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Abstract

We give new and efficient black-box reconstruction algorithms for some classes of depth-3 arithmetic
circuits. As a consequence, we obtain the first efficient algorithm for computing the tensor rank and for
finding the optimal tensor decomposition as a sum of rank-one tensors when then input is a constant-rank
tensor. More specifically, we provide efficient learning algorithms that run in randomized polynomial time
over general fields and in deterministic polynomial time over R and C for the following classes:

1. Set-multilinear depth-3 circuits of constant top fan-in (ΣΠΣ{⊔jXj}(k) circuits). As a consequence

of our algorithm, we obtain the first polynomial time algorithm for tensor rank computation and
optimal tensor decomposition of constant-rank tensors. This result holds for d dimensional tensors
for any d, but is interesting even for d = 3.

2. Sums of powers of constantly many linear forms (Σ∧Σ(k) circuits). As a consequence we obtain
the first polynomial-time algorithm for tensor rank computation and optimal tensor decomposition
of constant-rank symmetric tensors.

3. Multilinear depth-3 circuits of constant top fan-in (multilinear ΣΠΣ(k) circuits). Our algorithm
works over all fields of characteristic 0 or large enough characteristic. Prior to our work the only
efficient algorithms known were over polynomially-sized finite fields [KS09a].

Prior to our work, the only polynomial-time or even subexponential-time algorithms known (deterministic
or randomized) for subclasses of ΣΠΣ(k) circuits that also work over large/infinite fields were for the
setting when the top fan-in k is at most 2 [Sin16, Sin20].
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1 Introduction

Arithmetic circuits are directed acyclic graphs (DAG) computing multivariate polynomials succinctly, build-
ing up from variables using (+) addition and (×) multiplication operations. Reconstruction of arithmetic
circuits is the following problem: given black-box (a.k.a oracle/ membership query) access to a polynomial
computed by a circuit C of size s from some class of circuits C, give an efficient algorithm (deterministic or
randomized) for recovering C or some circuit C ′ that computes the same polynomial as C. This problem is
the algebraic analogue of exact learning in Boolean circuit complexity [Ang88]. If one additionally requires
that the output circuit belongs to the same class C as the input circuit, then it is called proper learning.

Reconstruction of arithmetic circuits is an extremely natural problem, but also a really hard problem.
Thus in the past few years, much attention has focused on reconstruction algorithms for various interesting
subclasses of arithmetic circuits [BBB+00, KS01, KS06, FS12]. In particular, much attention has focused on
depth-3 and depth-4 arithmetic circuits [KS09a, GKL12, Sin16, BSV20, Sin20]. Depth-3 and depth-4 circuits
have been intensely studied for the problem of proving lower bounds, deterministic polynomial identity testing
as well as polynomial reconstruction (which is probably the hardest of the three). Given the depth reduction
results of [AV08, Koi10, Tav13, GKKS13], we know that depth-3 and depth-4 arithmetic circuits are very
expressive, and good enough reconstruction algorithms (or even lower bounds or polynomial identity testing)
for these models would have major implications for general circuits. Thus perhaps not surprisingly, we are
quite far from obtaining efficient reconstruction algorithms even for depth-3 circuits.

In this work, we will focus on some interesting subclasses of depth-3 circuits with bounded top fan-in
(ΣΠΣ(k) circuits) and give efficient proper learning algorithms for them. A setting of particular interest for
us (and which motivated much of this work) is when the underlying field is large or infinite (such as R or
C), since in that setting we have even fewer reconstruction algorithms. Though we state many of our results
over all fields, for concreteness it will be convenient to imagine the underlying field being R or C or Fp.

The subclasses of ΣΠΣ(k) circuits that we study, already capture some very interesting models, and
our result for one of these subclasses implies the first efficient polynomial-time algorithm for tensor rank
computation and optimal tensor decomposition of constant-rank tensors. Before describing the connection
to tensors and stating our results, we first give some background on polynomial reconstruction.

There is substantial evidence supporting the hardness of arithmetic circuit reconstruction. Deterministic
algorithms for reconstruction are at least as hard as deterministic black-box algorithms for polynomial
identity testing, which is equivalent to proving lowering bounds for general arithmetic circuits [KI03, Agr05].
Randomized reconstruction is also believed to be a hard problem and there are a number of results showing
hardness of reconstruction under various complexity-theoretic and cryptographic assumptions [H̊as90, FK09,
KS09c, Shi16]. (For more details see the section on hardness-results in [BSV20]).

Despite reconstruction being a very hard problem, there has been a lot of research focused on efficient
reconstruction for restricted classes of arithmetic circuits. Yet, the progress has still been quite slow. Even
among the class of constant-depth arithmetic circuits, we only understand reconstruction well for a handful
of restricted cases [KS01, KS09a, GKL12, Sin16, BSV20]. If one studies average case reconstruction (a
model that has received increased attention in recent years) then we know a number of additional results
and they hold for richer circuit classes [GKL11, GKQ14, KNST17, KNS18, KS19, GKS20]. However we will
not discuss this setting much since the focus of this work will be on the worst case setting.

Before describing the status of what we know about reconstruction for some of the relevant circuit classes,
we first define some natural classes of arithmetic circuits that will play an important role in our discussion.

Some Definitions of Relevant Circuit Classes The model of depth-3 arithmetic circuits with top
fan-in k, which we refer as ΣΠΣ(k) circuits, has three layers of alternating Σ and Π gates and computes a
polynomial of the form

C(x̄) =
k∑

i=1

Ti(x̄) =
k∑

i=1

di∏

j=1

lij(x̄)

where the lij(x̄)-s are linear polynomials.
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A multilinear polynomial is a polynomial with individual degree of each variable bounded by 1. We
say that a circuit C is multilinear (or syntactically multilinear) if every gate in C computes a multilinear
polynomial. Thus, a multilinear ΣΠΣ(k) circuit is a ΣΠΣ(k) circuit in which each multiplication gate Ti

computes a multilinear polynomial.
A more refined subclass of multilinear polynomial is that of set-multilinear polynomials. Let ⊔j∈[d]Xj

be a partition of the set X of input variables. Then a polynomial is set-multilinear under partition ⊔j∈[d]Xj

if each monomial of the polynomial picks up exactly one variable from each part in the partition.
A set-multilinear ΣΠΣ(k) circuit under partition ⊔j∈[d]Xj (which we denote as ΣΠΣ{⊔jXj}(k) circuit) is

a ΣΠΣ(k) circuit in which each multiplication gate Ti computes a set-multilinear polynomial respecting the
partition ⊔j∈[d]Xj . In the Section 1.1 we will discuss this model and its connection to tensor decomposition.

The final subclass of ΣΠΣ(k) circuits that we discuss is the innocuous looking class of sum of power of k
linear forms, also referred to as diagonal depth-3 circuits with bounded top fan-in (Σ∧Σ(k) circuits). These
are a subclass of ΣΠΣ(k) circuits where instead of using multiplication gates, we are just allowed powering
gates which raise an input linear polynomial to some power. In Section 1.1 we will discuss this model and
its connection to symmetric tensor decomposition.

Proper Learning The focus of this work will be on proper learning algorithms for subclasses of ΣΠΣ(k)
circuits.

Note that in the setting of proper learning, if C′ is a subclass of C, then an efficient proper learning
algorithm for C does not imply an efficient proper learning algorithm for C′. Indeed, as some evidence
towards this, note that there are efficient algorithms for proper learning of read-once algebraic branching
programs (ROABPs) [BBB+00, KS06, FS12], but we do not know proper learning algorithms for ΣΠΣ{⊔jXj}

circuits and Σ∧Σ circuits (with no bound on the top fan-in), which are both subclasses of ROABPs. In fact,
it is known that properly learning ΣΠΣ{⊔jXj} circuits or Σ∧Σ circuits with an optimal bound for the top
fan-in is NP-hard [H̊as90, Shi16].

Reconstruction algorithms for ΣΠΣ(k) circuits and for subclasses of ΣΠΣ(k) circuits have been studied
in the past a fair bit. The only proper reconstruction algorithms that we are aware of are for the model of
multilinear ΣΠΣ(k) circuits by Karnin and Shpilka [KS09a] and for ΣΠΣ(2) circuits by Sinha [Sin16, Sin20].
In the case of ΣΠΣ(2) circuits, the algorithms are proper (i.e. the output is also a ΣΠΣ(2) circuit) only if
the “rank” of the linear forms in the underlying circuit is large enough.

All three of these results are highly nontrivial and they introduce several beautiful techniques which
give insight into the structure of these models. The Karnin-Shpilka result is in fact more general and gives
reconstruction algorithms for ΣΠΣ(k) circuits without the multilinearity constraint, but in this setting the
learning algorithms aren’t proper (and they do not work over large fields) and we will not discuss it here.
For multilinear ΣΠΣ(k) circuits as well, the running time of the Karnin-Shpilka algorithm has a polynomial
dependence on the field size |F|. Thus it works only over polynomially-sized finite fields, and in particular it
does not work over large or infinite fields (which is the primary focus of this work). We discuss the algorithm
from [KS09a] in a little more detail in Section 1.2.

Our goal is to obtain algorithms that work over infinite fields (R, C) with polynomial dependence on
the input bit complexity, and that work over finite fields Fq with poly(log q) dependence on the field size.
In this setting, the only subclasses of ΣΠΣ(k) circuits for which we know proper learning algorithms is for
ΣΠΣ(2) circuits, if the “rank” of the linear forms in the underlying circuit is large enough [Sin16, Sin20].
Both these results use fairly sophisticated tools, and really show why even for the seemingly simple case of
k = 2, reconstruction can be fairly complex.

Some additional classes of bounded depth circuits for which we do know proper learning algorithms that
work over large fields are depth-2 (ΣΠ) arithmetic circuits (a.k.a sparse polynomials) which have efficient
polynomial-time algorithms [BOT88, KS01], and multilinear depth-4 circuits with top fan-in 2 (multilinear
ΣΠΣΠ(2) circuits) [GKL12].
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1.1 Connection to the Tensor Rank Problem

Tensors, higher dimensional analogues of matrices, are multi-dimensional arrays with entries from some field
F. For instance, a 3-dimensional tensor can be written as T = (αi,j,k) ∈ Fn1×n2×n3 . We will work with
general d-dimensional tensors T = (αj1,j2,...,jd) ∈ Fn1×···×nd . The rank of a tensor T can be defined as the
smallest r for which T can be written as a sum of r tensors of rank 1, where a rank-1 tensor is a tensor of
the form v1 ⊗ · · · ⊗ vd with vi ∈ Fni . Here ⊗ is the Kronecker (outer) product a.k.a tensor product. The
expression of T as a sum of such rank-1 tensors, over the field F is called F-tensor decomposition or just
tensor decomposition, for short. The notion of tensor rank/decomposition has become a fundamental tool
in different branches of modern science with applications in machine learning, statistics, signal processing,
computational complexity, psychometrics, linguistics and chemometrics. We refer the reader to the detailed
monograph by Landsberg [Lan12] and the references therein for more details on applications of tensor de-
composition.

For a tensor T = (αj1,j2,...,jd) ∈ Fn1×···×nd consider the following polynomial

fT (X)
∆
=

∑

(j1,...,jd)∈[n1]×···×[nd]

αj1,j2,...,jdx1,j1x2,j2 · · ·xd,jd .

Let C(X) =
k∑

i=1

d∏
j=1

ℓi,j be a set-multilinear depth-3 circuit over F respecting the partition ⊔j∈[d]Xj , and

computing fT (X). Then observe that

T =
k∑

i=1

v̄(ℓi,1)⊗ · · · ⊗ v̄(ℓi,d)

where v̄(ℓi,j) corresponds to the linear form ℓi,j as an nj-dimensional vector over F. Indeed, it is easy to
see that a tensor T = (αj1,j2,...,jd) ∈ Fn1×···×nd has rank at most r if and only if fT (X) can be computed
by a ΣΠΣ{⊔jXj}(r) circuit. Therefore, rank of T is the smallest k for which fT (X) can be computed by a
ΣΠΣ{⊔jXj}(k) circuit.

Consider the following question. Question 1: Given as input a 3-dimensional tensor T = (αi,j,k) ∈
Fn1×n2×n3 , is there an efficient algorithm for computing its tensor rank? This problem is known to be
NP-hard in general [H̊as90]. Now consider the following variant of the question. Question 1′: Given as
input a 3-dimensional tensor T = (αi,j,k) ∈ Fn1×n2×n3 such that the tensor rank is at most some fixed
constant. Does the problem still remain hard, or is the rank efficiently computable? One could also ask
these same questions for d-dimensional tensors where d is large. Let T = (αj1,j2,...,jd) ∈ Fn1×···×nd . In such
a setting, one might not even be able to efficiently store the entire tensor as an array. However, if the tensor
rank is small (say a constant), then there is still a small “implicit” representation of T a sum of rank one
tensors. In this setting, one has black-box access to measurements of T . In particular, given ᾱi ∈ Fni for
all i ∈ [d], the measurement of T at (ᾱ1, . . . , ᾱd) equals 〈T , ᾱ1 ⊗ · · · ⊗ ᾱd〉. The d-dimensional question
is strictly harder than the three dimensional question, and again we can ask (d-dimensional analog of
Question 1′)- suppose the tensor rank of T is at most some fixed constant. Is there an efficient algorithm
for computing the tensor rank of T ?

Observe that each measurement of T at (ᾱ1, . . . , ᾱd) corresponds to a black-box evaluation of the poly-
nomial fT at (ᾱ1, . . . , ᾱd). Moreover, finding the optimal decomposition of T as a sum of rank-1 tensors
is equivalent to the following: Given black-box access to fT , reconstruct it as a set-multilinear ΣΠΣ{⊔jXj}

circuit with the smallest possible top fan-in.
The three dimensional version was asked as an open question in the work of Schaefer and Stefankovic [SS16].

In a related setting, a version of the d-dimensional variant (efficiently learning an optimal decomposition
of a constant-rank tensor by black-box access to the measurements) was also raised in the recent work of
Chen and Meka [CM20]. It turns out that the answer to the above question is extremely sensitive to the
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underlying field. For instance, if the underlying field is the rationals (Q), then even if the tensor rank is a
constant, computing the exact value of the tensor rank over Q is not known to be decidable (and is, in fact,
believed to be undecidable) [Shi16, SS16].

In this paper, we give the first randomized polynomial-time algorithm for computing the tensor rank of a
constant-rank, d-dimensional tensor T 1. Over the fields R and C we also show how to obtain deterministic
polynomial time algorithms. Moreover, our algorithm finds the optimal decomposition of T as a sum of
rank-1 tensors. Our algorithm works over fields such as R, large enough finite fields, C, and any other
algebraically closed fields. Over other fields, we are only able to compute the tensor rank when we view the
entries of the tensor as elements of some extension field.

Theorem 1 (Informal). Let k be any constant. There exists a randomized polynomial-time algorithm that
given black-box access to a polynomial f ∈ F[X] computable by a ΣΠΣ{⊔jXj}(k) circuit over F, and the
partition ⊔Xi of the set of variables X, outputs a ΣΠΣ{⊔jXj}(k) circuit computing f . When F is R or C

then our algorithm is deterministic.

This implies a polynomial-time algorithm to compute the optimal tensor decomposition (and hence also
the tensor rank) of constant-rank tensors for various fields. The formal version of the result is given in
Theorem 1.1

Our proof uses various ingredients such as a variable reduction procedure, and setting up and solving a
system of polynomial equations. Another important ingredient used is the rank bounds that were developed
in the study of polynomial identity testing for ΣΠΣ(k) circuits [DS07, KS07, KS09b, SS09, SS10]. These are
structural results for identically zero ΣΠΣ(k) circuits, and essentially show that under some mild conditions,
any ΣΠΣ(k) circuit which computes the identically zero polynomial must have its linear forms contained in
a “low-dimensional” space. This understanding led to very efficient deterministic polynomial identity testing
results for this class, and then eventually were used in efficient reconstruction algorithms for subclasses of
ΣΠΣ(k) circuits as well.

Symmetric Tensors: Just as we asked the question of tensor rank computation for general tensors, we
can also ask the analogous questions for symmetric tensors.

A tensor T is called symmetric if X1 = X2 = · · · = Xd and we have T (i1, i2, . . . , id) = T (j1, j2, . . . , jd)
whenever (i1, i2, . . . , id) is a permutation of (j1, j2, . . . , jd). Thus, a symmetric tensor is a higher order
generalization of a symmetric matrix. Analogous to tensor rank, symmetric rank is obtained when the
constituting rank-1 tensors are imposed to be themselves symmetric, that is v̄ ⊗ v̄ · · · ⊗ v̄.

Just like in the case of general tensors, computing the symmetric rank reduces to finding the optimal top
fan-in of a special class of arithmetic circuits, which is sum of power of linear forms (Σ∧Σ) circuits. The class
of Σ∧Σ(k) circuits computes polynomials of the form f = ℓd1 + · · · ℓdk where each ℓi is a linear polynomial
over the underlying n variables.

Let C(X) =
k∑

i=1

ℓdi be a Σ∧Σ(k) circuit over F computing fSym,T (X) for a symmetric tensor T =

(αj1,j2,...,jd) ∈ Fn1×···×nd . Then

T =

k∑

i=1

v̄(ℓi)⊗ · · · ⊗ v̄(ℓi)

where v̄(ℓi) is a n-dimensional vector corresponding to the linear form ℓi,j .
Just as in the case of tensor rank, determining the symmetric rank of tensors is also known to be NP-

hard [Shi16]. One could still ask if there are efficient algorithms for determining the symmetric rank when
the rank is constant. In this paper, we give (what we believe to be) the first randomized polynomial-time
algorithm for computing the symmetric tensor rank of a constant-rank d-dimensional symmetric tensor T .

1It is possible that the algorithm of Karnin and Shpilka [KS09a] for learning multilinear ΣΠΣ(k) circuits can be adapted to
also properly learn set-multilinear ΣΠΣ(k) circuits. The Karnin-Shpilka algorithm has a polynomial dependence on field size
|F|. If there algorithm can be adapted then it would give a polynomial-time algorithm over small finite fields. The algorithms
in this paper work over infinite fields as well, and that setting was the primary motivation for this work.
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Theorem 2 (Informal). Let k be any constant. Let F be any field of characteristic 0 or sufficiently large
characteristic. There exists a randomized polynomial-time algorithm that given black-box access to a polyno-
mial f ∈ F[X] computable by a Σ∧Σ(k) circuit with constant k over F, outputs a Σ∧Σ(k) circuit computing
f . When F is R or C then our algorithm is deterministic.

This implies a polynomial-time algorithm to compute the optimal symmetric tensor decomposition (and
hence also the symmetric tensor rank) of constant-rank symmetric tensors over various fields. The formal
version of the result is given in Theorem 1.4.

Our proof in this case also uses a variable reduction procedure, and setting up and solving a system of
polynomial equations. However the proof is overall way simpler than that for general tensors (and actually
fits in about half a page!).

1.2 Multilinear ΣΠΣ(k) circuits

Multilinear ΣΠΣ(k) circuits are a more general class of circuits than ΣΠΣ{⊔jXj}(k) circuits. In the proper
learning setting however, a proper learning algorithm for multilinear ΣΠΣ(k) circuits does not imply a proper
learning algorithm for ΣΠΣ{⊔jXj}(k) circuits.

In this paper we also study reconstruction algorithms for multilinear ΣΠΣ(k) circuit. Multilinear ΣΠΣ(k)
circuits were studied by by Karnin and Shpilka [KS09a] and they give the first polynomial-time algorithm for
this class of circuits. However the running time of the Karnin-Shpilka algorithm has a polynomial dependence
on the field size |F|. Thus it works only over polynomially sized finite fields, and in particular it does not
work over infinite fields 2.

At a very high level, the way the algorithm works in [KS09a] is as follows. It finds a suitable projection
of the input circuit where only constantly many variables are kept “alive” and the rest are set to field
constants. The new circuit in constantly many variables has only constantly many field elements appearing
as coefficients, and hence in time poly(|F|) one can efficiently “guess” it by going over all possibilities for what
the projected circuit looks like. Once the algorithm hits upon the correct guess of the projected circuit, then
it “lifts” the projected circuit to recover the original circuit. The implementation of the lifting procedure is
quite clever and uses a very nice clustering procedure. The only place where the prohibitive dependence on
the field size comes up is in guessing the projected circuit.

In this work we give the first randomized polynomial-time proper learning algorithm for this model that
works over large fields (and in particular infinite fields). Our algorithm works over all fields of characteristic
0 or characteristic greater than d (where d is the degree of the circuit). Over R and C we show how to
derandomize the above algorithm and to obtain deterministic polynomial time algorithms. Several of the
ideas in our algorithm are inspired by the algorithm from [KS09a] but we need several new ideas as well.

One similarity we have with [KS09a] is that we also project to constantly many variables and try to
learn the projected circuit. Instead of “guessing” or iterating to find the projected circuit, we reduce the
problem to solving a suitable system of polynomial equations. The problem is that the projected circuit may
not have a unique representation as a multilinear ΣΠΣ(k) circuit, and hence the representation learnt by
polynomial system solving might be just some representation (not the original representation) and it might
not be liftable. This leads to some subtleties and the rest of the algorithm and how we implement the lift is
quite different. We give a more detailed overview in Section 2.3.

Theorem 3 (Informal). Let k be a constant. Let F be any field of characteristic 0 or sufficiently large
characteristic. There exists a randomized polynomial-time algorithm that given black-box access to a poly-
nomial f ∈ F[X] computable by a multilinear ΣΠΣ(k) circuit over F, outputs a multilinear ΣΠΣ(k) circuit
computing f . Over R and C the algorithms we obtain are in deterministic polynomial time.

This implies a polynomial-time algorithm for learning multilinear ΣΠΣ(k) circuits over infinite fields.
The formal version of the result is given in Theorem 1.6.

2The Karnin-Shpilka [KS09a] result is in fact more general and gives reconstruction algorithms for ΣΠΣ(k) circuits without
the multilinearity constraint, but in this setting the learning algorithms aren’t proper and we will not discuss it.
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1.3 Our results

We now state our results. All our algorithms will be randomized algorithms over general fields, and hence
algorithms will output the correctly reconstructed circuit with high (say ≥ 0.9) probability. This probability
can boosted to 1 − o(1) by simply doing independent repetitions. Over R and C, all our algorithms are
deterministic.

