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Abstract

We study the amortized circuit complexity of boolean functions. Given a circuit model F
and a boolean function f : {0, 1}n → {0, 1}, the F-amortized circuit complexity is
defined to be the size of the smallest circuit that outputs m copies of f (evaluated on
the same input), divided by m, as m→∞. We prove a general duality theorem that
characterizes the amortized circuit complexity in terms of “formal complexity measures”.
More precisely, we prove that the amortized circuit complexity in any circuit model
composed out of gates from a finite set is equal to the pointwise maximum of the family
of “formal complexity measures” associated with F . Our duality theorem captures
many of the formal complexity measures that have been previously studied in the
literature for proving lower bounds (such as formula complexity measures, submodular
complexity measures, and branching program complexity measures), and thus gives a
characterization of formal complexity measures in terms of circuit complexity. We also
introduce and investigate a related notion of catalytic circuit complexity, which we show
is “intermediate” between amortized circuit complexity and standard circuit complexity,
and which we also characterize (now, as the best integer solution to a linear program).

Finally, using our new duality theorem as a guide, we strengthen the known upper
bounds for non-uniform catalytic space, introduced by Buhrman et. al [BCK+14] (this is
related to, but not the same as, as our notion of catalytic circuit size). Potechin [Pot17]
proved that for any boolean function f : {0, 1}n → {0, 1}, there is a catalytic branching
program computing m = 22

n − 1 copies of f with total size O(mn) — that is, linear size
per copy — refuting a conjecture of Girard, Koucký and McKenzie [GKM15]. Potechin
then asked if the number of copies m can be reduced while retaining the amortized
upper bound. We show that the answer is yes: if f has degree d when represented as
polynomial over F2, then there is a catalytic branching program computing m = 2( n

≤d)

copies of f with total size O(mn).

†Part of this work was done while the authors were at the Institute for Advanced Study.
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1. Introduction

An ubiquitous theme in theoretical computer science and related fields is the study of direct
sum problems. While appearing in many different forms, they are all usually variants of the
following question:

Is the best way of performing some computational task T many times in parallel
simply to compute T independently each time, or, can we achieve an economy
of scale, and compute all copies of T more efficiently on average?

Alternatively phrased, these types of problems study the amortized complexity of com-
putation. Informally, if we are measuring the computational cost C of performing a task T ,
then in the direct sum problem we are interested in the behaviour of

˜C(T ) := lim
m→∞

C(mT )

m

where mT represents the task of performing T in parallel m times1. If the cost C is
subadditive — that is, C(A + B) ≤ C(A) + C(B) — then the above limit exists and is
equal to its infimum by an application of Fekete’s Lemma2, and we call the cost ˜C(T ) the
amortized complexity of computing T .

In many settings, amortized complexity is studied explicitly as a phenomenon of interest.
For example:

• In information theory, classic results such as Shannon’s Source Coding theorem and
the Slepian–Wolf theorem characterize the amortized communication required when
sending m→∞ independent copies of a random variable M over a communication
channel (possibly with some side information) in terms of quantities such as the entropy
and mutual information.

• In communication complexity, much work has been spent investigating the direct sum
problem in various communication models. For example, in the model of deterministic
communication complexity, Feder, Kushilevitz, Naor, and Nisan [FKNN95] showed
that if a single copy of a function f requires C bits of communication, then the
amortized cost of computing f in parallel m→∞ times is Ω(

√
C) per copy. On the

other hand, in randomized communication complexity — generalizing the example
from information theory given above — amortized communication cost was shown
by Braverman and Rao to be exactly equal to the so-called information complexity
[BR14].

1Depending on the situation, it may be more convenient to think of m instances of T as either a “sum”
or a “product” — we have stated amortized complexity for “sums”, but in the latter case, we would rather
be studying the value of C(Tm)1/m as m→∞.

2This useful basic lemma was first obtained in [Fek23], see for the proof [FR18].
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• In probabilistically checkable proofs the direct sum problem for 2-prover games is
studied — these are games where a Verifier sends inputs x, y to two separate Provers,
who must each send back messages to the Verifier without communicating with each
other. Raz showed (in his now famous parallel repetition theorem [Raz98]), that the
acceptance probability of the Verifier can be driven down exponentially by playing
many games in parallel (this corresponds directly to a tensor product of games).

However, sometimes amortized complexity can turn out to be the right parameter to
study even if it is not apparent from the definition of the problem. A key example is the
problem of determining the minimum value ω ∈ R such that any two n× n matrices can
be multiplied together using O(nω) arithmetic operations (i.e. the matrix multiplication
exponent). This is one of the central open problems in algorithms and computational
complexity as many algorithms use matrix multiplication as a subroutine. It is known that
ω ≥ 2, since we must read all of the O(n2) input values, while a series of algorithms has
improved the upper bound from ω ≤ 3 all the way to ω ≤ 2.372 . . . [LG14, AW20]. At a
first glance, this problem does not have a direct-sum flavour; but, as explored in [Str86],
following [Gar85], it turns out that ω is exactly determined by the asymptotic tensor rank
of a certain tensor T : that is

˜R(T ) := lim
m→∞

R(T⊗m)1/m = 2ω

where T⊗m is the m-fold tensor product of T and R is the tensor rank.
In order to study the asymptotic tensor rank (with the goal of understanding the matrix

multiplication exponent ω), Strassen introduced a beautiful and very general duality theory
for preorders on semirings [Str86, Str87, Str88], now termed Strassen duality and an active
area of study [CVZ18, Zui18, Fri20, Vra20]. In the case of tensors, the essence of the theory
is as follows. Given two 3-tensors A : Fn1 × Fn2 × Fn3 → F and B : Fm1 × Fm2 × Fm3 → F
we say that A restricts to B, written A ≥T B, if there are linear maps Li : Fmi → Fni

such that B = A ◦ (L1, L2, L3). (This is the 3-tensor equivalent of multiplying a matrix on
the left and right by a matrix.) One of the main outcomes of Strassen’s duality theory is
that determining the asymptotic rank of tensors is essentially equivalent to the problem of
understanding the family of all functions µ : {tensors} → R≥0 such that

• µ is multiplicative under tensor product ⊗, and additive under direct sum ⊕,

• µ is monotone under ≤T , that is if A ≤T B then

µ(A) ≤ µ(B),

• µ is normalized, so that at the diagonal tensor 〈n〉 we have

µ(〈n〉) ≤ n.3
3Strassen formally puts the stronger normalization µ(〈n〉) = n, which, for the purposes discussed here, is

equivalent to requiring µ(〈n〉) ≤ n.
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These maps µ are called spectral points, and the set of all such mapsX is called the asymptotic
spectrum of tensors. One of the main results of Strassen’s duality theory (specialised to
tensors) states that:

Theorem 1.1 (Strassen’s Duality Theorem). For any tensor T ,

˜R(T ) = max
µ∈X

µ(T ).

In other words: understanding the matrix multiplication exponent is equivalent to
understanding maxµ∈X µ(T ) for the special matrix multiplication tensor T .

Readers who are familiar with circuit complexity may feel that the above description
of spectral points is somewhat familiar to them — this is a for very good reason! Recall
that a boolean formula is a type of boolean circuit that, starting with a list of input literals
x1, x2, . . . , xn, x1, . . . , xn, applies a sequence of fan-out-1 AND and OR gates to compute
some target function f : {0, 1}n → {0, 1}. Since all gates have fan-out 1, the topology of
a boolean formula is a binary tree, and we therefore measure the size of the formula by
the number of leaves in the tree. For any boolean function f we let F(f) be the size of
the smallest boolean formula computing f . We note that it is one of the long-standing
open problems in circuit complexity to prove superpolynomial (indeed, even super-cubic
[Hås98, Tal14]) lower bounds on F(f) for any explicit boolean function f .

A classic approach for proving lower bounds on the size of formulas uses the so-called
formal complexity measures [Weg87, Khr72]. A formal complexity measure is a function

µ : {n-bit boolean functions f} → R≥0

satisfying the following properties:

• µ is monotone with respect to AND and OR, that is for any boolean functions f, g,

µ(f ∧ g) ≤ µ(f) + µ(g),

µ(f ∨ g) ≤ µ(f) + µ(g).

• µ is normalized, that is, for every input literal `,

µ(`) ≤ 1.

Observe that formula complexity F(f) is itself a formal complexity measure, since the cost
of building a minimal formula for f ∧ g or f ∨ g is never any more than the cost of building f
and g separately and then using the appropriate gate. Thus, if we let C denote the family
of all formal complexity measures, then an easy induction on formulas shows that for any
boolean function f and any formal complexity measure µ

F(f) = max
µ∈C

µ(f).

Now, given the obvious analogy between Strassen duality and formal complexity measures,
it is very natural to ask: What is going on here? Or, less informally:
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Question. Is there a deeper connection between Strassen Duality and boolean
circuit complexity?

The main message of this paper is an answer to this question: Yes!

1.1. Our Results

Duality Theorems for Amortized Circuit Complexity. In this paper we study the
amortized circuit complexity of boolean functions.

To describe our first main theorem, we will proceed with a special case. Let F be any
family of boolean circuits composed of gates chosen from some finite gate set G. Given
a multiset of functions A = {{f1, f2, . . . , fm}}, we define the F-circuit size of A to be the
minimum number of copies of input literals4 required by any circuit in order to output all
functions in A, and denote it by F(A). We then define the amortized circuit complexity of
computing f : {0, 1}n → {0, 1} to be

˜F(f) := lim
m→∞

F(m · f)

m
,

where m · f represents the task of computing m copies of f on the same input x ∈ {0, 1}n.
Just as with formulas, for the family F we can define a corresponding family of formal
complexity measures: these are the functions

µ : {n-bit boolean functions f} → R≥0

such that

• µ is monotone with respect to the gates of F . That is, for any gate g ∈ G applied to
functions f1, f2, . . . , fm and producing functions g1, g2, . . . , gn,

n∑
i=1

µ(gi) ≤
m∑
i=1

µ(fi).

• µ is normalized : for any input literal `, µ(`) ≤ 1.

Let XF denote the set of all F -formal complexity measures. Our first main result is a duality
theorem for amortized circuit complexity à la Strassen.

Theorem 1.2. Let F be any family of boolean circuits composed of gates from some finite
gate set G. For any boolean function f : {0, 1}n → {0, 1},

˜F(f) := max
µ∈XF

µ(f).

4This is the standard measure of size for many circuit models that cannot copy intermediate computations,
such as boolean formulas, branching programs, and comparator circuits. Our general theorem statement can
also handle other standard definitions of size; this example is just given for expository purposes.
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Figure 1: A comparator gate.

The above result for formulas follows since amortized formula size is just formula
size. In fact, our main theorem (Theorem 3.1) is actually significantly more general than
Theorem 1.2, as it can handle various generalizations of circuits, allowing more general
measures of “size”, gates with “filters” that only allow particular boolean functions as inputs,
and other modifications (cf. Section 3).

As we have alluded to in the previous section, our main theorem was directly inspired by
Strassen’s theory of asymptotic spectra for semirings. Indeed, our main technical theorem
(Theorem 3.5) can morally be interpreted as a special case of Strassen’s theory where
the underlying algebra happens in a semigroup instead of a semiring, which turn out
to completely capture computation by standard circuit models. We give a new proof of
Strassen’s duality for semigroups using linear programming duality that is significantly
simpler than the more general duality theorem for semirings, which we hope will be of
independent interest (see Section 3 for more details).

To capture one nice corollary of our duality theorem, consider the model of comparator
circuits. These are circuits composed of two types of gates: comparator gates, which take in
as input two bits a, b and output the bits in sorted order (a ∧ b, a ∨ b) (see Figure 1). The
corresponding family of formal complexity measures satisfy the following inequalities, for all
boolean functions f, g and any input literal `,

µ(f ∧ g) + µ(f ∨ g) ≤ µ(f) + µ(f)

µ(`) ≤ 1.

These formal complexity measures are known in the literature as submodular complexity
measures, since the first inequality is a form of the submodular law. Submodular complexity
measures were introduced and studied by Razborov [Raz92] (independently of comparator
circuits), and he showed that a complexity measure he had earlier defined — called the rank
measure [Raz90] — was submodular. In the same paper, by a simple and clever argument,
Razborov also proved that every submodular complexity measure µ satisfies µ(f) = O(n),
showing that these measures cannot be used to provide strong lower bounds.

Theorem 1.3 (Theorem 2 in [Raz92]). For any submodular complexity measure µ and any
boolean function f depending on n variables, µ(f) = O(n).

Therefore, as an immediate corollary of our duality theorem, we obtain linear upper
bounds on the amortized comparator circuit complexity of any function f .

5



Corollary 1.4. For any boolean function f : {0, 1}n → {0, 1},

˜CC(f) = O(n),

where ˜CC(f) is the amortized comparator circuit size of computing f .

We note that this also follows from the results of Potechin [Pot17] (although, it is not
directly observed in Potechin’s paper), who explicitly constructed a branching program
witnessing that amortized branching program complexity is O(n); however, Potechin’s
argument is notably more complex than Razborov’s. We also note that this result is quite
remarkable since comparator circuits cannot copy intermediate computations, and so there
is no way to create many copies of f from one copy [Sub90].

