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Abstract

The Acceptance Probability Estimation Problem (APEP) is to additively approximate the
acceptance probability of a Boolean circuit. This problem admits a probabilistic approximation scheme.
A central question is whether we can design a pseudodeterministic approximation algorithm for this
problem: a probabilistic polynomial-time algorithm that outputs a canonical approximation with high
probability. Recently, it was shown that such an algorithm would imply that every approximation algo-
rithm can be made pseudodeterministic (Dixon, Pavan, Vinodchandran; ITCS 2021).

The main conceptual contribution of this work is to establish that the existence of a pseudode-
terministic algorithm for APEP is fundamentally connected to the relationship between probabilistic
promise classes and the corresponding standard complexity classes. In particular, we show the following
equivalence: every promise problem in PromiseBPP has a solution in BPP if and only if APEP has a
pseudodeterministic algorithm. Based on this intuition, we show that pseudodeterministic algorithms
for APEP can shed light on a few central topics in complexity theory such as circuit lowerbounds,
probabilistic hierarchy theorems, and multi-pseudodeterminism.

1 Introduction

Promise Problems: A promise problem Π is a pair of disjoint sets (Πy,Πn) of instances. Introduced by
Even, Selman and Yacobi [ESY84], promise problems arise naturally in several settings such as hardness of
approximations, public-key cryptography, derandomization, and completeness. While much of complexity
theory is based on language recognition problems (where every problem instance is either in Πy or in Πn), the
study of promise problems turned out be an indispensable tool that led to new insights in the area. Many
interesting open questions regarding probabilistic complexity classes can be answered when we consider
their promise versions. For example significant questions such as whether derandomization of BPP implies
derandomization of MA, whether derandomization of BPP implies Boolean circuit lower bounds, whether
derandomization of the one-sided-error class RP implies derandomization of BPP, or whether probabilistic
complexity classes have complete problems remain open in the traditional classes. All these questions have
an affirmative answer if we consider their promise analogues. For example, it is known that derandomizing
PromiseBPP implies a derandomization of MA [GZ], and also implies Boolean circuit lower bounds [IKW02].
Similarly, there exist promise problems that are complete for classes such as PromiseBPP, PromiseRP, and
SZK [SV03]. We refer the reader to the comprehensive survey article by Goldreich [Gol06] for a treatment
on the wide-ranging applicability of promise problems.

The role of promise problems in circumventing certain deficiencies of language recognition problems is
intriguing. A way to understand the gap between promise problems and languages is by considering solutions
to promise problems. A set S is a solution to a promise problem Π = (Πy,Πn) if Πy ⊆ S and S ∩ Πn = ∅.
A natural question is to investigate the complexity of solutions to a promise problem. Informally, we say
that for a complexity class C (for example BPP), PromiseC = C, if every promise problem in PromiseC has a
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solution in C. Intuitively, when PromiseC equals C, then there is no gap between the class C and its promise
counterpart.

In this paper we establish a close connection between promise problems and the seemingly unrelated
notion of pseudodeterminism. More concretely, we establish that PromiseBPP = BPP if and only if all
probabilistic approximation algorithms can be made pseudodeterministic.

Pseudodeterminism. The notion of a pseudodeterministic algorithm was introduced by Gat and Gold-
wasser [GG11]1. Informally, a probabilistic algorithm M is pseudodeterministic if for every x, there exists a
canonical value v such that Pr[M(x) = v] is high. Pseudodeterministic algorithms are appealing in several
contexts, such as distributed computing and cryptography, where it is desirable that different invocations
of a probabilistic algorithm by different parties should produce the same output. In complexity theory, the
notion of pseudodeterminism clarifies the relationship between search and decision problems in the context
of randomized computations. It is not known whether derandomizing BPP to P implies derandomization of
probabilistic search algorithms. However, BPP = P implies derandomization of pseudodeterministic search
algorithms [GGR13]. Since its introduction, the notion of pseudodeterminism has received considerable
attention. Section 1.1 details prior and related work on pseudodeterminism.

