
Ideal-theoretic Explanation of Capacity-achieving Decoding *

Siddharth Bhandari† Prahladh Harsha ‡ Mrinal Kumar§ Madhu Sudan¶

Abstract

In this work, we present an abstract framework for some algebraic error-correcting codes
with the aim of capturing codes that are list-decodable to capacity, along with their decoding
algorithms. In the polynomial ideal framework, a code is specified by some ideals in a polyno-
mial ring, messages are polynomials and the encoding of a message polynomial is the collec-
tion of residues of that polynomial modulo the ideals. We present an alternate way of viewing
this class of codes in terms of linear operators, and show that this alternate view makes their
algorithmic list-decodability amenable to analysis.

Our framework leads to a new class of codes that we call affine Folded Reed-Solomon codes
(which are themselves a special case of the broader class we explore). These codes are common
generalizations of the well-studied Folded Reed-Solomon codes and Univariate Multiplicity
codes as well as the less-studied Additive Folded Reed-Solomon codes, and lead to a large
family of codes that were not previously known/studied.

More significantly our framework also captures the algorithmic list-decodability of the con-
stituent codes. Specifically, we present a unified view of the decoding algorithm for ideal-
theoretic codes and show that the decodability reduces to the analysis of the distance of some
related codes. We show that a good bound on this distance leads to a capacity-achieving perfor-
mance of the underlying code, providing a unifying explanation of known capacity-achieving
results. In the specific case of affine Folded Reed-Solomon codes, our framework shows that
they are efficiently list-decodable up to capacity (for appropriate setting of the parameters),
thereby unifying the previous results for Folded Reed-Solomon, Multiplicity and Additive
Folded Reed-Solomon codes.

*A conference version of this paper appeared in the Proc. the 25th International Workshop on Randomization and Com-
putation (RANDOM) 2021 [BHKS21].

†Tata Institute of Fundamental Research, Mumbai, India & Simons Institute for the Theory of Computing, Berkeley,
CA, USA. siddharth.bhandari@berkeley.edu. Research partly supported by the Department of Atomic Energy, Govern-
ment of India, under project no. 12-R&D-TFR-5.01-0500 and by the Google PhD Fellowship.

‡Tata Institute of Fundamental Research, Mumbai, India. prahladh@tifr.res.in. Research supported by the Depart-
ment of Atomic Energy, Government of India, under project no. 12-R&D-TFR-5.01-0500 and in part by the Swarna-
jayanti fellowship.

§Department of Computer Science & Engineering, IIT Bombay, Mumbai, India. mrinal@cse.iitb.ac.in.
¶School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. madhu@cs.harvard.edu.

Supported in part by a Simons Investigator Award and NSF Award CCF 1715187.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 36 (2021)

mailto:siddharth.bhandari@berkeley.edu
mailto:prahladh@tifr.res.in
mailto:mrinal@cse.iitb.ac.in
mailto:madhu@cs.harvard.edu

1 Introduction

Reed-Solomon codes are obtained by evaluations of polynomials of degree less than k at n distinct
points in a finite field F. Folded-Reed-Solomon (FRS) codes are obtained by evaluating a poly-
nomial at sn (carefully chosen) points that are grouped into n bundles of size s each, and then
viewing the resulting sn evaluations as n elements of Fs. Multiplicity codes are obtained by eval-
uating the polynomial and s − 1 of its derivatives, and again viewing the resulting sn evaluations
as n elements of Fs.

This “bundling” (or folding, as it is called for FRS codes) in FRS codes and multiplicity codes
may be viewed at best as a harmless operation — it does not hurt the rate and (relative) distance
of the codes, which are already optimal in these parameters. But far from merely being harmless,
in the context of algorithmic list-decoding, bundling has led to remarkable improvements and
to two of the very few explicit capacity achieving codes in the literature. Indeed the only other
codes that achieve list-decoding capacity algorithmically and do not use one of the above codes
as an ingredient are the Folded Algebraic-Geometric codes, which also use bundling. Despite this
central role, the bundling operation is not well-understood algebraically. Indeed it seems like an
“adhoc” operation rather than a principled one. Unearthing what bundling is and understanding
when and why it turns out to be so powerful is the primary goal of this paper, and we make some
progress towards this.

Turning to the algorithms for list-decoding the above codes close to capacity, there are two sig-
nificantly different ones in the literature. A (later) algorithm due to Guruswami and Wang [GW13]1

which seems more generalizable, and the original algorithm of Guruswami and Rudra [GR08]
which is significantly more challenging to apply to multiplicity codes (see [Kop15]). In both cases,
while the algorithm for FRS works in all (reasonable) settings, the algorithms for multiplicity
codes only work when the characteristic of the field is larger than the degrees of the polynomi-
als in question. Looking more closely at FRS codes, part of the careful choice of bundling in
FRS codes is to pick each bundle to be a geometric progression. If one were to switch this to an
arithmetic progression, then one would get a less-studied family of codes called the Additive-FRS
codes. It turns out the Additive-FRS codes are also known to be list-decodable to capacity but
only via the original algorithm. We note that the skew polynomial machinery developed by Gopi
and Guruswami [GG22] in the context of local reconstruction codes provides yet another proof of
list-decodibility of these codes (See Section 8 for more details). Thus, the short summary of algo-
rithmic list-decoding is that there is no short summary! Algorithms tend to work but we need to
choose carefully and read the fine print.

The goal of this write-up is to provide a unifying algebraic framework that (a) captures bundling

1We note that the Guruswami-Wang algorithm is inspired by an idea due to Vadhan [Vad12, Theorem 5.24] that
shows that it suffices to interpolate a polynomial Q which is linear in the y-variables. However, the algorithm from
[Vad12] is not applicable to our setting since it uses polynomial factorization as well as analysis tools that are specific
to Reed-Solomon codes. The further simplifications developed in [GW13] are key to the applicability in our setting.

2

algebraically, (b) captures most of the algorithmic success also algebraically, leaving well-defined
parts for combinatorial analysis and (c) leads to new codes that also achieve capacity. In this
work we use basic notions from linear algebra and polynomial rings to present a unifying defi-
nition (see Definitions 3.1 and 4.5) that captures the codes very generally, and also their efficient
decoding properties (see Theorem 1.1). We also describe some new variants of these codes (see
Section 3.1), that can be analyzed using this unifying framework and shown to achieve capacity
We elaborate on these below.

Polynomial ideal codes. Our starting point is what we term “polynomial ideal codes”. A poly-
nomial ideal code over a finite field F and parameters k, s is specified by n pairwise relatively prime
monic polynomials E0(X), . . . , En−1(X) ∈ F[X] of degree equal to s.2 The encoding maps a mes-
sage p ∈ Fk (interpreted as a polynomial of degree less than k) to n symbols as follows:

F<k[X] −→ (F<s[X])n

p(X) 7−→ (p(X) (mod Ei(X)))n−1
i=0

The codes described above, Reed-Solomon, FRS, Multiplicity and Additive-FRS, are all ex-
amples of polynomial ideal codes. (A rigorous proof can be found in Section 3.1). For Reed-
Solomon codes, this is folklore knowledge: the evaluation point ai corresponds to going mod
Ei(X) = (X − ai). By this we mean that value a polynomial at the evaluation point ai is the same
as the remainder obtained when the polynomial is divided by Ei(X) = (X − ai). For any bundling
of the Reed-Solomon codes this follows by taking the product of the corresponding polynomials.
For multiplicity codes of order s, the evaluation of a polynomial and its derivatives at ai corre-
sponds to going modulo Ei(X) = (X − ai)

s.
The abstraction of polynomial ideal codes is not new to this work. Indeed Guruswami, Sahai

and Sudan [GSS00, Appendix A] already proposed these codes as a good abstraction of algebraic
codes. Their framework is even more general, in particular they even consider non-polynomial
ideals such as in Z. They suggest algorithmic possibilities but do not flesh out the details. In
this work we show (see Section 6) that polynomial ideal codes, as we define them, are indeed
list-decodable up to the Johnson radius. We note that the proof involves some steps not indicated
in the previous work but for the most part this confirms the previous thinking.

The abstraction above also captures “bundling” (or folding) nicely - we get this by choos-
ing Ei(X) to be a product of some Eij(X). But the above abstraction thus far fails to capture the
capacity-achieving aspects of the codes (i.e., the benefits of this bundling) and the decoding algo-
rithms. This leads us to the two main novel steps of this write-up:

• We present an alternate viewpoint of polynomial ideal codes in terms of linear operators.
2Here F[X] refers to the ring of univariate polynomials in the variable X over the field F while F<k[X] refers to the

vector-space of polynomials in F[X] of degree strictly less than k.

3

• We abstract the Guruswami-Wang linear-algebraic list-decoding algorithm in terms of linear
operators.

The two sets of “linear operators”, in the codes and in the decoding algorithm, are not the
same. But the linearity of both allows them to interact nicely with each other. We elaborate further
below after introducing them.

Linear operator codes. In this write-up, a linear operator is an F-linear function L : F[X] →
F[X]. A linear operator code is characterized by a family of linear operators L = (L0, . . . , Ls−1), a
set A = {a0, . . . , an−1} ⊆ F of evaluation points and k a degree parameter such that k ≤ s · n. The
corresponding linear operator code, denoted by LOA

k (L), is given as follows:

F<k[X] −→ (Fs)n

p(X) 7−→ (L(p)(ai))
n−1
i=0

Linear operator codes easily capture polynomial ideal codes. For instance, the multiplicity
codes are linear operator codes wherein the linear operators are the successive derivative opera-
tors. But they are also too general — even if we restrict the operators to map F<k[X] to itself, an
operator allows k2 degrees of freedom.

We narrow this broad family by looking at subfamilies of linear operators and codes. The spe-
cific subfamily we turn to are what we call “ideal linear operators”. We say that linear operators
L0, . . . , Ls−1 are ideal linear operators with respect to a set A of evaluation points if for every a ∈ A,
the vector space

Ia(L) = {p ∈ F[X] | L(p)(a) = 0̄}

is an ideal. (When the set of evaluation points is clear from context, we drop the phrase “with
respect to A”.) Linear operator codes corresponding to ideal linear operators are called ideal linear
operator codes (see Definitions 4.1 and 4.5 for precise definitions).

It is not hard to see that a family of linear operators L = (L0, . . . , Ls−1) has the ideal property if
it satisfies the following linearly-extendibility property: There exists a matrix M(X) ∈ F[X]s×s such
that for all p ∈ F[X] we have

L(X · p(X)) = M(X) · L(p(X)).

This motivates yet another class of linear operators and codes: We say that an operator family L
is a linearly-extendible linear operator if such a matrix M(X) exists and the resulting code is said to
be a linearly-extendible linear operator code (see Definitions 4.2 and 4.5 for precise definitions).

4

It turns out that these three definitions of codes — polynomial ideal codes, ideal linear op-
erator codes and linearly-extendible linear operator codes — are equivalent (see Propositions 4.7
and 4.9 and Corollary 4.10). And while the notion of polynomial ideal codes captures the codes
mentioned thus far naturally, the equivalent notion of linearly-extendible codes provides a path
to understanding the applicability of the linear-algebraic list-decoding algorithm of Guruswami
and Wang.

While it is not the case that every linearly-extendible linear operator code (and thus every
polynomial ideal code) is amenable to this list-decoding algorithm, it turns out that one can extract
a nice sufficient condition on the linear-extendibility for the algorithm to be well-defined. This
allows us to turn the question of list-decodability into a quantitative one — how many errors can
be corrected. And the linear operator framework now converts this question into analyzing the
rank of an associated matrix.

The sufficient condition we extract is the following: we say that an operator L : F[X] →
F[X] is degree-preserving if degX(L f) ≤ degX(f) for all f ∈ F[X]. Observe that any degree-
preserving linear operator when restricted to F<k[X] can be represented by an upper-triangular
matrix in Fk×k. A family of linear operators obtained by repeated iteration, L = (I = L0, L =

L1, L2, . . . , Ls−1) is called an iterative family. We associate with any degree-preserving family L =

(L0, . . . , Ls−1) of linear operators a simple matrix in Fs×k called Diag(L), whose ith row is the
diagonal of Li and consider the code in Fk generated by Diag(L).

The following theorem now shows that for any degree-preserving iterative linearly-extendible
operator codes, the lower bound on the distance of Diag(L) yields an upper bound on the list
size obtained by the Guruswami-Wang algorithm, even when the number of errors approaches
(1 − R) where R is the rate of the code.

Theorem 1.1. Suppose F is a field of size q and L : F[X] → F[X] a degree-preserving linear opera-
tor and A a set of evaluation points such that for L = (L0, L1, . . . , Ls−1) the corresponding code C is a
linearly-extendible linear operator code. Furthermore, if the matrix Diag(L) ∈ Fs×k formed by stacking
the diagonals of the s linear operators as the rows is the generator matrix of a code with distance 1− ℓ

k , then,
C is code with rate k

sn and relative distance 1 − k−1
sn over an alphabet of size qs, and it is list-decodable up to

the distance 1 − k
(s−w+1)n − 1

w with list size qℓ for any 1 ≤ w ≤ s.