Amortized Complexity and Catalytic Algorithms. Next, let µ be a submodular (or
“comparator circuit”) complexity measure, and suppose that we had proved the inequality
µ(f) ≤ µ(g) held for µ. Then, clearly, it also holds that µ(f) + µ(h) ≤ µ(g) + µ(h) for any
boolean function h. Or, said another way: when presented with the inequality µ(f) ≤ µ(g),
how do we know that we didn’t first prove µ(h) + µ(f) ≤ µ(h) + µ(g) and then cancel
µ(h) from each side? This phenomenon turns out to be intimately related to the notion
of catalytic algorithms. That is, we can consider a comparator circuit C which takes an
extra input h, as some arbitrary boolean function, and outputs another “fresh” copy of h at
the end of its computation (thus, h acts as a “catalyst”, using terminology borrowed from
chemical reactions).

From this observation, we are naturally led to define the catalytic size of a circuit
family F , denoted Fcat. This is the size of the smallest F-circuit computing a function f
for which there exists a multiset of boolean functions A that the circuit can take as input
for free, as long as it outputs another copy of A at the end of the computation. As we will
see later, it is easy to show that

˜F(f) ≤ Fcat(f) ≤ F(f)

for any circuit model F , and in fact we will be able to give a characterization of Fcat as
the integral optimum of the linear program that we construct for proving our main duality
theorem Theorem 3.1 (this is a nice side-effect of our simplified proof of Strassen duality for
semigroups). We again refer to Section 3 for details.

Improved Upper Bounds for Catalytic Space by Symmetry. The notion of cat-
alytic circuit size that we have introduced above is similar to (but not the same as)
the notion of catalytic space that has been recently studied in a sequence of papers
[BCK+14, GKM15, Pot17].

Let us recall the notion of catalytic space, introduced by Buhrman et al. [BCK+14].
A catalytic space Turing Machine is a TM that comes equipped with a special auxiliary
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“catalytic tape” that, at the beginning of the computation, is filled with some “junk bits”.
The Turing Machine is then free to use this auxiliary tape for free, as long as it restores
the catalytic tape to its original configuration at the end of the computation. Notably:
the Turing Machine does not know the contents of the catalytic tape before it starts its
computation — this is in contrast to our notion of a catalytic circuit above, which is allowed
to depend on its catalyst. Buhrman et al. [BCK+14] showed the surprising result that a
catalytic tape can actually help in computation.

We will be interested in the non-uniform version of catalytic space Turing Machines,
introduced by Buhrman et. al [BCK+14] and further studied by Girard, Koucký, and
Mckenzie [GKM15]. These are called m-catalytic branching programs, and are defined
as follows. Given a boolean function f : {0, 1}n → {0, 1}, we construct a branching
program with m start nodes s1, s2, . . . , sm, m accept nodes a1, a2, . . . , am, and m reject
nodes r1, r2, . . . , rm, with the following special property. On any input x ∈ {0, 1}n, if
f(x) = 1 then for each i ∈ [m], the computation path starting at si ends at ai. On the
other hand, if f(x) = 0, then for each i ∈ [m], the computation path starting at si ends at
ri. Clearly, if we have a branching program computing f once of size s, we can create an
m-catalytic branching program for f with size O(ms), simply by repeating the branching
program independently m times.

We first note that our above duality theorem does not apply to catalytic branching
programs directly. It does indeed apply to branching programs, however, it turns out that
the “right” model of amortized branching programs for proving the duality theorem is slightly
more general than the definition of catalytic branching programs in that it does not require
the above “pairing property” between source nodes and sink nodes. Rather, on an input x,
a computation path starting at si can end up at any sink node it wants.

With regards to m-catalytic branching programs, Girard, Koucký, and McKenzie
[GKM15] asked the following question:

Question. For which boolean functions f : {0, 1}n → {0, 1} is the size of the
smallest m-catalytic branching program for f much smaller than O(ms), where
s is the size of the smallest branching program for f?

In a surprising result, Potechin [Pot17] proved that any function f : {0, 1}n → {0, 1} is
computable by an m-catalytic branching program of size O(mn) — that is, linear size per
copy — with the caveat that m is enormous (doubly exponential in n). Potechin then asked
whether or not it is possible to reduce the number of copies m in the construction. We give
an answer both to this question and also to Girard, Koucký, and McKenzie’s question above:
it is possible to reduce both the number of copies and the total size whenever f has low
degree as an F2-polynomial.

Theorem 1.5. Let f = {0, 1}n → {0, 1}, and let d = deg2(f) be the degree of f as a
polynomial over F2. Then there is an m-catalytic branching program computing f in total
size O(mn) with m = 2( n

≤d).
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While our duality theorem does not directly imply this theorem, it played an im-
portant role in discovering the proof, as we now sketch. As we have mentioned above,
Razborov [Raz92] proved that any submodular complexity measure µ satisfies µ(f) = O(n)
for any n-variable boolean function f . Razborov used a randomized construction which
exploited the following key symmetry property: if f0, f1 are both uniformly random boolean
function on n− 1 variables and f is a uniformly random boolean function on n variables,
then

(xn ∧ f0) ∨ (xn ∧ f1) ∼ (xn ∧ f0) ∨ (xn ∧ f1) ∼ f

where by X ∼ Y we mean that the two random variables X and Y have the same distribution.
We first prove that if we explicitly enforce these symmetry properties, then we can

strongly improve the upper bounds on µ, and indeed we can already do this for branching
program complexity measures. Towards this, in the next lemma by a symmetric formal
complexity measure we mean a measure satisfying µ(f⊕i) ≤ µ(f) for every boolean function f
and every i ∈ [n], where f⊕i is the boolean function obtained by negating the ith input to f .

Theorem 1.6. For any symmetric branching program or submodular complexity measure µ
and any boolean function f ,

µ(f) ≤ 2Davg(f)

where Davg(f) is the minimum, over any decision tree computing f , of the expected number
of queries made by the tree on uniform distribution of inputs.

Unfortunately, we cannot (yet) prove the above theorem for arbitrary branching program
measures. However, by symmetrizing over the orbit Orb(f) of f under the action of negating
any subset of inputs, it turns out that we can use the argument in the above theorem
to compute all of Orb(f) efficiently on average by a small catalytic branching program
(cf. Lemma 4.12). Then, by an extension of Potechin’s construction (utilizing the decision
tree argument above), we show that it suffices to take m = |spanF2

(Orb(f))| in order to
compute f by an m-catalytic branching program of total size O(mn) (cf. Theorem 4.13),
where spanF2

(Orb(f)) is the linear span of the functions in Orb(f) when treated as vectors
over F2. The above theorem then follows since if deg2(f) = d then deg2(g) ≤ d for all
g ∈ Orb(f) (as we are just negating input variables), and so we can bound the size of
spanF2

(Orb(f)) by a dimension argument. See Section 4 for details.

1.2. Related Work

As we have mentioned above, the notion of catalytic space was introduced by Buhrman
et al [BCK+14], where they showed the surprising result that a logspace Turing Machine
equipped with a catalytic tape can compute all of TC1. These results are closely related to
earlier results of Barrington [Bar89] and Ben-Or and Cleve [BC92] — for instance, it is easy
to see that any width-w permutation branching program that cycle-computes a boolean
function f in the sense of [Bar89] is also a catalytic branching program computing w/2
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copies of f . Catalytic space algorithms have also recently seen application in improved
algorithms for the Tree-Evaluation Problem in a recent paper of Cook and Mertz [CM20].

In combinatorics, the asymptotic spectrum of graphs was introduced in [Zui19] to char-
acterize the Shannon capacity of graphs, which is the combinatorial notion introduded by
Shannon [Sha56] to understand the zero-error communication capacity of a noisy communi-
cation channel. Various extensions to the realm of quantum information were considered
in [LZ21]. Jensen and Vrana employed Strassen’s duality theorem to study the asymp-
totic properties of Local Operations and Classical Communication (LOCC) in quantum
information theory [JV20].

Fritz introduced for the first time a semigroup version of the Strassen duality in [Fri17]
(independent of the work of Strassen), and the reader will find our results to have similar
flavour, albeit that we work in a more “finite” setting in several respects. His proof is based
on the Hahn–Banach theorem. Extensions of the Strassen duality theory in several directions
have been introduced in [Fri20] and [Vra20] recently.

1.3. Paper Organization

The rest of this paper is organized as follows. In Section 2, we give a detailed introduction to
modelling boolean circuits as abstract semigroups equipped with preorders. Our introduction
uses three running examples: boolean formulas, branching programs, and comparator circuits.
In Section 3 we prove our main duality theorem, as well as our theorem characterizing
“catalytic size”. In Section 4 we give our new upper bounds on amortized complexity and
catalytic space by exploiting symmetry.

2. Circuit models as pre-orders

In this section we give an extended introduction to the paradigm of describing circuit models
as preorders.

Definition 2.1. A preorder on a set S is a relation P ⊆ S2 that is reflexive, in that
(a, a) ∈ P for every a ∈ S, and transitive in that (a, b) ∈ P and (b, c) ∈ P implies (a, c) ∈ P
for all a, b, c ∈ S. If P is a pre-order then we will use the notation a ≤P b whenever
(a, b) ∈ P .

Pre-orders are not unfamiliar to theoretical computer science—they appear prominently
in various settings in the form of reductions. Here we will also think of pre-orders as
reductions, but with a circuit-building flavour. In this introduction we will be guided by
three concrete and familiar circuit models: boolean formulas, branching programs and
comparator circuits. After having discussed those in some detail, we discuss an approach
that generalizes the concrete instances.
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2.1. Boolean Formulas

Throughout, let x1, x2, . . . denote variables that take boolean values, and let x1, x2, . . .
denote their negations. As usual, by a literal we mean any variable or any negated variable.
Let F = Fn denote the set of all boolean functions {0, 1}n → {0, 1}. Since we will generally
be interested in computing collections of boolean functions, we let NF denote the set of all
collections of boolean functions, that is, all multisets of elements of F , encoded as a vector
of multiplicities. For multisets we use the notation {{f1, . . . , fn}}.

A boolean formula is a tree whose leaf nodes are labelled by literals and whose internal
nodes are labelled by ∧ (the logical AND) or ∨ (the logical OR). In other words, a boolean
formula is a circuit that computes a boolean function from input literals two types of
gates—the AND gate, and the OR gate—which both have fan-out one. The size of a boolean
formula is the number of leaf nodes, and the formula size of a boolean function f is the
size of the smallest formula computing it, denoted F(f). For example the following boolean
formula of size three computes the boolean function (x1 ∧ x2) ∨ x1:

x1

x2

x1

∨
∧ (x1 ∧ x2) ∨ x1

A natural and standard concept is the notion of a formal complexity measure. This is
any function µ : F → R≥0 such that for any literal ` and any f, g ∈ F :

• µ(`) ≤ 1,

• µ(f ∨ g) ≤ µ(f) + µ(g),

• µ(f ∧ g) ≤ µ(f) + µ(g),

By induction over the tree-structure of the the boolean formula we obtain the important
property that for any boolean function f and any formal complexity measure µ, the formula
size of f is at least µ(f),

µ(f) ≤ F(f).

We also note that F(f) satisfies these three properties, and so it itself is also a formal
complexity measure.

From the definition of boolean formulas it is immediate that a single boolean formula
can only compute a single boolean function. To compute a collection of boolean functions
{{f1, . . . , fm}} we thus need a collection of boolean formulas, that is, a forest of trees
with leaf nodes labelled by literals and internal nodes labelled by ∨ or ∧. Therefore, we
must define the formula size of a multiset as the sum of the formula size of each element,
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F({{f1, . . . , fm}}) =
∑m

i=1 F(fi). In particular, if we define the amortized formula size of
a boolean function f by ˜F(f) := limm→∞ F(m · f)/m, where m · f := {{f, . . . , f}} is the
multiset in which f appears m times, then we find that

µ(f) ≤ ˜F(f) = F(f).

The above discussion of computing a collection of boolean functions by formulas should feel
like a strange exercise—clearly, formulas cannot compute collections of boolean functions in
an interesting way. However, this simple treatment of boolean formulas prepares us for the
discussion of the richer circuit models that are to follow, in which amortization does allow for
clever algorithms. Before going to these other cicuit models, we introduce a preorder point
of view for boolean formula computation, and relate it to the formal complexity measures.

Definition 2.2. Let 1 be a formal symbol, which we will call the unit and which will be our
measure of cost. Let S = NF∪{1} be the set of all collections consisting of elements of F or
the element 1. Define the ordering �F on S as follows. First, for any boolean functions f, g
define

{f ∧ g} ≤ {f, g}, {f ∨ g} ≤ {f, g}.

Second, for any literal `, let {`} ≤ {1}. Finally, let �F ⊇ ≤ be the smallest pre-order
containing ≤ that satisfies the following properties:

• Forgetting. If A ⊆ B is an inclusion of multisets, then A �F B.

