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Abstract

The strong parallel repetition problem for unique games is to efficiently reduce the 1− δ vs.
1 − Cδ gap problem of Boolean unique games (where C ≥ 1 is a sufficiently large constant) to
the 1 − ε vs. ε gap problem of unique games over large alphabet. Due to its importance to
the Unique Games Conjecture, this problem garnered a great deal of interest from the research
community. There are positive results for certain easy unique games (e.g., unique games on
expanders), and an impossibility result for hard unique games.

In this paper we show how to bypass the impossibility result by enlarging the alphabet
sufficiently before repetition. We consider the case of unique games on small set expanders for
two setups: (i) Strong small set expanders that yield easy unique games. (ii) Weaker small set
expanders underlying possibly hard unique games as long as the game is mildly fortified. We
show how to fortify unique games in both cases, i.e., how to transform the game so sufficiently
large induced sub-games have bounded value. We then prove strong parallel repetition for the
fortified games. Prior to this work fortification was known for projection games but seemed
hopeless for unique games.
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1 Introduction

1.1 Soundness Amplification for Unique Games

The Unique Games Conjecture (UGC) [21] implies optimal inapproximability results that we
do not know how be prove otherwise, e.g., for problems like Max-Cut [22] and Vertex-
Cover [27], and, more broadly, for constraint satisfaction problems on constant-sized alpha-
bets [34]. The conjecture postulates the NP-hardness of the following gap problem:

Definition 1.1 (Unique Games). The input is a regular graph G = (V,E), an alphabet Σ and
permutations πe : Σ→ Σ for all e ∈ E. A labeling to G is a function σ : V → Σ. We say that a
labeling satisfies an edge e = (u, v) ∈ E if πe(σ(u)) = σ(v). In the 1− δ vs. ε gap problem the
goal is to distinguish between the following two cases:

� Completeness: There is a labeling that satisfies 1− δ fraction of edges.

� Soundness: Every labeling satisfies at most ε fraction of the edges.

The fraction of edges that a labeling satisfies is called its value. The maximum value over all
labelings for a game is called the value of the game, value(G). The size of a game size(G) is the
size |V |+ |E| of the graph underlying the game

Conjecture 1.2 (Unique Games Conjecture [21]). For any 0 < ε, δ < 1, there exists k ≥ 1,
such that the 1− δ vs. ε gap problem of unique games on alphabet of size k is NP-hard.

The name “unique games” refers to the following two prover game: a verifier picks a uniform
edge e = (u, v) ∈ E; sends u to one prover, and sends v to the other prover; each prover returns
a label to the vertex it got; the verifier checks the constraint on the edge. Note that given the
answer of one prover, there is exactly one satisfying answer for the other prover. (One subtlety
is that the two provers should employ the same strategy, i.e., have identical answers for identical
questions; otherwise the two prover game corresponds to a bipartite G.)

The simplest case of unique games is when the alphabet Σ is Boolean. Then each constraint
is either equality or no-equality of two bits. If all the constraints are no-equalities, we get Max-
Cut. Goemans and Williamson [17] gave an efficient approximation algorithm for the 1 − δ
vs. 1 − Θ(

√
δ) gap problem of Boolean unique games where there is a specific constant in the

Θ(·) and δ > 0 is small. Assuming the Unique Games Conjecture, there is an NP-hardness
result for Boolean unique games that matches the performance of the Goemans-Williamson
algorithm [22]. The best NP-hardness we can currently prove (without assumptions) falls short
of this, but the case of Boolean alphabet is where the community has come the furthest towards
proving hardness of unique games for completeness 1− δ for small δ > 0: there is NP-hardness
for a very narrow gap 1−δ vs. 1−2δ [19, 25], and there is an approach to prove NP-hardness for
a much wider gap 1− δ vs. 1−C · δ for any constant C ≥ 1 and sufficiently small δ > 0 [26, 14].
A natural question is:

Can hardness of Boolean unique games be lifted to the full Unique Games Conjecture?

Parallel repetition is an operation that, for any k ≥ 1, maps a unique game G over alphabet Σ
to a unique game G⊗k over larger alphabet Σk, decreasing the value exponentially in k [38, 20,
37, 13, 8].

Definition 1.3 (Parallel repetition). Let G be a game on a constraint graph G = (V,E) with
alphabet Σ and constraints πe on the edges. Let k ≥ 1. The k-repeated game G⊗k is on the
constraint graph G⊗k = (V k, E⊗k) and on alphabet Σk. There is an edge between (u1, . . . , uk)
and (v1, . . . , vk) if ei = (ui, vi) ∈ E for all 1 ≤ i ≤ k. The constraint on the edge is that all the
k edges are satisfied.

In the language of two prover games, in the repeated game the verifier picks k tests e1 =
(u1, v1), . . . , ek = (vk, uk) of the original game, sends one prover (u1, . . . , uk), and sends the
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other prover (v1, . . . , vk). Each prover responds with labels for all the vertices it got, and the
verifier checks that all k tests are satisfied.

Ideally, for any constant ε > 0, starting with a Boolean unique games gap of 1 − δ vs.

1− ln(1/ε)
ε · δ for a very small δ > 0, one could pick k ≈ ε

δ , and decrease the soundness to(
1− ln(1/ε)

ε
· δ
) ε
δ

≤ e−
ln(1/ε)δ

ε · εδ = ε,

while keeping the completeness (1− δ) εδ ≥ 1− δ · εδ = 1− ε. Unfortunately, the parameters that
parallel repetition is known to achieve, given in the following theorem, fall short of this ideal:

Theorem 1.4 (Parallel repetition theorem [38, 20, 37, 13]). Let ∆ > 0 and k ≥ 1 where ∆�
1/
√
k. Suppose that G is a unique game of value(G) ≤ 1−∆. Then, value(G⊗k) ≤ 1−Ω(

√
k∆).

Note that even assuming the strongest possible hardness for Boolean unique games, ∆ =
Θ(
√
δ), Theorem 1.4 with its dependence on

√
k cannot improve the gap. This led researchers

to ask whether there is strong parallel repetition:

Definition 1.5 (Strong parallel repetition). Let ∆ > 0, k ≥ 1, where ∆� 1/k. Strong parallel
repetition is an operation that maps unique games of value at most 1 −∆ to unique games of
value at most 1− Ω(k∆).

Strong parallel repetition is known for unique games whose underlying graphs are expanders [40],
as well as for a generalization of expanders where only O(1) eigenvalues are close to 1 [42].
There are efficient approximation algorithms in both cases [2, 35]. In contrast, [39, 5] showed
that parallel repetition has parameters similar to those of Theorem 1.4 for any potentially
hard unique game. Let sdp.value(G) denote the value of a basic semidefinite program for G.
Semidefinite programs consider a relaxed notion of labelings and satisfaction and therefore sat-
isfy sdp.value(G) ≥ value(G). Moreover, sdp.value(G) is (approximately) efficiently computable.
Hence, if the 1− δ vs. 1−∆ gap problem of unique games is NP-hard, we expect hard instances
G with value(G) ≤ 1−∆ to have sdp.value(G) ≥ 1− δ. The limitation is as follows:

Lemma 1.6 (Limitation on strong parallel repetition of unique games [5]). Let δ > 0, k ≥
1. Suppose that G is a unique game with sdp.value(G) ≥ 1 − δ. Then, value(G⊗k) ≥ 1 −
O(
√
kδ log(|Σ| /δ)). Moreover, for the special case of Boolean unique games (|Σ| = 2), value(Gk) ≥

1− 4
√
kδ.

Therefore, as long as the alphabet is small, |Σ| � 21/
√
δ, parallel repetition cannot amplify

even a 1− δ vs. 1−Θ(
√
δ) gap for unique games, and for Boolean alphabet parallel repetition

cannot improve over the parameters in Theorem 1.4.
The limitation of Lemma 1.6 does not apply if one transforms the Boolean unique game to

a new unique game with similar completeness and soundness parameters but alphabet of size
|Σ| ≥ 21/δ, and repeats the transformed game. This is the approach that we take in the current
work. In this we follow the general paradigm of “parallel repetition from fortification” [30]:

1. Fortification: Transform the game to a different game that is “fortified”, i.e., even induced
sub-games have bounded value.

2. Repetition: Show a strong parallel repetition theorem for fortified games.

Define the fortified value of a game as follows:

Definition 1.7 (fortified value). Let ε > 0 and let G be a game on a graph G = (V,E). The
ε-fortified value of G is

valueµ≥ε(G) = maxS⊆V :µ(S)≥εvalue(G|S),

where G|S is the game that is identical to G on the sub-graph of G induced by S.
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We say that the a game is fortified if its fortified value (for sufficiently small ε) is approxi-
mately upper bounded by its value.