Our first main result is a polynomial-time algorithm for proper learning of the class of ΣΠΣ{⊔jXj}(k)
circuits.

Theorem 1.1 (Proper learning ΣΠΣ{⊔jXj}(k) circuits). Given black-box access to a degree d, n variate
polynomial f ∈ F[X] computable by a ΣΠΣ{⊔jXj}(k) circuit over F, and given the partition ⊔Xi of the set

of variables X, there is a randomized poly(dk
3

, kk
k10

, n, c) time algorithm for computing a ΣΠΣ{⊔jXj}(k)
circuit computing f , where c = log q if F = Fq and c is the maximum bit complexity of any coefficient of
f if F is infinite. When the underlying field F is R or Fq with q ≥ nd · 2k+1 or algebraically closed, then

the output circuit is over F as well. Otherwise the output circuit is over a degree poly(kk
k10

) extension of
F. Moreover when F is R or C, then we show that the above algorithm can be made to run in deterministic

time poly(dk
3

, kk
k10

, n, c).

We would like to remark that this is the first proper learning algorithm for ΣΠΣ{⊔jXj}(k) circuits, and it
works over all fields. We feel this result is particularly interesting in the setting of large or infinite fields such
as R or C, and understanding reconstruction algorithms in that setting was the goal of this work. If we didn’t
require the learning to be “proper” and were okay with letting the output be a polynomial from a bigger
class, then such algorithms were already known (even without the restriction of top fan-in) [BBB+00, KS06].

By the equivalence described in Section 1.1 (see also Lemma 3.29), we obtain the following immediate
corollary to Theorem 1.1 which for constant-rank tensors gives us an efficient tensor decomposition algorithm
for expressing the input tensor as sum of rank one tensors.

When T is a d dimensional tensor, as described in Section 1.1, even storing all of T as an array is too
inefficient. However if the rank is small, there is still a small implicit description of T . We consider the
setting when we have black-box access to measurements of T (as described in Section 1.1). This exactly
corresponds to having black-box access to the associated polynomial fT .

Corollary 1.2 (Decomposing fixed rank tensors). Let T ∈ Fn1×···×nd be a d-dimensional tensor of rank at

most k. Let n =
∑d

i=1 ni. Given black-box access to measurements of T (equivalently to evaluations of fT ),

there exists a randomized poly(dk
3

, kk
k10

, n, c) time algorithm for computing a decomposition of T as a sum
of at most k rank 1 tensors, where c = log q if F = Fq and c is the maximum bit complexity of any coefficient
of f if F is infinite. When the underlying field F is R or Fq with q ≥ nd ·2k+1 or algebraically closed, then the

decomposition is over F as well. Otherwise the decomposition will be over (a degree poly(kk
k10

)) extension of
F. Moreover when F is R or C, then we show that the above algorithm can be made to run in deterministic

time poly(dk
3

, kk
k10

, n, c).

Notice that we can use the above result to obtain an efficient algorithm for computing the exact value
of the tensor rank of the input tensor (at least over R, C, large finite fields and other algebraically closed
fields). Over other fields we can only compute the tensor rank over an extension field. The way one can
compute the tensor rank is as follows: run the above algorithm for all values of k starting from k = 1, and
the smallest k for which the algorithm successfully outputs a tensor decomposition will be the tensor rank of
T . (Note that one can test when the output is successful by a simple randomized polynomial identity test.)

Remark 1.3. The dependence on k (exponential tower of size 2) is not optimized in the above theorem and
corollary and can be improved to a single exponential in k when F = C,R, (see Section 3.8 and Section 5 for
details). However, the single exponential dependence on k is expected as tensor decomposition is NP-hard in
general [H̊as90, SS16] and not even known to be computable for Q, thus justifying our need to go to extension
fields. See Section 3.9 for more details on hardness of tensor decomposition.
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Note that in the case of constant dimensional tensors (i.e. when one can actually efficiently look at all the
entries), we can simulate black-box access to the polynomial fT , given access to the entries of the tensor and
vice versa. Thus in the constant dimensional setting our algorithm also gives a way for computing tensor rank
and obtaining the optimal tensor decomposition given access to the entries of the tensor. This in particular
answers an open question asked by Schaefer and Stefankovic [SS16], who asked as an open question the
complexity of computing the tensor-rank when the rank is constant. Our proof in the constant dimensional
setting is simpler than that for the setting of growing d. In the setting of d dimensional tensors (for large or
growing d) the question of whether one can get improved efficiency when the rank of T is constant was raised
in the work of Chen and Meka [CM20] (in a slightly different context). Our work addresses and resolves this
question in the black-box query setting for worst case tensors.

Analogous to the result above for tensor decomposition of general tensors, we also obtain efficient al-
gorithms for optimal symmetric tensor decomposition of constant-rank symmetric tensors. The setting of
constant-rank symmetric tensors ends up being much simpler than general tensors, and our proofs for this
model are much simpler. This result will follow as a corollary of the next result, which is a randomized
polynomial-time algorithm for proper learning of Σ∧Σ(k) circuits.

Theorem 1.4. (Proper learning Σ∧Σ(k) circuits) Given black-box access to a degree d, n variate polynomial
f ∈ F[X] computable by a Σ∧Σ(k) circuit over F, such thar char(F) > d or 0, there is a randomized

poly
(
(dk)k

k10

, n, c
)
time algorithm for computing a Σ∧Σ(k) circuit computing f , where c = log q if F = Fq

and c is the maximum bit complexity of any coefficient of f if F is infinite. When the underlying field F is R
or Fq with q ≥ nd2k or algebraically closed, then the output circuit is over F as well. Otherwise the output

circuit is over a degree poly((dk)k
k10

) extension of F. Moreover when F is R or C, then we show that the

above algorithm can be made to run in deterministic time poly
(
(dk)k

k10

, n, c
)
.

By the equivalence described in Section 1.1, we obtain the following immediate corollary to Theorem 1.4
which for constant-rank tensors gives us an efficient symmetric tensor decomposition algorithm for expressing
the input tensor as sum of rank one symmetric tensors.

Corollary 1.5 (Decomposing fixed symmetric rank tensors). Let T be a symmetric d-dimensional tensor
of side length n, with F-entries and symmetric rank at most k, such that char(F) > d or 0. Given black-box

access to fSym,T , there is a randomized poly
(
(dk)k

k10

, n, c
)
time algorithm for computing a decomposition

of T as a sum of at most k rank 1 symmetric tensors, where c = log q if F = Fq and c is the maximum bit
complexity of any coefficient of f if F is infinite. When the underlying field F is R or Fq with q ≥ nd2k or
algebraically closed, then the decomposition is over F as well. Otherwise the decomposition will be over (a

degree poly
(
(dk)k

k10)
extension of F. Moreover when F is R or C, then we show that the above algorithm

can be made to run in deterministic time poly
(
(dk)k

k10

, n, c
)
.

Again, like in the case of general tensor decomposition, Remark 1.3 holds here as well.
We next state our result on proper learning of multilinear ΣΠΣ(k) circuits.

Theorem 1.6 (Proper learning multilinear-ΣΠΣ(k) circuits). Given black-box access to a degree d, n variate
polynomial f ∈ F[X] computable by a multilinear ΣΠΣ(k) circuit over F, such that char(F) > d or 0,

there is a randomized poly

(
nkkk10

, d, kk
kk10

, c

)
time algorithm for computing a multilinear ΣΠΣ(k) circuit

computing f , where c = log q if F = Fq and c is the maximum bit complexity of any coefficient of f if
F is infinite. When the underlying field F is R or Fq with q ≥ nd · 2k+1 or algebraically closed, then the

output circuit is over F as well. Otherwise the output circuit is over a degree poly

(
(k)k

kk10
)

extension of

F. Moreover when F is R or C, then we show that the above algorithm can be made to run in deterministic

time poly

(
nkkk10

, d, kk
kk10

, c

)
.
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This is the first efficient proper learning algorithm for multilinear-ΣΠΣ(k) circuits that works over large
fields, and in particular infinite fields such as R and C. Even here, the dependence on k (exponential tower
of size 3) is not optimized in the above theorem and can be improved to a tower of size 2 in k when F = C,R,
(see Section 6 for details).

Deterministic vs Randomized Reconstruction Algorithms: The algorithms we give in this paper
are randomized over general fields and deterministic over R and C. Indeed, derandomizing them in general,
will be highly nontrivial for the following reason. In the reconstruction problem for all three subclasses of
ΣΠΣ(k) circuits being studied, we can embed within them the problem of solving a system of polynomial
equations. (See Theorem 3.37 and the discussion in Section 3.9.) The only efficient algorithms we know for
solving systems of polynomial equations over large finite fields (i.e with running time polynomial in log q for
a field Fq) are randomized and it is a very interesting open question to derandomize them. A derandomized
solution to our reconstruction algorithms over large finite fields would have very interesting algorithmic
implications for polynomial system solving, see [AM94, Problem 15].

Interestingly, the large characteristic case is the only case when low-variate polynomial system solving
is hard to derandomize. That is, if the underlying field is not a finite field with large characteristic, then
there do exist efficient deterministic algorithms for low-variate polynomial system solving. See Section 3.8.1
for details. Also, this turns out to be the only bottleneck for derandomizing our learning/decomposition
algorithms. That is, if the underlying field is not a finite field with large characteristic, then the algorithms
underlying Theorems 1.1, 1.4, 1.6 can be derandomized efficiently. Though we do not mention this
explicitly, it is easy to see that, when F = Fpt then the algorithms mentioned in Theorems 1.1, 1.4, 1.6 can
be made deterministic with an additional polynomial in p (characteristic) dependence in time complexity.
See derandomization remarks in respective sections for details.

When we present our proofs, for simplicity we will first present the randomized algorithms and then later
point out the changes that need to be made in order to derandomize them.

1.4 Related/Previous Work

Reconstruction of ΣΠΣ(k) circuits has received a fair amount of attention. The case of k = 1 is resolved
by the black-box factoring algorithm of Kaltofen and Trager [KT90]. The case of k = 2 is already highly
nontrivial and very interesting and thus needed quite a few new ideas. This case was first studied by Shpilka
[Shp09], who designed a reconstruction algorithm for k = 2 which was later improved by Karnin and Shpilka
[KS09a] who gave efficient reconstruction algorithms for (ΣΠΣ(k)) circuits for any constant top fan-in k.
When the input is an n-variate, degree d polynomial computed by a size s circuit, both algorithms run in
time quasipoly(n, d, |F| , s). The algorithms are not ‘proper learning’ algorithms, and the output is from a
larger class of “generalized” depth-3 circuit. Moreover given the dependence of the running time on the field
size, these algorithms aren’t efficient over large/infinite fields.

Over fields of characteristic 0, the only efficient reconstruction algorithm we know for ΣΠΣ(k) circuits
is the randomized algorithm by [Sin16] which works for k = 2, and uses lots of new ideas such as quantita-
tive/robust Sylvester-Gallai theorems for high dimensional points. Very recently, in [Sin20], Sinha studied
the case of k = 2 for finite fields and gave the first algorithm in this setting with poly log dependence in field
size. These algorithms are mostly proper, but not always. When the rank of the linear forms in the input
polynomial is not high dimensional, then the output circuit might not be a ΣΠΣ(2) circuit.

When the input is a multilinear ΣΠΣ(k) circuit, the works of Shpilka [Shp09] and Karnin-Shpilka [KS09a]
give polynomial-time proper learning algorithms. The dependence on the field size is still poly(|F|), and hence
these algorithms do not work over large/infinite fields. Inspired by the work of Karnin and Shpilka, in [BSV20]
similar results were obtained for multilinear depth-4 circuits with bounded top fan-in (ΣΠΣΠ(k) circuits).
The running time is however still at least poly(|F|), and hence it does not work over large/infinite fields.
When the top fan-in is 2, i.e. for ΣΠΣΠ(2) circuits, we do know such efficient polynomial-time reconstruction
algorithms by the work of Gupta, Kayal and Lokam [GKL12].
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Other Results: The class of circuits for which we understand reconstruction really well is the class of
depth-2 (ΣΠ) arithmetic circuits (a.k.a sparse polynomials). We can properly learn sparse polynomials in
deterministic poly(s, n, d) time over any field [BOT88, KS01]. Another class for which we understand re-
construction reasonably well is the class of read-once oblivious branching programs (ROABPs). Klivans and
Shpilka [KS06] gave a randomized reconstruction (proper learning) algorithm for ran in time poly(n, d, s).
This was later derandomized in [FS12] with time complexity quasipoly(n, d, s). For depth-3 circuits, recon-
struction algorithms for various other restricted classes have been studied. For instance, for set-multilinear
depth-3 circuits [BBB+00, KS06] gave a randomized poly(n,d,s) (improper) learning algorithm which outputs
an ROABP.

Recently, there has been a flurry of activity in average case learning algorithms for various arithmetic
circuit classes [GKL11, GKQ14, KNST17, KNS18, KS19, GKS20]. These results can be thought of as worst
case reconstruction, given some non-degeneracy condition holds for some implicit polynomials (which are
usually computed by intermediate gates). Interestingly, these results fall under the umbrella of learning from
natural lower bounds which is an exciting area of research in arithmetic as well as Boolean circuit complexity
[CIKK16, KS19].

2 Proof Overview

We have three main results in the paper:(1) reconstruction of ΣΠΣ{⊔jXj}(k) circuits (equivalent to low
rank tensor decomposition), (2) reconstruction of Σ∧Σ(k) circuits (equivalent to low rank symmetric tensor
decomposition), and (3) reconstruction of multilinear ΣΠΣ(k) circuits.

Our algorithms are randomized over general fields and we show how to derandomize then over R and
C. For simplicity, in the proof overview we will only discuss the randomized algorithms. Later in the paper
when we give the formal proof we will show how to derandomize the algorithms.

A common theme in the proof of each of these results is that all proofs involve a variable reduction
procedure and setting up and solving a suitable system of polynomial equations, where a solution to the system
gives some important information about the circuit being reconstructed. In the case of reconstruction for
ΣΠΣ{⊔jXj}(k) circuits and multilinear ΣΠΣ(k) circuits, the proofs are considerably more involved and also
use “rank bound” techniques that give structural information about ΣΠΣ(k) circuits that are identically 0.

For simplicity, we start with a proof overview of the result that was (in hindsight) quite easy to prove,
which is coming up with an efficient reconstruction algorithm for Σ∧Σ(k) circuits.

2.1 Reconstruction of Σ∧Σ(k) circuits

Let f be a polynomial which has a Σ∧Σ(k) representation, and let

Cf ≡

k∑

i=1

(ai,1x1 + ai,2x2 + ai,3x3 + . . .+ ai,nxn)
d

be the Σ∧Σ(k) circuit computing f .
An important observation is that if f can be represented by a Σ∧Σ(k) circuit, then f has only k “essential

variables”. In particular one can apply an invertible linear transformation to the variables of f so that the
transformed f only depends on k variables.

What is nice is that such a linear transformation can actually be computed without actually looking at
Cf and its linear forms, but only with black-box access to f . This follows from result of Kayal [Kay11],
and which built upon a result by Carlini [Car06]. (The original result by Kayal was not stated or used in
the black-box setting, but it is easy to see that the proof an be adapted to black-box setting as well.) Let
gA(x̄) = f(A · x̄), where gA(x̄) depends only on k variables. Since the algorithm can compute A, hence given
black-box access to f , it can efficiently simulate black-box access to gA. Moreover, observe that gA also has
a Σ∧Σ(k) representation. Thus if we can learn a Σ∧Σ(k) representation of gA, then by simply applying the
inverse linear transform, one can recover a Σ∧Σ(k) representation of f .
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Thus the new goal is to learn a Σ∧Σ(k) representation of gA given black-box access to it. We will do
this be reducing the problem of learning the Σ∧Σ(k) representation of gA to solving a suitable system of
polynomial equations. Recall that gA only depends on k variables. Thus the monomial representation of
gA only has

(
k+d
d

)
monomials. Since k is small, this quantity is not too big, and one can invoke black-box

reconstruction algorithms for sparse polynomials [BOT88, KS01] to learn gA as a sum of monomials. Let
gA =

∑
ē cē · x̄

ē be the monomial representation of gA.
Let

CgA ≡
k∑

i=1

(bi,1x1 + bi,2x2 + bi,3x3 + . . .+ bi,kxk)
d

be a Σ∧Σ(k) representation of gA.
Then notice that

k∑

i=1

(bi,1x1 + bi,2x2 + bi,3x3 + . . .+ bi,kxk)
d =

∑

ē

cē · x̄
ē.

Now for each monomial x̄ē that appears in gA, we can compare the coefficient of x̄ē on both sides of the
above expression to get a polynomial equation in the variables bi,j . Doing this for all monomials gives us a

system of at most
(
k+d
d

)
polynomial equations in k2 variables, with bi,j as the unknown variables. Observe

that any solution to the system of equations would give a Σ∧Σ(k) representation of gA an vice versa. By
Theorem 3.36, this system can be solved in polynomial time if k is a constant.

2.2 Reconstruction of ΣΠΣ{⊔jXj}(k) circuits

We now show how to efficiently reconstruct ΣΠΣ{⊔jXj}(k) circuits. Again, variable reduction and setting
up and solving polynomial systems of equations play an important role, but several other ingredients (such
as rank bound techniques) also go into the proof and the proof is more involved.

We are given as input black-box access to a degree d, n variate polynomial f ∈ F[X] computable by
a ΣΠΣ{⊔jXj}(k) circuit over F, and we are also given the partition ⊔Xi of the set of variables X. Let

Cf ≡
∑k

i=1

∏d
j=1 ℓi,j , be a ΣΠΣ{⊔jXj}(k) representation of f , where each ℓi,j is a linear polynomial in Xj

variables.

2.2.1 Variable reduction:

As a first step, we show how to reduce the number of variables in each part to at most k. Here we cannot
directly invoke the result by Kayal [Kay11] and Carlini [Car06] for the following reasons. The total number
of essential variables is k × d which is quite large. Though the number of essential variables in every part is
at most k, there seems to be no straightforward way to apply the result separately to each part3. Even if kd
was small, after applying the linear transformation given by the Carlini-Kayal result, the new circuit might
not be set-multilinear, and we need to crucially maintain set-multilinearity in order for the other steps of
the algorithm to be carried out.

Instead, we use the structural properties of set-multilinear circuits to come up with a a different black-box
algorithm for performing the variable reduction. We essentially come up with d different invertible linear
transformations, one for each set of variables in the partition, that reduces the variables in each set to at
most k. In Section 5.1 we elaborate more on how we find these transformations using some properties of the
underlying class of circuits. After this step is performed, one can essentially assume that the input circuit is
such that each set of the partition has at most k variables.

2.2.2 Reconstructing low degree (d ≤ 2k2) ΣΠΣ{⊔jXj}(k) circuits:

Once we have the variable reduction established, we proceed along the same lines as the algorithm for
reconstructing Σ∧Σ(k) circuits. Since the degree is small, the number of monomials appearing in f is small,

3Since the linear maps might then end up being over the field of rational functions in the remaining variables.
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and the total number of variables appearing in f is small. ( Unlike the symmetric case where the number
of monomials was small even for high degree circuits). One can invoke black-box reconstruction algorithms
for sparse polynomials [KS01, BOT88] to learn f as a sum of monomials. Then, similar to the Σ∧Σ(k)
case, we set up a system of polynomial equations in poly(k) variables such that every solution to the system
corresponds to a ΣΠΣ{⊔jXj}(k) representation of f . For more details, see Section 5.2.

2.2.3 Reconstructing high degree (d > 2k2) ΣΠΣ{⊔jXj}(k) circuits:

The high level plan for reconstructing general high degree ΣΠΣ{⊔jXj}(k) circuits is to use induction on k.
When k = 1, then the algorithm just invokes a black-box factoring algorithm such as [KT90]. Now assume
k ≥ 2.

Our first step will be to just learn any one linear form appearing in Cf . (Actually as a first step it will
be convenient to learn two distinct linear forms such that each multiplication gate contains at most one of
them.) In the next step we will use that linear form to learn most of the linear forms of Cf . In the final step
we will try to learn all the linear forms and obtain a full ΣΠΣ{⊔jXj}(k) representation of f .

Learning one (or two) linear forms appearing in Cf : The algorithm chooses k2 sets of variables in
the partition X = ⊔Xi to keep “alive” and sets the variables in the remaining sets to random values. Let
the resulting restricted polynomial be fR and the resulting constant degree ΣΠΣ{⊔jXj}(k) circuit be CfR .

Now, we already know reconstruction algorithms (from the previous case) for low degree ΣΠΣ{⊔jXj}(k)
circuits which we could invoke. If we could learn CfR , then in particular we would have learnt several
linear forms of Cf . However note that all we have is black-box access to fR, which might not have a
unique ΣΠΣ{⊔jXj}(k) circuit representation. In fact it might have exponentially many ΣΠΣ{⊔jXj}(k) circuit
representations, and our reconstruction algorithm would learn one of these representations. Thus it is possible
that we do not learn CfR , but some other ΣΠΣ{⊔jXj}(k) circuit representation of fR, call it C ′

fR
. Now a

priori it may seem that the linear forms in C ′
fR

might not have anything in common with the linear forms
of CfR or Cf . However using rank bound arguments that have been used extensively in the past to analyze
identically 0 ΣΠΣ(k) circuits (for polynomial identity testing and polynomial reconstruction), one can show
two distinct ΣΠΣ{⊔jXj}(k) representations of the same polynomial must indeed have many linear forms in
common (as long as the degree is large enough, which it is in our case). Thus we get that CfR and C ′

fR

(which we learnt) must have many linear forms in common. Though we may not know exactly which linear
form of C ′

fR
also appears in Cf , we can come up with a small list of candidate options and then iterate over

these options. Any wrong candidate will not lead to a successful output of the final algorithm and we will
be able to detect it by a later testing phase. Thus we can effectively assume we know a linear form in Cf .
In fact if we do things more carefully we can ensure that we know two linear forms ℓ1 and ℓ2 appearing in
Cf such that they are supported on the same subset of variables.

