Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 35 (2021)

Amortized Circuit Complexity, Formal Complexity
Measures, and Catalytic Algorithms

Robert Roberef Jeroen Zuiddam!
McGill University Courant Institute, NYU
robere@cs.mcgill.ca and U. of Amsterdam

jzuiddam@nyu.edu

October 18, 2021

Abstract

We study the amortized circuit complezity of boolean functions. Given a circuit model F
and a boolean function f : {0,1}" — {0,1}, the F-amortized circuit complexity is
defined to be the size of the smallest circuit that outputs m copies of f (evaluated on
the same input), divided by m, as m — co. We prove a general duality theorem that
characterizes the amortized circuit complexity in terms of “formal complexity measures”.
More precisely, we prove that the amortized circuit complexity in any circuit model
composed out of gates from a finite set is equal to the pointwise mazimum of the family
of “formal complexity measures” associated with F. Our duality theorem captures
many of the formal complexity measures that have been previously studied in the
literature for proving lower bounds (such as formula complexity measures, submodular
complexity measures, and branching program complexity measures), and thus gives a
characterization of formal complexity measures in terms of circuit complexity. We also
introduce and investigate a related notion of catalytic circuit complexity, which we show
is “intermediate” between amortized circuit complexity and standard circuit complexity,
and which we also characterize (now, as the best integer solution to a linear program).

Finally, using our new duality theorem as a guide, we strengthen the known upper
bounds for non-uniform catalytic space, introduced by Buhrman et. al [BCK ™ 14] (this
is related to, but not the same as, our notion of catalytic circuit size). Potechin [Pot17]
proved that for any boolean function f :{0,1}"™ — {0, 1}, there is a catalytic branching
program computing m = 22" ! copies of f with total size O(mn) — that is, linear size
per copy — refuting a conjecture of Girard, Koucky and McKenzie [GKM15]. Potechin
then asked if the number of copies m can be reduced while retaining the amortized
upper bound. We make progress on this question by showing that if f has degree d
when represented as polynomial over Fy, then there is a catalytic branching program

computing m = 2(<4) copies of f with total size O(mn).

TPart of this work was done while the authors were at the Institute for Advanced Study.

ISSN 1433-8092

Contents

6

Introduction

1.1 Our Results e
1.2 Technical Overview
1.3 Related Work
1.4 Paper Organization

Circuit Models as Pre-Orders

2.1 Boolean Formulas
2.2 Branching Programs
2.3 Comparator Circuits e

Abstract Framework

3.1 Semigroups of Multisets over a Finite Set
3.2 Pre-Orders e
3.3 Additive Monotones
3.4 Catalysts o
3.5 Ranks e e
3.6 General Circuit Pre-Order
Duality

4.1 Linear Programming e
4.2 Full Proof e

Upper Bounds on Amortized and Catalytic Complexity by Symmetry
5.1 Symmetry and Formal Complexity Measures
5.2 Better Bounds for Catalytic Space

Open Problems

A An Explicit Complexity Measure

23
23
24
25
26
27
29

30
33
34

38
45

49

50

1. Introduction

One of the long-standing frontier problems in circuit complexity is to prove super-polynomial
(indeed, even super-cubic [Has98, Tall4]) lower bounds on the size of boolean formulas
computing any explicitly given boolean function. Recall that a boolean formula is a simple
type of boolean circuit that, starting with a list of input literals x1,xo,...,Tn, Z1, ..., Tn,
applies a sequence of fan-out-1 AND and OR gates to compute some target function
f:{0,1}" — {0,1}. For any boolean function f we let F(f) be the size of the smallest
boolean formula computing f, measured by the number of leaves (input literals) in the
formula.

One of the classic techniques for proving lower bounds on boolean formula size is the use
of formal complezity measures [Weg87, Khr72|. A formal complexity measure is a function

= {n-bit boolean functions f} — R>

satisfying the following two properties:

e /i is monotone! with respect to AND and OR, that is, for any boolean functions f, g,

pn(f A g) < p(f)+p(g),
p(f v g) < p(f)+ug);

e 41 is normalized, that is, for every input literal ¢,

n(l) < 1.

An easy induction on formulas shows that p(f) < F(f) for any formal complexity measure .
Moreover, formula complexity F(f) is itself a formal complexity measure, since the cost of
building a minimal formula for f A g or fV g is never any more than the cost of building f
and g separately and then using the appropriate gate. Thus, if we let M denote the family
of all formal complexity measures, then we have

F(f) = mawe (), 1)
and so formal complexity measures are a complete method for proving lower bounds against
boolean formulas, for the simple reason that F is an element of MFE.

Given that these measures give a complete lower bound method for formulas (and also
given the general lack of techniques for proving lower bounds against most boolean circuit
models), it is natural to wonder about “formal complexity measures” for other boolean
circuit models. Unfortunately, for many of these measures it is known that they do not
characterize the complexity of computation in the corresponding models. For example:

Tt will become clear soon why “monotone” is the appropriate terminology here rather than “subadditive”.

fe s fAg

*fVyg

Figure 1: A comparator gate.

e The submodular complexity measures, introduced by Razborov [Raz92], map boolean
functions to non-negative real numbers and satisfy the following constraints, for all
boolean functions f, g and all input literals ¢:

p(f Ag)+pu(fVvg) <u(f)+nulg)
u(f) < 1.

These can be shown to lower bound the size of comparator circuits [RPRCI16|, which
are circuits composed out of comparator gates that take in two bits a,b and output
the bits in sorted order (see Figure 1). By a clever, though ad-hoc, proof Razborov
showed that u(f) = O(n) for every boolean function f depending on n variables and
every submodular complexity measure p. On the other hand, boolean functions with
exponential comparator circuit complexity exist by counting arguments.

e The branching complexity measures, introduced by Potechin [Pot17], map boolean
functions to non-negative real numbers and satisfy the following constraints®, again
for all boolean f, g and input variables x;:

u(f Nai) + p(f AT) < p(f) +2
u(f Vv g) < p(f)+ pug)
(i) + (@) < 2

An easy induction shows that these measures lower bound deterministic branching
program size, although, in the same work Potechin also proved that u(f) = O(n)
for any branching complexity measure p and any boolean function f depending on
n variables by proving new upper bounds on nonuniform catalytic space (which we
will discuss more later). On the other hand, boolean functions with exponential
deterministic branching program complexity exist by counting arguments.

Thus we are at an impasse. We have several natural circuit families — formulas, comparator
circuits, and deterministic branching programs — and natural formal complexity measures
associated with them. For one family (formulas) we have that the measures completely

2Potechin used a slight variant of our definition (including p(£) < 1 for each literal £). Our definition has
the benefit of lower bounding the number of “wires” quite tightly.

characterize the complexity of computation in the family; for the others, only O(n) bounds
are possible, and the proofs of the O(n) bounds are quite different from one another in
character.

1.1. Our Results

In the present paper, we introduce an abstract framework that explains the above dis-
crepancies. For essentially any boolean circuit model F, we describe the family of “formal
complexity measures” Mr associated with F, and then characterize the quantity

max

Joax p(f)
for any boolean function f. Looking ahead, it turns out that formal complexity measures u
(like those defined above for formulas, comparator circuits, and branching programs) do not
capture standard circuit complexity, but rather capture what we call the amortized circuit
complexity F(f): this is the quantity

where F(m - f) represents the cost of computing m copies of f (on the same input) by
F-circuits. Our main result, roughly speaking, is the following duality for amortized
complexity:

Theorem 1.1 (Main Duality Theorem, Rough). Let G be any finite gate set, let F be any
family of boolean circuits composed from G gates, and let Mx be the set of all F-formal
complexity measures. Then for any boolean function f :{0,1}" — {0,1}

Z(f) = max u(f).

Let us place Theorem 1.1 in context with the earlier results and models. First, note
that it is easy to see that amortized formula complexity is exactly the same as formula
complexity. Since all gates in a formula have fan-out 1, the only way to compute m copies
of any function is to take m independent boolean formulas (i.e. a forest of formulas), and
so it follows that F(m - f) = mF(f) and thus F = F. Indeed, for formulas, formula size is
already a formal complexity measure, as discussed above.

However, in general, the amortized complexity JF will not be an element of the feasible
region Mx. In other words, the maximizing choice of u will generally depend on f. Indeed,
this will be the case for the models that we will consider in detail (comparator circuits and
deterministic branching programs).

We also note that if F is the model of general boolean circuits (i.e. circuits composed
of A and V gates with arbitrary fan-out) then it is easy to see that F(f) = O(1), since we
can simply compute a single copy of f and fan it out arbitrarily many times. Thus, “formal

boolean circuit measures”, which have not been formally defined in the literature (although,
it would be fairly easy to do so), are useless for proving lower bounds.

For comparator circuits, we have mentioned that Razborov proved that submodular
complexity measures are all upper bounded by O(n) [Raz92|. Thus, as an immediate
corollary of our duality theorem, we have:

Corollary 1.2. For any boolean function f :{0,1}" — {0,1},
CC(f) = O(n),
where CC(f) is the amortized comparator circuit size of computing f.

This result is remarkable for two reasons. First, comparator circuits cannot copy
intermediate computations [Sub90], and so there is no way to create many copies of f from
one copy. Second, if we restrict to monotone comparator circuits (i.e. no negated input
literals are allowed), then also an analogue of our duality theorem (Theorem 1.1) applies
and in this case a submodular measure due to Razborov (the rank measure |[Raz92|) can
be used to prove strongly exponential lower bounds [RPRC16, PR17, PR18], and so these
lower bounds already apply to amortized monotone comparator circuit size mCC. We believe
that this new distinction between monotone and non-monotone computation interesting,
and conjecture that amortized monotone comparator circuit size mCC is simply equal to
monotone comparator circuit size mCC.

Conjecture 1.3. For any monotone boolean function f :{0,1}" — {0, 1},
mCC(f) = mCC(f).

Finally, we can apply our duality theorem (Theorem 1.1) to branching program measures
and obtain a linear upper bound on amortized branching program complexity similar
to Corollary 1.2. However, in this setting the story becomes more interesting. Namely,
Potechin [Pot17] introduced a notion of “amortized branching program complexity” that is
more restrictive than our own (in that, upper bounds on Potechin’s version imply upper
bounds on our version, but not vice versa). Indeed, we are unable to apply the main duality
theorem (Theorem 1.1) to Potechin’s definition of “amortized branching programs”, and
since our definition is slightly more general and satisfies the duality theorem we believe it is
the “right” one in our context. However, Potechin’s definition is very closely related to the
notion of non-uniform catalytic space [BCK 14| and, using our duality theorem as a guide,
we can make some significant improvements in that area. We describe these improvements
next.

Improved Upper Bounds for Catalytic Space. Let us recall the notion of catalytic
space, introduced by Buhrman, Cleve, Koucky, Loff and Speelman [BCK " 14]. A catalytic
space Turing Machine is a TM that comes equipped with a special auxiliary “catalytic

tape” that, at the beginning of the computation, is filled with some “junk bits”. The Turing
Machine is then free to use this auxiliary tape for free, as long as it restores the catalytic tape
to its original configuration at the end of the computation. Notably, the Turing Machine
does not know the contents of the catalytic tape before it starts its computation, and thus
it is quite surprising that Buhrman et al. [BCK " 14] could show that a catalytic tape can
actually help in computation.

We will be interested in the non-uniform version of catalytic space Turing Machines,
introduced by Buhrman et al. [BCK"14] and further studied by Girard, Koucky, and
Mckenzie [GKM15] and Potechin [Pot17]. These are called m-catalytic branching programs,
and are defined as follows. Given a boolean function f : {0,1}" — {0,1}, we construct a
branching program with m start nodes s1, s2, . . ., S;m, m accept nodes ay, as, ..., an,, and m
reject nodes r1, 79, ..., Ty, with the following special property. On any input z € {0,1}", if
f(z) =1 then for each i € [m], the computation path starting at s; ends at a;. On the other
hand, if f(z) = 0, then for each i € [m], the computation path starting at s; ends at ;.
Clearly, if we have a branching program of size s computing f once, then we can create an
m-catalytic branching program for f with size O(ms), simply by repeating the branching
program independently m times.

Potechin’s definition of amortized branching program complexity used m-catalytic
branching programs, and measured the average size of an m-catalytic program for f as
m — oo. We emphasize that our above duality theorem (Theorem 1.1) does not apply to
catalytic branching programs directly. It does indeed apply to branching programs, however,
it turns out that the “right” model of amortized branching programs for proving the duality
theorem is slightly less restrictive in that it does not require pairing property between source
nodes and sink nodes. Rather, in our notion, on an input z a computation path starting
at s; can end up at any sink node.

For m-catalytic branching programs, Girard, Koucky, and McKenzie [GKM15] asked
the following question:

Question. For which boolean functions f : {0,1}" — {0, 1} is the size of the
smallest m-catalytic branching program for f much smaller than O(ms), where s
is the size of the smallest branching program for f7

In a surprising result, Potechin [Pot17] proved that any function f : {0,1}" — {0,1} is
computable by an m-catalytic branching program of size O(mn) — that is, linear size per
copy — with the caveat that m is enormous (doubly exponential in n). Potechin then
asked whether or not it is possible to reduce the number of copies m in the construction.
In our second major contribution, we show that is possible to reduce the number of copies
significantly whenever f has low degree as an Fo-polynomial.

Theorem 1.4. Let f = {0,1}" — {0,1}, and let d = degy(f) be the degree of f as a

polynomial over Fo. Then there is an m-catalytic branching program computing f in total

size O(mn) with m = o).

While our duality theorem does not immediately imply this theorem, it played an
important role in discovering its proof, which we will discuss in our technical overview
(cf. Section 1.2).

Amortized Complexity and Catalytic Algorithms. We finally discuss one more new
result, which is morally related to both catalytic space and amortized complexity. Suppose
that p is a formal complexity measure, and suppose that we had proved the inequality
wu(f) < p(g). Then, clearly, it also holds that u(f) + pu(h) < p(g) + p(h) for any boolean
function h. Or, said another way: when presented with the inequality p(f) < u(g), how do
we know that we didn’t first prove pu(h) + pu(f) < p(h) + p(g) and then cancel p(h) from
each side? This phenomenon turns out to be intimately related to a notion of catalysts in
algorithms. That is, we can consider, say, a comparator circuit C which, besides the usual
literals, receives a boolean function h : {0,1}" — {0, 1} as an extra input, and outputs a
“fresh” copy of h at the end of its computation (thus, h acts as a “catalyst”, in that it enables
the computation but is not consumed by it).

From this observation, we are naturally led to define the catalytic size of a circuit
family F, denoted Fcat. This is the size of the smallest F-circuit computing a function f
for which there exists a multiset of boolean functions A that the circuit can take as input
for free, as long as it outputs another copy of A at the end of the computation. As we will
see later, it can be shown that

f(f)éfcat(f)gf(f)

for any circuit model F, and in fact we will be able to give a characterization of F.¢ as
the integral optimum of the linear program that we construct for proving our main duality
theorem. See Section 4 (and, in particular, the proof of Theorem 4.2) for details.

1.2. Technical Overview

Amortized and Strassen Duality. Our main duality theorem was inspired by the theory
of Strassen Duality, which we first recall. Consider the problem of determining the minimum
value w € R such that any two n x n matrices can be multiplied together using O(n*)
arithmetic operations (i.e. the matriz multiplication exponent). This is one of the central
open problems in algorithms and computational complexity as many algorithms use matrix
multiplication as a subroutine. It is known that w > 2, since by an independence argument
we must read Q(n?) input values, while a series of algorithms has improved the upper bound
from w < 3 all the way to w < 2.372... [LG14, AW21]. At a first glance, this problem does
not have an “amortized” flavour; but, as explored in [Str86], following [Gar85], it turns out
that w is exactly determined by the asymptotic tensor rank of a certain tensor T: that is
2¥ = R(T) := lim R(T®™)Y/m

m—0o0

where T®™ is the m-fold tensor product of 7" and R is the tensor rank.