In [30] the fortification paradigm was applied to projection games (unique games are a spe-
cial case). In projection games the constraints on the edges are functions, not necessarily
permutations. Appropriately, projection games are usually defined on bipartite graphs, and
different alphabets and associated with the two parts. It is known how to amplify soundness
of projection games [38, 31, 13, 30], and this is the foundation of the optimal inapproximabil-
ity results known today (e.g., for many constraint satisfaction problems [7, 18, 31, 10] or for
Set-Cover [15, 29, 13]). It was shown in [30] how to fortify any projection game (See Sub-
section 1.5.4). However, the fortification of [30] inherently produces projection games that are
not unique games (in fact, this is how it evades the limitation of Lemma 1.6!). Therefore the [30]
fortification cannot be used for amplification of unique games. Nonetheless, it is consistent with
known approximation algorithms [16] that hard unique games could be fortified.

1.2 Unique Games on Small Set Expanders

Let G = (V,E) be a regular graph with degree D. For a set S ⊆ V the density (or fraction) of

S is µ(S) = |S| / |E|. Define the expansion of S as Φ(S) = E(S,V−S)
D|S| , and the non-expansion of

S as Φ(S) = E(S,S)
D|S| . Note that Φ(S) = 1−Φ(S). In the complete graph we have Φ(S) = µ(S).

In an expander graph we have Φ(S) ≤ µ(S) + ε, for a small error term ε > 0 that depends on
the degree. In contrast, consider a graph like the noisy hypercube, where vertices correspond
to binary strings and edges correspond to pairs of strings with 1− α agreement. In this graph,
we know from hypercontractivity that a set S can have non-expansion µ(S)

α
2−α . This means

that sets of constant fraction 1/e mostly do not expand Φ(S) = 1−Θ(α), however sufficiently
small sets of fraction µ(S)� e−1/α have expansion close to 1. Small set expanders capture this
phenomenon.

There are strong ties between unique games and small set expansion. One can view the
unique games problem as a problem about finding a structured small set that does not expand
in a certain graph (the so-called “label extended graph”). The unique games problem is for-
mally at least as hard as the small set expansion problem [35]. The first hard instances of
unique games for semidefinite programming based algorithms were on small set expanders [28].
Small set expansion was key to approximation algorithms for unique games [1]. A certain
small set expansion property was key to known hardness results for unique games (the “2-to-2
Theorem”) [24, 12, 11, 6, 23, 25].

There is a proliferation of definitions of “small set expanders”:

Combinatorial definitions: Raghavendra and Steurer [35] suggested the following quali-
tative definition for expansion close to 1: For any ε > 0, there exists µ such that sets of density
at most µ have expansion at least 1− ε. With Tulsiani [36] they considered a weaker definition
that only applies to sets of density exactly µ. There are also quantitative definitions that apply
to all densities. We suggest the following definition that generalizes the expander mixing lemma
(for δ = 1) and has expansion that approximates the noisy hypercube:

Definition 1.8 (Combinatorial small set expander). We say that a regular graph G = (V,E)
is a (δ, ε)-small set expander if for every S ⊆ V it holds

Φ(S) ≤ µ(S)δ + ε.

This definition implies that sets S of density µ(S) ≤ ε1/δ have expansion Φ(S) ≥ 1− O(ε).
We note that a similar definition, but with ε/µ(S) instead of ε, appears in [36].

3



Threshold rank [1]: If the adjacency matrix of the graph has a small number of eigenvalues
close to 1, then sufficiently small sets have expansion close to 1, however the reverse does not

hold: small set expanders can have a large number exp((log n)
Ω(1)

) of eigenvalues close to 1 [4].
Previous work on strong parallel repetition applied to this definition with O(1) eigenvalues close
to 1 [42].

Hypercontractivity: Hypercontractivity is an algebraic definition that is analogous to
combinatorial small set expansion. In this paper we use the following definitions:

Definition 1.9 (Hypercontractivity). We say that a linear operator A on functions from V to
R is (p, q)-hypercontractive if for any f : V → R it holds

‖Af‖q ≤ ‖f‖p.

The following definition defines hypercontractive graphs, exact and approximate:

Definition 1.10 (Hypercontractive graph, exact and approximate). We say that G = (V,E)
is (p, q)-hypercontractive if its adjacency operator is (p, q)-hypercontractive. We say that G =
(V,E) is (p, q, ε)-hypercontractive if the projection of its adjacency operator to the space corre-
sponding to eigenvalues of size at least ε is (p, q)-hypercontractive.

(p, q, ε)-hypercontractivity implies (δ, ε)-small set expansion for δ = 1
p −

1
q : Let f be the

indicator function of a subset S ⊆ V . By Hölder inequality, the former definition gives:

E
(u,v)∈E

[f(u)f(v)] ≤ µ(S)1+ 1
p−

1
q + εµ(S).

Certain equivalence results between hypercontractivity and combinatorial small set expan-
sion are known in the ε = 0 case [32, 43] and the non-zero ε case [3]. Hypercontractivity has the
useful property that it tensories, i.e., the product of hypercontractive graphs is hypercontractive.

1.3 The Main Theorems

Our main contribution is strong parallel repetition for Boolean unique games on small set
expanders.

The first theorem focuses on (p, q)-hypercontractive graphs with constant p and q inde-
pendent of the completeness error of the unique game. This is a highly natural setting for
small set expanders, however (as in all previous work on strong parallel repetition of unique
games [40, 42, 9]) it gives easy unique games [35, 1]:

Theorem 1.11 (Strong parallel repetition for unique games on small set expanders). Let q >

p > 0 be constants. For any ε > 0, sufficiently small δ > 0 and ∆ > ln(1/ε)
ε ·δ, any Boolean unique

game G on a (p, q)-hypercontractive graph can be efficiently transformed into a unique game G∗
on ((1 − 2δ)q + 2δ, q)-hypercontractive graph, over an alphabet of size exp(Õ(1/δ))O(1/ε), and

whose size is size(G)exp(Õ(1/δ))O(log 1/ε), such that:

� If value(G) ≥ 1− δ, then value(G∗) ≥ 1−O(ε).

� If value(G) ≤ 1−∆, then value(G∗) ≤ O(ε).

Note that Theorem 1.11 is the first strong parallel repetition theorem that applies to graphs
with ω(1) eigenvalues close to 1.

The second theorem focuses on (p, q, ε/2)-hypercontractive graphs where 1
p−

1
q = δ

2−δ (rather

than 1
p−

1
q being a constant independent of δ). It is consistent with current algorithms for unique

games [35] that the 1−δ vs. ε gap problem of unique games is hard for such graphs. The following
theorem assumes mild fortification of the game:
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Theorem 1.12 (Strong parallel repetition for plausibly hard unique games). There exists 0 <
η < 1 such that for any ε > 0, for sufficiently large C ≥ 1 and sufficiently small δ > 0, for
p > q > 0 such that 1

p −
1
q = δ

2−δ , any unique game G on a (p, q, ε/2)-small set expander can be

efficiently transformed into a unique game G∗ over an alphabet of size exp(Õ(1/δ))O(1/ε), and

whose size is size(G)exp(Õ(1/δ))O(log 1/ε), such that:

� If value(G) ≥ 1− δ, then value(G∗) ≥ 1− ε.
� If valueµ≥1−η(G) ≤ 1− Cδ, then value(G∗) ≤ ε.

We view the main contribution of those theorems in bypassing the impossibility result for
strong parallel repetition of unique games (Lemma 1.6).

Both theorems are proved via the same construction with some differences in analysis. In
the remainder of the introduction we focus on the proof of Theorem 1.11, and explain how to
modify the proof to get Theorem 1.12.

1.4 An Open Problem Towards The Unique Games Conjecture

In this work we also consider a slightly stronger property than fortification that we call non-
expansion fortification:

Definition 1.13 (non-expansion fortified value). For a parameter ε > 0 and a unique game G,
the ε-non-expansion fortified value of G is

valueΦ≥ε(G) = maxS⊆V :Φ(S)≥εvalue(G|S).

We say that the game is non-expansion fortified if valueΦ≥ε(G) is upper bounded using
value(G). Note that sets of size ε |V | typically have non-expansion at least ε. Non-expansion
fortification applies to smaller sets that have ε non-expansion. In a (p, q)-hypercontractive
graph, there are no sets of fraction smaller than εc for 1/c = 1/p − 1/q with non-expansion ε,
and hence non-expansion fortification follows from fortification against sets of fraction εc.

The proof of the 2-to-2 Games Theorem constructs hard instances that are not small set
expanders, however the value of the game restricted to small sets that do not expand is bounded.
We therefore believe that generalizing our theorems as follows would be crucial to the proof of
the Unique Games Conjecture:

Conjecture 1.14 (Soundness amplification for unique games on quasi small set expanders).
For any ε > 0, for sufficiently small δ > 0 and for sufficiently large ∆ = Θ(δ), there exists a
transformation that maps unique games G to unique games G∗ such that:

� If value(G) ≥ 1− δ, then value(G∗) ≥ 1−O(ε).

� If valueΦ≥1−∆(G) ≤ 1−∆, then value(G∗) ≤ O(ε).