Our Results

The main conceptual contribution of this paper is that the gap between PromiseBPP and BPP can be
completely explained by the existence of pseudodeterministic algorithms for APEP: the problem of approx-
imating the acceptance probability of Boolean circuits additively. While it is easy to design a probabilistic
approximation algorithm for this problem, we do not know whether there exists a pseudodeterministic
algorithm for this problem. Very recently the authors proved this problem complete for problems that
admit approximation algorithms (more generally multi-pseudodeterministic algorithms as defined by Gol-
dreich [Gol19]) in the context of pseudodeterminism [DPV21]. In particular, they showed that if APEP
admits a pseudodeterministic algorithm, then every probabilistic approximation algorithm can be made
pseudodeterministic. Our connection between pseudodeterminism and promise problems is established via
APEP and is stated below.

Result 1. PromiseBPP has a solution in BPP if and only if APEP has a pseudodeterministic approximation
algorithm.

Based on the above result, we obtain results that connect pseudodeterminism to circuit lower bounds,
probabilistic hierarchy theorems, and multi-pseudodeterminism.

Circuit lower bounds: Establishing lower bounds against fixed polynomial-size circuits has a long history
in complexity theory. In this line of work, the focus is on establishing upper bounds on the complexity of
languages that can not be solved by any Boolean circuit of a fixed polynomial size. One of the central open
questions in this area is to show that NP has languages that cannot be solved by linear-size Boolean circuits.
Over the years researchers have made steady progress on this question. Kannan [Kan82] showed that there
are problems in ΣP

2 that do not have linear-size circuits (more generally, size O(nk) for any constant k). Later,
using techniques from learning theory, this upper bound was improved to ZPPNP [BCG+96, KW98] and later
to SP

2 [Cai01]. Vinodchandran showed that the class PP does not have fixed polynomial-size circuits [Vin05].
Santhanam [San09] showed that further progress can be made if we relax the complexity classes to also
include promise classes. In particular, he showed that PromiseMA does not have fixed polynomial-size
circuits. It is not known whether this result can be improved to the traditional class MA. We show that
if APEP has pseudodeterministic algorithms then MA has languages that can not be solved by O(nk) size
circuits for any k.

Result 2. If APEP admits pseudodeterministic approximation algorithms, then for any k, there are lan-
guages in MA that do not have O(nk) size Boolean circuits.

1Originally termed Bellagio algorithms
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In fact we show that under the assumption, MA = ∃.BPP and thus ∃.BPP does not have fixed polynomial-
size circuits. The above result improves the connection between pseudodeterministic algorithms and circuit
lower bounds established in [DPV18], where it was shown that designing a BPPNP

tt pseudodeterministic
algorithm for problems in #NP would yield super-linear circuit lower bounds for languages in ZPPNP

tt .

Hierarchy theorem for probabilistic classes: Some of the most fundamental results in complexity
theory are hierarchy theorems – given more resources, more languages can be recognized. The time hi-
erarchy theorem states that if T1(n) log T1(n) ∈ o(T2(n)), then there exist languages that can be decided
in deterministic time O(T2(n)), but not in deterministic time O(T1(n)) [HS66, SHI65]. Similar hierarchy
results hold for deterministic space and nondeterministic time [Coo73, SFM78, Zák83]. Proving hierarchy
theorems for probabilistic time is a lot more challenging. There has been significant work in this direc-
tion [Bar02, FS04, FST05, vMP06]. All these results use an “advice bit”, i.e. the results established are of
the form “there is a language in BPTIME(T2(n))/1 that is not in BPTIME(T1(n))/1. Removing the advice
bit has been a vexing open problem. We show that a pseudodeterministic algorithm for APEP leads to
hierarchy theorems for bounded-error probabilistic time.

Result 3. If APEP admits pseudodeterministic approximation algorithms, then hierarchy theorems for
BPTIME hold. In particular BPTIME(nα) ( BPTIME(nβ) for constant 1 ≤ α < β.

Multi-pseudodeterminism: Goldreich observed that the problem of estimating the average value of a
function over a large universe admits a 2-pseudodeterministic algorithm: a probabilistic polynomial-time al-
gorithm that outputs two canonical values with high probability [Gol19]. Motivated by this, Goldreich intro-
duced the notion of multi-pseudodeterminism [Gol19]. A k-pseudodeterministic algorithm is a probabilistic-
polynomial time algorithm that, for every input x, outputs a value from a set Sx of size at most k with high
probability (the exact probability bound has to be carefully defined, see Section 2 for a formal definition and
[Gol19] for justification for the definition).

