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Abstract

A polynomial threshold function (PTF) f : Rn → R is a function of the form f(x) =
sign(p(x)) where p is a polynomial of degree at most d. PTFs are a classical and well-studied
complexity class with applications across complexity theory, learning theory, approximation
theory, quantum complexity and more. We address the question of designing pseudorandom
generators (PRG) for polynomial threshold functions (PTFs) in the gaussian space: design a
PRG that takes a seed of few bits of randomness and outputs a n-dimensional vector whose
distribution is indistinguishable from a standard multivariate gaussian by a degree d PTF.

Our main result is a PRG that takes a seed of dO(1) log(n/ε) log(1/ε)/ε2 random bits with
output that cannot be distinguished from n-dimensional gaussian distribution with advantage
better than ε by degree d PTFs. The best previous generator due to O’Donnell, Servedio, and
Tan (STOC’20) had a quasi-polynomial dependence (i.e., seedlength of dO(log d)) in the degree
d. Along the way we prove a few nearly-tight structural properties of restrictions of PTFs that
may be of independent interest.

*Department of Computer Science, University of Illinois at Urbana-Champaign. Supported by NSF grants CCF-
1755921 and CCF-1814788. Email: awk2@illinois.edu

†Department of Computer Science, University of California, Los Angeles. Supported by NSF Career Award
1553605 and NSF AF 2007682. Email: raghum@cs.ucla.edu

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 47 (2021)



1 Introduction

Polynomial threshold functions (PTFs) are a classical and well-studied class of functions with
several applications in complexity theory, learning theory, theory of approximation and more. Here
we study the question of designing pseudorandom generators (PRGs) that fool test functions that
are PTFs. We first start with some standard definitions. Let sign : R→ R be defined as sign(z) = 1
if z ≥ 0 and 0 otherwise.

Definition 1.1. For an integer d > 0, a degree d PTF f : Rn → {0, 1} is a function of the form
f(x) = sign(p(x)), where p : Rn → R is a polynomial of degree at most d.

Our goal is to design a PRG that takes few bits of randomness and outputs a high-dimensional
vector whose distribution is indistinguishable from a standard multivariate gaussian by any low-
degree PTF. Specifically:

Definition 1.2. A function G : {0, 1}r → Rn is a pseudorandom generator for degree d PTFs with
error ε if for every degree at most d PTF f : Rd → {0, 1},∣∣∣∣ P

y∈u{0,1}r
(f(G(y)) = 1)− P

x∼N(0,1)n
(f(x) = 1)

∣∣∣∣ ≤ ε.

We call r the seedlength of the generator and say G ε-fools degree d PTFs with respect to the
gaussian distribution 1. We say G is explicit if its output can be computed in time polynomial in n.

(Here, and henceforth, y ∈u S denotes a uniformly random element from a multi-set S, and
N(0, 1) denotes the standard univariate gaussian distribution of variance 1.)

Of particular interest is the boolean case where the target distribution is not gaussian but uniform
distribution on the hypercube {+1,−1}n. It is known that the boolean case is stronger than the
gaussian case (a PRG for the former implies a PRG for the latter). As such, besides being inter-
esting by itself, the gaussian case above has been an important intermediate step in constructing
PRGs in the boolean case. In particular, achieving parameters as we do for the boolean case would
be a major achievement (as we do not currently have non-trivial correlation lower bounds against
PTFs of degree ω(log n)).

Over the last several years, the question of designing PRGs for PTFs has received a lot of at-
tention. Meka and Zuckerman [MZ13] gave the first non-trivial PRG for bounded degree PTFs
with a seedlength of dO(d) log(n)/ε2 for the boolean and gaussian cases. Independent of [MZ13],
[DKN10] showed that bounded independence fools degree-2 PTFs leading to seedlengthO(log(n)/ε2).
Since then, there have been several other works which make progress on the gaussian case [Kan11b,
Kan11a, Kan12, Kan14, Kan15]. The seedlength in all of these works had an exponential depen-
dence on the degree d of the PTF. In particular, until recently no non-trivial PRGs (i.e., seedlength

1We will drop the latter phrase when there is no ambiguity.
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o(n)) were known for PTFs of degree ω(log n). In a remarkable recent work, O’Donnell, Servedio,
and Tan [OST20] got around this exponential dependence on the degree d, achieving a seedlength
of (d/ε)O(log d) log(n). Our work builds on their work (which in turn builds on a framework of
[Kan11b]).

1.1 Main Results

Our main result is a PRG that ε-fools n-variate degree-d PTFs with error at most (d/ε)O(1) log(n):

Theorem 1.3 (PRG for PTFs). There exist constants c, C such that for all ε > 0 and d ≥ 1, there
exists an explicit PRG that ε-fools n-variate degree d PTFs with respect to the gaussian distribution
with seedlength r(n, d, ε) = Cdc log(n/ε) log(1/ε)/ε2.

Towards proving the above result, we develop several structural results on PTFs in the gaussian
space that we now expand on. Besides these structural results, we additionally show how to use
our structural results to carry out the analysis of the PRG in a simpler way when compared to
[Kan11b, OST20]. We will expand on this in Section 2 when discussing our analysis.

Gaussian restrictions of PTFs. Our main result above relies on new structural results about
PTFs which might be of additional interest. The results are similar in spirit to switching lemmas
that try to show that certain classes of functions simplify significantly under random restrictions.
Switching lemmas and random restrictions are a cornerstone in complexity theory, and our ap-
proach relies on an analogue for the continuous world as studied in [Kan11b, OST20].

In the boolean case, i.e., when studying distributions on the hypercube {+1,−1}n, a restriction
is a partial assignment of the form ρ ∈ {+1,−1, ∗}n with the understanding that the ∗-variables
are free. Typically, restrictions ρ as above are parametrized by λ > 0, the fraction of ∗’s. In our
case, we are working with real-valued random variables and the multivariate gaussian distribution.
What should the right analogue be?

The answer comes from the work of [OST20] who introduced the notion of a zoom of a polynomial.
To draw a clearer parallel with random restrictions, we term these gaussian restrictions:

Definition 1.4. Given a function p : Rn → R and x ∈ Rn, and a restriction parameter λ ∈ (0, 1),
let px,λ : Rn → R be2 the function px,λ(y) = p(

√
1− λx+

√
λy).

Intuitively, we can view px,λ as a restriction where (1−λ)-fraction of the variance is already fixed.
(Note that for independent x, y ∼ N(0, 1)n,

√
1− λx+

√
λy is distributed as N(0, 1)n.)

A crucial conceptual ingredient in our analysis is the following lemma saying that PTFs become
almost constant under gaussian restrictions for λ� 1/d6:

2As the value of λ will often be clear, we will in fact just use px for brevity.
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Corollary 1.5. There is a constant C > 0 such that the following holds. For any δ > 0, R ∈ N
and λ ≤ C δ2

Rd6
, we have that for any degree-d PTF f : Rn → {0, 1}, with probability at least 1− δ

over x ∼ N(0, 1)n, the gaussian restriction of the PTF (fx,λ) is nearly fixed to a constant, in the
sense that for some b ∈ {0, 1},

P
y∼N(0,1)n

[fx,λ(y) 6= b] ≤ e−CR.