• Parallel Computation. If A �F B then A+ C �F B + C.

• Subroutine Composition. If A �F B and B �F C then A �F C.

The intended interpretation of �F is that it “builds” boolean formulas. The way to read,
for example, the inequality {f ∧ g} �F {f, g} is that f ∧ g can be obtained from f and g
using a boolean formula gate. The inequality {`} �F {1}, on the other hand, should be
read as indicating that we have literals available at cost one. Finally, the three generating
rules respectively correspond to (1) allowing (forests of) formulas to forget formulas in the
computation, (2) to allow multiple disjoint formulas to do parallel computation, and to (3)
allow formulas to be used in new formulas as subroutines.

The point of defining the preorder �F is that for any f ∈ F and literals `i we have
{f} �F {`1, . . . , `m} if and only if f can be computed by a formula whose leaf nodes
are labelled by `1, . . . , `m. More generally, {f1, . . . , fm} �F {g1, . . . , gk} if and only if the
boolean functions f1, . . . , fm can be computed from the boolean functions g1, . . . , gk by a
boolean formula (or rather by a “generalized” boolean formula in which the leaf nodes are
labeled by g1, . . . , gk instead of literals).

How does the preorder �F relate to the formal complexity measures µ that we defined
ealier? We first naturally extend the formal complexity measures µ to functions NF → R≥0
by saying, for any multiset A ∈ S, that µ(A) =

∑
f∈A µ(f). These functions are precisely
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the functions S → R≥0 that are monotone under �F and additive under taking the addition
of multisets, where we define addition on multisets as the disjoint union

{{a1, . . . , am}}+ {{b1, . . . , bk}} := {{a1, . . . , ak, b1, . . . , bk}},

which matches the notation NF that we use for multisets of elements of F .
How does the preorder �F relate to the formula size? A central concept here and later is

the notion of rank. We define the rank R(A) of a collection of Boolean functions A ∈ S, with
respect to the pre-order �F, as the smallest number n ∈ N such that A �F n := {{1, . . . ,1}},
where in the multiset on the right-hand side the element 1 appears n times. From how we
have set up the pre-order (in particular, from the rule {`} ≤ {1} and the fact that any
function can be computed by some boolean formula) we see first of all that the rank is
finite, and second of all that the rank R precisely equals formula size F (which we defined
as the smallest number of leaf nodes in any boolean formula computation). Naturally, we
define the amortized rank of a boolean function f as ˜R(f) := limm→∞R(m ·f)/m, so that ˜Requals ˜F, and we have the important property that

µ(f) ≤ ˜R(f) = R(f).

Again, in richer circuit models to come the equality between ˜R(f) and R(f) may become a
strict inequality.

Finally, we point out four good properties that the pre-order �F has. These properties
we will see in the other circuit models that we will discuss and will be a sufficient condition
in the main duality theorem of this paper.

• First, the preorder �F is finitely generated, in the (to be made precise) sense that only
finitely many rules are needed to generate the preorder. Intuitively this corresponds
to the circuit model having a finite gate set.

• Second, the preorder is bounded, in the sense that every boolean function has a finite
rank. This corresponds to the circuit model being complete, in that t can compute
any boolean function.

• Third, the preorder is non-negative, in the sense that if A ⊆ B is an inclusion of
multisets, then A �F B. This property is called non-negativity as it can be equivalently
defined as A �F A + B for any A,B, and it intuitively corresponds to a formula
being able to compute all functions in A by first computing all of A and B and then
“forgetting” about B.

• Finally, �F is a semigroup preorder in the sense that if A �F B, then A+C �F B+C
for any multiset of boolean functions C. As we said before, this corresponds to “parallel
composition”: if we have a “generalized” formula that computes A from leaves labelled
with elements of B, and another formula computing C, then we can put these formulas
“side-by-side” and compute A+ C from B + C.
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2.2. Branching Programs

We now explore branching programs as preorders. As in the previous section we introduce
an ordering on the set S = NF∪{1} that will correspond to branching program computation.

We offer two equivalent descriptions of branching program. A branching program is a
circuit that computes a collection of boolean functions using two types of gates: the query
gate, which takes as input a boolean function f and outputs f ∧ xi and f ∧ xi for some
variable xi, and the OR gate, which takes as input two boolean functions f and g and
outputs f ∨ g. We measure the size of a branching program as the number of edges in the
naturally associated directed graph. The branching program size of a collection of boolean
functions is the smallest size of any branching program computing these functions. We
denote the branching program size of a collection of boolean functions A ∈ S by BP(A).

An equivalent description of branching programs is as follows. Consider a directed
acylic graph with some dedicated start nodes s1, . . . , sn and some dedicated output nodes
a1, . . . , am. The start nodes have in-degree zero and the output nodes have out-degree zero.
All other nodes have unbounded in-degree, and out-degree two, and the two outgoing arcs
are labelled by xi and xi respectively. Given an input x, every output node aj computes a
boolean function by taking the OR-sum over all directed paths from any start node si to
aj of the AND-product of the arc labels on the path. For example the following branching
program of size four computes the boolean functions f1 = x1 ∨ x2 and f2 = x1 ∨ x2:

s1

s2

a1 f1

a2 f2

x1

x2

x1

x2

and the following branching program of size eight computes the boolean functions {f1, f2},
where f1 = ((x1 ∨ x2) ∧ x1) ∨ ((x1 ∨ x2) ∧ x3) and f2 = ((x1 ∨ x2) ∧ x1) ∨ ((x1 ∨ x2) ∧ x1):

s1

s2

a1 f1

a2 f2

x1

x2

x1

x2

x3

x1

x3

x1

Note that, we do not require the start nodes si and output nodes aj to be paired up in
any way, that is, we do not care from what start node a path starts that reaches an output
node. Also, we do not require the output nodes to come in accept–reject pairs aj , rj as is
sometimes done in the literature. That is, the collection of boolean functions {{f1, . . . , fn}}
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computed by our kind of branching program cannot necessarily be written as a disjoint
union of collections {g, g} of a boolean function g and its negation g. In this sense our
model is more general and subsumes the other models in the literature.

Neither boolean formulas nor branching programs can directly copy intermediate results,
in the sense that neither model can simulate a copy gate x 7→ (x, x) [Sub90]. Note, however,
that there is a crucial difference between boolean formulas and branching programs: in
a boolean formula every gate outputs a single boolean function, whereas in a branching
program the query gates output two boolean functions. Thus a branching program can
compute a collection of boolean functions in a potentially interesting way using overlapping
subcomputations, whereas a boolean formula can compute a collection of boolean functions
only by computing each boolean function completely separately. It is thus meaningful
to introduce the amortized branching program size of a boolean function f as ˜BP(f) =
limm→∞ BP(m ·f)/m where m ·f = {{f, . . . , f}} is the multiset in which f appears m times.
(Interestingly, ˜BP(f) can be strictly smaller than BP(f), as we will discuss later!)

For branching programs a central concept is that of a branching program measure. This
is any function µ : F → R≥0 such that for any literal ` and any f, g ∈ F :

• µ(`) ≤ 1,

• µ(f ∨ g) ≤ µ(f) + µ(g),

• µ(f ∧ xi) + µ(f ∧ xi) ≤ µ(f) + 2.

By induction over the branching program we see that for any boolean function f and any
branching program measure µ the branching program complexity of f is at least µ(f). Not
only that is true, but it is even true that µ(f) ≤ ˜BP(f),

µ(f) ≤ ˜BP(f) ≤ BP(f).

We now give the preorder point of view for branching programs.

Definition 2.3. Define the ordering �BP on S as follows. First, for any boolean func-
tions f, g ∈ F and any input variable xi define

{{f ∨ g}} ≤ {{f, g}}
{{f ∧ xi, f ∧ xi}} ≤ {{f,1,1}}.

Second, for any literal ` define {`} ≤ {1}. Finally, we let �BP ⊃ ≤ be the smallest ordering
containing ≤ satisfying the following properties, for A,B,C ∈ S:

• If A ⊆ B then A �BP B.

• If A �BP B then A+ C �BP B + C.

• If A �BP B and B �BP C then A �BP C.
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The preorder �BP “builds” branching programs in the sense that {f} �BP n :=
{{1, . . . ,1}} if and ony if there is a branching program that computes f and that uses n/2
query gates. More generally, {{f1, . . . , fm}} �BP {{g1, . . . , gk,1, . . . ,1}} if and only if there
is a branching program computing all of the boolean functions f1, . . . , fm from the boolean
functions g1, . . . , gk using as many query gates as there are units 1 in the multiset on the
right-hand side.

How does �BP relate the the branching program measures µ? Linearly extending any
branching program measure µ to a function S → R≥0, the branching program measures
µ : S → R≥0 are precisely the functions S → R≥0 that are monotone under �BP and
additive under taking the union of multisets.

How does �BP relate to the branching program size BP and the amortized branching
program size ˜BP? We define the rank R(A) of a collection of boolean functions A ∈ S with
respect to �BP as the minimum n ∈ N such that A �BP n. From the definition of �BP

we see that R is equal to branching program size BP. We define the amortized rank by

˜R(f) = limm→∞R(m · f)/m where m · f = {{f, . . . , f}} is the multiset in which f appears
m times. The amortized rank thus equals the amortized branching program complexity ˜BP.We thus have the important property again that

µ(f) ≤ ˜R(f) ≤ R(f).

Besides the branching program measures lower bounding the amortized branching
program size, we point out another interesting property. If µ(f) ≤ µ(g) for boolean functions
f and g, then for any boolean function h it also holds that µ({{f, h}}) = µ(f) + µ(h) ≤
µ(g) + µ(h) = µ({{g, h}}). This statement is related to the phenomenon of a catalyst : it
is possible that {{f, h}} �BP {{g, h}} but not {f} �BP {g}, in which case we say that
the boolean function h (or generally some collection of boolean functions) is a catalyst
that enables the branching program inequaly {{f, h}} �BP {{g, h}}. The name catalyst is
fitting because h is used as an input of the program, but also appears as an output of the
program. From this observation we are naturally lead to define the catalytic branching
program complexity Rcat(f) = BPcat(f) as the smallest number n ∈ N such that there
exists a collection of boolean functions A ∈ S for which {f}+A �BP n +A. From general
considerations that we go into later we have

max
µ

µ(f) ≤ ˜R(f) ≤ Rcat(f) ≤ R(f).

The main goal in Section 3 will be to understand which of these inequalities may be strict
and when.

Finally, observe that the branching program preorder �BP has all the properties that
we saw for the boolean formula preorder �F: it is bounded (any function can be computed
by a branching program), nonnegative (we can forget outputs), finitely generated (there is a
finite gate set) and a semigroup preorder (we may compose branching programs).
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2.3. Comparator Circuits

A comparator circuit is a circuit that computes a collection of boolean functions from a
collection of literals using negation gates and a comparator gate which, given two boolean
functions f and g as input, outputs the boolean functions f ∨ g and f ∧ g. We will measure
the size of a comparator circuit as the number of literals used at the start of the circuit; it
is known that the number of gates is polynomially related to this measure without loss of
generality [GR20]. The comparator circuit size of a collection of boolean functions A ∈ S is
the smallest size of a comparator circuit computing A and we denote this by CC(A). In a
figure, if we draw the comparator gate as

f

g

f ∧ g

f ∨ g

then we can compose comparator gates to, for instance, compute the collection of functions
{x1 ∧ x2, (x1 ∨ x2) ∧ x2, 1} via the following comparator circuit of size three:

x1

x2

x2

x1 ∧ x2

(x1 ∨ x2) ∧ x2

1

For any boolean function f we let ˜CC(f) := limm→∞ CC(m · f)/m be the amortized com-
parator circuit size, where m · f = {{f, . . . , f}} is the multiset in which f appears m
times.

Definition 2.4. Define the ordering �CC on S = NF∪{1} as follows. First, for any boolean
functions f, g define

{{f ∨ g, f ∧ g}} ≤ {{f, g}}.

Second, for any literal ` define {`} ≤ {1}. Finally, we let �CC ⊃ ≤ be the smallest ordering
containing ≤ satisfying the following properties, for A,B,C ∈ S:

• If A ⊆ B, then A �CC B.

• If A �CC B, then A+ C �CC B + C.

• If A �CC B and B �CC C, then A �CC C.
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Everything that we have discussed for branching programs works here, mutatis mutandis.
Rank R and amortized rank ˜R equal comparator circuit size CC and amortized comparator
circuit size ˜CC. As with formulas and branching programs, there is a corresponding
complexity measure for comparator circuits called a submodular complexity measure.

Definition 2.5. A submodular complexity measure is any function µ : F → R≥0 such that
for any literal ` and any f, g ∈ F :

• µ(`) ≤ 1,

• µ(f ∨ g) + µ(f ∧ g) ≤ µ(f) + µ(g).

