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Abstract
Finding exact circuit size is a notorious optimization problem in practice. Whereas modern computers
and algorithmic techniques allow to find a circuit of size seven in blink of an eye, it may take more
than a week to search for a circuit of size thirteen. One of the reasons of this behavior is that the
search space is enormous: the number of circuits of size s is sΘ(s), the number of Boolean functions
on n variables is 22n

.
In this paper, we explore the following natural heuristic idea for decreasing the size of a given

circuit: go through all its subcircuits of moderate size and check whether any of them can be
improved by reducing to SAT. This may be viewed as a local search approach: we search for a smaller
circuit in a ball around a given circuit. We report the results of experiments with various symmetric
functions.
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1 Boolean Circuits

A Boolean straight line program of size r for input variables (x1, . . . , xn) is a sequence
of r instructions where each instruction g ← h ◦ k applies a binary Boolean operation ◦ to
two operands h, k each of which is either an input bit or the result of a previous instruction.
If m instructions are designated as outputs, the straight line program computes a function
{0, 1}n → {0, 1}m in a natural way. We denote the set of all such functions by Bn,m and
we let Bn = Bn,1. For a Boolean function f : {0, 1}n → {0, 1}m, by size(f) we denote the
minimum size of a straight line program computing f . A Boolean circuit shows a flow graph
of a program.

Figure 1 gives an example for the SUMn : {0, 1}n → {0, 1}l function that computes the
binary representation of the sum of n bits:

SUMn(x1, . . . , xn) = (w0, w1, . . . , wl−1) :
n∑

i=1
xi =

l−1∑
i=0

2iwi, where l = ⌈log2(n + 1)⌉ .

This function transforms n bits of weight 0 into l bits of weights (0, 1, . . . , l− 1). The straight
line programs are given in Python programming language. This makes particularly easy
to verify their correctness. For example, the program for SUM3 can be verified with just
three lines of code:

from itertools import product

for x1, x2, x3 in product(range(2), repeat=3):
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def sum2(x1, x2):
w0 = x1 ^ x2
w1 = x1 * x2
return w0, w1

x1 x2

∧w1 ⊕ w0

def sum3(x1, x2, x3):
a = x1 ^ x2
b = x2 ^ x3
c = a | b
w0 = a ^ x3
w1 = c ^ w0
return w0, w1

x1 x2 x3

⊕a ⊕b

∨c ⊕ w0

⊕ w1

Figure 1 Optimal size straight line programs and circuits for SUM2 and SUM3. These two
circuits are known as half adder and full adder.

w0, w1 = sum3(x1, x2, x3)
assert x1 + x2 + x3 == w0 + 2 * w1

Determining size(f) requires proving lower bounds: to show that size(f) > α, one needs
to prove that every circuit of size at most α does not compute f . Known lower bounds are
far from being satisfactory: the strongest known lower bound for a function family in NP
is (3 + 1/86)n−o(n) [7]. Here, by a function family we mean an infinite sequence of functions
{fn}∞

n=1 where fn ∈ Bn.
Even proving lower bounds for specific functions (rather than function families) is difficult.

Brute force approaches become impractical quickly: |Bn| = 22n , hence already for n = 6,
one cannot just enumerate all functions from Bn; also, the number of circuits of size s is
sΘ(s), hence checking all circuits of size s takes reasonable time for small values of s only.
Knuth [9] found the exact circuit size of all functions from B4 and B5.

Finding the exact value of size(f) for f ∈ B6 is already a difficult computational task for
modern computers and techniques. One approach is to translate a statement “there exists
a circuit of size s computing f” to a Boolean formula and to pass it to a SAT-solver. Then,
if the formula is satisfiable, one decodes a circuit from its satisfying assignment; otherwise,
one gets a (computer generated) proof of a lower bound size(f) > s. This circuit synthesis
approach was proposed by Kojevnikov et al. [11] and, since then, has been used in various
circuit synthesis programs (abc [1], mockturtle [18], sat-chains [8]).