The conjecture does not require that the graph that underlies G is a small set expander, but
it does assume that G restricted to sets with 1 −∆ non-expansion has bounded value, even if
the sets have a much smaller fraction than 1−∆. Note that value(G) ≤ 1− 2∆ implies that for
every S ⊆ V of density µ(S) ≥ 1−∆, it holds value(G|S) ≤ 1−∆.

1.5 Fortification of Unique Games on Small Set Expanders

We show fortification for unique games on small set expanders. The first fortification theorem
is used in the proof of Theorem 1.11. It considers strong small set expanders and non-expansion
fortification.
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Theorem 1.15 (Fortification towards Theorem 1.11). Let q > p > 0 be constants. For any
0 < ε < 1, for any sufficiently small δ > 0, and sufficiently large ∆ = Θ(δ), any Boolean unique
game G on a (p, q)-hypercontractive graph can be efficiently transformed into a unique game G′
on a ((1− 2δ)q + 2δ, q)-hypercontractive graph, over an alphabet of size exp(Õ(1/δ)) and whose

size is size(G)exp(Õ(1/δ)) such that:

� If value(G) ≥ 1− δ, then value(G′) ≥ 1−O(δ).

� If value(G) ≤ 1−∆, then valueΦ≥ε2(G′) ≤ 1−O(∆).

The second fortification theorem is used in the proof of Theorem 1.12. It considers weak
small set expanders and standard fortification:

Theorem 1.16 (Fortification towards Theorem 1.12). There exists 0 < η < 1, such that for any
sufficiently small δ > 0, and sufficiently large ∆ = Θ(δ), for p > q > 0 such that 1

p −
1
q = 2

2−δ ,

any Boolean unique game G on a (p, q,∆)-hypercontractive graph can be efficiently transformed
into a unique game G′ on a ((1 − 2δ)q + 2δ, q,∆)-hypercontractive graph, over an alphabet of

size |Σ| = exp(Õ(1/δ)) and whose size is size(G)exp(Õ(1/δ)) such that:

� If value(G) ≥ 1− δ, then value(G′) ≥ 1−O(δ).

� If valueµ≥1−η(G) ≤ 1−∆, then valueµ≥ε4|Σ|−1/δ(G′) ≤ 1−O(∆).

Next we explain the main difficulty in fortification and the main ideas that go into solving it.
Fortification holds for a repetition of a game. The intuition is that for a product, even restriction
to a fairly small set S of vertices leaves a typical coordinate sufficiently similar to the original
game. The issue is that one needs roughly 1/δ2 repetitions for δ-closeness to the original game,
and this number of repetitions is prohibitive for unique games, since the δ completeness error
accumulates across repetitions. (This is also the reason why strong parallel repetition fails for
unique games.)

The inspiration for fortification comes from a reduction of Raghavendra and Steurer [35] from
Small-Set-Expansion to Unique Games, however we find it natural to describe fortification
without explicitly mentioning small set expansion. We draw the analogy to small set expansion
in Sub-section 1.5.3.

Fortification is done in two steps: In the first step (“take it or leave it”) we decrease the
completeness error. This allows us to make repetitions in the second step (“multiple rounds”).
The decrease in the completeness error in the first step comes at the cost of introducing a global
constraint on the strategy of the provers. The second step removes the constraint by ensuring
it holds. The first step keeps the alphabet Boolean; it is one test that averages the outcomes of
many tests. The second step increases the alphabet.

Fortification has a parameter l ≈ 1/δ. The first step uses δ-noise to keep the graph underlying
the take-it-or-leave-it game a small set expander, even if worse than the initial small set expander.
It decreases the completeness error to about 2−lδ. In the second step the alphabet increases
to about 2l. We omit some of the details in the description below. The full description of
fortification can be found in Section 3.

1. Take-it-or-leave-it: The verifier picks uniformly edges e1 = (u1, vl), . . . , el = (ul, vl) ∈ E
and labels σ1, . . . , σl ∈ Σ. It picks labels σ′1, . . . , σ

′
l ∈ Σ by setting σ′i = πei(σi) with

probability 1− δ and picking σ′i uniformly at random with probability δ. The first prover
gets (u1, σ1), . . . , (ul, σl), and the second prover gets (v1, σ

′
1), . . . , (vl, σ

′
l). Each of those

should be interpreted as proposed labels to the vertices. Each prover needs to decide
whether it takes the proposal (as a bundle) or leaves it. The goal of the provers is to make
the same decision (take it or leave it) on the correlated proposals they got. The global
constraint is that each prover must take ≈ 2−l fraction of all possible proposals and leave
the rest.
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2. Multiple-rounds: The verifier picks about 2l correlated pairs of take-it-or-leave-it proposals.
The verifier randomly shuffles the proposals for each prover. Each prover must pick about
one proposal among the proposals it got. The verifier checks that the provers picked
matching proposals. (We remark that the actual multiple-rounds transformation is more
complicated than this because of possible fluctuations in the number of taken proposals
within a sample. The final game has several independent repetitions of shuffling, and the
players get to choose which to play).

Note that both steps maintain uniqueness of the game. We elaborate on their analysis next.

1.5.1 Analyzing The “Take It Or Leave It” Game

The analysis of the take-it-or-leave-it game is one of the main contributions of the current
work. Given G with value(G) ≥ 1− δ in the completeness case, the intended strategy is to pick
suggestions that are mostly consistent with a single labeling of value at least 1 − δ (note that
within ≈ 1/δ suggestions, one expects to encounter rejecting edges that create inconsistency
between suggestions given to different players). By choosing a random cutoff of sufficiently
small magnitude, the fraction of taken suggestions is sufficiently small, say about 20.001l · 2−l,
and the probability of agreement between the players once one of them decides to take the
suggestion is 1−O(δ).

For the soundness, we should show that any set of taken suggestions of fraction 20.001l · 2−l,
on which the players agree with probability at least 1 − ∆ once one of them decides to take
the suggestion, can be used to construct a labeling for G with value at least 1 − O(∆). The
intuition is that the set of taken suggestions is a small set that does not expand in the graph that
underlies the take-it-or-leave-it-game. That graph has two components: G⊗l, which is a small
set expander since G is a small set expander, and a component that corresponds to labelings in
G⊗l. Any small set that does not expand must be due to the second component, and thereby
imply a good labeling for G⊗l and hence for G.

The actual analysis is subtle because of two important issues: (i) Different tuples in V l

may appear with different numbers of labels in the set of taken suggestions, and this induces
a non-uniform distribution over V . (ii) The set of taken suggestions is quite large 20.001l · 2−l,
which implies that a constant fraction of V may get two labels.

Therefore, the labeling we construct is for all vertices but, perhaps, a subset Verr ⊆ V of
possibly constant fraction of the vertices. We show that there exists a probability distribution
D over the edges E, in which edge gets a probability within a constant factor of 1/ |E|, such that
with probability 1−O(∆) over the choice of an edge from D, either the edge lands completely
outside Verr and its labeling is accepted, or the edge lands completely inside Verr. Because of
G’s small set expansion, Verr must be of fraction at most O(∆). Thus, the value of G when
edges are picked according to D and the labeling is as constructed is at least 1 − O(∆). This
implies the same for the value of G when edges are picked uniformly.

To construct the labeling along with Verr and D we follow the following plan:

1. Show that there exists a number of labels L, such that the subset of tuples in V l with
approximately (up to a constant factor) L different labels taken is non-expanding in G⊗l.

2. Deduce from the small set expansion of G⊗l that this subset of V l is in fact of fraction
1−O(∆), and by the upper bound on the number of taken suggestions, L ≤ O(20.001l).

3. Pick vertices v1, . . . , vl ∈ V and labels σ1, . . . , σl ∈ Σ according to the uniform dis-
tribution over taken suggestions with approximately L different labels. Pick uniformly
i0 ∈ [l]. Fix v1, . . . , vi0−1, vi0+1, . . . , vl and σ1, . . . , σi0−1, σi0+1, . . . , σl. The distribution
over (vi0 , σi0) ∈ V × Σ gives rise to:

� A labeling V → Σ (by the chain rule, the entropy in σi0 conditioned on vi0 is small,
and hence there is typically one likely label σi0 per vertex vi0).
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� A subset Verr ⊆ V (that contains the few vertices vi0 with two likely labels σi0).

� A distribution D over E (which corresponds to the non-uniform distribution over
vertices, since some tuples in V l have more taken labels than others (by a constant
factor)).

Modifying the analysis for Theorem 1.16: Throughout we only use two properties
that follow from hypercontractivity: combinatorial small set expansion and tensorizing. How-
ever, in Theorem 1.12 we assume a much weaker combinatorial small set expansion than in
Theorem 1.11: 1

p −
1
q equals δ

2−δ rather than an absolute constant. Combinatorial small set

expansion is used in two places in the analysis of take-it-or-leave-it: (1) deduce that most tuples
in V l are taken with roughly the same number L of labels. (2) argue that Verr must be small.
Regarding (1): When the small set expander is weaker as in Theorem 1.12, one can only deduce
that there is a subset of constant fraction of V l with roughly the same number of labels L. The
projection of this subset onto the i0’th coordinate has O(δ) KL-divergence with the uniform
distribution. This means that for 1 − O(δ) fraction of the edges, the probability of the edge is
within a constant of 1/ |E|. Regarding (2): In the case of a weaker small set expansion as in
Theorem 1.12 we can no longer argue that Verr is small, however the mild fortification of the
game valueµ≥1−η(G) ≤ 1− Cδ guarantees that value(G|V−V err) ≤ 1− Cδ.