In order to study the asymptotic tensor rank (with the goal of understanding the matrix
multiplication exponent w), Strassen introduced a beautiful and very general duality theory
for pre-orders on semirings [Str86, Str&7, Str88] which is now termed Strassen Duality and
an active area of study |[CVZ18, Zuil8, Fri20, Vra20]. In the special case of tensors, the
essence of the theory is as follows. Given two 3-tensors A : F™ x F"2 x F™ — F and
B :F™ x "2 x ™3 — [we say that A restricts to B, written A >7 B, if there are linear
maps L; : F™ — F"™ such that B = Ao (L, Ly, L3). (This is the 3-tensor equivalent of
multiplying a matrix on the left and right by a matrix.) The ordering <7 is known as a
pre-order, as it satisfies the axioms of a partial order except for antisymmetry.

One of the main outcomes of Strassen’s duality theory is that determining the asymptotic
rank of tensors is essentially equivalent to the problem of understanding the family of all
functions p : {tensors} — R>¢ such that

e 1 is multiplicative under tensor product ®, and additive under direct sum @,

e 1 is monotone under <7, that is if A <p B then
p(A) < u(B),
e 1 is normalized, so that at the diagonal tensor (n) we have

p((n)) <n.?

These maps p are called spectral points (and are the clear analogues of formal complexity
measures), and the set of all such maps X is called the asymptotic spectrum of tensors. One
of the main results of Strassen’s duality theory (specialised to tensors) states that:

Theorem 1.5 (Strassen’s Duality Theorem). For any tensor T,

R(T) = max u(T).
R(T) = max u(T)

In other words: understanding the matrix multiplication exponent is equivalent to
understanding max,cx p(7') for the special matriz multiplication tensor T.

Circuits as Pre-Orders and Strassen Duality for Semigroups. Let us now describe
in more detail how our duality theorem is related to Strassen Duality. Our main technical
theorem (Theorem 4.5, which implies Theorem 1.1) can morally be interpreted as a special
case of Strassen’s theory where the underlying algebra is a semigroup equipped with a

3Strassen formally puts the stronger normalization u((n)) = n, which, for the purposes discussed here, is
equivalent to requiring u((n)) < n.

pre-order instead of a semiring. We now give a brief introduction to describing circuit
models as pre-orders over a semigroup; a more detailed description is in Section 2.

This is best understood by example, so, let us consider the model of comparator circuits.
In general, to fix some notation, we will use {{}} to denote multisets, and we will consider
circuits with multiple outputs as computing a multiset of boolean functions. Fix a positive
integer n, and let F,, denote the set of all boolean functions on n input bits. If A, B are
multisets of functions from F;,, then we write A + B to denote the disjoint union of A
and B as a multiset (in particular, we count multiplicities of functions). The collection of
all multisets, equipped with disjoint union, forms a semigroup, since + is associative and
has an identity (the empty multiset {{}}), but elements do not have inverses.

A comparator circuit is a simple circuit model with a single gate, the comparator gate,
that takes two inputs (a,b) € {0,1}? and outputs the two bits (a A b,a V b) € {0,1}2. The
inputs of the comparator circuit are then labelled with boolean literals x; or —x; for some
input variables z;, ;. For example, if we draw the comparator gate as

[e fAg

e fVyg

then we can compute the collection of functions {{z1 A z2, 21 A T3, 1}} via the following
comparator circuit of size three:

T e J . e X1 NIy
T2 e . J 1 NTo
To e ° o]

The comparator circuit size of a multiset of boolean functions A is the smallest number of
literals in any comparator circuit computing all functions in A among its outputs (with
multiplicities), and is denoted by CC(A). We note that, unlike formulas, comparator circuit
size is not additive: the above circuit shows that it is possible to compute both z1 A 25
and x1 A T2 using only three input literals (thus, CC({{z1 A z2,21 A Z2}}) < 3), but it is
also easy to see that CC(xq A x2) = CC(x1 A T2) = 2 since any comparator circuit must
read both of the input literals. Thus CC(A + B) # CC(A) + CC(B) in general, and this
means that comparator circuits can compute collections of boolean functions more efficiently
than just creating a comparator circuit for each function individually and using them in
parallel. This fact means that amortized comparator circuit size is meaningful, so, for any
function f we let CC(f) := lim;,—00 CC(m - f)/m be the amortized comparator circuit size,
where m - f = {{f,..., f}} is the multiset in which f appears m times. Clearly we have

CC(f) < CC(f)-

Following Strassen, we can describe comparator circuit computation as an ordering over
multisets of functions. Namely, let S denote the collection of all multisets over F;, U {1},
where 1 is a special symbol representing a “unit cost”.* We define an ordering <cc on S as
follows. First, if f, g € F,, then we have

{f ng, fV g3t Zoc {93

and second, if £ is a boolean literal then we have

{e} Zce {11

We then extend the ordering to all multisets in the natural way (i.e. if S is any multiset,
then S+ {{f Ag,f Vgl Zcc S+ {f, g}}, and similarly for the rule for boolean literals),
and we allow “forgetting” rule, which states that A C B = A <¢¢ B. From the definition
it is now clear that A <cc B if and only there is a comparator circuit that, starting from
the functions in B as inputs, produces all functions in A at the outputs; in particular, there
is a comparator circuit of size s computing f if and only if {{f}} <cc {{1,1,...,1}}, where
the 1 is repeated s times.

Now we can easily describe the submodular complexity measures in an abstract way.
They are simply the functions i : S — R that are

o Additive with respect to multisets A € S: if A = B+ C then pu(A) = u(B) + p(C) (in
other words, u is defined by its values at individual functions in F,, and 1).

e Monotone with respect to <cc: if A <cc B then p(A) < u(B).
e Normalized at 1: p(1) < 1.

Now the analogy with Strassen Duality is apparent!

With this in hand, we can now loosely describe how to prove our duality theorem
(cf. Theorem 1.1) in the special case of comparator circuits. The idea is fairly simple: we
can interpret the quantity max,enr.. p(f) as a linear program and take its dual. Solutions
to the dual program can then be interpreted as constructing comparator circuits computing
many copies of f (and it is here that the pre-order perspective turns out to be indispensible).
It follows by linear programming duality that we can characterize the maximum value of a
submodular complexity measure in terms of amortized comparator circuit complexity. In
fact, we are able to do something much stronger: we can fully characterize the quantity
max,, (1(A) — p(B), for any two multisets of boolean functions A, B.

Thanks to the above abstraction, we can easily generalize this approach to other circuit
models simply by writing down the appropriate pre-order. In Section 3 we describe the
general properties that such a pre-order must satisfy in order for our duality theorem to hold,

“The element 1 € F (written in bold face) is a formal symbol and should not be confused with the
constant boolean function 1 € F}, (written in the normal font).

and our main technical duality theorem (Theorem 4.5) then applies to all such pre-order
equipped semigroups simultaneously. It is remarkable that operating over semigroups seems
to completely capture computation by many standard circuit models, and the restriction to
semigroups from semirings means that the proof of duality can be made much simpler. Indeed,
Strassen’s proof of the duality theorem for semirings is quite complicated — building on Stone
Duality and ultimately using the Axiom of Choice — while our proof is a relatively simple
argument based on linear programming. An additional benefit of our linear programming
proof is that our duality is computable, and it is not clear if this holds for Strassen’s general
duality theorem for semirings. We refer to Section 4 for details.

Exploiting Symmetry in Catalytic Space. We now describe how we prove our new
upper bounds on catalytic branching programs (Theorem 1.4). As we have mentioned above,
Razborov [Raz92| proved that any submodular complexity measure p satisfies pu(f) = O(n)
for any n-variable boolean function f. Razborov used a randomized construction which
exploited® the following key symmetry property: if fo, fi are both uniformly random boolean
function on n — 1 variables and f is a uniformly random boolean function on n variables,
then
(fn/\fO) \ (xn/\fl) ~ (xn/\f()) \ (En/\fl) ~ f

where by X ~ Y we mean that the two random variables X and Y have the same distribution.

We first prove that if we explicitly enforce these symmetry properties, then we can
strongly improve the upper bounds on g, and indeed we can already do this for branching
program complexity measures. Towards this; in the next theorem, by a symmetric formal
complexity measure we mean a measure satisfying u(f®%) < u(f) for every boolean function f
and every i € [n], where f® is the boolean function obtained by negating the ith input to f.

Theorem 1.6. For any symmetric branching program or submodular complezity measure p
and any boolean function f,

p(f) < 2Davg(f)

where Dgyg(f) is the minimum, over any decision tree computing f, of the expected number
of queries made by the tree on uniform distribution of inputs.

Unfortunately, we cannot (yet) prove the above theorem for arbitrary branching program
measures. However, by symmetrizing over the orbit Orb(f) of f under the action of negating
any subset of inputs, it turns out that we can use the argument in the above theorem
to compute all of Orb(f) efficiently on average by a small catalytic branching program
(cf. Lemma 5.12). Then, by an extension of Potechin’s construction (using the decision
tree argument above), we show that it suffices to take m = |spang,(Orb(f))| in order to
compute f by an m-catalytic branching program of total size O(mn) (cf. Theorem 5.13),
where spang, (Orb(f)) is the linear span of the functions in Orb(f) when treated as vectors

SRazborov actually exploited a very similar, though equivalent, property.

10

over Fy. The above theorem then follows since if degy(f) = d then degy(g) < d for all
g € Orb(f) (as we are just negating input variables), and so we can bound the size of
spang, (Orb(f)) by a dimension argument. See Section 5 for details.

1.3. Related Work

Closely related to our work is the study of direct sum problems. While appearing in many
different forms, they are all usually variants of the following question:

Is the best way of performing some computational task 7" many times in parallel
simply to compute T independently each time, or, can we achieve an economy
of scale, and perform all copies of T" more efficiently on average?

Alternatively phrased, these types of problems study the amortized complexity of com-
putation. Informally, if we are measuring the computational cost C of performing a task T,
then in the direct sum problem we are interested in the behaviour of

o) = tim S0

m—00 m

where mT represents the task of performing T in parallel m times®. If the cost C is
subadditive — that is, C(A+ B) < C(A) 4+ C(B) — then the above limit exists and is equal
to its infimum by Fekete’s Lemma’, and we call the cost C(T) the amortized complexity
of T'. This framework occurs independently in many different settings, such as:

e In information theory, classic results such as Shannon’s Source Coding theorem and
the Slepian—Wolf theorem characterize the amortized communication required when
sending m — oo independent copies of a random variable M over a communication
channel (possibly with some side information) in terms of quantities such as the entropy
and mutual information.

e In communication complexity, much work has been spent investigating the direct sum
problem in various communication models. For example, in the model of deterministic
communication complexity, Feder, Kushilevitz, Naor, and Nisan [FKNN95] showed
that if a single copy of a function f requires C' bits of communication, then the
amortized cost of computing f in parallel m — oo times is Q(\/@) per copy. On the
other hand, in randomized communication complexity — generalizing the example
from information theory given above — amortized communication cost was shown by
Braverman and Rao to be ezactly equal to the so-called information complexity [BR14].

5Depending on the situation, it may be more convenient to think of m instances of T" as either a “sum”
or a “product” — we have stated amortized complexity for “sums”, but in the latter case, we would rather
be studying the value of C(T™)Y™ as m — oo.

"This useful basic lemma was first obtained in [Fek23], see for the proof [FR18].

11

o In probabilistically checkable proofs the direct sum problem for 2-prover games is
studied — these are games where a Verifier sends inputs z,y to two separate Provers,
who must each send back messages to the Verifier without communicating with each
other. Raz showed (in his now famous parallel repetition theorem |Raz98|), that the
acceptance probability of the Verifier can be driven down exponentially by playing
many games in parallel (this corresponds directly to a tensor product of games).

The aforementioned result of Potechin [Pot17] on catalytic branching programs, which we
improve on in Theorem 1.4, has inspired several interesting works in the area of conditional
disclosure of secrets (CDS) [AARV21, AA20]. These works include constructions in the
framework of CDS that are analogous (but incomparable) to our construction for amortized
branching programs in Theorem 1.4.

As we have mentioned above, the notion of catalytic space was introduced by Buhrman
et al. [BCK T 14], where they showed the surprising result that a logspace Turing Machine
equipped with a catalytic tape can compute all of TC!. These results are closely related to
earlier results of Barrington [Bar89] and Ben-Or and Cleve [BC92] — for instance, it is easy
to see that any width-w permutation branching program that cycle-computes a boolean
function f in the sense of [Bar89] is also a catalytic branching program computing w/2
copies of f. Catalytic space algorithms have also recently seen application in improved
algorithms for the Tree-Evaluation Problem in a recent paper of Cook and Mertz |[CM20].

In combinatorics, the asymptotic spectrum of graphs was introduced in [Zuil9] to
characterize the Shannon capacity of graphs, which is an amortized combinatorial notion
introduced by Shannon [Sha56] to understand the zero-error communication capacity of
a noisy communication channel. Various extensions to the realm of quantum information
were considered in [LZ21]. Jensen and Vrana employed Strassen’s duality theorem to study
the asymptotic properties of Local Operations and Classical Communication (LOCC) in
quantum information theory [JV20].

Fritz introduced for the first time a semigroup version of the Strassen duality in [Fril7]
(independent of the work of Strassen), and the reader will find our results to have similar
flavour, albeit that we work in a more “finite” setting in several respects. His proof is based
on the Hahn—Banach theorem, and so is also not computable. Extensions of the Strassen
duality theory in several directions have been introduced in [Fri20] and [Vra20] recently.

1.4. Paper Organization

The rest of this paper is organized as follows. In Section 2, we give a detailed introduction to
modelling boolean circuits as abstract semigroups equipped with pre-orders. Our introduction
uses three running examples: boolean formulas, branching programs, and comparator circuits.
(This section is expository, and it can be skipped to get to the main contributions of the
paper.) In Section 3 we describe the abstract framework for our duality using semigroups
with finitely generated pre-orders. In Section 4 we prove our main duality theorem, as well

12

as our theorem characterizing “catalytic size”. In Section 5 we give our new upper bounds
on amortized complexity and catalytic space by exploiting symmetry.

2. Circuit Models as Pre-Orders

In this section we give an extended introduction to the paradigm of describing circuit models
as pre-orders. This section is mainly included for expository purposes, to connect the
“concrete” circuit models with the “abstract” approach using pre-orders that we will use in
the proof of our duality theorem. Readers who feel comfortable with this approach can
jump to Section 3.

Definition 2.1. A pre-order on a set S is a relation P C S? that is reflexive, in that
(a,a) € P for every a € S, and transitive in that (a,b) € P and (b, c) € P implies (a,c) € P
for all a,b,c € S. If P is a pre-order then we will use the notation a <p b whenever
(a,b) € P.

Pre-orders are not unfamiliar to theoretical computer science—they appear prominently
in various settings in the form of reductions. Here we will also think of pre-orders as
reductions, but with a circuit-building flavour. In this introduction we will be guided by
three concrete and familiar circuit models: boolean formulas, branching programs and
comparator circuits. After having discussed those in some detail, we discuss an approach
that generalizes the concrete instances.