The state-of-the-art SAT-solvers are surprisingly efficient and allow to handle various
practically important problems (with millions of variables) and even help to resolve open
problems [3]. Still, already for small values of n and s the problem of finding a circuit
of size s for a function from Bn is difficult for SAT-solvers. We demonstrate the limits of this
approach on counting functions:

MODm,r
n = [x1 + · · ·+ xn ≡ r mod m]

(here, [·] is the Iverson bracket: [S] is equal to 1 if S is true and is equal to 0 otherwise).
Using SAT-solvers, Knuth [10, solution to exercise 480] found size(MOD3,r

n ) for all 3 ≤ n ≤ 5
and all 0 ≤ r ≤ 2. Based on the found numbers, he made the following conjecture:

size(MOD3,r
n ) = 3n− 5− [(n + r) ≡ r mod 3] for all n ≥ 3 and r. (1)

He was also able to find the circuit size for the n = 6, r = 0 case and wrote: “The case n = 6
and r ̸= 0, which lies tantalizingly close to the limits of today’s solvers, is still unknown.”
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To summarize, our current abilities for checking whether there exists a Boolean circuit
of size s are roughly the following:

for s ≤ 6, this can be done in a few seconds;
for 7 ≤ s ≤ 12, this can (sometimes) be done in a few days;
for s ≥ 13, this is out of reach.

In this paper, we explore the limits of the following natural idea: given a circuit, try
to improve its size by improving (using SAT-solvers, for example) the size of its subcircuit
of size seven. This is a kind of a local search approach: we have no possibility to go through
the whole space of all circuits, but we can at least search in a neighborhood of a given circuit.
This allows us to work with circuits consisting of many gates.

As the results of experiments, we show several circuits for which the approach described
above leads to improved upper bounds. In particular, we support Knuth’s conjecture (1)
by proving the matching upper bound. Also, we present improvements for size(SUMn) for
various small n. Finally, we provide examples of circuits that are optimal locally, but not
globally: our program is not able to find a (known) smaller circuit since it is “too different”
from the original circuit.

2 Program Overview

The program is implemented in Python. We give a high-level overview of its main features
below. All the code shown below can be found in the file tutorial.py at [4]. One may run it
after installing a few Python modules. Alternatively, one may run the Jupyter notebook
tutorial.ipynb in the cloud without installing anything. To do this, press the badge “Colab”
at [4].

2.1 Manipulating Circuits
This is done through the Circuit class. One can load and save circuits as well as print
and draw them. A nicely looking layout of a circuit is produced by the pygraphviz module
[16]. The program also contains some built-in circuits that can be used as building blocks.
The following sample code constructs a circuit for SUM5 out of two full adders and one
half adder. This construction is shown in Figure 2(a). Then, the circuit is verified via the
check_sum_circuit method. Finally, the circuit is drawn. As a result, one gets a picture

similar to the one in Figure 2(b).

circuit = Circuit(input_labels=['x1', 'x2', 'x3', 'x4', 'x5'])
x1, x2, x3, x4, x5 = circuit.input_labels
a0, a1 = add_sum3(circuit, [x1, x2, x3])
b0, b1 = add_sum3(circuit, [a0, x4, x5])
w1, w2 = add_sum2(circuit, [a1, b1])
circuit.outputs = [b0, w1, w2]
check_sum_circuit(circuit)
circuit.draw('sum5')

2.2 Finding Efficient Circuits
The class CircuitFinder allows to check whether there exists a circuit of the required size
for a given Boolean function. For example, one may discover the full adder as follows. (The
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x1 x2 x3 x4 x5

SUM3

SUM3

0

SUM2

1

1

w2 w1 w0

1 0

0

x1 x2 x3

x4 x5

⊕g1 ⊕g2

∨g3 ⊕g4

⊕g5

⊕g6 ⊕ g7

∨ g8 ⊕ w0

⊕ g9

⊕ w1∧w2

x1 x2 x3

x4 x5

⊕g1 ⊕g2

∨g3 ⊕g4

⊕g5 ⊕g6 ⊕ g7

> g8 ⊕ w0

⊕ w1

> w2

(a) (b) (c)