Learning most of the linear forms from each multiplication gate of Cf : Once we learn ℓ1 and ℓ2
appearing in Cf , we try to learn more linear forms as follows. (We don’t need fR any more or C ′

fR
)

The algorithm applies a suitable random setting of the variables of ℓ1 in the polynomial f , that makes
ℓ1 evaluate to 0, and results in a circuit with < k multiplication gates. Call the restricted polynomial fR1

and let CfR1
be the restricted version of Cf . By the inductive hypothesis, we can learn a ΣΠΣ{⊔jXj}(k− 1)

representation of fR1
. Call this C ′

fR1
. If we could actually learn the representation CfR1

then we would

have learnt most of the linear forms in all the multiplication gates of Cf that did not get set to zero under
the restriction. However we can only learn some other representation, which we called C ′

fR1
. Using rank

bound arguments, we will however still be able to argue that C ′
fR1

and CfR1
have a lot in common. In fact

we show that each multiplication gate of CfR1
overlaps almost entirely (in all but k linear forms) with some

multiplication gate of C ′
fR1

. Repeating this procedure for the other linear form ℓ2 as well gives us another

restricted circuit CfR2
and the version of it that is learnt which is C ′

fR2
. It is now easy to see that each

multiplication gate of Cf overlaps almost entirely (in all but k linear forms) with some multiplication gate
of C ′

fR1
or C ′

fR1
.
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Once we have this, by iterating over all ways of matching up the multiplication gates and choices of
overlap, we can make generate a polynomial sized list of k-tuples (G1, G2, . . . Gk) which has the following
property. One of the k-tuples (G1, G2, . . . Gk) from the list will have the property that f = G1H1+ · · ·GkHk

and GiHi = Ti where Ti was one of the multiplication gates in the original ΣΠΣ{⊔jXj}(k) representation of
f , Cf . Each Gi has degree d − k2 and hence each Hi has degree k2. By a little bit of more effort we can
also ensure that all the Hi depend on the same sets of the underlying variable partition. The final algorithm
will go over all possible k-tuples (G1, G2, . . . Gk) from the list in order to find the correct one. All the wrong
ones will not lead to a successful reconstruction, and will get eliminated by a later testing phase.

Learning the full ΣΠΣ{⊔jXj}(k) representation of f : We now assume that we have learnt k polyno-
mials G1, G2, . . . , Gk such that f = G1H1 + · · ·GkHk. GiHi = Ti where Ti was one of the multiplication
gates in the original ΣΠΣ{⊔jXj}(k) representation of f . Each Hi is a polynomial in k3 variables of degree
at most k2 (since after variable reduction each part had at most k variables) and all the Hi depend on the
same sets of the underlying variable partition. We need to now learn the Hi, or even some variation of them
which will eventually lead to a full ΣΠΣ{⊔jXj}(k) representation of f .

We demonstrate how we do this with some simple examples. As a simple case, suppose that the Gi are
linearly independent polynomials. By substituting random values into the variables of the Gi, we obtain
black-box access to a random linear combination of H1, . . . Hk. Call this linear combination P1. From black-
box access to P1, we can actually obtain the monomial representation of P1 using black-box interpolation
for sparse polynomials. We can repeat this process k times to get k different random linear combinations of
H1, . . . Hk. The linear independence of G1, G2, . . . Gk implies that these random linear combinations will be
linearly independent with high probability (see Lemma 3.16). Since we know the Gi, we actually know to
coefficients of the random linear combinations. Thus once we learn these combinations, we can invert the
transformation and actually get black-box access to each Hi individually. Once we have black-box access to
each Hi, we can factorize them in a black-box way and hence recover the full underlying circuit.

Here is a slightly more general case. Imagine that k = 3, G1 and G2 are independent, but G3 = G1+G2.
Since we actually know the Gis, we can learn their linear dependency structure (for instance by taking
enough random evaluations of them and learning the linear dependence structure of the evaluations, see
Lemma 3.17). Then,

Cf = G1H1 +G2H2 + (G1 +G2)H3 = G1(H1 +H3) +G2(H2 +H3)

Let H1+H3 = K1 and H2+H3 = K2. Now just as in the simple case when all the Gis were independent, we
can again learn the monomial representation of two distinct random linear combinations of K1 and K2, and
then use this to recover the monomial representations of K1 and K2. What remains is to find a representation
of K1 which looks like H1+H3 and a representation of K2 which looks like H2+H3. Individually, each looks
like a case of finding a ΣΠΣ{⊔jXj}(2) representation for low degree polynomials, but these two ΣΠΣ{⊔jXj}(2)
representations are entangled since they must share a multiplication gate. However we can set up one big
system of polynomial equations for solving both these reconstruction problems at the same time that takes
into account the shared multiplication gate.

This more general case that we just described contains most of the ideas for the fully general case. For
more details, refer to Section 5.5.

2.3 Reconstruction of multilinear ΣΠΣ(k) circuits

We now give a proof overview and describe our algorithm for efficiently learning multilinear ΣΠΣ(k) circuits.
The main goal of this result is to find a procedure which also works over large and infinite fields.

Variable reduction and setting up and solving polynomial systems of equations again play an important
role, especially for the case of low degree multilinear ΣΠΣ(k) circuits. However the implementation of this
technique and how to set up and solve the system of equations is more subtle. For general high degree
multilinear ΣΠΣ(k) circuits, we need several other tools such as a clustering procedure (inspired by the work
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of [KS09a], rank bounds, the notion of rank preserving subspaces, black-box factoring algorithms and an
error correcting procedure.

2.3.1 Reconstruction of low degree multilinear ΣΠΣ(k) circuits

Think of k (the top fan-in) and d (the degree) to be constants, and the number of variables, n, to be growing.
Let f ∈ F[x1, x2, . . . , xn] be a polynomial computed by a degree d, multilinear ΣΠΣ(k) circuit C of the form

k∑

i=1

Ti(x̄) =

k∑

i=1

di∏

j=1

ℓi,j(x̄) (1)

where for each fixed i, the different ℓi,j are supported on disjoint variables.
Let m be the number of essential variables in f . Since there at most kd linear forms appearing in C, it

is easy to see that the number of essential variables in f , i.e. m, is at most kd.
We now apply a variable reduction procedure, and for this we invoke the result by Kayal[Kay11] and

Carlini [Car06] (Lemma 3.23) to efficiently compute an invertible linear transformation A ∈ Fn×n such that
f(A · x̄) only depends on the first m variables.

Let g(x̄) = f(A · x̄). Observe that given black-box access to f , one can easily simulate black-box access
to g. Also since g(A−1 · x̄) = f(x̄), any algorithm that can efficiently learn g can also efficiently learn f in the
following way. For each i ∈ [n], suppose that Ri denote the ith row of A−1. Then in the ith input to g we
simply input the linear polynomial Li = 〈Ri, x̄〉, which is the inner product of Ri and the vector x̄ of formal
input variables. Since g only depends on the first m variables, we only really need to do this operation for
i ∈ [m].

Since f is computed by a degree d multilinear ΣΠΣ(k) circuit, hence g(X) = f(A · x̄) also has a natural
degree d ΣΠΣ(k) circuit representation, where the linear forms of that representation are obtained by ap-
plying the transformation A to corresponding linear forms of C. Let us call this circuit Cg. Notice that Cg

may not be multilinear. However, if were somehow able to learn the precise circuit Cg, then by substituting
each variable xi to Li then we would recover the circuit C which is indeed multilinear.

Thus our goal is now the following. We have black-box access to g which only depends on m variables.
We would like to devise an algorithm for reconstructing Cg. Now here is a slight issue. Cg is a particular
degree d ΣΠΣ(k) representation of g. It has the nice property that when we plug in xi = Li (for all
i ∈ [m]) in this representation, then we recover a multilinear ΣΠΣ(k) representation of f . Let us call the
new circuit obtained by plugging in xi = Li for each i, the “lift” of Cg. Observe that g might have multiple
(perhaps exponentially many) representations as a degree d ΣΠΣ(k) circuit. If given black-box access to g,
the reconstruction algorithm finds some other degree d ΣΠΣ(k) representation of g, call it C ′

g, then there
is no guarantee that when we plug in xi = Li in this representation, then we recover a multilinear ΣΠΣ(k)
representation of f . In other words, the lift of C ′

g in general may not be multilinear.
Although in our algorithm we will not actually be able to guarantee that we learn precisely Cg, however

the existence of Cg tells us that there exists a ΣΠΣ(k) representation of g whose lift is a multilinear ΣΠΣ(k)
circuit. We will use this existence to actually find a suitable ΣΠΣ(k) representation of g whose lift is
multilinear.

In order to learn a degree d ΣΠΣ(k) representation of g we will set up a system of polynomial equations
such that any solution to it will give as a degree d ΣΠΣ(k) representation of g. (We do this in a very similar
manner to how we did it for Σ∧Σ(k) circuits and ΣΠΣ{⊔jXj}(k) circuits.) We then show how to impose
several additional polynomial constraints to this system that will further ensure that whatever ΣΠΣ(k)
representation is learnt will be such that its lift will be a multilinear ΣΠΣ(k) circuit. The details of how we
implement this can be found in Lemma 6.4.

2.3.2 Reconstructing general (high degree) multilinear ΣΠΣ(k) circuits

We now describe our algorithm for reconstructing general multilinear ΣΠΣ(k) circuits. What we describe
here is a bit of a simplification and it avoids some technical issues, but we hope that it provides a high level
picture of the algorithm.
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Clustering of gates: We use a very nice and elegant clustering procedure devised in the work of Karnin
and Shpilka [KS11] (which they used for reconstructing ΣΠΣ(k) circuits over small fields). We will not
describe the algorithm here, but describe some nice properties that the clustering satisfies. Given as input
C =

∑
i Ti where the Ti are the multiplication gates of a degree d multilinear ΣΠΣ(k) circuit C, the

clustering algorithm looks at the Ti and outputs a partition of the the k multiplication gates into a set of
clusters C1, C2, . . . Cr (for some r ∈ [k]). Each cluster Ci is some subset of the multiplication gates of C,
and has the property that any two multiplication gates in a cluster are very “close” to each other. Suppose
that Ci = {Ti1 , Ti2 , Ti3}. Then consider the associated circuit C ′

i = Ti1 + Ti2 + Ti3 . The closeness of every
two of the multiplication gates will imply that one can write C ′

i as

C ′
i = Ti1 + Ti2 + Ti3 = gcd(Ti1 , Ti2 , Ti3)×

(
T ′
i1
+ T ′

i2
+ T ′

i3

)

where T ′
i1
+ T ′

i2
+ T ′

i3
is a low degree multilinear ΣΠΣ(3) circuit. Now notice that we don’t know what C is

(that is what we are trying to learn) and hence we cannot apply any clustering procedure to it. However this
clustering exists, and it is canonical. We only have black-box access to the original circuit C. Suppose that
we could somehow obtain black-box access to each of the clusters (or rather to the circuits corresponding
to the clusters). We would then actually be done! Here is why. Suppose we had black-box access to C ′

i,
then we would first apply a black-box factoring algorithm (such as that given by [KT90]) to compute all the
linear factors of C ′

i (thus we would obtain gcd(Ti1 , Ti2 , Ti3)) and divide them out. We would then be left
with black-box access to T ′

i1
+ T ′

i2
+ T ′

i3
is a low degree multilinear ΣΠΣ(3) circuit. But we already saw how

to reconstruct low degree multilinear ΣΠΣ(3) circuits! By multiplying it with its linear factors, we we would
be able to recover a multilinear ΣΠΣ(3) circuit for Ci. We would repeat this procedure for each cluster and
then put it all together to obtain a multilinear ΣΠΣ(k) representation for C.

Thus the goal from now on will be to somehow obtain black-box access to the clusters. The clustering
output by the clustering algorithm also has some additional nice properties. It is a “robust” clustering,
that is, if two multiplication gates got assigned to different clusters, then they are quite “far” from each
other (in some well defined sense). This nice property ends up implying the following. We start with the
circuit C in n variables. Then there is some constant number (about kk) of variables one can keep “alive”
(call these the ȳ variables) such that if we set the remaining variables (call these the z̄ variables) to random
values (z̄ = ᾱ), then the new restricted circuit C|z̄=ᾱ has the following property. Suppose we applied the
clustering algorithm to C|z̄=ᾱ, then the clusters obtained would exactly match up with the clusters output
by the clustering algorithm applied to the circuit C, and each cluster of C|z̄=ᾱ would be obtained by the
same restriction procedure being applied to the corresponding cluster of C.

Obtaining access to evaluations of the clusters at random inputs: Notice that though we do not
know what C is, we can know what C|z̄=ᾱ is. This is because C|z̄=ᾱ has only about kk variables and hence is
a low degree multilinear ΣΠΣ(k) circuit. Hence we can reconstruct it. We have to be a bit careful here since
our reconstruction algorithm might not output the precise circuit C|z̄=ᾱ but some other multilinear ΣΠΣ(k)
circuit representation of the same polynomial, call it C ′|z̄=ᾱ. However the clustering procedure turns out
to be robust enough that the clusters of C|z̄=ᾱ and the clusters of C ′|z̄=ᾱ match up to compute the same
polynomials. Hence we can essentially assume that we know what C|z̄=ᾱ is and hence we can cluster its
gates as well. By the properties of clustering, the clusters of C|z̄=ᾱ match up with the clusters of C (after
we set the z̄ = ᾱ). Thus though we do not as yet have black-box access to the clusters of C, we can indeed
recover what the clusters look like after setting z̄ = ᾱ. Thus if C ′

1, C
′
2, . . . C

′
r are circuits corresponding to

the clusters of C, then we can recover their restrictions to z̄ = ᾱ. Notice that α was any random sample
from Fm, where m is the number of Z variables. Thus we can essentially recover black-box evaluations of the
clusters at randomly chosen inputs. If we could do the same for the Z variables being set to any arbitrary
adversarially chosen β ∈ Fm then we would be done.

There is one issue we have swept under the rug, which is the following. The clusters of C|z̄=ᾱ match up
with the clusters of C, but we don’t know what this matching is. In particular, we might be able to learn
C|z̄=ᾱ as well as C|z̄=ᾱ′ for two distinct ᾱ, ᾱ′ ∈ Fm, and we might be able to cluster both of them, and these
clusters correspond to the clusters of C, but since we don’t know the correspondence we cannot really say
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that we know the value of C ′
i|z̄ = ᾱ as well as C ′

i|z̄=ᾱ′ for the same C ′
i. We will refer to this as “ambiguity

issue”.

Obtaining the corresponding between two clusterings: We now address the ambiguity issue. Sup-
pose we know what C ′

i|z̄=ᾱ looks like. We would like to be able to compute C ′
i|z̄=ᾱ′ for any other randomly

chosen α′ ∈ Fm. Note that we can reconstruct C|z̄ = ᾱ′ and cluster it and that would give us the set
{C ′

1|z̄=ᾱ′ , C ′
1|z̄=ᾱ′ , . . . C ′

r|z̄=ᾱ′}, but we may not know which element of the set corresponds to C ′
i|z̄=ᾱ′ . In

order to do this identification, we first show how to do this when ᾱ and ᾱ′ differ in only one coordinate,
and then we use a hybrid argument to stitch it together for general ᾱ and ᾱ′ (by considering a sequence
of different αs going from α to α′ and with consecutive elements differing in one coordinate). When ᾱ and
ᾱ′ differ in only one coordinate, we observe that C ′

i|z̄=ᾱ and C ′
i|z̄=ᾱ′ are very similar or very “near each

other” in a suitably defined metric. Then using the robustness property of the clustering we show that the
identification of C ′

i|z̄=ᾱ′ can be done.

From evaluations at random points to evaluations at worst case points: Let C ′
i be the circuit

corresponding to cluster Ci. Let us assume we know how to compute C ′
i|z̄=ᾱ for any randomly chosen

α ∈ Fm. Now let β̄ be some arbitrary point in Fm. We would like to compute C ′
i|z̄=β̄ . We use Reed-Solomon

decoding for this. We consider the line t · ᾱ + (1 − t) · β̄ passing through ᾱ and β̄ in Fm. In order to learn
C ′

i|z̄=β̄ , we will learn the restriction of C ′
i to the full line, which is a polynomial in the Y variables and the

additional t variable. Then setting t = 0 would give us the value at β. To learn the restriction to the line,
it suffices to learn the restriction on at least d+ 1 points on the line, where d is the degree of the t variable.
By evaluating at d + 1 random points (which can be done since these points look random) on the line, we
can accomplish this.

3 Notations and Preliminaries

Throughout the paper, we use X,Y uppercase denote a set of variables, lowercase xi denotes variables
and x̄, ȳ to denote vector/tuple of variables and v̄ denotes a vector/tuple of field constants. We sometimes
abuse notations by referring to a circuit as a collection of multiplication ΣΠ gates. For any circuit Σ∧Σ(k)
or ΣΠΣ{⊔jXj}(k) or multilinear ΣΠΣ(k), we say that circuit is optimal circuit computing a particular
polynomial(say f) if no circuit (in that respective class) can compute f with a smaller fan-in.

3.1 Algebraic Tool Kit

Let F denote a field, finite or otherwise, and let F denote its algebraic closure.

3.2 Polynomials

A polynomial f ∈ F[x1, x2, . . . , xn] depends on a variable xi if there are two inputs ᾱ, β̄ ∈ F̄n differing only
in the ith coordinate for which f(ᾱ) 6= f(β̄). Equivalently, f depends on a variable xi if there is a monomial
in f which contains xi.

We denote by var(f) the set of variables that f depends on. We say that f is g are similar and denote
by it f ∼ g if f = αg for some α 6= 0 ∈ F.

For a polynomial f(x1, . . . , xn), a variable xi and a field element α, we denote with f |xi=α the polynomial
resulting from substituting α to xi. Similarly given a subset I ⊆ [n] and an assignment ā ∈ Fn, we define
f |x̄I=āI

to be the polynomial resulting from substituting ai to xi for every i ∈ I.
Let f, g ∈ F[x1, x2, . . . , xn] be polynomials. We say that g divides f , or equivalently g is a factor of f ,

and denote it by g | f if there exists a polynomial h ∈ F[x1, x2, . . . , xn] such that f = g · h. We say that f is
irreducible if f is non-constant and cannot be written as a product of two non-constant polynomials.
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Given the notion of divisibility, we define the gcd of a set of polynomials in the natural way: we define it
to be the highest degree polynomial dividing them all (suitably scaled)4. A linear function is a polynomial

of the form L(X) =
n∑

i=1

aixi + a0 with ai ∈ F. The following folklore lemma expresses a condition for two

non-similar linear functions to remain non-similar under a (partial) substitution.

Lemma 3.1 (Folklore). Let L(X) =
n∑

i=1

aixi + a0 and R(X) =
n∑

i=1

bixi + b0 be two linear functions in

F[x1, x2, . . . , xn] such that L ≁ R. Let

D(L,R)(X)
∆
=

n∏

i=1

(aiR(X)− biL(X)) , where the product is taken only over non-zero elements.

Let ū ∈ Fn such that D(L,R)(ū) 6= 0. Then for every I ( [n] it holds that L|x̄I=ūI
≁ R|x̄I=ūI

.

The interested reader can refer to [SV18] for a proof.

Definition 3.2 (Hybrids & Lines). Let ā, b̄ ∈ Fn and 0 ≤ i ≤ n. We define the i-th hybrid of ā, b̄ as

γi(ā, b̄)
∆
= (b1, . . . , bi, ai+1, . . . , an). In particular, γ0(ā, b̄) = ā and γn(ā, b̄) = b̄.

We define a line passing through ā and b̄ as ℓā,b̄ : F→ Fn, ℓā,b̄(t)
∆
= (1− t) · ā+ t · b̄. In particular, ℓā,b̄(0) = ā

and ℓā,b̄(1) = b̄.

We state below a well known result by Berlekamp and Welch which gives an efficient algorithm for noisy
polynomial interpolation.

Lemma 3.3 (Berlekamp-Welch Algorithm (for a description see [Sud98])). Let P (t) be a univariate polyno-
mial of degree at most d. There exists a deterministic algorithm that given m evaluations of P with at most
e errors outputs P (t), provided that m− d > 2e+ 1.

For two vectors ā and b̄ ∈ Fn, let wH(ā, b̄) denote the Hamming distance between ā and b̄

3.3 Partial Derivatives

The concept of a partial derivative of a multivariate function and its properties are well-known and well-
studied for continuous domains (such as, R, C etc.). This concept can be extended to polynomials and
rational functions over arbitrary fields from a purely algebraic point of view. For more details we refer to
reader to [Kap57].

Definition 3.4. For a monomial M = α · xe1
1 · · ·x

ei
i · · ·x

en
n ∈ F[x1, x2, . . . , xn] and a variable xi we define

the partial derivative of M with respect to xi, as ∂M
∂xi

∆
= αei · x

e1
1 · · ·x

ei−1
i · · ·xen

n . The definition can be
extended to F[x1, x2, . . . , xn] by imposing linearity and to F(x1, x2, . . . , xn) via the quotient rule.

Observe that the sum, product, quotient and chain rules carry over. In addition, when F = R or F = C

the definition coincides with the analytical one. The following set of rational function plays an important
role.

Inspired by a similar notion of [KS09a], we define a distance measure between multiplication gates. This
measure will play a crucial role in the analysis of our reconstruction algorithm. Roughly speaking, the
distance between two polynomials, each of them being product of linear forms, is the number of factors that
appear in only one of them.

Definition 3.5 (Distance). For f, g ∈ F[x1, x2, . . . , xn], we define a distance function:

∆(f, g)
∆
=

max {deg(f), deg(g)}

deg(gcd(f, g))
.

4Such a polynomial is unique up to scaling, and one can fix a canonical polynomial in this class for instance by requiring
that the leading monomial has coefficient 1. With this definition, two polynomials are pairwise coprime if their gcd is of degree
0, and in particular the gcd equals 1.
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3.4 Depth-3 Circuits

In this section we formally introduce the general model of depth-3 circuits and specialization of set-multilinear
depth-3 circuits, which is the focus of our paper. It is to be noted that depth-3 circuits were a subject for a
long line of study [DS07, KS07, KS09b, SV15, AM10, KS11, SS11, SS12, SS13].