2.1. Boolean Formulas

Throughout, let z1,x2,... denote variables that take boolean values, and let 7, 7q,...
denote their negations. As usual, by a literal we mean any variable or any negated variable.
Let F' = F,, denote the set of all boolean functions {0,1}" — {0,1}. Since we will generally
be interested in computing collections of boolean functions, we let N*' denote the set of all
collections of boolean functions, that is, all multisets of elements of F', encoded as a vector
of multiplicities. For multisets we use the notation {{ f1,..., fn}}.

A boolean formula is a tree whose leaf nodes are labelled by literals and whose internal
nodes are labelled by A (the logical AND) or V (the logical OR). In other words, a boolean
formula is a circuit that computes a boolean function from input literals using two types
of gates—the AND gate, and the OR gate—which both have fan-out one. The size of a
boolean formula is the number of leaf nodes, and the formula size of a boolean function f
is the size of the smallest formula computing it, denoted F(f). For example, the following

13

boolean formula of size three computes the boolean function (1 A x2) V Z1:

z1
™~

V
/
) \/\ (x1 Nx2) VTT

Z1

A natural and standard concept is the notion of a formal complexity measure. This is
any function g : F' — R>q such that for any literal ¢ and any f,g € F":

pu(l) <1
p(f Vv g) < u(f)+ ulg)
pw(f A g) < p(f)+ n(g)

By induction over the tree-structure of the boolean formula we obtain the important property
that for any boolean function f and any formal complexity measure u, the formula size of f
is at least u(f),

u(f) < F(f).

We also note that the formula size F satisfies these three properties, and so it itself is also a
formal complexity measure.

From the definition of boolean formulas it is immediate that a single boolean formula
can only compute a single boolean function. To compute a collection of boolean functions
{f1,---, fm}} we thus need a collection of boolean formulas, that is, a forest of trees
with leaf nodes labelled by literals and internal nodes labelled by V or A. Therefore, we
must define the formula size of a multiset as the sum of the formula size of each element,
F({fi,--- fm}}) = 2o, F(fi). In particular, if we define the amortized formula size of
a boolean function f by F(f) = lim,,—soc F(m - f)/m, where m - f == {{f,..., f}} is the
multiset in which f appears m times, then we find that

The above discussion of computing a collection of boolean functions by formulas should feel
like a strange exercise—clearly, formulas cannot compute collections of boolean functions in
an interesting way. However, this simple treatment of boolean formulas prepares us for the
discussion of the richer circuit models that are to follow, in which amortization does allow for
clever algorithms. Before going to these other cicuit models, we introduce a pre-order point
of view for boolean formula computation, and relate it to the formal complexity measures.

Definition 2.2. Let 1 be a formal symbol, which we will call the unit and which will
function as our measure of “cost”. Let S = NFU{1} be the set of all collections consisting

14

of elements of F' or the element 1. Define the ordering < on S as follows. First, for any
boolean functions f, g define

{rrgh <{f98, {rvel <{f9}-

Second, for any literal ¢, let {{¢}} < {{1}}. Finally, let <p D < be the smallest pre-order
containing < that satisfies the following properties:

e Forgetting. If A C B is an inclusion of multisets, then A <p B.
e Parallel Computation. If A <p B then A+ C < B+ C.

e Subroutine Composition. If A <p B and B <p C then A <p C.

The intended interpretation of <p is that it “builds” boolean formulas. The way to read
the inequality {{f A g}} < {f, g}}, for example, is that f A g can be obtained from f and g
using a boolean formula gate. The inequality {{¢}} <r {{1}}, on the other hand, should be
read as indicating that we have literals available at cost one. Finally, the three generating
rules respectively correspond to (1) allowing (forests of) formulas to forget outputs in the
computation, (2) to allow multiple disjoint formulas to do parallel computation, and to (3)
allow formulas to be used in new formulas as subroutines.

The point of defining the pre-order < is that for any f € F and literals ¢; we have
{r =2r {4,..., 0} if and only if f can be computed by a formula whose leaf nodes
are labelled by ¢1,...,¢y,. More generally, {f1,..., fm}} =<F {{91,...,9r}} if and only if
the boolean functions fi, ..., f;» can be computed from the boolean functions g1, ..., gr by
a boolean formula (or rather by a “generalized” boolean formula in which the leaf nodes
are labeled by ¢1,..., gk instead of literals). Thus, it should be clear that for a multiset
of functions A, F(A) is exactly the minimum number n such that A <p n:= {{1,...,1}},
where 1 appears n times.

How does the pre-order <r relate to the formal complexity measures p that we defined
earlier? We can extend the formal complexity measures to functions Nf' — R by saying,
for any multiset A € S, that p(A) = >°,c 4 p(f). These functions are then precisely the
functions S — R>o that are monotone under <r and additive under taking the addition of
multisets, where we define addition on multisets as the disjoint union

{{al, - ,am}} + {{bl, .. ,bk}} = {{al, e, ap, by, .. .,bk}},

which matches the notation N¥' that we use for multisets of elements of F.

Finally, we point out four good properties that the pre-order <¢ has. These properties
will turn out to be a sufficient condition in the main technical duality theorem of this paper,
and will reoccur in the other circuit models.

e First, the pre-order <y is finitely generated, in the (to be made precise) sense that only
finitely many rules are needed to generate the pre-order. Intuitively this corresponds
to the circuit model having a finite gate set.

15

e Second, the pre-order is bounded, in the sense that every boolean function has a finite
rank. This corresponds to the circuit model being complete, in that it can compute
any boolean function.

e Third, the pre-order is non-negative, in the sense that if A C B is an inclusion of
multisets, then A <g B. This property is called non-negativity as it can be equivalently
defined as A <gp A + B for any A, B, and it intuitively corresponds to a formula
being able to compute all functions in A by first computing all of A and B and then
“forgetting” about B.

e Finally, <p is a semigroup pre-order in the sense that if A <p B, then A+C <y B+C
for any multiset of boolean functions C'. As we said before, this corresponds to “parallel
composition™ if we have a “generalized” formula that computes A from leaves labelled
with elements of B, and another formula computing C'; then we can put these formulas
“side-by-side” and compute A + C from B + C.

2.2. Branching Programs

We now explore deterministic branching programs as pre-orders, which we will now refer to
just as branching programs. As in the previous section we introduce an ordering on the set
S = NFUL} that will correspond to branching program computation.

A deterministic branching program is defined as follows. We have a directed acylic graph
with some dedicated start nodes si,...,s, and some dedicated output nodes aq,...,an.
The start nodes have in-degree zero and the output nodes have out-degree zero. All other
nodes have unbounded in-degree, and out-degree two, and the two outgoing arcs are labelled
by z; and @; respectively. Given an input x, every output node a; computes a boolean
function by taking the OR-sum over all directed paths from any start node s; to a; of the
AND-product of the arc labels on the path. For example the following branching program
of size four computes the boolean functions f; = x1 VT3 and fo =77 V xa:

81 .\7551 %.a/l fl
1

T2

82 ./7132 4’.012 f2

and the following branching program of size eight computes the boolean functions {fi, f2},
where f1 = ((T1 Va2) AZ1) V ((1 VT2) AZ3) and fo = ((T1 V x2) AZ1) V ((T1 V 22) AT7):

S1 o\ilﬁ—»o\—ﬁaoal fl
1 X3

T2 1
59 o/—mzao/—ﬂ%oaa f2

16

Note that we do not require the start nodes s; and output nodes a; to be paired up in
any way. In other words, we do not care from which start node a computation path
starts at when it reaches an output node. Also, we do not require the output nodes to
come in accept-reject pairs a;,r;, which is often required in the literature. This means
that the collection of boolean functions {{ f1,..., fn}} computed by our kind of branching
program cannot necessarily be written as a disjoint union of collections {{g,g}} of a boolean
function g and its negation g. In this sense, our model is more general and subsumes
the other definitions occurring in the literature. For any multiset of boolean functions
{f1,---, fu}}, we define BP({{f1,..., fn}}) to mean the size (= number of edges) in the
smallest deterministic branching program computing the functions fi,..., f, among its
outputs.

Neither boolean formulas nor deterministic branching programs can directly copy in-
termediate results in the sense that neither model can simulate a copy gate x — (x,x)
[Sub90] (as opposed to non-deterministic branching programs, which can simulate a copy
gate, making their amortized version trivial). However, there is a crucial difference between
boolean formulas and branching programs: in a boolean formula every gate outputs a single
boolean function, whereas in a branching program each query outputs two boolean functions.
This means that a branching program can compute a collection of boolean functions in a
potentially interesting way using overlapping subcomputations, whereas a boolean formula
can compute a collection of boolean functions only by computing each boolean function
completely separately.

Formally speaking, we can phrase this as follows. Formula size F is additive over multisets,
in the sense that F(A + B) = F(A) 4+ F(B) for multisets A, B. However, this is not true
of branching program complexity! Indeed, this can already be seen when computing the
multiset {{z Ay,x Ay,Z}}. The following branching program (with 4 edges) computes all of
these functions simultaneously:

80\—3:—»0\—7?/—»..% Ny
x Y

AN

Thus BP({{x Ay, z Ay, T}}) < 4. However, it is easy to see that BP(z Ay) = BP(z AT) > 4,

since we must make at least two queries (to x and y) in any branching program for either

of these functions. This means that BP is not additive, and so a branching program can

sometimes more efficiently compute a family of functions together than it can compute them

separately. It is therefore meaningful to introduce the amortized branching program size of

a boolean function f as BP(f) = limy,—s00 BP(m - f)/m where m - f = {{f,..., f}} is the

multiset in which f appears m times. As we will see later, BP(f) can be strictly smaller
than BP(f).

The corresponding formal complexity measure for branching programs is called a branch-
ing complexity measure. This is any function p : F' — R>q such that for any literal ¢ and

T NY

17

any f,g € F:

n(f Vv g) < p(f)+ nlg)
p(f Aai) + p(f AT7) < p(f) +2
(@) + p(;) < 2

By induction over the branching program we can prove that branching measures lower bound
the number of edges in any branching program computing f, and it even lower bounds the
amortized complexity BP(f).

Lemma 2.3. Let A be a multiset of boolean functions, let B be a branching program
computing A, and let p be any branching complexity measure. If B has s edges then

> u(f) <s.

feA

In particular, if A=m- f:={f, f,..., f}} (repeated m times), then m - u(f) < BP(m- f),
and s0 pu(f) < BP(f).

Proof. We first observe that we can define any branching program B inductively by “growing”
it from a collection of sink nodes S as follows. Initially, S =), and at any given point in
time in the process we will have a branching program B; with a collection of sink nodes S.
In a single step, we can choose to either:

e Choose two sink u,v € S and merge them together into a single sink node (that is,
directing all incoming edges to u and v to the new merged node). This corresponds to
applying an V gate to the functions computed at the two sinks.

e Create a new source node by querying a variable: that is, we create a source node
labelled with z; that is connected to two new sink nodes, each corresponding to the
outputs x;, T;.

e For any variable x;, choose a sink node u € S and “query” x;, creating two new sink
nodes connected to u with edges labelled by x; and Z;. This corresponds to replacing
the sink node for a function f with two new sink nodes for f A x; and f A Z;.

We now prove the claim by induction over B, generated by the above process. In the base
case the branching program has queried a single variable z;, and so it contains two edges
and we clearly have pu(z;) + pu(%;) < 2. Suppose we have a branching program B computing
all functions in the multiset A, and suppose we apply the first rule to A, choosing functions
f,g9 € A and replacing them with f V g. This does not change the number of edges, but A
is replaced with (AU {f V g})\ {f,¢}. By induction we have

s>y uh)Zp(fve)+ D, wh),

heA heA\{f.9}

18

where we have applied the first rule of a branching measure. The other two cases are handled
similarly.
To see the final claim, we observe that

meop(f)= Y p(f) <BP(m- f)
fems

and dividing by m and taking m — oo completes the proof. O

To summarize the previous argument, we now have observed that

u(f) < BP(f) < BP(f).

Moreover, the idea behind the previous proof informs the “pre-order” point of view for
branching programs.

Definition 2.4. Define the ordering <gp on S as follows. First, for any boolean func-
tions f, g € F' and any input variable z; define

{rvel <{r.98
{f Aao AT < {11}
{a m}y < {11}

Then let <gp be the smallest ordering containing < satisfying the following properties, for
A, B,C e S:

o If AC B then A <gp B.
e If A<pgp Bthen A+ C <gp B+ C.
[IfAijBandBijCthenAij C.

The pre-order <pp “builds” branching programs (as in the proof of Lemma 2.3), and
we have that {{f}} <pp n := {{1,...,1}} if and ony if there is a branching program
that computes f and that uses n/2 query gates. More generally, one can argue that
{f1,-- s fm}} <P {91,---,9%,1,...,1}} if and only if there is a branching program
computing all of the boolean functions fi,..., f;, from the boolean functions g1, ..., gk
using as many query gates as there are units 1 in the multiset on the right-hand side.

How does <pp relate the the branching program measures pu? Linearly extending any
branching program measure p to a function S — R, the branching program measures
i S — R>q are precisely the functions S — R>(that are monotone under <gp and
additive under taking the union of multisets.

19

One may think that perhaps BP is itself a branching program measure — after all, this
holds for amortized formula size F. This, however, is also not true. We have shown above
that if A= {{z Ay,z A7y,T}}, then

BP(A) <BP(A4) <4
by direct construction. On the other hand, it is possible to construct branching program
measures p, 1, ¢ such that u(z Ay) =2, p/(z Ag) = 2, and p""(Z) = 2 (cf. Appendix A)
(these must necessarily be different measures for each function). It therefore follows that

BP(z Ay), BP(z AY),BP(Z) > 2,

and so
BP({{z Ay, 2 Ay, 7}}) # BP(z Ay) + BP(z A7) + BP(Z).

Thus BP is not additive and so it cannot be a branching program measure.
We point out one final interesting property. If p({{f,h}}) < nw({{g,h}}), then it also
follows (from additivity) that u(f) < u(g). This is because

p(f) +u(h) = p({{f, h}}) < w{{g, h}}) = p(g) + p(h)

and then cancelling p(h) on both sides. This statement is related to the phenomenon of
catalysts in computation: it is possible that {{f, h}} <p {{g,h}} but not {f}} =<sr {9}},
in which case we say that the boolean function h (or generally some collection of boolean
functions) is a catalyst that enables the branching program inequality {{f, h}} <pp {{g,h}}.

Concretely, we can imagine this as follows. Suppose that we have a branching program B,
but, B is augmented with two “special” source nodes s, s, that correspond to the functions
g and h. Given any input z, these source nodes will be activated on z if and only if g(x)
or h(z) evaluate to 1, respectively. Then, starting from these source nodes, the branching
program B has two sink nodes corresponding to the functions f and h. The name “catalyst”
is fitting here for h since it is used as an input to the program B, but also appears as an
output of the program.

From this observation we are naturally lead to define the catalytic branching program
complexity BPcat(f) as the smallest number n € N such that there exists a collection of
boolean functions A € S for which {{f}} + A <pp n + A. From general considerations that
we go into later (cf. Section 3) we have

max u(f) < BP(f) < BPear(f) < BP(f).
The main goal in Section 4 will be to understand which of these inequalities may be strict
and when. We will also be able to characterize BP¢y(f) in our duality theorem as the
integral optimum for the linear program that we construct; this suggests that it is a natural
parameter to consider.

20

Finally, observe that the branching program pre-order <gp has all the properties that
we saw for the boolean formula pre-order <g: it is bounded (any function can be computed
by a branching program), nonnegative (we can forget outputs), finitely generated (there is a
finite gate set) and a semigroup pre-order (we may compose branching programs).