1.5.2 Analyzing Multiple Rounds

We use the product structure to show that the game is fortified. Our main observation is that
we can apply the information-theoretic ideas in the analysis of parallel repetition [38, 20] to do
exactly that! For brevity, we quote those ideas as lemmas in the preliminaries (with the proofs
appearing in [38, 20, 37] as well as many other sources on parallel repetition). Our analysis is
highly condensed by referring to the lemmas.

As we remarked when we introduced multiple-rounds, the actual transformation is more
complicated than just repetition and shuffling, and so is the analysis. The verifier generates
several rounds of the shuffling game, and asks the players to choose one of them. Interestingly,
to analyze this game we rely on the fortification of the shuffling game.

1.5.3 Comparison To Previous Work on Unique Games and Small Set Ex-
pansion

In analogy to the work of Raghavendra and Steurer [35] the fortification operation in this paper
can be thought of as consisting of two reductions:

Unique-Game-on-SSE→ Small-Set-Expansion→ Unique-game-on-SSE,

where take-it-or-leave-it corresponds to the first reduction, and multiple-rounds corresponds to
the second reduction. The goal of our reductions (fortification) and their setup (gap, expan-
sion) are different from that of the existing reductions between unique games and small set
expansion [35, 36], and therefore our reductions and their analysis are different from existing
reductions:

1. There is an extremely simple reduction from Unique-Game-on-SSE to Small-Set-
Expansion (see [41]), however the reduction works in the case of large completeness-
soundness gap (like in the full Unique Games Conjecture), whereas we need to work in the
case of narrow gap (like in Boolean Unique Games). Our take-it-or-leave-it reduction is
therefore more complex, and its analysis is far more subtle.

2. Raghavendra and Steurer [35] showed a reduction from Small-Set-Expansion to Unique
Games, and together with Tulsiani [36], they showed a reduction from Small-Set-
Expansion to Unique-game-on-SSE. The reduction of Raghvendra-Steurer can be thought
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of as a noisy version of our multiple-rounds. Since we are to argue fortification, our anal-
ysis is completely different from the RS analysis. We cannot use the reduction of RST for
fortification, and we do not need it thanks to starting with a small set expander.

1.5.4 Comparison To Previous Work on Fortification

The fortification operation in [30] is (a derandomization of) the following reduction: The verifier
picks uniformly at random (u, v) ∈ E and vertices u1, . . . , ul−1, v1, . . . , vl−1 ∈ V . The verifier
shuffles u, u1, . . . , ul−1 and sends them to one prover; it shuffles v, v1, . . . , vl−1 and sends them
to the other prover. Each prover responds with labels to all the vertices it got. The verifier
checks that the edge (u, v) is satisfied. Note that this game is not unique. It does have the same
value as the original game, and it introduces a product structure on the questions of each of the
provers. It is quite different from the fortification operation in this paper.

1.6 Strong Parallel Repetition of Non-Expansion Fortified Unique Games

In this paper we also give an improved analysis of strong parallel repetition for non-expansion
fortified games:

Theorem 1.17 (Strong parallel repetition for non-expansion fortified games). Let ε > 0 be a
sufficiently small constant. Let G be a game with valueΦ≥ε2(G) ≤ 1 −∆ and k = dln(1/ε)/∆e,
then value(G⊗k) < 3ε.

Importantly, the number k of repetitions is about 1/∆, and not 1/∆2, i.e., the parallel
repetition theorem is strong. Also importantly, the non-expansion parameter depends only on
the desired value of the repeated game ε, and not on the alphabet Σ of the game (We do not
try to optimize the parameter for non-expansion and keep it ε2, whereas we only need it to be
about ε

3 ln(1/ε) ). In contrast, the existing analysis of parallel repetition for fortified games had a

dependence on the alphabet (See Sub-section 1.6.1 for comparison).
To understand the idea of the analysis, it is instructive to consider the case of k = 2 rep-

etitions (also called “rounds”). Assume on way of contradiction that there is a labeling to G2

with value much larger than value(G)2. By the chain rule, the probability of winning the second
round conditioned on winning the first round is much larger than value(G). We will show that
this cannot happen.

Fix the questions of the first round, so the remaining round is in one-to-one correspondence
with the game G, and the labeling in G2 implies a labeling to G. Partition the questions in
the second round V = V1 ∪ · · · ∪ VM according to the label implied for the first round. Edges
between different Vi’s do not win the first round of G2. Hence, in the second round, when the
game is conditioned on winning the first round, we really play G conditioned on the edge landing
within Vi for some i. Since the provers win G2 with noticeable probability, many of the edges
land in Vi for some i. By non-expansion fortification, each one of the Vi’s that has many edges
within it must have value ≈ value(G). Vi’s that do not have many edges within them have low
probability of coming up.

1.6.1 Comparison To Previous Work on Strong Parallel Repetition for For-
tified Games

The paper [30] gives a strong parallel repetition for fortified projection games, but requires

fortification against sets of fraction |Σ|−k poly(ε) in order to argue that the k-repeated game
has value ε. In projection games there are two alphabets: large and small. The fortification
of [30] increases the large alphabet but not the small alphabet, and the dependence on the
alphabet size in the parallel repetition theorem of [30] is in the small alphabet. In unique
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games there is just one alphabet, and our fortification increases the alphabet Σ to more than
21/δ (and necessarily so!). Our new analysis of parallel repetition uses the stronger premise on
non-expansion fortification as opposed to fortification to eliminate the dependence on |Σ|.

2 Preliminaries

2.1 Hypercontractivity

See, e.g., the book [33]:

Lemma 2.1 (Product of hypercontractive graphs is hypercontractive). [32, 43] If G = (VG, EG)
and H = (VH , EH) are (p, q)-hypercontractive, then G ⊗ H = (VG × VH , EG ⊗ EH) is (p, q)-
hypercontractive. Similarly for (p, q, ε)-hypercontractivity.

Lemma 2.2 (Noisy hypercube). The δ-noisy hypercube, namely the weighted graph on {0, 1}n
where a random edge is picked by picking uniformly x ∈ {0, 1}n and letting yi = xi with prob-
ability 1 − δ, and letting yi be random with probability δ, leading to an edge (x, y), is (p, q)-

hypercontractive for
√

p−1
q−1 ≥ 1− δ.

2.2 Information-Theoretic Analysis of Parallel Repetition

We will use the ideas of the information-theoretic analysis of parallel repetition, which we
summarize in the next few lemmas: (Below |·| for random variables refers to total variation
distance between distributions.)

The first lemma upper bounds the effect of restricting a product distribution to a sufficiently
large subset, when examining a single random coordinate. The effect is measured in terms of
KL-divergence:

Definition 2.3 (Kullback-Leibler divergence). The KL-divergence between two distributions
P,Q with the same support Ω is

D(P ||Q) =
∑
x∈Ω

P (x) log

(
P (x)

Q(x)

)
.

Lemma 2.4. [38] Let X1, . . . , Xt be independent random variables. Let W be an event with
Pr [W ] ≥ 2−w. Pick i0 ∈ [t] uniformly at random. Then

E
i0

[D(Xi0 ||Xi0 |W )] ≤ w

t
.

By Pinsker’s inequality, |P −Q| ≤
√
D(P ||Q)/2. Hence, by convexity, Lemma 2.4 also

implies Ei0 [|Xi0 −Xi0 |W |] ≤
√

w
t .

Lemma 2.4 does not immediately imply an analysis of repetitions of a two prover game. The
reason is that Xi0 and X−i0 = X1, . . . , Xi0−1, Xi0+1, . . . , Xt may be highly dependent given W .
For example, assume that X1, . . . , Xt are random bits, and let W be the event that

⊕
iXi = 0.

Then X−i0 |(Xi0 ,W ) satisfies
⊕

i 6=i0 Xi = Xi0 . Suppose that (X1, Y1), . . . , (Xt, Yt) are questions

to the provers in G⊗t. To show that a labeling that achieves high value in G⊗t conditioned on
W induces a labeling of high value for G, a prover that gets Xi0 must be able to decide on
X−i0 conditioned on W (without any knowledge of Yi0), and a prover that gets Yi0 must be
able to decide on Y −i0 conditioned on W , where Y −i0 = Y1, . . . , Yi0−1, Yi0+1, . . . , Yt (without
any knowledge of Xi0), in such a way that (Xi, Yi) ∈ E for all i 6= i0. This seemingly impossible
task is the crux of the difficulty in analyzing parallel repetition.
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The solution of [38, 20] centers around the definition of a correlation breaking variable R: For
i ∈ [t] let Ri = Xi with probability 1/2, and Ri = Yi with probability 1/2 independently at ran-
dom. Denote R−i0 = R1, . . . , Ri0−1, Ri0+1, . . . , Rt. Note that X−i0 and Y −i0 are independent
conditioned on R−i0 and on W .