Submodular complexity measures were introduced by Razborov [Raz92], independently
of comparator circuits, in order to study a complexity measure he introduced called the
rank measure [Raz90]. By induction over the comparator circuit we see that for any boolean
function f and any submodular measure µ the comparator circuit size of f is at least µ(f)
(see, e.g. [RPRC16]). But not only that is true, any submodular complexity measure µ even
lower bounds the asymptotic comparator circuit size ˜CC,

µ(f) ≤ ˜CC(f) ≤ CC(f).

The comparator circuit preorder �CC has all the properties that we saw for the boolean
formula preorder �F and the branching program preorder �BP: it is bounded (any function
can be computed by a comparator circuit), nonnegative (we can forget computational
results), finitely generated (there is a finite gate set) and a semigroup preorder (we may
compose comparator circuits).

2.4. Abstract Framework

Having seen three concrete circuit models described as preorders, and having seen the
recurring concept of formal complexity measures and rank functions, we will now take a
more general approach. The goal of this part is to set up a general framework and define
concepts that cover a general notion of a circuit model, and in particular boolean formulas,
branching programs and comparator circuits.

Semigroups of multisets over a finite set

We begin by describing the general kind of objects that we study. Let F be any finite set.
Let S = NF be the set of non-negative integer vectors indexed by F . For any two vectors
s = (sf )f∈F ∈ S and t = (tf )f∈F ∈ S we define the sum s+ t = (sf + tf )f∈F as the usual
vector sum. With this operation the set S is a semigroup. We may identify the standard
basis elements of S with the elements of F . Under this identification we may think of the
elements of S as formal linear combinations of the elements of F with non-negative integer
coefficients. Alternatively, we may think of the elements of S as multisets of elements of F .
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Namely, the element (sf )f∈F ∈ S corresponds to the multiset in which the element f has
multiplicity sf .

Preorders

First of all, we recall that a pre-order on a set S is a relation P ⊆ S2 such that for every
a ∈ S it holds that (a, a) ∈ P and for every a, b, c ∈ S it holds that (a, b) ∈ P and (b, c) ∈ P
implies (a, c) ∈ P . For any preorder P and for every a, b ∈ S we will write a ≤P b if and
only if (a, b) ∈ P .

On the set S = NF there is a natural preorder, which we call the pointwise preorder.
This preorder is defined by saying that for every a, b ∈ S we have a ≤ b if and only if for
every f ∈ F it holds that af ≤ bf . The pointwise preorder will play an important role in
our proofs. Since this is arguably the standard preorder on NF we will denote the pointwise
preorder simply by ≤.

We are interested in preorders on S of a special kind. These preorders behave well with
respect to the semigroup structure of S and have some additional natural properties. In
order to discuss them we need to introduce some basic terminology regarding preorders.

We begin by defining a notion of boundedness for preorders. This notion will allow us to
define a rank function on S later.

Definition 2.6. For any subset U ⊆ S we say that a preorder P on S is U -bounded if for
every s ∈ S there are elements u1, . . . , un ∈ U such that s ≤P u1 + · · ·+ un.

Secondly, we will be interested in preorders that have the following composition property.

Definition 2.7. We call a preorder P a semigroup preorder if for every a, b, c, d ∈ S it holds
that if a ≤P b and c ≤P d, then a+ c ≤P b+ d.

For example, the pointwise preorder is a semigroup preorder.
Thirdly, we discuss a natural non-negativity property for preorders.

Definition 2.8. We say that P is non-negative if for every a, b ∈ S it holds that a ≤P a+ b.

Let us pause for a moment in order to discuss what the non-negativity property means.
Thinking of the elements of S as resources and of P as a collection of feasible transformations
between resources, the non-negativity property says that we may always transform a+ b to
a, that is, we may always throw away part of our resources.

Note that the pointwise preorder on S that we defined earlier is non-negative. In fact,
one verifies that for every preorder P on S it holds that P is non-negative if and only if P
extends the pointwise preorder. For semigroup preorders, the non-negativity property has
the following simple characterization.

Lemma 2.9. Let P be a semigroup preorder. Then P extends the pointwise preorder if and
only if for every s ∈ S it holds that 0 ≤P s.
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Proof. Suppose that P extends the pointwise preorder. Clearly, for every s ∈ S we have
0 ≤ s in the pointwise preorder and so 0 ≤P s. On the other hand, suppose that 0 ≤P s
for every s ∈ S. Suppose that a ≤ b. Then there is an element c ∈ S such that b = a+ c.
We have 0 ≤P c and a ≤P a, and thus a = a + 0 ≤P a + c = b, since P is a semigroup
preorder.

Finally, we introduce a natural notion of finiteness for preorders.

Definition 2.10. We say that a preorder P is finitely generated if there exists a finite
collection of elements (a1, b1), . . . , (an, bn) ∈ P, called generators, such that for every (a, b) ∈
P there are non-negative integers yi ∈ N such that a =

∑n
i=1 yiai and b =

∑n
i=1 yibi.

In other words, P is finitely generated if any valid inequality a ≤P b can be obtained as a
non-negative integer combination of the finite collection of generating inequalities ai ≤P bi.

When a preorder P has all the above properties, we call it a good preorder:

Definition 2.11 (Good preorder). Given S = NF and a subset U ⊆ S, we say that a
preorder P on S is good if P is a non-negative, finitely generated, U -bounded, semigroup
preorder.

Example 2.12. Let S = Nk. Let U = {u} with u = (1, . . . , 1). Let P be the pointwise
preorder on S. Then P is good.

More generally, again for S = Nk, let U be any collection of vectors such that for every
1 ≤ i ≤ k there is an element u ∈ U such that ui > 0. Again let P be the pointwise preorder
on S. Then P is good.

We finish by connecting back to our discussion of the concrete circuit models (boolean
formulas, branching programs, comparator circuits) and pointing out that in those situ-
ations we are considering the semigroup S = NF∪{1} where F is the set of all boolean
functions {0, 1}n → {0, 1}, the element 1 is a formal symbol, and U = {1} consists only of
the element 1.

Additive Monotones

Motivated by the formal complexity measures, branching program measures and comparator
circuit measures we define the general concept of additive monotones. Given a preorder P on
the set S = NF , we say a function µ : S → Q≥0 is P -monotone if for any a, b ∈ S if a ≤P b,
then µ(a) ≤ µ(b). We call µ additive if for any a, b ∈ S we have µ(a+ b) = µ(a) + µ(b). We
say that µ is U -normalized for a subset U ⊆ S if for every u ∈ U it holds that µ(u) ≤ 1.
When U is clear from the context we will say that µ is an additive monotone to mean that
it is additive, monotone and U -normalized.

For f ∈ F let ef ∈ NF be the vector that is zero everywhere except in coordinate f .
In other words, ef encodes the multiset {{f}} and by a slight abusive of notation can be
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identified with f itself. Clearly, if µ is additive, then µ is completely determined by the
values (µ(ef ))f∈F that µ takes on F .

An important property of additive monotones µ, which follows immediately from the
definition, is that

µ(a) ≤ µ(b) ⇐⇒ µ(a+ c) ≤ µ(b+ c)

for any a, b, c ∈ S. In other words, additive monotones cannot distinguish between the
inequality a ≤P b and a+ c ≤P b+ c.

Catalysts

The observation that additive monotones cannot distinguish a ≤P b from a+c ≤P b+c gives
rise to the notion of a catalyst, which will play an important role in our duality theorem.
Consider an inequality of the form a+ t ≥P b+ t for some elements a, b, t ∈ S. Think of
this inequality as a transformation from the resources a and t to the resources b and t. The
resource t enables the transformation, but is in the end not consumed. Thus, we call such
an inequality catalytic and we call the element t a catalyst.

The knowledgeable reader may now be wondering whether this abstract notion of a
catalyst is related to the model of catalytic space computation of Buhrman et al. [BCK+14],
and while we will prove a new result about catalytic space computation later, it will come
about differently. That is, we do as of yet not know how to model catalytic space computation
using the abstract notion of a catalyst that we discuss here.

When P is a non-negative finitely generated semigroup preorder on S, there is a simple
characterization of catalytic inequalities in P in terms of the pointwise preorder.

Lemma 2.13. Let P be a good preorder with generators (vi, wi). For every a, b ∈ S, the
following two statements are equivalent.

1. There exists an element t ∈ S such that a+ t ≥P b+ t.

2. There exist non-negative integers yi ∈ N such that a +
∑

i yi(vi − wi) ≥ b in the
pointwise preorder.

Proof. Suppose that a + t ≥P b + t. Since P is generated by (vi, wi), there exist non-
negative integers yi ∈ N such that a + t =

∑
i yiwi and b + t =

∑
i yivi. Then we have∑

i yivi − b = t =
∑

i yiwi − a. It follows that a +
∑

i yi(vi − wi) = b, and in particular,
a+

∑
i yi(vi − wi) ≥ b.

On the other hand, suppose that a+
∑

i yi(vi−wi) ≥ b. Then a+
∑

i yivi ≥ b+
∑

i yiwi.
From combining the generating inequalities wi ≥P vi we also have a+

∑
i yiwi ≥P a+

∑
i yivi.

Since P extends the pointwise preorder, it then follows that a+
∑

i yiwi ≥P b+
∑

i yiwi.

We finish by isolating a simple trick for catalytic inequalities that we will use together
with Lemma 2.13 later.
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Lemma 2.14. Let P be a semigroup preorder. If a+ t ≥P b+ t, then ma+ t ≥P mb+ t
for every m ∈ N.

Proof. We give a proof by induction on m. The base case m = 1 is true by assumption. The
induction hypothesis is that (m−1)a+t ≥P (m−1)b+t. For the induction step we start with
ma+t = (m−1)a+a+t. Next, the base case implies that (m−1)a+a+t ≥P (m−1)a+b+t.
Finally, the induction hypothesis implies that (m − 1)a + b + t ≥P (m − 1)b + b + t. We
combine all of this to conclude that ma+ t ≥P mb+ t.

Ranks

As we have seen in our earlier concrete discussion of circuit models as preorders, the notion
of rank should be thought of as a complexity meausure. Here we define it generally, and
look precisely into two variations: the amortized rank and the catalytic rank.

Let P be a non-negative semigroup preorder on S that is U -bounded for some subset
U ⊆ S. We will use P and the elements of U to define three natural rank functions on S:
the rank, the catalytic rank, and the amortized rank. Our main objective is to understand
these rank functions.

Definition 2.15. For every s ∈ S we define the rank of s, denoted by R(s), as the smallest
number n ∈ N such that there exist elements u1, . . . , un ∈ U such that s ≤P u1 + · · ·+ un.
For every s ∈ S we define the catalytic rank of s, denoted by Rcat(s), as the smallest number
n ∈ N such that there exists an element t ∈ S, the catalyst, and elements u1, . . . , un ∈ U
such that s + t ≤P u1 + · · ·+ un + t. For every s ∈ S we define the amortized rank of s,
denoted by ˜R(s), as the infimum ˜R(s) := infn R(ns)/n.

In other words, the rank function R(s) tells us the cost of the element s in terms of the
elements of U . The catalytic rank is a variation on rank that allows for an extra element to
act as a catalyst. Finally, the amortized rank measures the amortized cost of ns = s+ · · ·+s
(n times) when n ∈ N goes to infinity.

We call any function φ : S → R sub-additive if for every s, t ∈ S it holds that φ(s+ t) ≤
φ(s) +φ(t). Rank, catalytic rank, and amortized rank are sub-additive. This follows directly
from the assumption that P is a semigroup preorder. Since rank is sub-additive and bounded,
it follows from Fekete’s Lemma that ˜R(s) = limn→∞R(ns)/n, which motivates the name
amortized rank.

The important relation between the three ranks is:

Lemma 2.16. ˜R(s) ≤ Rcat(s) ≤ R(s).

Proof. Suppose that R(s) = n. Then s ≤P u1 + · · ·+ un for some ui ∈ U . This gives the
inequality s+ t ≤P u1 + · · ·+ un + t with the trivial catalyst t = 0, and so Rcat(s) ≤ n.

Suppose that Rcat(s) = n. Then s+ t ≤P u1 + · · ·+ un + t for some ui ∈ U and t ∈ S.
From Lemma 2.14 it follows that ms+ t ≤P m(u1 + · · ·+ un) + t for every m ∈ N. We have
ms ≤P ms+ t, since P is non-negative. Thus R(ms) ≤ mn+ R(t), and so ˜R(s) ≤ n.
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Depending on the choice of S, U and P , the three rank functions R, Rcat and ˜Rmay or may not coincide with each other. We say that the rank function R is additive
if R(s + t) = R(s) + R(t) for every s, t ∈ S. We say that R is additive on multiples if
R(ns) = nR(s) for every n ∈ N and s ∈ S. One verifies directly that R is additive on
multiples if and only if ˜R and R coincide.
Example 2.17. For any choice of U ⊆ S = Nk such that the pointwise preorder is U -bounded,
the rank R is additive on multiples, and thus the three rank functions ˜R, Rcat and R coincide.
We give two examples to see what the rank functions look like.