Definition 3.6. A depth-3 ΣΠΣ(k) circuit C computes a polynomial of the form

C(X) =

k∑

i=1

Ti(X) =

k∑

i=1

di∏

j=1

ℓi,j(X),

where the ℓi,j-s are linear functions; ℓi,j(X) =
n∑

t=1
ati,jxt + a0i,j with ati,j ∈ F.

A multilinear ΣΠΣ(k) circuit is a ΣΠΣ(k) circuit in which each Ti is a multilinear polynomial. In particular,
each such Ti is a product of variable-disjoint linear functions.
Given a partition X = ⊔j∈[d]Xj of X, a set-multilinear ΣΠΣ{⊔jXj}(k) circuit is a further specialization of
a multilinear circuit to the case when each ℓi,j is a linear form in F[Xj ]. That is, each ℓi,j is defined over
the variables in Xj and a0i,j = 0.

We say that C is minimal if no subset of the multiplication gates sums to zero. We define gcd(C) as the linear
product of all the non-constant linear functions that belong to all the Ti-s. I.e. gcd(C) = gcd(T1, . . . , Tk).
We say that C is simple if gcd(C) = 1. The simplification of C, denoted by sim(C), is defined as C/ gcd(C).
In other words, the circuit resulting upon the removal of all the linear functions that appears in gcd(C).
Finally, we say that a ΣΠΣ{⊔jXj} circuit has width w, if |Xj | ≤ w for all j.

Throughout the paper, we will be referring to this quantity as the width of a polynomial, width of a
circuit, since our model is is ΣΠΣ{⊔jXj} circuits, it all essentially means the same.

3.4.1 Existing Algorithms

We require the following results. In what follows we focus on multilinear and set-multilinear circuits. We
begin with polynomial identity testing algorithms. We will first state the well-known Schwartz-Zippel lemma
followed by a deterministic black-box identity testing algorithm for multilinear depth-3 circuits. These
algorithms will be used in the testing phase. A black-box PIT is an algorithm that tests if a given circuit
computes the zero polynomial by only evaluating the circuit on points, and not inspecting the internal
structure of the circuit. Hence all that a black-box PIT can do is evaluate the circuit on a small list of points
which is guaranteed to have a property that every non-zero circuit produces at least one non-zero evaluation
in the list. Such lists are also called hitting sets, the black-box PITs are also called hitting set generators.
All the black-box PIT results discussed below can also be interpreted as existence of explicit hitting sets,
these hitting sets will be used in derandomizing our learning algorithms.

Lemma 3.7. [Sch80, Zip79, DL78] Let f(x1, ..., xn) be a nonzero polynomial of degree at most d, and let
S ⊆ F. If we choose ā = (a1, . . . , an) ∈ Sn uniformly at random, then Pr[f(ā) = 0] ≤ d/|S|.

Lemma 3.8 ([SS12, SV15]). There is a deterministic algorithm that given a black-box access to a multilinear
ΣΠΣ(k) circuit C decides if C ≡ 0, in time nO(k).

The next result provides a factorization algorithm for multilinear depth-3 circuits. A crucial observation
is that factors of a multilinear polynomial must be variable-disjoint. Therefore, each factor of a multilinear
polynomial P is obtained by restricting P to an appropriate subset of variables.

Lemma 3.9 ([SV10]). There is a deterministic algorithm that given a black-box access to a multilinear/set-
multilinear ΣΠΣ(k) circuit C, outputs black-boxes for the irreducible factors of C, in time nO(k). In addition,
each such irreducible factor is computable by a multilinear/set-multilinear ΣΠΣ(k) circuit.
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As a corollary, we can efficiently simulate a black-box access to sim(C) given a black-box access to C.
The main observation is that a linear function that appears in gcd(C) constitutes an irreducible factor of C.

Corollary 3.10. There is a deterministic algorithm that given a black-box access to a multilinear/set-
multilinear ΣΠΣ(k) circuit C outputs linear functions L1, . . . , Lr and black-box access to a simple multilinear/set-
multilinear ΣΠΣ(k) circuit Ĉ such that C =

∏r
i=1 Li · Ĉ, in time nO(k).

Proof. We describe the following algorithm:

• Run the algorithm from Lemma 3.9 to obtain black-boxes C1, . . . , Cm for the irreducible factors of C.

• For each i, try to learn Ci as a linear function by evaluating it on the standard base vectors and 0̄. Let
Li denote the resulting purported linear function.

• As each Ci is computable by a multilinear ΣΠΣ(k) circuit, use the identity testing algorithm from
Lemma 3.8 on Ci − Li to determine which Ci-s compute linear functions.

• Wlog, let C1, . . . , Cr be the irreducible factors that correspond to linear functions. Set V
∆
=

r⋃
i=1

var(Li);

• Use Lemma 3.8 to find an assignment ā ∈ FX such that C(ā) 6= 0.

• Output: L1, . . . , Lr, Ĉ
∆
=

C|XV =āV∏
r
i=1 Li(āV )

The claim regarding the runtime follows from Lemmas 3.8 and 3.9. For the analysis, observe that L1, . . . , Lr

are factors of C. In addition, as C computes a multilinear polynomial, its factors are variable-disjoint.
Therefore, we can write

C(V,X \ V ) =

r∏

i=1

Li · C
′(X \ V ).

Consequently:

C(āV , X \ V ) =

r∏

i=1

Li(āV ) · C
′(X \ V ).

and

C(X \ V ) =
r∏

i=1

Li ·
C(āV , X \ V )∏r

i=1 Li(āV )
=

r∏

i=1

Li · Ĉ.

Note that
∏r

i=1 Li(āV ) 6= 0 as C(ā) 6= 0. Finally, since every factors of Ĉ constitutes a factor of C, and all

the linear factors of C has been accounted for it follows that Ĉ has no linear factors.

3.4.2 Structural Results

In this we discuss a strong structural result about set-multilinear depth-3 circuits computing the zero poly-
nomial. We note that results of this flavor were proven before for more general families of depth-3 circuits
(for more details see e.g. [DS07, KS09b, SS13] and references within). We prove our result by a reduction
to the case where each linear function is, in fact, a univariate polynomial.

Lemma 3.11 ([AvMV15]). Let k ≥ 2 and let C ≡
k∑

i=1

Ti =
k∑

i=1

di∏
j=1

ℓi,j be a simple and minimal multilinear

circuit ΣΠΣ(k) circuit where each ℓi,j is a univariate polynomial. If C computes the zero polynomial then
for all i ∈ [k] : |var(Ti)| ≤ k − 2.
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Theorem 3.12. Let C ≡
k∑

i=1

Ti be a simple and minimal ΣΠΣ{⊔jXj} circuit computing the zero polynomial.

Then for all i ∈ [k] : deg(Ti) ≤ k − 2.

Proof. Fix i ∈ [k]. Recall that Ti is of the form Ti =
d∏

j=1

ℓi,j(Xj). Fix j ∈ [d]. Pick a variable xj ∈ var(ℓi,j)

and let āj ∈ FXj\{xj} be a random assignment to the variables Xj \{xj}. As C is simple, gcd(ℓ1,j , . . . , ℓk,j) =
1. By the choice of āj we obtain that gcd (ℓ1,j(āj , xj), . . . , ℓk,j(āj , xj)) = 1. Now consider the circuit

Ĉ ≡
k∑

i=1

T̂i obtained from C be assigning each set Xj \ {xj} to āj . Observe that Ĉ satisfies the premises

of Lemma 3.11. Moreover, as T̂i is a product of univariate polynomials, deg(Ti) = deg(T̂i) =
∣∣∣var(T̂i)

∣∣∣.

Therefore, deg(Ti) =
∣∣∣var(T̂i)

∣∣∣ ≤ k − 2, as required.

This structural result, in turn, implies that the distance (see Definition 3.5) between two multiplication
gates in a minimal circuit, computing the zero polynomial, is “small”.

Lemma 3.13. Let C ≡
k∑

i=1

Ti be a minimal ΣΠΣ{⊔jXj} circuit computing the zero polynomial. Then for all

i 6= j ∈ [k] : ∆(Ti, Tj) ≤ k − 2.

Proof. Consider sim(C). By definition, sim(C) is simple. In addition, observe that sim(C) minimal and
computes the zero polynomial, by construction. By Theorem 3.12, for each i ∈ [k] we have

deg(Ti)

deg(gcd(C))
= deg

(
Ti

gcd(C)

)
≤ k − 2.

Therefore,

∆(Ti, Tj) =
max {deg(Ti), deg(Tj)}

deg(gcd(Ti, Tj))
≤

(k − 2) · deg(gcd(C))

deg(gcd(Ti, Tj))
≤ k − 2.

The last inequality follows from the fact that gcd(Ti, Tj) divides gcd(C).

The above result implies that any pair of circuits computing the same polynomials must have “many”
common linear functions. These results are also refereed as rank-bounds in the literature. Also, for our
applications we don’t need ∆(Ti, Tj) ≤ k − 2 at this granular detail, we will simply upper bound this by k.

Lemma 3.14. C ≡ T1 + T2 . . . Tk and C ′ ≡ T ′
1 + T ′

2 . . . T
′
k′ be two ΣΠΣ{⊔jXj} circuits computing the same

polynomial with k′ ≤ k. Furthermore, suppose C is minimal. Then for each Ti (in C) there exists a T ′
j (in

C ′) such that ∆(Ti, T
′
j) ≤ k.

Proof. Notice that, C − C ′ ≡ 0, that is T1 + T2 + . . . + Tk − T ′
1 − T ′

2 − . . . − Tk′ = 0. Pick i ∈ [k] and let
Ci be a minimal subcircuit computing the zero polynomial that contains Ti. As C is a minimal circuit, Ci

must contain at least one of T ′
j-s. The result now follows directly from Theorem 3.12.

Other useful lemmas

Definition 3.15. Let f := (f1, f2, . . . fm), where fi(X) ∈ F[X], be a vector of polynomials over a field F.
The set of F-linear dependencies in f , denoted f⊥, is the set of all vectors v ∈ Fm whose inner product with
f is the zero polynomial, i.e.,

f⊥{(a1, . . . , am) ∈ Fm : a1f1(X) + . . .+ amfm(X) = 0}.

The set f⊥ is clearly a linear subspace of Fm. This notion is helpful to state and prove some useful
lemmas. The main observation here is that given (by arithmetic circuits or black-box access) a collection
of polynomials then in randomized polynomial time we can find the F-linear dependencies among these
polynomials. In order to show that we will need the following technical lemma.
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Lemma 3.16. [Kay11, Lem 4.1] Let f1, f2, . . . fk ∈ F[x1, . . . , xn] be F-linearly independent polynomials with
|F| > nkd (otherwise we can work with an extension) and a1, . . . , ak ∈ Fn be k random points5 then the
following matrix has full rank with high probability.

M =




f1(a1) f2(a1) · · · fk(a1)
f1(a2) f2(a2) · · · fk(a2)

...
...

...
...

f1(ak) f2(ak) · · · fk(ak)




Proof. Let X1, . . . , Xk be disjoint sets of variables each of size n. Define,

Q =




f1(X1) f2(X1) · · · fk(X1)
f1(X2) f2(X2) · · · fk(X2)

...
...

...
...

f1(Xk) f2(Xk) · · · fk(Xk)


 . (2)

We will show, via induction on k, that Q has full rank, or equivalently, the determinant of Q is a nonzero
polynomial. The result will then follow via the Schwartz-Zippel Lemma applied to the determinant of Q.

Note that k = 1 follows directly. On expanding Det(Q) along the first row we get,

Det(Q) =

k∑

j=1

(−1)j+1fj(X1)Q1j

where Qij is the determinant of the ij-th minor. Notice that every Q1j , j ∈ [k], is a polynomial in the set of
variables X2, ..., Xk. By induction, every Q1j is a nonzero polynomial (since every subset of a set of F-linearly
independent polynomials is also F-linearly independent). If Det(Q) was the zero polynomial then plugging in
random values for X2, ..., Xk would give us a nonzero F-linear dependence among f1(X1), f2(X1), ..., fk(X1),
which is a contradiction. Hence Det(Q) must be nonzero, proving the claim. This along with Lemma 3.7
gives that M is invertible with high probability.

Once we have the above lemma, one can easily use it to determine the linear dependency structure of a
set of polynomials as in the next lemma.

Lemma 3.17. [Kay11, Lem 4.1] Given m polynomials f = {f1, f2, . . . fm}, each in F[x1, . . . , xn] of degree
at most d, either by a circuit(or black-box access) 6, s.t. with rank(maximal number of linearly independent
fi-s) of f = k, and |F| >

(
m
k

)
· dnk (if |F| ≤

(
m
k

)
· dnk then we can work with an extension) then:

1. There is a randomized poly(m,n, k) time algorithm to compute a basis for the space F-span{f1, f2, . . . fm}.
Along with the basis(say fi1 , fi2 , . . . fik be a basis of linear space of fi-s), the aforementioned algorithm
also outputs a matrix M s.t.

M



fi1
...
fik


 =




f1
...
fm


 .

2. Also, there is a randomized poly(m,n, k) time algorithm that given a vector of these polynomials f =
(f1, f2, . . . , fm) computes a basis for the space f⊥.

5More precisely, let S ⊆ F be a set pf size nkd and let each ai be chosen independently and uniformly at random from Sn

6 The lemma statement in [Kay11] just mentions the case when a circuit is given explicitly, however it is easy to observe
that even black-box/oracle access suffices.
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Proof Sketch. Let X1, . . . , Xk be disjoint sets of variables each of size n. Define,

Q =




f1(X1) f2(X1) · · · · · · fm(X1)
f1(X2) f2(X2) · · · · · · fm(X2)

...
...

...
...

...
f1(Xk) f2(Xk) · · · · · · fm(Xk)


 .

The crucial observation here is that linear dependencies of the fi are exactly captured by linear depen-
dencies of the columns of Q and moreover this continues to hold after substituting random values to the Xi-s.
We will show in the next paragraph how to prove this. Note that once we have this fact then we have reduced
the problem of determining the linear dependencies that hold between the polynomials to determining the
linear dependencies that hold between vectors in Fm, and for vectors in Fm we do know efficient algorithms
for computing the basis, the orthogonal subspace and the suitable matrix M .

In order to see that linear dependencies between the fi are captured by linear dependencies among the
columns of Q after the random substitutions, it suffices to show that for any size k subset of fi-s which is
linearly independent, the corresponding minor of Q has full rank. Note that there can be at most

(
m
k

)
such

full rank minors, and we have to ensure that the determinant of each full rank minor stays nonzero, which
in-turn boils down to “hitting” (finding a non-zero assignment) the product of these determinants. Note
that the degree of the product of such determinants is bounded by

(
m
k

)
· dnk. Thus, by Lemma 3.7 we get

that random substitutions (given |F| >
(
m
k

)
· dnk) ensure that with high probability, for any subset of fi-s

which are linearly independent, the corresponding minor of Q has full rank.

Interestingly, when fi-s are from special classes of polynomials for which deterministic blackbox PIT
algorithms (explicit hitting sets) are known, then we can derandomize the previous lemma. Concretely, if
f1, . . . , fm have rank k = O(1) with each fi ∈ C, where C is an arithmetic circuit class. Then the randomized
algorithms in Lemma 3.17 and Lemma 3.16 can be derandomized given polynomial sized hitting sets for
the class C + . . .+ C︸ ︷︷ ︸

k times

. Here, C + . . .+ C︸ ︷︷ ︸
k times

is a circuit class which comprises of F-linear combinations of k

polynomials in C. Also, for our applications C will either be Σ∧Σ(k′) circuits, ΣΠΣ{⊔jXj}(k
′) circuits or

multilinear ΣΠΣ(k′) circuits with k = O(1) and k′ = O(1), and thus we do have such hitting sets.
We will start by the stating deterministic version of Lemma 3.16.

Lemma 3.18. Let f1, f2, . . . fk ∈ F[x1, . . . , xn] be F-linearly independent polynomials with |F| > nkd (oth-
erwise we can work with an extension) and fi ∈ C, where C is an arithmetic circuit class. Furthermore, let
Hk be a hitting set for the class C + . . .+ C︸ ︷︷ ︸

k times

. Then there exist (a1, a2, . . . , ak) with each ai ∈ Hk s.t. the

following matrix has full rank.

M =




f1(a1) f2(a1) · · · fk(a1)
f1(a2) f2(a2) · · · fk(a2)

...
...

...
...

f1(ak) f2(ak) · · · fk(ak)




Equivalently, Hk ⊕Hk · · · ⊕ Hk︸ ︷︷ ︸
k times

is a hitting set for Det(Q), where Q is defined by Eq. 2.

Proof. This follows by essentially the same inductive argument as in the proof of Lemma 3.16. The
case k = 1 follows directly. For k > 1, on expanding Det(Q) along the first row we get, Det(Q) =∑k

j=1(−1)
j+1fj(X1)Q1j , where Qij is the determinant of the ij-th minor. By induction, every Q1j is a

nonzero polynomial and we can deterministically choose a2, . . . , an using hitting sets for the class C + . . .+ C︸ ︷︷ ︸
k−1 times

.

For brevity we will refer to the substitution X2 = a2, . . . , Xn = an by σ. Thus to find a1 s.t. M is invertible,
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we have to do identity testing for Det(Q)|σ =
∑k

j=1(−1)
j+1fj(X1)Q1j |σ which lies in class C + . . .+ C︸ ︷︷ ︸

k times

. This

can be done by choosing a1 from a hitting set for the class C + . . .+ C︸ ︷︷ ︸
k times

.

Using the above derandomized lemma, we show how to derandomize Lemma 3.17 in polynomial time
when the number of independent fi-s is constant.

Lemma 3.19. Given m polynomials f = {f1, f2, . . . fm}, each in F[x1, . . . , xn] of degree at most d, either by
a circuit(or black-box access) s.t. rank(maximal number of linearly independent tuples) of f = k, and fi ∈ C,
where C is an arithmetic circuit class. Also, let Hk be a hitting set for the class C + . . .+ C︸ ︷︷ ︸

k times

. Then,

1. There is a deterministic poly(|Hk|
(
m
k

)
, n, d,m) time algorithm to compute a basis for the space F-

span{f1, f2, . . . fm}. Along with the basis(say fi1 , fi2 , . . . fik be a basis of linear space of fi-s), the
aforementioned algorithm also outputs a matrix M s.t.

M



fi1
...
fic


 =




f1
...
fm


 .

2. Also, there is a deterministic poly(|Hk| ·
(
m
k

)
, n, d,m) time algorithm that given a vector of these

polynomials f = (f1, f2, . . . , fm) computes a basis for the space f⊥.

Proof Sketch. Let X1, . . . , Xk be disjoint sets of variables each of size n. Define,

Q =




f1(X1) f2(X1) · · · · · · fm(X1)
f1(X2) f2(X2) · · · · · · fm(X2)

...
...

...
...

...
f1(Xk) f2(Xk) · · · · · · fm(Xk)


 .

The goal is the derandomize the algorithm from Lemma 3.17. In order to do this, we have to ensure
that for any size k subset of fi-s which are linearly independent, there is a deterministic substitution of the
variables the corresponding minor has full rank. Note that there can be at most

(
m
k

)
full rank minors and

we have to ensure that we find a deterministic substitution of the variables such that the determinant of
each full rank minor stays nonzero, which is equivalent to keeping the product of such determinants nonzero
after substitution. By Lemma 3.18, there is a polynomial sized hittting sit for the determinant for each of
these full rank minors. Along with standard blackbox PIT trick of working with hitting set “generators”,
we can find a hitting set of size poly(|Hk| ·

(
m
k

)
) for the product of the determinants of each full rank minor

(see [SY10, Sec. 4.1] for details).
Once we have the hitting set, we can then choose that element of the hitting set that maximizes the

number of k× k minors whose determinant is nonzero after substitution to find the appropriate substitution
such that the columns of Q will have the same linearly dependency structure as the given polynomials.

Lemma 3.20. Set-multilinear ΣΠΣ(k) circuits are closed under factoring. That is, if f = g · h and f is
computed by a ΣΠΣ{⊔jXj}(k) circuit. Then g (similarly h) is computed by a set-multilinear ΣΠΣ(k) circuit.
Also, there is a partition of [d] into two disjoint sets A1 and A2 s.t. g is set-multilinear w.r.t to partition
⊔i∈A1

Xi and h is set-multilinear w.r.t. to partition ⊔i∈A2
Xi.

Proof. Let f = g · h where has f has a ΣΠΣ{⊔jXj}(k) circuit, say Cf .
We will first show that g, h are set-multilinear with two variable disjoint partitions. That is variables

from a partition either occur in g or occur in h. Formally, for each Xi, if a variable v ∈ var(g) ∩Xi, then
Xi ∪ var(h) = φ. Suppose, for contradiction, ∃Xi s.t u, v ∈ Xi s.t. u ∈ var(g) and v ∈ var(h). That is,
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on writing g, h as univariates in u, v respectively, we get g = adu
d + . . . + ao and h = bd′vd

′

+ . . . + bo
with d, d′ ≥ 1 and ad, bd′ 6= 0. Now, notice that coefficient of udvd

′

6= 0 in f = g · h thus contracting the
assumption that f was set-multilinear to begin with.

The proof concludes by setting all variables in h to random values(s.t. h doesn’t evaluate to 0) in Cf

and observing that the resulting circuit is a set-multilinear circuit computing a constant multiple of g.

Lemma 3.21. Let Cf ≡ T1 + T2 + · · · + Tk be an optimal degree d ΣΠΣ{⊔jXj}(k) circuit computing f ,

where Ti =
∏

j∈[d] ℓi,j(Xj). Then ∀ j ∈ [d] the polynomials in the set Sj := { T1

ℓ1,j
, T2

ℓ2,j
, . . . , Tk

ℓk,j
} are linearly

independent. Note that, Sj is a set of polynomials (not rational functions) because ℓi,j |Ti ∀j ∈ [k], i ∈ [d].