2.3. Comparator Circuits

As we have already discussed comparator circuits in the introduction, we will be more brief
here. We measure the size of a comparator circuit as the number of literals used at the
start of the circuit; it is known that the number of gates is polynomially related to this
measure without loss of generality [GR20]. The comparator circuit size of a collection of
boolean functions A € S is the smallest size of a comparator circuit computing A and we
denote this by CC(A). For any boolean function f we let CC(f) := lim,,—00 CC(m - f)/m
be the amortized comparator circuit size, where m - f = {{f,..., f}} is the multiset in which
f appears m times.

As with branching programs, we can encode comparator circuit computation as a
pre-order.

Definition 2.5. Define the ordering <cc on S = NFU{1} a5 follows. First, for any boolean
functions f, ¢ and any input literal ¢, define

{fvg rrgl <{f g}
{ar < {1}

Then let <cc be the smallest ordering that contains < and satisfies the following properties,
for A,B,C € §:

e If AC B, then A <cc B.
o IfAjccB7thenA+CjCCB+C.
e If A <cc B and B <¢¢ C, then A <cc C.

Everything that we have discussed for branching programs works here, under the
appropriate adjustments. As with formulas and branching programs, there is a corresponding
complexity measure for comparator circuits called a submodular complexity measure.

Definition 2.6. A submodular complexity measure is any function p : ' — R>(such that
for any literal £ and any f,g € F":

o u(l) <1,

o u(fVg)+nu(fAg) <plf)+ug)

21

Submodular complexity measures were introduced by Razborov [Raz92], independently
of comparator circuits, in order to study a complexity measure he introduced called the rank
measure [Raz90|. By induction over the comparator circuit (analogous to Lemma 2.3) we see
that for any boolean function f and any submodular measure u the amortized comparator
circuit size of f is at least u(f) (see, e.g. [RPRC16]). Moreover, just as with branching
programs, we can define the catalytic comparator circuit complexity CCeqt(f) as the smallest
number n € N such that there exists a collection of boolean functions A € S for which
{f}} + A =Zccn+ A. In the next section we will see that CC(f) < CCeat(f) < CC(f), and
thus for submodular measures u we have

n(f) < CC(f) < Cleas(f) < CC(f).

The comparator circuit pre-order <¢c has all the properties that we saw for the boolean
formula pre-order < and the branching program pre-order <gp: it is bounded (any function
can be computed by a comparator circuit), nonnegative (we can forget computational results),
finitely generated (there is a finite gate set) and a semigroup pre-order (we may compose
comparator circuits).

Comparator Circuits and Deterministic Branching Programs. Having discussed
in some detail the branching program and comparator circuit models of computation, we
should clarify their fundamental and simple relationship. Namely, comparator circuits can
directly simulate branching programs. To see this, note that the comparator circuit gadget

fe J o fAm
T e . J of/\;[;il
T e . o]

precisely simulates a branching program query gate that queries the input variable x1, and
at exactly the same cost of 2 that we assigned to any query gate. The branching program
OR gate is also trivially simulated in a comparator circuit. Thus comparator circuits are
therefore at least as powerful as branching programs and, as a consequence of this very tight
simulation, we have CC < BP and CC < BP. In the same spirit, it is easily seen directly
that any submodular complexity measure is a branching program complexity measure.

Monotone Comparator Circuits. We briefly indicate how everything in this section
can naturally be adapted to capture computation by monotone comparator circuits (motived
by our Conjecture 1.3). A boolean function f : {0,1}" — {0,1} is called monotone if
f is non-decreasing under flipping any input bit from 0 to 1. Let F}"°" denote the set
of all monotone boolean functions {0,1}" — {0,1} and let S™* = NF""U{1} be the

22

corresponding semigroup. A monotone comparator circuit is a comparator circuit in which
the literals that are used can only be variables x;, and not their negations T;. This naturally
gives rise to the monotone comparator circuit size mCC and its amortized version mCC. It
is clear how the comparator circuit pre-order <cc (Definition 2.5) can be adapted to give
an ordering <gg" on S™°" that captures monotone computation (by restricting to F""
and relaxing the conditions {{¢}} < {{1}} to {{z;}} < {{1}} for all variables x;).

Razborov [Raz92| naturally defined a monotone submodular complexity measure as any

function g : F}°" — R>¢ such that for any variable x; and any f,g € F;"°":
o plwi) <1

o u(fVg)+u(fAg) <plf)+ug)

Again, as in the non-monotone setting, we obtain the general picture that for any such
measure g we have

u(f) <mCC(f) < mCCeat(f) < mCC(f).

Finally, the monotone comparator circuit pre-order <" has all the good (bounded, non-

negative, finitely generated, semigroup) properties that <cc has.

3. Abstract Framework

Having seen three concrete circuit models described as pre-orders, and having seen the
recurring concept of formal complexity measures, we will now take a more general approach.
The goal of this part is to set up a general framework and define concepts that cover a
general notion of a circuit model, and in particular boolean formulas, branching programs
and comparator circuits.

3.1. Semigroups of Multisets over a Finite Set

We begin by describing the general kind of objects that we study. Let F' be any finite set.
Let 1 € F be a special element, which we call the unit. This element will not have any
special properties for now. (Later on, however, it will play a special role as a measure of
“cost” in our definitions of notions of “rank”) Let S = N*' be the set of non-negative integer
vectors indexed by F. For any two vectors s = (sf)rer € S and t = (t5) jer € S we define
the sum s+t = (s¢ + t¢)ser as the usual vector sum. With this operation the set S is
a semigroup (+ is associative and has an identity but no inverses). We may identify the
standard basis elements of S with the elements of F', and, under this identification we think
of elements of S as formal linear combinations of elements of F' with non-negative integer
coefficients. Alternatively, we may think of the elements of S as multisets of elements of F.
Namely, the element (sf)tcp € S corresponds to the multiset in which the element f has
multiplicity s;. For any n € N it will be convenient to let n:= {{1,...,1}} where 1 appears
n times.

23

Briefly connecting to concrete circuit models (boolean formulas, branching programs,
comparator circuits), we point out that in those situations we will be considering the
semigroup S = N where F' = F,, U{1}, and F, is the set of all boolean functions {0,1}" —
{0,1}, and the aforementioned element 1 is a formal symbol® that we will use to measure
complexity, as we will explain.

3.2. Pre-Orders

First of all, we recall that a pre-order on a set S is a relation P C S? such that for every
a € S it holds that (a,a) € P and for every a,b,c € S it holds that (a,b) € P and (b,c) € P
implies (a,c) € P. For any pre-order P and for every a,b € S we will write a <p b if and
only if (a,b) € P.

On the set S = N there is a natural pre-order, which we call the pointwise pre-order.
This pre-order is defined by saying that for every a,b € S we have a < b if and only if for
every f € I it holds that ay < by. Since the pointwise pre-order will play an important role
in our proofs, and, since this is arguably the standard pre-order on N¥'| we will denote it by
<.

We are interested in pre-orders on S of a special kind. These pre-orders behave well
with respect to the semigroup structure of S and have some additional natural properties.
In order to discuss them we need to introduce some basic terminology regarding pre-orders.

First we define a notion of boundedness for pre-orders which will allow us to define a
rank function on S later. The notion of boundedness is where the special unit element 1
comes in for the first time.

Definition 3.1. We say that a pre-order P on S is bounded if for every s € S there is
an n € N such that s <p n, where, we recall, n denotes the multiset {{1,...,1}} in which 1
appears n times.

Secondly, we will be interested in pre-orders that have the following composition property
(which the pointwise pre-order satisfies).

Definition 3.2. We call a pre-order P a semigroup pre-order if for every a,b,c,d € S it
holds that if a <p band ¢ <p d, then a+c<pb+d.

Thirdly, we discuss a natural non-negativity property for pre-orders.
Definition 3.3. We say that P is non-negative if for every a,b € S it holds that a <p a +b.

Informally, thinking of the elements of S as resources and of P as a collection of feasible
transformations between resources, the non-negativity property says that we may always
transform a + b to a, that is, we may always throw away part of our resources.

8In particular, as mentioned earlier, the element 1 € F' (written in bold face) has nothing to do with the
constant boolean function 1 € F,,.

24

Note that the pointwise pre-order on S that we defined earlier is non-negative. In fact,
one verifies that for every pre-order P on S it holds that P is non-negative if and only if P
extends the pointwise pre-order. For semigroup pre-orders, the non-negativity property has
the following simple characterization.

Lemma 3.4. Let P be a semigroup pre-order. Then P extends the pointwise pre-order if
and only if for every s € S it holds that 0 <p s.

Proof. Suppose that P extends the pointwise pre-order. Clearly, for every s € S we have
0 < s in the pointwise pre-order and so 0 <p s. On the other hand, suppose that 0 <p s
for every s € S. Suppose that a < b. Then there is an element ¢ € S such that b = a + c.
We have 0 <p c and a <p a, and thus a = a+ 0 <p a + ¢ = b, since P is a semigroup
pre-order. O

Finally, we introduce a natural notion of finiteness for pre-orders.

Definition 3.5. We say that a pre-order P is finitely generated if there exists a finite
collection of elements (a1,b1), ..., (an,b,) € P, called generators, such that for every (a,b) €
P there are non-negative integers y; € N such that a = > | y;a; and b= _1" | y;b;.

In other words, P is finitely generated if any valid inequality a <p b can be obtained as
a non-negative integer combination of a finite collection of generating inequalities a; <p
b;. In particular, the pre-orders that we are interested in (the branching program pre-
order, formula pre-order and comparactor circuit pre-order) are finitely generated. For
example, the comparator circuit pre-order is generated by the comparator gate inequalities
{f Vg fAgl <p{{f, g}} and the non-negativity inequalities {{}} <p {{f}} for f,g € F,,,
and the literal inequalities {{¢}} <p {{1}} for all literals /.

When a pre-order P has all the above properties, we call it a good pre-order:

Definition 3.6 (Good pre-order). Given S = N with a distinguished unit 1 € F, we
say that a pre-order P on S is good if P is a non-negative, finitely generated, bounded,
semigroup pre-order.

In the rest of the paper we will (sometimes tacitly) assume that there is a distinguished
element 1 € F.

3.3. Additive Monotones

Motivated by the formal complexity measures, branching program measures and comparator
circuit measures we define the general concept of additive monotones. Given a good pre-
order P on the set S = NI relative to the distinguished unit element 1 € F (Definition 3.6)
we define the following concepts. We say a function p : S — Rxq” is P-monotone if for

9Tt will turn out that for our purposes it suffices to restrict the range to non-negative rationals, but for
now we stick to the reals.

25

any a,b € S'if a <p b, then p(a) < p(b). We call p additive if for any a,b € S we have
p(a+b) = p(a) + (). We say that p is normalized if u(1) < 1. We will say that u is an
additive monotone to mean that it is additive, monotone and normalized.

For f € Flet ey € N be the vector that is zero everywhere except in coordinate f.
In other words, ey encodes the multiset {{ f}} and by a slight abusive of notation can be
identified with f itself. Clearly, if p is additive, then p is completely determined by the
values (u(ey))rer that p takes on F.

An important property of additive monotones p, which follows immediately from the
definition, is that

u(a) < p(b) <= pla+c) < p(b+c)

for any a,b,c € S. In other words, additive monotones cannot distinguish between the
inequality a <pband a+c <p b+ c.

3.4. Catalysts

The observation that additive monotones cannot distinguish a <p b from a+c¢ <p b+c gives
rise to the notion of a catalyst, which will play an important role in our duality theorem
and its proof. Consider an inequality of the form a +t¢ >p b+t for some elements a, b, t € S.
Think of this inequality as a transformation from the “resources” a and t to the “resources” b
and t. The resource t enables the transformation, but is in the end not consumed. Thus, we
call such an inequality catalytic and we call the element t a catalyst.

It is natural to wonder whether this abstract notion of a catalyst is related to the model
of catalytic space computation of Buhrman et al. [BCK 14|, and while we will prove a new
result about catalytic space computation later, it will come about differently. That is, we
do as of yet not know how to model catalytic space computation using the abstract notion
of a catalyst that we discuss here.

When P is a good pre-order on S there is a simple characterization of catalytic inequalities
in P in terms of the pointwise pre-order. This will be a core lemma in the proof of our
duality theorem.

Lemma 3.7. Let P be a good pre-order with generators (v;,w;). For every a,b € S, the
following two statements are equivalent.

1. There exists an element t € S such thata+t >p b+ t.

2. There exist non-negative integers y; € N such that a +), yi(v; — w;) > b in the
pointwise pre-order.

Proof. Suppose that a +t >p b+ t. Since P is generated by (v;,w;), there exist non-
negative integers y; € N such that a +¢ = >, y;w; and b+t = . y;v;. Then we have
Y yivi—b=t=> yw; —a. It follows that a + >, y;(v; — w;) = b, and in particular,
a+ Y yi(vi —w;) >b.

26

On the other hand, suppose that a4, y;(v; —w;) > b. Then a+)", yiv; > b+)", yiw;.
From combining the generating inequalities w; >p v; we also have a+2i Yiw; >p a—l—Zi YiV;.
Since P extends the pointwise pre-order, it then follows that a+ >, yiw; >p b+ yyw;. O

We finish by isolating a fundamental boosting property of catalytic inequalities which
formalizes that a catalyst can be “used over and over again”. This will allow us to draw a
connection between catalysts and amortized rank in the next section and we will use the
boosting property together with Lemma 3.7 later in the proof of the main duality theorem.

Lemma 3.8 (Boosting property). Let P be a semigroup pre-order. If a +t >p b+t, then
ma+1t >p mb+t for every m € N.

Proof. The proof is naturally by induction on m. The base case m = 1 is true by assumption.
The induction hypothesis is that (m — 1)a+t >p (m — 1)b + t. For the induction step we
start with ma +¢ = (m — 1)a + a +t. Next, the base case implies that (m —1)a+a -+t >p
(m—1)a+b+t. Finally, the induction hypothesis implies that (m—1)a+b+t >p (m—1)b+b+t.
We combine all of this to conclude that ma +t >p mb + ¢.]

3.5. Ranks

As we have seen in our earlier concrete discussion of circuit models as pre-orders, the notion
of complexity (formula size, branching program size, comparatoric circuit size) always takes
a similar form, namely of minimizing the amount of units 1 required to upper bound the
target function in the pre-order. Here we define this concept generally as ‘rank”, and look
closely into two variations: the amortized rank and the catalytic rank.

Let P be a non-negative semigroup pre-order on S that is bounded. We will use P and
the unitelements 1 € F' to define three natural rank functions on S: the rank, the catalytic
rank, and the amortized rank. Our main objective is to understand these rank functions.

Definition 3.9. For every s € S we define the rank of s, denoted by R(s), as the smallest
number n € N such that s <p n, where, we recall, n is the multiset {{1,...,1}} that consists
of n copies of 1. For every s € S we define the catalytic rank of s, denoted by Reat($), as
the smallest number n € N such that there exists an element ¢ € S, the catalyst, such that
s+t <pmn-+t. Forevery s € S we define the amortized rank of s, denoted by R(s), as the
infimum R(s) := inf,, R(ns)/n.

In other words:
e The rank function R(s) measures the cost of the element s in terms of the unit 1

e The catalytic rank is a variation on rank that allows for an extra element to act as a
catalyst

e The amortized rank measures the amortized cost of ns = s+ ---+ s (n times) when
n € N goes to infinity.