We remark that our actual theorem is more general (see Theorem 5.2) where we further sepa-
rate the role of linear operators used to build the code from those that seed the decoding algorithm.
But it immediately implies Theorem 1.1 above, which in turn already suffices to capture the ca-
pacity achieving decodability of FRS, multiplicity and additive-FRS codes. The list-decodability of
multipliciy and additive-FRS codes can be proved using Theorem 1.1 by working with the linear
operators L(f (X)) = X f ′(X) and L(f (X)) = X · (f (X + β)− f (X)) instead of the more natural
operators L(f (X)) = f ′(X) and L(f (X)) = f (X + β). It is to be noted that using these alternate
operators does not change the underlying codes. However, this is not the approach we follow as

5

we use the more general Theorem 5.2 to establish the capacity achieving decodability of the above
mentioned codes. Indeed the generality of the arguments allows us to capture broader families of
codes uniformly, as described next.

A Common Generalization. Our framework leads very naturally to a new class of codes that we
call the Affine Folded Reed-Solomon (Affine-FRS) codes: these are codes defined by ideals of the form

∏s−1
i=0 (X − ℓ(i)(a)) where ℓ(z) = αz + β is any linear form and ℓ(i)(z) = ℓ(ℓ . . . ℓ(z) . . .)︸ ︷︷ ︸

i times

denotes the

i-fold composition of the linear form ℓ(z). These codes generalize all the previously considered
codes: The case ℓ(z) = γz are the FRS codes, the case ℓ(z) = z are the Multiplicity codes, and the
case ℓ(z) = z + β are the Additive FRS codes!

Theorem 1.2 (Informal statement – see Theorem 8.8). Let ℓ be any linear form such that either ord(ℓ) ≥
k or (char(F) ≥ k and β ̸= 0) 3. Then the Affine-FRS codes corresponding to the linear form ℓ are list-
decodable up to capacity.

Previously, even for the special case of the Additive FRS codes, list-decodability close to ca-
pacity was only achieved by the more involved algorithm of [GR08] and Kopparty [Kop15] (see
paragraph on Additive Folding and Footnote 4 in [Gur11, Section III]). (A similar approach can be
extended to cover the case of ord(ℓ) ≥ k in Theorem 1.2: however, it seems difficult to do so for
the case when ord(ℓ) is small.)

Thus, our Affine-FRS codes lead to the first common abstraction of the three codes as well as
the first common algorithm for solving the list-decoding problem for these codes. (Furthermore,
this algorithm is linear-algebraic.)‘ Arguably thus, even if the Affine-FRS codes had been studied
previously, it is not clear that the ability to decode them for every choice of ℓ(z) would be obvious.

Organization

The rest of the write-up is organized as follows. We begin with some preliminaries in Section 2.
We then formally define polynomial ideal codes and linear operator codes in Sections 3 and 4
respectively. In Section 5, we discuss list-decoding algorithms for polynomial ideal codes. We
first present the list-decoding algorithm for all polynomial ideal codes up to the Johnson radius
in Section 5.1 and then the list-decoding algorithm beyond the Johnson radius for special families
of linear operator codes in Section 5.2. The proofs of these algorithms can be found in Sections 6
and 7 respectively. Finally, we conclude by demonstrating how these results can be used to show
that several well-known families of codes (Folded Reed-Solomon, multiplicity, additive Folded
Reed-Solomon codes) as well as their common generalization affine folded Reed-Solomon achieve
list-decoding capacity in Section 8.

3ord(ℓ) refers to the smallest positive integer u such that ℓ(u)(z) = z.

6

2 Notation & Preliminaries

We start with some notations that we follow in the rest of this write-up.

• For a natural number n, [n] denotes the set {0, 1, . . . , n − 1}.

• F denotes a field.

• For a, b, i, j ∈ Z, where a, b, i, j ≥ 0 the bivariate monomial XiY j is said to have (a, b)-
weighted degree at most d if ai + bj ≤ d. N(a, b) denotes the number of bivariate monomials
of (1, a)-weighted degree at most b.

• For a, b ∈ Z, a bivariate polynomial Q(X, Y) is said to have (a, b)-weighted degree at most
d, if it is supported on monomials of (a, b)-weighted degree at most d.

• We say that a function f (n) : N → N is poly(n), if there are constants c, n0 ∈ N such that
for all n ≥ n0, f (n) ≤ nc.

• F[X] is the ring of univariate polynomials with coefficients in F, and for every k ∈ N, F<k[X]

denotes the set of polynomials in F[X] of degree strictly less than k.

• For a multivariate polynomial f (X0, X1, . . . , Xn−1) ∈ F[X0, X1, . . . , Xn−1], degXi
(f) denotes

the degree of f , when viewing it as a univariate in Xi, with coefficients in the polynomial
ring on the remaining variables over the field F.

Estimates on number of bivariate monomials: We rely on the following simple lemma to esti-
mate the number of bivariate monomials with (1, a)-weighted degree at most b.

Lemma 2.1. For every a, b ∈ N, let N(a, b) denote the number of bivariate monomials with (1, a)-
weighted degree at most b. Then, the following are true.

1. N(a − 1, b) ≥ b2/(2a).

2. For every η ∈ N, if a divides b, then

N(a, b)− N(a, b − aη)− η(b − aη + 1) = aη(η + 1)/2 .

Proof. Note that from definition of N(a, b), it follows that N(a − 1, b) ≥ N(a, b). So to prove the
first item of the claim, it suffices to prove a lower bound on N(a, b). Let τ = ⌊ b

a⌋. Then,

N(a, b) =
τ

∑
j=0

b−aj

∑
i=0

1

7

=
τ

∑
j=0

(b − aj + 1)

= (b + 1)(τ + 1)− aτ(τ + 1)/2

= (τ + 1)/2 · (2b + 2 − aτ) .

Now, plugging in the value of τ, we get the lower bound on N(a − 1, b).
For the second item, we know that τ = b/a is an integer. Thus,

N(a, b) = (b + a)(b + 2)/(2a) .

Now, we plug in the exact simplified expression obtained for N(a, b) above in the expression
N(a, b)− N(a, b − aη)− η(b − aη + 1) that we aim to estimate, to get the following.

N(a, b)− N(a, b − aη)− η(b − aη + 1)

= (b + a)(b + 2)/(2a)− (b − aη + a)(b − aη + 2)/(2a)− η(b − aη + 1)

=
1
2a
(
(b2 + (2 + a)b + 2a)− ((b − aη)2 + (2 + a)(b − aη) + 2a)

)
− η(b − aη + 1)

=
1
2a
(
(2 + a)aη + 2abη − a2η2)− η(b − aη + 1)

= ((1 + a/2)η + bη − aη2/2)− (bη − aη2 + η)

= aη/2 + aη2/2

= aη(η + 1)/2.

Coding theory basics:

Definition 2.2 (codes, rate, distance). Let Σ be a finite alphabet and n be a positive integer. Given a
subset C ⊆ Σn, define the following quantities Rc and δC:

RC :=
log|Σ|(|C|)

n
, δC := min

x,y∈C
x ̸=y

{
∆(x, y)

n

}

where ∆(x, y) = |{i ∈ {1, 2, . . . , n} : xi ̸= yi}| denotes the Hamming distance between x and y. Then, C
is said to a code of relative distance δC and rate RC with blocklength n over the alphabet Σ. ⌟

Definition 2.3 (linear codes). Let Fq be a field and let Σ = Fs
q for some positive integer s. We say that

C ⊆ (Σ)n is a linear code if C is an Fq-linear space when viewed as a subset of Fsn
q . ⌟

We note that the standard definition of linear codes corresponds to the case when s = 1. All the
codes we consider in this paper will be linear under this slightly more general definition of linear
codes. The above more general definition allows the alphabet to be a linear space Fs

q instead of

8

just a field Fq. It is easy to check that the rate and distance of linear codes satisfy RC =
dimFq (C)

sn

and δC = min
x∈C
x ̸=0

{
|x|
n

}
where |x| = |{i ∈ {1, 2, . . . , n} : xi ̸= 0}| denotes the Hamming weight of

x ∈ (Fs
q)

n.
As a consequence of the triangle inequality for Hamming distance, we have that for any code

C ⊆ Σn with relative distance δ and for all x ∈ Σn the number of codewords in the ball of radius
δ/2 (in terms of relative distance) centered at x, i.e., {y ∈ Σn : ∆(x, y)/n < δ/2}, is at most
1. Hence, δ/2 is the so-called unique-decoding radius for a code with relative distance δ. A natural
question is to ask what happens to the number of codewords within a ball of radius larger than δ/2
centered at x ∈ Σn. The following well-known fact shows that the number remains polynomial in
n even when the radius of the ball grows to 1 −

√
(1 − δ).

Theorem 2.4 (list-decoding up to Johnson radius [GRS, Theorem 7.3.1]). Let q ∈ N be a natural
number. Any code with block length n and relative distance δ over an alphabet of size q is (combinatorially)
list decodable from (1 −

√
(1 − δ)) fraction of errors with list size at most n2qδ.

We have the following bound for codes, referred to popularly as the Singleton bound [Sin64],
though the bound appears earlier in the works of Joshi [Jos58] and Komamiya [Kom53].

Theorem 2.5 (Komamiya-Joshi-Singleton bound [GRS, Theorem 4.3.1]). The rate R and the relative
distance δ of a code satisfy R + δ ≤ 1 + o(1).

In particular, for codes which lie on the Komamiya-Joshi-Singleton bound, we have that they
are combinatorially list decodable from 1 −

√
R − o(1) fraction of errors with polynomial list size.

List-decoding upto capacity:

Definition 2.6 (list-decoding capacity). Consider a family of codes C = {C1, . . . , Cn, . . .} where Cn has
rate ρn and block length n with alphabet Σn. Then, C is said to achieve list-decoding capacity if ∀ε > 0 there
exists an n0 such that ∀n ≥ n0 and all received words w ∈ Σn, there exists at most a polynomial number
of codewords c ∈ Cn such that δ(c, w) ≤ (1 − ρn(1 + ε)) where δ(c, w) is the fractional distance between
c and w, i.e., ∆(c, w)/n.

Further, if there exists an efficient algorithm for finding all these codewords, then, C is said to achieve
list-decoding capacity efficiently. Ideally, we want to keep Σn as small as possible. ⌟

Chinese remainder theorem: We also rely on the following version of the Chinese Remainder
Theorem for the polynomial ring.

Theorem 2.7 (Chinese remainder theorem [GG13, Corollary 5.3]). Let E0(X), E1(X), . . . , En−1(X)

be univariate polynomials of degree equal to s over a field F such that for every distinct i, j ∈ [n], Ei and
Ej are relatively prime. Then, for every n-tuple of polynomials (r0(X), . . . , rn−1(X)) ∈ F[X]n such that

9

each ri is of degree strictly less than s (or zero), there is a unique polynomial p(X) ∈ F[X] of degree at most
ns − 1 such that for all i ∈ [n],

p(X) = ri(X) mod Ei(X) .

Polynomial ideals:

Definition 2.8. A subset I ⊆ F[X] of polynomials is said to be an ideal if the following are true.

• 0 ∈ I.

• For all p(X), q(X) ∈ I, p + q ∈ I.

• For every p(X) ∈ I and q(X) ∈ F[X], p(X) · q(X) ∈ I.

⌟

For the univariate polynomial ring F[X], we also know that every ideal I is principal, i.e., there
exists a polynomial p(X) ∈ I such that

I = {p(X)q(X) : q(X) ∈ F[X]} .

3 Polynomial Ideal Codes

In this section, we discuss polynomial ideal codes in more detail, and see how this framework
captures some of the well studied families of algebraic error correcting codes.

We start with the formal definition of polynomial ideal codes.

Definition 3.1 (polynomial ideal codes). Given a field F, parameters s, k and n satisfying k < s · n, the
polynomial ideal code is specified by a family of n polynomials E0, . . . , En−1 in the ring F[X] of univariate
polynomials over the field F satisfying the following properties.

1. For all i ∈ [n], polynomial Ei has degree exactly s.

2. The Ei’s are monic polynomials.

3. The polynomials Ei’s are pairwise relatively prime.

The encoding of the polynomial ideal code maps is as follows:

F<k[X] −→ (F<s[X])n

p(X) 7−→ (p(X) (mod Ei(X)))n−1
i=0

⌟

10

As is clear from the definition, polynomial ideal codes are linear over F and have rate code
k/(sn) and relative distance (1 − (k − 1)/(sn)) (there can’t be too many zeros in the encoding of
a message polynomial p(X), as the product of all Ei’s where the encoding of p(X) is zero, divides
p(X)). Since the sum of rate and relative distance satisfy the Singleton bound, these codes are
maximal-distance separable (MDS) codes.