Let U = {u1, . . . , uk} where u1 = (1, 0, . . . , 0), u2 = (0, 1, . . . , 0), etcetera, are the vectors
of weight one. Then the pointwise preorder is U -bounded. For every s ∈ S, the rank is
given by R(s) =

∑
i si. This rank function is additive.

Let U = {u} with u = (1, . . . , 1). Then the pointwise preorder is U -bounded. For
every s ∈ S, the rank is given by R(s) = maxi si. Athough this rank is additive on multiples,
it is not additive in the general sense. For example, for k = 2, we have R((1, 1)) = 1 while
also R((0, 1)) = 1, R((1, 0)) = 1 and (0, 1) + (1, 0) = (1, 1).
Example 2.18. In this example, R and Rcat do not coincide. Let S = N3 and let U = {u}
where u = (1, 0, 0). Let P be the good preorder generated by

(1, 0, 1) ≥P (0, 1, 1), (2, 0, 0) ≥P (0, 1, 0), (2, 0, 0) ≥P (0, 0, 1).

Then R((0, 1, 0)) = 2, while Rcat((0, 1, 0)) = 1 since (1, 0, 0) + (0, 0, 1) ≥P (0, 1, 0) + (0, 0, 1).
Example 2.19. In this example, ˜R and Rcat do not coincide. Let S = N2 and let U = {u}
where u = (1, 0). Let P be the good preorder generated by (2, 0) ≥P (0, 3). Then we have
R((0, 1)) = Rcat((0, 1)) = 2 while ˜R((0, 1)) = 2/3.

Recall that µ : S → Q≥0 is called an additive monotone if µ(a + b) = µ(a) + µ(b),
a ≤b =⇒ µ(a) ≤ µ(b) for all a, b ∈ S, and µ(u) ≤ 1 for every u ∈ U . Additive monotones
have the following important property:

Lemma 2.20. If µ is an additive monotone, then for any s ∈ S it holds that µ(s) ≤ ˜R(s).

Proof. By monotonicity and U -normalization, it follows that µ(s) ≤ R(s). Then for any
m ∈ N, it follows from additivity that µ(s) = µ(ms)/m ≤ R(ms)/m. Taking limits we find
µ(s) ≤ ˜R(s).

General circuit preorder

We started this section by discussing concrete circuit models as preorders (boolean formulas,
branching programs, comparator circuits) and we then proceeded by describing a general
abstract framework of concepts like a semigroup of multisets, a good preorder and rank
functions. Here we will connect those two parts by discussing a general circuit preorder that
clearly subsumes the concrete circuit models that have seen. The main point is to see that
this general circuit preorder is a good preorder as defined in Definition 2.11.
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Definition 2.21 (General circuit preorder). As before, 1 denotes a formal symbol. A
general circuit preorder is any preorder � on S = NF∪{1} obtained as follows. Let

{{f1,1, . . . , f1,m1}} ≤ {{g1,1, . . . , g1,k1 ,1, . . . ,1︸ ︷︷ ︸
n1

}}

{{f2,1, . . . , f2,m2}} ≤ {{g2,1, . . . , g2,k2 ,1, . . . ,1︸ ︷︷ ︸
n2

}}

...
{{fr,1, . . . , fr,mr}} ≤ {{gr,1, . . . , gr,kr ,1, . . . ,1︸ ︷︷ ︸

nr

}}

be a finite collection of inequalities, for boolean functions fi,j , gi,j ∈ Fn and numbers ni ∈ N.
Second, for any literal, we let {`} ≤ {1}. Third, we let � ⊃ ≤ be the smallest ordering
containing ≤ satisfying the following properties, for A,B,C ∈ S:

• If A ⊆ B, then A � B.

• If A � B, then A+ C � B + C.

• If A � B and B � C, then A � C.

Finally, we assume that for every boolean function f there is a number n ∈ N such
that {f} � n where n = {{1, . . . ,1}} is the multiset in which 1 appears n times.

The general circuit preorder � encodes, in a very general sense, a circuit model with a
finite “gate set” or set of allowed operations on boolean functions. The allowed operations
that may be performed in the model each come with their own cost ni ∈ N, and with literals
available at cost one.

Lemma 2.22. The general circuit preorder � of Definition 2.21 is a good preorder.

Proof. We need � to be U -bounded for some subset U ⊆ F , finitely generated, non-negative
and a semigroup preorder. By definition, the preorder is U -bounded for U = {1}, finitely
generated by the explicitly given generators, non-negative (because of the explicitly imposed
requirement that A ⊆ B implies A � B) and a semigroup preorder (because of the explicitly
imposed A � B implies A+ C � B + C).

One verifies directly that the boolean formula preorder �F (Definition 2.2), the branching
program preorder �BP (Definition 2.3) and the comparator circuit preorder �CC (Defini-
tion 2.4) are special cases of the general circuit preorder and are thus good preorders by
Lemma 2.22.

With respect to the general circuit preorder �, the rank R(A) of A ∈ S is by definition
(Definition 2.15) the smallest number n ∈ N such that A � n := {{1, . . . ,1}}. The rank
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equals the complexity of computing a collection of boolean functions with respect to the
agreed upon gate set and the prescribed costs ni per gate.

The amortized rank ˜R(f) of f ∈ F is by definition (Definition 2.15) given by ˜R(f) =
limm→∞R(m ·f)/m. The amortized rank thus equals the amortized complexity of a boolean
function.

In between the rank and the amortized rank, we have the catalytic rank Rcat(f), which
is defined (Definition 2.15) as the smallest number n ∈ N such that there exists an element
A ∈ S, the catalyst, for which {f}+A � n +A. The catalytic rank equals the complexity
of computing f with respect to the gate set at given costs, with the additional freedom of
using any collection of functions as a catalyst—we can use these boolean functions at zero
cost in our circuit, as long as we make sure to recompute and return them at the end of the
computation.

Finally, a formal complexity measure µ : S → R≥0 with respect to � is any addi-
tive �-monotone function S → R≥0. These properties and previously discussed general
considerations give the “trivial” inequalities:

max
µ

µ(f) ≤ ˜R(f) ≤ Rcat(f) ≤ R(f).

The goal in the next section will be to understand these inequalities more precisely; which
ones can be strict and how can we recognize that? We will approach this question by means
of a duality theorem.

As a last remark, we emphasize that other concrete circuit models will fit in this
framework as well. The notion of asymptotic rank will be more interesting for some than
for others. Perhaps the most natural model to consider, besides the aforementioned, is the
boolean circuit model, which computes boolean functions from literals using OR-gates and
AND-gates with fan-out two, say. However, in this model the asymptotic rank becomes
trivial. Namely, this model clearly allows us to copy results at very low cost. Thus the
rank (i.e. circuit size) of m · f := {{f, . . . , f}} is essentially the same as the rank of {f}, and
we find that ˜R(f) = limm→∞R(m · f)/m = 0 for every boolean function f in the boolean
circuit model.

3. Duality

Strassen [Str88], motivated by the problem of designing fast matrix multiplication algorithms,
introduced the theory of asymptotic spectra to study the amortized (or asymptotic) properties
of basic objects in mathematics and computer science, and in particular bilinear maps
(i.e., tensors). The duality that we introduce here can be thought of as the simplest
meaningful instance of this theory. We give a self-contained proof using linear programming
duality, and we connect our duality to the theory of formal complexity measures.

Our duality theorem will be phrased in terms of a collection of additive monotones S →
Q≥0, of which we briefly recall the definition. Let µ : S → Q≥0. We say that µ is additive if
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for every a, b ∈ S we have µ(a+ b) = µ(a) + µ(b). If µ is additive, then µ is determined by
its restriction to the standard basis elements of S, that is, we can think of µ as a function
F → Q≥0. For a preorder P on S we say that µ is P -monotone if for every a, b ∈ S if
a ≤P b, then µ(a) ≤ µ(b). We say that µ is U -normalized if for every u ∈ U we have
µ(u) ≤ 1. Let M be the set of all functions µ : S → Q≥0 that are additive, P -monotone
and normalized. We call the elements of M simply the additive monotones.

Theorem 3.1. For every f ∈ F we have that

max
µ∈M

µ(f) = ˜R(f).

In particular, for any boolean function f the maximization of µ(f) over all branching com-
plexity meaures µ equals the amortized branching program size ˜BP(f), and the maximization
of µ(f) over all submodular measures µ (comparator cicuit complexity measures) equals the
amortized comparator circuit size ˜CC(f).

The general picture arising from Theorem 3.1 is that the additive monotones, asymptotic
rank, catalytic rank and rank are related by maxµ∈M µ(f) = ˜R(f) ≤ Rcat(f) ≤ R(f).

Lets take a moment to repeat the concrete meaning of Theorem 3.1. Recall from
our discussion of concrete circuit models that, for any branching program complexity
measure µ it holds that µ lower bounds the amortized branching program size µ(f) ≤ ˜BP(f).
Theorem 3.1 applied to the branching program preorder �BP implies that in fact for every
boolean function f the maximum of µ(f) over all branching program measures µ is equal to
the amortized branching program size, maxµ µ(f) = ˜BP(f).

Similarly, for submodular measures µ it holds that µ lower bounds the amortized
comparator circuit size µ(f) ≤ ˜CC(f), and Theorem 3.1 says that maxµ µ(f) = ˜CC(f) where
the maximization goes over all submodular measures µ.

The amortized rank ˜R being characterized as the pointwise maximum of the additive
monotones µ by Theorem 3.1, what can be said about the catalytic rank Rcat? Recall that
generally ˜R(f) ≤ Rcat(f) with the inequality potentially being strict. During our proof of
Theorem 3.1, in which we phrase maxµ∈M µ(f) as a linear program, we obtain the following
characterization of the catalytic rank.

Theorem 3.2. For every f ∈ F we have that Rcat(f) equals the optimal integral solution
of the dual of the linear program maxµ∈M µ(f).

Obviously, the statement of Theorem 3.2 will make more sense to us once we have
understood precisely how maxµ∈M µ(f) is a linear program, which we will do in a moment.

Finally, we will prove Theorem 3.1 as a special case of the following preorder version
of the duality theorem (and this is where the preorder point of view on circuit models is
indispensable):

Theorem 3.3. For every u, v ∈ S, the following are equivalent:
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1. µ(v) ≥ µ(u) for every µ ∈M

2. there is an element t ∈ S and an integer k ≥ 1 such that t+ kv ≥P t+ ku

3. there is an integer c ≥ 0 and an integer k ≥ 1 such that for all n ∈ N we have that
nkv + c ≥P nku.

The meaning of Theorem 3.3 is as follows, say for comparator circuits (and the analogous
interpretation obviously holds for branching programs as well). If for two multisets of
functions A = {{f1, . . . , fm}} and B = {{g1, . . . , gk}} and for all submodular measures µ it
holds that µ(A) ≥ µ(B), then there is a collection of (catalyst) functions {{t1, . . . , tr}} such
that from the collection of functions

{{t1, . . . , tr, f1, . . . , f1︸ ︷︷ ︸
k

, . . . , fm, . . . , fm︸ ︷︷ ︸
k

}}

we can compute the collection of functions

{{t1, . . . , tr, g1, . . . , g1︸ ︷︷ ︸
k

, . . . , gm, . . . , gm︸ ︷︷ ︸
k

}}

using a comparator circuit.

3.1. Linear programming

The proof of Theorem 3.1 and Theorem 3.3 is an application of the well-known strong
duality theorem for linear programming:

Theorem 3.4 (Strong duality for linear programming). Let A ∈ Qd1×d2 be a matrix and
let b ∈ Qd1 and c ∈ Qd2 be vectors. Then

max{c · x | x ∈ Qd2
≥0, Ax ≤ b} = min{b · y | y ∈ Qd1

≥0, A
T y ≥ c}.

In other words, in the commonly used notation for linear programs, the following
primal-dual pair of linear programs give the same optimal value.

max c · x
subject to Ax ≤ b

x ≥ 0

min b · y
subject to AT y ≥ c

y ≥ 0

Before going into the full proof of Theorem 3.1, we describe a more explicit instantiation,
in the setting of branching programs, of the ingredients that appear in the proof and in
particular of the linear program to which the strong duality will be applied.
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On the highest level, the primal program max c · x will correspond to maximizing over
branching program complexity measures µ evaluated at a fixed boolean function f , and the
dual program min b · y will correspond to minimizing over amortized branching programs
that compute f .

More precisely, the inequalities in the primal are given by the monotonicity and normal-
ization conditions on µ with respect to the branching program preorder �BP.

max µ(f)
subject to µ(g ∨ h) ≤ µ(g) + µ(g) ∀g, h ∈ Fn,

µ(g ∧ xi) + µ(g ∧ xi) ≤ µ(g) + 2 ∀g ∈ Fn, i ∈ [n],
µ(`) ≤ 1 ∀ literal `,
µ ≥ 0

Thus the primal feasible region will correspond precisely to the branching program complexity
measures µ, and the optimal value is precisely maxµ∈M µ(f).