1. Prove (See Lemma 2.5 below) that R−i0 |(Xi0 ,W ) and R−i0 |(Yi0 ,W ) are typically close.

2. Use correlated sampling (See Lemma 2.6 below) so the provers can agree on a value for
R−i0 with high probability.

3. Let the prover holding Xi0 pick X−i0 conditioned on R−i0 ,W and let the prover holding
Yi0 pick Y −i0 conditioned on R−i0 ,W .

The next lemma builds on Lemma 2.4. It uses that (X1, Y1), . . . , (Xt, Yt) remain independent
when conditioning on R.

Lemma 2.5. [38] Let (X1, Y1), . . . , (Xt, Yt) be t independent pairs of random variables, where
X1, . . . , Xt and Y1, . . . , Yt are over the same sample space. Let W be an event in this sam-
ple space, where Pr [W ] ≥ 2−w. Pick i0 ∈ [t] uniformly. For i ∈ [t] let Ri = Xi with
probability 1/2, and Ri = Yi with probability 1/2 independently at random. Denote R−i0 =
R1, . . . , Ri0−1, Ri0+1, . . . , Rt. Then

E
i0

[∣∣R−i0 |(Xi0 ,W )−R−i0 |(Yi0 ,W )
∣∣] ≤ O(

√
w

t
).

Next we give the short definition and analysis of correlated sampling, which was suggested
in [20] in this context:

Lemma 2.6 (Correlated sampling). Let D1, D2 be distributions over a finite sample space Ω
with |D1 −D2| ≤ ε. Suppose two non-communicating provers with access to shared randomness.
Then the first prover can sample x1 from D1 and the second prover can sample x2 from D2,
such that x1 = x2 with probability at least 1− 2ε.

Proof. Pick uniformly at random pairs (ai, pi) ∈ Ω× [0, 1] for i = 1, 2, 3, . . .. Each prover picks
the first ai where pi is at most the probability of ai according to the prover’s distribution. The
probability that the provers do not pick the same i is 2 |D1 −D2| ≤ 2ε.

3 Fortification of Unique Games

Fortification is done in two steps. In the first, the “take-it-or-leave-it” transformation decreases
the completeness error significantly by adding a global constraint on the labeling; the alphabet
remains Boolean. In the second, “multiple-rounds” of the game are performed and the alphabet
size increases. The low completeness error achieved in the first step allows the many rounds of
the second step. The second step gets rid of the global constraint (by verifying it directly), and
the product structure it introduces fortifies the game.

3.1 Take It Or Leave It

Let Σ = {0, 1}. Let δ > 0 be sufficiently small. Pick l = d10 log(1/δ)/δe. Given a unique
game G on a small set expander G = (V,E) with constraints πe : Σ → Σ, we define a unique
game that we call take-it-or-leave-it. To make the description vivid, we use the language of
two prover games, with the understanding that the two provers employ the same strategy, i.e.,
have identical answers for identical questions. In the take-it-or-leave-it game the verifier sends
each of the provers a suggestion, and the prover needs to decide whether to take the suggestion
or leave it. The suggestions the prover sends the two provers are correlated, and the provers
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win if they make the same decision on both suggestions. Importantly, the provers must take
a noticeable fraction of the suggestions and must leave most of the suggestions. The game is
as follows. The verifier picks uniformly at random edges e1 = (u1, v1), . . . , el = (ul, vl) ∈ E,
as well as l labels σ1, . . . , σl ∈ Σ. For every 1 ≤ i ≤ l, the verifier sets σ′i = πei(σi) with
probability 1− δ and picks σ′i uniformly at random with the remaining probability. The verifier
sends (u1, σ1), . . . , (ul, σl) to one prover. These are suggested labels to the l vertices. Similarly,
the verifier sends (v1, σ

′
1), . . . , (vl, σ

′
l) to the other prover. Each prover should either take or

leave the verifier’s suggestion (as a bundle). The verifier checks that the two provers made the
same decision, i.e., both took their suggestions or both left their suggestions. Note that the
take-it-or-leave-it game is unique.

The size of the game is size(G)Õ(1/δ). The alphabet of the game is Boolean. By Lemma 2.1,
if G is (p, q)-hypercontractive, then so is G⊗l (Similarly if G is (p, q, ε)-hypercontractive). We
will use this property repeatedly in the soundness analysis below. The graph underlying the
take-it-or-leave-it game is the product of G⊗l (for the vertices) and a graph (for the labels) that
is ((1−2δ)q+2δ, q)-hypercontractive (like the δ-noisy hypercube; see lemma 2.2). For sufficiently
small δ > 0 we know that p ≤ (1 − 2δ)q + 2δ. By the monotonicity of the p-norm, we know
that G⊗l is also ((1−2δ)q+ 2δ, q)-hypercontractive. Thus, by Lemma 2.1, the graph underlying
the take-it-or-leave-it game is ((1 − 2δ)q + 2δ, q)-hypercontractive (similarly, if G is (p, q, ε)-
hypercontractive, then the take-it-or-leave-it game is ((1− 2δ)q + 2δ, q, ε)-hypercontractive).

A key observation is that the completeness error is about 2−lδ by having the provers take
only suggestions that are mostly consistent with a single high value labeling to G:

Lemma 3.1 (Completeness). If value(G) ≥ 1 − δ, then there is a strategy for the provers
that accepts 2H(0.001)l−o(l)/2l ≤ γ ≤ 2H(0.01)l/2l fraction of the verifier’s suggestions, and the
probability that one prover accepts while the other rejects is O(γδ).

Proof. We describe a strategy for the take-it-or-leave-it game. The provers agree on a strategy
for G that succeeds with probability at least 1− δ. Then they pick a random α ∈ [0.001, 0.01],
and accept if the verifier’s suggestions differ from the fixed strategy on at most αl of the l
labels they got. Let Diff1 be the difference for the first prover, and let Diff2 be the difference of
the second prover. There are two sources for difference between Diff1 and Diff2: edges ei that
reject the fixed strategy, and noise in σ′i. By a Chernoff bound, |Diff1 − Diff2| ≤ 3δl except with
probability 4e−4δl/3 ≤ δ. The probability that the provers’ responses are different, conditioned
on one of them accepting, is bounded by the probability that the threshold αl fell between Diff1

and Diff2. When |Diff1 − Diff2| ≤ 3δl, this probability is at most 3δl/(0.01 − 0.001)l = O(δ).
Moreover, the probability that any one of the prover accepts is the fractional volume of the ball
of radius αl around the fixed strategy, and the bound on γ follows.

Thanks to the small set expansion of G⊗l we can also prove soundness, namely that every
set of taken suggestions of fraction roughly 2−l on which the provers agree with high probability
in the take-it-or-leave-it game leads to a labeling that achieves high value in G. In the analysis
below we follow the plan articulated in the introduction (Section 1.5.1).

Assume on way of contradiction that for a set of taken suggestions of fraction 2−(1−η)l the
probability of agreement between the provers, assuming one of them takes a suggestion, is at
least 1−∆′. First we argue that we can focus on suggestions where each l-tuple of vertices they
contain is taken with roughly the same number of labels:

Lemma 3.2 (Uniform number of labels). Assume that G is (p, q, 1/2)-hypercontractive for
1
p −

1
q = 2

2−δ . Assume that there is a set of taken suggestions of fraction 2−(1−η)l such that
the probability of agreement between the provers, assuming one of them takes a suggestion, is at
least 1 −∆′. Then there exists 1 ≤ L ≤ 2O(η)l and a set S ⊆ V l where: (1) All the l-tuples in
S are taken together with between L and 2L labels; (2) Φ(S) ≥ 1−O(∆).
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Proof. For every v = (v1, . . . , vl) ∈ V l denote by l(v) the number of taken labels for v, i.e.,
the number of (σ1, . . . , σl) ∈ Σl such that the suggestion (v1, σ1), . . . , (vl, σl) is taken. Partition
V l according to the number of taken labels for each tuple: Set t0 = 0. Pick uniformly at
random thresholds 0 < t1 ≤ 1 < t2 ≤ 2 · · · < tl ≤ l. Let Si contain the tuples v such that
2ti−1 ≤ l(v) < 2ti . Let S0 contain the tuples in V l that are never taken.