We note that in general, Ei’s need not have the same degree, but for notational convenience,
we work in the setting when each of them is of degree equal to s. We also note that these codes
continue to be well-defined even if the Ei’s are not relatively prime. In this case, the condition, k <

s · n is replaced by k being less than the degree of the lowest common multiple of E0, E1, . . . , En−1.
However, the distance of the code suffers in this case, and such codes need not approach the
Singleton bound. We now observe that some of the standard and well studied family of algebraic
error correcting codes are in fact instances of polynomial ideal codes for appropriate choice of
E0, E1, . . . , En−1.

3.1 Some Well Known Codes via Polynomial Ideals

The message space for all these codes is identified with univariate polynomials of degree at most
k − 1 in F[X]. We assume that the underlying field F is of size at least n for this discussion, else,
we work over a large enough extension of F.

Reed-Solomon Codes. Let a0, a1, . . . , an−1 be n distinct elements of F. In a Reed-Solomon code,
we encode a message polynomial p(X) ∈ F[X]<k by its evaluation on a0, a1, . . . , an−1. To view
these as a polynomial ideal code, observe that p(ai) = p(X) mod (X − ai). Thus, we can set the
polynomials Ei(X) in Definition 3.1 to be equal to (X − ai) for each i ∈ [n]. Thus, s = 1. Clearly,
the Ei’s are relatively prime since a0, a1, . . . , an−1 are distinct.

Folded Reed-Solomon Codes [Kra03, GR08]. Let γ ∈ F∗
q be an element of multiplicative or-

der at least s, i.e., γ0, γ, . . . , γs−1 are all distinct field elements. Further, let the set of evaluation
points be A = {a0, . . . , an−1} such that for any two distinct i and j the sets

{
ai, aiγ, . . . , aiγ

s−1} and{
aj, ajγ, . . . , ajγ

s−1} are disjoint. In a Folded Reed-Solomon code, with block length n and folding
parameter s is defined by the following encoding function.

p(X) 7−→
(

p(ai), p(aiγ
1), . . . , p(aiγ

s−1)
)n−1

i=0

Thus, these are codes over the alphabet Fs.
To view these as polynomial ideal codes, we set Ei(X) = ∏s−1

j=0(X − aiγ
j). Clearly, each

such Ei is a polynomial of degree equal to s, and since for any two distinct i and j the sets{
ai, aiγ, . . . , aiγ

s−1} and
{

aj, ajγ, . . . , ajγ
s−1} are disjoint, the polynomials E0, E1, . . . , En−1 are all

11

relatively prime.
To see the equivalence between these two viewpoints observe that p(aiγ

j) = p(X) mod (X −
aiγ

j). Moreover, (X − aiγ
j) are all relatively prime as j varies in [s] for every i ∈ [n]. Thus, by the

Chinese Remainder Theorem over F[X], there is a bijection between remainders of a polynomial
modulo {(X − aiγ

j) : j ∈ [s]} and the remainder modulo the product Ei = ∏j∈[s](X − aiγ
j) of

these polynomials.

Additive Folded Reed-Solomon Codes [GR08]. Additive Folded Reed-Solomon codes are a
variant of the Folded Reed-Solomon codes defined above. Let Fq have characteristic at least s
and let β ∈ F∗

q . Further, let the set of evaluation points be A = {a0, . . . , an−1} where ai − aj /∈
{0, β, 2β, . . . , (s − 1)β} for distinct i and j. Here, s denotes the folding parameter. The encoding is
defined as follows.

p(X) 7−→ (p(ai), p(ai + β), . . . , p(ai + β(s − 1)))n−1
i=0

Thus, these are also codes over the alphabet Fs.
To view these as polynomial ideal codes, we set Ei(X) = ∏s−1

j=0(X − ai − βj). Clearly, each such
Ei is a polynomial of degree equal to s, and since ai − aj /∈ {0, β, 2β, . . . , (s − 1)β} for distinct i and
j, the polynomials E0, E1, . . . , En−1 are all relatively prime.

To see the equivalence between the two definitions, the argument is again identical to that for
Folded Reed-Solomon codes discussed earlier in this section. We just observe (X − ai − βj) are all
relatively prime j varies in [s] for every i ∈ [n], and thus by the Chinese Remainder Theorem over
F[X], there is a bijection between remainders of a polynomial modulo {(X − ai − βj) : j ∈ [s]} and
the remainder modulo the product Ei = ∏j∈[s](X − ai − βj) of these polynomials.

Univariate Multiplicity Codes [RT97, Nie01, KSY14]. Univariate multiplicity codes, or simply
multiplicity codes are a variant of Reed-Solomon, where in addition to the evaluation of the mes-
sage polynomial at every ai, we also give the evaluation of its derivatives of up to order s − 1.
While they can be defined over all fields, for the exposition in this write-up, we consider these
codes over fields F of characteristic at least sn. Moreover, we also work with the standard deriva-
tives (from analysis), as opposed to Hasse derivatives which is typically the convention in coding
theoretic context. Let a0, a1, . . . , an−1 ∈ F be distinct field elements.

The encoding is defined as follows.

p(X) 7−→
(

p(ai),
∂p
∂X

(ai), . . . ,
∂s−1 p
∂Xs−1 (ai)

)n−1

i=0

Here, ∂j p
∂X j−1 denotes the (standard) jth order derivative of p with respect to X.

12

To view these as polynomial ideal codes, we set Ei(X) = (X − ai)
s. Clearly, each such Ei is a

polynomial of degree equal to s, and since ai’s are all distinct, these polynomials E0, E1, . . . , En−1

are all relatively prime.
The equivalence of these two definitions follows from an application of Taylor’s theorem to

univariate polynomials, which says the following.

p(X) = p(ai +X− ai) = p(ai)+ (X− ai)
∂p
∂X

(ai)+ · · ·+ 1
(s − 1)!

(X− ai)
s−1 ∂s−1 p

∂Xs−1 (ai)+ (X− ai)
s · q(X) ,

for some polynomial q(X) ∈ F[X]. Thus,

p(X) mod (X − ai)
s = p(ai) + (X − ai)

∂p
∂X

(ai) + · · ·+ 1
(s − 1)!

(X − ai)
s−1 ∂s−1 p

∂Xs−1 (ai).

Therefore, we can read off the evaluations of the derivatives of p of order up to s− 1 at ai by explic-
itly writing p(X) mod (X − ai)

s as a polynomial in (X − ai) (via interpolation for instance), and
reading off the various coefficients. Similarly, using the above expression, given the evaluation of
all the derivatives of order up to s − 1 of p at ai, we can also reconstruct p(X) mod (X − ai)

s.

Affine Folded Reed-Solomon Codes We now describe a common generalization of the codes
defined above, which we call Affine Folded Reed-Solomon Codes. Fix integers k, n, q with n ≤ q.
Let α ∈ F∗

q and β ∈ Fq such that the multiplicative order of α is u. Further, define ℓ(X) = αX + β

and

ℓ(i)(X) = ℓ(ℓ . . . ℓ(X))︸ ︷︷ ︸
i times

= αiX + β ·
i−1

∑
j=0

αj = αiX + βi.

In fact, if α ̸= 1, i.e, u > 1 then, βu = β · ∑u−1
i=0 αi = 0, and hence, ℓ(u)(X) = ℓ(0)(X). Let

ord(ℓ) denote the smallest positive integer t such that ℓ(t)(X) = X. Note that if α ̸= 1 then
ord(ℓ) = u. The message space of the Affine Folded Reed-Solomon code of degree k with block
length n and folding parameter s is polynomials of degree at most k − 1 over F[X], i.e., F<k[X]

where F = Fq. Let the set of evaluation points be A = {a0, . . . , an−1} such that for distinct i, j the
sets

{
ℓ(0)(ai), . . . , ℓ(s−1)(ai)

}
and

{
ℓ(0)(aj), . . . , ℓ(s−1)(aj)

}
are disjoint.

The encoding function of Affine Folded Reed-Solomon Codes is given as: (Recall that t =

ord(ℓ); let s = v · t + r where r < t.)

13

p(X) 7−→


p(ℓ(0)(ai))

∂p
∂X (ℓ

(0)(ai)) . . . ∂v−1 p
∂Xv−1 (ℓ

(0)(ai))
∂v p
∂Xv (ℓ(0)(ai))

...
... . . .

...
...

...
... . . .

... ∂v p
∂Xv (ℓ(r−1)(ai))

p(ℓ(t−1)(ai))
∂p
∂X (ℓ

(t−1)(ai)) . . . ∂v−1 p
∂Xv−1 (ℓ

(t−1)(ai))



n−1

i=0

.

Thus, these are also codes over the alphabet Fs.
To view these as polynomial ideal codes we set

Ei(X) =
s−1

∏
j=0

(X − αjai − β j) =
r−1

∏
j=0

(X − ℓ(j)(ai))
v+1 ·

t−1

∏
j=r

(X − ℓ(j)(ai))
v.

For the choice of A as above, the polynomials Ei = Ei(X) are pairwise co-prime. Similar to the pre-
vious cases of Folded/Additive Reed-Solomon and Multiplicy codes we have a bijection between
the remainders of a polynomial modulo Ei and the encoding of the polynomial at ai.

3.2 An Alternate Definition

We now discuss an alternate definition of polynomial ideal codes; the advantage being that this
definition ties together the polynomials E0, E1, . . . , En−1 into a single bivariate polynomial. This
would be useful later on when we discuss the connection between polynomial ideal codes and
linear operator codes.

Definition 3.2 (polynomial ideal codes (in terms of bivariate polynomials)). Given a field F, param-
eters s, k and n satisfying k < s · n, the polynomial ideal code is specified by a bivariate polynomial E(X, Y)
over the field F and a set of n field elements a0, a1 . . . , an−1 in F satisfying the following properties.

1. degX E(X, Y) = s.

2. E(X, Y) is a monic polynomial in the variable X.

3. The polynomials E(X, ai)’s are pairwise relatively prime.

Since E is monic and has (exact) degree s in the variable X, any polynomial p ∈ F[X] has the following
unique representation.

p(X) = Q(p)(X, Y) · E(X, Y) + R(p)(X, Y) where degX(R(p)(X, Y)) < s.

The encoding of the polynomial ideal code maps is as follows:

F<k[X] −→ (F<s[X])n

14

p(X) 7−→
(

R(p)(X, ai)
)n−1

i=0
.

⌟

The equivalence of Definitions 3.1 and 3.2 is not hard to see. We summarize this in the simple
observation below.

Observation 3.3. Definitions 3.1 and 3.2 are equivalent.

Proof. Given a code as per Definition 3.1, we can view this as a code according to Definition 3.2 by
picking n distinct a0, a1, . . . , an−1 ∈ F (or in a large enough extension of F of size at least n) and use
standard Lagrange interpolation to find a bivariate polynomial E(X, Y) such that for every i ∈ [n],

E(X, ai) = Ei .

More precisely, we define E(X, Y) as follows.

E(X, Y) := ∑
i∈[n]

 ∏
j∈[n]\{i}

(Y − aj)

(ai − aj)

 · Ei(X) .

Clearly, E(X, ai)’s are relatively prime, and their degree in X equals s and E(X, Y) is monic in X.
This is because the coefficient of Xs is a polynomial of degree at most n− 1 which takes the value 1
at a1, . . . , an, and so has to be the constant 1. The equivalence of the encoding function also follows
immediately from the definitions.

The other direction is even simpler. Given a code as per Definition 3.2, we can view this as
a code as per Definition 3.1 by just setting Ei(X) to be equal to E(X, ai) for every i ∈ [n]. The
condition on the degree of Ei and their relative primality follows immediately from the fact that
E(X, Y) is monic in X of degree s, and E(X, ai)’s are relatively prime. Once again, the encoding
map can be seen to be equivalent in both the cases.

From Observation 3.3 and the discussion in Section 3.1, the Reed-Solomon codes, Folded Reed-
Solomon codes, Additive Folded Reed-Solomon codes and Multiplicity codes can also be viewed
as polynomial ideal codes as per Definition 3.2.

• Reed-Solomon codes: We take E(X, Y) to be equal to (X − Y), the set of points a0, . . . , an−1

remain the same.

• Folded Reed-Solomon codes: We take E(X, Y) = ∏j∈[s](X − γjY) and the set of evaluation
points a0, . . . , an−1 are set as before, and γ ∈ F∗ is an element of high enough order.

• Additive Folded Reed-Solomon codes: We take E(X, Y) = ∏j∈[s](X − Y + βj) and the set
of evaluation points a0, . . . , an−1 are set as before. Recall that F is taken to be a field of
characteristic at least s for these codes.