Proof. Assume on contrary that ∃j s.t. the linear forms in Sj = {T1/ℓ1,j , T2/ℓ2,j , . . . Tk/ℓk,i} has a linear

dependence. Let
∑k−1

i=1 λiTi/ℓi,j = Tk/ℓk,j , be a non-trivial linear dependence. Note that, this can be
assumed always by just relabelling the gates. This implies that,

f(x̄) =

k−1∑

i=1

(ℓi,j + λiℓk,j) · Ti/ℓi,j . (3)

Note that, equation 3 is a ΣΠΣ{⊔jXj}(k − 1) representation of f , thus contradicting our assuption that Cf

is optimal.

3.5 Variable Reduction

In this section we discuss how to reduce the number of variables in a polynomial. Before describing this
procedure we have to formally define the notion of number of essential variables in a polynomial.

Definition 3.22 (number of essential variables). For f(x̄) ∈ F[x̄], we will say that the number of essential
variables in f(x̄) is t if there exist an invertible linear transformation A ∈ Fn×n s.t. f(Ax̄) just depends on
t variables.

The next lemma is from the work of Carlini [Car06], adopted by Kayal [Kay11] in the language of circuits.
This lemma eliminates redundant variables from a polynomial and plays a crucial role in our reconstruction
results for Σ∧Σ and multilinear-ΣΠΣ circuits.

We state the lemma below in the setting of black-box access to the input polynomial. The original version
of the lemma was in the whitebox setting, but by inspecting the proof in [Kay11] one can see that it works
in the black-box setting as well by noting that given black-box access to a circuit computing a polynomial
f , one can get black-box access to the circuits computing its first order partial derivatives.

Lemma 3.23. [Kay11, Car06] Given black-box access to an n-variate polynomial f(X) ∈ F[X] of degree d
with m essential variables, s.t. char(F) > d or 0, there is a randomized poly(n, d, s) time algorithm (where
s is the size of the circuit computing f) that computes an invertible linear transformation A ∈ F(n×n) such
that f(A · x̄) depends on the first m-variables only.

Interestingly, when f is from a special class of polynomials for which explicit hitting sets are known even
for first order partial derivatives of f , and additionally if the number of essential variables in f is small,
then we can derandomize the previous lemma. It is worth nothing that many or most interesting classes of
circuits are closed under taking partial derivatives.

Lemma 3.24. Let C be class of arithmetic circuits that is closed under first order partial derivatives. We
are given black-box access to an n-variate polynomial f(X) ∈ F[x1, . . . , xn] of degree d, computable by a size s
circuit in C, such that f has k essential variables and char(F) > d or 0. Let Hk be a hitting set for the class
C + . . .+ C︸ ︷︷ ︸

k times

. Then there is a deterministic poly(
(
n
k

)
, d, s, |Hk|) time algorithm that computes an invertible

linear transformation A ∈ F(n×n) such that f(A · x̄) depends on the first k-variables only.
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Proof Sketch. The proof of this lemma is obtained by derandomizing the proof of Lemma 3.23 in the current
setting. Since we haven’t provided the details of the proof of Lemma 3.23, we will only provide a proof sketch
here of the changes needed to be made to the proof of Lemma 3.23 to derandomize it. The only place where
randomness is used in the proof of Lemma 3.23 is in computing a basis of f⊥, where f :=

(
∂f
∂x1

, . . . , ∂f
∂xn

)
.

As in the proof of Lemma 3.23, one observes that, rank of f = number of essential variables = k. Once we
have this, then the assumption that C is closed under taking first order partial derivatives, along with the
hitting set Hk satisfies all the preconditions for Lemma 3.19. Thus, we can use Lemma 3.19 to compute a
basis for f⊥ deterministically, which in turn gives a deterministic algorithm for computing A s.t. f(A · x̄)
depends on the first k-variables only. The time complexity follows directly.

3.6 Tensors and Set-Multilinear Depth-3 Circuits

Tensors, higher dimensional analogues of matrices, are multi-dimensional arrays with entries from some field
F. For instance, a 3-dimensional tensor can be written as T = (αi,j,k) ∈ Fn1×n2×n3 and 2-dimensional
tensors simply corresponds to traditional matrices. We will work with general d-dimensional tensors T =
(αj1,j2,...,jd) ∈ Fn1×···×nd , here [n1] × · · · × [nd] refers to the shape of the tensor and ni as length of tensor
in i-th dimension. Just like any matrix has a natural definition of rank, there is an analogue for tensors as
well.

The rank of a tensor T can be defined as the smallest r for which T can be written as a sum of r tensors of
rank 1, where a rank-1 tensor is a tensor of the form v1⊗· · ·⊗vd with vi ∈ Fni . Here⊗ is the Kronecker (outer)
product a.k.a tensor product. The expression of T as a sum of such rank-1 tensors, over the field F is called
F-tensor decomposition or just tensor decomposition, for short. The notion of Tensor rank/decomposition
has become a fundamental tool in different branches of modern science with applications in statistics, signal
processing, complexity of computation, psychometrics, linguistics and chemometrics. We refer the reader
to a monograph by Landsberg [Lan12] and the references therein for more details on application of tensor
decomposition.

For our application, it would be useful to think of tensors as a restricted form of multilinear polynomials
that are called set-multilinear polynomials. To this end, let us fix the following notation throughout the
paper.
Let d ∈ N. We will refer to d as the dimension. For j ∈ [d] let Xj =

{
xj,1, xj,2, . . . , xj,nj

}
, where nj = |Xj |.

Finally, let X = ⊔j∈[d]Xj . That is, {Xj}{j∈[d]} form a partition of X.

Definition 3.25 (Set-Multilinear polynomial). A polynomial P ∈ F[X] is called set-multilinear w.r.t (the
partition) X, if every monomial that appears in P is of the form xi1xi2 · · ·xid where xij ∈ Xj.

In other words, each monomial of a set-multilinear polynomial picks up exactly one variable from each
part in the partition. These polynomial have been well studied in the past [Raz13, FSS14, AKV20] in
particular since many natural polynomials like the Determinant, the Permanent, Nisan-Wigderson and others
are set-multilinear w.r.t appropriate partitions of variables. Furthermore, each tensor can be regraded as a
set-multilinear polynomial.

Definition 3.26. For a tensor T = (αj1,j2,...,jd) ∈ Fn1×···×nd consider the following polynomial

fT (X)
∆
=

∑

(j1,...,jd)∈[n1]×···×[nd]

αj1,j2,...,jdx1,j1x2,j2 · · ·xd,jd .

Observe that fT (X) is a set-multilinear polynomial w.r.t X. More interestingly, there is a direct
correspondence between tensor decomposition and computing the polynomial fT (X) in the model of set-
multilinear depth-3 circuits. We first define the model formally.

Definition 3.27 (Set-Multilinear Depth-3 Circuits). A set-multilinear depth-3 circuit w.r.t to (a partition)
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X with top fan-in k, denoted by ΣΠΣ{⊔jXj}(k) computes a (set-multilinear) polynomial of the form

C(X) ≡

k∑

i=1

d∏

j=1

ℓi,j(Xj)

where ℓi,j(Xj) is a linear form in F[Xj ].

To gain some intuition, suppose that fT (X) = ℓi,1(X1) · ℓi,2(X2) · · · ℓi,d(Xd) for some tensor T . We can
observe that in this case T is a rank-1 tensor. Extending this observation, the following provides a formal
connection between tensor decomposition and computing the polynomial fT (X) by set-multilinear depth-3
circuits.

Observation 3.28. Let C(X) =
k∑

i=1

d∏
j=1

ℓi,j be a set-multilinear depth-3 circuit over F computing fT (X) for

a tensor T = (αj1,j2,...,jd) ∈ Fn1×···×nd . Then

T =

k∑

i=1

v̄(ℓi,1)⊗ · · · ⊗ v̄(ℓi,d)

where v̄(ℓi,j) corresponds to the linear form ℓi,j as an nj-dimensional vector over F.

Note that this connection is, in fact, a correspondence: any F-tensor decomposition of T gives a circuit
over F. This leads to the following important lemma:

Lemma 3.29. A tensor T = (αj1,j2,...,jd) ∈ Fn1×···×nd has rank at most r if and only if fT (X) can be
computed by a ΣΠΣX(r) circuit. Therefore, rank of T is the smallest k for which fT (X) can be computed
by a ΣΠΣX(k) circuit.

Proof. The proof is straightforward. Note that, ℓi,1(X1) ·ℓi,2(X2) · · · ℓi,d(Xd) exactly corresponds to a rank-1
tensors. Thus, Cf gives a rank k F-tensor decomposition of T and any F-tensor decomposition gives a circuit
over F.

3.7 Symmetric Tensors and Sum of Power of Linear Forms

A tensor T is called symmetric if X = X1 = X2 = · · · = Xd and we have T (i1, i2, . . . , id) = T (j1, j2, . . . , jd)
whenever (i1, i2, . . . , id) is a permutation of (j1, j2, . . . , jd). Thus, a symmetric tensor is a higher order
generalization of a symmetric matrix. Analogous to tensor rank, symmetric rank is obtained when the
constituting rank-1 tensors are imposed to be themselves symmetric, that is v̄ ⊗ v̄ · · · ⊗ v̄.

Definition 3.30. For a symmetric tensor T = (αj1,j2,...,jd) ∈ Fn×···×n consider the following polynomial

fSym,T (X)
∆
=

∑

(j1,...,jd)∈[n]×···×[n]

αj1,j2,...,jdxj1xj2 · · ·xjd .

Just like in case of general tensors, computing the symmetric rank reduces to finding the optimal top
fan-in of a special class of arithmetic circuits, which is sum of power of linear forms (Σ∧Σ) circuits defined
below.

Definition 3.31 (Sum of power of linear forms). The Sum of power of linear forms with top fan-in k
computes a polynomial of the form f = ℓd1 + · · · ℓ

d
k where each ℓi is a linear polynomial over the n variables.

Observation 3.32. Let C(X) =
k∑

i=1

ℓdi be a Σ∧Σ(k) circuit over F computing fSym,T (X) for a symmetric

tensor T = (αj1,j2,...,jd) ∈ Fn1×···×nd . Then

T =

k∑

i=1

v̄(ℓi)⊗ · · · ⊗ v̄(ℓi)

where v(ℓi) is a n-dimensional vector corresponding to the linear form ℓi,j.
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Remark 3.33. Both Tensor rank and Symmetric rank are dependent on the underlying field, that is Tensor
rank of a tensor T over F and G, an extension of F can be different, see [Shi16, SS16] for details. The corre-
spondence discussed above, among Tensor rank(symmetric rank) and top fan-in of ΣΠΣ{⊔jXj} circuits(Σ∧Σ
circuits), respects the dependence of rank on underlying field. That is, in order to find rank of T over G we
have to find an optimal top fan-in of a ΣΠΣ{⊔jXj} circuit over G computing fT .

3.8 Complexity of Solving a System of Polynomial Equations

Solving a system of polynomial equations is the following problem: For a field F, we are given m polynomials
f1, f2, . . . , fm ∈ F[x1, . . . , xn], each of degree at most d. We want to test if there exist a solution (this is the
decision version) to f1 = 0, f2 = 0, . . . , fm = 0 in Fn, or find a solution if it exists (this is the search version).
A straightforward reduction from 3-SAT shows that polynomial system solving is NP-hard in general. This is
a fundamental problem in computational algebra, and it has received lot of attention over various fields. To
mention a few, system solving is NP-complete for finite fields, in PSPACE over R [Can88] and in Polynomial
Hierarchy (Σ2), assuming GRH [Koi96].

Interestingly, for F = Q system solving is not even known to be decidable! In fact, if we restrict the
question to integral domains (like Z) then the problem is undecidable. This was the well-known Hilbert’s
tenth problem, which asks if a given Diophantine equation has an integral solution, and was famously proved
to be undecidable in the 70’s, see [MR75].

In this work, we are mainly concerned with polynomial system solving when the number of variables
involved is small (such as a constant). In this case, polynomial system solving turns out is efficient under
various settings. We will use the following definitions for describing the complexity of solving a system of
equations under various settings.

Definition 3.34 (Sys
F
(n,m, d)). Let Sys

F
(n,m, d) denote the randomized time complexity of finding a so-

lution ∈ Fn to a system of m polynomial equations ∈ F[x1, . . . , xn] of total degree d (if one exists).

Also, consider a weaker version of the above problem, let S̃ys
F
(n,m, d) denote the randomized time

complexity of finding a solution (could be in an extension of F) to a system of m polynomial equations
∈ F[x1, . . . , xn] of total degree d (if one exists).

Definition 3.35 (Det-Sys
F
(n,m, d)). Let Det-Sys

F
(n,m, d) denote the deterministic time complexity of

finding a solution ∈ Fn to a system of m polynomial equations ∈ F[x1, . . . , xn] of total degree d (if one
exists).

We will now mention various known upper bounds on S̃ys
F
(n,m, d) and Sys

F
(n,m, d) for various fields.

In all these bounds, we have suppressed a poly(c) dependence in the running time, where c = log q if F = Fq

and c is the maximum bit complexity of any coefficient of f if F is infinite.

Theorem 3.36. Let f1, f2, . . . fm ∈ F[x1, . . . , xn] be n-variate polynomials of degree at most d. Then, the
complexity of finding a single solution to the system f1(x) = 0, . . . , fm(x) = 0 (if one exists) over various
fields is as follows:

1. For all fields F, S̃ys
F
(n,m, d) = poly((nmd)3

n

). This follows from standard techniques in elimination
theory, see [CLO15] for details. For a detailed sketch of the argument and a bound on the size of the
extension, see Appendix A.

2. [HW99]7 For F = Fq, SysF(n,m, d) = O(dn
n

· (m log qO(1))).

3. [GV88] For F = R, Sys
F
(n,m, d) =Det-Sys

F
(n,m, d) = poly((md)n

2

). Note that in this case the
assumption is that the coefficients are integers or rationals8. However, the output might be a tuple

7the main results of this work is written for the case when q is prime, but the authors observe that it works for general q as
well.

8Here the authors assumed that the constants appearing in the system are integers (or rationals). Note that for all compu-
tational applications we can WLOG assume this by simply approximating/truncating a given real number at some number of
bits.
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of algebraic numbers over R where the degree of the extension is polynomially bounded when n is a
constant. See [GV88] for details. Note that all algebraic algorithms used in this paper will continue
to hold when the inputs are algebraic numbers of low/polynomial degree, and we deal with algebraic
extensions in the standard way.

4. [Ier89] For F = C (or any algebraically closed field), Sys
F
(n,m, d) =Det-Sys

F
(n,m, d) = (mn)O(n) ·

dO(n2).

Note that, for all cases described above, both Sys
F
(n,m, d) and S̃ys

F
(n,m, d) are bounded by poly((nmd)n

n

).
Thus, when n = O(1), Sys(n,m, d) = poly(m, d).

For clarity in presentation, we artificially define Sys(n,m, d) as the complexity of finding a solution to
a system of m polynomial equations ∈ F[x1, . . . , xn] of total degree d s.t. the solution has to lie in F if
F = R,C,Fq or an algebraically closed field, and it could be over an algebraic extension for other fields.
Clearly, as discussed above Sys(n,m, d) = poly((nmd)n

n

).

3.8.1 Derandomizing solving system of equations:

Derandomizing solving system of equation in general is considered a hard problem for the following reason.
Just solving a univarite quadratic equation over Fp in deterministic poly(log p) time is a notoriously hard
open problem, See [AM94, Problem 15]. Interestingly, this is the only case when low-variate plynomial system
solving is hard to derandomize. That is, if the underlying field is not a finite field with large characteristic,
then there do exist efficient deterministic algorithms for low-variate system solving.

Indeed solving systems of polynomial equations is the only place in the paper where randomness is utilized.
Thus, all our algorithms can be derandomized over R,C, since the algorithms mentioned in Theorem 3.36,
for polynomial system solving over F = R and C are already deterministic. Though we did not mention it,
polynomial system solving (and hence our algorithms) can also be derandomized over Fpd(in time poly(p, d)
time).

3.9 Hardness of computing Tensor rank.

The first step towards understanding the computational complexity was by H̊astad [H̊as90] who showed
that determining the tensor rank is an NP-hard over Q and NP-complete over finite fields. A better way
to understand hardness results for computing tensor rank is to study its connection to solving system of
polynomial equations.

Theorem 3.37. [SS16] For any field F, given a system of m algebraic equations S over F, we can in
polynomial time construct a 3 dimension tensor TS of shape [3m]× [3m]× [n+1] and an integer k = 2m+n
such that S has a solution ∈ F iff T has rank atmost 2m+ n over F.

This shows equivalence between system solving and computing tensor rank. This along with complexity
of system solving (discussed in the previous section) shows that computing tensor rank is NP-complete over
finite fields, over R it is in PSPACE [Can88] and is in the Polynomial Hierarchy (Σ2), assuming the GRH
[Koi96].

Similar, reductions also hold for integral domains (e.g. Z) [Shi16], thus showing that computing Tensor
rank is undecidable over Z and not known to be decidable over Q. Due to the equivalence between tensor rank
computation and learning ΣΠΣ{⊔jXj} circuits with optimal top fan-in, we get the corresponding hardness
consequences for ΣΠΣ{⊔jXj} -circuit reconstruction as well.

Such results also hold for symmetric rank computation, see [Shi16]. Concretely, for 3-dimensional tensors
of length n, Shitov showed that we can convert general tensors T to symmetric tensors Tsym s.t. rank(T ) +
4.5(n2 + n) = symmetric-rank(Tsym), thus transferring the results mentioned above for general tensors to
symmetric tensors as well. Again, these hardness results along with equivalence between symmetric tensor
rank computation and reconstructing optimal (w.r.t top fan-in) Σ∧Σ circuits implies that proper learning
(with optimal top-fan-in) for Σ∧Σ circuits is as hard as polynomial system solving. In particular, it is
NP-hard for most fields and maybe even undecidable over Q.
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4 Reconstruction of Σ∧Σ(k) circuits (decomposing low rank sym-
metric tensors)

In this section we will provide a proof of Theorem 1.4, and we will present our algorithm for reconstructing
Σ∧Σ(k) circuits given black-box access to the polynomial computed by it. As discussed in section 3.6, this
is equivalent to the problem of finding the optimal symmetric tensor decomposition for low rank symmetric
tensors.

In all running times stated in this section, we have suppressed a poly(c) multiplicative dependence in the
running time, where c = log q if F = Fq and c is the maximum bit complexity of any coefficient of f if F is
infinite.

We now restate Theorem 1.4 (only for the randomized algorithm over general fields) and prove it. After
the proof we will comment on how the algorithm can be derandomized over R and C.

Theorem 4.1. Given black-box access to a degree d polynomial f ∈ F[x1, x2, . . . , xn] such that f is com-

putable by a Σ∧Σ(k) circuit Cf over field F(characteristic > d or 0), there is a randomized poly(dk)k
k10

time algorithm that outputs a Σ∧Σ(k) circuit computing f .

Remark 4.2. when F = Fq for q > nd and when F = R or C, the output circuit is over the same underlying
field F. In general the output circuit might be over an algebraic extension of F.

Proof. The main observation is that if f can be represented by a Σ∧Σ(k) circuit, then f has only k essential
variables. Thus by Lemma 3.23, there is an algorithm that given black-box access to f , runs in time poly(n, d)
and outputs an invertible linear transformation A ∈ Fn×n such that f(A·X) depends only on k variables. Let
gA(X) = f(A ·X). Since we can compute A, hence given black-box access to f , we can simulate black-box
access to gA in time poly(n, d).

Notice that gA is a degree d polynomial in k variables that is also computed by a Σ∧Σ(k) circuit. We
will show how to efficiently learn a Σ∧Σ(k) representation of gA. Since gA(A

−1 ·X) = f(X), thus given a
Σ∧Σ(k) representation of gA we can obtain a Σ∧Σ(k) representation of f .

The algorithm for learning a Σ∧Σ(k) representation of gA works as follows. It starts by learning gA as a
sum of monomials (i.e. the sparse polynomial representation of gA). In particular, let S denote the collection
of non-negative integer n-tuples summing to d. The algorithm finds a collection of coefficients {cē ∈ F|ē ∈ S}
such that gA =

∑
ē∈S cē · x̄

ē. This can be done in poly(
(
k+d
d

)
) = poly(dk) using known sparse polynomial

reconstruction algorithms [KS01, BOT88].
Let

CgA ≡

k∑

i=1

(ai,1x1 + ai,2x2 + ai,3x3 + . . .+ ai,kxk)
d

be the Σ∧Σ(k) circuit computing gA.
Thus,

k∑

i=1

(ai,1x1 + ai,2x2 + ai,3x3 + . . .+ ai,kxk)
d =

∑

ē

cē · x̄
ē.

Now for each monomial x̄ē , ē ∈ S, we can compare the coefficient of x̄ē on both sides to get a polynomial
equation in the variables ai,j . Doing this for all monomials gives us a system of at most

(
k+d
d

)
polynomial

equations in k2 variables, with ai,j as variables. By Theorem 3.36, this system can be solved in time

Sys(k2,
(
k+d
d

)
, d). Thus, total time complexity is bounded by poly(dk)k

k10

.

Derandomization: In the above proof, randomness is used in the variable reduction step (Lemma 3.23)
and polynomial system solving (Theorem 3.36). Over R and C, Theorem 3.36 in fact states that polynomial
system solving can be done deterministically in the same time complexity.

Moreover, for derandomized variable reduction, we can use Lemma 3.24 instead of Lemma 3.23. Observe
that all the assumptions of Lemma 3.24 are satisfied, since as f is computed by a Σ∧Σ(k) circuit, it has at most
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k essential variables, and the class is also closed under taking first order partial derivatives. Furthermore,
C + . . .+ C︸ ︷︷ ︸

k times

for C = Σ∧Σ(k) is just the class if Σ∧Σ(k2) circuits, so by Lemma 3.8, there is an efficient hitting

set for C + . . .+ C︸ ︷︷ ︸
k times

.

Thus, putting it all together we see that we can derandomize the algorithm for proper learning algorithm
for Σ∧Σ(k) circuits over R,C.