The dual program corresponds precisely to branching programs that compute f , amor-
tized. Let R denote the set of all generating inequalities for the branching program
preorder �BP, that is, the inequalities

{{f ∨ g}} �BP {{f, g}}
{{f ∧ xi, f ∧ xi}} �BP {{f,1,1}}

{`} �BP {1}

for all boolean functions f, g ∈ Fn, variables xi, and literals `. For any generating inequality
r ∈ R and any boolean function g we will write r ` g if r produces g and we will write
g ` r if r consumes g. For example, for r = “{{f ∨ g}} �BP {{f, g}}” we would write the
three statements r ` f ∨ g, f ` r, and g ` r. To keep track of the varying costs of the
generating inequalities, we set cr = 1 for any literal inequality and cr = 2 for any branching
inequality. In the following dual program, the vector y = (y(r))r∈R will encode the recipe
for a (amortized, as it turns out from careful analysis) branching program that computes f :

min
∑

1`r cry(r)
subject to

∑
r`g y(r)−

∑
g`r y(r) ≥ 0 ∀g ∈ Fn,∑

r`f y(r)−
∑

f`r y(r) ≥ 1

y ≥ 0

In other words, the dual program optimizes over rational linear combinations of the generating
inequalities of �BP, minimizing the generating inequalities that consume 1 and making sure
that, overall, consumption and production at least cancel out, except for when it comes
to the boolean function f of which we want to have a net production of at least one. A
more careful analysis will reveal how feasible vectors y ∈ QR

≥0 are in fact not guaranteed to
correspond to proper branching programs, but at best correspond to catalytic branching
programs and generally to amortized branching programs.
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3.2. Full proof

We will prove in this section the duality theorem for the amortized rank (Theorem 3.1) and
the duality theorem for amortized inequalities (Corollary 3.6).

The following theorem is the main technical duality theorem. Theorem 3.1 and Theo-
rem 3.3 will be derived as a simple consequence afterwards.

Theorem 3.5. For every u, v ∈ S we have that

max
µ∈M

µ(u)− µ(v)

equals the minimum non-negative rational number r such that there exists an element t ∈ S
and an integer k ≥ 1 such that

t+ kv + kr ≥P t+ ku.

Proof. Let d be the number of generators of P . Let e be the cardinality of U . Let f be the
cardinality of F . We will denote the generators of P by (v1, w1), . . . , (vd, wd).

We will apply the strong duality theorem of linear programming (Theorem 3.4) with the
following choice of matrix A and vector b. Let A be the (d+ e)× f matrix with the first d
rows given by the vectors v1 − w1, . . . , vd − wd and the next e rows given by the elements
of U . Let b be the d+ e vector with the first d elements equal to 0 and the next e elements
equal to 1.

Let s = u− v ∈ ZF . In order to prove the theorem, we will prove two claims, namely

max{s · x | x ∈ QF
≥0, Ax ≤ b} = max

µ∈M
µ(u)− µ(v) (1)

and
min{b · y | y ∈ Qd+e

≥0 , A
T y ≥ s} = rmin (2)

where we define rmin to be the minimum r ∈ Q≥0 such that there exists a t ∈ S and an
integer k ≥ 1 such that

t+ kv + kr ≥P t+ ku.

By Theorem 3.4 the left-hand side of (1) equals the left-hand side of (2). It follows that
maxµ∈M µ(u)− µ(v) equals rmin, which proves the theorem.

To prove (1), it suffices to show that

{x ∈ QF
≥0 | Ax ≤ b} = {(µ(f))f∈F | µ ∈M}. (3)

Let x ∈ QF
≥0 satisfy Ax ≤ b. Define the function µx : S → Q≥0 by setting µx(f) = xf for

every f ∈ F , and then extending additively to all of S. Then µx is additive by construction.
It follows from the inequality Ax ≤ b that µx is normalized and P -monotone. Thus µx ∈M .
We see directly that s · x = µx(s). It remains to show that every element µ ∈M is equal
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to µx for some x ∈ QF
≥0 such that Ax ≤ b. This is easy to see, since we may simply define

x = (xf )f∈F by xf = µ(f) for every f ∈ F . Then Ax ≤ b follows from the fact that µ ∈M .
This proves the claim, and thus (1).

We will now prove (2). We first prove that

rmin ≤ min{b · y | y ∈ Qd+e
≥0 , A

T y ≥ s}.

Let y ∈ Qd+e
≥0 satisfy AT y ≥ s. The inequaliy AT y ≥ s says that

y1(v1 − w1) + · · ·+ yd(vd − wd) + yd+1u1 + · · ·+ yd+eue ≥ s = u− v.

There is a positive integer k ∈ N such that all elements kyi are integral. We multiply both
sides of the inequality by k to obtain

ky1(v1 − w1) + · · ·+ kyd(vd − wd) + kyd+1u1 + · · ·+ kyd+eue + kv ≥ ku.

From this it follows using Lemma 2.13 that there exists an element t ∈ S such that

kyd+1u1 + · · ·+ kyd+eue + kv + t ≥P ku+ t.

Thus b · y = yd+1 + · · ·+ yd+e ≥ rmin. This proves one direction of (2).
We will now prove the other direction of (2), namely

rmin ≥ min{b · y | y ∈ Qd+e
≥0 , A

T y ≥ s}.

Suppose that kv + kr + t ≥P ku+ t. It follows from Lemma 2.13 that there is an element
y ∈ Qd+e

≥0 such that

y1(v1 − w1) + · · ·+ yd(vd − wd) + yd+1u1 + · · ·+ yd+eue + v ≥ u

where b · y = yd+1 + · · ·+ yd+e = r. For this y it holds that AT y ≥ s. We conclude that (2)
is true.

Corollary 3.6. For every u, v ∈ S and r ∈ Q≥0, the following are equivalent:

1. µ(v) + r ≥ µ(u) for every µ ∈M

2. there is an element t ∈ S and an integer k ≥ 1 such that t+ kv + kr ≥P t+ ku

3. there is an integer c ≥ 0 and an integer k ≥ 1 such that for all n ∈ N we have that
nkv + nkr + c ≥P nku.

Proof. If µ(v) + r ≥ µ(u) for every µ ∈ M , then maxµ∈M µ(u) − µ(v) ≤ r. Then from
Theorem 3.5 it follows that t+ kv + kr ≥P t+ ku for some t ∈ S and some integer k ≥ 1.

If there is an element t ∈ S such that t+ kv + kr ≥P t+ ku, then from Lemma 2.14 it
follows that there is a constant c ∈ N such that for all n ∈ N we have nkv+nkr+ c ≥P nku.
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If nkv+nkr+c ≥P nku for all n ∈ N, then for every µ ∈M , using that µ is P -monotone
and additive, we have that

nkµ(v) + nkµ(r) + µ(c) ≥ nkµ(u).

Then, using the upper bound r ≥ µ(r), and after dividing by nk on both sides, we get that

µ(v) + r + µ(c)/(nk) ≥ µ(u).

We let n go to infinity to get µ(v) + r ≥ µ(u).

It is worth stating explicitely the special case of Corollary 3.6 where we set r = 0.

Theorem 3.3. For every u, v ∈ S, the following are equivalent:

1. µ(v) ≥ µ(u) for every µ ∈M

2. there is an element t ∈ S and an integer k ≥ 1 such that t+ kv ≥P t+ ku

3. there is an integer c ≥ 0 and an integer k ≥ 1 such that for all n ∈ N we have that
nkv + c ≥P nku.

Proof. The claim follows directly from Corollary 3.6 by setting r = 0.

We also obtain the duality for the amortized rank as a corollary of Corollary 3.6.

Theorem 3.1. For every f ∈ F we have that

max
µ∈M

µ(f) = ˜R(f).

In particular, for any boolean function f the maximization of µ(f) over all branching com-
plexity meaures µ equals the amortized branching program size ˜BP(f), and the maximization
of µ(f) over all submodular measures µ (comparator cicuit complexity measures) equals the
amortized comparator circuit size ˜CC(f).

Proof. The inequality maxµ∈M µ(u) ≤ ˜R(u) is clear. We now prove the other inequality
maxµ∈M µ(u) ≥ ˜R(u). Let r = maxµ∈M µ(u). Then, in particular, r ≥ µ(u) for all µ ∈M .
We apply Corollary 3.6 with v = 0, to obtain that for all n ∈ N we have that nr+o(n) ≥P nu.
This implies that r ≥ ˜R(u).

Remark 3.7. Note that in our definition of M we required that for every µ ∈M it holds
that 0 ≤ µ(u) ≤ 1 for every u ∈ U . We do not require that µ(u) = 1 for every u ∈ U . The
latter would be to strict a requirement, since it would imply by Theorem 3.3 that for every
u1, u2 ∈ U there are an integer k ≥ 1 and an integer c ≥ 0 such that for all n ∈ N we have

nku1 + c ≥P nku2.

The following example gives a choice of S, P and U where this is false.
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Example 3.8. Let S = N2 and let U = {u1, u2} where u1 = (0, 1) and u2 = (1, 0). Let P
be the pointwise preorder on S. Then P is a non-negative, finitely generated, U -bounded,
semigroup preorder. For every s = (s1, s2) ∈ S, we have R(s) = s1 + s2. Not only are u1
and u2 incomparable in P , also there cannot be integers k ≥ 1 and c ≥ 0 such that for all
n ∈ N it holds that nku1 + c ≥P nku2. In other words, u1 and u2 are incomparable even if
we amortize P .

4. Upper Bounds on Amortized and Catalytic Complexity by Symmetry

In the previous sections we have studied in depth the dual role that branching program
complexity measures and submodular measures have in relation to amortized complexity. In
this section we prove upper bounds on such measures as well as explicit efficient constructions
of amortized branching programs.

Symmetry turns out to be the powerful ingredient for our efficient constructions. First,
we consider branching program measures that have a natural symmetry condition. We
prove a strong upper bound on such measures in terms of the average decision tree depth.
Then, we extend this result by proving a strong upper bound for ordinary branching progam
measures on orbits of any boolean function under the natural symmetry.

Second, we use the symmetry ideas thus developed to improve the known bounds for
catalytic space computation in the sense of [BCK+14]. The important hurdle to overcome
in this construction is that in order to get catalytic space algorithms we need the start and
output nodes in our branching programs to be paired up in a stronger fashion than we have
been enforcing so far. This we are able to do by an extensive modification of the catalytic
branching program presented by Potechin [Pot17], keeping careful track of symmetries.

4.1. Symmetry and Formal Complexity Measures

Definition 4.1. A branching program complexity measure is symmetric if µ(f) ≤ µ(f⊕i)
for every boolean function f on n variables and every i ∈ [n], where f⊕i is the function
obtained from f by negating the ith input variable.

As we have mentioned in the introduction, Razborov [Raz92] proved that any submodular
complexity measure µ satisfies µ(f) = O(n) for any n-variate boolean function f . Razborov
used a randomized construction, and his argument uses the following key symmetry property:
if f0, f1 are both uniformly random boolean function on n− 1 variables and f is a uniformly
random function on n variables, then

(xn ∧ f0) ∨ (xn ∧ f1) ∼ (xn ∧ f0) ∨ (xn ∧ f1) ∼ f

where X ∼ Y if the two variables have the same distribution. We first show that by explicitly
introducing these symmetry properties, we can strongly improve the upper bounds, and
already for branching program complexity measures.
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Lemma 4.2. For any symmetric branching program complexity measure µ and any boolean
function f ,

µ(f) ≤ 2Davg(f)

where Davg(f) is the minimum expected number of queries made by any decision tree
computing f over the uniform distribution.

Proof. Let f be any boolean function on n boolean variables, and let T be the decision tree
witnessing Davg(f). Assume that f depends on at least one variable; otherwise the upper
bound is trivial. Without loss of generality, assume that the first variable queried by T is
xn, and note that T gives a representation of f as

f = (f0 ∧ xn) ∨ (f1 ∧ xn)

where f0, f1 are functions that do not depend on xn. Finally, note that Davg(f) = Davg(f
⊕n),

since we can obtain a decision tree for f⊕n from the decision tree for f by negating the first
variable.

By definition of T , we can see that

Davg(f) =
Davg(f0)

2
+
Davg(f1)

2
+ 1.

We claim that µ(f) ≤ 2Davg(f) by induction on n. If n = 1 then since f depends on its
one input variable, it is either xn or its negation, and thus µ(f) ≤ 1 = Davg(f). Since
µ(f) = µ(f⊕n), by the branching program complexity measure axioms we have

2µ(f) = µ(f) + µ(f⊕n)

= µ((f0 ∧ ¬xn) ∨ (f1 ∧ xn)) + µ((f0 ∧ xn) ∨ (f1 ∧ ¬xn))

≤ µ(f0 ∧ ¬xn) + µ(f1 ∧ xn) + µ(f0 ∧ xn) + µ(f1 ∧ ¬xn)

≤ µ(f0) + µ(f1) + 2µ(¬xn) + 2µ(xn)

≤ µ(f0) + µ(f1) + 4.

Now, applying the inductive hypothesis and the definition of Davg, we have

µ(f0) + µ(f1) + 4 ≤ 2Davg(f0) + 2Davg(f1) + 4

≤ 4Davg(f).