15

• Multiplicity codes: We take E(X, Y) to be equal to (X −Y)s, the set of points a0, . . . , an−1 are
distinct.

• Affine Folded Reed-Solomon codes: We take E(X, Y) = ∏s−1
i=0 (X − ℓ(i)(Y)) where ℓ(Y) =

αY + β with α ∈ F∗
q and β ∈ Fq. Recall that the set of evaluation points A = {a0, . . . , an−1}

is such that for distinct i, j the sets
{
ℓ(0)(ai), . . . , ℓ(s−1)(ai)

}
and

{
ℓ(0)(aj), . . . , ℓ(s−1)(aj)

}
are

disjoint.

It follows immediately from these definitions that all the desired properties in Definition 3.2 are
indeed satisfied. We skip the remaining details.

4 Linear Operator Codes

In this section, we give an alternate viewpoint of polynomial ideal codes in terms of codes defined
based on linear operators on the ring of polynomials.

Definition 4.1 (linear operators). Let L = (L0, . . . , Ls−1) be a tuple of s linear operators where each
Li : F[X] → F[X] is a F-linear operator over the ring F. For any f ∈ F[X], it will be convenient to denote
by L(f) the (row) vector (L0(f), . . . , Ls−1(f)) ∈ F[X]s.

Given any such family L and element a ∈ F, define

Ia(L) = {p(X) ∈ F[X] | L(p)(a) = 0̄}.

If the family L of linear operators family and the set of field elements A ⊆ F further satisfy the property
that Ia(L) is an ideal for each a ∈ A, we refer to the family L as an ideal family of linear operators with
respect to A.

In this case, since F[X] is a principal ideal domain, for each a ∈ A, Ia(L) = ⟨Ea(L)(X)⟩ for some
monic polynomial Ea(L) ∈ F[X]. ⌟

We now define a special condition on the family of linear operators L which will help us
capture when Ia(L) forms an ideal.

Definition 4.2 (linearly-extendible linear operators). The family L of linear operators is said to be
linearly-extendible if there exists a matrix M(X) ∈ F[X]s×s such that for all p ∈ F[X] we have

L(X · p(X)) = M(X) · L(p(X)). (4.3)

⌟

We give two examples to illustrate the definition:

• Let L0(f (X)) = f (X) and L1(f (X)) = f ′(X) where f ′ is the formal derivative of f . Then, by
the product rule L1(X f (X)) = X · f ′(X) + f (X). Hence, in this case M(X) =

(
X 0
1 X

)
.

16

• Let L0(f (X)) = f (X) and L1(f (X)) = f (γX) where γ ∈ Fq is non-zero. Then, we have
L1(X f (X)) = γX f (γX). Hence, in this case M(X) =

(X 0
0 γX

)
.

Observation 4.4. Suppose L is linearly-extendible and M(X) is the corresponding matrix from Eq. (4.3).

• For any j ≥ 0 we have L(X j · p(X)) = (M(X))j · L(p(X)). Thus, by linearity we have that for
any q ∈ F[X]:

L(q(X) · p(X)) = q(M(X)) · L(p(X)).

For instance if q(X) = X j then L(X j · p(X)) = (M(X))j · L(p(X)).

• The family L is completely specified by L(1) and M(X). In other words, L(p(X)) = p(M(X)) ·
L(1).

• For every set A of evaluation points, L is an ideal family of linear operators with respect to A. This is
because if at a point a we have L(p)(a) = 0 then L(Xp)(a) = (M(X) · L(p(X)))(a) = M(X =

a) · L(p)(a) = 0 . This means that if p(X) ∈ Ia(L) then Xp(X) ∈ Ia(L), and hence by linearity
for any q(X) ∈ F[X] we have q(X) · p(X) ∈ Ia(L).

Definition 4.5 (linear operator codes). Let L = (L0, . . . , Ls−1) be a family of linear operators, A =

{a1, . . . , an} ⊆ F be a set of evaluation points and k a degree parameter such that k ≤ s · n. Then the linear
operator code generated by L and A, denoted by LOA

k (L) is given as follows:

F<k[X] −→ (Fs)n

p(X) 7−→ (L(p)(ai))
n
i=1

• If L is an ideal family of linear operators with respect to A where the polynomials Ei := Eai(L),
which are the monic generator polynomials for the ideals Iai(L), further satisfy the following:

1. For all i ∈ [n], polynomial Ei has degree exactly s.

2. The polynomials Ei’s are pairwise relatively prime.

Then the linear operator code is said to be an ideal linear operator code and denoted by ILOA
k (L).

• If the ideal linear operator code ILOA
k (L) further satisfies that L is linearly-extendible, then the

ideal linear operator code is said to be a linearly-extendible linear operator code, denoted by
LELOA

k (L).

⌟

17

Remark 4.6. The rate of the LOA
k (L) code is k/(sn). Further, if the the code is an ideal linear operator

code, i.e., ILOA
k (L), then its distance is 1 − k−1

sn . This is because for any message polynomial p(X), the
product of all Ei’s where the encoding of p(X) is zero, divides p(X), and hence there can’t be too many zeros
in the encoding of p(X). Hence, ILOA

k (L) is an MDS code. ⌟

Proposition 4.7. Any polynomial ideal code is a linearly-extendible linear operator code.

Proof. Consider a polynomial ideal code given by a bivariate polynomial E(X, Y) and a set of
evaluation points {a1, . . . , an} as in Definition 3.2. Recall that E(X, Y) is a monic polynomial in
the variable X, degX E(X, Y) = s and the E(X, ai)’s are relatively prime. Further, any polynomial
p(X) ∈ F[X] has the following unique representation.

p(X) = Q(p)(X, Y) · E(X, Y) + R(p)(X, Y) where degX(R(p)(X, Y)) < s.

The encoding map of the polynomial ideal code is as follows:

F<k[X] −→ (F<s[X])n

p(X) 7−→
(

R(p)(X, ai)
)n−1

i=0
.

Let E(X, Y) = Xs − ∑s−1
i=0 Hi(Y)Xi and R(p)(X, Y) = ∑s−1

i=0 Rp
i (Y)Xi. Define L = (L0, . . . , Ls−1)

as Li(p(X)) = Rp
i (X)4. Therefore, at any point a ∈ {a1, . . . , an} we have R(p)(X, a) = ∑s−1

i=0 Li(p(X))(a) ·
Xi.

Notice, that for p(X), q(X) ∈ F[X] we have R(p+q)(X, Y) = R(p)(X, Y) + R(q)(X, Y) and thus
Rp+q

i (Y) = Rp
i (Y) + Rq

i (Y) for i < s. This shows that Li’s are indeed linear operators. Also,
R(Xp)(X, Y) = ∑s−1

i=1 Rp
i−1(Y)Xi +Rp

s−1(Y) ·∑s−1
i=0 Hi(Y)Xi. Therefore, we have L(Xp(X)) = M(X)L(p(X))

where M(X)ij = I[i − 1 = j] + I[j = s − 1] · Hi(X) for i, j ∈ {0, 1, . . . , s − 1}. More descriptively,

Ms×s =



0 0 0 . . . H0(X)

1 0 0 . . . H1(X)

0 1 0 . . . H2(X)
...

... 1 . . . H3(X)
...

...
... . . .

...
0 0 . . . 1 Hs−1(X)


Hence L forms a linearly-extendible set of linear operators.

4Note that we have changed the formal variable from Y to X in the definition of Rp
i (X) here.

18

Remark 4.8. (degree preserving) If the bivariate polynomial E(X, Y) has total degree s, then, the linear
operator in the LELO code obtained above has the property that degX Li(X j) ≤ j: in fact, degX Li(X j) ≤
j − i. ⌟

Proposition 4.9. Any ideal linear operator code is a polynomial ideal code.

Proof. Consider an ideal linear operator code ILOA
k (L). For any polynomial p(X) ∈ F[X] and

a point ai ∈ A, giving L(p(X))(ai) is equivalent to giving p(X) mod ⟨Ei⟩ where ⟨Ei⟩ = Iai(L).
However, the Eis readily satisfy Definition 3.1.

Now, we state a corollary which further corroborates the notion of linear-extendibility.

Corollary 4.10 (Equivalence of ILO and LELO). From Propositions 4.7 and 4.9 it follows that every
ideal linear operator code is also a linearly-extendible linear operator code.

Below we state some well known codes in their linear operator descriptions (a more formal
treatment is given in Section 8):

• Reed-Solomon Codes: Let A = {a0, . . . , an−1} be distinct elements in Fq These are LELOL,A

where L = (I). That is the encoding of the message polynomial p(X) ∈ F<k[X] at a point a
is L(f (X))(a) = f (a).

• Folded Reed-Solomon Codes: Let γ ∈ F∗
q with multiplicative order at least s. FRS[k, n] with

folding parameter s are linearly-extendible linear operator codes LELOL,A where:

– L = (L0, . . . , Ls−1) with L1(f (X)) = f (γX) for f (X) ∈ Fq[X] and Li = Li
1 for i ∈

{0, 1, . . . , s − 1}.

– For the above family of operators M(X) is given by M(X)ij = γiX · I[i = j] for i, j ∈ [s].

– The set of evaluation points is A = {a0, . . . , an−1} where for any two distinct i and j the
sets

{
ai, aiγ, . . . , aiγ

s−1} and
{

aj, ajγ, . . . , ajγ
s−1} are disjoint.

• Multiplicity Codes: Then, MULT[k, n] codes of order s are linearly-extendible linear opera-
tor codes LELOL,A where:

– L = (L0, . . . , Ls−1) with L1(f (X)) = ∂ f (X)
∂X for f (X) ∈ Fq[X] and Li = Li

1 for i ∈
{0, 1, . . . , s − 1}.

– For the above family of operators M(X) is given by M(X)ij = X · I[i = j]+ i · I[i− 1 = j]
for i, j ∈ [s].

– The set of evaluation points is A = {a0, . . . , an−1} where ais are all distinct.

• Additive Folded Reed-Solomon Codes: Let β ∈ Fq be a non-zero element and the char-
acteristic of Fq be at least s. Then, Additive-FRS[k, n] codes with folding parameter s are
linearly-extendible linear operator codes LELOL,A where:

19

– L = (L0, . . . , Ls−1) with L1(f (X)) = f (X + β) for f (X) ∈ Fq[X] and Li = Li
1 for

i ∈ {0, 1, . . . , s − 1}.

– For the above family of operators M(X) is given by M(X)ij = (X + iβ) · I[i = j] for
i, j ∈ [s].

– The set of evaluation points is A = {a0, . . . , an−1} where ai − aj /∈ {0, β, 2β, . . . , (s − 1)β}
for distinct i and j.

• Affine Folded Reed-Solomon Codes: Let α ∈ F∗
q and β ∈ Fq. Further, let ℓ(X) = αX +

β with ord(ℓ) = u. Then Affine-FRS[k, n] codes with folding parameter s are linearly-
extendible codes LELOL,A described below. (See Observation 8.7 for more details.)

Define D1 : F[X] → F[X] as D1(f (X)) = ∂ f (X)
∂X and S1 : F[X] → F[X] as S1(f (X)) =

f (ℓ(X)). Further, for i ≥ 0 let Di = Di
1 and Si = Si

1. Recall, that the order of α is u. For any
integer r ∈ [s] let r = r1u + r0, with r0 < u, be the unique representation of r.

– Define Lr : F[X] → F[X] as Lr(f (X)) = Sr0(Dr1 f (X)). Set L = (L0, . . . , Ls−1). Clearly,
L is a family of linear operators.

– Lr(X f) = Sr0(Dr1 X f) = Sr0(r1 · Dr1−1 f + X · Dr1 f) = r1 · Lr−u f + Sr0(X) · Lr f : hence, L
is a set of linearly-extendible linear operators.

– The set of evaluation points A = {a0, . . . , an−1} is such that for distinct i, j the sets{
ℓ(0)(ai), . . . , ℓ(s−1)(ai)

}
and

{
ℓ(0)(aj), . . . , ℓ(s−1)(aj)

}
are disjoint.

5 List-Decoding of Polynomial Ideal Codes

In this section, we discuss the list-decoding of polynomial ideal codes.

5.1 List-decoding Up to the Johnson Radius

We first observe that polynomial ideal codes are list decodable in polynomial time, up to the
Johnson radius.

Theorem 5.1. Let k, s, n ∈ N be such that k < sn and s < k − 1. Let E0(X), E1(X), . . . , En−1(X) ∈
F[X] be relatively prime monic polynomials of degree equal to s each. Let Enc : F<k[X] −→ (F<s[X])n be
the encoding function defined as

p(X) 7−→ (p(X) (mod Ei(X)))n−1
i=0 .