5 Reconstructing ΣΠΣ{⊔jXj} circuits (decomposing low rank ten-
sors).

In this section we will provide a proof of Theorem 1.1, and we will present our algorithm for reconstructing
ΣΠΣ{⊔jXj}(k) circuits given black-box access to the polynomial computed by it. We will first present all the
details for the randomized algorithm and then later comment on how to derandomize it over certain fields.

In all running times stated in this section, we have suppressed a poly(c) multiplicative dependence in the
running time, where c = log q if F = Fq and c is the maximum bit complexity of any coefficient of f if F is
infinite.

Before we prove Theorem 1.1, we develop a bunch of lemmas and subroutines that will be used in the
final algorithm.

5.1 Width reduction for ΣΠΣ{⊔jXj}(k) circuits

We first show that there is an algorithm for learning ΣΠΣ{⊔jXj}(k) circuits of arbitrary width w in roughly
the same amount of time it takes to learn ΣΠΣ{⊔jXj}(k) circuits of width k.

The algorithm achieves this by a certain “width reduction” procedure that maps the given circuit to one
of low width while ensuring we can still get black-box access to it. The algorithm then learns the low width
circuit and inverts the map to recover the original possibly high width circuit. A similar “width reduction”
technique also appeared in a work of Gupta, Kayal and Lokam [GKL12], but there it was simpler since it
was specialized to the case of top fan-in 2, and hence it avoided some of the subtleties that arise here.

Lemma 5.1. Given black-box access to a degree d, n variate polynomial f ∈ F[X] such that f is computable
by (arbitary width) ΣΠΣ{⊔jXj}(k) circuit Cf over the field F with |F| > dn(otherwise we can work with an
extension), there is a randomized polynomial-time algorithm that outputs the following:

1. Black-box access to another related polynomial h which is computed by a width-k ΣΠΣ⊔jYj
(k) circuit

Ch. Each black-box query to h can be simulated in polynomial time by a suitable related query to f .

2. The underlying partition of the Y -variables, which is of the form Y := ⊔di=1Yi where Yj := {y1,j , y2,j , . . . , ykj ,j}.
For all j ∈ [d], kj ≤ k thus width(h) ≤ k.

3. A collection of linear polynomials {Pi,j ∈ F[Xj ]}j∈[d],i∈[kj ] such that the following holds: Upon substi-
tuting yi,j = Pi,j into the polynomial h (for each each variable yi,j that appears in h), we recover f .
Moreover Ch(yi,j = Pi,j) is a ΣΠΣ{⊔iXi}(k) representation of f .

Proof. Let Cf = ΣΠΣ{⊔jXj}(k) be the depth-3 set-multilinear circuit representation of f . Let

Cf ≡

k∑

i=1

d∏

j=1

ℓi,j where ℓi,j is a linear polynomial in X̄j variables.

Without loss of generality we will assume that k is the smallest integer such that f has such a represen-
tation. The reason we can do this because of the following. If there is a representation of f with a smaller
top fan-in k′, then we can assume that the algorithm knows k′ and runs the algorithm with k′ instead of k.
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The reason we can assume the algorithm “knows” k′ is that we can run the algorithm for all values of k′

from 1 up to k and try to learn the circuit with that top fan-in, and the first time it successfully learns a
circuit will correspond the representation of f with the lowest top fan-in. The algorithm knows when it has
successfully learnt the circuit because it can test whether or not the output circuit agrees with the input f
using polynomial identity testing (See Lemma 3.7 and Lemma 3.8).

As a first step, the algorithm will learn the linear span of the set {ℓj,i|j ∈ [k]} for each i ∈ [d].
To do this, substitute all variables inX\Xi to independent randomly chosen values from F and interpolate

to get a linear polynomial P1,i ∈ F[Xi]. Then P1,i = α
(1)
1,i ℓ1,i +α

(1)
2,i ℓ2,i + . . . α

(1)
k,iℓk,i where α

(1)
j,i ∈ F. Observe

that the algorithm learns P1,i but the α
(1)
j,i and ℓj,i are unknowns. We repeat this procedure for another

k − 1 random independent substitutions of the variables of X \ Xi and upon interpolation recover k − 1
additional linear combinations of ℓ1,i, · · · , ℓk,i. Let the resulting learnt linear polynomials be P2,i, P3,1, . . . Pk,i

respectively.
Now, we have that,




P1,i

P2,i

...
Pk,i


 =




α
(1)
1,i α

(1)
2,i · · · α

(1)
k,i

α
(2)
1,i α

(2)
2,i · · · α

(2)
k,i

...
...

...
...

α
(k)
1,i α

(k)
2,i · · · α

(k)
k,i




︸ ︷︷ ︸
Aᾱi

·




l1,i
l2,i
...

lk,i


 (4)

Now the great advantage of our assumption that k is the smallest integer such that f has a ΣΠΣ{⊔jXj}(k)
representation is that we can invoke Lemma 3.21. In conjunction with Lemma 3.16, this implies that Aᾱi

is
invertible with high probability.

Thus note that for each j ∈ [k], ℓj,i is in the linear span of {P1,i, . . . , Pk,i}.
If {P1,i, P2,i, . . . , Pk,i} are linearly independent polynomials, then the algorithm does the following. It

introduces k new formal variables y1,i, . . . , yk,i and defines k linear functions in these variables as follows.

For each j ∈ [k], it defines l̃j,i by the following equation.




l̃1,i
l̃2,i
...

l̃k,i


 = A−1

ᾱi




y1,i
y2,i
...

yk,i


 (5)

If {P1,i, . . . , Pk,i} are not linearly independent then find a set Si ⊆ [k] such that the elements of Bi =
{Pj,i|j ∈ Si} form a basis of {P1,i, . . . , Pk,i}. For instance, one can find Si using Lemma 3.17. let |Si| = ki.

In this case, change Equation 5 by keeping yj,i for j ∈ Si as a formal variables and replacing yj,i for each
j /∈ Si in the following way: If Pj,i =

∑
j∈Si

λjPj,i, then replace yj,i =
∑

j∈Si
λjyj,i. Observe that in both

cases the width of l̃j,i is ≤ k.
The algorithm performs the above procedure for each i ∈ [d], and thus for each i ∈ [d] and each j ∈ [k]

it obtains a linear polynomial l̃j,i.

Now consider the following polynomial h =
∑k

j=1

∏d
i=1 l̃j,i. Notice that h is a ΣΠΣ{⊔iYi}(k) circuit of

width at most k, with underlying partition Y := ⊔di=1Yi, where Yi := {y1,i, y2,i, . . . , yki,i}, ki = |Si|.

Claim 5.2. There is an efficient polynomial-time algorithm for simulating black-box access to h.

Proof. Suppose the algorithm wants to evaluate h at an input β, where β = (βj,i)i∈[d],j∈ki
, βj,i ∈ F.

This can be done by solving the following system of linear equations in the X variables, to obtain a
solution X0, and then evaluating f at X0. Suppose that for each i ∈ [d], Si := {i1, i2, . . . , iki

}. The for each
i ∈ [d], add the following equations to the system of equations.
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Pi1,i(Xi)
Pi2,i(Xi)

...
Piki

,i(Xi)


 =




βi1,i

βi2,i

...
βiki

,i




Existence of a solution is guaranteed, since for each i ∈ [d], {Pj,i(Xi)|j ∈ Si} is a linearly independent
collection of linear polynomials, and hence a solution can be efficiently found by Gaussian elimination.

By Equations 4 and Equation 5, we conclude that upon substituting yi,j = Pi,j in h we recover f .
Moreover, Ch(yi,j = Pi,j) is a ΣΠΣ{⊔iXi}(k) representation of f .

Corollary 5.3. Suppose A is an algorithm that has the following behavior. On input black-box access to
degree d, n-variate polynomial f ∈ F[X] such that f is computable by a width k ΣΠΣ{⊔jXj}(k) circuit Cf

over the field F, runs in randomized time A(n, d, k) and outputs a ΣΠΣ{⊔jXj}(k) circuit computing f . Then
there is another algorithm A′ that has the following behavior. On input black-box access to degree d, n-variate
polynomial f ∈ F[X] such that f is computable by an arbitrary width ΣΠΣ{⊔jXj}(k) circuit Cf over the field
F, runs in randomized time poly(n, d, k) · A(n, d, k) and outputs a ΣΠΣ{⊔jXj}(k) circuit computing f .

Proof. The algorithm A′ works as follows. Using the procedure described in Lemma 5.1, it uses black-
box queries to f to simulate black-box queries to another polynomial h which is computed by a degree d,
width k, ΣΠΣ{⊔jXj}(k) circuit in at most n variables. It then uses algorithm A to obtain a ΣΠΣ⊔jYj

(k)
representation of h in time poly(n, d, k) · A(n, d, k) (since each query to h takes time poly(n, d, k)) and then
makes the suitable substitution of linear polynomials into the variables of h to recover f .

5.2 Reconstructing low degree ΣΠΣ{⊔jXj}(k) circuits

As a basic step in reconstructing general ΣΠΣ{⊔jXj}(k) circuits, we show how to reconstruct ΣΠΣ{⊔jXj}(k)
circuits efficiently when the degree of the computed polynomial (which corresponds to the dimension of the
underlying tensor) is small.

We will obtain a bound as a function of the width-w, but when we use the lemma later, we will assume
the width is k (due to our width reduction lemma). (Recall, the width w is an upper bound on the number
of variables in each Xi.) The notation we use in the running time of the lemma below is from Section 3.8.

Lemma 5.4. Given black-box access to a degree d polynomial f ∈ F[X] such that f is computable by a
width w ΣΠΣ{⊔jXj}(k) circuit Cf over the field F, there is a randomized Sys(kwd,wd, d)+poly(w, k, d) time
algorithm that outputs a ΣΠΣ{⊔jXj}(k) circuit computing f .

Remark 5.5. when F = Fq and when F = R or C, the output circuit is over the same underlying field F.
In general the output circuit might be over an algebraic extension of F.

Proof. Start by learning f as a sparse polynomial, that is find cē ∈ F such that f =
∑

ē∈X1×···×Xd
cē · x̄

ē.
This can be done in poly(n, d) using [KS01, BOT88] sparse polynomial reconstruction.

Also, let

Cf ≡

k∑

i=1

d∏

j=1

(ai,j,1xj,1 + ai,j,1xj,1 + ai,j,2xj,2 + . . .+ ai,j,1xj,1)

be a ΣΠΣ{⊔jXj}(k)circuit computing f .
Thus,

k∑

i=1

d∏

j=1

w∑

ℓ=1

ai,j,ℓ · xj,ℓ =
∑

ē∈X1×···×Xd

cē · x̄
ē
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gives us a system of polynomial equations with ai,j,ℓ as variables. Notice that, this system has wd poly-
nomial equations of degree d supported on kwd variables. Thus, can be solved in Sys

F
(kwd,wd, d). Since,

system solving is the most expensive step of this process thus the overall time complexity is bounded by

Sys(kwd,wd, d)poly(w, k, d) = poly(kwd · wd · d · c)(kwd)(kwd)

.

5.3 Learning 2 linear forms appearing in the circuit

As a first step towards learning a general (high degree) ΣΠΣ{⊔jXj}(k) circuit C, our algorithm will try to
learn a single linear form appearing in the circuit C. In fact it will be convenient to learn 2 linear forms
appearing in C such that each multiplication gate of C contains at most one of them.

Lemma 5.6. Let C ≡
∑k

i=1 Ti be a width-k, simple and minimal ΣΠΣ{⊔jXj}(k) circuit computing a nonzero
polynomial f , such that k ≥ 2 and d > 2k2. Then, given black-box access to f , there is a randomized algorithm
that runs in time Sys(2k4, k2k

2

, 2k2) + poly(k, d), and does the following. It outputs a set L of 2k3 pairs of
linear forms which has the following property. One of the pairs (ℓ1, ℓ2) in L is such that for some i ∈ [d], ℓ1
and ℓ2 are supported on the variables of Xi, and both ℓ1 and ℓ2 appear in C.

Proof. Let σ = ⊔d2k2+1ᾱi, be a random assignment from the underlying field F to the variables in ⊔di=2k2+1Xi

performed in the following way: we pick S ⊆ F such that |S| > 2k+1nd. If F is not large enough, then we
can pick S from an extension field. Then each element of ⊔di=2k2+1Xi is independently set to a uniformly
random element of S, and let the resulting polynomial be f |σ.

Then observe that after setting these variables, with high probability, the restricted circuit C|σ is still
nonzero, simple and minimal. Simplicity follows directly. To observe non-zeroness and minimality, consider
the following family of polynomials, ∀U ⊂ [k], fU :=

∑
i∈U Ti . Note that, using minimality of f , we get

that ∀U ⊂ [k], fU 6= 0, thus on applying Lemma 3.7 on
∏

∀U fU gives that for aforementioned random σ,
fU |σ 6= 0 implying non-zeroness and minimality of C|σ.

Now we use Lemma 5.4 to learn a ΣΠΣ{⊔jXj}(k) circuit with variable partition ⊔2k
2

i=1Xi computing f |σ.

Let it be C̃ =
∑k′

i=1 Bi, with k′ ≤ k and WLOG C̃ is minimal (else we remove all identically zero subcircuits).

The algorithm then outputs a set L which comprises of all pairs of linear forms appearing in C̃ that are
supported on the same set of variables Xi (for each Xi). Let us now see why this set L has the desired
property.

By Lemma 3.14, we get that for each Ti|σ there exists ji ∈ [k] such that ∆(Ti|σ, Bji) ≤ k. Let us call

the set of Xi’s on which Ti|σ
gcd(Ti|σ,Bji

) is supported “bad”. Then, the number of sets that are bad for at least

one choice of Ti is bounded by k2. Thus, since d > 2k2, there exists at least one set (say Xa) such that if a
linear form ℓ ∈ F[Xa] is such that ℓ divided Ti|σ, then ℓ also divides Bji . Also, since C|σ is simple, there are
at least two distinct linear forms ℓ1, ℓ2 ∈ F[Xa] that each divide some multiplication gate of C|σ. Clearly
this pair of linear forms is also included in L. The time complexity estimate is immediate.

5.4 Learning most of the linear forms appearing in the circuit

In this section we will see how to use the two linear forms learnt in the previous subsection to learn a small
set S of multiplication gates, such that each multiplication gate Ti of C is very “close” to some gate of S.
From this we will then see how to essentially learn most of the linear forms appearing in each gate of C.
Our approach is recursive, so we will assume using an induction hypothesis that there is A(n, k − 1, d) time
randomized algorithm for reconstructing degree d, width k ΣΠΣ{⊔jXj}(k − 1) circuits. Note that, for base
case of k = 1 follows directly from black-box factoring result of [KT90] i.e. A(n, 1, d) = poly(n, d).

Lemma 5.7. Let C ≡
∑k

i=1 Ti be a minimal ΣΠΣ{⊔jXj}(k) circuit of degree d and let ℓ1 and ℓ2 be two
distinct linear forms supported on variables of Xi for some i ∈ [d] such that each of ℓ1 and ℓ2 appears in
C. Then there is a randomized algorithm that given black-box access to C, given ℓ1 and ℓ2, and two oracle
calls to algorithm for learning ΣΠΣ{⊔jXj}(k− 1) circuits, runs in time atmost 2A(n, k− 1, d)+poly(n, k, d)
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and outputs a set S = {M1,M2 . . . ,M|S|} of at most 2k − 2 ΠΣ circuits of degree d− 1 such that with high
probability, for all i ∈ [k], there exists j ∈ [2k − 2] such that ∆(Ti,Mj) < 2k.

Proof. Let ᾱ1 be a setting of the variables of Xi (chosen from a suitably large domain) on which ℓ1 vanishes.
Notice that with high probability, ℓ1 is the only linear form appearing in C that vanishes, and the restricted
circuit C|Xi=ᾱi

is a ΣΠΣ{⊔jXj}(k − 1) circuit. Indeed it is also possible that it might have much few than
k − 1 gates. Using the induction hypothesis, there is an efficient algorithm to learn a ΣΠΣ{⊔jXj}(k − 1)
representation of f |Xi=ᾱ1

. We run this algorithm and let the output be C1.
Similarly we let ᾱ2 be a setting of the variables of Xi (chosen from a suitably large domain) on which ℓ2

vanishes. We learn a ΣΠΣ{⊔jXj}(k − 1) representation of f |Xi=ᾱ2
and let the output be C2.

Let S denote the set of union multiplication gate from C1 and C2. Note, |S| ≤ 2(k − 1). Observe that
for each i ∈ [k], with high probability, one of the substitutions Xi = ᾱ1 of Xi = ᾱ2 must keep Ti nonzero,
since at most one of ℓ1, ℓ2 divides Ti. Thus, by Lemma 3.14, for all i ∈ [k], Ti must be “close” to some
multiplication gate of C1 or C2. More precisely, there exists j ∈ [2k − 2] such that ∆(Ti,Mj) < 2k. The
time complexity estimates is immediate.

Thus we can now assume that our algorithm can compute a set S consisting of multiplication gates such
that |S| ≤ 2(k− 1), and each gate of the circuit C that we are trying to learn is close to some element of S.

Lemma 5.8. Let C ≡
∑k

i=1 Ti be a ΣΠΣ{⊔jXj}(k) circuit of degree d and let S = {M1,M2 . . . ,M|S|} be
a set of at most 2k − 2 ΠΣ circuits of degree d − 1 such that for all i ∈ [k], there exists j ∈ [2k − 2] such

that ∆(Ti,Mj) < 2k. Then there is a poly((kdk
3

))-time algorithm for computing another set S̄ which has
the following properties.

1. |S̄| ≤
(
|S| ·

(
d−1
2k2

))k

2. The elements of S̄ are k-tuples of ΠΣ circuits of degree d− 1− 2k2

3. One of the elements of S̄ is of the form (G1, G2, . . . Gk) where for each i ∈ [k], Gi divides Ti. Moreover
all of the Gis are set-multilinear ΠΣ circuits sharing the same variable partition.

Proof. Consider the set Ŝ = {G | ∃M ∈ S s.t. G divides M, and deg(G) = d − 1 − 2k}. Notice that,
|Ŝ| ≤ |S| ·

(
d−1
2k

)
.

By the property of the set S, this implies that for all i ∈ [k], there is some element G′
i ∈ Ŝ such that

G′
i divides Ti. There may be multiple elements of Ŝ that divide Ti, but we fix any one and call it G′

i. Now
consider the set {G′

1, G
′
2, . . . , G

′
k}.

Ideally we would like these G′
i to depend on the same set of variables. Here is a modification of them that

will result in somewhat lower degree polynomials, but they would be supported on the same variable partition.
First recall that all the G′

is are a product of set disjoint linear forms, and each linear form is supported on
one of the parts of the underlying partition X = ⊔di=1Xi. Now we perform the following procedure. For
each i ∈ [k] and for each j ∈ [d] such that G′

i does not have a factor ∈ F[Xj ] then remove(divide out) any
linear factor ∈ F[Xj ] from all the other elements of the set {G′

1, G
′
2, . . . , G

′
k}. At the end of this process,

the new polynomials have degree at least d − 1 − 2k2 and they all are supported on the same parts of the
partition X = ⊔di=1Xi. We can also ensure that they all have degree exactly d − 1 − 2k2, as we can divide
out linear forms all depending on the same set of variables from all of these polynomials till they have degree
exactly d−1−2k2. Call these new polynomials G1, G2, . . . , Gk. Observe that they all have the same variable
partition, they all have degree d − 1 − 2k2, and they each divide some multiplication gate Ti of the circuit
C as well as some element of S.

We will now define the set S̄. First consider the set Q = {G|∃M ∈ S s.t. G divides M, and deg(G) =
d − 1 − 2k2}. Let S̄ be the set of all k-tuples of elements of Q. Then observe that (G′

1, G
′
2, . . . , G

′
k) is an

element of S̄. Then |S̄| ≤
(
|S| ·

(
d−1
2k2

))k

and it satisfies all other required properties as well.
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5.5 Learning the full circuit

Lemma 5.9. Let C ≡
∑k

i=1 Ti be a ΣΠΣ{⊔jXj}(k) circuit of degree d and width w computing a polynomial
f . Let (G1, G2, . . . Gk) be a k-tuple where for each i ∈ [k], Gi divides Ti. Moreover all of the Gis are
set-multilinear ΠΣ circuits of degree d− 1− 2k2, sharing the same variable partition. Then, given black-box
access to C and given the k-tuple (G1, G2, . . . Gk), there is a randomized Sys(k(2k2+1)w, (2k2w)2k

2+1, 2k2+

1) + poly((2k2w)2k
2

) time algorithm that outputs a ΣΠΣ{⊔jXj}(k) representation of f .

Proof. We are given (G1, G2, . . . Gk) and our aim is to findHi-s such that f =
∑

i∈[k] GiHi is a ΣΠΣ{⊔jXj}(k)
representation of f . Notice that, if we have black-box access to the individual Hi-s, then we can learn them
just by black-box factorization followed by sparse reconstruction of the linear factors. We will achieve
something close to this in principle.

As a first step, we find the linear dependency structure among the Gi-s using Lemma 3.17.
Let G1, G2, . . . Gc be a basis of linear space of Gi-s (we can always ensure this by relabelling of gates).

Also, let M be a k× c matrix which is the corresponding linear dependence matrix we get from Lemma 3.17,
that is,

Mk×c



G1

...
Gc


 =




G1

...
Gc

...
Gk




. (6)

Note that,

f =
(
H1, · · · , Hk

)
·



G1

...
Gk


 =

(
H1, · · · , Hk

)
·M ·



G1

...
Gc




For i ∈ [c], define H̃i by the following equality



H̃1

...

H̃c


 := MT




H1

...

.
Hk


 . (7)

Thus,

f =
∑

i∈[k]

HiGi =
∑

i∈[c]

H̃iGi.

We will now show how to obtain black-box access to the H̃i and then later use the H̃i to find the Hi-s.
Now observe that f =

∑c
i=1 H̃iGi where G1, . . . Gc are linearly independent (and we know what G1, . . . Gc

are). Let Z ⊂ X be the set of variables on which the Gi’s are supported. Then for each i, the H̃i and the
Hi belong to F[X \ Z].