In [DPV21], the authors show that APEP is a complete problem for functions that admit k-pseudodeterministic
algorithms for any constant k, in the sense that such functions admit pseudodeterministic algorithms if
APEP admits a pseudodeterministic algorithm. Here we improve this result to functions that admit k-
pseudodeterministic algorithms for any polynomial k.

Result 4. If APEP admits a pseudodeterministic approximation algorithm, then every multi-valued function
f that admits a k(n)-pseudodeterministic algorithm, for a polynomial k(n), is in Search BPP. Moreover under
the assumption, every multi-valued function f that admits a k(n)-pseudodeterministic algorithm also admits
a pseudodeterministic algorithm.

Concurrent Work: In an independent and recent work, Lu, Oliveria, Santhanam [LOS21] also explored
the consequences of pseudodeterministic algorithms for APEP (they use CAPP to denote APEP). There
is some intersection between their work and ours. In particular, they also establish results on probabilistic
hierarchy. They showed that if there is a pseudodeterministic algorithm for APEP that is correct on average
at infinitely many input lengths, then the hierarchy theorems for BPTIME follow. Note that our work
considers existence of pseudodeterminitic algorithms for APEP in the worst-case. The rest of the work is
different. Their work has results that include designing pseudodeterministic pseudorandom generators, and
an equivalence between probabilistic hierarchy theorems and pseudodeterministic algorithms for constructing
strings with large rKt complexity, which we do not have. Their work did not explore the relationships of
pseudodeterministic algorithms with promise problems, circuit lowerbounds, and multi-pseudodeterminism
which we establish.

1.1 Prior and Related Work on Pseudodeterminism

One line of research on pseudodeterminism has focused on designing pseudodeterministic algorithms for con-
crete problems. Gat and Goldwasser designed polynomial-time pseudodeterministic algorithms for various
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algebraic problems such as finding quadratic non-residues and finding non-roots of multivariate polyno-
mials [GG11]. Goldwasser and Grossman exhibited a pseudodeterministic NC algorithm for computing
matchings in bipartite graphs [GG17]. Recently, Anari and Vazirani [AV20] improved this result general
graphs. Grossman designed a pseudodeterministic algorithm for computing primitive roots whose runtime
matches the best known Las Vegas algorithm [Gro15]. Oliveira and Santhanam [OS17] designed a sub-
exponential time pseudodeterministic algorithm for generating primes that works at infinitely many input
lengths. Subsequently, Oliveira and Santhanam also showed that APEP admits a subexponential-time
pseudodeterministic algorithm that is correct on average at infinitely many input lengths [OS18]. Goldreich,
Goldwasser and Ron [GGR13], and later Holden [Hol17], investigated the possibility of obtaining pseudode-
terministic algorithms for BPP search problems.

Other lines of work extended the notion of pseudodeterminism to several other scenarios including inter-
active proofs, streaming and sublinear algorithms, and learning algorithms [GGH17, GGH19, GGMW20,
GGR13, OS18]. The works of Grossman and Liu, and Goldreich introduced generalizations of pseudo-
determinism such as reproducible algorithms, influential bit algorithms, and multi-pseudodeterministic algo-
rithms [GL19, Gol19]. Very recently the authors exhibited complete problems for functions that admit approx-
imation algorithms, more generally multi-pseudodeterministic algorithms as defined by Goldreich [Gol19], in
the context of pseudodeterminism [DPV21].

2 Preliminaries

In this paper, we are concerned with additive error approximations. A probabilistic algorithm A is an (ε, δ)-
additive approximation algorithm for a function f : {0, 1}∗ → R if the probability that A(x) ∈ [f(x) − ε,
f(x) + ε] is at least 1− δ.

2.1 Pseudodeterminism

Definition 2.1. Acceptance Probability Estimation Problem: APEP(ε,δ) : Given a Boolean circuit
C : {0, 1}n → {0, 1}, give an (ε, δ)-additive approximation for Prx∈Un

[C(x) = 1].