Then, there is an algorithm, which takes as input a received word c = (c0, c1, . . . , cn) ∈ F<s[X]n and for
every ε > 0 outputs all polynomials f ∈ F<k[X] such that Enc(f) and c agree on at least (k/(sn))1/2 + ε

fraction of coordinates in time poly(n, 1/ε).

20

Observe that the rate of this code is k/(sn) and distance is 1 − (k − 1)/(sn), and thus Theo-
rem 5.1 gives us an algorithmic analog of Theorem 2.4 for these codes.

The list-decoding algorithm for polynomial ideal codes is an (almost immediate) extension of
an algorithm of Guruswami, Sahai and Sudan [GSS00] for list-decoding codes based on Chinese
Remainder Theorem to this setting. This algorithm, in turn, relies on ideas in an earlier algorithm
of Guruswami and Sudan [GS99] for list-decoding Reed-Solomon codes up to the Johnson radius.

As noted in the introduction, most of the ideas for the proof of Theorem 5.1 were already there
in the work of Guruswami, Sahai and Sudan [GSS00] and all we do in this section is to flush out
some of the details. The proof of this theorem is deferred to Section 6.

5.2 List-decoding beyond the Johnson Radius

In this section, we use the linear operator viewpoint of polynomial ideal codes to study their list-
decodability beyond the Johnson radius. We show that if the family of linear operators L and the
evaluation points satisfy some further properties, then the linear operator code is list-decodable
all the way up to the distance of the code.

Let G = (G0, . . . , Gw−1) and T = (T0, T1, . . . , Tr−1) be two families of linear operators such that
Gi : F[X] → F[X] and T is a linearly-extendible family of linear operators. We say that the pair
(T ,G) list-composes in terms of L at the set of evaluation points A if we have the following. For
every linear operator G ∈ G and field element a ∈ A, there exists a linear function hG,a : Fs → Fr

such that for every polynomial f ∈ F[X] we have

T (G(f))(a) = hG,a(L(f)(a)).

For instance, consider the FRS code over Fq with folding parameter s and with the set of eval-
uation points being A = {a0, . . . , an−1}. The message space is polynomials of degree at most k − 1
over Fq[X]. This code is a linearly-extendible linear operator code where L = (L0, . . . , Ls−1) with
L1(f (X)) = f (γX) for f (X) ∈ Fq[X] and Li = Li

1 for i ∈ {0, 1, . . . , s − 1}. Set G = (L0, . . . , Lw−1)

for some integer w < s and T = (T0, . . . , Tr−1) with r = s−w+ 1 and Ti = Li. Then, for all Gi ∈ G,
Tj ∈ T and a ∈ A, we have that for every polynomial f ∈ F[X]: Tj(Gi(f))(a) = Li+j(f)(a). No-
tice that Li+j ∈ L as i + j ≤ s − 1. Hence, the pair (T ,G) list-composes in terms of L at the set of
evaluation points A.

Theorem 5.2. If LOA
k (L) is a linear operator code and there exists two families of linear operators G =

(G0, . . . , Gw−1) and T = (T0, . . . , Tr−1) such that

1. (T , A) forms a linearly-extendible linear operator code LELOA
k+nr/w(T)

2. The pair (T ,G) list-composes in terms of L at the set of evaluation points

3. G is degree-preserving

21

4. Diag(G) ∈ F|G|×k is the generator matrix of a code with distance k − ℓ.

Then, LOA
k (L) is list-decodable up to the distance 1 − k

rn − 1
w with list size qℓ.

This theorem clearly implies Theorem 1.1. Recall the hypothesis of Theorem 1.1. We instan-
tiate G, T in Theorem 5.2 as (L0, . . . , Lw−1) and (L0, . . . , Lr−1) respectively, with r = s − w + 1:
properties 1, 3 and 4 above follow directly from the hypothesis of Theorem 1.1. For property 2
notice that for all Gi ∈ G, Tj ∈ T and a ∈ A, we have that for every polynomial f ∈ F[X]:
Tj(Gi(f))(a) = Li+j(f)(a), and Li+j ∈ L as i + j ≤ s − 1. Hence, the pair (T ,G) list-composes in
terms of L. Theorem 5.2 is proved in Section 7. We then use this theorem to demonstrate that
several families of linear operator codes are list-decodable up to capacity in Section 8.

6 List-decoding Polynomial Ideal Codes (Proof of Theorem 5.1)

In this section we prove Theorem 5.1. The proof proceeds in three steps. In the first step, we find
a bivariate polynomial Q(X, Y) such that for every polynomial f ∈ F<k[X], if f mod Ei = ci,
then Q(X, f (X)) = 0 mod Er

i . In the second step of the argument, we show that if f is such
that Enc(f) is close enough to c, then Q(X, f (X)) must be the identically zero polynomial, and
therefore, (Y − f (X)) is a factor of Q(X, Y) in the ring F[X, Y]. In the final step of the algorithm,
we factor Q(X, Y) to output all factors of the form (Y − f (X)), where f has degree less than k and
Enc(f) and c have a large agreement.

We now describe some of the details.

6.1 Interpolating a Polynomial of an Appropriate Form

Lemma 6.1. Let r ∈ N be a parameter. Let D be be an integer such that (nsr(r + 1)k)1/2 < D ≤
(nsr(r + 1)k)1/2 + 1 and let D′ ≥ D be an integer divisible by s. Then, there exist bivariate polynomials
Q(X, Y), {Bi(X, Y) : i ∈ [n]} and univariate polynomials {Ai,j(X) : i ∈ [n], j ∈ {1, 2, . . . , r}} such that
the following conditions hold.

• Q is not identically zero.

• For every i ∈ [n],

Q(X, Y)− (Y − ci)
r · Bi(X, Y) +

r

∑
j=1

Ei(X)j(Y − ci)
r−j · Ai,j(X) = 0 .

• The (1, k − 1)-weighted degree of Q is at most D.

• For each i ∈ [n], the (1, s)-weighted degree of Bi is at most D′ − rs.

22

• For each i ∈ [n], j ∈ [r] \ {0}, the degree of Ai,j(X) is at most D′ − rs.

Moreover, these polynomials can be found deterministically in time poly(n, r, s).

Before proceeding further, we remark that this slightly mysterious form of Q in the Lemma 6.1
is to ensure that for any f ∈ F[X], and i ∈ [n], if f (X) mod Ei(X) = ci, then Q(X, f (X)) = 0
mod Ei(X)r. We note this in the following claim.

Claim 6.2. Let Q(X, Y), {Bi : i ∈ [n]}, {Ai,j : i ∈ [n], j ∈ {1, 2, . . . , r}} be polynomials satisfying the
conditions in Lemma 6.1. For any f ∈ F[X], and i ∈ [n], if f (X) mod Ei(X) = ci, then

Q(X, f (X)) = 0 mod Ei(X)r .

Proof. The condition f (X) mod Ei(X) = ci implies that (f (X)− ci) = 0 mod Ei(X). Thus, for
every j ∈ {0, . . . , r}, Ej

i (X) · (f (X)− ci)
r−j = 0 mod Ei(X)r. Therefore, in the expression,

Q(X, f (X)) = (f (X)− ci)
r · Bi(X, Y) +

r

∑
j=1

Ei(X)j(f (X)− ci)
r−j · Ai,j(X) ,

each of the summands is divisible by Ei(X)r, and hence Q(X, f (X)) = 0 mod Ei(X)r.

We now move on to the proof of Lemma 6.1.

Proof of Lemma 6.1. The proof of the lemma is by a fairly standard argument of viewing the condi-
tions in the second item of Lemma 6.1 as homogeneous linear constraints on the coefficients of the
polynomials involved and observing that there are more variables than homogeneous linear con-
straints, and hence there is a non-zero solution which can be found algorithmically by standard
linear algebra. One subtlety here is to note that any non-zero solution of this linear system leads
to a non-zero polynomial Q (required by the first item in Lemma 6.1). This observation is crucial
to ensure that Q is non-zero, as apriori an arbitrary non-zero solution to this linear system could
just mean that some of the coefficients of the other polynomials (Ai,j’s and Bi’s) are non-zero, but
they somehow cancel each other out to ensure that Q remains zero. We now argue that this cannot
be the case.

Let i ∈ [n] be such that there is a solution to this linear system where Bi, Ai,1, . . . , Ai,r are not
all identically zero. If Q is non-zero, then we are done. So, let us now assume that Q is zero,
and argue that this cannot be the case. If Bi is non-zero, then, observe that (Y − ci)

rBi(X, Y)
contains a monomial with Y-degree at least r, and this cannot be cancelled by any monomial in

∑r
j=1 Ei(X)j(f (X)− ci)

r−j · Ai,j(X) since the degY for this polynomial is strictly less than r. Thus,
Q cannot be identically zero. Else, if Bi is identically zero, then let j ∈ {1, 2, . . . , r} be the smallest
index such that Ai,j(X) is non-zero. Then, the summand Ei(X)j(Y − ci)

r−j Ai,j(X) contains a non-
zero monomial with Y-degree equal to r − j, which cannot be cancelled out by the rest of the
summands. Therefore, Q is non-zero.

23

We now count the number of homogeneous linear constraints in the system. Since s < k − 1,
it follows that Q must also have (1, s)-weighted degree at most D. Moreover, since D ≤ D′, we
have that for each i, the equation

Q(X, Y)− (Y − ci)
r · Bi(X, Y) +

r

∑
j=1

Ei(X)j(Y − ci)
r−j · Ai,j(X) = 0

only involves monomials of (1, s)-weighted degree at most D′. Thus, from Lemma 2.1, each such
linear constraint leads to at most N(s, D′) homogeneous constraints on the coefficients, where for
natural numbers a, b, N(a, b) denotes the number of bivariate monomials of (1, a)-weighted degree
at most b. Since there are n such equations, the total number of homogeneous linear constraints is
at most nN(s, D′).

To get an upper bound on the number of variables in this homogeneous linear system, observe
from the weighted degree conditions and Lemma 2.1 that the number of variables to this system
contributed by Q is at least N(k − 1, D), by each Bi is at least N(s, D′ − rs) coefficients and each
Ai,j is at least (D′ − rs + 1) coefficients. Thus, the total number of variables is at least

N(k − 1, D) + n
(

N(s, D′ − rs) + (D′ − rs + 1)
)

.

Thus, there exists a non-zero solution to this system of homogeneous linear equations if

N(k − 1, D) + n
(

N(s, D′ − rs) + r(D′ − rs + 1)
)
> nN(s, D′) ,

or, equivalently,

N(k − 1, D) > n
(

N(s, D′)−
(

N(s, D′ − rs) + r(D′ − rs + 1)
))

.

Now, from Lemma 2.1, we know that

N(k − 1, D) ≥ D2/(2k) > nsr(r + 1)/2 ,

and

n
(

N(s, D′)−
(

N(s, D′ − rs) + r(D′ − rs + 1)
))

= nsr(r + 1)/2 .

This last inequality follows by invoking the second item of Lemma 2.1 with a = s, b = D′, η = r
(recall that D′ is divisible by s). So, we get that

n
(

N(s, D′)−
(

N(s, D′ − rs) + r(D′ − rs + 1)
))

= nsr(r + 1)/2 .

24

Thus, for our choice of parameters, we have

N(k − 1, D) + n
(

N(s, D′ − rs) + r(D′ − rs + 1)
)
> nN(s, D) ,

and the system of equations must have a non-zero solution.
We can find such a non-zero solution by solving the linear system, for instance, by Gaussian

elimination over F, which runs in time polynomial in the size of the system. This completes the
proof of the lemma.

6.2 Close Enough Codewords Satisfy the Equation

We now prove the following lemma which is the second step for the proof of Theorem 5.1.

Lemma 6.3. Let D be as in Lemma 6.1 and let Q(X, Y), {Bi : i ∈ [n]}, {Ai,j : i ∈ [n], j ∈ {1, 2, . . . , r}}
be polynomials satisfying the conditions in Lemma 6.1. And, let f ∈ F<k[X] be such that Enc(f) and c
agree on greater than D/(rs) coordinates. Then, Q(X, f (X)) is identically zero.

Proof. From Claim 6.2, we know for any i ∈ [n], f (X) mod Ei = ci implies that Q(X, f (X)) = 0
mod Er

i . We also know from the statement of Theorem 5.1 that E0, E1, . . . , En−1 are relatively prime.
Therefore, if S ⊂ [n] such that for all i ∈ S, i ∈ [n], f (X) mod Ei = ci, then by the Chinese
Remainder Theorem (see Theorem 2.7), we have

Q(X, f (X)) = 0 mod ∏
i∈S

Er
i .

We know that the degree of Q(X, f (X)) is at most the (1, k − 1)-weighted degree of Q which
is at most D. Moreover, the degree of ∏i∈S Er

i equals |S|sr, which is strictly larger than D if
|S| > D/(rs). Thus, in this case, Q(X, f (X)) = 0 mod ∏i∈S Er

i implies that Q(X, f (X)) must
be identically zero as a polynomial in F[X].