We will now show how to get get black-box access to the H̃i by using black-box access to f and to the
Gi-s.

Let β1, β2, . . . , βc be random independent substitution of Z variables. Let fβi
∈ F[X\Z] be the polynomial

obtained by substituting βi into the Z variables of f . Then fβi
is a (2k2+1)w variate multilinear polynomial

(think of w being small, such as k) and thus fβi
can be represented efficiently as a sparse polynomial

(and in fact we can learn the monomial representation using black-box sparse polynomial interpolation in

poly((2k2w)2k
2

) [KS01]) .
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Now observe that 


fβ1

fβ2

...
fβc


 =




G1(β1) G2(β1) · · · Gc(β1)
G1(β2) G2(β2) · · · Gc(β2)

...
...

...
...

G1(βc) G2(βc) · · · Gc(βe)




︸ ︷︷ ︸
Bβ

·




H̃1

H̃2

...

H̃c


 .

SinceG1, . . . Gc are linearly independent, by Lemma 3.16 we see thatBβ is invertible with high probability.
Thus, 



H̃1

H̃2

...

H̃c


 = B−1

β




fβ1

fβ2

...
fβc




and in this manner we obtain access to the H̃i-s. Indeed we can recover the monomial representation of the
H̃i-s.

Note that each H̃i is a polynomial is at most (2k2 + 1)w variables and is of degree ≤ 2k2 + 1.
For ease of presentation, assume each Hi ∈ F[X1, X2, . . . , X2k2+1], which can ensured by relabeling of

variables.
Recall,

MT ·




H1

.

...
Hk


 =



H̃1

...

H̃c


 (8)

and let Hi =
∏

j∈[2k2+1](ai,j,1xj,1 + ai,j,2xj,2 . . . ai,j,wxj,w), where ai,j,k are unknowns that we intend to
find. On expanding equation 8 and comparing coefficient of monomials on both sides, we will get at most
(2k2w)2k

2+1 polynomial equations of degree at most 2k2 + 1 in at most k(2k2 + 1)w variables. Thus we can

solve this in Sys(k(2k2 + 1)w, (2k2w)2k
2+1, 2k2 + 1) time by Theorem 3.36.

5.6 Putting it all together

We now show how to combine all the lemmas and subroutines developed so far to get the full reconstruction
algorithm for ΣΠΣ{⊔jXj}(k) circuits. The theorem below is basically a restatement of Theorem 1.1 ((only
for the randomized algorithm over general fields). After the proof we will comment on how the algorithm
can be derandomized over R and C.

Theorem 5.10. Given black-box access to a degree d, n-variate polynomial f ∈ F[X] such that f is com-

putable by a ΣΠΣ{⊔jXj}(k) circuit Cf over the field F, there is a randomized poly(dk
3

, kk
k10

, n) time algo-
rithm that outputs a ΣΠΣ{⊔jXj}(k) circuit computing f .

Remark 5.11. when F = Fq and when F = R or C, the output circuit is over the same underlying field F.
In general the output circuit might be over an algebraic extension of F.

Proof. By Corollary 5.3, it suffices to assume that the width of f is at most k.
Our algorithm is recursive and we assume that we have an efficient algorithm for reconstructing ΣΠΣ{⊔jXj}(k−

1) circuits that runs in time A(n, k − 1, d). For the base case of k = 1, the reconstruction algorithm follows
directly from black-box factoring result of [KT90].

Now assume k ≥ 2. By Corollary 3.10 we can assume that Cf is simple. We can also assume that Cf is
minimal. This is because if f has a ΣΠΣ{⊔jXj}(k) representation with a non-minimal circuit, then it also
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has ΣΠΣ{⊔jXj}(k) representation with a minimal circuit, which is obtained by just deleting any subset of
multiplication gates in the non-minimal circuit which sums to zero.

If d ≤ 2k2, then we invoke the algorithm in Lemma 5.4 to learn a ΣΠΣ{⊔jXj}(k) representation of C.
If d > 2k2, we invoke the algorithm from Lemma 5.6 to compute the set L of pairs of linear forms. For

each pair (ℓ1, ℓ2) ∈ L we do the following: We invoke Lemma 5.7 to compute a set S of at most 2k − 2
ΠΣ circuits and then invoke Lemma 5.8 to compute a set S̄ of k-tuples. Let us call this final set S̄(ℓ1,ℓ2).
For each k-tuple (G1, G2, . . . , Gk) ∈ S̄(ℓ1,ℓ2) we invoke the algorithm of Lemma 5.9 with w = k to output
a circuit. We then verify that the output circuit indeed has the ΣΠΣ{⊔jXj}(k) format and then we check
(by running a polynomial identity testing algorithm) if it computes f . If it passes both theses verification
steps then the algorithm halts and outputs that circuit. By Lemmas 5.6, 5.7, 5.8 and 5.9, we do know that
for some choice of (ℓ1, ℓ2) and for some choice of (G1, G2, . . . , Gk) ∈ S̄(ℓ1,ℓ2), the algorithm will succeed with
high probability.

Time complexity analysis: The upper bound on the time complexity is poly(n, d, k)·A(n, k, d). Recall,
A(n, k, d) is the time complexity of learning degree d, width k ΣΠΣ{⊔jXj}(k) circuit computing f . We now
upper bound A(n, k, d). Note that,

A(n, k, d) ≤ 2 · A(n, k − 1, d) + Sys(k(2k2 + 1)k, (2k2k)2k
2+1, 2k2 + 1) + poly(n, d) + poly(dk

3

).

≤ 2k · A(n, 1, d) + k · Sys(k(2k2 + 1)k, (2k2k)2k
2+1, 2k2 + 1) + kpoly(dk

3

) ≤ poly(dk
3

, kk
k10

, n).

So, the total time complexity is also bounded by poly(dk
3

, kk
k10

, n).

Derandomization: We list below the places in the proof where randomization is used, and state how
to derandomize them.

• Polynomial system solving: This is used in two different places in the proof and in both cases can
be substituted with deterministic algorithms for the same when the underlying field is R or C (See
Theorem 3.36). It is worth noting that this is the only step where the derandomization does not work
over all fields.

• Blackbox factoring: For this step we had used the randomized blackbox factoring algorithm by Kaltofen
and Trager. To derandmize this step one can use the deterministic factoring algorithm for multilinear
polynomials given in [SV10] along with a hitting set of ΣΠΣ{⊔jXj}(k) circuits.

• Variable or “width” reduction: In this step we had used Lemma 3.16 to find an assignment s.t. Aαi

matrix is invertible. However in our setting we can use the deterministic version of this lemma instead,
i.e. Lemma 3.18 since we have efficient hitting sets for ΣΠΣ{⊔jXj}(k) circuits and for sums of constantly
many ΣΠΣ{⊔jXj}(k) circuits.

• Computing linear dependence among the Gis: In this step, instead of using the randomized algorithm
from Lemma 3.17), we can instead use the derandomized version of it, i.e. Lemma 3.19 since we have
efficient hitting sets for ΣΠΣ{⊔jXj}(k) circuits and for sums of constantly many ΣΠΣ{⊔jXj}(k) circuits.

6 Multilinear Depth-3 Circuits

In this section, we will provide a proof of Theorem 1.6. In all running times stated in this section, we have
suppressed a poly(c) multiplicative dependence in the running time, where c = log q if F = Fq and c is the
maximum bit complexity of any coefficient of f if F is infinite.

Let us start by revisiting some core definition related to depth-3 circuits.

Definition 6.1. A depth-3 ΣΠΣ(k) circuit C of degree (at most) d computes a polynomial of the form

C ≡

k∑

i=1

Ti(X) =

k∑

i=1

di∏

j=1

ℓi,j(X),

36



where di ≤ d and the ℓi,j-s are linear functions; ℓi,j(X) =
n∑

t=1
ati,jxt + a0i,j with ati,j ∈ F.

A multilinear ΣΠΣ(k) circuit is a ΣΠΣ(k) circuit in which each Ti is a multilinear polynomial. In particular,
each such Ti is a product of variable-disjoint linear functions.

Following notations will be useful throughout the paper.

1. For each A ⊆ [k], CA is defined as a subcircuit of C supported on A, formally, CA =
∑

i∈A Ti.

2. gcd(C)
∆
= gcd(T1, T2, . . . , Tk).

3. rank(C) = dim(span{ℓi,j}).

Observe that for a multilinear circuit: d ≤ rank(C).

Based on the notion of rank, in [KS09a], Karnin and Shpilka defined a “distance function” for depth-3
circuits.

Definition 6.2 ([KS09a]). For two ΣΠΣ circuits C1, C2, we define a distance function:

∆rank(C1, C2)
∆
= rank

(
C1 + C2

gcd(C1 + C2)

)
.

For a single circuit C, we define the GCD-free-rank as:

∆rank(C)
∆
= ∆rank(C, 0) = rank

(
C

gcd(C)

)
.

The following result known as the Rank Bound provides a structural property for multilinear depth-3
computing the zero polynomial, under some technical conditions.

Theorem 6.3 ([SS09]). There exists a monotone function RM (k) ≤ O(k3 log k) such that any simple and
minimal, multilinear ΣΠΣ(k) circuit C, computing the zero polynomial satisfies rank(C) ≤ RM (k).

6.1 Learning Low-Degree Multilinear ΣΠΣ(k) Circuits

In this section we will show how to reconstruct a low-degree multilinear ΣΠΣ(k) circuit from black-box
samples. (For now we only state the randomized version and later point out how to derandomize it over
R and C). We state the lemma below for general k and d, but think of k and d to be constants, and the
number of variables, n, to be growing.

Lemma 6.4. Let f ∈ F[x1, x2, . . . , xn] be a polynomial computed by a degree d, multilinear ΣΠΣ(k) circuit
Cf of the form

k∑

i=1

Ti(X) =

k∑

i=1

di∏

j=1

ℓi,j(X)

Then there is a randomized algorithm that given k, d and black-box access to f outputs a multilinear ΣΠΣ(k)

circuit computing f , in time poly(n, Sys(d2k2, kd2n+
(
dk+d

k

)
, d)) ≤ (dkn)(d

2k3)
O(d2k2)

.

Proof. Let m be the number of essential variables in f . Since there at most kd linear forms appearing in C,
this it is easy to see that m ≤ kd.

By Lemma 3.23, there is a polynomial-time randomized algorithm that given black-box access to f ,
computes an invertible linear transformation A ∈ Fn×n such that f(A · x̄) only depends on the first m
variables.

37



Let g(X) = f(A · x̄). Observe that given black-box access to f , one can easily simulate black-box access
to g, since in order to evaluate g at any input α ∈ F[x1, x2, . . . , xn], one has to simply evaluate f at A · α.

Also observe that g(A−1 · x̄) = f(x̄). Thus any algorithm that can efficiently learn g can also efficiently
learn f in the following way. For each i ∈ [n], suppose that Ri denote the ith row of A−1. Then in the ith
input to g simply input the linear polynomial Li = 〈Ri, x̄〉, which is the inner product of Ri and the vector
x̄ of formal input variables. Since g only depends on the first m variables, we only really need to do this
operation for i ∈ [m].

Since f is computed by a degree d multilinear ΣΠΣ(k) circuit, hence g(x̄) = f(A · x̄) is also has a
natural degree d ΣΠΣ(k) circuit representation, where the linear forms of that representation are obtained
by applying the transformation A to corresponding linear forms of C. Let us call this circuit Cg. Notice
that Cg may not be multilinear. However, if were somehow able to learn the precise circuit Cg, then by
substituting each variable xi to Li then we would recover the circuit Cf which is indeed multilinear.

Thus our goal is now the following. We have black-box access to g which only depends on m variables.
We would like to devise as algorithm for reconstructing Cg. Now here is a subtle point. Cg is a particular
degree d ΣΠΣ(k) representation of g. It has the nice property that when we plug in xi = Li in this
representation, then we recover a multilinear ΣΠΣ(k) representation of f . Let us call the new object
obtained by plugging in xi = Li for each i, the “lift” of Cg However, g might have multiple representations
as a degree d ΣΠΣ(k) circuit. If given black-box access to g, the reconstruction algorithm finds some other
degree d ΣΠΣ(k) representation of g, call it C ′

g, then there is no guarantee that when we plug in xi = Li in
this representation, then we recover a multilinear ΣΠΣ(k) representation of f . In other words, the lift of C ′

g

may not be multilinear.
Now, we will not actually be able to guarantee that we learn Cg. However the existence of Cg tells us

that there exists a ΣΠΣ(k) representation of g whose lift is a multilinear ΣΠΣ(k) circuit. Can we find such
a representaion of g?

We will now see that we can actually do this. In order to learn a degree d ΣΠΣ(k) representation of g we
will set up a system of polynomial equations whose solution will give as a degree d ΣΠΣ(k) representation.
We will be able to impose additional polynomial constraints to this system that will further ensure that
whatever ΣΠΣ(k) representation is learnt will be such that its lift will be a multilinear ΣΠΣ(k) circuit.

The algorithm first learns g as a sum of monomials. Since g is of degree at most d and depends on at most

kd variable, such a representation of g can be found in time poly
((

kd+d
d

))
using known sparse polynomial

reconstruction algorithms [KS01, BOT88]. Let S be the set of m-tuples of non-negative integers that sum
to d. Then the algorithm finds a collection of coefficients {cē ∈ F|ē ∈ S} such that g =

∑
ē∈S cē · x̄

ē.
Any degree d ΣΠΣ(k) representation of g looks like the following:

k∑

i=1

d∏

j=1

(a
(i)
j,1x1 + a

(i)
j,2x2 + . . .+ a

(i)
j,mxm + a

(i)
j,m+1) =

∑

ē∈S

cē · x̄
ē.

The algorithm already knows the set of coefficients {cē ∈ F|ē ∈ S}. In order to learn a ΣΠΣ(k) represen-

tation it needs to learn values for the coefficients in the LHS, i.e. the a
(i)
j,r for various choices of i, j, r. These

a
(i)
j,r are the unknown variables.
Now for each monomial xē that appears in g, we can compare the coefficient of it on the LHS and RHS of

the above expression, set them equal to each other and get a polynomial equation in the unknown variables.
We do this for all the monomials and hence set up a system of polynomial equations in the unknown variables.
Each solution to this system of equations corresponds to a degree d ΣΠΣ(k) representation of g and vice
versa.

We are looking for a degree d ΣΠΣ(k) representation whose lift it multilinear. To ensure this, we will
add some additional polynomial constraints to our system of polynomial equations.

Now suppose that
k∑

i=1

d∏

j=1

(a
(i)
j,1x1 + a

(i)
j,2x2 + . . .+ a

(i)
j,mxm + a

(i)
j,m+1)
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represents some degree d ΣΠΣ(k) representation of g. (We still treat the a
(i)
j,r as unknown variables). In

order for its lift to be multilinear, we would need to look at the expression

k∑

i=1

d∏

j=1

(a
(i)
j,1L1 + a

(i)
j,2L2 + . . .+ a

(i)
j,mLm + a

(i)
j,m+1)

and in the above expression, any two linear polynomials appearing in the same multiplication gate should
be variable disjoint. Now consider a linear polynomial

L
(i)
j = (a

(i)
j,1L1 + a

(i)
j,2L2 + . . .+ a

(i)
j,mLm + a

(i)
j,m+1)

appearing in the expression. Each Li is a linear form in x1, . . . , xn and the algorithm knows what these Li

are. Thus upon expanding and collecting terms, we see that L
(i)
j is a linear polynomial in the x1, . . . , xn,

with coefficients being linear combinations of a
(i)
j,1, a

(i)
j,2, . . . , a

(i)
j,m+1. Now for the lift to be multilinear, we

need that for each i ∈ [k], L
(i)
1 , L

(i)
2 , . . . , L

(i)
d are mutually variable disjoint. In order for L

(i)
j and L

(i)
r to be

variable disjoint, we need to ensure that for each t ∈ [n], one of the coefficients of xt in L
(i)
j and L

(i)
r is zero.

Equivalently, it suffices that the product of the coefficient of xt in L
(i)
j and the coefficient of xt in L

(i)
r is

zero. This equality is in fact a polynomial constraint in the a
(i)
j,1, a

(i)
j,2, . . . , a

(i)
j,m+1 and the a

(i)
r,1, a

(i)
r,2, . . . , a

(i)
r,m+1

variables.
We add this polynomial equation to our system of polynomial equations. We do this for each i ∈ [k], for

each j, r ∈ [d] where j 6= r, and each t ∈ [n]. Thus we add about k · d2 · n additional polynomial equations.
Then observe that any solution to the new system will have the property that the lift will be multilinear.

Moreover the existence of Cg guarantees that the system will have at least one solution, and hence it

solvable in time Sys(mdk, kd2n +
(
dk+d

k

)
, d). And the overall time complexity of the algorithm is bounded

by poly(n, Sys(d2k2, kd2n+
(
dk+d

k

)
, d)) ≤ (dkn)O(d2k3)

(d2k2)

.

We observe that Lemma 6.4 can be extended in two aspects: first, as d ≤ rank(C) one can immediately
extend the algorithm to the case when the rank (rank(C)) is “small” . It turns out, though, that we can
extend the algorithm further to the case when gcd-free-rank (∆rank(C)) is small. Note that this is not an
immediate extension as one can have a high-degree circuit with constant ∆rank(C). One such example would
be a circuit in which all the multiplication gates are equal. To avoid such situations we use the algorithm in
Corollary 3.10 to factor out gcd(C) (which is a product of linear functions). Second, we can find a circuit
with the smallest possible fan-in, by starting with k = 1 and increasing it, until we can found a valid circuit.
Note that, we can verify the correctness of our output using Lemma 3.8. The above discussion gives rise the
following lemma, the proof of which is left as an easy exercise to the reader.

Lemma 6.5. Let f ∈ F[x1, x2, . . . , xn] be a polynomial computed by multilinear ΣΠΣ(k) circuit C with
∆rank(C) ≤ r. Then there is a randomized algorithm that given k, r and black-box access to f out-
puts a multilinear ΣΠΣ(k′) circuit computing f , where k′ ≤ k is the smallest possible fan-in, in time

poly(n, Sys(r2k2, kr2n+
(
rk+r
k

)
, r)) ≤ (rkn)O(r2k3)

(r2k2)

.

Derandomization: The only steps where randomization is required for Lemma 6.4(learning low-degree
multilinear ΣΠΣ(k) circuit) are in the variable reduction step (Lemma 3.23) and polynomial system solving
(Theorem 3.36). Over R and C, Theorem 3.36 in fact states that polynomial system solving can be done
deterministically in the same time complexity.

Moreover, for derandomized variable reduction, we can use Lemma 3.24 instead of Lemma 3.23. Observe
that all the assumptions of Lemma 3.24 are satisfied, since a low degree multilinear ΣΠΣ(k) circuit only has
constantly many linear forms and hence constantly many essential variables. Moreover the class is closed
under taking first order partial derivatives. Furthermore, C + . . .+ C︸ ︷︷ ︸

k times

for C being the class of multilinear
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Sps(k) circuits is just the class if multilinear ΣΠΣ(k2) circuits, so by Lemma 3.8, there is an efficient hitting
set for C + . . .+ C︸ ︷︷ ︸

k times

.

Note that, we can also derandomize Lemma 6.5. The only place where we need randomness is used is
in the step requiring gcd extraction. Using the deterministic factoring algorithm in [SV10] along with a
hitting set of multilinear ΣΠΣ(k) circuits (instead of using the Kaltofen-Trager [KT90] algorithm) gives us
a deterministic algorithm for this step.

6.2 Learning High-Degree Multilinear ΣΠΣ(k) Circuits

We show that high-degree case reduces to the low-degree case. More precisely, the high-degree case reduces to
the low-gcd-free-rank case, which in turn reduces to the low-degree case. Algorithmically, we invoke Lemma
6.5 together with Lemma 6.19, that simulates a black-box access to all low-gcd-free-rank components of a
circuit.

6.2.1 Clustering Algorithm

In [KS09a], a “clustering” algorithm for ΣΠΣ(k) circuits was proposed. Intuitively speaking, this algorithm
merges multiplication gates with “high” GCD into clusters. One can also think of these clusters as finding
a partition of [k], where all the gates T1 to Tk which are “close” together according to the ∆rank distance
function merge to form a partition of [k]. We formalize this notion below:

Definition 6.6 ([KS09a]). Let C be a multilinear ΣΠΣ(k) circuit and I = A1 ·∪ . . . ·∪As = [k] be some

partition of [k]. For each i ∈ [s], define Ci
∆
= CAi

. The set {Ci}
s
i=1 is called a partition of C. For κ, r ∈ N,

we say a partition {Ci}
s
i=1 is (κ, r)-strong when the following conditions hold:

• ∀i ∈ [s], ∆rank(Ci) ≤ r.

• ∀i 6= j ∈ [s], ∆rank(Ci, Cj) ≥ κ · r.

We now give the main relevant result.

Lemma 6.7 (Clustering Algorithm of [KS09a]). Let n, k, rinit, κ ∈ N. There exists an algorithm that
given rinit, κ and n-variate multilinear ΣΠΣ(k) circuit C as input, outputs r ∈ N such that rinit ≤ r ≤
k(k−2)·logk(κ) · rinit and a (κ, r)-strong partition of [k], in time O(log(κ) · n3k4),

A key corollary of this result is that for sufficiently (yet, still modestly) large parameters, any two clustered
representations of (possible even different) circuits computing the same polynomial are identical (up to a
permutation). In that sense, we can say that the clustered representation is unique!

Corollary 6.8 (Implicit in [KS09a]). Let n, k, rinit, κ ∈ N such that rinit ≥ RM (2k) 9 and κ > k2, and let C
and C ′ be two minimal multilinear ΣΠΣ(k) circuits computing the same non-zero polynomial. Furthermore,
let C1, . . . , Cs and C ′

1, . . . , C
′
s′ be the the partitions of C and C ′, respectively, found by the clustering algorithm

on inputs κ, rinit together with C and C ′, respectively. Then s′ = s and there exist a permutation π : [s]→ [s]
such that ∀i : Ci ≡ C ′

π(i).