27

We call any function ¢ : S — R sub-additive if for every s,t € S it holds that ¢(s +1t) <
#(s)+¢(t). Rank, catalytic rank, and amortized rank are sub-additive since P is a semigroup
pre-order. Moreover, since rank is sub-additive and bounded, it follows from Fekete’s Lemma
that R(s) = limy, oo R(ns)/n, which motivates the name amortized rank.

The important relation between the three ranks is:

Lemma 3.10. R(s) < Reat(s) < R(s).

Proof. To prove the first inequality, suppose that R(s) = n. Then s <p n. This gives the
inequality s+t <p n + t for the trivial catalyst ¢ = 0 (or in fact any choice of ¢ € S), and
s0 Reat(s) < n.

For the second inequality, suppose that Reat(s) = n. Then s+t <p n + ¢ for some
catalyst t € S. From Lemma 3.8 it follows that ms + ¢ <p mnl + ¢ for every m € N. Then
it follows that ms <p ms + t, since P is non-negative. Crucially, in this inequality we can
use the same catalyst ¢ regardless of the number of copies m. Thus we have the rank upper
bound R(ms) < mn + R(t) in which also R(¢) has no dependence on m. This means that
R(s) = limy—00 R(ms)/m < n + limy, 00 R(2) /m < n. O

Depending on the choice of S and P, the three rank functions R, Rcat and R may or
may not coincide with each other.

Ezample 3.11. In this example, R and Rcat do not coincide. Let S = N3 and let 1 = (1,0,0).
Let P be the good pre-order generated by

(1uoa 1) ZP (07 17 1)) (25050) ZP (07 170)7 (2)0)0) 2P (O)Oa]-)

Then R((0,1,0)) = 2, while Reat((0,1,0)) = 1 since (1,0,0) + (0,0,1) >p (0,1,0) + (0,0, 1
Ezample 3.12. In this example, R and Reat do not coincide. Let S = N? and let 1 = (1,0
Let P be the good pre-order generated by (2,0) >p (0,3). Then we have R((0,1)) =
Reat((0,1)) = 2 while R((0,1)) = 2/3.

Recall that p : S — R>p is called an additive monotone if p(a +b) = p(a) + p(b),

a<pb = p(a) < u) for all a,b € S, and p(1) < 1. Additive monotones have the
following important property:

Lemma 3.13. If p is an additive monotone, then for any s € S it holds that p(s) < R(s).

Proof. By monotonicity and normalization, it follows that u(s) < R(s). Then for any
m € N, it follows from additivity that u(s) = p(ms)/m < R(ms)/m. Taking limits we find
u(s) < R(s). 0

28

3.6. General Circuit Pre-Order

We started this section by discussing concrete circuit models as pre-orders (boolean formulas,
branching programs, comparator circuits) and we then proceeded by describing a general
abstract framework of concepts like a semigroup of multisets, a good pre-order and rank
functions. Here we will connect those two parts by discussing a general circuit pre-order
that clearly subsumes the concrete circuit models that have seen. The main point is to see
that this general circuit pre-order is a good pre-order as defined in Definition 3.6.

Definition 3.14 (General circuit pre-order). As before, 1 denotes a formal symbol. A
general circuit pre-order is any pre-order < on S = NFU{l} obtained as follows. Let

{{fl,lv'” 7f1,m1}} < {{91,17- . '791,161717"'71}}
——

ni

{{f?,lv .. '7f2,m2}} S {{92,17' .. ’g271€27 1? .. 71}}
——

n2

{{f?‘,b ceey fT,mT}} g {{gr,la e 79’/‘,/%7 1a ey 1}}
——

za

be a finite collection of inequalities, for boolean functions f; ;, g;; € F, and numbers n; € N.
Second, we let < be the smallest ordering that contains < and satisfies the following
properties, for A,B,C € S:

o If AC B, then A < B.
e [f A< B, then A+C=<B+C.
e f A< Band B<C, then A <C.

Finally, we assume that for every boolean function f there is a number n € N such
that {{f}} < n where n = {{1,...,1}} is the multiset in which 1 appears n times.

The general circuit pre-order < encodes, in a very general sense, a circuit model with a
finite “gate set” or set of allowed operations on boolean functions. The allowed operations
that may be performed in the model each come with their own cost n; € N.

Lemma 3.15. The general circuit pre-order = of Definition 3.14 is a good pre-order.

Proof. We need < to be bounded, finitely generated, non-negative and a semigroup pre-order.
Indeed, by definition, the pre-order is bounded, finitely generated by the explicitly given
generators corresponding to the gates of the circuit and the non-negativity inequalities
0 <X {{f}} for f € F,, non-negative (because of the explicitly imposed requirement that
A C B implies A < B) and a semigroup pre-order (because of the explicitly imposed A < B
implies A+ C < B+ (). O

29

One verifies directly that the boolean formula pre-order <p (Definition 2.2), the branch-
ing program pre-order =<pp (Definition 2.4) and the comparator circuit pre-order <cc
(Definition 2.5) are special cases of the general circuit pre-order and are thus good pre-orders
by Lemma 3.15.

With respect to the general circuit pre-order =<, the rank R(A) of A € S is by definition
(Definition 3.9) the smallest number n € N such that A < n = {{1,...,1}}. The rank
equals the complexity of computing a collection of boolean functions with respect to the
agreed upon gate set and the prescribed costs n; per gate.

The amortized rank R(f) of f € F is by definition (Definition 3.9) given by R(f) =
inf,, 00 R(m- f)/m (and the infimum may equivalently be replaced by a limit since the rank
is sub-additive). The amortized rank thus equals the amortized complexity of a boolean
function.

In between the rank and the amortized rank, we have the catalytic rank Reat(f), which
is defined (Definition 3.9) as the smallest number n € N such that there exists an element
A € S, the catalyst, for which {{f}} + A < n+ A. The catalytic rank equals the complexity
of computing f with respect to the gate set at given costs, with the additional freedom of
using any collection of functions as a catalyst—we can use these boolean functions at zero
cost in our circuit, as long as we make sure to recompute and return them at the end of the
computation.

Finally, a formal complexity measure ;1 : S — R>o with respect to < is any additive
monotone S — R>g. These properties and previously discussed general considerations
(Lemma 3.10 and Lemma 3.13) give the “trivial” inequalities:

mﬁtx,u(f) < R(f) £ Reat(f) < R(f).

The goal in the next section will be to understand these inequalities more precisely; which
ones can be strict and how can we recognize that? We will approach this question by means
of a duality theorem.

As a last remark, we emphasize that other concrete circuit models will fit in this
framework as well. The notion of asymptotic rank will be more interesting for some than
for others. Perhaps the most natural model to consider, besides the aforementioned, is the
boolean circuit model, which computes boolean functions from literals using OR-gates and
AND-gates with fan-out two, say. However, in this model the asymptotic rank becomes
trivial. Namely, this model clearly allows us to copy results at very low cost. Thus the rank
(i.e. circuit size) of m - f :== {{f,..., f}} is essentially the same as the rank of {{f}}, and
we find that R(f) = limy,—0c R(m - f)/m =1 for every boolean function f in the boolean
circuit model.

4. Duality

Strassen [Str88], motivated by the problem of designing fast matrix multiplication algorithms,
introduced the theory of asymptotic spectra to study the amortized (i.e., asymptotic)

30

properties of basic objects in mathematics and computer science, and in particular bilinear
maps (i.e., tensors). The duality that we introduce here can be thought of as the simplest
meaningful instance of this theory. We give a self-contained proof using linear programming
duality, and we connect our duality to the theory of formal complexity measures.

The setting is as we have prepared in the previous section: let S = N be a semigroup
under coordinatewise addition where F' is a finite set and let P be a good pre-order on S
(Definition 3.6), relative to 1 € F. Relative to P and 1 are defined on S the rank R, the
catalytic rank Reat, and the amortized rank R.

Our duality theorem will be phrased in terms of additive monotones S — R>q that we
discussed before. In fact, it will turn out to be equivalent (and simpler) to consider only the
rational-valued additive monotones S — Q¢ of which we briefly recall the definition. Let
p:S — Q>0. We say that p is additive if for every a,b € S we have u(a+b) = p(a) + p(b).
If p is additive, then p is determined by its restriction to the standard basis elements of S,
that is, we can think of ;1 as a function F' — Q>¢. For a pre-order P on S we say that p is
P-monotone if for every a,b € S if a <p b, then u(a) < u(b). We say that u is normalized
if (1) < 1. Let M be the set of all functions p : S — Q>0 that are additive, P-monotone
and normalized. We call the elements of M simply the additive monotones.

Theorem 4.1. For every f € F we have that

max u(f) = R(f).

pneM

In particular, for any boolean function f the mazimization of pu(f) over all branching com-
plezity meaures p equals the amortized branching program size BP(f), and the maximization
of u(f) over all submodular measures p (comparator cicuit complexity measures) equals the
amortized comparator circuit size CC(f).

The general picture arising from Theorem 4.1 is that the additive monotones, asymptotic
rank, catalytic rank and rank are related by max,car pu(f) = R(f) < Reas(f) < R(f).
Generally speaking, R may not (and in our applications will not) be an element of M. In
other words, for different f € F' the maximization of u(f) over p € M may be attained by
different p.

Lets take a moment to repeat the concrete meaning of Theorem 4.1. Recall from
our discussion of concrete circuit models that, for any branching program complexity
measure g it holds that p lower bounds the amortized branching program size u(f) < BP(f).
Theorem 4.1 applied to the branching program pre-order <gp implies that in fact for every
boolean function f the maximum of p(f) over all branching program measures p is equal
to the amortized branching program size, max, u(f) = BP(f). However, BP is itself not a
branching program measure.

Similarly, for submodular measures g it holds that p lower bounds the amortized
comparator circuit size p(f) < CC(f), and Theorem 4.1 says that max, u(f) = CC(f)

31

where the maximization goes over all submodular measures p. However, CC is itself not a
submodular measure.

Theorem 4.1 naturally applies just as well to monotone comparator circuits (which
is naturally defined by a preorer as discussed at the end of Section 2.3) to give that for
every monotone boolean function f the maximum of u(f) over all submodular complexity
measures on monotone functions p is equal to the amortized monotone comparator circuit
size, max,, pu(f) = mCC(f).

We return to the general setting. The amortized rank R being characterized as the
pointwise maximum of the additive monotones p by Theorem 4.1, what can be said about
the catalytic rank Rca? Recall that generally R(f) < Reat(f) with the inequality potentially
being strict. As part of our proof of Theorem 4.1, in which we phrase max,cnr 11(f) as a
linear program, we will naturally obtain the following characterization of the catalytic rank.

Theorem 4.2. For every f € F we have that Reat(f) equals the optimal integral solution
of the dual of the linear program max,ens pu(f).

Obviously, the statement of Theorem 4.2 will make more sense to us once we have
understood precisely how max,ecar p(f) is a linear program, which we will do in a moment.

Finally, we will prove Theorem 4.1 as a special case of the following amortized inequality
version of the duality theorem (and this is where the pre-order point of view on circuit
models is indispensable):

Theorem 4.3. For every u,v € S, the following are equivalent:
1. p(v) > p(u) for every up e M
2. there is an element t € S and an integer k > 1 such that t + kv >p t + ku

3. there is an integer ¢ > 0 and an integer k > 1 such that for all n € N we have that
nkv + ¢l >p nku.

The meaning of Theorem 4.3 is as follows, say for comparator circuits (and the analogous
interpretation obviously holds for branching programs as well). If for two multisets of
functions A = {{f1,..., fm}} and B = {{g1,...,gx}} and for all submodular measures p it
holds that p(A) > u(B), then there is a collection of (catalyst) functions {{t1,...,,}} such
that from the collection of functions

{{tla"'atraflw"afl?"'afmv"'afm}}
k k
we can compute the collection of functions
{{tlv"' 7t7'7glv"' y 915+ -59m; - - agm}}
k k

using a comparator circuit.

32

4.1. Linear Programming

The proof of Theorem 4.1 and Theorem 4.3 is an application of the well-known strong
duality theorem for linear programming. For concreteness, the version we use is the following
[Sch99, Section 7.4, Equation (19)]:

Theorem 4.4 (Strong duality for linear programming). Let A € Q11*% be a matriz and
let b€ QM and ¢ € Q% be vectors. Then

max{c-z |z € QZQO, Az <b} =min{b-y |y € Qilo, ATy > ¢}

provided that both sets are nonempty.

In our application of Theorem 4.4 the sets {x € Q‘fo | Ax <b}and {y € Qilo | ATy > ¢}
will indeed both be nonempty, as a simple consequence of the definition of additive monotones
and a good pre-order, respectively.

In other words, in the commonly used notation for linear programs, the following
primal-dual pair of linear programs give the same optimal value.

max c-x min b-y
subject to Ax <b subject to ATy > ¢
x>0 y>0

Before going into the full proof of Theorem 4.1, we describe a more explicit instantiation,
in the setting of branching programs, of the ingredients that appear in the proof and in
particular of the linear program to which the strong duality will be applied.

On a high level, the primal program maxc - z will correspond to maximizing over
branching program complexity measures u evaluated at a fixed boolean function f, and the
dual program minb - y will correspond to minimizing over amortized branching programs
that compute f.

More precisely, the inequalities in the primal are given by the monotonicity and normal-
ization conditions on u with respect to the branching program pre-order <pp.

max u(f)
subject to plgVvh) <plg)+uplg) Vg,he Py,
plgAz) +p(gATi) <plg)+2 Vg€ Fyi€n],
p(ws) + p(@;) <2 Vi € [n],
p(1) <1
po>0

Thus the primal feasible region will correspond precisely to the branching program complexity
measures /4, and the optimal value is precisely max,enr p(f).

33

The dual program corresponds precisely to branching programs that compute f, amor-
tized. Let R denote the set of all generating inequalities for the branching program
pre-order <pp, that is, the inequalities

{fval Zsr {{f,9}
{f A, f AT Zep ({f, 1,11
{=i, 73} <P {{1,1}}

for all boolean functions f, g € F,,, and variables x;. For any generating inequality r € R
and any boolean function g we will write r - g if r produces g and we will write g - r
if consumes g. For example, for r = “{{f V g}} =sp {{f,g}}” we would write the three
statements 7 - f Vg, fFr,and g - r. To keep track of the varying costs of the generating
inequalities, we set ¢, = 0 for any OR-inequality and ¢, = 2 for any branching inequality.
With this notation, in the following dual program, the vector y = (y(r)),er will encode
the recipe for a (amortized, as it turns out from careful analysis) branching program that
computes f, and) ;. ¢,y(r) measures its cost:

min 21k Cry(r)
subject to >, y(r) =32, y(r) 20 Vg € Fy,

Do y(r) =g y(r) =2 1

y=>0

In other words, the dual program optimizes over rational linear combinations of the generating
inequalities of <gp, minimizing the number of generating inequalities that consume 1 and
making sure that, overall, consumption and production at least cancel out, except for when
it comes to the boolean function f of which we want to have a net production of at least one.
A more careful analysis will reveal how feasible vectors y € ng are in fact not guaranteed
to correspond to proper branching programs, but at best correspond to catalytic branching
programs and generally to amortized branching programs.

4.2. Full Proof

We will prove in this section the duality theorem for the amortized rank (Theorem 4.1) and
the duality theorem for amortized inequalities (Corollary 4.9).

The following theorem is the main technical duality theorem. Theorem 4.1 and Theo-
rem 4.3 will be derived from it in a simple manner afterwards.

As before, let S = N for a finite set F' that contains a distinguished element 1 € F,
let P be a good pre-order on S relative to 1 (Definition 3.6), and let M be the set of additive
monotones S — Q>o.