That is, if λ � δ2/ (d6 log(1/ε)), then with probability 1 − δ over x, the restricted PTF fx,λ(y)
yields the same fixed value with probability 1− ε over y.

The work of [OST20] achieves a similar conclusion but when the restriction parameter is λ =
d−O(log d) as opposed to being polynomially small as above. This improved significantly on the
work of [Kan11b] that implicitly shows a similar claim when the restriction parameter is λ =
2−O(d).

We remark that in a related line of work, [BLY09, HKM14, DRST14, KKL17] study random
restrictions of PTFs over the hypercube. Our focus here is on gaussian restrictions and obtaining
stronger bounds quantitatively: these works had exponential dependence on the degree d.

The above statement while conceptually nice is not enough for our analysis of the PRG. The
analysis relies on a more refined notion of hypervariance of a polynomial that was introduced in
[OST20]. This analytical notion is best described in terms of the Hermite expansion of a polyno-
mial. We next expand on this and a related statement about derivatives, Lemma 1.8, that may be
of independent interest below.

Improved hypervariance reduction. Hermite polynomials are the orthonormal family of poly-
nomials under gaussian distribution and are widely used as a canonical basis for working with
polynomials for the normal distribution. See Section 3 for their formal definition. For now, recall
that any degree d polynomial p : Rn → R can be written as

p(y) :=
∑
α

p̂(α)hα(y),

where α ∈ Nn denotes a multi-index and hα(y) is the α’th Hermite polynomial. The hypervariance
and normalized hypervariance of a polynomial introduced in [OST20] are defined as follows:

Definition 1.6. For a polynomial p : Rn → R of the form p(y) :=
∑

α p̂(α)hα(y), define its
hypervariance, HyperVarR( ), and normalized hypervariance ,HR( ), as

HyperVarR(p) :=
∑
α 6=0

p̂(α)2R2|α|, HR(p) :=
HyperVarR(p)

p̂(0)2
.

Note that for R = 1, the orthonormality of Hermite polynomials implies that

Var(p) = E
y∼N(0,1)n

(p(y)− p̂(0))2 = HyperVar1(p).
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Intuitively, if the normalized hypervariance HR(p) of a polynomial is small for a large R, then it
means that the weight of the higher-order Hermite coefficients of p have a geometric decay. This
(as we will see) tells us that the polynomial is simple in the sense that the corresponding PTF
sign(p) is nearly fixed to a constant, connecting back to Corollary 1.5.

[OST20] showed that for any polynomial p, for a suitable λ > 0, a gaussian restriction (i.e.
x ∼ N(0, 1)d) leads to a polynomial px,λ being “simple” in the sense of having small normal-
ized hypervariance. Specifically, they showed that if λ = d−O(log d), then HR(px,λ) is bounded with
high probability over x ∼ N(0, 1)n. They also asked whether this property holds when λ = d−O(1)

instead of being quasi-polynomially small in d. Our second main result, which will play crucial
role in our proof of Theorem 1.3 answers this question:

Lemma 1.7. For any degree d polynomial p and λ > 0, δ > 0, the following holds. Except with
probability δ over x ∼ N(0, 1)n, the normalized hypervariance HR(px,λ) = O(λd6R2/δ2).

Slow-growth of derivatives. The proof of the above theorem in turn relies on a claim about the
magnitude of the derivatives of a polynomial evaluated at random gaussian input which may be of
independent interest.

For a function f : Rn → R, let ‖∇kf(x)‖2 denote the sum of squares of all partial derivatives
of f of order k at x. That is, ‖∇kf(x)‖ is the Frobenius norm of the tensor of k’th order partial
derivatives of f . We show that for any degree d polynomial p, the Frobenius-norm of the k’th order
derivatives are comparable to the (k−1)’th order derivatives on a random gaussian input with high
probability:

Lemma 1.8. For any degree-d polynomial f : Rd → R, and x ∼ N(0, 1)n, the following holds
with probability at least 1− δ:

‖∇kf(x)‖ ≤ O(d3/δ)‖∇k−1f(x)‖, for all 1 ≤ k ≤ d. (1)

Note that the above lemma is tight up to the factor of O(d2): consider the example f(x) = xd1.

Independent and concurrent work. Independently and concurrent to our work, [OSTK21] also
obtained similar results to Theorem 1.3, Lemma 1.7. They first obtained an analogue of Lemma 1.7
and then combined the improved hypervariance reduction lemma with the framework of [OST20]
to yield the improved PRG with dO(1) dependence on the degree d.

The two proofs of the Lemma 1.7 are similar but our analysis of the PRG is different from that
of [OSTK21]. In particular, our analysis relies directly on Lemma 1.8 (rather than its corollary
Lemma 1.7), and on a new set of identities for Hermite-expansions which lead to possibly simpler
approach as described in the next section.
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2 Proof Overview

We next describe the high-level ideas underlying our results Theorem 1.3, Lemma 1.7. We first
describe our approach for proving Lemma 1.7.

Improved hypervariance reduction. The proof of the analogue of Lemma 1.7 for quasi-polynomially
small λ (i.e. λ = d−O(log d)) in [OST20] was by an iterative process: Intuitively, if one sets
λ0 = d−O(1), and λ = λlog d

0 , then the random restriction pλ,x is equivalent to (log d) indepen-
dent random restrictions with restriction parameter λ0. The authors in [OST20] show that each
such λ0-restriction (essentially) decreases the degree by a factor of 2. We take a different approach
in our work by first connecting hypervariance of the restricted polynomial px,λ to the norms of
the derivatives of p at x. The actual proof is relatively simple given a relative anti-concentration
lemma from [Kan13] developed in the context of studying the Gotsman-Linial conjecture for PTFs.

First, it is not too hard to prove Lemma 1.7 given Lemma 1.8. For illustration, suppose that we
have a degree-d multi-linear polynomial p, and let f(x) = p(

√
1− λx) for brevity. Then, by

elementary algebra3, we have the identity

px(y) = p
(√

1− λx+
√
λy
)

=
∑
α

∂αf(x)

(
λ

1− λ

)|α|/2
yα. (2)

Thus, HyperVar(px) =
∑d

k=1R
2k(λ/(1−λ))k‖∇kf(x)‖2. Now, with probability 1− δ over x, we

have ‖∇kf(x)‖ ≤ O(d3/δ)‖∇k−1f(x)‖, for all k. Thus, if we take λ � δ2/(R2d6), the factor of
λ will kill the growing derivatives leading to a bounded HR(px).

Notice that Eq. (2) is essentially a Taylor expansion of p at
√

1− λx: it expresses the function px(y)
as a polynomial in y in the standard basis, whose coefficients are determined by the derivatives of
p at
√

1− λx. In the general case, we would like to do something similar, but in the Hermite basis;
for non-multi-linear polynomials these two bases no longer coincide. So, in the general case, we
rely on the following identity, which we regard as an analogue of the Taylor expansion for the
Hermite basis.