6.3 Reconstruction of All Close Enough Codewords

Finally, from Lemma 6.3, we know that for any f ∈ F<k[X] such that Enc(f) and c agree on at
least D/(rs) coordinates, Q(X, f (X)) must be identically zero. Thus, to recover all such f , we use
any standard polynomial factorization algorithm (e.g. the algorithm due to Kaltofen [Kal85]) to
factor Q(X, Y), and for every factor of the form Y − f (X) such that f (X) has degree less than k
and Enc(f) and c agree on greater than D/(rs) coordinates, include f in the output list. The list
size is clearly bounded by the degree of Q, which is poly(n, r, s).

Thus, we have an efficient algorithm which outputs all codewords which agree with the re-
ceived word on greater than

D/(nrs) ≤ 1/(nrs) · ((nsr(r + 1)k)1/2 + 1) ≤ (1/(nrs) + (k/(sn))1/2 · (1 + 1/r)1/2)

25

fraction of coordinates. Choosing r to be large enough, based on ε, e.g. r = Θ(1/ε), we get
Theorem 5.1.

7 List-decoding of Linear Operator Codes (Proof of Theorem 5.2)

In this section, we prove Theorem 5.2. To this end, we follow the framework of Guruswami and
Wang; the key observation being that the framework is general enough to be applicable to all
families of codes with properties as stated in Theorem 5.2, and not just Folded Reed-Solomon
codes and Multiplicity codes, as shown by Guruswami and Wang. Before we proceed, we need
some notation.

For a natural number n, [n] denotes the set {0, 1, . . . , n− 1}. Recall that the alphabet of the code
is Fs, and the block length is |A| = n. We denote the received word by c ∈ Fsn. For notational
convenience, we identify the set [n] with the set A via an arbitrary ordering of the elements of A.
Thus, for every a ∈ A, we use ca ∈ Fs to denote the ath coordinate of c.

Recall that since T is linearly-extendible, it follows that there exists a matrix MT such that for
every polynomial q(X) ∈ F[X]

T (q(X) · p(X)) = q(MT (X)) · T (p(X)) .

The proof of Theorem 5.2, which follows the high level outline of the proof of Guruswami and
Wang, follows from Lemmas 7.1 to 7.3. Lemma 7.1 shows that we can interpolate a low degree
polynomial Q, with appropriately nice structure and low enough degree, which explains the re-
ceived word c in some sense. We then move on to observe in Lemma 7.2 that any polynomial f
such that Enc(f) is close enough to the received word c in Hamming distance satisfies an equation
depending upon Q. Finally, in Lemma 7.3, we solve this equation, which is a system of homoge-
neous linear equations on the coefficients of f to recover all low degree polynomials f such that
Enc(f) and c are close enough. Because of the linear nature of constraints, all such solutions are
contained in a low dimensional linear space. As we shall observe, each of these steps in the decod-
ing procedure just involves doing some basic linear algebra over the underlying field, and hence
the decoding can be done in polynomial time by a deterministic algorithm.

We now proceed with the details of each of these steps.

7.1 Interpolating a Polynomial.

Lemma 7.1. There exists a non-zero polynomial Q(X, U0, U1, . . . , Uw−1) ∈ F[X, u] of the form

Q(X, u) =
w−1

∑
i=0

Qi(X) · Ui ,

26

such that

• For every i ∈ [w], deg(Qi) is at most D = nr/w.

• For every a ∈ A,(
∑

i∈[w]

Qi(MT)(a) · hGi ,a · ca

)
= 0 ,

where, (by a slight abuse of notation), we also use hGi ,a to denote the matrix associated with the linear
transformation hGi ,a.

Moreover, such a polynomial Q can be constructed deterministically with at most poly(n) operations
over the underlying field F.

Proof. The properties desired from Q in the lemma can be viewed as a system of linear constraints
on the coefficients of Q. More precisely, for every a ∈ A, the condition(

∑
i∈[w]

Qi(MT)(a) · hGi ,a · ca

)
= 0

imposes r homogeneous linear constraints on the coefficients of Q. The existence of a non-zero
polynomial Q = ∑i∈[w] QiUi satisfying these constraints now just follows from the fact that the
number of homogeneous linear constraints is at most nr, whereas the number of variables is (D +

1)w = (nr/w + 1)w > nr. Thus, there is always a non-zero solution.
Since the size of the linear system is polynomially bounded in n, a non-zero Q satisfying the

conditions can be found by solving the linear system, which can be done with poly(n) field oper-
ations using standard linear algebra algorithms.

7.2 Close Enough Codewords Satisfy the Equation.

We now argue that any polynomial f ∈ F[x] of degree at most k − 1, whose encoding is close
enough to the received word c must satisfy an appropriate equation (depending upon Q).

Lemma 7.2. If f ∈ F[X] is a polynomial of degree less than k such that for at least n · (1/w + k/(nr)) +
1 points a ∈ A, Enc(f)(a) = ca, then the polynomial Q(X, G0(f), G1(f), . . . , Gw−1(f)) ∈ F[X] is
identically zero.

Proof. Let R(X) be defined as

R(X) := Q(X, G0(f), G1(f), . . . , Gw−1(f)) = ∑
i∈[w]

Qi(X) · Gi(f) .

27

Since f is of degree at most k− 1 and the operators Gi do not increase the degree, R is a polynomial
of degree at most D + k − 1 ≤ nr/w + k − 1.

Let a ∈ A be such that Enc(f)(a) = ca, then, we will show that T (R) is zero at a. Also, from
the linearity of T , it follows that

T (R) = T
(

∑
i∈[w]

Qi(x) · Gi(f)

)
=

(
∑

i∈[w]

T (Qi(X) · Gi(f))

)
.

Using linear extendibility of T , we get

T (R) =

(
∑

i∈[w]

Qi(MT) · T (Gi(f))

)
.

Now, since (T ,G) list composes in terms of L at the set of evaluation points A, we know that for
every i ∈ [w], and a ∈ A, T (Gi(f))(a) = hGi ,a(L(f)(a)). Therefore,

T (R)(a) =

(
∑

i∈[w]

Qi(MT)(a) · hGi ,a(L(f)(a))

)
.

Since Enc(f)(a) = L(f)(a) = ca, we get that

T (R)(a) =

(
∑

i∈[w]

Qi(MT)(a) · hGi ,a · ca

)
.

Here, we abuse notation and also use hGi ,a to denote the matrix associated to the linear transforma-
tion given by hGi ,a. Now, from the constraints on the polynomial Q in Lemma 7.1, we know that
the right-hand side of the above equation is zero for all a ∈ A. Thus, T (R)(a) is zero, whenever
Enc(f)(a) = ca for an a ∈ A.

We now recall that since the operators T give us a code with rate (D+ k)/(rn) = 1/w+ k/(rn)
and distance (1 − 1/w − k/(rn)). Thus, if Enc(f) and c have agreed on greater than (1/w +

k/(rn)) fraction of points in A, R must be identically zero.

7.3 Solving the Equation to Recover the Codewords

We now show that we can solve equations of the form

Q(X, G0(f), G1(f), . . . , Gw−1(f)) = 0 ,

to recover a (small) list of all polynomials f of degree at most k − 1 which satisfy the above equa-
tion.

28

Lemma 7.3. The set of polynomials f (X) ∈ F[X] of degree at most k − 1 such that the polynomial
Q0(X)G0(f) + Q1(X)G1(f) + · · · + Qw−1(X) · Gw−1(f) is identically zero form a linear space of di-
mension at most ℓ over the underlying field F.

Moreover, there is a deterministic algorithm which runs in polynomial time and given Q,G as input
outputs a basis for this linear space.

Proof. From the linearity of G, and the fact that Q(X, u) is linear in the u variables, it immediately
follows that the set of polynomials f of degree at most k − 1 such that

Q0(X)G0(f) + Q1(X)G1(f) + · · ·+ Qw−1(X) · Gw−1(f) ≡ 0

form a linear space. Moreover, given the polynomial Q, and a description of G, we can set up this
linear system in terms of the coefficients of f and solve the system in time poly(n). So, all that
remains for the proof of the lemma is to argue that the dimension of this solution space is not too
large. For this, we will crucially rely on the property of G that Diag(G) is the generator matrix of
a code of distance k − ℓ. We start with setting up some notation.

Let d = maxj∈[w] deg(Qj), and Qj(X) = ∑d
i=0 qj,iXi. From the definition of d, it follows that the

vector q̃ = (q0,d, q1,d, . . . , qw−1,d) is not the all zeros vector. For every i, i′ ∈ [k], let gj
i ∈ Fk denote

the ith row of the matrix Gj (here we are interpreting Gj : F<k[X] → F<k[x] as a kxk matrix) and let
gj

i,i′ denotes the (i, i′) element of Gj. We also note that since G is a degree preserving set of linear
operators, each of these matrices Gj are upper triangular (here we interpret Gj acting on vectors
whose ith coordinate corresponds to the coefficient of Xi and so on). Our goal is to find the set of
all vectors coeff(f) = (fk−1, fk−2, . . . , f0) where f = ∑k−1

j=0 f jxj satisfies the equation

Q0(X)G0(f) + Q1(X)G1(f) + · · ·+ Qw−1(X) · Gw−1(f) ≡ 0 .

We note that this is equivalent to saying that the coefficient of every monomial in X on the left hand
side is zero. Moreover, the Q0(X)G0(f) + Q1(X)G1(f) + · · ·+ Qw−1(X) · Gw−1(f) is a polynomial
of degree d + k − 1. We now chase down some of these coefficients in decreasing order of their
degree, as summarised in the following simple claim.

Claim 7.4. For each i < k, the coefficient of Xd+k−1−i in Q0(X)G0(f)+Q1(X)G1(f)+ · · ·+Qw−1(X) ·
Gw−1(f) equals

∑
j∈[w]

(
i

∑
i′=0

qj,d−i′ · ⟨gj
k−1−(i−i′), coeff(f)⟩

)
.

From the degree preserving property of G, we also know that the coefficient of Xd+k−1−i in
the above claim only depends on fk−1−i, fk−i, . . . fk−1. In particular, if we set up a linear sys-
tem where the ith constraint equates the coefficient of Xd+k−1−i obtained in Claim 7.4 to zero,

29

then resulting linear system in (fk−1, fk−2, . . . , f1, f0) is lower triangular, and the diagonal ele-
ments of the matrix of linear constraints which equals the coefficient of fk−1−i in the expression

∑j∈[w]

(
∑i

i′=0 qj,d−i′ · ⟨gj
k−1−(i−i′), coeff(f)⟩

)
is precisely

∑
j∈[w]

qj,dgj
k−1−i,k−1−i .

We can view ∑j∈[w] qj,dgj
k−1−i,k−1−i as an inner product of the (non-zero) vector q̃ = (q0,d, . . . , qw−1,d)

with the vector vi = (g0
k−1−i,k−1−i, . . . , gw−1

k−1−i,k−1−i). Now, we know that q is a non-zero vector. So,
if we can ensure that at most ℓ of the coordinates of the vector (⟨q̃, vi⟩ : i ∈ [k]) are zero, we would
have the desired bound of ℓ on the dimension of the solution space.

To this end, consider the k × w matrix W, whose ith row is the vector vi. From the definition of
vi, we can observe that the jth column of this matrix are precisely the main diagonal of the matrix
Gj. From the last item in the hypothesis of Theorem 5.2, we know that this matrix W is code of
distance k − ℓ. Thus, the vector W · q̃ can be zero on at most ℓ of its coordinates. This gives us an ℓ

dimensional linear space containing all the solutions f of this equation, and therefore a bound of
|F|ℓ on the size of this solution space.

Remark 7.5. Notice that in Lemma 7.3 we recovered the coefficients of the polynomial f in decreasing
order of their degree. The advantage to recovering the coefficients in this order is as follows. The degree
preserving nature of the G’s ensures that the coefficient fi doesn’t play a role in the coefficient of Xd′ in
Q0(X)G0(f) + Q1(X)G1(f) + · · · + Qw−1(X) · Gw−1(f) when d′ is larger that d − i. This leads to a
triangular system of equations whose rank can be easily inferred from the diagonal elements. ⌟

8 Example of Codes Achieving List-Decoding Capacity

In this section we will use Theorem 5.2 to (re)prove the list-decoding capacity of the Folded Reed-
Solomon codes, multiplicity codes and additive Folded Reed-Solomon codes. We then introduce a
common generalization of all these codes, which we refer to as affine Folded Reed-Solomon codes
and prove the list-decoding up to capacity of these codes.