Definition 2.2 ([GG11],[Gol19]). Let f be a multivalued function, i.e. f(x) is a non-empty set. We say
that f admits pseudodeterministic algorithms if there is a probabilistic polynomial-time algorithm A such
that for every x, there exists a v ∈ f(x) such that A(x) = v with probability at least 2/3. f admits k-
pseudodeterministic algorithms if there is a probabilistic polynomial-time algorithm A such that for every
x, there exists a set Sx ⊆ f(x) of size at most k and the probability that A(x) ∈ S(x) is at least k+1

k+2 .

Note that the above definition captures pseudodeterminism for approximation algorithms, as approxima-
tion algorithms can be viewed as multivalued functions. It is known that any function that admits an (ε, δ)
approximation algorithm admits a (2ε, δ) 2-pseudodeterministic algorithm (see [Gol19, DPV21] for a proof).

Proposition 1. For every 0 < ε, δ < 1, there is a 2-pseudodeterministic algorithm for APEP(ε,δ).

Gat and Goldwasser proved the following characterization [GG11].

Theorem 2.3. A function admits a pseudodeterministic algorithm if and only if it is computable in PFBPP.

Definition 2.4 ( SearchBPP [Gol11]). A search problem is a relation R ⊆ {0, 1}∗ × {0, 1}∗. For every x,
the witness set Wx of x with respect to R is Wx = {y | (x, y) ∈ R}. A search problem R is in SearchBPP if

1. For every x, there is an efficient probabilistic algorithm to output an element of Wx: i.e. there exists
a probabilistic polynomial-time algorithm A such that for every x for which Wx 6= φ, A(x) ∈Wx with
probability ≥ 2/3, and

2. R ∈ BPP: i.e. there exists a probabilistic polynomial-time algorithm B such that if (x, y) ∈ R, then
B(x, y) accepts with probability > 2/3, and if (x, y) 6∈ R then B(x, y) accepts with probability < 1/3.
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Definition 2.5. For a multivalued function f , we say that f is in SearchBPP if there is a relation R in
SearchBPP so that ∀x, the witness set Wx 6= φ and Wx ⊆ f(x).

Dixon, Pavan and Vinodchandran [DPV21] proved that APEP is a complete problem for pseudodeter-
ministic approximation algorithms and pseudodeterministic SearchBPP in the following sense.

Theorem 2.6. If APEP(1/100,1/8) admits a pseudodeterministic algorithm then

1. every function f that has an (ε, δ)-approximation algorithm has a pseudodeterministic (3ε, δ)-approximation
algorithm.

2. every problem in SearchBPP has a pseudodeterministic algorithm.

It is well known that for every 0 < ε, δ < 1, there is a probabilistic algorithm for APEP(ε,δ) that runs
in time poly(n, 1/ε, log 1/δ) where n is the input length. Thus by the above result, we obtain the following
proposition.

Proposition 2. If APEP(1/100,1/8) has a pseudodeterministic algorithm then for every 0 < ε, δ < 1,
APEP(ε,δ) has a pseudodeterministic algorithm.

Remark. In the rest of the paper, we use the phrase “APEP has a pseudodeterministic algorithm” in place
of “APEP(1/100,1/8) admits a pseudodeterministic algorithm”, and denote the presumed pseudodeterministic
algorithm with Aape.

2.2 Promise Problems

Definition 2.7. A promise problem Π = (Πy,Πn) ∈ PromiseBPP if there exists a probabilistic polynomial-
time machine M such that ∀x

x ∈ Πy ⇔ Pr[M(x) = accepts] ≥ 2/3,

x ∈ Πn ⇔ Pr[M(x) = accepts] < 1/3,

We can similarly define promise classes such as PromiseMA.

Definition 2.8. Let C be a complexity class. We say that a promise (Πy,Πn) has a solution in C if there
exists a language L in C such that Πy ⊆ L and L ∩Πn = ∅.