Let T be the distribution induced on V l by picking a random taken suggestion and consider-
ing the tuple in V l. Pick a random u ∈ V l according to T and a uniform choice of a neighboring
v. Next we will bound by O(∆′) the probability that u ∈ Si and v ∈ Si′ for i 6= i′. Without loss
of generality, we focus on the case that i′ < i, since the distribution of v is O(∆′)-close to T .
The probability that u ∈ Si and v ∈ Si′ for i′ < i is at most log(l(u))−log(l(v)) = log(l(u)/l(v)).
Only l(v) of the l(u) suggestions associated with u can lead to agreement in the take-it-or-leave-
it game. Write l(v)/l(u) = 1 − εv,u. Since the probability of agreement is at least 1 −∆′, we
have that E [l(v)/l(u)] ≥ 1−∆′, and thus E

[
εv,u

]
≤ ∆′. By a Markov inequality, except with

probability O(∆′), it holds that εv,u ≤ 1/2. In this case,

log (l(u)/l(v)) = log

(
1

1− εv,u

)
≤ log(1 +O(εv,u)) ≤ O(εv,u).

Hence, except with probability O(∆′), we have log(l(u)/l(v)) ≤ O(εv,u). Therefore, one can
bound the probability that u ∈ Si and v ∈ Si′ for i′ < i by O(∆′). Hence, the probability that
u ∈ Si and v ∈ Si′ for i 6= i′ is O(∆′). It follows that there exists i such that Φ(Si) ≤ 1−O(∆′).
Note that i ≤ 3ηl, since µ(Si′) ≤ 2−ηl for larger i′, and by (p, q, 1/2)-hypercontractivity, Φ(Si′) ≤
2−ηl

δ
2−δ + 1/2 < 3/4.

Towards Theorem 1.11 we prove:

Lemma 3.3 (Soundness). Let 0 < p < q be constants. Let ∆, η > 0 be sufficiently small
constants. If G is a unique game on a (p, q)-hypercontractive graph with value(G) < 1 − ∆,
then for every strategy that takes 2−(1−η)l fraction of the verifier’s suggestions, the probability
of agreement assuming one of the provers takes its suggestion, is at most 1−O(∆).

Proof. Assume on way of contradiction that for a set of taken suggestions of fraction 2−(1−η)l

the probability of agreement between the provers, assuming one of them takes a suggestion, is
at least 1−∆′. By Lemma 3.2, there is 1 ≤ L ≤ 2O(η)l and S ⊆ V l where each l-tuple of vertices
in S is taken with between L and 2L labels, and Φ(S) ≥ 1−O(∆′). By the hypercontractivity
of G⊗l, we know that |S| ≥ (1 − O(∆′))

∣∣V l∣∣. Let T be the probability distribution induced
on V l by picking a uniform taken suggestion and conditioning on its l-tuple landing in S. By
the definition of S, the probability of each tuple in S according to T is the same up to a
constant factor. Pick (v1, . . . , vl) from T and pick a uniform taken labeling for the vertices
(σ1, . . . , σl) ∈ Σ. By the upper bound on the number of taken suggestions,

H(σ1, . . . , σl|v1, . . . , vl) ≤ O(ηl).

By the chain rule,

H(σ1, . . . , σl|v1, . . . , vl) = H(σ1|v1, . . . , vl) +H(σ2|σ1, v1, . . . , vl) + · · ·

Pick uniformly at random i0 ∈ [l], then the following is implied:

E
i0

[H(σi0 |v1, . . . , vl, σ1, . . . , σi0−1, σi0+1, . . . , σl)] ≤ O(η).

Fix i0 ∈ [l], vertices v1, . . . , vi0−1, vi0+1, . . . , vl ∈ V , labels σ1, . . . , σi0−1, σi0+1, . . . , σl ∈ Σ, as
well as vertices u1, . . . , ui0−1, ui0+1, . . . , ul ∈ V with (vi, ui) ∈ E for all i, such that:

13



� H(σi0 |vi0) ≤ O(η).

� The probability of rejection in take-it-or-leave-it conditioned on the fixing is O(∆′).

(Note that there exists a fixing that satisfies both items by a Markov inequality and a union
bound). Let D be the distribution over (vi0 , ui0). Note that each edge has D probability that is
within a constant factor of 1/ |E|.

Let Verr ⊆ V contain all fixings of the vertex vi0 such that H(σi0 |vi0) > 1/2, so |Verr| ≤
O(η) |V |. For all vertices outside Verr there is one label that is more likely than the other, and
we consider this labeling. For the vertices inside Verr that are two labels that have a constant
probability each. By the hypercontractivity of G, conditioned on vi0 ∈ Verr, the probability that
ui0 ∈ Verr is O(η)1/p−1/q. When ui0 /∈ Verr, the probability of accepting in take-it-or-leave-it is
at most a constant (since one of vi0 ’s labels occurs with constant probability but is inconsistent
with ui0 ’s label). It follows that η ≤ O(∆′). Therefore, with probability at least 1 − O(∆′),
we have vi0 , ui0 /∈ Verr and the labeling of vi0 , ui0 is accepted in G. The same must be true for
the uniform distribution over edges rather than D, since the probabilities are within a constant
from one another.

Towards Theorem 1.12 we also prove:

Lemma 3.4 (Soundness). Let δ, η > 0 be sufficiently small constants. Let 0 < δ < 1 be such
that 1

p −
1
q = δ

2−δ . Let ∆ = Θ(δ) and η′ = Θ(η) be sufficiently large. If G is a unique game on a

(p, q,∆)-hypercontractive graph with valueµ≥1−η′(G) < 1−∆, then for every strategy that takes
2−(1−η)l fraction of the verifier’s suggestions, the probability of agreement assuming one of the
provers takes its suggestion, is at most 1−O(∆).

Proof. Assume on way of contradiction that for a set of taken suggestions of fraction 2−(1−η)l

the probability of agreement between the provers, assuming one of them takes a suggestion, is
at least 1−∆′. By Lemma 3.2, there is 1 ≤ L ≤ 2O(η)l and S ⊆ V l where each l-tuple of vertices
in S is taken with between L and 2L labels, and Φ(S) ≥ 1−O(∆′). By hypercontractivity, µ(S)
is larger than some constant that depends only on C. Pick suggestions (v1, σ1), . . . , (vl, σl) at
random conditioned on (v1, . . . , vl) ∈ S. Let (u1, σ

′
1), . . . , (ul, σ

′
l) be the suggestions of the other

prover. By Lemma 2.4, the expectation over a uniform i0 ∈ [l] of the KL-divergence between the
distribution of (ui0 , vi0) and the uniform distribution is at most O(δ). When the KL-divergence
is O(δ), with probability 1−O(δ) the probability of (ui0 , vi0) is O(1/ |E|).

By the upper bound on the number of taken suggestions,

H(σ1, . . . , σl|v1, . . . , vl) ≤ O(ηl).

By the chain rule,

H(σ1, . . . , σl|v1, . . . , vl) = H(σ1|v1, . . . , vl) +H(σ2|σ1, v1, . . . , vl) + · · ·

Then,

E
i0

[H(σi0 |v1, . . . , vl, σ1, . . . , σi0−1, σi0+1, . . . , σl)] ≤ O(η).

Fix i0 ∈ [l], vertices v1, . . . , vi0−1, vi0+1, . . . , vl ∈ V , labels σ1, . . . , σi0−1, σi0+1, . . . , σl ∈ Σ, as
well as vertices u1, . . . , ui0−1, ui0+1, . . . , ul ∈ V with (vi, ui) ∈ E for all i, such that:

� 1−O(δ) fraction of the edges (ui0 , vi0) have probability O(1/ |E|).
� H(σi0 |vi0) ≤ O(η).

� The probability of rejection in take-it-or-leave-it conditioned on the fixing is O(∆′).

14



(Note that there exists a fixing that satisfies all items by a Markov inequality and a union
bound). Let D be the distribution over (vi0 , ui0).

Let Verr ⊆ V contain all fixings of the vertex vi0 such that H(σi0 |vi0) > 1/2, so |Verr| ≤
O(η) |V |. For all vertices outside Verr there is one label that is more likely than the other, and
we consider this labeling. With probability at least 1−O(∆′) over vi0 , ui0 /∈ Verr the labeling of
vi0 , ui0 is accepted in G. The same must be true for the uniform distribution over edges rather
than D, since the probabilities are within a constant from one another. Soundness follows from
the fortification of G.

3.2 Multiple Rounds

The previous step puts a global constraint on the strategy: about 2−l fraction of the suggestions
are taken. To get rid of the global constraint we generate about 2l different pairs of correlated
suggestions, and check that matching O(1) of them are taken. Importantly, we shuffle each
prover’s suggestions before giving them to the prover. This ensures that all the rounds have the
same set of taken suggestions, and this set must be of the right fraction. If we didn’t shuffle,
the provers could win by fixing i0 and always taking the i0’th suggestion (in such a strategy no
round has a set of taken suggestions that is of the right fraction: the i0’th round has a set of
taken suggestions of fraction 1, whereas the other rounds have a set of fraction 0).

One subtlety is that in the completeness strategy of take-it-or-leave-it the fraction of taken
suggestions varies. Therefore the number taken suggestions within the verifier’s sample may
vary. Hence, we first consider the shuffling game described above, but only analyze it on sub-
games with O(1) taken suggestions. In the final game the verifier generates many instances of
the shuffling game and lets the provers decide which to play.