We recall that Guruswami and Rudra [GR08] proved the list-decoding capacity of FRS codes,
first introduced by Krachkovsky [Kra03] while Kopparty [Kop15] proved the list-decoding ca-
pacity of multiplicity codes. Guruswami and Wang [GW13] then gave an alternative and simpler
linear-algebraic framework to prove the list-decoding capacity of both FRS and multiplicity codes.
The list-decoding capacity of additive FRS codes is proved using the more involved algorithm of
Guruswami & Rudra [GR08] and an observation of Kopparty [Kop15] (see paragraph on Additive
Folding and Footnote 4 in [Gur11, Section III]). More recently (subsequent to the conference ver-
sion of this paper), Gopi and Guruswami [GG22] used skew polynomials to construct improved

30

maximally recoverable local reconstruction codes (MR LRCs). It can be shown that the machinery
of skew polynomials can be used to give yet another proof of list-decodability of FRS, multiplicity
and additive FRS codes (see [GG22, Appendix C]). We remark that it is apriori unclear how to
prove list-decodability of affine FRS codes using skew polynomials (or via the previous frame-
works of [GR08, Kop15, GW13]).

8.1 Folded Reed-Solomon (FRS) Codes

Fix integers k, n, q with n ≤ q. Fix γ ∈ F∗
q of multiplicative order at least s. The message space of

the FRSγ
s [k, n] code with folding parameter s is polynomials of degree at most k − 1 over F[X], i.e.,

F<k[X] where F = Fq. Then, FRS codes are linearly-extendible linear operator codes LELOL,A

where:

• L = (L0, . . . , Ls−1) with L1(f (X)) = f (γX) for f (X) ∈ Fq[X] and Li = Li
1 for i ∈ {0, 1, . . . , s − 1}.

• For the above family of operators M(X) is given by M(X)ij = γiX · I[i = j] for i, j ∈ [s].

• The set of evaluation points is A = {a0, . . . , an−1} where for any two distinct i and j the sets{
ai, aiγ, . . . , aiγ

s−1} and
{

aj, ajγ, . . . , ajγ
s−1} are disjoint.

Remark 8.1.

1. Recall that the bivariate polynomial E(X, Y) corresponding to the polynomial ideal code representa-
tion is E(X, Y) = ∏s−1

i=0 (X − γiY).

2. For the choice of A as above, the rate of the code is k
sn and its distance is 1 − k−1

sn as the polynomials
Ei = E(X, ai) are pairwise co-prime.

⌟

Theorem 8.2 ([GW13]). Let γ ∈ F∗
q be an element of order at least k. Further, let A = {a0, . . . , an−1} be a

set of evaluation points where for any two distinct i and j the sets
{

ai, aiγ, . . . , aiγ
s−1} and

{
aj, ajγ, . . . , ajγ

s−1}
are disjoint. For every ε > 0 there exists s large enough (s ≥ Ω(1/ε2)) such that FRSγ

s [k, n] at the set of
evaluation points A can be efficiently list-decoded up to distance 1 − k

sn − ε.

Proof. We will prove this by applying Theorem 5.2. Set G = (L0, . . . , Lw−1) for some integer w < s
to be set later and T = (T0, . . . , Tr−1) with r = s − w + 1 and Ti = Li.

Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code LELOA
k+nr/w(T)

which is FRSγ
r [k + nr/w, n] at the set of evaluation points A.

Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A, we have that for every polynomial
f ∈ F[X]: Tj(Gi(f))(a) = Li+j(f)(a). Notice that Li+j ∈ L as i + j ≤ s − 1.

Theorem 5.2-Item 3: Gi(xj) = γijX j, and hence G is degree preserving.

31

Theorem 5.2-Item 4: The matrix Diag(G) is given by Diag(G)ij = γij for i ∈ [w] and j ∈ [k].
Hence, as long as γ has order at least k this is the generator matrix of RS[w − 1, k] and hence its
distance is k − w + 1.

Thus FRSγ
s [k, n] can be efficiently list-decoded up to distance 1 − k−1

rn − 1
w with list size qw−1.

By choosing a large enough w and s we can ensure that 1 − k−1
rn − 1

w > 1 − k
sn − ε.

8.2 Multiplicity (MULT) Codes

Fix integers k, n, q with n ≤ q. The message space of the MULTs[k, n] code of order s is polynomials
of degree at most k− 1 over F[X], i.e., F<k[X] where F = Fq. Then, MULTs[k, n] codes are linearly-
extendible linear operator codes LELOL,A where:

• L = (L0, . . . , Ls−1) with L1(f (X)) = ∂ f (X)
∂X for f (X) ∈ Fq[X] and Li = Li

1 for i ∈ {0, 1, . . . , s − 1}.

• For the above family of operators M(X) is given by M(X)ij = X · I[i = j] + i · I[i − 1 = j] for
i, j ∈ [s].

• The set of evaluation points is A = {a0, . . . , an−1} where ais are all distinct.

Remark 8.3.

1. Recall that the bivariate polynomial E(X, Y) corresponding to the polynomial ideal code representa-
tion is E(X, Y) = (X − Y)s.

2. For the choice of A as above, MULTs[k, n] is a code with rate k
sn and distance 1 − k−1

sn as the polyno-
mials Ei = E(X, ai) are pairwise co-prime.

⌟

Theorem 8.4 ([GW13]). Let the characteristic of Fq be at least max(s, k). Further, let the set of evaluation
points be A = {a0, . . . , an−1} where ais are all distinct. Then, for every ε > 0 there exists s large enough
(s ≥ Ω(1/ε2)) such that MULTs[k, n] can be efficiently list-decoded up to distance 1 − k

sn − ε.

Proof. We will again appeal to Theorem 5.2. Set G = (G0, . . . , Gw−1) where Gi = Xi

i! · Li for i ∈
{0, 1, . . . , w − 1} for some integer w < s to be set later and T = (T0, . . . , Tr−1) with r = s − w + 1
and Ti = Li.

Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code LELOA
k+nr/w(T)

which is MULTr[k + nr/w, n] of order r at the set of evaluation points A.
Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A, we have that for every polynomial

f ∈ F[X]:

Tj(Gi(f))(a) = (
j

∑
b=0

(
j
b

)(
i
b

)
· (b!/i!) · Xi−bLi+b(f))(a).

32

Notice that the above expression only involves Lis where i < s.
Theorem 5.2-Item 3: Gi(X j) = (j

i) · X j, and hence G is degree preserving.
Theorem 5.2-Item 4: The matrix Diag(G) is given by Diag(G)ij = (j

i) for i ∈ [w] and j ∈ [k].
This matrix can be transformed via elementary row operations to a RS[w, k] generator matrix with
points of evaluations as 0, 1, . . . , k − 1; thus, as long as the characteristic of Fq is at least k we have
that the distance of Diag(G) is k − w + 1.

Thus MULTs[k, n] can be efficiently list-decoded up to distance 1 − k−1
rn − 1

w with list size qw−1.
By choosing a large enough w and s we can ensure that 1 − k−1

rn − 1
w > 1 − k

sn − ε.

8.3 Additive Folded Reed-Solomon (Additive-FRS) Codes

Fix integers k, n, q with n ≤ q. Let β ∈ Fq be a non-zero element and characteristic of Fq is at least
s. The message space of the Additive-FRSβ

s [k, n] code with folding parameter s is polynomials of
degree at most k − 1 over F[X], i.e., F<k[X] where F = Fq. Then, Additive-FRSβ

s [k, n] codes are
linearly-extendible linear operator codes LELOL,A where:

• L = (L0, . . . , Ls−1) with L1(f (X)) = f (X + β) for f (X) ∈ Fq[X] and Li = Li
1 for i ∈

{0, 1, . . . , s − 1}.

• For the above family of operators M(X) is given by M(X)ij = (X + iβ) · I[i = j] for i, j ∈ [s].

• The set of evaluation points is A = {a0, . . . , an−1} where ai − aj /∈ {0, β, 2β, . . . , (s − 1)β} for
distinct i and j.

Remark 8.5.

1. Recall that the bivariate polynomial E(X, Y) corresponding to the polynomial ideal code representa-
tion is E(X, Y) = ∏s−1

i=0 (X − Y − iβ).

2. For the choice of A as above, Additive-FRSβ
s [k, n] is a code with rate k

sn and distance 1 − k−1
sn as the

polynomials Ei = E(X, ai) are pairwise co-prime.

⌟

Theorem 8.6. Let the characteristic of Fq be at least max(s, k) and β ∈ Fq be a non-zero element. Further,
let the set of evaluation points A = {a0, . . . , an−1} be such that ai − aj /∈ {0, β, 2β, . . . , (s − 1)β} for dis-
tinct i and j. Then, for every ε > 0 there exists s large enough (s ≥ Ω(1/ε2)) such that Additive-FRSβ

s [k, n]
over the set of evaluation points A can be efficiently list-decoded up to distance 1 − k

sn − ε.

Proof. We will again appeal to Theorem 5.2. To define G = (G0, . . . , Gw−1) for some integer w < s,
we need the following definitions. Let B ∈ Fw×w

q be a matrix where Bij = (j)i for i, j ∈ [w], i.e,
the transpose of the Vandermonde matrix at the points {0, 1, . . . , w − 1}: these points are distinct
since the characteristic of the field is at least k. Further, let bi ∈ Fw

q be a vector such that Bbi = ei

33

for i ∈ [w] where eis are the standard basis vectors: bis exist because B is full rank. Now, define
Gi = Xi · ∑w−1

c=0 bi(c)Lc for i ∈ [w]. Set T = (T0, . . . , Tr−1) with r = s − w + 1 and Ti = Li.
Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code LELOA

k+nr/w(T)

which is Additive-FRSβ
r [k + nr/w, n] with folding parameter r at the set of evaluation points A.

Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A, we have that for every polynomial
f ∈ F[X]:

Tj(Gi(f))(a) = Tj

(
Xi ·

w−1

∑
c=0

bi(c)Lc

)
(a)

=

(
(X + jβ)i ·

w−1

∑
c=0

bi(c)Lc+j

)
(a).

Notice that the above expression only involves Lis where i < s. Theorem 5.2-Item 3:

Gi(X j) = Xi ·
w−1

∑
c=0

bi(c)Lc(X j)

= Xi ·
w−1

∑
c=0

bi(c)(X + cβ)j

= Xi ·
w−1

∑
c=0

bi(c) ∑
h≤j

(
j
h

)
Xh · (cβ)j−h

= Xi ·
((

j
i

)
βiX j−i + ∑

h≤j−w
αhXh

)

(this is because Bbi = ei which weans that for h > j − w we have ∑w−1
c=0 bi(c) · (c)j−h = I[j − h = i];

αh are field constants)

=

(
j
i

)
βi−1X j + . . . ,

and hence G is degree preserving.
Theorem 5.2-Item 4: By the above, the matrix Diag(G) is given by Diag(G)ij = (j

i)βi for i ∈ [w]

and j ∈ [k]. Up to scaling this is the same code as Diag(G) in Theorem 8.4: and hence, if the
characteristic of the field is at least k then its distance is k − w + 1.

Thus Additive-FRSβ
s [k, n] can be efficiently list-decoded up to distance 1 − k−1

rn − 1
w with list

size qw−1. By choosing a large enough w and s we can ensure that 1 − k−1
rn − 1

w > 1 − k
sn − ε.

34

8.4 Affine Folded Reed-Solomon (Affine-FRS) Codes

We first recall the defintion of Affine-FRS codes. Fix integers k, n, q with n ≤ q. Let α ∈ F∗
q and

β ∈ Fq such that the multiplicative order of α is u. Further, define ℓ(X) = αX + β and

ℓ(i)(X) = ℓ(ℓ . . . ℓ(X))︸ ︷︷ ︸
i times

= αiX + β ·
i−1

∑
j=0

αj = αiX + βi.

In fact, if α ̸= 1, i.e, u > 1 then, ℓ(u)(X) = ℓ(0)(X). Let ord(ℓ) denote the smallest positive integer
t such that ℓ(t)(z) = z. The message space of the Affine-FRSα,β

s [k, n] code with folding parameter
s is polynomials of degree at most k − 1 over F[X], i.e., F<k[X] where F = Fq. Let the set of
evaluation points be A = {a0, . . . , an−1} such that for distinct i, j the sets

{
ℓ(0)(ai), . . . , ℓ(s−1)(ai)

}
and

{
ℓ(0)(aj), . . . , ℓ(s−1)(aj)

}
are disjoint. Then, Affine-FRSα,β

s [k, n] codes are polynomial ideal
codes where:

• The bivariate polynomial E(X, Y) corresponding to the polynomial ideal code representation
is E(X, Y) = ∏s−1

i=0 (X − αiY − βi).

• For the choice of A as above, Affine-FRSα,β
s [k, n] is a code with rate k

sn and distance 1 − k−1
sn

as the polynomials Ei = E(X, ai) are pairwise co-prime.

