinear extension. Bhrushundi et
al. [5] proved that all functions in ACC have polylogarithmic degree torus poly-
nomials approximating them with small error.
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Theorem 1 ([5]). Let f : {0, 1}n → {0, 1} be a boolean function such that
f ∈ ACC, and n−O(1) ≤ ε < 1/4. Then degε(f) ≤ (log n)O(1).

This makes it important to understand the power of torus polynomials, as
proving a lower bound on the degree of torus polynomials approximating a cer-
tain function with small error will prove a lower bound against ACC. In partic-
ular, proving that the Majority function doesn’t have low degree torus polyno-
mials approximating it with small error will prove the separation ACC ( TC0.
Some evidence towards this was given by Bhrushundi et al. [5] as they proved
that symmetric torus polynomials need high degree to approximate the Majority
function with small error.

1.2 Our Results

Theorem 1 proves that torus polynomials are powerful enough to capture all of
ACC. On the other hand, an upper bound on the power of torus polynomials
was not yet known. We prove that all functions that have low degree torus
polynomials approximating them also have MidBit+ circuits computing them.

Theorem 2. Let n−O(1) ≤ ε < 1/8 and let f : {0, 1}n → {0, 1} be a boolean
function. Then degε(f) ≤ (log n)O(1) =⇒ f ∈ MidBit+.

The proof of Theorem 1 by Bhrushundi et al. [5] has two steps, where they
first convert an ACC circuit into an equivalent MidBit+ circuit and then convert
the MidBit+ circuit into a torus polynomial. Therefore our result can be thought
of as a partial converse to Theorem 1, which we prove in Section 2. We also
prove that the parity of two functions with low degree torus polynomial approx-
imations, also has low degree torus polynomial approximations. We prove this
result in Section 3.

2 Torus Polynomials are Equivalent to MidBit+

We prove an upper bound on the power of torus polynomials, by construct-
ing a MidBit+ circuit for any function that has a low degree torus polynomial
approximation. Any MidBit+ circuit can be converted into a low degree torus
polynomial, as is evident from Bhrushundi et al. [5], but the error of approx-
imation cannot be bounded. We prove that the MidBit+ circuits we construct
satisfy an additional property about the number of AND gates that evaluate
to “true” on a particular input. This property, using ideas from Bhrushundi et
al. [5], can be used to convert the MidBit+ circuits we construct into low degree
torus polynomials with small error.

Theorem 3. Let ε < 1/8. Let f : {0, 1}n → {0, 1} have a degree d torus poly-
nomial approximating it with error ε. Then there is a MidBit+ circuit computing
f of the following form:

– Fan-in of each AND gate is bounded by d.
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– Fan-in of the MidBit gate is 22k−1 − 1 where k = O(d log n+ log(1/ε)) (the
fan-in puts the middle bit at position k).

– For x ∈ {0, 1}n, let A(x) be the number of AND gates that output 1. Then
A(x) ≡ f(x)2k−1 +E(x) mod 2k, where E(x) can be thought of as an error
term and is bounded by 0 ≤ E(x) ≤ 4ε2k.

Proof. Let P =
∑
α cαX

α be a degree d torus polynomial approximating f with
error ε. The first step is to perturb the coefficients by a small amount to make
them rational with a power of 2 in the denominator. Let k be a natural number,
the value of which will be chosen later. Find qα ∈ {0, 1/2k, . . . , (2k − 1)/2k} for
each cα such that

cα − qα mod 1 ≤ 1

2k

Consider Pdisc =
∑
α qαX

α. Let M be the number of monomials in P . Each
monomial can contribute at most 1/2k additional error after changing the co-
efficients, therefore Pdisc is a torus polynomial that approximates f with error
ε′ = ε+M/2k. Therefore the following holds:

∀x ∈ {0, 1}n,
∣∣∣∣Pdisc(x)− f(x)

2
mod 1

∣∣∣∣ ≤ ε′
The next step is to add a small rational number so that the resulting polynomial
is always “more” than the function when considered mod 1. Find the least
natural number q such that ε′ ≤ q/2k. Construct the polynomial Ppos = Pdisc +
q/2k. The following holds now:

∀x ∈ {0, 1}n, 0 ≤ Ppos(x)− f(x)

2
mod 1 ≤ ε′ + q

2k

Now choose a value of k such that

ε′ +
q

2k
≤ 4ε

Note that q/2k ≤ ε′+1/2k as per the choice of q. Also M ≤ (d+1)nd. Substitute
these as well as the value of ε′ to get that the following inequality suffices for
the inequality above to hold.