3.2.1 Shuffling

For a parameter 0 < δ < 1, let T Lδ denote the take-it-or-leave-it game. Let G[T Lδ] =
(V [T Lδ], E[T Lδ]) be its graph. Let γ be an upper bound on the fraction of taken sugges-
tions in the completeness strategy of take-it-or-leave-it (Lemma 3.1). The multiple rounds game
Mδ is defined as follows: Set t = d100/γe = exp(Θ̃(1/δ)). Pick e1 = (v1, u1), . . . , et = (vt, ut) ∈
E[T Lδ] independently at random. Send one prover a random permutation of v1, . . . , vt and send
the other prover a random permutation of u1, . . . , ut. Each prover should take between 1 and
1000 of the t suggestions it got and leave the rest. The provers win if they took corresponding
suggestions.

The alphabet of the multiple rounds game, which we denote Σ[Mδ], is of size t1000 =

exp(Θ̃(1/δ)). The size of the game is size(T Lδ)exp(Θ̃(1/δ)). Denote the graph that underlies
the multiple rounds game Mδ by G[Mδ]. This graph is a small set expander with the same
parameters as G[T Lδ] by Lemma 2.1 (clearly the random permutations do not hurt small set
expansion).

Next we prove completeness, but only for a certain sub-game, and soundness for all suffi-
ciently large sub-games.

Lemma 3.5 (Completeness of a sub-game). Assume that there is a strategy for T Lδ such that
the probability that one prover takes its suggestion and the other does not is O(γδ). Let

S = { (v1, . . . , vt) ∈ V [Mδ] | T Lδ strategy takes between 1 and 1000 of v1, . . . , vt} .

Then there is a strategy for Mδ, such that if one prover’s question is restricted to S, then the
verifier accepts with probability 1−O(δ).

Proof. The provers follow the strategy for T Lδ for each of the suggestions they get. By a
union bound, except with probability O(δ), every taken suggestion of one prover yields a taken
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suggestion of the other prover. In particular, if one prover’s question falls in S, so is the other
prover’s question, and the verifier accepts.

Lemma 3.6. Let η ≥ 0. If the strategy for T Lδ takes γ1+η fraction of its suggestions, then

S = { (v1, . . . , vt) ∈ V [Mδ] | between 1 and 1000 of v1, . . . , vt are taken}

is of fraction at least min {γη, 0.99}.

Proof. The probability that none of the t suggestions is taken is (1− γ1+η)t ≤ 1− 100γη. The
expected number of taken suggestions is γ1+ηt ≤ γt = 100, and thus by the Chernoff bound,
the probability that more than 1000 suggestions are taken is at most 0.01.

In the next lemma we use the ideas of the information-theoretic analysis of parallel repetition
(quoted as lemmas in the preliminaries) in order to prove that the game is fortified:

Lemma 3.7 (Fortified soundness). Let 0 < ∆ < 1 be sufficiently large ∆ = Θ(δ). Suppose that
there are S, T ⊆ V [Mδ] of fraction 2−s for s ≤ δ2t, such that the value ofMδ when one prover’s
question is restricted to S and the other prover’s question is restricted to T is at least 1 − ∆,
then there must exist a strategy for T Lδ where Θ(γ) fraction of the suggestions are taken, and
the probability that the provers do not win the game is O(γ∆).

Proof. Let W be the event that (u1, . . . , ut) ∈ S and (v1, . . . , vt) ∈ T . Pick i0 ∈ [t] uniformly at
random, and let us (approximately) embed T Lδ in the i0’th coordinate ofMδ (before the random
permutations) conditioned on W . By embedding we mean that one can obtain a strategy for
T Lδ as follows: we start with a prover that gets ui0 and a prover that gets vi0 . The first prover
can complete ui0 to (u1, . . . , ut) ∈ S, and the second prover can complete vi0 to (v1, . . . , vt) ∈ T ,
so overall they generate a test of the Mδ verifier that is O(δ)-close to uniform conditioned on
landing in S and T . Once we have an approximate embedding we are done: The answer for
(u1, . . . , ut) induces a take-it-or-leave-it decision for ui0 , and the answer for (v1, . . . , vt) induces
a take-it-or-leave-it decision for vi0 . If the provers win for (u1, . . . , ut), (v1, . . . , vt) in Mδ, then
they also win for ui0 and vi0 in T Lδ. By the random permutation, Θ(γ) fraction of the proposals
are taken by the strategy we defined for ui0 , vi0 .

The embedding is defined as follows: By Lemma 2.4,

E
i0

[|ei0 |W − ei0 |] ≤
√
s

t
≤ δ.

By Lemma 2.5, for R that satisfies Ri = ui with probability 1/2 and Ri = vi with probability
1/2 for all i 6= i0,

E
i0

[|R|(ui0 ,W )−R|(vi0 ,W )|] ≤ O(

√
s

t
) ≤ O(δ).

Fix i0 ∈ [t] such that |ei0 |W − ei0 | ≤ O(δ) and |R|(ui0 ,W )−R|(vi0 ,W )| ≤ O(δ). The provers,
one given ui0 and one given vi0 , can use correlated sampling (Lemma 2.6) and pick the same
R = r with probability at least 1−O(δ). Conditioned on R = r and W , u1, . . . , ut is independent
of v1, . . . , vt, so the prover holding ui0 can complete all of (u1, . . . , ut) ∈ S and the prover holding
vi0 can complete all of (v1, . . . , vt) ∈ T , such that (u1, . . . , ut), (v1, . . . , vt) is nearly a uniform
test of Mδ conditioned on W .
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3.2.2 Varying Fractions of Taken Suggestions

To handle varying fractions of taken suggestions we generate many rounds of the game Mδ.
We show that within all those rounds, with high probability, there exists a round in which the
number of taken suggestions is between 1 and 1000. We let the provers choose that round and
only play it. One way the provers can take advantage of their choice of a round is to pick a subset
S of the questions of Mδ and only choose rounds that contain questions from S. Fortunately,
Mδ is fortified, so the value of such a sub-game is bounded.

Let δ > 0. Assume that the number of taken suggestions in T Lδ is between γ1+η and γ, where
0 < η < 1. We define the final multiple rounds gameM′δ as follows: Set k = d100 log(1/δ)γ−ηe =

exp(Θ̃(1/δ)). Pick uniformly at random edges e1 = (u1, v1), . . . , ek = (uk, vk) ∈ E[Mδ]. Send
u1, . . . , uk to one prover, and send v1, . . . , vk to another prover. Each prover should respond
with a round i ∈ [k], as well as with a label σ ∈ Σ[Mδ]. Suppose that the first prover responds
with i, σ and the second prover responds with i′, σ′. The verifier accepts if i = i′ and σ, σ′ satisfy
the unique test of ei.

Note that this is a unique game. The alphabet of the game, which we denote by Σ[M′δ], is

of size exp(Θ̃(1/δ)). The size of the game is size(T Lδ)exp(Θ̃(1/δ)). The graph underlying the
game is G[Mδ]

⊗k, and it is a small set expander with the same parameters as G[Mδ].

Lemma 3.8 (Completeness). Assume that there is a strategy for T Lδ where between γ1+η and
γ fraction of the suggestions are taken, and whenever one prover takes its suggestion, the other
prover takes its suggestion too with probability 1 − O(δ). Then there is a strategy for M′δ that
the verifier accepts with probability 1−O(δ).

Proof. Let S ⊆ V [Mδ] be the set defined in Lemma 3.5 for the strategy for T Lδ. The provers
pick the first i ∈ [k] such that their i’th vertex is in S, if such exists. They then follow the strategy
from Lemma 3.5 to label that vertex. By Lemma 3.6, for every i ∈ [k] there is probability at
least min {γη, 0.99} that ui falls into S. By a Chernoff bound, the probability that for all i ∈ [k]
we have ui /∈ S is at most O(δ). By Lemma 3.5, with probability at least 1−O(δ) both provers
pick the same i and the verifier accepts their labels for the i’th round.

Lemma 3.9 (Fortified soundness). Assume that 0 < ∆ < 1 is sufficiently large ∆ = Θ(δ).
Suppose that a set S ⊆ V [M′δ] of fraction at least (2k/δ) · 2−s for s ≤ 100δ2/γ is such that the
value of M′δ restricted to S is at least 1−∆. Then there exists a strategy for T Lδ where Θ(γ)
fraction of the suggestions are taken, and whenever one prover takes its suggestion, the other
prover takes its suggestion with probability 1−O(∆).

Proof. Consider the strategy that achieves value at least 1 − ∆ for M′δ restricted to S. Let
i0 ∈ [k] be such that the provers choose i0 with probability at least 1/2k (note that there must
exist such i0). Sample e1 = (u1, v1), . . . , ei0−1 = (ui0−1, vi0−1), ei0+1 = (ui0+1, vi0+1), . . . , ek =
(uk, vk) ∈ E[Mδ] conditioned on (u1, . . . , uk), (v1, . . . , vk) ∈ S and i0 being chosen by the
provers. Let

S′ = {ui0 ∈ V [Mδ] | (u1, . . . , uk) ∈ S ∧ i0 chosen by prover} .
T ′ = {vi0 ∈ V [Mδ] | (v1, . . . , vk) ∈ S ∧ i0 chosen by prover} .