Lemma 2.1 (See Section 3). Let f(y) =
∑

α f̂(α)hα(y). Then

f
(√

1− λx+
√
λy
)

=
∑
α

∂αg(x)√
α!

(
λ

1− λ

)|α|/2
hα(y),

where g(x) := U√1−λf(x) =
∑

α f̂(α)(1− λ)|α|/2hα(x).

Hermite polynomials are such a ubiquitous tool used in such a wide range of fields that it seems
unlikely that such an identity is new. However, we are not aware of any previous appearance of
such an identity in the literature (at least in the body of work on PTFs) and we provide a proof.

3If p is multi-linear, then the Hermite expansion is just p(x) =
∑
α∈{0,1}n p̂(α)hα(x) =

∑
I⊆[n] p̂(I)

∏
i∈I xi.

We can prove the identity for each monomial and use additivity.
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The proof of Lemma 1.8 is iterative and uses Kane’s relative anti-concentration inequality for
degree d polynomials [Kan13]. [Kan13] shows that for any degree d polynomial, and x, y ∼
N(0, 1)n with probability at least 1 − δ, we have |〈y,∇p(x)〉| ≤ (d2/δ)|p(x)|. As y in the above
statement is independent of x, for any x, 〈y,∇p(x)〉 is distributed as N(0, ‖∇p(x)‖2). This says
that the inequality is essentially equivalent to saying that with probability at least 1− δ over x, we
have ‖∇p(x)‖2 ≤ O(d2/δ)|p(x)|. The latter can be seen as the inequality corresponding to k = 1
in the statement of Lemma 1.8. The full proof of the lemma is via iteratively applying the above
lemma to a vector-valued generalization of the above inequality.

2.1 PRG Construction and Analysis

We now sketch the main ideas behind the proof of our main result Theorem 1.3. First, note that
given the improved hypervariance lemma, Lemma 1.7, it is potentially possible to use the frame-
work of [OST20] to get the improved PRG. However, their analysis is quite involved. We will use
the same generator, and the overall strategy of our analysis will be similar in spirit, but working
directly from Lemma 1.8 (rather than its corollary Lemma 1.7) will allow us to present a simpler
analysis.

As in the works of [Kan11b] and [OST20], the PRG output will be

Z :=
1√
L

L∑
i=1

Yi,

where each Yi is an independent k-moment-matching gaussian vector with k = dΘ(1). For the
time being let us work under the idealized assumption that each Yi is exactly k-moment-matching
with a standard gaussian: i.e., for any polynomial h : Rn → R of degree at most k, E[h(Yi)] =
Ez∼N(0,1)n [h(z)]. We will later relax this condition without too much additional work as is now
standard (see Section 3 for details), and ultimately output a discrete approximation to Z with finite
support. For now, it is appropriate to imagine that the seedlength required for generating each Yi
will be roughly O(k log n); the total seedlength will thus be roughly L · O(k log n). We improve
prior works by showing that it suffices to let L = dΘ(1), rather than L = 2Θ(d) as in [Kan11b] or
L = dΘ(log d) as in [OST20].

For the rest of this section, fix a degree d polynomial p : Rn → R. We wish to compare Z to
z := 1√

L

∑L
i=1 yi where each yi is an independent standard gaussian. Note that z itself is distributed

as N(0, 1)n. At a very high-level, the basic approach of the analysis is to replace each yi with a
k-moment matching gaussian vector Yi as in our PRG.

Set λ = 1/L, and for each i, write Z−i := Z −
√
λYi so that we may express Z = Z−i +

√
λYi for

any i. For a vector x ∈ Rn, let p̃x : Rn → R denote the polynomial p̃x(y) = p(x +
√
λy). Note

that p̃x is essentially a gaussian restriction but with a slightly different normalization.

The starting point is that, if f : Rn → R is a degree-d polynomial with small normalized hyper-
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variance, then it is fooled by k-moment-matching Y for k = dO(1). This is simply because, when
the hypervariance of f is small, we can use bounds on the moments of f to show that it will likely
have the same sign as its constant term in the Hermite basis. The latter argument works equally
well for limited-independence distributions. The moment bounds follow from hypercontractivity.
Specifically, we will use the following:

Lemma 2.2 (See Section 3). Let f : Rn → R be a degree d polynomial with normalized hyper-
variance H√R(f) ≤ 1/4. Then,

P
y∼N(0,1)n

(
sign(f(y)) 6= sign(f̂(0))

)
≤ O(2−R).

Further, the same holds more generally for y ∼ Y , as long as the distribution Y is dR-moment-
matching.

The above lemma when combined with Lemma 1.7 implies Corollary 1.5.

The above idea suggests the following strategy: Show that the polynomial p̃Z−i has small normal-
ized hypervariance with high probability over Z−i and use that Yi is k-moment-matching to replace
Yi with a standard gaussian yi. This indeed seems plausible as our hypervariance reduction lemma,
Lemma 1.7 indeed shows that when Z is standard gaussian, the polynomial p̃Z does have small
normalized hypervariance with high probability.

Immediately, there are two obstacles for this approach:

• First, our hypervariance-reduction theorem works only for truly random gaussian and not for
pseudorandom Z−i.

• Second, even if we argue that p̃Z−i likely has small hypervariance, we cannot apply a union
bound over i. The error guarantee in our hypervariance-reduction statement, Lemma 1.7, is
�
√
λ; whereas, we have L = 1/λ choices of i, so we cannot use such a straightforward

union-bound argument to replace each Yi with a yi.

The second issue is especially problematic as the error probability in Lemma 1.7 cannot be im-
proved, at least in that variant; the probability that the hypervariance-reduction fails is generally
not small compared to L = 1/λ. In [Kan11b], Kane shows how to address both obstacles at once
with a clever sandwiching argument with a series of mollifier checks. This approach is further
expanded in [OST20]. We employ the same high-level approach, but we manage to introduce
some substantial simplifcations by working directly from our Lemma 1.8 (rather than its corollary
Lemma 1.7).

Beating the union bound. For brevity, say that p is well-behaved at a point x if

‖∇k+1p(x)‖ ≤ (1/ε)‖∇kp(x)‖ for all k = 0, 1, . . . , d− 1,
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where ε is a parameter that will be set to be roughly
√
λ. We say p is poorly-behaved at x if the

above condition does not hold. If p is well-behaved at x, then we know that sign(f(x +
√
λY )) is

fooled by a moment-matching Y with very good error.

Roughly speaking, the main insight in going beyond the union bound obstacle mentioned above is
as follows. There are two sources of error in the naive hybrid argument outlined above: (1) The
probability of failure coming from p being poorly-behaved at the points Z−i. (2) The error coming
from applying Lemma 2.2 to replace a Y i with yi when p is well-behaved at Z−i.