2(d+ 1)nd + 1

2k
≤ 2ε

A value of k = O(d log n+log(1/ε)) with a large enough constant suffices for this
inequality. All coefficients of Ppos have 2k as the common denominator. The next
step is to clear out this common denominator to make the coefficients integral.
Consider Pint = 2k ·Ppos. It is easy to see that all coefficients of Pint are integers.
For x ∈ {0, 1}n, the following holds:

– f(x) = 0 ⇐⇒ Pint(x) ≡ E(x) mod 2k,
– f(x) = 1 ⇐⇒ Pint(x) ≡ 2k−1 + E(x) mod 2k,
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where 0 ≤ E(x) ≤ 4ε2k < 2k−1. The last inequality holds because ε < 1/8.
Hence the value of f(x) is determined exactly by the kth bit of Pint(x). Note

that Pint can be written as Pint =
∑
α nαX

α where nα ∈ Z and 0 ≤ nα < 2k.
Use this polynomial to construct the following circuit. For each monomial

indexed by α, create nα many copies of an AND gate, the variables fed to the
gate being the variables in the support of α. Note that the fan-in of these AND
gates is bounded by d. Feed all these AND gates to a MidBit gate.

There are at most (d + 1)nd many distinct AND gates and each AND gate
has at most 2k many copies. Therefore the fan-in of the MidBit gate is bounded
by 2k(d+ 1)nd < 22k−1. Add dummy gates which output 0, if needed, to ensure
the fan-in of the MidBit gate becomes 22k−1 − 1.

This circuit will now compute f(x). That the circuit satisfies the third prop-
erty is easy to see. ut

This can now be used to prove Theorem 2 by substituting d = (log n)O(1)

and n−O(1) ≤ ε, and observing the fan-in of the top MidBit gate and AND gates
is as required for the function to be in MidBit+.

Proof (Theorem 2 of Subsection 1.2). Substitute d = (log n)O(1) in Theorem 3.
Observe that the fan-in of the AND gates is bounded by d = (log n)O(1). The fan-
in of the top MidBit gate is 22k−1− 1 for k = O(d log n+ log(1/ε)) = (log n)O(1).

This implies that the fan-in of the MidBit is bounded by 2(logn)
O(1)

. This proves
f ∈ MidBit+. ut

3 Closure under Parity

We prove that if two functions have low degree torus approximations with small
error, then the parity of these functions also has low degree torus approximations
with slightly larger error. The error grows in an additive fashion.

Theorem 4. Let f1 : {0, 1}n → {0, 1} be a boolean function that has a degree
d1 torus polynomial approximating it with error ε1. Let f2 : {0, 1}n → {0, 1}
be another boolean function that has a degree d2 torus polynomial approximat-
ing it with error ε2. Then f1 ⊕ f2 has a degree max(d1, d2) torus polynomial
approximating it with error ε1 + ε2.

Proof. Let P1, P2 be the torus polynomials approximating f1, f2 respectively.
The polynomial that approximates f1 ⊕ f2 is simply P1 + P2. Consider these
three cases to prove that this approximation is correct:

– Let f1(x) = f2(x) = 0, hence f1(x)⊕ f2(x) = 0. In this case

|P1(x) mod 1| ≤ ε1, |P2(x) mod 1| ≤ ε2

Therefore

|P1(x) + P2(x) mod 1| ≤ ε1 + ε2
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– Let f1(x) = 1, f2(x) = 0, hence f1(x)⊕ f2(x) = 1. In this case

|P1(x)− 1/2 mod 1| ≤ ε1, |P2(x) mod 1| ≤ ε2

Therefore
|P1(x) + P2(x)− 1/2 mod 1| ≤ ε1 + ε2

Similar analysis works for f1(x) = 0, f2(x) = 1.
– Let f1(x) = f2(x) = 1, hence f1(x)⊕ f2(x) = 0. In this case

|P1(x) + 1/2 mod 1| ≤ ε1, |P2(x) + 1/2 mod 1| ≤ ε2

Therefore
|P1(x) + 1/2 + P2(x) + 1/2 mod 1| ≤ ε1 + ε2

Note that P1(x) + 1/2 + P2(x) + 1/2 ≡ P1(x) + P2(x) mod 1. Hence

|P1(x) + P2(x) mod 1| ≤ ε1 + ε2

This proves that P1 +P2 approximates f1⊕f2 within error ε1 +ε2 in all possible
cases. Note that the degree of P1 + P2 is max(d1, d2). Hence this is the desired
polynomial to approximate f1 ⊕ f2. ut

4 Future Directions

We have proved that the parity of two functions, that have torus approximations,
has a torus approximation as well. It will be interesting to see whether the same
can be proven for other ACC functions, such as AND,OR,MODm. If all these
can be proven, it may provide an alternate proof to the fact that ACC has low
degree torus approximations.
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