Dividing by 2 yields the lemma.

We cannot extend this result to general branching program complexity measures. How-
ever, by symmetrizing, we can still use the above argument to compute the orbit of f
efficiently on average.
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Definition 4.3. For any boolean function f : {0, 1}n → {0, 1} and any T ⊆ [n] let

OrbT (f) := {f⊕S : S ⊆ T}

be the orbit of f under the action of negating any subset of bits in T . Let ΠT denote
the symmetry group of Fn corresponding to this action, so that OrbT (f) = ΠT · f . (Note
that ΠT is a direct product n groups, either S2 in coordinates of T or the trivial group in
coordinates outside of T ). If T = [n] then we will just write Orb(f).

Let f : {0, 1}n → {0, 1} be any boolean function, let i ∈ [n], and let b ∈ {0, 1}. Let
fi←b : {0, 1}n−1 → {0, 1} denote the function obtained from f by substituting in b for the
ith input of f . For any set of functions A let M(A, i, b) := {{gi←b : g ∈ A}} denote the
multiset obtained by substituting b for the ith bit for each function in A, and note that
|M(A, i, b)| = |A| since M(A, i, b) is a multiset. In order to prove our upper bound using
symmetrization, we will need the following group-theoretic lemma.

Lemma 4.4. Let f : {0, 1}n → {0, 1} be a boolean function, let i ∈ [n], and let b ∈ {0, 1}.
Then either

• Orb(fi←1) = Orb(fi←0) and M(Orb(f), i, b) can be partitioned into c ofopies of
Orb(fi←1).

• Orb(fi←1) 6= Orb(fi←0) and M(Orb(f), i, b) can be partitioned into u0 copies of
Orb(fi←0) and u1 copies of Orb(fi←1), where ub = |Orb(f)|/2|Orb(fi←b)|.

In either case, we can write |M(Orb(f), i, b)| = u0|Orb(fi←0)|+ u1|Orb(fi←1)|.

Proof. Let U = [n] \ {i}. We can write Orb(f) = OrbU (f) ∪ OrbU (f⊕i) with |OrbU (f)| =
|OrbU (f⊕i)| since ΠU is a subgroup of Π[n] and acting on f by subgroup of Π[n] refines the
orbit of f under Π[n]. If g, h : {0, 1}n → {0, 1} then let g 'b h if gi←b = hi←b. We first
record some properties of 'b.

• The relation 'b is an equivalence relation.

• If S ⊆ U then since i 6∈ S, g 'b h if and only if g⊕S 'b h⊕S .

Since 'b is an equivalence relation, we know that OrbU (g) for any function g is partitioned
by 'b into sets {S1, S2, . . . , Sm}. Furthermore, since 'b is invariant under the action of ΠU ,
we have that |Si| = |Sj | for each i, j and furthermore ΠU acts on the collection of sets in
the natural way, so m = |Orb(gi←b)|. In other words, M(OrbU (g), i, b) can be partitioned
into u = |S1| = |OrbU (g)|/|Orb(gi←b)| copies of the orbit Orb(gi←b).

First assume that OrbU (f) 6= Orb(f). Then

M(Orb(f), i, b) = M(OrbU (f), i, b) tM(OrbU (f⊕i), i, b)
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where t denotes disjoint union. By applying the above partitioning argument to both
M(OrbU (f), i, b) and M(OrbU (f⊕i), i, b) we get integers u0, u1 such that

u0 =
|OrbU (f⊕i)|
|Orb(f⊕ii←1)|

=
|Orb(f)|

2|Orb(fi←0)|
, u1 =

|OrbU (f)|
|Orb(fi←1)|

=
|Orb(f)|

2|Orb(fi←1)|
,

and M(Orb(f), i, b) is u0 copies of Orb(fi←0) and u1 copies of Orb(fi←1), proving the lemma
in this case.

Now, assume that OrbU (f) = Orb(f), which also implies OrbU (f⊕i) = Orb(f). This
implies that Orb(fi←0) = Orb(fi←1), as for any g ∈ Orb(f) there are sets S, T ⊆ U such
that g = f⊕S = f⊕S∪{i}, and so gi←1 = f⊕Si←1 = f⊕Ti←0. Now, since OrbU (f) = Orb(f) =
OrbU (f⊕i), we have

M(Orb(f), i, b) = M(OrbU (f), i, b) = M(OrbU (f⊕i), i, b).

Since Orb(fi←0) = Orb(fi←1), by applying the above partitioning argument we see that
M(Orb(f), i, b) can be partitioned into some positive number u of copies of Orb(fi←1). In
this case, to see the final claim of the lemma, note that

u = |Orb(f)|/|Orb(fi←1)| = 2u0 = 2u1

and also Orb(fi←1) = Orb(fi←0), so

|M(Orb(f), i, b)| = u|Orb(fi←1)| = u0|Orb(fi←0)|+ u1|Orb(fi←1)|.

The next theorem bounds the complexity of the orbit of f .

Theorem 4.5. For any boolean function f on n bits and any branching program complexity
measure µ

µ(Orb(f)) ≤ 2|Orb(f)|Davg(f).

Proof. The proof is by induction on n, the number of variables on which f depends. If
n = 1 then f = x1, Davg(f) = 1, and Orb(x1) = {x1, x1}, so

µ(x1) + µ(x1) = 2 ≤ 4 = 2|Orb(f)|Davg(f).

Now, for the induction step. Let T be a decision tree for f witnessing Davg(f), and
suppose w.l.o.g. that xn is the first variable queried by the decision tree. We can write
f = (f0 ∧xn)∨ (f1 ∧xn) where fb = fn←b, and note that since T witnesses Davg(f) we have

Davg(f) =
Davg(f0)

2
+
Davg(f1)

2
+ 1.
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Since f depends on xn, the action of negating the nth input partitions Orb(f) into pairs
(g, g⊕n), so, let B be the set of all such pairs. Then, applying the axioms of a branching
program measure, we have

µ(Orb(f)) =
∑

g∈Orb(f)

µ(g)

=
∑

(g,g⊕n)∈B

µ(g) + µ(g⊕n)

=
∑

(g,g⊕n)∈B

µ((g0 ∧ xn) ∨ (g1 ∧ xn)) + µ((g0 ∧ xn) ∨ (g1 ∧ xn))

≤
∑

(g,g⊕n)∈B

µ(g0 ∧ xn) + µ(g1 ∧ xn) + µ(g0 ∧ xn) + µ(g1 ∧ xn)

≤
∑

(g,g⊕n)∈B

µ(g0) + µ(g1) + 4

=
∑

g∈M(Orb(f),n,1)

µ(g) + 2

where the last equality follows since we have substituted in 1 for xn every g in Orb(f) (note
that g⊕n1 = g⊕n0 ). Therefore, by applying Lemma 4.4 we can partition M(Orb(f), n, 1) into
copies of Orb(fn←1),Orb(fn←0). By using the final claim in the lemma, we can write this as∑

g∈M(Orb(f),n,1)

µ(g) + 2 = 2|Orb(f)|+ u0µ(Orb(f0)) + u1µ(Orb(f1))

= 2|Orb(f)|+ |Orb(f)|
2|Orb(f0)|

µ(Orb(f0)) +
|Orb(f)|

2|Orb(f1)|
µ(Orb(f1)).

By the induction hypothesis applied to f0, f1, and using the definition of Davg, this previous
expression is at most

2|Orb(f)|+ |Orb(f)|
2|Orb(f0)|

2|Orb(f0)|Davg(f0) +
|Orb(f)|

2|Orb(f1)|
2|Orb(f1)|Davg(f1)

= 2|Orb(f)|+ |Orb(f)|Davg(f0) + |Orb(f)|Davg(f1)

= 2|Orb(f)|Davg(f).

The proof is complete.

We can use the above argument to improve known amortized circuit complexity upper
bounds for both branching programs and comparator circuits. We will defer the argument
for branching programs to the next section, as it is slightly more complicated (and, as we
will see, it also provides improved bounds on nonuniform catalytic space). For comparator
circuits the argument is significantly simpler, and is illustrated next. The main “trick” in
our argument is the following well-known fact about XOR.

35



Lemma 4.6. Let f : {0, 1}n → {0, 1}n be any boolean function. Then for every function
g ∈ {0, 1}n there is a unique function h : {0, 1}n → {0, 1} such that g = h⊕ f .

Proof. Let h = g ⊕ f .

Theorem 4.7. Let f : {0, 1}n → {0, 1}, and let H ⊆ Fn be any set of boolean functions
such that

• If g ∈ H then g ⊕ f ∈ H.

• Π[n] ·H = H, that is, H is closed under negating any subset of inputs.

• H is closed under negation: if f ∈ H then f ∈ H.

Since H is closed under negating any subset of inputs, let Orb(g1),Orb(g2), . . . ,Orb(gm) be
a partition of H into orbits. Then for any submodular complexity measure µ,

µ(f) ≤ 8

|H|

m∑
i=1

|Orb(gi)|Davg(gi).

Proof. SinceH is closed under negating any subset of inputs, there are functions g1, g2, . . . , gm
such that we can partition H into orbits Orb(g1),Orb(g2), . . . ,Orb(gm). Moreover, as com-
parator circuit complexity measures are also branching program complexity measures, we
can apply Theorem 4.5 to each orbit and get

µ(H) ≤
m∑
i=1

2|Orb(gi)|Davg(gi).

On the other hand, since H is closed under taking ⊕ with f , we can partition the
functions in H up into pairs (g, h) such that g = h ⊕ f . Furthermore, since H is closed
under negation, we have the “complementary” pair (g, h) in H — to see this, note that if
g = h⊕ f , then

g = h⊕ f ⊕ 1 = (h⊕ 1)⊕ f = h⊕ f.

With this in mind, let B be the set of all such pairs, and let B+ be the set of pairs obtained
by keeping exactly one of (g, h) or (g, h) for each pair g, h. Observe that a submodular
complexity measure is also a formula complexity measure — that is, it satisfies the inequalities
µ(f ◦ g) ≤ µ(f) + µ(g) for ◦ ∈ {∧,∨}. Using this fact, for any x, y we have

µ(x) + µ(y) + µ(x) + µ(y) ≥ µ(x ∧ y) + µ(x ∧ y)

≥ µ((x ∧ y) ∨ (x ∧ y))

= µ(x⊕ y).
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Therefore, since H is closed under negation, we have

µ(H) =
∑

(g,h)∈B+

µ(g) + µ(h) + µ(g) + µ(h) ≥
∑

(g,h)∈B+

µ(g ⊕ h) =
|H|µ(f)

4
.

Combining together the two inequalities on µ(H) yields the theorem.

The next lemma gives a nice family of sets H that the previous theorem can be applied
to. We will use it crucially in the next section on improved bounds for catalytic space.

Lemma 4.8. Let f ∈ Fn be any boolean function such that f is not the constant 0. The set
spanF2

(Orb(f)) satisfies the following three properties.

• If g ∈ spanF2
(Orb(f)) then g ⊕ f ∈ spanF2

(Orb(f)).

• spanF2
(Orb(f)) is closed under negating any subset of inputs.

• If g ∈ spanF2
(Orb(f)) then g ∈ spanF2

(Orb(f)).

Proof. It is clear that f ∈ spanF2
(Orb(f)), and also that if g ∈ spanF2

(Orb(f)) then
g ⊕ f ∈ spanF2

(Orb(f)). Now, suppose that g ∈ spanF2
(Orb(f)) and let S ⊆ [n]. We

can write g =
∑m

i=1 fi where fi ∈ Orb(f) for each i. Note that for any functions h1, h2,
(h1 ⊕ h2)⊕S = h⊕S1 ⊕ h⊕S2 . Therefore

g⊕S =

 m∑
i=1

fi

⊕S =

m∑
i=1

f⊕Si ∈ spanF2
(Orb(f))

since f⊕Si ∈ Orb(f) if fi ∈ Orb(f).
Finally, we observe that 1 ∈ spanF2

(Orb(f)), which implies that the set is also closed
under negation since g ∈ spanF2

(Orb(f)) implies g = 1⊕ g ∈ spanF2
(Orb(f)). We proceed

by induction on m ≤ n, the number of variables on which f depends. If m = 0 then f = 1
(since f 6= 0) and we are done. So, by way of induction, assume that if g is any function
depending on m ≥ 1 variables then 1 ∈ spanF2

(Orb(g)). Let f be any function depending
on m+ 1 variables.

If xi is any variable on which f depends, then we can write f = xiq + r as a polynomial
over F2, where q 6= 0, r are polynomials that do not depend on xi. Consider the function
f⊕i = (1 + xi)q + r, which is also in spanF2

(Orb(f)) since spanF2
(Orb(f)) is closed under

negating input variables. Adding these two polynomials together yields

f + f⊕i = xiq + r + (1 + xi)q + r = q.