Note that we have very good control on the error of type (2) above: we could make it be much
smaller than 1/L by increasing the amount of independence k. We will exploit this critically. We
will complement this by showing that even though a naive union bound would be bad for error
of type (1) above, it turns out that we don’t have to incur this loss: we (implicitly) show that
P (∀i, p is well-behaved at Z−i) ≈ 1−O(εd3). We do so by checking only that p is well-behaved
at the single point Z (in a slightly stronger sense) and then we conclude that p is also highly-
likely to be well-behaved at each of the “nearby” points Z−i. Intuitively, this is what allows us to
circumvent the union bound in the hybrid argument. However, it would be difficult to actually carry
out the analysis as stated this way – we use a sandwiching argument to sidestep the complicated
conditionings which would arise in this argument as stated.

We proceed to describe the sandwiching argument. We wish to lower-bound the PTF sign(p(x))
by sign(p(x)) · g(x), where g(x) is some “mollifier” function taking values in [0, 1]. The role of
g(x) is roughly to “test” whether p is well-behaved at x; we ideally want g(x) = 1 at points x
where p is well-behaved and g(x) = 0 at points x where p is poorly-behaved. However, we also
need g(x) to be smooth, so there will be some intermediate region of points for which g(x) yields
a non-informative, non-boolean value.

We set g(x) to be a smoothed version of the indicator function

g(x) ≈
d−1∏
k=0

1

(
‖∇k+1p(x)‖ ≤ 1

ε
‖∇kp(x)‖

)
,

which tests whether the derivatives of p at x have controlled growth in the sense of Lemma 1.8.
Specifically, we set

g(x) :=
d−1∏
k=0

ρ

(
log

(
1

16ε2

‖∇kp(x)‖2

‖∇k+1p(x)‖2

))
,

where ρ(t) : R → [0, 1] is some smooth univariate function with ρ(t) = 0 for t ≤ 0 and ρ(t) = 1
for t ≥ 1.

Now, for every point x ∈ Rn we have

sign(p(x)) ≥ sign(p(x))g(x).

Furthermore, under truly-random gaussian inputs z ∼ N(0, 1)n we have

E
z
sign(p(z))g(z) ≥ E

z
sign(p(z))− E

z
|g(z)− 1| ≥ E

z
sign(p(z))−O(εd3),
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where the final inequality here follows from Lemma 1.8. Combining these, we get that

E
Z
sign(p(Z)) ≥ E

z
sign(p(z))−O(εd3)− |E

Z
sign(p(Z))g(Z)− E

z
sign(p(z))g(z)|.

Note that we can similarly obtain an upper-bound for EZ sign(p(Z)) by repeating this argument on
the polynomial −p(x).

Thus, it suffices to bound |EZ sign(p(Z))g(Z) − Ez sign(p(z))g(z)|. We do so by a hybrid argu-
ment. We first represent z as z := 1√

L

∑L
i=1 yi where each yi is an independent standard gaussian.

Recall that Z is also of a similar form: Z = 1√
L

∑L
i=1 Yi, where the Yi are k-moment-matching.

We can replace each Yi with yi and get

|E
Z
sign(p(Z))g(Z)− E

z
sign(p(z))g(z)| ≤ γL,

as a consequence of the following lemma.

Lemma 2.3. There exists a constant c such that the following holds for λ ≤ ε2/Rdc. For any fixed
vector x ∈ Rn, Y a dR-moment-matching gaussian vector, and y ∼ N(0, 1)n,

|E
Y
sign(p(x+

√
λY ))g(x+

√
λY )− E

y
sign(p(x+

√
λy))g(x+

√
λy)| ≤ γ = 2−Ω(R).

Technically speaking, the above lemma is where our intuition on going around the union bound
is quantified, allowing us to use the hybrid argument. We briefly outline our proof of this lemma,
where for the purpose of illustration we make the simplifying assumption that the polynomial p is
multilinear.

The proof is by a case analysis on the behavior of p at the the fixed point x. In the multilinear case
it suffices to consider the derivatives ∇kp(x); in the general case we need to consider something
slightly different.

• Case 1: p is well-behaved at x, i.e., ‖∇k+1p(x)‖ ≤ (1/ε)‖∇kp(x)‖ for all k.

– We can use Lemma 2.2 in this case to conclude that sign(p(x +
√
λy)), sign(p(x +√

λY )) are both almost constant with error 2−Ω(R).

– So, it remains to show that Y fools g(x +
√
λy). We approximate g by a low-degree

polynomial in y using a Taylor-truncation argument. Our assumption on the con-
trolled growth of derivatives ‖∇kp(x)‖ allows us to bound the Taylor-truncation error
by bounding the higher-moments of the deviations ‖∇kp(x+

√
λY )‖ − ‖∇kp(x)‖.

• Case 2: p is not well-behaved at x; let k0 be the largest k such that ‖∇k0+1p(x)‖ >
(1/ε)‖∇k0p(x)‖.

– Intuitively, this says that the polynomial p is well behaved at degree above k0, but not
at degree k0. This allows us to show, via an R-th moment bound, that both
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* ‖∇k0p(x+
√
λY )‖ ≤ 2ε‖∇k0+1p(x)‖

* ‖∇k0+1p(x+
√
λY )‖ ≥ 1

2
‖∇k0+1p(x)‖

are highly likely. Thus, it is highly likely that

‖∇k0p(x+
√
λY )‖ ≤ 4ε‖∇k0+1p(x+

√
λY )‖.

The latter means p is still sufficiently poorly-behaved at the point x +
√
λY that the

mollifier classifies it as g(x+
√
λY ) = 0.

3 Preliminaries

The pseduorandom generator construction: idealization vs. discretization. Following [Kan11b]
and [OST20], we analyze the idealized pseudorandom distribution

Z =
1√
L

L∑
i=1

Yi,

where each Yi ∈ Rn is a k-moment-matching gaussian (that is, E[p(Yi)] = Ex∼N(0,1)n [p(x)] for all
polynomials p : Rd → R of degree at most k).

Suppose that, for any such Z with parameters (L, k), it is the case that Z fools degree-d PTFs with
error ε = ε(L, k, d). Then, it is shown in [Kan11b] how to obtain a small-seedlength PRG (in the
sense of Definition 1.2) by providing a specific instantiation and discretization of this construction.

Theorem 3.1 ([Kan11b], implicit in Section 6). Suppose a Z as above with parameters (L, k)
fools degree d-PTFs with error ε = ε(L, k, d). Then, there is an explcit, efficiently computable
PRG with seedlength O(dkL log(ndL/ε) that (2ε)-fools degree d PTFs.

Hermite polynomials. To argue about polynomials which are not necessarily multilinear, we need
some simple facts concerning Hermite polynomials. For our purposes, Hermite polynomials are
simply a convenient choice of polynomial basis which have nice properties (in particular being
orthonormal) with respect to gaussian inputs. For a more detailed background on Hermite polyno-
mials and their use for analyzing functions over gaussian space, see [O’D14, Ch. 11].

One concrete way to define the Hermite polynomials is the following:

• For the univariate polynomials, the degree-m “Probabilist’s” Hermite polynomial is them-th
coefficient of the generating function

est−
1
2
s2 =

∑
m≥0

Hm(t)sm.

10



• We define the degree-m univariate Hermite polynomial by the normalization

hm(t) :=
1√
m!
Hm(t).