Figure 2 (a) A schematic circuit for SUM5 composed out of two full adders and one half adder.
(b) The corresponding circuit of size 12. (c) An improved circuit of size 11.

function sum_n returns the list of ⌈log2(n + 1)⌉ bits of the binary representation of the sum
of n bits.)

def sum_n(x):
return [(sum(x) >> i) & 1 for i in range(ceil(log2(len(x) + 1)))]

circuit_finder = CircuitFinder(dimension=3, number_of_gates=5,
function=sum_n)

circuit = circuit_finder.solve_cnf_formula()
circuit.draw('sum3')

This is done by encoding the task as a CNF formula and invoking the PicoSAT solver [2]
(via the pycosat module [15]). The reduction to SAT is described in [11].

As mentioned in the introduction, the limits of applicability of this approach (for finding
a circuit of size s) are roughly the following: for s ≤ 6, it usually works in less than a minute;
for 7 ≤ s ≤ 12, it may already take up to several hours or days; for s ≥ 13, it becomes almost
impractical. The running time may vary a lot for inputs of the same length. In particular, it
usually takes much longer to prove that the required circuit does not exist (by proving that
the corresponding formula is unsatisfiable).

The program allows to predefine some of the gates and wires of a circuit. We demonstrate
this functionality later in the text.

2.3 Improving Circuits
The method improve_circuit goes through all subcircuits of a given size of a given circuit
and checks whether any of them can be replaced by a smaller subcircuit (computing the
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same function) via find_circuit . For example, applying this method to the circuit from
Figure 2(b) gives the circuit from Figure 2(c) in nine seconds.

circuit = Circuit(input_labels=[f'x{i}' for i in range(1, 6)], gates={})
circuit.outputs = add_sum5_suboptimal(circuit, circuit.input_labels)
improved_circuit = improve_circuit(circuit, subcircuit_size=5,

connected=True)
print(improved_circuit)
improved_circuit.draw('sum5')

This circuit can be also found via find_circuit directly, but it takes about seven hours.

3 Evaluation

In this section, we report the results of experiments with various symmetric functions.
A function f(x1, . . . , xn) is called symmetric if its value depends on

∑n
i=1 xi only. They are

among the most basic Boolean functions:
to specify an arbitrary Boolean function from Bn, one needs to write down its truth table
of length 2n; symmetric functions allow for more compact representation: it is enough to
specify n + 1 bits (for each of n + 1 values of

∑n
i=1 xi);

circuit complexity of almost all functions of n variables is exponential (Θ(2n/n)), whereas
any symmetric function can be computed by a linear size circuit (O(n)).

Despite simplicity of symmetric functions, we still do not know how optimal circuits look
like for most of them. Below, we present new circuits for some of these functions.

3.1 Sum Function

The SUM function is a fundamental symmetric function: for any symmetric f ∈ Bn, size(f) ≤
size(SUMn) + o(n). The reason for this is that any function from Bn can be computed
by a circuit of size O(2n/n) by the results of Muller [14] and Lupanov [13]. This allows
to compute any symmetric f(x1, . . . , xn) ∈ Bn as follows: first, compute SUMn(x1, . . . , xn)
using size(SUMn) gates; then, compute the resulting bit using at most O(2log n/ log n) = o(n)
gates. For the same reason, any lower bound size(f) ≤ α for a symmetric function f ∈ Bn

implies a lower bound size(SUMn) ≤ α− o(n). Currently, we know the following bounds for
SUMn:

2.5n−O(1) ≤ size(SUMn) ≤ 4.5n + o(n) .