Definition 2.9. Let Π = (Πy,Πn) be a promise problem. Π′ = ∃ ·Π is a promise problem (Π′y,Π
′
n) defined

as follows. There is a polynomial p such that ∀x

x ∈ Π′y ⇔ ∃w ∈ {0, 1}p(|x|), 〈x,w〉 ∈ Πy

x ∈ Π′n ⇔ ∀w ∈ {0, 1}p(|x|), 〈x,w〉 ∈ Πn

Definition 2.10. We say that a promise problem Π = (Πy,Πn) ∈ ∃ · PromiseBPP if there is a promise
problem Π′ ∈ PromiseBPP such that Π = ∃ ·Π′.

Definition 2.11. A probabilistic polynomial-time machine M has BPP-type behaviour if on every input x,
Pr[M(x) accepts] is either ≥ 2/3 or < 1/3.

3 Consequences of Pseudodeterministic Algorithm for APEP

3.1 Promise Problems

Theorem 3.1. PromiseBPP has a solution in BPP if and only if APEP has a pseudodeterministic approx-
imation algorithm.
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Proof. (⇐) : We will first prove that if APEP has a pseudodeterministic algorithm, then PromiseBPP has a
solution in BPP. Let Π be a promise problem in PromiseBPP and let M be a probabilistic polynomial-time
machine that witnesses this. Given x, let Cx be the following Boolean circuit:

Cx(r) = 1 if and only if M(x) on random string r accepts.

Note that given x, we can construct Cx in time poly(|x|). Consider the following probabilistic algorithm:

Algorithm B: On input x, construct Cx and run Aape(Cx). If Aape(Cx) ≥ 1/2, accept; else reject.

Claim 3.1.1. B has a BPP-type behavior.

Proof. Let x be an input to B. Recall that Aape is a pseudodeterministic approximation algorithm that
outputs a canonical value v on input Cx with probability at least 7/8. So either with probability at least
7/8, v is ≥ 1/2, in which case B accepts x, or with probability at least 7/8, v is < 1/2 and B rejects. Thus
for every input x, B either accepts with probability ≥ 7/8 or rejects with probability ≥ 7/8, and thus B has
BPP-type behaviour.

Let L be the language accepted by the above machine. Then by the above claim L ∈ BPP.

Claim 3.1.2. L is a solution to the promise problem Π.

Proof. Let x be a string in Πy. Thus Pr[Cx(r) = 1] ≥ 2/3. Thus Aape(Cx) outputs a canonical value
v ≥ 2/3− 1/100 > 1/2 with probability at least 7/8, and thus B accepts with probability at least 7/8, and
thus x ∈ L.

Suppose x ∈ Πn. Thus Thus Pr[Cx(r) = 1] < 1/3. Thus Aape(Cx) outputs a canonical value v ≤
1/3 + 1/100 < 1/2 with probability at least 7/8, and thus B rejects with probability at least 7/8, and thus
x /∈ L.

By the above two claims we obtain that if APEP has a pseudodeterministic approximation algorithm,
PromiseBPP has a solution in BPP.

(⇒): Now suppose that PromiseBPP has a solution in BPP. By Proposition 1, there is a 2-pseudodeterministic
(ε, δ) approximation algorithm M for APEP where δ = 1/4 and ε = 1/200. We slightly modify M as follows:
whenever M outputs a value v, then output a value v′ that is the closest integer multiple of ε to v. Note that
the modified machine M is a (2ε, δ) approximation algorithm for APEP. The machine M has the property
that every output is of the form kε, 0 ≤ k ≤ 1/ε.

For a Boolean circuit C, let pC denote the acceptance probability of C. Thus for every C, we have

Pr[M(C) ∈ (pC − 2ε, pC + 2ε)] ≥ 3/4 (1)

We associate a promise problem Π = (Πy,Πn) with M . This definition of promise problem is inspired
by the work of Goldreich [Gol11].

Πy = {〈C, v〉 | M(C) outputs v with probability at least 3/8}

Πn = {〈C, v〉 | M(C) outputs v with probability at most 1/4}

We make the following two critical observations.

Observation 3.2. If 〈C, v〉 /∈ Πn, then v ∈ (pC − 2ε, pC + 2ε).

This observation follows from equation 1.

Observation 3.3. For every Boolean circuit C, there exists a v such that 〈C, v〉 ∈ Πy and v = kε for some
k > 0,
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Proof. Since M is 2-pseudodeterministic, there is a set S of size at most 2 such that every element in S lies
between pC − 2ε and pC + 2ε and Pr[M(C) ∈ S] ≥ 3/4. Thus there must exist an element v from S such
that M(C) outputs v with probability at least 3/8. Finally note that the modification of M described earlier
ensures that M always outputs a multiple of ε.