Theorem 4.5. For every u,v € S we have that

max p(u) — p(v)

34

equals the minimum non-negative rational number r such that there exists an element t € S,
an integer k > 1 such that
t+kv+krl>pt+ku. (2)

To prove Theorem 4.5 we prove two lemmas. We set up some notation that we use in
both lemmas. We will apply the strong duality theorem of linear programming (Theorem 4.4)
with the following choice of matrix A and vector b. Let (v, w1), ..., (vg,wy) be (any fixed
choice of) generators of P. Let e be the cardinality of F'. Let A be the (d+1) x e matrix with
the first d rows given by the vectors v; — w1, ..., vq —wy corresponding to the generators and
the last row given by the vector that encodes the unit {{1}} € N¥. Let b be the (d+1)-vector
with the first d coeflicients equal to 0 and the last coefficient equal to 1.

Foru,v € S, let s =u—v e ZF.

Lemma 4.6. We have

{r e QL | Ax < b} = {(u(f))er | n € M}. (3)
and therefore
max{s -2 | 2 € Q. Av < b} = ma u(w) = (o) (4)

Proof. Let € QL satisfy Az < b. Define the function i, : S — Qxq by setting u,(f) = 2
for every f € F', and then extending additively to all of S. Then p, is additive by construction.
It follows from the inequality Az < b that p, is normalized and P-monotone. Thus p, € M.
We see directly that s -z = p.(s). It remains to show that every element p € M is equal
to p, for some x € ng such that Az < b. This is easy to see, since we may simply define
x = (xf)rer by ¢ = u(f) for every f € F. Then Az < b follows from the fact that p € M.
This proves the claim. O

Lemma 4.7. Let rmin be the minimum r € Q> such that there exists a t € S and an
integer k > 1 such that t+kv+krl >p t+ku. Then ryiy, = min{b-y |y € QL ATy > s}.

>0
Proof. We first prove that
rmin < min{b-y |y € QL' ATy > s},

Let y € Q‘f{)l satisfy ATy > s. The inequality ATy > s implies, by construction of A, that
we have the pointwise inequality

y1(v1 —wi) + -+ ya(vg — wg) + Ygr1l > s =u—v.

There is a positive integer £ € N such that all elements ky; are integral. We multiply both
sides of the inequality by k to obtain

kyi(vi —w1) + -+ + kya(va — wa) + kya+11 + kv > ku.

35

From this it follows using Lemma 3.7 that there exists an element ¢t € S such that
kygr1l+kv+t>p ku+t.

By construction of b we have b -y = yg+1 and so b -y > rpiy. This proves one direction of
the claim.
We will now prove the other direction of the claim, namely

Tmin = mln{b Y | RS Qézla AT?/ > 5}-

Suppose that kv 4+ krl +t >p ku +t. It follows from Lemma 3.7 that there is an element
Y € Q‘f{)l such that, in the pointwise pre-order, we have

y1(1}1 —wl) —i—~~+yd(vd—wd) +ygr1l+v>u
where b -y = ygy1 = 7. For this y it holds that ATy > s. O

The proof of Lemma 4.7 is easily adapted to prove the following lemma (in which the
rationals are replaced by integers), which we will use later to characterize the catalytic rank.

Lemma 4.8. Let ¢ be the minimum r € Z>q such that there exists at € S such that

t+v+7r1>pt+u. Thenre® =min{b-y|y € ch{)l, ATy > s},

Proof of Theorem 4.5. By Lemma 4.6 we have

max p(u) — pu(v) = max{s -z | z € QL,, Az < b}
pneM =

and by Lemma 4.7 we have

Tmin = min{b-y |y € Q?ﬁl, ATy > s}

The set {x € ng, Az < b} always contains the zero vector, and in particular is nonempty.

Also the set {y € @fgl, ATy > s} always contains at least one vector by the boundedness
property of the good pre-order P, and in particular is nonempty. Therefore, by linear
programming duality (Theorem 4.4), it follows that max,ecnr p(u) — p(v) equals rmi,, which
proves the theorem. O

We obtain the following corollary.
Corollary 4.9. For every u,v € S and r € Q>¢, the following are equivalent:
1. p(v) +7r > p(u) for every p € M

2. there is an element t € S and an integer k > 1 such thatt+ kv + krl >p t+ ku

36

3. there is an integer ¢ > 0 and an integer k > 1 such that for all n € N we have that
nkv + nkrl + cl >p nku.

Proof. If p(v) +r > p(u) for every p € M, then max,epn p(u) — p(v) < r. Then from
Theorem 4.5 it follows that ¢t + kv + krl >p t 4+ ku for some t € S and some integer k > 1.
If there is an element ¢t € S such that ¢ + kv + krl >p t + ku, then from Lemma 3.8 and
the fact that ¢ is bounded it follows that there is a constant ¢ € N such that for all n € N
we have nkv + nkrl + c1 >p nku.
If nkv + nkrl 4+ ¢1 >p nku for all n € N, then for every u € M, using that u is
P-monotone and additive, we have that

nkp(v) + p(nkr) + u(c) > nkp(u).

Then, using the upper bound nkr > pu(nkr), and after dividing by nk on both sides, we get
that

p(v) + 7+ ple)/(nk) = p(uw).
We let n go to infinity to get u(v) +r > u(u). O

It is worth considering explicitely the special case of Corollary 4.9 where we set r = 0,
which gives the following theorem (restated):

Theorem 4.3. For every u,v € S, the following are equivalent:
1. p(v) > p(u) for every u € M
2. there is an element t € S and an integer k > 1 such that t + kv >p t + ku

3. there is an integer ¢ > 0 and an integer k > 1 such that for all n € N we have that
nkv + ¢l >p nku.

Proof. The claim follows directly from Corollary 4.9 by setting r = 0. O
We also obtain the duality for the amortized rank as a corollary of Corollary 4.9 (restated):

Theorem 4.1. For every f € F' we have that

max p(f) = R(f).

pneM

In particular, for any boolean function f the mazimization of pu(f) over all branching com-
plexity meaures p equals the amortized branching program size BP(f), and the mazimization
of u(f) over all submodular measures p (comparator cicuit complexity measures) equals the
amortized comparator circuit size CC(f).

37

Proof. The inequality max,enr p1(u) < R(u) is clear. We now prove the other inequality
max,en p(u) > R(u). Let r = maxyuep p(u). Then, in particular, r > p(u) for all
1w € M. We apply Corollary 4.9 with v = 0, to obtain that for all n € N we have that
(nr 4+ o(n))1 >p nu. This implies that > R(u). O

Theorem 4.2. For every f € F we have that Reat(f) equals the optimal integral solution
of the dual of the linear program max,ens pi(f).

Proof. This follows directly from Lemma 4.8 applied to u = f and v = 0. O

5. Upper Bounds on Amortized and Catalytic Complexity by Symmetry

In the previous sections we have studied in depth the dual role that branching program
complexity measures and submodular measures have in relation to amortized complexity. In
this section we prove upper bounds on such measures as well as explicit efficient constructions
of amortized branching programs.

Symmetry turns out to be the powerful ingredient for our efficient constructions. First,
we consider branching program measures that have a natural symmetry condition. We
prove a strong upper bound on such measures in terms of the average decision tree depth.
Then, we extend this result by proving a strong upper bound for ordinary branching progam
measures on orbits of any boolean function under the natural symmetry.

Second, we use the symmetry ideas thus developed to improve the known bounds for
catalytic space computation in the sense of [BCK ™ 14|. The important hurdle to overcome
in this construction is that in order to get catalytic space algorithms we need the start and
output nodes in our branching programs to be paired up in a stronger fashion than we have
been enforcing so far. This we are able to do by an extensive modification of the catalytic
branching program presented by Potechin [Pot17], keeping careful track of symmetries.

5.1. Symmetry and Formal Complexity Measures

Definition 5.1. A branching program complexity measure is symmetric if u(f) < u(f®)
for every boolean function f on n variables and every i € [n], where f® is the function
obtained from f by negating the ith input variable.

As we have mentioned in the introduction, Razborov [Raz92] proved that any submodular
complexity measure y satisfies pu(f) = O(n) for any n-variate boolean function f. Razborov
used a randomized construction, and his argument uses the following key symmetry property:
if fo, f1 are both uniformly random boolean function on n — 1 variables and f is a uniformly
random function on n variables, then

@n A fo) V(T A f1) ~ (@0 A fo) V (@ A f1) ~ f

38

where X ~ Y if the two variables have the same distribution. We first show that by
explicitly introducing these symmetry properties, we can strongly improve the upper bounds,
and prove upper bounds even for branching program complexity measures rather than
submodular measures.

Lemma 5.2. For any symmetric branching program complezxity measure p and any boolean
function f,

p(f) < Q(Davg(f) +2)

where Dayg(f) is the minimum expected number of queries made by any decision tree
computing f over the uniform distribution.

Proof. First suppose that f is a constant function. From the axioms of a branching program
complexity measure one can show p(f) < 4: this is because if f =1 then

p(1) < p(zvzT) < ple) + pE) <2
and if f = 0 then
1(0) < plx AT) + p(z) + p() < plz) +p(@) +2 < 4.

Now, assume that f depends on at least one variable, and let 7' be the decision tree
witnessing Dg,q(f). Without loss of generality, assume that the first variable queried by T°
is x5, and note that T' gives a representation of f as

f=foANTn)V (f1 Axp)

where fo, f1 are functions that do not depend on z;,. Finally, note that Dgyg(f) = Dayg(f®"),
since we can obtain a decision tree for f®" from the decision tree for f by negating the first
variable.

By definition of T" we have

Davg(f) _ Dav;(f()) + Dav;(fl) +1. (5)

We claim that p(f) < 2Dge(f) by induction on n. If n = 1 then since f depends on its
one input variable, it is either z, or its negation, and thus p(f) < 1 = Dgyg(f). Since
w(f) = u(f®), by the branching program complexity measure axioms we have

2u(f) = u(f) + p(f&)

((foA=zn) V (fi Azn)) + p((fo Azn) V (f1 A —xp))
(fo A =xp) + p(fi Azn) + pu(fo Axn) + p(fi A —xn)
(fo) +pu(f1) + 4

W
W
W

VANV

39

Now, applying the inductive hypothesis and Equation 5,

1(fo) + p(f1) +4 < 2(Davg(fo) + 2) + 2(Davg(f1) +2) +4
= 4(Davg(f) + 2)'

Dividing by 2 yields the lemma. O

We cannot extend this result to general branching program complexity measures. How-
ever, by symmetrizing, we can still use the above argument to compute the orbit of f
efficiently on average.

Definition 5.3. For any boolean function f :{0,1}" — {0,1} and any T C [n] let
Orbr(f) :== {f®:8C T}

be the orbit of f under the action of negating any subset of bits in T". Let Il denote the
symmetry group of F,, corresponding to this action, so that Orby(f) = IIy - f. (Note that
II7 is isomorphic to a direct product of n groups, either Ss in coordinates of T" or the trivial
group in coordinates outside of T'). If T' = [n] then we will just write Orb(f).

Let f:{0,1}™ — {0,1} be any boolean function, let i € [n], and let b € {0,1}. Let
ficy : {0,131 — {0,1} denote the function obtained from f by substituting in b for the
i" input of f. For any set of functions A let M(A,i,b) := {gicp : g € A} denote the
multiset obtained by substituting b for the ith bit for each function in A, and note that
|M(A,i,b)| = |A| since M(A,i,b) is a multiset. In order to prove our upper bound using
symmetrization, we will need the following group-theoretic lemma. Roughly speaking, it
shows that if we take every function in Orb(f) and set the ith bit to b € {0,1}, then the
result will be many copies of Orb(fj«—1) and Orb(f;¢). This will be quite useful since we
will ultimately need to understand the action of querying a single bit in a decision tree on

Orb(f).

Lemma 5.4. Let f:{0,1}" — {0,1} be a boolean function, let i € [n], and let b € {0,1}.
Let up, = |Orb(f)|/2|Orb(fics)|. Then either

e Orb(fic1) = Orb(fic0) and M(Orb(f),i,b) can be partitioned into ug + uy copies of
Orb(fic1).

)

)

(
e Orb(fic1) # Orb(fico), and M(Orb(f),i,b) can be partitioned into ug copies of
Orb(fio) and uy copies of Orb(fi1).

In either case, we can write |M(Orb(f),i,b)| = ug|Orb(fico)| + u1|Orb(fic1)].

Proof. First, observe that if f is a constant function, then Orb(f) = Orb(f;) for b € {0,1}
and so ugp = u; = 1/2 and we are in the first bullet. From now on, we assume that f depends
on at least one of its input variables.

40

Let U = [n] \ {i}. We can write Orb(f) = Orby(f) U Orby (f®") with |Orby(f)| =
|Orby (f9%)] since IIy; is a subgroup of I, and acting on f by a subgroup of Ilj;,,) partitions
Orb(f). If g,h : {0,1}™ — {0,1} then let g ~ h if giep = hjrp.

We begin by claiming that for any function g, M (Orby(g),,b) can be partitioned into
u = |Orby(g)|/|Orb(gics)| copies of the orbit Orb(g;«p). To see this, observe that =~ is
an equivalence relation, and so Orby(g) is partitioned by =~ into sets {S1,S52,...,5m}.
Furthermore, ~ is invariant under the action of IIy;, and so we have that |Sk| = [Sy|
for each k,¢ and Il acts on the collection of sets in the natural way. This means that
m = |Orb(g;)| and proves the claim.

First assume that Orby(f) # Orb(f). Then

M (Orb(f),i,b) = M(Orby(f),i,b) LI M(Orby(f7),4,b)

where U denotes disjoint union. By applying the above partitioning claim to both M (Orby(f),,b)
and M (Orby (f®%),4,b) we get integers ug, u; such that

o] o)l [0mbu(f)l _ |Orb(f)|
" om(fE,)| 210m(fico) T [Om(fier)| 210mb(fie)|’

and M (Orb(f),,b) is ug copies of Orb(fio) and uy copies of Orb(f;1), proving the lemma
in this case.
Now, assume that Orby(f) = Orb(f), which also implies Orby (f®") = Orb(f). This
means that Orb(fio) = Orb(fi«1), as for any g € Orb(fi«o) we have, for some S and T,
i

i1 i1

where the last step follows since Orby(f) = Orb(f). Now, since Orby(f) = Orb(f) =
Orby (f9%), we have

M(Orb(f),i,b) = M(Orby(f),i,b) = M(Orby (£, i,b).

Since Orb(fi«0) = Orb(fic1), by applying the above partitioning argument we see that
M(Orb(f),i,b) can be partitioned into some positive number u of copies of Orb(f;1). In
this case, to see the final claim of the lemma, note that

w = Orb(f)|/|Orb(fic1)| = 2u0 = 2us
and also Orb(fi—1) = Orb(fi0), so
|M(Orb(f),i,b)| = u|Orb(fi1)| = uo|Orb(fico)| + u1|Orb(fi1)l- O

The next theorem bounds the complexity of the orbit of f.

41

Theorem 5.5. For any boolean function f on n bits and any branching program complexity
measure [

p(Orb(f)) < 2|0rb(f)|(Davg(f) + 2)-

Proof. The proof is by induction on n, the number of variables on which f depends. Again,
if n = 0 then Orb(f) = {f}, and so one can show (as was shown in Lemma 5.2) that
p(f) <4. If n=1then f =z, Dayy(f) =1, and Orb(z;) = {x1,Z1}, so

(1) + p(@1) = 2 < 4 = 2/0rb(f) | Day ().