The lower bound is due to Stockmeyer [19], the upper bound is due to Demenkov et al. [5].
A circuit for SUMn can be constructed from circuits for SUMk for some small k. For

example, using full and half adders as building blocks, one can compute SUMn (for any n)
by a circuit of size 5n as follows. Start from n bits (x1, . . . , xn) of weight 0. While there are
three bits of the same weight k, replace them by two bits of weights k and k + 1 using a full
adder. This way, one gets at most two bits of each weight 0, 1, . . . , l − 1 (l = ⌈log2(n + 1)⌉)
in at most 5(n− l) gates (as each full adder reduces the number of bits). To leave exactly
one bit of each weight, it suffices to use at most l half or full adders (o(n) gates). Let us
denote the size of the resulting circuit by s(n). The second row of Table 1 shows the values
of s(n) for some n ≤ 15 (see (28) in [9]).
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n 2 3 4 5 6 7 8 9 10 15

s(n) 2 5 9 12 17 20 26 29 34 55
size(SUMn) 2 5 9 11 ≤ 16 ≤ 19 ≤ 25 ≤ 27 ≤ 32 ≤ 53

Table 1 The first line shows the value of n. The second line gives the size s(n) of a circuit for
SUMn composed out of half and full adders. The third row shows known bounds for size(SUMn).

SUM3 SUM3x3

x2 x1 x4 x5

a1 b1

b0(a)

MDFAx3

x2 x1 x4 x5

⊕ ⊕

a1 a1 ⊕ b1

b0(b)

x1 x2 x3

x4 x5

⊕ ⊕

∨ ⊕

⊕a1 ⊕ ⊕

> ⊕ b0

⊕ a1 ⊕ b1

>

(c)

Figure 3 (a) Two consecutive SUM3 blocks. (b) The MDFA block. (c) The highlighted part of
the optimal circuit for SUM5 computes MDFA.

In a similar fashion, one can get an upper bound (see Theorem 1 in [12])

size(SUMn) ≤ size(SUMk)
k − ⌈log2(k + 1)⌉ · n + o(n) . (2)

This motivates the search for efficient circuits for SUMk for small values of k. The bottom
row of Table 1 gives upper bounds that we were able to find using the program (the upper
bounds for n ≤ 7 were found by Knuth [9]). The table shows that the first value where s(n)
is not optimal is n = 5. The best upper bound for SUMn given by (2) is 4.75n + o(n) for
n = 7. The upper bound for n = 15 is 53n/11 + o(n) which is worse than the previous upper
bound. But if it turned out that size(SUM15) ≤ 52, it would give a better upper bound.

The found circuits for SUMn for n ≤ 15 does not allow to improve the strongest known
upper bound size(SUMn) ≤ 4.5n+o(n) due to Demenkov et al. [5]. Below, we present several
interesting observations on the found circuits.

3.1.1 Best Known Upper Bound for the SUM Function
The optimal circuit of size 11 for SUM5 shown in Figure 2(c) can be used to get an upper
bound 4.5n + o(n) for size(SUMn) (though not through (2) directly). To do this, consider
two consecutive SUM3 circuits shown in Figure 3(a). Its specification is: x1 + · · · + x5 =
b0 + 2(a1 + b1), its size is equal to 10. One can construct a similar block, called MDFA (for
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x1 x2 x3

⊕ ⊕ w0

⊕
∨

⊕ w1

x1 x2 x3 x4

⊕ ⊕ ⊕ w0

⊕ >

∨
⊕

⊕ w1

>w2

x1 x2 x3 x4 x5

⊕ ⊕ ⊕ ⊕ w0

⊕ ⊕

∨ >

⊕ ⊕ w1

> w2

Figure 4 Optimal circuits computing SUMn for n = 3, 4, 5 with a specific structure: every input,
except for x1, has out-degree one.

modified double full adder), of size 8, whose specification is

MDFA(x1 ⊕ x2, x2, x3, x4, x4 ⊕ x5) = (b0, a1, a1 ⊕ b1) ,

see Figure 3(b). The fact that MDFA uses the encoding (p, p ⊕ q) for pairs of bits (p, q),
allows to use it recursively to compute SUMn: first, compute x1⊕ x2, x3⊕ x4, . . . , xn−1⊕ xn

(n/2 gates); then, apply n/2 MDFA blocks (4n gates). The MDFA block was constructed
by Demenkov et al. [5] in a semiautomatic manner. And it turns out that MDFA is just
a subcircuit of the optimal circuit for SUM5! See Figure 3(c).