We will now recall the description of Affine-FRS codes in terms of linear operators which will
be helpful while list-decoding. Define D1 : F[X] → F[X] as D1(f (X)) = ∂ f (X)

∂X and S1 : F[X] →
F[X] as S1(f (X)) = f (ℓ(X)). Further, for i ≥ 0 let Di = Di

1 and Si = Si
1. Recall, that the order

of α is u. For any integer r ∈ [s] let r = r1u + r0, with r0 < u, be the unique representation of
r. Then, define Lr : F[X] → F[X] as Lr(f (X)) = Sr0(Dr1 f (X)). Set L = (L0, . . . , Ls−1). Clearly,
L is a family of linear operators. Further, Lr(X f) = Sr0(Dr1 X f) = Sr0(r1 · Dr1−1 f + X · Dr1 f) =

r1 · Lr−u f + Sr0(X) · Lr f : hence, L is a set of linearly-extendible linear operators.

Observation 8.7. If u > 1 then at an evaluation point a ∈ Fq the following pieces of information are the
same:

• f (X) mod ∏s−1
i=0 (X − αia − βi)

• L(f)(a).

Hence, if u > 1, then, Affine-FRSα,β
s [k, n] at the points of evaluation A is LELOL,A.

Theorem 8.8. For every ε > 0, there exists a large enough s such that the follow holds. Let Fq be a
field, k a parameter and ℓ(X) = α · X + β such that α ∈ F∗

q and β ∈ Fq. Furthermore, let the eval-

uation points A = {a0, . . . , an−1} be such that for distinct i, j the sets
{
ℓ(0)(ai), . . . , ℓ(s−1)(ai)

}
and{

ℓ(0)(aj), . . . , ℓ(s−1)(aj)
}

are disjoint. Then, if either:

35

• ord(ℓ) ≥ k or

• char(Fq) > k and β ̸= 0

holds, Affine-FRSα,β
s [k, n] over the set of evaluation points A can be efficiently list-decoded up to distance

1 − k
sn − ε.

Proof. We will again appeal to Theorem 5.2. Let u be the multiplicative order of α. Let v = ⌊s/u⌋.

Case ord(ℓ) ≥ k: This means that u ≥ k. This is similar to decoding FRS codes. We skip the
details.

Henceforth, we assume that char(Fq) ≥ k and β ̸= 0.

Case u = 1: This is the same case as for Additive-FRS codes. Thus, by Theorem 8.6 we are done.

Case u > 1 and v ≥
√

s: (This case is similar to MULTv[k, n].)
Define G = (G0, . . . , Gw−1) for some integer w < s, as Gi(f) = (Xi/i!) · Di f . Let r = (v − w)u

and set T = {L0, L1, . . . , Lr−1}.
Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code LELOA

k+nr/w(T)

which is Affine-FRSα,β
r [k + nr/w, n] at the set of evaluation points A.

Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A we have that for every polynomial
f ∈ F[X]:

Tj(Gi(f))(a) =
(

Sj0 Dj1(
Xi

i!
· Di(f))

)
(a)

=

(
Sj0

j1

∑
b=0

(
j1
b

)(
i
b

)
· (b!/i!) · Xi−bDi+b(f)

)
(a)

=

(
j1

∑
b=0

(
j1
b

)(
i
b

)
· (b!/i!) · (Sj0 Xi−b) · Lj0+(i+b)u(f)

)
(a).

Notice that the above expression only involves Lis where i < s.
Theorem 5.2-Items 3 and 4: are identical to the corresponding items in Theorem 8.4.
Thus Affine-FRSβ

s [k, n] can be efficiently list-decoded up to distance 1 − k−1
rn − 1

w with list size
qw−1. By choosing a large enough w and s we can ensure that 1 − k−1

rn − 1
w > 1 − k

sn − ε.

Case u >
√

s: (This case is similar to Additive-FRSβ
u[k, n].) As in Theorem 8.6, to define G =

(G0, . . . , Gw−1) for some integer w < u, we need the following definitions. Let B ∈ Fw×w
q be a

matrix where Bij = (β(αj − 1)/(αj))i for i, j ∈ [w], i.e, the transpose of the Vandermonde matrix
at the points

{
β(αj − 1)/(αj) | j ∈ [w]

}
: these points are distinct since the order of u is at least w.

36

Further, let bi ∈ Fw
q be a vector such that Bbi = ei for i ∈ [w] where eis are the standard basis

vectors: bis exist because B is full rank.
Define G = (G0, . . . , Gw−1) for some integer w < s, as Gi = Xi · ∑w−1

c=0 bi(c)Sc. Let r = s − w + 1
and set T = {L0, . . . , Lr−1}.

Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code LELOA
k+nr/w(T)

which is Affine-FRSα,β
r [k + nr/w, n] at the set of evaluation points A.

Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A we have that for every polynomial
f ∈ F[X]:

Tj(Gi(f))(a) =

(
Sj0 Dj1

(
Xi ·

w−1

∑
c=0

bi(c)Sc f

))
(a)

=

(
Sj0

j1

∑
b=0

(
j1
b

)(
i
b

)
· (b!) · Xi−bDb

(
w−1

∑
c=0

bi(c)Sc f

))
(a)

=

(
Sj0

j1

∑
b=0

(
j1
b

)(
i
b

)
· (b!) · Xi−b

(
w−1

∑
c=0

(bi(c)αb
c)ScDb f

))
(a)

=

(
Sj0

j1

∑
b=0

(
j1
b

)(
i
b

)
· (b!) · Xi−b

(
w−1

∑
c=0

(bi(c)αb
c)Lbu+c f

))
(a).

Notice that the above expression only involves Lis where i < s.
Theorem 5.2-Items 3 and 4: follow almost identically to the corresponding items in Theo-

rem 8.6.
Thus Affine-FRSβ

s [k, n] can be efficiently list-decoded up to distance 1 − k−1
rn − 1

w with list size
qw−1. By choosing a large enough w and s we can ensure that 1 − k−1

rn − 1
w > 1 − k

sn − ε.

References

[BHKS21] SIDDHARTH BHANDARI, PRAHLADH HARSHA, MRINAL KUMAR, and MADHU SUDAN. Ideal-
theoretic explanation of capacity-achieving decoding. In MARY WOOTTERS and LAURA SANITÀ, eds.,
Proc. 25th International Conf. on Randomization and Computation (RANDOM), volume 207 of LIPIcs,
pages 56:1–56:21. Schloss Dagstuhl, 2021. arXiv:2103.07930, eccc:2021/TR21-036. 1

[GG13] JOACHIM VON ZUR GATHEN and JÜRGEN GERHARD. Modern Computer Algebra. Cambridge
University Press, 3 edition, 2013. 9

[GG22] SIVAKANTH GOPI and VENKATESAN GURUSWAMI. Improved maximally recoverable LRCs using
skew polynomials. IEEE Trans. Inform. Theory, 68(11):7198–7214, 2022. arXiv:2012.07804, eccc:
2021/TR21-025. 2, 30, 31

[GR08] VENKATESAN GURUSWAMI and ATRI RUDRA. Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy. IEEE Trans. Inform. Theory, 54(1):135–150, 2008. (Preliminary
version in 38th STOC, 2006). arXiv:cs/0511072, eccc:2005/TR05-133. 2, 6, 11, 12, 30, 31

37

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.56
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.56
http://arxiv.org/abs/2103.07930
https://eccc.weizmann.ac.il/eccc-reports/2021/TR21-036
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1109/TIT.2022.3176807
https://doi.org/10.1109/TIT.2022.3176807
http://arxiv.org/abs/2012.07804
https://eccc.weizmann.ac.il/eccc-reports/2021/TR21-025
https://eccc.weizmann.ac.il/eccc-reports/2021/TR21-025
https://doi.org/10.1109/TIT.2007.911222
https://doi.org/10.1109/TIT.2007.911222
http://arxiv.org/abs/cs/0511072
https://eccc.weizmann.ac.il/eccc-reports/2005/TR05-133

[GRS] VENKATESAN GURUSWAMI, ATRI RUDRA, and MADHU SUDAN. Essential coding theory. (draft
of book). 9

[GS99] VENKATESAN GURUSWAMI and MADHU SUDAN. Improved decoding of Reed-Solomon and
algebraic-geometry codes. IEEE Trans. Inform. Theory, 45(6):1757–1767, 1999. (Preliminary ver-
sion in 39th FOCS, 1998). eccc:1998/TR98-043. 21

[GSS00] VENKATESAN GURUSWAMI, AMIT SAHAI, and MADHU SUDAN. "Soft-decision" decoding of Chi-
nese Remainder Codes. In Proc. 41st IEEE Symp. on Foundations of Comp. Science (FOCS), pages
159–168. 2000. 3, 21

[Gur11] VENKATESAN GURUSWAMI. Linear-algebraic list decoding of folded Reed-Solomon codes. In Proc.
26th IEEE Conf. on Comput. Complexity, pages 77–85. 2011. arXiv:1106.0436. 6, 30

[GW13] VENKATESAN GURUSWAMI and CAROL WANG. Linear-algebraic list decoding for variants of
Reed-Solomon codes. IEEE Trans. Inform. Theory, 59(6):3257–3268, 2013. (Preliminary version
in 26th IEEE Conference on Computational Complexity, 2011 and 15th RANDOM, 2011). eccc:
2012/TR12-073. 2, 30, 31, 32

[Jos58] DURGA DATT JOSHI. A note on upper bounds for minimum distance codes. Information and Control,
1(3):289–295, 1958. 9

[Kal85] ERICH L. KALTOFEN. Polynomial-time reductions from multivariate to bi- and univariate integral
polynomial factorization. SIAM J. Comput., 14(2):469–489, 1985. 25

[Kom53] YASUO KOMAMIYA. Application of logical mathematics to information theory. Proc. 3rd Japan. Nat.
Cong. Appl. Math, 437, 1953. 9

[Kop15] SWASTIK KOPPARTY. List-decoding multiplicity codes. Theory of Computing, 11:149–182, 2015.
eccc:2012/TR12-044. 2, 6, 30, 31

[Kra03] VICTOR YU. KRACHKOVSKY. Reed-Solomon codes for correcting phased error bursts. IEEE Trans.
Inform. Theory, 49(11):2975–2984, 2003. 11, 30

[KSY14] SWASTIK KOPPARTY, SHUBHANGI SARAF, and SERGEY YEKHANIN. High-rate codes with
sublinear-time decoding. J. ACM, 61(5):28:1–28:20, 2014. (Preliminary version in 43rd STOC, 2011).
eccc:2010/TR10-148. 12

[Nie01] RASMUS REFSLUND NIELSEN. List decoding of linear block codes. Ph.D. thesis, Technical University
of Denmark, 2001. 12

[RT97] M. YU ROSENBLOOM and MICHAEL ANATOLÉVICH TSFASMAN. Коды для m-метрики (Rus-
sian) [Codes for the m-metric]. Probl. Peredachi Inf., 33(1):55–63, 1997. (English translation in
Problems Inform. Transmission, 33(1):45–52, 1997). 12

[Sin64] RICHARD COLLOM SINGLETON. Maximum distance q-nary codes. IEEE Trans. Inform. Theory,
10(2):116–118, 1964. 9

[Vad12] SALIL P. VADHAN. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–336, 2012.
doi:10.1561/0400000010. 2

38

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://cse.buffalo.edu/faculty/atri/courses/coding-theory/ book/
https://doi.org/10.1109/18.782097
https://doi.org/10.1109/18.782097
https://eccc.weizmann.ac.il/eccc-reports/1998/TR98-043
https://doi.org/10.1109/SFCS.2000.892076
https://doi.org/10.1109/SFCS.2000.892076
https://doi.org/10.1109/CCC.2011.22
http://arxiv.org/abs/1106.0436
https://doi.org/10.1109/TIT.2013.2246813
https://doi.org/10.1109/TIT.2013.2246813
https://eccc.weizmann.ac.il/eccc-reports/2012/TR12-073
https://eccc.weizmann.ac.il/eccc-reports/2012/TR12-073
https://doi.org/10.1016/S0019-9958(58)80006-6
https://doi.org/10.1137/0214035
https://doi.org/10.1137/0214035
https://doi.org/10.4086/toc.2015.v011a005
https://eccc.weizmann.ac.il/eccc-reports/2012/TR12-044
https://doi.org/10.1109/TIT.2003.819333
https://doi.org/10.1145/2629416
https://doi.org/10.1145/2629416
https://eccc.weizmann.ac.il/eccc-reports/2010/TR10-148
https://orbit.dtu.dk/en/publications/list-decoding-of- linear-block-codes
http://mi.mathnet.ru/ppi359
http://mi.mathnet.ru/ppi359
https://doi.org/10.1109/TIT.1964.1053661
https://people.seas.harvard.edu/~salil/pseudorandomness/
http://dx.doi.org/10.1561/0400000010