Now, for the induction step. Let T' be a decision tree for f witnessing Dgyq(f), and
suppose w.l.o.g. that z, is the first variable queried by the decision tree. We can write
[= (fonTp)V (fi Nxy) where f, = fr.p, and note that since T' witnesses Dgyq(f) we have

Davg(fO) + Davg(fl)

1.
2 2 +

Davg(f) =

Since f depends on x,, the action of negating the nth input partitions Orb(f) into pairs
(g,9%™), so, let B be the set of all such pairs. Then, applying the axioms of a branching
program measure, we again have

pOrb(f)) = > uly)

g€0rb(f)

= > ulg) +u(g®)

(9,.99™)€B

= Z 1((go AZn) V (g1 A an)) + (g0 A n) V (91 A Tn))

p(go A Tn) + (g1 A zn) + p1(go A zn) + (g1 A Tn)

M

| A

1(go) + p(g1) + 4
(9,9%™)eB

= n(g) +2
geM(Orb(f),n,1)

where the last equality follows since we have substituted in 1 for z,, in every g in Orb(f)
(note that g™ = go). By applying Lemma 5.4 we can partition M (Orb(f),n,1) into copies
of Orb(fn1),Orb(fr«0). By using the final claim in the lemma, we can write this as

> 1(g) + 2 = 2|0rb(f)[+ uou(Orb(fo)) + u1p(Orb(f1))
geM (Orb(f),n,1)

[Orb(f)] [Orb(f)]

= 2|0rb(f)[+ mﬂ(orb(fo)) + mﬂ(orb(ﬁ))-

42

By the induction hypothesis applied to fo, f1, and using the definition of Dy, this previous
expression is at most

200rb()] + 5 a2 Dasgl(fo) +2) + 532 V210 (Duvg (1) +2)

= 2|0rb(f)| + |Orb(f)|(Davg(fo) +2) + [Orb(f)[(Davg(f1) + 2)
= 2[0rb(f)|(Davg(f) +2)-

The proof is complete.]

We can use the above argument to improve known amortized circuit complexity upper
bounds for both branching programs and comparator circuits. We will defer the argument
for branching programs to the next section, as it is slightly more complicated (and, as we
will see, it also provides improved bounds on nonuniform catalytic space). For comparator
circuits the argument is significantly simpler, and is illustrated next. The main “trick” in
our argument is the following well-known fact about XOR.

Lemma 5.6. Let f: {0,1}" — {0,1}" be any boolean function. Then for every function
g € {0,1}" there is a unique function h : {0,1}" — {0,1} such that g=h & f.

Proof. Let h=g ® f. O

Theorem 5.7. Let f:{0,1}" — {0,1}, and let H C F,, be any set of boolean functions
such that

e Ifge H theng® f € H.
o Ilj,,)- H =H, that s, H is closed under negating any subset of inputs.
o H is closed under negation: if f € H then f € H.

Since H is closed under negating any subset of inputs, let Orb(g1), Orb(ga),...,Orb(gnm) be
a partition of H into orbits. Then for any submodular complezity measure L,

u(f) < “; S 10rb (i) (Dag (91) + 2).
=1

Proof. Since H is closed under negating any subset of inputs, there are functions g1, go, . . . , gm
such that we can partition H into orbits Orb(g1), Orb(g2),...,Orb(g,). Moreover, as com-
parator circuit complexity measures are also branching program complexity measures, we
can apply Theorem 5.5 to each orbit and get

u(H) <) 2[0rb(g:)|(Daug(g:) + 2)-
i=1

43

On the other hand, since H is closed under taking & f, we can partition the functions in
H up into pairs (g, h) such that g = h @ f. Furthermore, since H is closed under negation,

we have the “complementary” pair (g, h) in H — to see this, note that if g = h @ f, then
g=hofol=hol)of=hatf.

With this in mind, let B be the set of all such pairs, and let BT be the set of pairs obtained

by keeping exactly one of (g,h) or (g,h) for each pair g, h. Observe that a submodular
complexity measure is also a formula complexity measure — that is, it satisfies the inequalities
wu(fog) <u(f)+ u(g) for o € {A,V}. Using this fact, for any z,y we have

(zAg) +pu(@Ay)
(@AY V(zAT))
=p(z @ y).

() + p(y) + (@) + p@) > p
>

Therefore, since H is closed under negation, we have

N (T | H |p(f)
—= > e
p(H) =Y ulg) +uh) +pu@ +nh) > Y ulgeh) YR
(g:h)eB+ (g,h)eB+
Combining together the two inequalities on p(H) yields the theorem. O

The next lemma gives a nice family of sets H that the previous theorem can be applied
to. We will use it crucially in the next section on improved bounds for catalytic space.

Lemma 5.8. Let f € F, be any boolean function such that f is not the constant 0. The set
spang, (Orb(f)) satisfies the following three properties.

o If g € spang,(Orb(f)) then g ® f & spang, (Orb(f)).

e spang, (Orb(f)) is closed under negating any subset of inputs.

e If g € spany, (Orb(f)) then g € spang, (Orb(f)).

Proof. 1t is clear that f € spang,(Orb(f)), and also if g € spang,(Orb(f)) then g @ f €
spang, (Orb(f)). Now, suppose that g € spang,(Orb(f)) and let S C [n]. We can write
g =", fi where f; € Orb(f) for each i. Note that for any functions hi, ha, (h1 @® he)® =
hies @ thS. Therefore

DS

g =D _f| =D 1 € spang, (Orb(f))
=1

=1
since £ € Orb(f) if f; € Orb(f).

44

Finally, we observe that 1 € spang,(Orb(f)), which implies that the set is also closed
under negation since g € spany, (Orb(f)) implies g = 1 ® g € spang, (Orb(f)). We proceed
by induction on m < n, the number of variables on which f depends. If m =0 then f =1
(since f # 0) and we are done. So, by way of induction, assume that if g is any function
depending on m > 1 variables then 1 € spang,(Orb(g)). Let f be any function depending
on m + 1 variables.

If x; is any variable on which f depends, then we can write f = x;q + r as a polynomial
over Fy, where ¢ # 0, r are polynomials that do not depend on x;. Consider the function
f® = (1+ x;)q + r, which is also in spang, (Orb(f)) since span, (Orb(f)) is closed under
negating input variables. Adding these two polynomials together yields

fH ¥ =zq+r+(1+z)g+r=q

Since spang, (Orb(f)) is closed under negating input variables, and since (g + h)®% = g®5 +
h®5 it follows that spang,(Orb(g)) C spang, (Orb(f)). By induction, 1 € spang, (Orb(q)),
completing the proof of the lemma. O

5.2. Better Bounds for Catalytic Space

In this section we use the arguments from the previous section to improve the known bounds
on catalytic space, a model first introduced in [BCK"14]. The next definition appears in
[GKM15].

Definition 5.9. Let m be a positive integer and let f be a boolean function. An m-catalytic
branching program for a function f is a branching program P with the following properties:

e The program P has m start nodes si, s9,..., Sm, m accept nodes aj,az, ..., an,, and
m reject nodes r1,7r2,...,Tm.

e On any input = and for any i € [m], if f(z) = 1 then a computation path starting at
the node s; will end at the accept node a;, and if f(x) = 0 then a computation path
starting at s; will end at the reject node 7;.

We note that this is more specialized than our definition of a branching program as
the start nodes and end nodes are paired, whereas the more general notion of a branching
program computing a multiset of functions allows computation paths beginning at any start
node to stop at any sink node. This pairing property is closely related to catalytic space,
thanks to the following proposition of Girard, Koucky, and McKenzie [GKM15].

Proposition 5.10 (Proposition 9 of [GKM15]). Let f be a function that can be computed in
space s using a catalytic tape of size < 2°. Then there is a 2°-catalytic branching program
computing f of size 2040

45

- a ifx; =0
a e—7I;—+e

b boifx;=0
b e—T;,—e
a 1fxl =1

Figure 2: A swap gate, implemented by a branching program using 4 edges.

Potechin constructed a catalytic branching program computing f with m = 22"~1
and total size O(mn), and asked if the number of copies required can be reduced while
maintaining the amortized bound of O(n) [Pot17]. In this section we show the answer is
yes, provided that the degree of f is small when representing it as a polynomial over Fs.

Our catalytic branching program is an extensive modification of the catalytic branching
program presented by Potechin, and is crucially modelled on the tools we developed in the
previous section. We will construct our branching program out of copies of the following
small component, which we call a swap gate.

Definition 5.11. A swap gate swap(a,b,) is the function which takes as input two bits
a,b € {0,1}, as well as an input variable x;, and outputs (a,b) if ; = 0 and (b,a) if z; = 1.

Swap gates have three very nice properties that we will crucially use in our construction.

o Reversible. Swap gates are reversible: swap(swap(a,b,i),i) = (a,b). In the branching
program in Figure 2 this is represented by the fact that if we reverse all directions of
the edges we get another branching program.

e XOR-Invariance. For any boolean function f, if swap(a,b,i) = (¢, d) then swap(f @
a, f®b,i) = (fdec, fdd). Indeed, invariance holds for any operator applied to the
inputs.

e Input Evaluation. Let g,h : {0,1}" — {0,1} be boolean functions, and suppose that
g®" = h for some i € [n]. Then swap(g,h,i) = (gico, gic_1). This is most easily seen
by a case argument: if x; = 0 then the first output is g;« o and the second output is
hic0 = gi«1. On the other hand, if x; = 1 then the first output is h;«1 = g;« ¢ and
the second output is g 1.

The next lemma is the main lemma used in our construction, and corresponds exactly to
an instantiation of the argument in Theorem 5.5 as a catalytic branching program. We
note that since our duality theorem (Theorem 4.1) does not apply to catalytic branching
programs (only standard branching programs), we cannot immediately deduce anything
about catalytic branching programs from it; so, instead we will need to proceed directly.
In the next lemma we will discuss branching programs with some “standard” start nodes

46

(labelled with 1 initially), and other start nodes “labelled” with 0. These nodes can be
ignored, and are just a technical convenience when describing the proof.

Lemma 5.12. For any boolean function f :{0,1}" — {0,1} there is a branching program
composed of swap gates that, starting from |f~1(1)| copies of 1 and |f~1(0)| copies of 0,
computes every function in Orb(f). The size of the branching program is 2|Orb(f)|Davg(f).

Proof. We essentially follow the proof of Theorem 5.5, using the inequalities in the proof
to guide the construction of our branching program. As in that theorem, our proof is by
induction on n, the number of variables on which f depends. If n = 0 then f is constant,
and we can compute 0 or 1 by a single accept or reject node with 0 edges.

Now, by way of induction, suppose that T is a decision tree for f witnessing Dgqyq(f),
and suppose without loss of generality that x,, is the first variable queried by the tree. We
can write f = (fo ATpn) V (fi A z,) where fi, = fnp. Again note that since T' witnesses

Davg(f),

D(l’l)g(f) _ Dav;(fO) n Dav;(fl)

By the induction hypothesis, for b € {0, 1} there is a branching program Pj, composed
only of swap gates, computing every function in Orb(f;) with size 2|Orb(fp,)|Davg(f) from
|fb_1(1)| copies of 1 and |fb_1(0)| copies of 0. Also, since f depends on z,, negating x,
partitions the orbit Orb(f) into pairs (g, g®"), so, let B be the set of all such pairs. We
have two cases, depending on the two outcomes of Lemma 5.4.

+ 1.

Case 1. Orb(fy) = Orb(f1).

In this case, let u = |Orb(f)|/|Orb(f1)| be the positive integer such that M (Orb(f),n,b) =
{gneb | g € Orb(f)}} can be partitioned into u copies of Orb(f1). It is easier to see the
proof in “reverse”. That is, suppose that we had computed all of Orb(f) using a branching
program B. For each pair (g,9®") € B, applying a swap gate swap(g, g®", x,,) will output
the pair (go,91) = (gb,g?") by the Input Evaluation property of the swap gate. Thus, by
starting with all pairs (g,¢g%") € B, and applying swap gates to each pair, we will obtain
(by Lemma 5.4) u copies of Orb(f1). Now, by applying the reversibility property of swap
gates, we can therefore compute all of Orb(f) from u copies of Orb(f1) using an appropriate
number of swap gates.

Formally, create u copies of the branching program P;, which will now output u copies of
the orbit Orb(f1) = Orb(fp). By using the values u, = |Orb(f)|/2|Orb(f3)| from Lemma 5.4,
and using the final claim in that lemma, we can bound the total size of the branching

47

program as

2|0rb(f)| + w - 2|0rb(f1)|Davg(f1) = 2|0rb(f)| + 2uo|Orb(f1)|Davg(f1) + 2u1|Orb(f1)|Davg(f1)
= 2\0rb(f)| —+ QUO’OI’b(foND(wg(fQ) + QU1|Orb(f1)‘Davg(f1)
= 2[0rb(f)| + [Orb(f)|Davg(fo) + [Orb(f)[Davg(f1)

— 2‘0I’b(f)| (1 + Davg(f()) + Davg(fl))

2 2
= 2[Orb(f)| Davg(f)

where we have also used the definition of average-case decision tree depth. Finally, we note
that |f~1(b)| = u|f; 1 (b)| for b € {0,1} by the above partitioning claim.

Case 2. Orb(fy) # Orb(f1).

This case is virtually identical to the previous case. In this case let u, = |Orb(f)|/2|Orb(f3)]
be the positive integers such that M (Orb(f), n,b) can be partitioned into wu; copies of Orb(f3)
for b € {0,1}. We once again proceed in “reverse”. Suppose we had a branching program com-
puting all of Orb(f). Again, for each pair (g, g®™) € B, applying a swap gate swap(g, g®", z,,)
will output the pair (go,g1), by the Input Evaluation property of the swap gate. Thus,
by starting with all pairs (g, g®") and applying swap gates, we will produce uy copies of
Orb(fo) and u; copies of Orb(f1) by Lemma 5.4. Again, since swap gates are reversible, we
can therefore compute all of Orb(f) from ug copies of Orb(fy) and u; copies of Orb(f1).

So, using the induction hypothesis, create ug copies of the branching program Py and
u copies of the branching program Pj. As described above, we can compute all of Orb(f)
by using an additional |Orb(f)|/2 swap gates. This means the total size of the branching

program is
2|0rb(f)| + 2uo|Orb(fo)|Davg(fo) + 2u1|Orb(f1)|Davg(f1)
= 2[0rb(f)[+ [Orb(f)[Davg(fo) + |Orb(f)| Davg(f1)
= 2|0rb(f)[Davg(f)-
This completes the proof. O

We can use this lemma with the “XOR trick” in Theorem 5.7 to create a catalytic
branching program computing f with much better complexity.

Theorem 5.13. Let f:{0,1}"™ — {0,1} be any boolean function and let d = degy(f) be the
degree of f when represented as an Fo polynomial. Then f can be computed by an m-catalytic
branching program with m < 2(91)_1 and with total size O(mn).

Proof. By Lemma 5.8, spang, (Orb(f)) is closed under XORing with f and also closed under

the action of IIj,;. Also by Lemma 5.8, 1 € spang, (Orb(f)), and so it follows that for any
x € {0,1}" we have

[{g € spang, (Orb(f)) : g(x) = 1} = [{g € spang, (Orb(f)) : g(x) = 0}

48

since for every g € spang,(Orb(f)), g =1+ g € spang,(Orb(f)). Let C' be this number of
1s/0s, and note that C' = [spang, (Orb(f))[/2.