Since spanF2
(Orb(f)) is closed under negating input variables, and since (g + h)⊕S = g⊕S +

h⊕S , it follows that spanF2
(Orb(q)) ⊆ spanF2

(Orb(f)). By induction, 1 ∈ spanF2
(Orb(q)),

completing the proof of the lemma.
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4.2. Better Bounds for Catalytic Space

In this section we use the arguments from the previous section to improve the known bounds
on catalytic space, a model first introduced in [BCK+14]. The next definition appears in
[GKM15].

Definition 4.9. Let m be a positive integer and let f be a boolean function. An m-catalytic
branching program for a function f is a branching program P with the following properties.
The program P has m start nodes s1, s2, . . . , sm, m accept nodes a1, a2, . . . , am, and m
reject nodes r1, r2, . . . , rm, and satisfies the following property. On any input x and for
any i ∈ [m], if f(x) = 1 then a computation path starting at the node si will end at the
accept node ai, and if f(x) = 0 then a computation path starting at si will end at the reject
node ri.

We note that this is more specialized than our definition of a branching program as
the start nodes and end nodes are paired, whereas the more general notion of a branching
program computing a multiset of functions allows computation paths beginning at any start
node to stop at any sink node. This pairing property is closely related to catalytic space,
thanks to the following proposition of Girard, Koucký, and McKenzie [GKM15].

Proposition 4.10 (Proposition 9 of [GKM15]). Let f be a function that can be computed in
space s using a catalytic tape of size ` ≤ 2s. Then there is a 2`-catalytic branching program
computing f of size 2`+O(s).

Potechin constructed a catalytic branching program computing f with m = 22
n−1

and total size O(mn), and asked if the number of copies required can be reduced while
maintaining the amortized bound of O(n) [Pot17]. In this section we show the answer is
yes, provided that the degree of f is small when representing it as a polynomial over F2.

Our catalytic branching program is an extensive modification of the catalytic branching
program presented by Potechin, and is crucially modelled on the tools we developed in the
previous section. We will construct our branching program out of copies of the following
small component, which we call a swap gate.

Definition 4.11. A swap gate swap(a, b, i) is the function which takes as input two bits
a, b ∈ {0, 1}, as well as an input variable xi, and outputs (a, b) if xi = 0 and (b, a) if xi = 1.

Swap gates have three very nice properties that we will crucially use in our construction.

• Reversible. Swap gates are reversible: swap(swap(a, b, i), i) = (a, b). In the branching
program in Figure 2 this is represented by the fact that if we reverse all directions of
the edges we get another branching program.

• XOR-Invariance. For any boolean function f , if swap(a, b, i) = (c, d) then swap(f ⊕
a, f ⊕ b, i) = (f ⊕ c, f ⊕ d). Indeed, invariance holds for any operator applied to the
inputs.
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a

b

{
a if xi = 0

b if xi = 1{
b if xi = 0

a if xi = 1

xi

xi

xi

xi

Figure 2: A swap gate, implemented by a branching program using 4 edges.

• Input Evaluation. Let g, h : {0, 1}n → {0, 1} be boolean functions, and suppose that
g⊕i = h for some i ∈ [n]. Then swap(g, h, i) = (gi←0, gi←1). This is most easily seen
by a case argument: if xi = 0 then the first output is gi←0 and the second output is
hi←0 = gi←1. On the other hand, if xi = 1 then the first output is hi←1 = gi←0 and
the second output is gi←1.

The next lemma is the main lemma used in our construction, and corresponds exactly to
an instantiation of the argument in Theorem 4.5 as a catalytic branching program. We
note that since our duality theorem (Theorem 3.1) does not apply to catalytic branching
programs (only standard branching programs), we cannot immediately deduce anything
about catalytic branching programs from it; so, instead we will need to proceed directly.
In the next lemma we will discuss branching programs with some “standard” start nodes
(labelled with 1 initially), and other start nodes “labelled” with 0. These nodes can be
ignored, and are just a technical convenience when describing the proof.

Lemma 4.12. For any boolean function f : {0, 1}n → {0, 1} there is a branching program
composed of swap gates that, starting from |f−1(1)| copies of 1 and |f−1(0)| copies of 0,
computes every function in Orb(f). The size of the branching program is 2|Orb(f)|Davg(f).

Proof. We essentially follow the proof of Theorem 4.5, using the inequalities in the proof
to guide the construction of our branching program. As in that theorem, our proof is by
induction on n, the number of variables on which f depends. If n = 1 then f = x1 or x1,
Davg(f) = 1, and Orb(x1) = {x1, x1}. It is easy to see that swap(0, 1, i) = (xi, xi), which is
a branching program of size 4.

Now, by way of induction, suppose that T is a decision tree for f witnessing Davg(f),
and suppose without loss of generality that xn is the first variable queried by the tree. We
can write f = (f0 ∧ xn) ∨ (f1 ∧ xn) where fb = fn←b. Again note that since T witnesses
Davg(f),

Davg(f) =
Davg(f0)

2
+
Davg(f1)

2
+ 1.
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By the induction hypothesis, for b ∈ {0, 1} there is a branching program Pb, composed
only of swap gates, computing every function in Orb(fb) with size 2|Orb(fb)|Davg(fb) from
|f−1b (1)| copies of 1 and |f−1b (0)| copies of 0. Also, since f depends on xn, negating xn
partitions the orbit Orb(f) into pairs (g, g⊕n), so, let B be the set of all such pairs. We
have two cases, depending on the two outcomes of Lemma 4.4.

Case 1. Orb(f0) = Orb(f1).
In this case, let u = |Orb(f)|/|Orb(f1)| be the positive integer such thatM(Orb(f), n, b) =

{{gn←b | g ∈ Orb(f)}} can be partitioned into u copies of Orb(f1). It is easier to see the
proof in “reverse”. That is, suppose that we had computed all of Orb(f) using a branching
program. For each pair (g, g⊕n) ∈ B, applying a swap gate swap(g, g⊕n, xn) will output the
pair (g0, g1) by the Input Evaluation property of the swap gate. Thus, by starting with all
pairs (g, g⊕n) ∈ B, and applying swap gates to each pair, we will obtain (by Lemma 4.4)
u copies of Orb(f1). Now, by applying the reversibility property of swap gates, we can
therefore compute all of Orb(f) from u copies of Orb(f1) using an appropriate number of
swap gates.

Formally, create u copies of the branching program P1, which will now output u copies of
the orbit Orb(f1) = Orb(f0). By using the values ub = |Orb(f)|/2|Orb(fb)| from Lemma 4.4,
and using the final claim in that lemma, we can bound the total size of the branching
program as

2|Orb(f)|+ u · 2|Orb(f1)|Davg(f1) = 2|Orb(f)|+ 2u0|Orb(f1)|Davg(f1) + 2u1|Orb(f1)|Davg(f1)

= 2|Orb(f)|+ 2u0|Orb(f0)|Davg(f0) + 2u1|Orb(f1)|Davg(f1)

= 2|Orb(f)|+ |Orb(f)|Davg(f0) + |Orb(f)|Davg(f1)

= 2|Orb(f)|
(

1 +
Davg(f0)

2
+
Davg(f1)

2

)
= 2|Orb(f)|Davg(f)

where we have also used the definition of average-case decision tree depth. Finally, we note
that |f−1(b)| = u|f−11 (b)| for b ∈ {0, 1}.

Case 2. Orb(f0) 6= Orb(f1).
This case is virtually identical to the previous case. In this case let ub = |Orb(f)|/|Orb(fb)|

be the positive integers such that M(Orb(f), n, b) can be partitioned into ub copies of
Orb(fb) for b ∈ {0, 1}. We once again proceed in “reverse”. Suppose we had a branching
program computing all of Orb(f). Again, for each pair (g, g⊕n) ∈ B, applying a swap gate
swap(g, g⊕n, xn) will output the pair (g0, g1), by the Input Evaluation property of the swap
gate. Thus, by starting with all pairs (g, g⊕n) and applying swap gates, we will produce
u0 copies of Orb(f0) and u1 copies of Orb(f1) by Lemma 4.4. Again, since swap gates are
reversible, we can therefore compute all of Orb(f) from u0 copies of Orb(f0) and u1 copies
of Orb(f1).
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So, using the induction hypothesis, create u0 copies of the branching program P0 and
u1 copies of the branching program P1. As described above, we can compute all of Orb(f)
by using an additional |Orb(f)|/2 swap gates. This means the total size of the branching
program is

2|Orb(f)|+ 2u0|Orb(f0)|Davg(f0) + 2u1|Orb(f1)|Davg(f1)

= 2|Orb(f)|+ |Orb(f)|Davg(f0) + |Orb(f)|Davg(f1)

= 2|Orb(f)|Davg(f).

This completes the proof.

We can use this lemma with the “XOR trick” in Theorem 4.7 to create a catalytic
branching program computing f with much better complexity.

Theorem 4.13. Let f : {0, 1}n → {0, 1} be any boolean function and let d = deg2(f) be the
degree of f when represented as an F2 polynomial. Then f can be computed by an m-catalytic
branching program with m ≤ 2( n

≤d)−1 and with total size O(mn).

Proof. By Lemma 4.8, spanF2
(Orb(f)) is closed under XORing with f and also closed under

the action of Π[n]. Also by Lemma 4.8, 1 ∈ spanF2
(Orb(f)), and so it follows that for any

x ∈ {0, 1}n we have

|{g ∈ spanF2
(Orb(f)) : g(x) = 1}| = |{g ∈ spanF2

(Orb(f)) : g(x) = 0}|

since for every g ∈ spanF2
(Orb(f)), g = 1 + g ∈ spanF2

(Orb(f)). Let C be this number of
1s/0s, and note that C = |spanF2

(Orb(f))|/2.
Let Orb(g1),Orb(g2), . . . ,Orb(gm) be the decomposition of spanF2

(Orb(f)) under the
action of Π[n]. First, apply Lemma 4.12 to each orbit Orb(gi) twice, creating two branching
programs Pi,0, Pi,1 composed of swap gates that each compute all of Orb(gi) . Now, reverse
all the swap gates in Pi,0 for each i ∈ [m], creating a branching program that (intuitively)
computes C copies of 1 and C copies of 0 from spanF2

(Orb(f))
So, we now have two branching programs: one, by taking Pi,1 for i ∈ [m], computing

all of spanF2
(Orb(f)) from C copies of 1 and C copies of 0. The second, by taking Pi,0

for i ∈ [m], gives a branching program computing C copies of 1 and C copies of 0 from
spanF2

(Orb(f)). Now, for each g ∈ spanF2
(Orb(f)), take the node computing g ⊕ f in

the first branching program and merge it with the node taking g as input in the second
branching program. Since the second program is composed entirely of swap gadgets, by
the XOR-invariance property of the swap gadget the program will now output C copies of
1⊕ f = f , and C copies of 0⊕ f = f . This yields a branching program computing C copies
of f at nodes a1, a2, . . . , aC , and C copies of f at nodes r1, r2, . . . , rC ; however, we do not
have the pairing property between start nodes and the accept/reject nodes. To ensure the
pairing property, we create two more copies of the branching program and run it in reverse
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(again, exploiting reversibility of the swap gate): one copy applied to {a1, a2, . . . , aC} and
one copy applied to {r1, r2, . . . , rC}. Finally, the C start nodes of the program will be the
C initial nodes labelled with 1.

Now we estimate the complexity of the program. The size of the program is at
most 6spanF2

(Orb(f))n, since we take 3 copies of a branching program of size at most

2spanF2
(Orb(f))n by Lemma 4.12. Letting deg2(f) = d we see that |spanF2

(Orb(f))| ≤ 2( n
≤d),

since every function in Orb(f) has degree at most d and taking a linear span cannot increase
the degree. This completes the proof.

5. Open Problems

The work presented here suggests many open problems. Most pressingly: what other
“direct-sum type” phenomena can we study using Strassen-type duality theorems? There
are many natural direct-sum type problems in complexity theory that seem amenable to
this technique (such as parallel repetition or information complexity, as discussed in the
introduction). Is there a way to study query or proof complexity models in this framework?

A second group of questions concerns monotone circuit complexity. Unlike the case
with non-monotone circuit complexity, we can use formal complexity measures to actually
prove explicit exponential lower bounds for monotone circuits. For example, in contrast to
the known O(n) bounds for submodular complexity measures shown by Razborov [Raz92],
one can use a monotone submodular complexity measure (the so-called rank measure
[Raz90]) to prove strongly exponential lower bounds on monotone circuit complexity for
comparator circuits, boolean formulas, and switching networks [PR17, PR18]. All of our
duality theorems also hold for monotone circuit complexity, and this shows that amortized
monotone comparator circuit complexity can be strongly exponential! For this reason,
we conjecture that amortized monotone comparator circuit complexity is simply equal to
monotone comparator circuit complexity, and it is natural to wonder if this also holds for
other monotone models.

A final natural question is whether or not it is possible to further improve non-uniform
catalytic space complexity. Similar to the bounds proven by [Pot17], our catalytic space
upper bounds achieve O(n)-size per copy of the function computed, while significantly
decreasing the number of copies. Is it possible to further decrease the number of copies,
perhaps while trading off into the amortized size (that is, increasing O(n) to nO(1))?
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