• For a multi-index α ∈ Nn, we define the multivariate Hermite polynomial hα : Rn → R via
the product

hα(x) :=
n∏
i=1

hai(xi).

We record some basic properties of this particular choice of polynomial basis. The final two
properties say that the Hermite basis is orthonormal with respect to correlation under the standard
gaussian distribution – this is the reason for our choice of normalization.

• The set {hα(x) : |α| ≤ d} is a basis for real polynomials in n variables of degree ≤ d.

• h0 is the constant polynomial h0 ≡ 1.

• For multi-indicies α ∈ {0, 1}n, hα(x) is simply the monomial
∏

i:ai=1 xi.

• For x ∼ N(0, 1)n, and distinct multi-indices α 6= β, Ex hα(x)hβ(x) = 0.

• For x ∼ N(0, 1)n, and any multi-index α, Ex hα(x)2 = 1.

Guassian noise operator. We recall the definition of the noise operator Uρ, which here we regard
as an operator on real polynomials in n variables (see [O’D14, Ch. 11] for background and a more
general viewpoint). For a polynomial f : Rn → R and a parameter ρ ∈ [0, 1], the action of Uρ on
f is specified by

(Uρf)(x) := E
Z∼N(0,1)n

f
(
ρx+

√
1− ρ2Z

)
.

An important feature of the Hermite basis is that the noise operator acts on it diagonally (see
[O’D14, Ch. 11]):

Uρhα(x) = ρ|α|hα(x).

Thus, if f is a degree-d polynomial given in the Hermite basis as

f(x) =
∑
|α|≤d

f̂(α)hα(x),

then we can express the result of the noise operator applied to f explicitly as

Uρf(x) =
∑
|α|≤d

f̂(α)ρ|α|hα(x).

11



Higher moments and hypercontractivity. Fix a polynomial f(x) :=
∑
|α|≤d f̂(α)hα(x). For an

even natural number q ≥ 2, we write the gaussian q-norm of f as

‖f‖q :=

(
E

x∼N(0,1)n
f(x)q

)1/q

.

We wish to be able to bound this quantity in terms of the magnitudes of the Hermite coefficients
of f , f̂(α). For this purpose, we extend the definition of Uρ also to ρ > 1 by its action on the
Hermite basis: Uρhα(x) = ρ|α|hα(x). With this notation, we can express the well-known (q, 2)-
hypercontractive inequality [O’D14, Ch. 9,11] as

‖f‖q ≤ ‖U√q−1f‖2,

which is quite convenient for us, as we can use orthonormality of the Hermite basis to explicitly
compute

‖U√q−1f‖2
2 =

∑
|α|≤d

(q − 1)|α|f̂(α)2 ≤
∑
|α|≤d

q|α|f̂(α)2.

To get a feel for the utility of this bound, let’s see how it can be used to prove Lemma 2.2:

Lemma 3.2 ( Lemma 2.2 restated). Let f : Rn → R be a degree d polynomial with normalized
hypervariance H√q(f) ≤ 1

4
, where q is an even natural number. Then,

P
y∼N(0,1)n

(
sign(f(y)) 6= sign(f̂(0))

)
≤ 2−q.

Further, the same holds more generally for y ∼ Y , as long as the distribution Y is dq-moment-
matching.

Proof. Suppose that f(y) is normalized so that

E
y∼N(0,1)n

f(y) = f̂(0) = ±1.

We have the q-th moment bound

‖f(x)− f̂(0)‖q ≤ ‖U√q
(
f(y)− f̂(0)

)
‖2 ≤ 1

2
.

From the generic concentration inequality

P (|X| ≥ t‖X‖q) ≤ t−q

we obtain
P
(
sign(f(y)) 6= sign(f̂(0))

)
≤ 2−q.

Thus, we find that the PTF sign(f) almost always yields the value sign(f̂(0)) under random gaus-
sian inputs. Crucially for us, this argument is also easy to derandomize: since the argument merely

12



relies on a bound on the q-th moment Ey∼N(0,1)n(f(y) − f̂(0))q, and for Y which is k-moment-
matching for k ≥ dq we have

E
Y

(f(Y )− f̂(0))q = E
y∼N(0,1)n

(f(y)− f̂(0))q,

we conclude also that sign(f(Y )) is typically equal to sign(f̂(0)).

We remark that this lemma further implies that Y fools sign(f) when H√q(f) is small:

E
Y
sign(f(Y )) = E

y∼N(0,1)n
sign(f(y))±O(2−q).

Gaussian restrictions and derivatives on the Hermite basis. Besides the effect of the noise
operator, it will also be important to understand the effect of two further operations on polynomials:

• The derivative map, f(y) 7→ ∂αf(y).

• The gaussian restriction at x, f(y) 7→ f
(√

1− λx+
√
λy
)

.

In particular, we are concerned with how these operations affect the Hermite coefficients of a poly-
nomial; ultimately, our goal will be to develop a “Hermite-basis analogue” of the Taylor expansion
which can be applied to expand f

(√
1− λx+

√
λy
)

as a function of y. We start by computing the
effect of these two operations on univariate Hermite polynomials, and then on the full multivariate
Hermite basis, and finally on a general polynomial f(x) expressed in the Hermite basis.

Proposition 3.3. For univariate Hermite polynomials, we have the identities

• ∂k

∂tk
hm(t) =

√
m!

(m−k)!
hm−k(t),

• hm
(√

1− λx+
√
λy
)

=
∑m

k=0

√(
m
k

)
(1− λ)(m−k)/2λk/2hm−k(x)hk(y).

Proof. The first of these identities is standard (see e.g. [O’D14, Ex. 11.10]); we provide a proof of
the second.

The second identity can be proved by considering the generating function

est−
1
2
s2 =

∑
m

√
m!hm(t)sm,

and comparing the coefficient of sm on both sides of

es(
√

1−λx+
√
λy)− 1

2
s2 = e(s

√
1−λ)x− 1

2
(s
√

1−λ)2 · e(s
√
λ)y− 1

2
(s
√
λ)2

13



The corresponding identities for multivariate Hermite polynomials follow easily from above.

Proposition 3.4. We have

• ∂αhβ(y) =
√

α!
γ!
hγ(y), where γ = β − α,

• hβ
(√

1− λx+
√
λy
)

= (1− λ)|β|/2
∑

α≤β
∂αhβ(x)√

α!

(
λ

1−λ

)|α|/2
hα(y),

• ∂αhβ
(√

1− λx+
√
λy
)

= (1− λ)|β−α|/2
∑

γ≤β−α
∂α+γhβ(x)√

γ!

(
λ

1−λ

)|γ|/2
hγ(y).

We conclude with a Taylor-like expansion in the Hermite basis that we use repeatedly.

Lemma 3.5. Let f(y) =
∑

α f̂(α)hα(y). Then

f
(√

1− λx+
√
λy
)

=
∑
α

∂αg(x)√
α!

(
λ

1− λ

)|α|/2
hα(y),

where g(x) := U√1−λf(x) =
∑

α f̂(α)(1− λ)|α|/2hα(x).