3.1.2 Best Known Circuits for SUM with New Structure

For many upper bounds from the bottom row of Table 1, we found circuits with the following
interesting structure: the first thing the circuit computes is x1 ⊕ x2 ⊕ · · · ⊕ xn; moreover
the variables x2, . . . , xn are used for this only. This is best illustrated by an example — see
Figure 4.

These circuits can be found using the following code. It demonstrates two new useful
features: fixing gates and forbidding wires between some pairs of gates.

def sum_n(x):
return [(sum(x) >> i) & 1 for i in range(ceil(log2(len(x) + 1)))]

for n, size in ((3, 5), (4, 9), (5, 11)):
circuit_finder = CircuitFinder(dimension=n, number_of_gates=size,

function=sum_n)
circuit_finder.fix_gate(n, 0, 1, '0110')
for k in range(n - 2):

circuit_finder.fix_gate(n + k + 1, k + 2, n + k, '0110')
for i in range(1, n):

for j in range(n, n + size):
if i + n - 1 != j:

circuit_finder.forbid_wire(i, j)
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circuit = circuit_finder.solve_cnf_formula(verbose=0)
circuit.draw(f'sum{n}')

3.1.3 Optimal Circuits for Counting Modulo 4
The optimal circuit for SUM5 can be used to construct an optimal circuit of size 2.5n + O(1)
for MODn

4 due to Stockmeyer [19]. To do this, note that there is a subcircuit (of the
circuit at Figure 2(c)) of size 9 that computes the two least significant bits (w0, w1) of
x1 + · · · + x5 (one removes the gates g5, w2). To compute x1 + · · · + xn mod 4, one first
applies n

4 such blocks and then computes the parity of the resulting bits of weight 1. The
total size is 9 · n

4 + n
4 = 2.5n. Thus, the circuit that Stockmeyer constructed in 1977 by hand,

nowadays can be found automatically in a few seconds.

3.2 Modulo-3 Function
In [11], Kojevnikov et al. presented circuits of size 3n + O(1) for MOD3,r

n (for any r). Later,
Knuth [10, solution to exercise 480] analyzed their construction and proved an upper bound
3n−4. Also, by finding the exact values for size(MOD3,r

n ) for all 3 ≤ n ≤ 5 and all 0 ≤ r ≤ 2,
he made the conjecture (1). Using our program, we proved the conjectured upper bound for
all n.

▶ Theorem 1. For all n ≥ 3 and all r ∈ {0, 1, 2},

size(MOD3,r
n ) ≤ 3n− 5− [(n + r) ≡ r mod 3] .

To prove Knuth’s conjecture, one also needs to prove a lower bound on size(MOD3,r
n ). The

currently strongest known lower bound for size(MOD3,r
n ) is 2.5n−O(1) due to Stockmeyer [19]

(and no stronger lower bound is known for any other symmetric function).

Proof. As in [11], we construct the required circuit out of constant size blocks. Schematically,
the circuit looks as follows.

x1 xk xk+1 xk+2 xk+3 xn−l+1 xn

· · · · · ·

· · ·INk MID3 MID3 OUTr
l

Here, the n input bits are passed from above. What is passed from block to block (from left
to right) is the pair of bits (r0, r1) encoding the current remainder r modulo 3 as follows: if
r = 0, then (r0, r1) = (0, 0); if r = 1, then (r0, r1) = (0, 1); if r = 2, then r0 = 1. The first
block INk takes the first k input bits and computes the remainder of their sum modulo 3. It is
followed by a number of MID3 blocks each of which takes the current remainder and three new
input bits and computes the new remainder. Finally, the block OUTr

l takes the remainder
and the last l input bits and outputs MOD3,r

n . The integers k, l take values in {2, 3, 4} and
{1, 2, 3}, respectively. Their exact values depend on r and n mod 3 as described below.