Claim 3.3.1. Π ∈ PromiseBPP.

Proof. Consider the algorithm MΠ: On input 〈C, v〉 run M(C). If it outputs v, then accept, else reject. This
algorithm accepts all instances from Πy with probability at least 3/8 and accepts all instances from Πn with
probability at most 1/4. Since there is a gap between 3/8 and 1/4, this gap can be amplified with standard
amplification techniques. This implies that Π is in PromiseBPP.

Now we will complete the proof by designing a pseudodeterministic algorithm for APEP. By our assump-
tion there is a language LΠ ∈ BPP that is a solution to Π. Consider the following deterministic algorithm
for APEP with oracle access to LΠ. On input C, check if 〈C, kε〉 ∈ LΠ for integer values of k, 0 ≤ k ≤ 1/ε.
Let ` be the first value such that 〈C, `ε〉 ∈ LΠ, then output `ε. By Observation 3.3, such an ` must exist.
Moreover, if 〈C, `ε〉 ∈ LΠ, then it must be the case that 〈C, `ε〉 /∈ Πn. By Observation 3.2, we have that
`ε ∈ (pc+2ε, pc−2ε). Thus APEP has a (2ε, δ), PFBPP approximation algorithm. This implies that APEP
has a (2ε, δ) pseudodeterministic algorithm by Theorem 2.3.

We obtain the following corollary by using the completeness result of APEP .

Corollary 3.4. If PromiseBPP has a solution in BPP, then SearchBPP admits pseudodeterministic algo-
rithms.

Proof. From the above theorem, if PromiseBPP has a solution in BPP, then APEP has pseudodeterministic
algorithms. The proof follows from Theorem 2.6.

3.2 Circuit Lower Bounds

Theorem 3.5. If APEP admits pseudodeterministic approximation algorithms, then

1. Every promise problems Π = (ΠY ,ΠN ) in PromiseMA has a solution in MA.

2. MA = ∃ · BPP.

3. MA does not have fixed polynomial-size circuits.

Proof. 1. We first show that if Π is a promise problem in PromiseMA, then Π ∈ ∃ ·PromiseBPP. Let M
be a probabilistic polynomial-time verifier. Consider the following promise problem Π′: A tuple 〈x,w〉
is a positive instance if M accepts 〈x,w〉 with probability at least 2/3 and is a negative instance if M
accepts 〈x,w〉 with probability at most 1/3. It is easy to see that Π = ∃.Π′. By Theorem 3.1, Π′ has a
solution L′ in BPP if APEP admits pseudodeterministic algorithms. Note that the language L = ∃·L′
is a solution to Π, and ∃ · L′ is in ∃ · BPP. Since ∃ · BPP is a subset of MA, the claim follows.

2. The above proof showed that every promise problem in PromiseMA has a solution in ∃ ·BPP. Thus it
follows that MA = ∃ · BPP.

3. Santhanam [San09] showed that for every k, there is a problem Πk in PromiseMA that does not have
any solution that admits O(nk) size circuits. Since by Item 1 Πk has a solution Lk ∈ MA, we get that
Lk does not have O(nk) size circuits. Combining this with 2, it follows that ∃ · BPP does not have
O(nk) size circuits.

The above result reveals an interesting connection between pseudodeterminism, derandomization of BPP,
and circuit complexity. If APEP has pseudodeterministic algorithms, then derandomizing BPP to P implies
that NP does not have fixed polynomial-size circuits.
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3.3 Hierarchy Theorems

Theorem 3.6. If APEP admits pseudodeterministic approximation algorithms, then hierarchy theorems for
BPTIME hold. In particular, BPTIME(nα) ( BPTIME(nβ) for constant 1 ≤ α < β.

Proof. We will first show that there is a constant c so that BPTIME(n) ( BPTIME(nc). A similar arguments
will show that BPTIME(na) ( BPTIME(nca) for every a > 0. Then the theorem will follow from padding
arguments.