Given the above, we can define a canonical partition of a circuit.

Definition 6.9. Let C be a minimal multilinear ΣΠΣ(k) circuit computing a non-zero polynomial. We

define Con(C)
∆
= (C1, . . . Cs) as the output of the clustering algorithm, given rinit = RM (2k), κ = k3 and C

as input.

9RM (k) is the so-called “Rank Bound” from Theorem 3.12.
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Observe that for all i ∈ [s] : ∆rank(Ci) ≤ kO(k). Nonetheless, Con(C) will never be explicitly computed
as it requires the hidden circuit C itself as an input, finding which is the very purpose of the reconstruction
algorithm! Yet, a further key observation utilized in [KS09a] is that the uniqueness of clustered representation
still holds true if we restrict the circuits to a well-chosen, yet low-dimensional affine space. These are
referred to as rank-preserving subspaces (a formal definition is given in Definition 6.11). We first state the
aforementioned uniqueness property and then discuss rank-preserving subspaces and their constructions in
Section 6.2.2.

Lemma 6.10 (Implicit in [KS09a]). Let C be a minimal multilinear ΣΠΣ(k) circuit computing a non-zero
polynomial, let Con(C) = (C1, . . . Cs) and let V be kO(k)-multilinear-rank-preserving for C. Furthermore,
let C ′ ≡ C|V and C ′

1, . . . , C
′
s′ be the the partition of C ′ found by the clustering algorithm on inputs rinit =

RM (2k), κ = k3 and C ′. Then s′ = s and there exist a permutation π : [s]→ [s] such that ∀i : C ′
i = Cπ(i)|V .

6.2.2 Rank Preserving Subspaces

In this section we formalize the notion of multilinear rank-preserving subspaces introduced in [KS08, KS09a]
and show new constructions. We begin with a definition.

Definition 6.11 ([KS08, KS09a]). Let C ≡
k∑

i=1

Ti =
k∑

i=1

di∏
j=1

ℓi,j be a multilinear ΣΠΣ(k) circuit and V an

affine subspace. We say that V is r-multilinear-rank-preserving for C if the following properties hold:

1. For any two linear functions ℓi,j ≁ ℓi′,j′ appearing in C, we either have that ℓi,j |V ≁ ℓi′,j′ |V or that
both ℓi,j |V , ℓi′,j′ |V are constant functions.

2. ∀A ⊆ [k], rank(sim(CA)|V ) ≥ min{rank(sim(CA)), r}.

3. No multiplication gate Ti vanishes on V . In other words, for all i ∈ [k] : Ti|V 6≡ 0.

4. The circuit C|V is a multilinear circuit.

In [KS08], a construction of such subspaces was given. Unfortunately, we cannot use this construction
directly as it is very “rigid”; we will need something “less structured”. Nonetheless, we will build on (and,
in fact, generalize) this construction to fit our needs.

Definition 6.12 ([KS08]). For a set B ⊆ [n], we define VB
∆
= span{ei | i ∈ B }, where ei ∈ {0, 1}

n
denotes

the i-th standard basis vector.

This definition was used as the first step of the construction of [KS08]. Indeed, it was shown that it
“almost” works.

Lemma 6.13 ([KS08]). Let C be a multilinear ΣΠΣ(k) circuit and r ∈ N. Then there exists a subset B ⊆ [n]
of size |B| = 2k · r such that for every B′ ⊇ B and ū ∈ Fn:

1. ∀A ⊆ [k], rank(sim(CA)|VB+ū) ≥ min{rank(sim(CA)), r}.

2. The circuit C|VB+ū is a multilinear circuit.

The next (and the final) step of the construction of [KS08] was to show that for a particular shift ū ∈ Fn,
the space VB + ū satisfies all the requirements of Definition 6.11. In what follows, we generalize this steps
by expressing a general condition for ū ∈ Fn under which VB + ū satisfies all these conditions. Indeed, our
result is a direct application of Lemma 3.1. Furthermore, we show a somewhat stronger statement, which in
the terminology of [KS08, KS09a] is referred to as “liftable” rank-preserving subspace.

Lemma 6.14. Let C ≡
k∑

i=1

Ti =
k∑

i=1

di∏
j=1

ℓi,j be a multilinear ΣΠΣ(k) circuit and let r ∈ N. Let B be the

subset from Lemma 6.13. Then there exist a polynomial ΦC(x̄) (independent of r and B) of degree less than
2n3k2 such that if ΦC(ū) 6= 0 then VB′ + ū is r-multilinear-rank-preserving space for C for every B′ ⊇ B.
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Proof. Consider the polynomial

ΦC(x̄)
∆
=

n∏

i=1

Ti ·
∏

(i,j) 6=(i′,j′)

D(ℓi,j , ℓi′,j′).

Here D(R,L) is given by Lemma 3.1. Indeed, Properties 1 and 3 of Definition 6.11 follow from Lemma 3.1.
In terms of the degree, observe that there are at most nk linear forms. Therefore,

deg(ΦC) ≤ nk +

(
nk

2

)
· n < nk + n3k2 < 2n3k2.

We conclude this section with two observations. The first observation was implicitly made in [KS08] and
was, in fact, used in their construction of rank-preserving subspaces.

Observation 6.15. For every C : ΦC

(
1, y, y2, . . . , yn−1

)
is non-zero univariate polynomial in y of degree

less than 2n4k2.

The next observation follows immediately from the definition.

Observation 6.16. Let f ∈ F[x1, x2, . . . , xn] be a multilinear polynomial, B ⊆ [n] and ā, b̄ ∈ Fn two
assignments such that wH(ā, b̄) = 1. Finally, suppose that ā and b̄ differ (only) in the i-th coordinate. Then:

1.
(
f |VB∪{i}+ā

)
|xi=0 = f |VB+ā

2.
(
f |VB∪{i}+ā

)
|xi=bi−ai

= f |VB+b̄

3. (f |VB+ā) |xB=0̄B = f(ā)

6.2.3 Cluster Evaluation

For a circuit C, let Con(C) = (C1, . . . Cs) be its canonical partition (see Definition 6.9). Recall that by
design each Ci is a “low-rank” circuit. That is, ∆rank(Ci) ≤ kO(k). Therefore, if we could evaluate each such
Ci on an arbitrary point b̄ ∈ Fn, we could invoke the learning algorithm from Lemma 6.5 and reconstruct
it. We show how to achieve this goal via a technique similar to the one used in [BSV20].

We first observe that the uniqueness property w.r.t to rank-preserving spaces (Lemma 6.10) will allow
us to evaluate the Ci-s on the space VB + ā (and thus on ā) for a “random” point ā (or a point ā with a
particular structure). Our next step will be to change one (arbitrary) coordinate of such an ā.

Lemma 6.17. Let C be a multilinear ΣΠΣ(k) circuit and Con(C) = (C1, . . . Cs) be its canonical partition.
Then there exists an algorithm that given:

• Assignments: ā, b̄ ∈ Fn such that wH(ā, b̄) = 1 and ΦC(ā) 6= 0

• The subset B ⊆ [n] of size kO(k) guaranteed by Lemma 6.13 for r = kO(k).

• Ordered tuple (C1|VB+ā, . . . , Cs|VB+ā)

outputs the ordered tuple
(
C1|VB+b̄, . . . , Cs|VB+b̄

)
, in time nkkO(k)

.

Proof. Let i ∈ [n] be coordinate where ā and b̄ differ. The algorithm operates as follows:

• Learn C ′ ∆
= C|VB∪{i}+ā using Lemma 6.4 with d = |B|+ 1.
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• Run the Clustering Algorithm from Lemma 6.7 on inputs C ′, rinit = RM (2k), κ = k3.
Let C ′

1, . . . , C
′
s′ be the output of the algorithm.

• For j = 1..s′ : find a coordinate k such that C ′
j |xi=0 = Ck|VB+ā; Set σ(k)← j

• Output
(
C ′

σ(1)|xi=bi−ai
, C ′

σ(2)|xi=bi−ai
, . . . , C ′

σ(s′)|xi=bi−ai

)

We now argue correctness. By Lemma 6.14, VB∪{i} + ā is kO(k)-multilinear-rank-preserving for C. Con-
sequently, by Lemma 6.10, s = s′ and there exists a permutation π : [s] → [s] such that ∀j ∈ [s] : C ′

j =
Cπ(j)|VB∪{i}+ā. By Observation 6.16,

∀j ∈ [s] : C ′
j |xi=0 = Cπ(j)|VB+ā.

As the clusters in the partition are different, we obtain that ∀j ∈ [s] : π(j) = k, σ(k) = j which implies that

∀k ∈ [s] : π(σ(k)) = k.

Finally, by Observation 6.16:

∀k ∈ [s] : C ′
σ(k)|xi=bi−ai

=
(
Cπ(σ(k))|VB∪{i}+ā

)
|xi=bi−ai

= Cπ(σ(k))|VB+b̄ = Ck|VB+b̄.

The running time follows from Lemmas 6.4 and 6.7.

Next, as in [BSV20], by applying the lemma iteratively we can extend the evaluation algorithm to handle
assignments with arbitrary Hamming distance, yet under some technical conditions. This can be considered
as a grass-hopper jump. To formulate these conditions, we will use the notations from Definition 3.2.

Corollary 6.18. Let C be a multilinear ΣΠΣ(k) circuit and Con(C) = (C1, . . . Cs) be its canonical partition.
Then there exists an algorithm that given:

• Assignments: ā, b̄ ∈ Fn such that for all 0 ≤ i ≤ n− 1, ΦC(γ
i(ā, b̄)) 6= 0.

• The subset B ⊆ [n] of size kO(k) guaranteed by Lemma 6.13 for r = kO(k).

• Ordered tuple (C1|VB+ā, . . . , Cs|VB+ā)

outputs the ordered tuple
(
C1|VB+b̄, . . . , Cs|VB+b̄

)
and hence

(
C1(b̄), . . . , Cs(b̄)

)
∈ Fs, in time nkkO(k)

.

Proof. Apply Lemma 6.17 iteratively, using the ordered tuple
(
C1|VB+γi(ā,b̄), . . . , Cs|VB+γi(ā,b̄)

)
to compute

the ordered tuple
(
C1|VB+γi+1(ā,b̄), . . . , Cs|VB+γi+1(ā,b̄)

)
, for 0 ≤ i ≤ n − 1, recalling that ā = γ0(ā, b̄) and

b̄ = γn(ā, b̄). The last part follows from Observation 6.16.

Now we show how to evaluate Con(C) on V |B+b̄ for an arbitrary b̄ ∈ Fn and hence Con(C)|x̄=b̄ . In order
to do this, we will consider the line ℓā,b̄(t) through ā and b̄ and show that “most” points ū on this line do
satisfy the condition that ΦC(ū) 6= 0. Once we have this, by Corollary 6.18, we will show that for most points
ū on the line, Con(C)|B+ū can be computed accurately. We then apply noisy polynomial interpolation (for
instance the Berlekamp-Welch algorithm for decoding Reed-Solomon Codes) to recover the entire univariate
polynomial which is Con(C) restricted to V |B+ℓā,b̄(t)

, and from this we can recover Con(C) on V |B+b̄, and

hence on b̄.

Lemma 6.19. Let C be a multilinear ΣΠΣ(k) circuit and Con(C) = (C1, . . . Cs) be its canonical partition.
Then there exists an algorithm that given:

• Assignments: ā, b̄ ∈ Fn such that ΦC(ā) 6= 0.
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• The subset B ⊆ [n] of size kO(k) guaranteed by Lemma 6.13 for r = kO(k).

• Ordered tuple (C1|VB+ā, . . . , Cs|VB+ā)

outputs the ordered tuple
(
C1(b̄), . . . , Cs(b̄)

)
∈ Fs in time nkkO(k)

.

The algorithm and the proof mimic Lemma 5.4 from [BSV20].

Proof. Let W ⊆ F be a subset of size |W | = 5n4k2 and let f = (f1, . . . , fs) : F → Fs be a function to be
specified later. The algorithm operates as follows:

• For each α ∈W , define f(α) as the output of the algorithm in Corollary 6.18 for the input assignments
ā and ū = ℓā,b̄(α).

• For i ∈ [s]: use noisy polynomial interpolation (Lemma 3.3) on fi to recover a polynomial f̂i(t) of
degree at most n

• Output
(
f̂1(1), . . . , f̂s(1)

)

We now analyse the algorithm. Consider the following polynomials:

Q(t)
∆
=

n−1∏

i=1

ΦC

(
γi(ā, ℓā,b̄(t))

)
, Pi(t)

∆
= Ci(ℓā,b̄(t)) for i ∈ [s].

Observe that by Corollary 6.18, if Q(α) 6= 0 then ∀i ∈ [s] : fi(α) = Pi(α). We will now bound the
number of roots of Q(t). By Lemma 6.14, Q(t) is a univariate polynomial of degree less that 2n4k2. In
addition, Q 6≡ 0 since Q(0) = (ΦC(ā))

n 6= 0. Consequently, Q(t) has less that 2n4k2 roots. On the other
hand, for every i ∈ [s] : Pi(t) is a univariate polynomial of degree at most n. By Lemma 3.3, for each

i ∈ [s] : f̂i(t) ≡ Pi(t). In particular, f̂i(1) = Pi(1) = Ci(b̄).

6.2.4 Putting all together

We can finally prove Theorem 1.6.

Proof. (of Theorem 1.6.) Let W ⊆ F be a subset of size |W | = 2n4k2. The algorithm operates as follows:

Repeat the following steps for each α ∈W and a subset B ⊆ [n] of size |B| = kO(k):

• Let ā
∆
= (1, α, α2, . . . , αn−1)

• Learn C ′ ∆
= C|VB+ā using Lemma 6.4 with d = |B|

• Run the Clustering algorithm from Lemma 6.7 on inputs C ′, rinit = RM (2k), κ = k3.
Let C ′

1, . . . , C
′
s′ be the output of the algorithm.

• For each i ∈ [s′] use the algorithm from Lemma 6.5 on Ci with r = kO(k) to output a circuit Ĉi.
Use Lemma 6.19 with ā, B and (C ′

1, . . . , C
′
s′), as inputs to simulate black-box access to Ci

• Let Ĉ
∆
= Ĉ1 + . . .+ Ĉs′

• If C ≡ Ĉ (using Lemma 3.8) and Ĉ has top fan-in ≤ k, output Ĉ;
otherwise, continue to the next iteration.

44



We now analyze the algorithm. First, observe that the algorithm can only output a multilinear ΣΠΣ(k)
circuit that is equivalent to C. We will now argue that there exist at least one iteration when such a circuit
is computed.

Let B be the set guaranteed by Lemma 6.13 for r = kO(k). Furthermore, by Observation 6.15, there
exists α ∈W such that ΦC(ā) 6= 0 for ā = (1, α, α2, . . . , αn−1). By Lemma 6.14, VB + ā is kO(k)-multilinear-
rank-preserving for C. Thus by Lemma 6.10, s = s′ and there exists a permutation π : [s] → [s] such that
∀i ∈ [s] : C ′

i = Cπ(i)|VB+ā. Assume WLOG that ∀i : π(i) = i 10. Given that, Lemma 6.19 guarantees

black-box access to Con(C). Recall that ∀i ∈ [s] : ∆rank(Ci) ≤ kO(k). Consequently, by Lemma 6.5
∀i ∈ [s] : Ĉi ≡ Ci and hence Ĉ = Ĉ1 + . . . + Ĉs ≡ C1 + . . . Cs = C. Finally, by the minimality property of
Lemma 6.5, for each i ∈ [s] the fan-in of Ĉi is at most the fan-in of Ci. hence, the fan-in of Ĉ is at most k.
Consequently, for the above choices of α and B the algorithm will output a circuit, as required.

Derandomization: The only place in the entire algorithm where randomness was used was in Lem-
mas 6.4 and 6.5. At the end of those lemmas we already commented on how they can be derandomized over
R and C.
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A Solving system of algebraic equations using elimination theory

The aim of this section is to show that given a system ofm polynomial equations {f1 = 0, f2 = 0, . . . , fm = 0}
where fi ∈ F[x1, x2, . . . , xn] of degree d, there exists a randomized poly((dnm)3

n

)-time that outputs a point
ā ∈ F̄ if it exists, and otherwise outputs “no solution”. Also, the degree of extension of the solution(outputted
our algorithm ) is bounded by poly((dn)3

n

).
The algorithm we present in this section is based on elimination theory and extension theorem which

are well known in algebraic geometry literature [CLO15]. This algorithm is recursive in nature: essentially
we reduce a system on n variate polynomial to n− 1 variate polynomial system and so on. When we reach
n = 1, we can use the fact that univariate systems are easy to solve11, thus concluding our algorithm.

The algorithm we describe below has some corner cases, essentially to ensure that we get a non-trivial
resultant. We will elaborate on each of them below:

1. m = 1: Then we can’t take resultant as it requires atleast 2 polynomials. However, we can just
substitute n-1 variable to random values and find the solution. Note that, the solution we found here
will be over an extension of degree atmost d.

2. gcd(f1, f2, . . . , fm) 6= 1: If gcd(f1, f2, . . . , fm) 6= 1 then resultant as needed in our algorithm will turn
out to be identically 0, which gives a trivial System 10. To overcome this, strip off any common gcd
and then solve two separate systems, {f ′

1 = 0, f ′
2 = 0, . . . , f ′

m = 0} and {gcd(f1, f2, . . . , fm) = 0},
where f ′

i = fi
gcd(f1,f2,...,fm) . Note that, a solution to either system will give us a solution to {f1 =

0, f2 = 0, . . . , fm = 0}.

3. m >
(
n+d
d

)
: Note that, the dimension of the space of n variate degree d polynomials is

(
n+d
d

)
. Thus,

we can always ensure that m ≤
(
n+d
d

)
by removing any redundant/dependent fi, in poly

(
n+d
d

)
time.

Now that we have discussed all the corner cases, we will assume that
(
n+d
d

)
≥ m > 1 and gcd(f1, f2, . . . , fm) =

1, we can proceed to discussing the core idea of this approach. That is, when we convert our n-variate sys-
tem to n− 1 variate such that it preserves the solutions. And, that each solution to n− 1 variate system is
extendable. This is exactly what we show in next lemma.

The lemma also assumes that fi-s are monic in x1. Note that, this can be ensured by the following shift
in variables xi = xi + aix1 for random ai-s.

∀i ∈ [m], fi(x) = 0, (9)

Define h ∈ F[x̄, ū] := Resx1
(f1, u2f2 + . . .+ umfm) =

∑
α hαu

α.
Since we have already taken care of the case when m = 1 (1), we can assume that m > 1 thus ensuring

that h is well defined. Also, h 6= 0 because of corner-case 2.

∀α hα(x) = 0 (10)

11Solving a univariate system is equivalent to factoring the univariate polynomials and finding a non-trivial gcd.
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Lemma A.1. System 9 has solutions iff System 10 has solutions.

Proof. System 9 =⇒ System 10: Let (a, c̄) be a solution to 9, since all fi’s are monic, we get that there exist
a non-trivial gcd among f1(x1, c̄), f2(x1, c̄), . . . , fm(xm, c̄). This in-turn implies Resx1

(f1(x1, c̄), u2f2(x1, c̄)+
u3f3(x1, c̄) + . . . umfm(x1, c̄)) ≡ 0. Thus system 10 will have solutions. Note that if (a, c̄) ∈ Gn then system
10 also has a solution over G, where G is some extension of F.

System 10 =⇒ System 9: Let c̄′ ∈ F s.t. hα(c̄′) = 0∀ᾱ. Note that, due to monicness assumption,
h(c̄′, u2, . . . um) = Resx1

(f1(x1, c̄′), u2f2(x1, c̄′) + u3f3(x1, c̄′) + . . . umfm(x1, c̄′)).
Since, hα(c̄′) = 0∀ᾱ = 0, we get that,

Resx1
(f1(x1, c̄′), u2f2(x1, c̄′) + u3f3(x1, c̄′) + . . . umfm(x1, c̄′)) = 0.

This implies, there exist a common factor F with positive degree in x1 of f1(x1, c̄′) and u2f2(x1, c̄′) +
u3f3(x1, c̄′) + . . . umfm(x1, c̄′).

Since F|f1(x1, c̄′) we get that F ∈ F[x1]. By comparing coefficients of ui-s on both sides in the following
equation,

F(x1)A(x1, u2, . . . , um) = u2f2(x1, c̄′) + u3f3(x1, c̄′) + . . . umfm(x1, c̄′),

thus we get that F|fi(x1, c̄′), for i > 1. As a direct consequence, we that (ζ, c̄′) is a solution of system 9,
where ζ is a root of F . Note that if c̄′ ∈ Gn−1 then ζ lies in just in a degree 2d2 extension of G, where G is
some extension of F.

We will now write the skeleton for a recursive algorithm to solve system 9. Its correctness follows from
what we have discussed above.

Algorithm 1: AlgorithmF({f1, f2, . . . fm}, n, d)

Input: f1, f2, . . . fm ∈ F[x1, x2, . . . , xn] s.t each fi is monic in x1 and total degree atmost d.
Output: Simultaneous solution to fi(x̄) = 0

if m = 1: then
See corner-case 1.

else
Check for non-trivial gcd using factoring. See corner-case 2.
Compute Resx1

(f1, u2f2 + . . .+ umfm) =
∑

α hαu
α

Find c̄′ s.t. ∀αhα(c̄
′) = 0 using ALG({hα}, n− 1, 2d2).

If ALG({hα}, n− 1, 2d2) fails then output no solution, else solve for x1 in
f1(x1, c̄

′) = 0, . . . , fi(x1, c̄
′) = 0. Let the output be ζ.

return (ζ, c̄′).
end if

Time complexity: Note that, we have dropped m from the list of parameters as m ≤
(
n+d
d

)
. Note that,

the time complexity T (n, d) of Algorithm 1 satisfies the following inequality. T (n, d) ≤ poly(
(
n+d
d

)
) + T (n−

1, 2d2).
Thus, T (n, d) ≤ poly((dnm)3

n

). Similar analysis also gives that the degree of extension of the solu-
tion(outputted by algorithm 1) is bounded by poly((dn)3

n

).
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