Proof. We express

f
(√

1− λx+
√
λy
)

=
∑
α

f̂(α)hα

(√
1− λx+

√
λy
)

=
∑
α

hα(y)√
α!

(
λ

1− λ

)|α|/2∑
β≥α

f̂(β)(1− λ)|β|/2∂αhβ(x)

=
∑
α

hα(y)√
α!

(
λ

1− λ

)|α|/2
∂αg(x).

Lastly, we will also need an extension of this theorem which expresses ∂αf , at the point
√

1− λx+
√
λy,

as a polynomial in y in the Hermite basis.

Theorem 3.6. Let f(y) =
∑

α f̂(α)hα(y). Then

∂αf
(√

1− λx+
√
λy
)

= (1− λ)−|α|/2
∑
β≥α

∂βg(x)

√
α!

β!

(
λ

1− λ

)|β−α|/2
hβ−α(y),

where g(x) := U√1−λf(x).
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Proof. We express

∂αf
(√

1− λx+
√
λy
)

=
∑
β

f̂(β)∂αhβ

(√
1− λx+

√
λy
)

=
∑
γ

hγ(y)√
γ!

(
λ

1− λ

)|γ|/2 ∑
β≥γ+α

(1− λ)|β−α|/2∂α+γhβ(x)

= (1− λ)−|α|/2
∑
γ

hγ(y)√
γ!

(
λ

1− λ

)|γ|/2
∂α+γg(x).

4 Gaussian restrictions of polynomials

Here we prove the structural properties of gaussian restrictions of polynomials: Corollary 1.5,
Lemma 1.7, Lemma 1.8. Note that Corollary 1.5 follows immediately from Lemma 1.7 and
Lemma 2.2. We next prove Lemma 1.7 from Lemma 1.8.

Proof of Lemma 1.7 from Lemma 1.8. Define f(x) := U√1−λp(x). Then, by Lemma 3.5,

px(y) = f(x) +
∑
α 6=0

∂αf(x)√
α!

(
λ

1− λ

)|α|/2
hα(y).

Thus,

HyperVarR(px) =
∑
α6=0

(
∂αf(x)√

α!

)2(
λ

1− λ

)|α|
R2|α| ≤

∑
α 6=0

(∂αf(x))2

(
λ

1− λ

)|α|
R2|α|

=
d∑

k=1

R2k

(
λ

1− λ

)k
‖∇kf(x)‖2,

where the first inequality follows as
√
α! ≥ 1.

We now conclude by applying Lemma 1.8 to f . We have

HR(px) =

∑d
k=1 R

2k
(

λ
1−λ

)k ‖∇kf(x)‖2

f(x)2
.

Except with probability δ over x ∼ N(0, 1)n, we can bound this by

d∑
k=1

R2k

(
λ

1− λ

)k (
Cd3

δ

)2k

≤ O

(
λd6R2

δ2

)
.
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4.1 Proof of Lemma 1.8

Our main tool will be Kane’s relative-anticoncentration lemma for gaussian polynomials

Lemma 4.1 ([Kan13]). For a degree d polynomial p, and independent standard gaussian vectors
x, y ∈ Rn,

P(|p(x)| ≤ ε| 〈y,∇p(x)〉 |) ≤ O(εd2).

In fact, we will actually work with the following corollary which is essentially the first of the d
inequalities in Lemma 1.8.

Corollary 4.2. For a degree d polynomial p, and independent standard gaussian vector x ∈ Rn,

P(|p(x)| ≤ ε‖∇p(x)‖) ≤ O(εd2).

Proof. We note that for any fixed x, 〈y,∇p(x)〉 is identical in distribution to Z‖∇p(x)‖, where
Z ∼ N(0, 1) is a standard gaussian. So, we express

P(|p(x)| ≤ ε| 〈y,∇p(x)〉 |) = P(|p(x)| ≤ ε|Z|‖∇p(x)‖)
≥ P(|p(x)| ≤ ε‖∇p(x)‖) · P(|Z| ≥ 1) .

Since P(|Z| ≥ 1) ≥ Ω(1), we conclude that

P(|p(x)| ≤ ε‖∇p(x)‖) ≤ O(εd2).

The heart of the proof of Lemma 1.8 is a vector-valued variant of the above corrollary:

Lemma 4.3. Let
#»

f (x) := (f1(x), f2(x), . . . , fm(x)) be a collection of m degree-at-most d poly-
nomials fj(x). If x ∈ Rn is a standard gaussian vector, then

P

(
‖ #»

f (x)‖2 ≤ ε2

m∑
j=1

‖∇fj(x)‖2

)
≤ O(εd2).

Proof of Lemma 1.8. We simply apply the above lemma d times and take a union bound. For
1 ≤ k ≤ d, let

#»

f k(x) := ((∂αf(x) : |α| = k)). Note that ‖ #»

f k(x)‖2 = ‖∇kf(x)‖2. Further, note
that ∑

α:|α|=k

‖∇(∂αf(x))‖2 ≥ ‖∇k+1f(x)‖2,

where the inequality follows as each (k + 1)’th order derivative would be counted at least once in
the expression on the left hand side. Therefore, by the above lemma, for x ∼ N(0, 1)n, we have

P
(
‖∇kf(x)‖2 ≤ ε2‖∇k+1f(x)‖2

)
≤ O(εd2)
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Setting ε = δ/d3, and taking a union bound over all k, we get that for a constant C > 0,

P
(
∀k, ‖∇kf(x)‖2 > C(δ2/d6)‖∇k+1f(x)‖2

)
≥ 1− δ.

This proves Lemma 1.8.

Proof of Lemma 4.3. Consider the auxiliary polynomial

h(x, y) :=
m∑
j=1

fj(x)yj.

As a function of both x and y, we have

∇h(x, y) =
#»

f (x) ◦Mxy,

whereMx is the matrix with columns∇fj(x) (that is,Mx has (i, j)-th entry ∂
∂xi
fj(x)). So, applying

Corollary 4.2 to this auxiliary polynomial gives the probability bound

q := P
(
h(x, y)2 ≤ ε2‖∇g(x, y)‖2

)
= P

(〈
y,

#»

f (x)
〉2

≤ ε2
(
‖ #»

f (x)‖2 + ‖Mxy‖2
))

≤ O(εd2).

Now, for some constant C ≥ 2 to be specified later, let E denote the event that

(C2 − 1)‖ #»

f (x)‖2 ≤ ε2

2
‖Mx‖2

F ,

where ‖Mx‖F is the Frobenius norm of Mx. We note that we can lower-bound the probability q by

q ≥ P(E) · P
(∣∣∣〈y, #»

f (x)
〉∣∣∣ ≤ C‖ #»

f (x)‖ and ‖Mxy‖2 ≥ 1

2
‖Mx‖2

F |E
)
.

We claim that for large enough choice of constant C, this conditional probability can be lower-
bounded by Ω(1). Indeed, we can argue for any fixed x:

• P
(∣∣∣〈y, #»

f (x)
〉∣∣∣ ≥ C‖ #»

f (x)‖
)
≤ 1

C2 .

• P
(
‖Mxy‖2 ≥ 1

2
‖Mx‖2

F

)
≥ Ω(1).