Let {Mi}i≥1 be an enumeration of probabilistic linear-time Turing machines. Suppose that Aape runs in
time ma in circuits of size m for some a > 0. For every Mi, consider a probabilistic machine M ′i defined as
follows. M ′i on input x constructs a circuit Ci,x as follows. The circuit Ci,x on input r simulates Mi(x) with
r as random bits and accepts if and only if Mi accepts. Now M ′i runs Aape(Ci,x), and accepts if and only if
the output of Aape(Ci,x) ≥ 1/2.

Claim 3.6.1. There exists a constant c > 0 such that for every i, the machine M ′i runs in time O(nc).

Proof. Let n be the length of input x to M ′i . The machine M ′i(x) first constructs the circuit Ci,x. Since
Mi(x) runs in O(n) time, the size of the circuit Ci,x is bounded by O(n2), it can be constructed in O(n2)
time. Next M ′i runs Aape on Ci,x, this steps takes O(n2a) time. Since a is a constant, there is a universal
constant c such that the runtime of M ′i is O(nc).

Claim 3.6.2. For every i, M ′i has BPP-type behaviour

Proof. This follows because the pseudodeterministic algorithm Aape, on every input, outputs a canonical
value v with probability at least 2/3. If the canonical value v ≥ 1/2, then M ′i accepts with probability at
least 2/3, else M ′i accepts with probability at most 1/3. Thus Mi has BPP-type behaviour.

Claim 3.6.3. For every L ∈ BPTIME(n), there is i > 0 such that M ′i accepts L.

Proof. Since L ∈ BPTIME(n), there exists an i > 0 such that Mi accepts L and Mi has BPP-type behaviour.
Let x ∈ L be an input to Mi. The probability that Mi accepts is ≥ 2/3. Thus the acceptance probability of
the circuit Ci,x is at least 2/3. Thus Aape(Ci,x) outputs a canonical v ≥ 2/3− 1/100 ≥ 1/2 with probability
at least 2/3. Thus M ′i accepts x with probability ≥ 2/3. Similar arguments show that if x 6∈ L, M ′i rejects
x with probability ≥ 2/3.

Now using the standard diagonalization argument, we construct a language LD in BPTIME(nc+1). The
language LD is a tally language and we describe it via a BPTIME(nc+1) machine N that accepts it. The
machine N on input 0i simulates M ′i(0

i) and accepts if and only if M ′i(0
i) rejects. Since M ′i has BPP-type

behaviour, N also has BPP-type behaviour. Since M ′i runs in time O(nc), N can simulate it in time O(nc+1).
Thus LD ∈ BPTIME(nc+1). Suppose that LD ∈ BPTIME(n). By Claim 3.6.3, there exists i > 0 such that
M ′i accepts LD. Now consider input 0i. Observe that M ′i accepts 0i if and only if N rejects 0i. Thus 0i ∈ LD
if and only if M ′i rejects 0i. This is a contradiction, and thus LD /∈ BPTIME(n).

3.4 Multivalued Functions

Theorem 3.7. If APEP admits pseudodeterministic approximation algorithms, then every multivalued func-
tion f that admits a k(n)-pseudodeterministic algorithm for a polynomial k(n) is in SearchBPP.

Proof. Let f be a multi-valued function and let Mf be a k(n)-pseudodeterministic algorithm for f . Without
loss of generality we can assume that f maps strings of length n to strings of length p(n) for some polynomial
p. For input x of length n, let Sx be the set of size ≤ k(n) such that Sx ⊆ f(x) and Mf (x) ∈ Sx with

probability ≥ k(n)+1
k(n)+2 . From the definition of k(n)-pseudodeterminism, we have the following claim.
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Claim 3.7.1. ∃v∗ ∈ Sx such that Pr [Mf (x) = v∗] ≥ 1+1/k(n)
k(n)+2 . Moreover, ∀v 6∈ Sx Pr[Mf (x) = v] < 1

k(n)+2 .

Let τ = 1+1/2k(n)
k(n)+2 be a threshold that is the middle point of 1+1/k(n)

k(n)+2 and 1
k(n)+2 . For a pair of strings

〈x, v〉, where |x| = n and |v| = p(n), let Cx,v be the following Boolean circuit. Cx,v on input r, outputs 1
if Mf (x) on random string r outputs v, 0 otherwise. We will show that there is a relation R so that (1)
∀x : Wx 6= φ and Wx ⊆ f(x), and (2) R ∈ SearchBPP. We define the relation R as follows.