The strategy for M′δ induces a strategy that achieves expected value 1 −∆ for Mδ restricted
to S′, T ′ (the expectation is over the choice of e1, . . . , ei0−1, ei0+1, . . . , ek). Moreover, S′, T ′ are
of fraction at least 2−s for any fixing of e1, . . . , ei0−1, ei0+1, . . . , ek that has probability at least δ ·
1/ |E[Mδ]|k−1

. By a union bound, the probability of all other fixings of e1, . . . , ei0−1, ei0+1, . . . , ek
combined is at most δ. Hence, there exist S′, T ′ of fraction at least 2−s and a strategy for Mδ

restricted to S′, T ′ that achieves value at least 1 − O(∆). By the fortified soundness of Mδ

(Lemma 3.7), there is a strategy for T Lδ where Θ(γ) fraction of the suggestions are taken,
and whenever one prover takes its suggestion, the other prover takes its suggestion too with
probability 1−O(∆).
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3.3 Fortification Summary

In this sub-section we compute the parameters of fortification and summarize the proofs of Theo-
rem 1.15 and Theorem 1.16. Given a Boolean unique game G over a (p, q)-hypercontractive graph
(similarly, (p, q,∆)-hypercontractive graph) and a completeness parameter 0 < δ < 1 we consider
M′δ. The underlying graph is ((1−2δ)q+2δ, q)-hypercontractive (similarly, ((1−2δ)q+2δ, q,∆)-

hypercontractive). The alphabet is of size exp(Θ̃(1/δ)). The size is size(G)exp(Θ̃(1/δ)). The
completeness in Theorem 1.15 follows from the completeness of multiple-rounds (Lemma 3.8)
and the completeness of take-it-or-leave-it (Lemma 3.1).

To get non-expansion fortification in Theorem 1.15, note that since the underlying graph is
((1 − 2δ)q + 2δ, q)-hypercontractive, there exists c(δ) = Θq(1/δ) such that fortification against
sets of fraction εc(δ) implies non-expansion fortification against sets of fraction ε2. Hence, non-
expansion fortified soundness in Theorem 1.15 follows from the fortified soundness of multiple-
rounds (Lemma 3.9), and the soundness of take-it-or-leave-it (Lemma 3.3). The latter also imply
standard fortification in Theorem 1.16.

4 Strong Parallel Repetition For Non-Expansion Fortified
Games

In this section we prove a strong parallel repetition theorem for games that are non-expansion
fortified. This theorem applies to projection games, and not just for unique games.

For convenience, we reproduce the definition of non-expansion fortification here. It guar-
antees bounded value for sub-games induced on sets that do not expand well. Recall that

Φ(S) = E(S,S)
|S|D .

Definition 4.1 (non-expansion fortified). For a parameter ε > 0 and a unique game G, the
non-expansion fortified value of G is

valueΦ≥ε(G) = maxS⊆V :Φ(S)≥εvalue(G|S).

We say that the game is non-expansion fortified if valueΦ≥ε(G) ≤ 1−∆.

Our parallel repetition theorem guarantees near ideal decay assuming that the game is non-
expansion fortified (we remark that we do not try to optimize the parameter for non-expansion
fortification and keep it ε2, whereas we only need it to be about ε

3 ln(1/ε) ):

Theorem 4.2 (Strong parallel repetition for non-expansion fortified games). Let ε > 0 be a
sufficiently small constant. Let G be a game with valueΦ≥ε2(G) ≤ 1 −∆ and k = dln(1/ε)/∆e,
then value(G⊗k) < 3ε.

Let σ∗k : V k → Σk be a labeling for G⊗k. Pick independently and uniformly at random
edges e1, . . . , ek ∈ E. In the next lemma we show that for every 1 ≤ i < k, as long as the
probability that the first i edges are satisfied is at least ε, the probability that the (i+1)’th edge
is satisfied, conditioned on the first i edges being satisfied, is (approximately) at most 1 − ∆.
The theorem follows by applying the lemma iteratively.

Lemma 4.3 (Single round). Let G be a game with valueε2(G) ≤ 1 −∆. Let σ∗k : V k → Σk be
a labeling for G⊗k. Pick uniformly constraints e1, . . . , ek from G⊗k. Then for every 1 ≤ i < k
where

Pi := Pr
e1,...,ei

[
∧ij=1πej

]
≥ ε,

we have
Pi+1 := Pr

e1,...,ei+1

[
∧i+1
j=1πej

]
< Pi · (1−∆) + 2ε2∆.
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Proof. Let 1 ≤ i < k where the probability that the first i constraints are satisfied is Pi ≥ ε,
and assume on way of contradiction that Pi+1 > Pi · (1−∆).

First we fix the coordinates outside the (i+1)’th to uniformly chosen edges e1 = (u1, v1), . . . , ei =
(ui, vi), ei+2 = (ui+2, vi+2), . . . , ek = (uk, vk) ∈ E. Then G⊗k restricted to the (i+ 1)’th coordi-
nate is in one-to-one correspondence with G. We use the correspondence to define two partitions
of the vertices in V :

1. For every σ1, . . . , σi ∈ Σ there is a part Sσ1,...,σi that contains all those u ∈ V such that
σ∗k(u1, . . . , ui, u, ui+2, . . . , uk) = (σ1, . . . , σi, · · · ).

2. For every σ1, . . . , σi ∈ Σ there is a part Tσ1,...,σi that contains all those v ∈ V such that
σ∗k(v1, . . . , vi, v, vi+2, . . . , vk) = (σ1, . . . , σi, · · · ).

Each edge (u, v) ∈ E where u ∈ Sσ1,...,σi and v ∈ Tσ′1,...,σ′i , where (σ′1, . . . , σ
′
i) 6= (πe1(σ1), . . . , πei(σi)),

corresponds to an edge of E⊗k that is not satisfied by σ∗k. Hence,

Pi · |E| = E
e1,...,ei,ei+2,...,ek

[ ∑
σ1,...,σi

∣∣∣E(Sσ1,...,σi , Tπe1 (σ1),...,πei (σi)
)
∣∣∣] ≥ ε |E| . (1)

With probability at least Pi − 2ε2, we have (Denoting by D the degree of the graph underlying
G) ∣∣∣E(Sσ1,...,σi , Tπe1 (σ1),...,πei (σi)

)
∣∣∣ ≥ ε2 ·

∣∣∣Sσ1,...,σi ∪ Tπe1 (σ1),...,πei (σi)

∣∣∣ ·D. (2)

Since otherwise we can strictly upper bound the average Pi |E| from (1) by

(Pi − 2ε2) |E|+ ε2 · E
e1,...,ei,ei+2,...,ek

[ ∑
σ1,...,σi

(
|Sσ1,...,σi |+

∣∣∣Tπe1 (σ1),...,πei (σi)

∣∣∣) ·D] = Pi |E| ,

which leads to a contradiction.
By non-expansion fortification, for every σ1, . . . , σi such that Inequality (2) holds, the fraction

of satisfied edges within Sσ1,...,σi ∪ Tπe1 (σ1),...,πei (σi)
is at most 1−∆. Therefore, Pi+1 ≤ (Pi −

2ε2)(1−∆) + 2ε2 = Pi(1−∆) + 2ε2∆.

Finally, we prove our parallel repetition theorem by applying our one-round lemma:

Proof. (of Theorem 4.2 from Lemma 4.3) Let σ∗k : V k → Σk be a labeling for G⊗k. We upper
bound the probability Pi that the first i edges among the k are satisfied by σ∗k by induction on
i. Specifically, we prove:

Pi ≤ (1−∆)i + ε+ 2ε2∆(i− 1).

For i = 1, P1 = value(G) ≤ 1−∆. Assume that the claim holds for i, and let us bound Pi+1. If
Pi ≤ ε we are done, since Pi+1 ≤ Pi ≤ ε. Otherwise, by Lemma 4.3,

Pi+1 < Pi(1−∆) + 2ε2∆

≤
(
(1−∆)i + ε+ 2ε2∆(i− 1)

)
(1−∆) + 2ε2∆

≤ (1−∆)i+1 + ε+ 2ε2∆i.

The inductive claim follows. Note that Pk ≤ (1−∆)k+ε+2ε2∆(k−1) ≤ ε+ε+O(ε2 log(1/ε)) ≤
3ε for sufficiently small ε > 0.

Theorem 4.2 applied on the fortified game from Theorem 1.15 implies Theorem 1.11. For
Theorem 1.12 we use the strong parallel repetition from the paper [30]:

Theorem 4.4 (Strong parallel repetition for fortified games). Let ε > 0 be a sufficiently
small constant. Let G be a game over alphabet Σ with valueµ≥ε4/|Σ|k−1(G) ≤ 1 − ∆ and

k = dln(1/ε)/∆e, then value(G⊗k) ≤ O(ε).
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