The theorem follows from the following upper bounds on the circuit size of the just
introduced functions: size(IN2) ≤ 2, size(IN3) ≤ 5, size(IN4) ≤ 7, size(MID3) ≤ 9,
size(OUT0

2) ≤ 5, size(OUT1
1) ≤ 2, size(OUT2

3) ≤ 8. The corresponding circuits are presented
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n = 3t n = 3t + 1 n = 3t + 2

r = 0 (4, t − 2, 2), (7, 5), 3n − 6 (2, t − 1, 2), (2, 5), 3n − 5 (3, t − 1, 2), (5, 5), 3n − 5
r = 1 (2, t − 1, 1), (2, 2), 3n − 5 (3, t − 1, 1), (5, 2), 3n − 5 (4, t − 1, 1), (7, 2), 3n − 6
r = 2 (3, t − 2, 3), (5, 8), 3n − 5 (4, t − 2, 3), (7, 8), 3n − 6 (2, t − 1, 3), (2, 8), 3n − 5

Table 2 Choosing parameters k, m, l depending on n mod 3 and r. The circuit is composed out
of blocks as follows: INk +m × MID3 + OUTl

r. For each pair (n mod 3, r) we show three things:
the triple (m, k, l); the sizes of two blocks: size(INk) and size(OUTl

r); the size of the resulting
circuit computed as s = size(INk) + 9m + size(OUTl

r). For example, the top left cell is read as
follows: when r = 0 and n = 3t, we set k = 4, m = t − 2, l = 2; the resulting circuit is then
IN4 +(t − 2) × MID3 + OUT2

0; since size(IN4) = 7 and size(OUT2
0) = 5, the size of the circuit is

7 + 9(t − 2) + 5 = 9t − 6 = 3n − 6.

in the Appendix by a straightforward Python code that verifies their correctness. (The
presented code proves the mentioned upper bounds by providing explicit circuits. We have
also verified that no smaller circuits exist meaning that the inequalities above are in fact
equalities.)

Table 2 shows how to combine the blocks to get a circuit computing MOD3,r
n of the

required size. (Technically, it requires n to be at least 4. For n = 3, the corresponding
circuits are easy to construct.)

◀

3.3 Threshold-2 Function
Here, we present an example of a reasonably small circuit that our program fails to improve
though a better circuit is known. The reason is that these two circuits are quite different.
The function we are going to consider is the threshold-2 function:

THR2
n(x1, . . . , xn) = [x1 + · · ·+ xn ≥ 2] .

Figures 5 and 6 show circuits of size 31 and 29 for THR2
12. They are quite different and our

program is not able to find out that the circuit of size 31 is suboptimal. One can construct
the two circuits in the program as follows.

c = Circuit(input_labels=[f'x{i}' for i in range(1, 13)], gates={})
c.outputs = add_naive_thr2_circuit(c, c.input_labels)
c.draw('thr2naive')

c = Circuit(input_labels=[f'x{i}' for i in range(1, 13)], gates={})
c.outputs = add_efficient_thr2_circuit(c, c.input_labels, 3, 4)
c.draw('thr2efficient')

4 Further Directions

In the paper, we focus mainly on proving asymptotic upper bounds for function families
(that is, that work for every input size). A natural further step is to apply the program
to specific circuits that are used in practice.
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x1

x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∧
∨ output

x1

x2 x3 x4 x11 x12

· · ·so
rt

so
rt

so
rt

so
rt ∧

∨

Figure 5 A circuit of size 31 for THR2
12: (a) block structure and (b) gate structure. The

SORT(u, v) block sorts two input bits as follows: SORT(u, v) = (min{u, v}, max{u, v}) = (u∧v, u∨v).
The circuit performs one and a half iterations of the bubble sort algorithm: one first finds the
maximum bit among n input bits; then, it remains to compute the disjunction of the remaining
n − 1 bits to check whether there is at least one 1 among them. In general, this leads to a circuit
of size 3n − 5.