R = {〈x, v〉 | the canonical output of Aape(Cx,v) ≥ τ}

Here Aape is the (ε, δ) pseudodeterministic algorithm for APEP, where ε = 1/2k(n)(k(n) + 2) and
δ = 2−n. Note that such an algorithm exists under the assumption by Proposition 2 and standard error
reduction techniques.

Claim 3.7.2. ∀x,Wx ⊆ f(x) and Wx is not empty.

Proof. For this we show that Wx ⊆ Sx. If v 6∈ Sx, then Mf (x) outputs v with probability at most 1/(k(n)+2),
thus the canonical output of A(Cx,v) is < 1

k(n)+2 + ε = τ and by definition v 6∈ Wx. On the other hand,

Since v∗ ∈Wx, the canonical output of Aape(Cx,v∗) is ≥ 1+1/k(n)
k(n)+2 − ε = τ . Thus v∗ ∈Wx. Thus Wx 6= φ

Claim 3.7.3. R ∈ BPP.

Proof. Consider the algorithm that on input 〈x, v〉, runs Aape(Cx,v) and accepts if and only if the output
of Aape is ≥ τ . Since Aape is a pseudodeterministic algorithm for APEP it outputs a canonical value with
probability at least 1− 1/2n. This shows that R is in BPP.

Claim 3.7.4. There is a probabilistic algorithm B that on input x outputs v ∈Wx with probability > 2/3.

Proof. We first design an algorithm B′ with a nontrivial success probability and boost it to get algorithm
B.
Algorithm B′: On input x, run Mf (x). Let v be an output. Construct circuit Cx,v and run Aape on Cx,v.
If the output of Aape is ≥ τ , output v. Otherwise output ⊥.

Consider a v /∈ Wx. Then by definition of R, we have that the canonical output of Aape(Cx,v) is less
than τ . Thus Aape(Cx,v) outputs a value larger than τ with probability at most 1/2n. Thus we have that
for every v /∈Wx

Pr[B′ outputs v|Mf (x) outputs v] ≤ 1/2n

Pr[B′ outputs a v /∈Wx] =
∑
v/∈Wx

Pr[B′ outputs v|Mf (x) outputs v]× Pr[Mf (x)outputs v]

≤ 1/2n
∑
v

Pr[Mf (x)outputs v]

≤ 1/2n

By Claim 3.7.1, probability that Mf (x) outputs v∗ is at least 1+1/k(n)
k(n)+2 , it must be the case that the

canonical output of A(Cx,v∗) is at least 1+1/k(n)
k(n)+2 − ε = τ . Thus v∗ ∈Wx. Thus Aape(Cx,v∗) outputs a value

≥ τ with probability at least 1−1/2n. Thus the probability that B′ outputs v∗ is at least 1+1/k(n)
k(n)+2 ×(1−1/2n).

Thus B′ outputs a value that is not in Wx with probability at most 1/2n, it outputs a value in Wx with

probability at least 1+1/k(n)
k(n)+2 × (1 − 1/2n), and outputs ⊥ with the remaining probability. We obtain B by

repeated invocations (O(k(n)3) many) of B′ and outputting the most frequent output.
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This completes the proof that f is in SearchBPP.

Using the above result, we obtain the following corollary, which improves a result from [DPV21].

Theorem 3.8. If APEP admits pseudodeterministic algorithm, then any multivalued function that admits a
k(n)-pseudodeterministic algorithm also admits a pseudodeterministic algorithms, where k(n) is a polynomial.

Proof. By the above theorem, if APEP admits pseudodeterministic algorithm, then any problem that admits
a k(n)-pseudodeterministic algorithm is in SearchBPP. By Theorem 2.6, if APEP admits pseudodetermin-
istic algorithms, every problem in SearchBPP has a pseudodeterministic algorithm.

Acknowledgements. We thank Zhenjian Lu, Igor Oliveira, and Rahul Santhanam for sharing a draft of
their work.
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