The first item is just a Chebyshev inequality; the second item can be derived e.g. from the basic
anticoncentration bound one obtains for degree-2 polynomials from the Paley-Zygmund bound
together with hypercontractivity (since, for any fixed matrixM , the quadratic form g(y) := ‖My‖2

has second-moment E g(y)2 ≥ (E g(y))2 = ‖M‖2
F ).
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Thus, by choosing C large enough, we can lower-bound this conditional probability by

Ω(1)− 1

C2
≥ Ω(1).

We conclude that P(E) ≤ O(q) = O(εd2). This gives the desired conclusion

P
(
‖ #»

f (x)‖ ≤ Ω(ε)‖Mx‖F
)
≤ O(εd2).

5 Pseudorandom Generator for PTFs

The following theorem gives quantitative bounds on the error of our main generator:

Theorem 5.1. Fix some parameters ε > 0 and R ∈ N. Let z be a standard gaussian, and
let Z = 1√

L

∑L
i=1 Yi, where each Yi is dR-moment-matching. Then for some sufficiently large

absolute constant c and any polynomial p of degree d,

E
Z
sign(p(Z)) ≥ E

z∼N(0,1)n
sign(p(z))−O(εd3)− L · 2−Ω(R),

as long as L is at least Rdc/ε2.

Combining the above with Theorem 3.1 immediately implies our main result Theorem 1.3.

Proof of Theorem 1.3. Given a target error ε′, set ε = ε′/Cd3, and R = C log(d/ε) for a suf-
ficiently big constant so that the error in the above lemma is at most ε′/2 for L = Rdc/ε2 =
O(dc log(d/ε)/ε2). While the above theorem only gives a lower bound, we can get an upper bound
by applying the result to −p. Now, by applying Theorem 3.1 there exists an efficient PRG that
fools degree d PTFs with error at most ε′ and seedlength O(dO(1) log(nd/ε′) log(d/ε′)/(ε′)2 which
can be simplified to the bound in the theorem.

We now prove the above theorem by the lower-sandwiching argument outlined in Section 2.1. Fix
a polynomial p(x) of degree d. We remind the reader of our convention sign(t) := 1(t ≥ 0).

We define the mollifier function

g(x) :=
d−1∏
k=0

ρ

(
log

(
1

16ε2

‖∇kp(x)‖2

‖∇k+1p(x)‖2

))
,

where ρ : R → [0, 1] is some smooth univariate function with ρ(t) = 0 for t ≤ 0, ρ(t) = 1 for
t ≥ 1, and ‖∂kρ

∂tk
‖∞ ≤ kO(k) for all k. 4

4For example, it suffices to let ρ(t) be the standard mollifier ρ(t) := 0 for t ≤ 0, ρ(t) := 1 for t ≥ 1, and
ρ(t) := e · exp

(
1

(t−1)2−1

)
for t ∈ (0, 1).
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Proof of Theorem 5.1. For every point x ∈ Rn we have

sign(p(x)) ≥ sign(p(x))g(x).

Furthermore, under the truly-random gaussian inputs z ∼ N(0, 1)n we have

E
z
sign(p(z))g(z) ≥ E

z
sign(p(z))− E

z
|g(z)− 1| ≥ E

z
sign(p(z))−O(εd3),

where the final inequality here follows from Lemma 1.8. Combining these, we get that

E
Z
sign(p(Z)) ≥ E

z∼N(0,1)n
sign(p(z))−O(εd3)− |E

Z
sign(p(Z))g(Z)− E

z∼N(0,1)n
sign(p(z))g(z)|.

Thus, it suffices to bound |EZ sign(p(Z))g(Z) − Ez∼N(0,1)n sign(p(z))g(z)|, which we do by a
hybrid argument. We first represent z as z := 1√

L

∑L
i=1 yi where each yi is an independent standard

gaussian. We can replace each Yi with yi and get

|E
Z
sign(p(Z))g(Z)− E

y
sign(p(y))g(y)| ≤ 2−Ω(R)L,

as a consequence of the following lemma (restatement of Lemma 2.3) that we prove in the next
section. Theorem 5.1 now follows.

Lemma 5.2 (Main hybrid-step). There exists a constant c such that the following holds for λ ≤
ε2/Rdc. For any fixed vector x ∈ Rn, Y a dR-moment-matching gaussian vector, and y ∼
N(0, 1)n,

|E
Y
sign(p(x+

√
λY ))g(x+

√
λY )− E

y
sign(p(x+

√
λy))g(x+

√
λy)| ≤ γ = 2−Ω(R).

5.1 Analysis of the main hybrid-step

The proof of Lemma 5.2 is by a case-analysis as outlined in the introduction. Consider the setting
as in the lemma and define

φ(z) := U√1−λp

(
z√

1− λ

)
.

The core argument will be a case-analysis on the derivatives of φ at the fixed point x and whether
these are slow-growing. Note that if p were multi-linear, then we would simply have φ ≡ p. The
starting point is the following re-scaling of Lemma 3.5:

p
(
x+
√
λy
)

=
∑
|α|≤d

∂αφ(x)√
α!

λ|α|/2hα(y). (3)

Further, by a re-scaling of Theorem 3.6, we get the following identity which gives a nice nearly
self-referential expression relating the derivatives of p to those of φ:

19



∂αp
(
x+
√
λy
)

=
∑
β≥α

√
α!

β!
∂βφ(x)λ|β−α|/2hβ−α(y). (4)

Now, note that for a truly random gaussian y we have ∂αφ(x) = Ey ∂αp(x +
√
λy). Thus, it is

reasonable to expect that for typical points x and small enough λ, ∂αp(x +
√
λy) will be strongly

concentrated around ∂αφ(x). The following lemma gives quantitative bounds on how much the
derivatives ∂αp(x+

√
λy) deviate from their expectations ∂αφ(x) for a random y ∼ N(0, 1)n. As

we will need such bounds even for k-moment-matching Y , we state the deviation bound in terms
of moments:

Lemma 5.3. Suppose f is a degree-d polynomial, and let φ(z) = U√1−λf( z√
1−λ). Consider the

polynomial
D(y) := ‖∇kf(x+

√
λy)−∇kφ(x)‖2,

which measures the euclidean distance between the k-th order derivatives∇kf(x+
√
λy) and their

expectations∇kφ(x).

For y ∼ N(0, 1)n, we have the moment bound

‖D(y)‖q/2 ≤
d∑

t=k+1

(λdq)t−k‖∇tφ(x)‖2.

That is,

(
E

y∼N(0,1)n
‖∇kf(x+

√
λy)−∇kφ(x)‖q

)1/q

≤

√√√√ d∑
t=k+1

(λdq)t−k‖∇tφ(x)‖2.

Proof. We express

D(y) =
∑
α

(
∂αf(x+

√
λy)− ∂αφ(x)

)2

=
∑
α

(∑
β>α

√
α!

β!
∂βφ(x)λ|β−α|/2hβ−α(y)

)2

.

First, by triangle-inequality, we get

‖D(y)‖q/2 ≤
∑
α

∥∥∥∥∥∥
(∑
β>α

√
α!