x5 x1 x6 x2

∨ x9 x10 ∨ ∨ x7 x3 ∨

∨c1 ∨ ∨
c2

x11 ∨ ∨ x8 x4 ∨

∧ ∨ ∨ ∨
c3

x12 ∨ r2 ∨ ∨ r1

∧
∨

∨r3 ∨
c4 ∨ ∧

∨ ∧ ∧

∨ ∨

∨ output

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

∨
r1

∨
r2

∨
r3

∨
c1 ∨

c2 ∨
c3 ∨

c4

THR4
2

T
H

R
3 2

∨

Figure 6 A circuit of size 29 for THR2
12: (a) block structure and (b) gate structure. It implements

a clever trick by Dunne [6]. Organize 12 input bits into a 3 × 4 table. Compute disjunctions r1, r2, r3

of the rows and disjunctions c1, c2, c3, c4 of the columns. Then, there are at least two 1’s among
x1, . . . , x12 if and only if there are at least two 1’s among either r1, r2, r3 or c1, c2, c3, c4. This allows
to proceed recursively. In general, it leads to a circuit of size 2n + o(n). (Sergeev [17] showed recently
that the monotone circuit size of THR2

n is 2n + Θ(
√

n).)

It would also be interesting to extend the program so that it is able to discover the circuit
from Figure 6.
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g2 = x1 & x2
assert (x1 + x2) % 3 == enc[g2, g1]

# in_3
for x1, x2, x3 in product(range(2), repeat=3):

g1 = x1 == x2
g2 = 1 - (x1 | x2)
g3 = g2 == x3
g4 = g1 == g3
g5 = g2 < g4
assert (x1 + x2 + x3) % 3 == enc[g5, g3]

# in_4
for x1, x2, x3, x4 in product(range(2), repeat=4):

g1 = x1 == x2
g2 = g1 ^ x3
g3 = g2 ^ x2
g4 = g1 & g3
g5 = g4 == x4
g6 = g2 == g5
g7 = g4 < g6
assert (x1 + x2 + x3 + x4) % 3 == enc[g7, g5]

# mid_3
for x1, x2, x3, z0, z1 in product(range(2), repeat=5):

g1 = x1 == z1
g2 = g1 | z0
g3 = g2 ^ x2
g4 = g3 ^ z0
g5 = g4 ^ x1
g6 = g2 & g5
g7 = g6 == x3
g8 = g3 == g7
g9 = g6 < g8
assert (enc[z0, z1] + x1 + x2 + x3) % 3 == enc[g9, g7]

# out_1^1
for x1, z0, z1 in product(range(2), repeat=3):

g1 = x1 ^ z1
g2 = z0 < g1
assert ((enc[z0, z1] + x1) % 3 == 1) == g2

# out_2^0
for x1, x2, z0, z1 in product(range(2), repeat=4):

g1 = z0 == x2
g2 = x1 ^ z1
g3 = g1 == x1
g4 = z0 < g2
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g5 = 1 - (g3 | g4)
assert ((enc[z0, z1] + x1 + x2) % 3 == 0) == g5

# out_3^2
for x1, x2, x3, z0, z1 in product(range(2), repeat=5):

g1 = x1 == z1
g2 = g1 | z0
g3 = g2 ^ x2
g4 = g3 ^ z0
g5 = g4 ^ x1
g6 = g2 & g5
g7 = g3 == x3
g8 = 1 - (g6 | g7)
assert ((enc[z0, z1] + x1 + x2 + x3) % 3 == 2) == g8

# mod3_3^0
for x1, x2, x3 in product(range(2), repeat=3):

g1 = x2 == x3
g2 = x1 ^ x2
g3 = g1 > g2
assert ((x1 + x2 + x3) % 3 == 0) == g3

# mod3_3^2
for x1, x2, x3 in product(range(2), repeat=3):

g1 = x2 ^ x3
g2 = x3 | g1
g3 = x1 < g2
g4 = g1 ^ g3
assert ((x1 + x2 + x3) % 3 == 2) == g4

# mod3_4^2
for x1, x2, x3, x4 in product(range(2), repeat=4):

g1 = x1 ^ x2
g2 = x3 ^ x4
g3 = x1 ^ x3
g4 = g2 | g3
g5 = g1 < g4
g6 = g2 ^ g5
assert ((x1 + x2 + x3 + x4) % 3 == 2) == g6
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