Let Orb(g1),0rb(g2),...,0rb(g) be the decomposition of spang, (Orb(f)) under the
action of IIj,). First, apply Lemma 5.12 to each orbit Orb(g;) twice, creating two branching
programs P; o, P; 1 composed of swap gates that each compute all of Orb(g;) . Now, reverse
all the swap gates in P, for each i € [m], creating a branching program that (intuitively)
computes C' copies of 1 and C' copies of 0 from spang, (Orb(f))

So, we now have two branching programs: one, by taking P;; for i € [m], computing
all of spang, (Orb(f)) from C copies of 1 and C copies of 0. The second, by taking P;g
for i € [m], gives a branching program computing C' copies of 1 and C copies of 0 from
spang, (Orb(f)). Now, for each g € spang,(Orb(f)), take the node computing g @ f in
the first branching program and merge it with the node taking g as input in the second
branching program. Since the second program is composed entirely of swap gadgets, by
the XOR-invariance property of the swap gadget the program will now output C copies of
1@ f = f, and C copies of 0® f = f. This yields a branching program computing C' copies
of f at nodes ay,as,...,ac, and C copies of f at nodes ri,ra,...,rc; however, we do not
have the pairing property between start nodes and the accept/reject nodes. To ensure the
pairing property, we create two more copies of the branching program and run it in reverse
(again, exploiting reversibility of the swap gate). We use the nodes {ay,...,ac} as the start
nodes for one copy of the program, and {ry,...,rc} as the start nodes for the other copy of
the program. Finally, the C' start nodes of the program will be the C initial nodes labelled
with 1.

Now we estimate the complexity of the program. The size of the program is at
most 6spang, (Orb(f))n, since we take 3 copies of a branching program of size at most

2spang, (Orb(f))n by Lemma 5.12. Letting degy(f) = d we see that |spang, (Orb(f))| < 2(Snd),
since every function in Orb(f) has degree at most d and taking a linear span cannot increase
the degree. This completes the proof. O

6. Open Problems

The work presented here suggests many open problems. Most pressingly: what other
“direct-sum type” phenomena can we study using Strassen-type duality theorems? There
are many natural direct-sum type problems in complexity theory that seem amenable to
this technique (such as parallel repetition or information complexity, as discussed in the
introduction). Is there a way to study query or proof complexity models in this framework?

A second group of questions concerns monotone circuit complexity. Unlike the case
with non-monotone circuit complexity, we can use formal complexity measures to actually
prove explicit exponential lower bounds for monotone circuits. For example, in contrast to
the known O(n) bounds for submodular complexity measures shown by Razborov [Raz92],
one can use a monotone submodular complexity measure (the so-called rank measure

49

[Raz90]) to prove strongly exponential lower bounds on monotone circuit complexity for
comparator circuits, boolean formulas, and switching networks [PR17, PR18]. All of our
duality theorems also hold for monotone circuit complexity, and this shows that amortized
monotone comparator circuit complexity can be strongly exponential! For this reason,
we conjecture that amortized monotone comparator circuit complexity is simply equal to
monotone comparator circuit complexity, and it is natural to wonder if this also holds for
other monotone models.

A final natural question is whether or not it is possible to further improve non-uniform
catalytic space complexity. Similar to the bounds proven by [Pot17], our catalytic space
upper bounds achieve O(n)-size per copy of the function computed, while significantly
decreasing the number of copies. Is it possible to further decrease the number of copies,
perhaps while trading off into the amortized size (that is, increasing O(n) to n©1))?

A. An Explicit Complexity Measure

In this appendix we describe an explicit small branching program complexity measure to
prove a simple property of the amortized branching program size. Recall that our duality
theorem specialized to branching programs says that the amortized branching program
size BP is the pointwise maximum over all branching program complexity measures,

BP(f) = max pu(f). (6)
neEMpp

This raises the basic question whether BP in an element of Mpp, that is, whether BP is a
branching program measure. Indeed, this would trivialize Equation 6. In Section 2.2 we
argued that BP is not itself a branching program measure, because it is not additive. Our
argument relied on the existence of branching program measures u, 1/, "’ : Fo» — R>o with
the property that u(z Ay) =2, i/(x AY), and p’(Z) = 2. We give a construction of such
measures here. We note that via a similar argument and construction it can also be shown
that the amortized comparator circuit size is not additive.

We present the measure here, which was found by computer search. From the construction
of pu one can easily obtain y/ and p” by a natural permutation of u’s values. We describe
w1 in the following table, in which we identify boolean functions f € F, with their set of
one-inputs (1) = {z € {0,1}*: f(z) = 1}:

50

f w(f) f n(f)
0 2 {00,01,10,11} 0
{00} 2 {01,10,11} 0
{01} 1 {00,10,11} 1
{10} 1 {00,01,11} 1
{11} 2 {00,01, 10} 0
{00,01} 1 {10,11} 1
{00,10} 1 {01,11} 1
{00,11} 2 {01,10} 0

We finish by noting the remarkable symmetries that this measure p has. Not only does it

satisfy u(f) =2 — p(f), but u(f) is also invariant under swapping the two inputs of f and
under simultaneously negating the two inputs of f.

Acknowledgements

The authors thank Aaron Potechin, Avi Wigderson, James Cook, Ian Mertz, and Toniann
Pitassi for helpful conversations, and thank Benny Appelbaum for pointers to the closely
related papers [AARV21, AA20]. They also thank several anonymous reviewers for very
careful readings of an earlier draft of the paper. R.R. was supported by NSERC, the
Charles Simonyi Endowment, and indirectly supported by the National Science Foundation
Grant No. CCF-1900460. J.Z. was supported by the National Science Foundation Grant
No. CCF-1900460. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

[AA20] Benny Applebaum and Barak Arkis. On the power of amortization in secret
sharing: d-uniform secret sharing and CDS with constant information rate. ACM
Trans. Comput. Theory, 12(4):24:1-24:21, 2020. doi:10.1145/3417756.

[AARV21] Benny Applebaum, Barak Arkis, Pavel Raykov, and Prashant Nalini Vasudevan.
Conditional disclosure of secrets: Amplification, closure, amortization, lower-
bounds, and separations. SIAM J. Comput., 50(1):32-67, 2021. doi:10.1137/
18M1217097.

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and
faster matrix multiplication. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, pages 522-539. SIAM, 2021. arXiv:2010.
05846, doi:10.1137/1.9781611976465.32.

o1

https://doi.org/10.1145/3417756
https://doi.org/10.1137/18M1217097
https://doi.org/10.1137/18M1217097
http://arxiv.org/abs/2010.05846
http://arxiv.org/abs/2010.05846
https://doi.org/10.1137/1.9781611976465.32

[Bar89)

[BC92]

[BCK+14]

[BR14]

[CM20]

[CVZ18]

[Fek23]

[FKNNO5|

[FR18]

[Fril7]

[Fri20]

David A. Mix Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in NC!. J. Comput. Syst. Sci., 38(1):150-164,
1989. doi:10.1016/0022-0000(89)90037-8.

Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a
constant number of registers. SIAM J. Comput., 21(1):54-58, 1992. doi:
10.1137/0221006

Harry Buhrman, Richard Cleve, Michal Koucky, Bruno Loff, and Florian Speel-
man. Computing with a full memory: Catalytic space. In Proceedings of the
Forty-Sizth Annual ACM Symposium on Theory of Computing, STOC 2014, page
857-866, 2014. doi:10.1145/2591796.2591874.

Mark Braverman and Anup Rao. Information equals amortized communication.
IEEFE Trans. Inf. Theory, 60(10):6058-6069, 2014. doi:10.1109/TIT.2014.
2347282.

James Cook and Ian Mertz. Catalytic approaches to the tree evaluation problem.
In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, pages 752-760. ACM, 2020. doi:10.1145/3357713.
3384316.

Matthias Christandl, Péter Vrana, and Jeroen Zuiddam. Universal points in
the asymptotic spectrum of tensors. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, pages 289-296. ACM,
2018. doi:10.1145/3188745.3188766

Michael Fekete. Uber die verteilung der wurzeln bei gewissen algebraischen
gleichungen mit ganzzahligen koeffizienten. Mathematische Zeitschrift, 17(1):228-
249, 1923.

Toméas Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amortized
communication complexity. SIAM J. Comput., 24(4):736-750, 1995. doi:10.
1137/80097539792235864.

Zoltan Furedi and Imre Z. Ruzsa. Nearly subadditive sequences, 2018. arXiv:
1810.11723.

Tobias Fritz. Resource convertibility and ordered commutative monoids. Math.
Struct. Comput. Sci., 27(6):850-938, 2017. doi:10.1017/50960129515000444.

Tobias Fritz. A generalization of Strassen’s Positivstellensatz. Communications
in Algebra, pages 1-18, 2020. doi:10.1080/00927872.2020.1803344.

92

https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1137/0221006
https://doi.org/10.1137/0221006
https://doi.org/10.1145/2591796.2591874
https://doi.org/10.1109/TIT.2014.2347282
https://doi.org/10.1109/TIT.2014.2347282
https://doi.org/10.1145/3357713.3384316
https://doi.org/10.1145/3357713.3384316
https://doi.org/10.1145/3188745.3188766
https://doi.org/10.1137/S0097539792235864
https://doi.org/10.1137/S0097539792235864
http://arxiv.org/abs/1810.11723
http://arxiv.org/abs/1810.11723
https://doi.org/10.1017/S0960129515000444
https://doi.org/10.1080/00927872.2020.1803344

[Gar85]

[GKM15]

[GR20]

[Has98)|

[TV20]

[Khr72]

ILG14]

[Lz21]

[Pot17]

[PR17]

[PR18|

Philip Alan Gartenberg. Fast rectangular matrixz multiplication. PhD thesis,
UCLA, 1985.

Vincent Girard, Michal Koucky, and Pierre McKenzie. Nonuniform catalytic
space and the direct sum for space. In Electron. Collog. Comput. Complex.
(ECCC), volume 22, page 138, 2015. URL: http://eccc.hpi-web.de/report/
2015/138.

Anna Gal and Robert Robere. Lower bounds for (non-monotone) comparator
circuits. In 11th Innovations in Theoretical Computer Science Conference, ITCS
2020, volume 151 of LIPIcs, pages 58:1-58:13. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2020. doi:10.4230/LIPIcs.ITCS.2020.58.

Johan Hastad. The shrinkage exponent of De Morgan formulas is 2. SIAM J.
Comput., 27(1):48-64, 1998. doi:10.1137/S0097539794261556.

Asger Kjeerulff Jensen and Péter Vrana. The asymptotic spectrum of LOCC
transformations. [EEE Trans. Inf. Theory, 66(1):155-166, 2020. doi:10.1109/
TIT.2019.2927555.

V.M. Khrapchenko. A method of obtaining lower bounds for the complexity of
m-schemes. Math. Notes Acad. Sci. USSR, 11:474-479, 1972.

Frangois Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings
of the 39th International Symposium on Symbolic and Algebraic Computation
(ISSAC 2014), pages 296-303. 2014. doi:10.1145/2608628.2608664.

Yinan Li and Jeroen Zuiddam. Quantum asymptotic spectra of graphs and
non-commutative graphs, and quantum Shannon capacities. IEEE Transactions
on Information Theory, 67(1):416-432, 2021. doi:10.1109/TIT.2020.3032686.

Aaron Potechin. A note on amortized branching program complexity. In 32nd
Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia,
volume 79, pages 4:1-4:12, 2017. doi:10.4230/LIPIcs.CCC.2017.4.

Toniann Pitassi and Robert Robere. Strongly exponential lower bounds for
monotone computation. In Hamed Hatami, Pierre McKenzie, and Valerie King,
editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pages 1246-1255. ACM, 2017. doi:10.1145/3055399.
3055478.

Toniann Pitassi and Robert Robere. Lifting nullstellensatz to monotone span
programs over any field. In Ilias Diakonikolas, David Kempe, and Monika
Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium

o3

http://eccc.hpi-web.de/report/2015/138
http://eccc.hpi-web.de/report/2015/138
https://doi.org/10.4230/LIPIcs.ITCS.2020.58
https://doi.org/10.1137/S0097539794261556
https://doi.org/10.1109/TIT.2019.2927555
https://doi.org/10.1109/TIT.2019.2927555
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1109/TIT.2020.3032686
https://doi.org/10.4230/LIPIcs.CCC.2017.4
https://doi.org/10.1145/3055399.3055478
https://doi.org/10.1145/3055399.3055478

[Raz90]

|Raz92]

[Raz98]

[RPRC16]

[Sch99]

[Sha56]

[Str86]

[Str87]

[Str88|

[Sub90]

[Tall4]

[Vra20|

on Theory of Computing, STOC 2018, pages 1207-1219. ACM, 2018. doi:
10.1145/3188745.3188914.

Alexander A. Razborov. Applications of matrix methods to the theory of
lower bounds in computational complexity. Combinatorica, 10(1):81-93, 1990.
doi:10.1007/BF02122698.

Alexander A. Razborov. On submodular complexity measures. In Poceedings
of the London Mathematical Society symposium on Boolean function complexity,
pages 76-83, 1992. URL: https://dl.acm.org/doi/10.5555/167687.167709.

Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763-803, 1998.
doi:10.1137/50097539795280895.

Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook.
Exponential lower bounds for monotone span programs. In IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, pages 406-415.
IEEE Computer Society, 2016. doi:10.1109/F0CS.2016.51.

Alexander Schrijver. Theory of linear and integer programming. Wiley-
Interscience series in discrete mathematics and optimization. Wiley, 1999.

Claude E. Shannon. The zero error capacity of a noisy channel. Institute of
Radio Engineers, Transactions on Information Theory, I'T-2(September):8-19,
1956. doi:10.1109/TIT.1956.1056798.

Volker Strassen. The asymptotic spectrum of tensors and the exponent of matrix
multiplication. In Proceedings of the 27th Annual Symposium on Foundations of
Computer Science, FOCS 1986, pages 49-54, Washington, DC, USA, 1986. IEEE
Computer Society. doi:10.1109/SFCS.1986.52.

Volker Strassen. Relative bilinear complexity and matrix multiplication. J. Reine
Angew. Math., 375/376:406-443, 1987. doi:10.1515/cr11.1987.375-376.406.

Volker Strassen. The asymptotic spectrum of tensors. J. Reine Angew. Math.,
384:102-152, 1988. doi:10.1515/cr11.1988.384.102.

Ashok Subramanian. The computational complexity of the circuit value and
network stability problems. PhD thesis, Stanford University, 1990.

Avishay Tal. Shrinkage of De Morgan formulae by spectral techniques. In 55th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,
pages 551-560. IEEE Computer Society, 2014. doi:10.1109/F0CS.2014.65.

Péter Vrana. A generalization of Strassen’s spectral theorem, 2020. arXiv:
2003.14176.

o4

https://doi.org/10.1145/3188745.3188914
https://doi.org/10.1145/3188745.3188914
https://doi.org/10.1007/BF02122698
https://dl.acm.org/doi/10.5555/167687.167709
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1109/FOCS.2016.51
https://doi.org/10.1109/TIT.1956.1056798
https://doi.org/10.1109/SFCS.1986.52
https://doi.org/10.1515/crll.1987.375-376.406
https://doi.org/10.1515/crll.1988.384.102
https://doi.org/10.1109/FOCS.2014.65
http://arxiv.org/abs/2003.14176
http://arxiv.org/abs/2003.14176

[Weg87|
[Zuil8]

[Zuil9]

Ingo Wegener. The complexity of boolean functions. Wiley-Teubner, 1987.

Jeroen Zuiddam. Algebraic complexity, asymptotic spectra and entanglement
polytopes. PhD thesis, University of Amsterdam, 2018.

Jeroen Zuiddam. The asymptotic spectrum of graphs and the Shannon capacity.
Comb., 39(5):1173-1184, 2019. doi:10.1007/s00493-019-3992-5.

95

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1007/s00493-019-3992-5