β!
∂βφ(x)λ|β−α|/2hβ−α(y)

)2
∥∥∥∥∥∥
q/2

=
∑
α

∥∥∥∥∥∑
β>α

√
α!

β!
∂βφ(x)λ|β−α|/2hβ−α(y)

∥∥∥∥∥
q

.
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Applying hypercontractivity, we now get

‖D(y)‖q/2 ≤
∑
α

∥∥∥∥∥U√q∑
β>α

√
α!

β!
∂βφ(x)λ|β−α|/2hβ−α(y)

∥∥∥∥∥
2

=
∑
α

∑
β>α

α!

β!
∂βφ(x)2λ|β−α|q|β−α|

≤
∑
α

∑
β>α

∂βφ(x)2λ|β−α|q|β−α|

=
d∑

t=k+1

(
t

t− k

)
(λq)t−k‖∇tφ(x)‖2

≤
d∑

t=k+1

(λdq)t−k‖∇tφ(x)‖2.

We are now ready to prove Lemma 5.2.

Proof of Lemma 5.2. We study two cases:

1. x is poorly-behaved for φ. In this case, we will show that g(x+
√
λY ) = 0 with probability

at least 1− 2−Ω(R).

2. x is well-behaved for φ: In this case, we will exploit the fact that sign(p(x +
√
λY )) will

equal sign(φ(x)) with probability 1 − 2−Ω(R). We then have to show that Y fools the mol-
lifier g which is a bit technically involved (hence we deal with this case second unlike in
Section 2.1).

We begin with the first case.

Case 1: x is poorly-behaved for φ. Consider the case where the inequality ‖∇kφ(x)‖ ≥ ε‖∇k+1φ(x)‖
is violated for some k, and indeed let k0 be the largest k such that this inequality is violated. We
will argue that with probability at least 1− 2−Ω(R), over random choice of Y , that

‖∇k0p(x+
√
λY )‖ ≤ 4ε‖∇k0+1p(x+

√
λY )‖,

in which case g(x+
√
λY ) = 0.

More specifically, we will show that it is highly likely that both

• ‖∇k0p(x+
√
λY )‖ ≤ 2ε‖∇k0+1φ(x)‖, and

• ‖∇k0+1p(x+
√
λY )‖ ≥ 1

2
‖∇k0+1φ(x)‖.
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For this, we will use Eq. (4) and Lemma 5.3. Supposing k0 is the largest k such that

‖∇kφ(x)‖ < ε‖∇k+1φ(x)‖,

we have

• ‖∇k0φ(x)‖ ≤ ε‖∇k0+1φ(x)‖ and

• ‖∇k0+1φ(x)‖ ≥ εt‖∇k0+1+tφ(x)‖ for all t ≥ 0.

Lemma 5.3 therefore gives the bounds(
E
Y
‖∇k0p(x+

√
λY )−∇k0φ(x)‖R

)1/R

≤ ε‖∇k0+1φ(x)‖
√∑

t≥1

(λdR/ε2)t

and (
E
Y
‖∇k0+1p(x+

√
λY )−∇k0+1φ(x)‖R

)1/R

≤ ‖∇k0+1φ(x)‖
√∑

t≥1

(λdR/ε2)t.

So, as long as λdR/ε2 is at most a sufficiently small constant, we conclude that the following
bounds hold with probability at least 1− 2−R:

• ‖∇k0p(x+
√
λY )‖ ≤ ‖∇k0φ(x)‖+ ‖∇k0p(x+

√
λY )−∇k0φ(x)‖ ≤ 2ε‖∇k0+1φ(x)‖, and

• ‖∇k0+1p(x+
√
λY )‖ ≥ ‖∇k0+1φ(x)‖−‖∇k0+1p(x+

√
λY )−∇k0+1φ(x)‖ ≥ 1

2
‖∇k0+1φ(x)‖.

In the case that these bounds hold, we get

‖∇k0p(x+
√
λY )‖ ≤ 4ε‖∇k0+1p(x+

√
λY )‖,

and so g(x+
√
λY ) = 0. As this holds with probability at least 1− 2−Ω(R) for both y ∼ N(0, 1)n

as well as Y , the conclusion of Lemma 5.2 follows. This finishes the proof of Case 1.

Case 2: x is well-behaved for φ. We now consider the complimentary case where

‖∇kφ(x)‖ ≥ ε‖∇k+1φ(x)‖

for all k = 0, 1, . . . , d− 1. Consider the normalized polynomial

f(y) :=
p(x+

√
λy)

φ(x)
= 1 +

1

φ(x)

∑
α6=0

∂αφ(x)λ|α|/2hα(y).

Using hypercontractivity, we bound the R-th moment of f(y)− 1 by its
√
R-hypervariance:

‖f(y)− 1‖R ≤ ‖U√R (f(y)− 1) ‖2 ≤

√√√√∑
k≥1

(
λR

ε2

)k
≤ 1

2
.
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So, by a Markov argument, we have

P
(
sign(p(x+

√
λY )) 6= sign(φ(x))

)
≤ 2−R,

and this holds whenever Y is k-moment-matching for k ≥ dR. So, sign(p(x +
√
λY )) is nearly a

constant for random Y ; it remains to show that Y fools g(x +
√
λY ). We do this by (essentially)

truncating the Taylor-series of g about x so that we are left with a degree dR polynomial, which is
fooled by Y . The truncation-error will be small because our assumption,

‖∇kφ(x)‖ ≥ ε‖∇k+1φ(x)‖ for all k,

gives us good control on the R-th order moments of the deviations ‖∇kφ(x)‖−‖∇kp(x+
√
λY )‖.

The exact calculations are somewhat cumbersome and are given below. We will show that Y fools
the mollifier function

g(x+
√
λy) =

d−1∏
k=0

ρ

(
log

(
1

16ε2

‖∇kp(x+
√
λy)‖2

‖∇k+1p(x+
√
λy)‖2

))
.

To simplify notation we define the shifted function σ(t) := ρ(t− log(16ε2)), and express

g(x+
√
λy) =

d−1∏
k=0

σ
(

log ‖∇kp(x+
√
λy)‖2 − log ‖∇k+1p(x+

√
λy)‖2

)
.

It will be convenient to think of g (redundantly) as function of 2d auxiliary variables s1 . . . sd,
t1, . . . td, which we will eventually fix to

• si := ‖∇i−1p(x+
√
λy)‖2

• ti := ‖∇ip(x+
√
λy)‖2,

so we write

g(s, t) :=
d∏
i=1

σ (log(si)− log(ti)) .

We Taylor-expand g(s, t) around the points

• ai := ‖∇i−1φ(x)‖2

• bi := ‖∇iφ(x)‖2,

which gives
g(s, t) = `(s, t) + h(s, t),
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with low-degree part

`(s, t) :=
∑

α,β∈Nd
|α|+|β|<R

∂αs ∂
β
t g(a, b)

α!β!
(s− a)α (t− b)β

and remainder

|h(s, t)| ≤
∑

α,β∈Nd
|α|+|β|=R

|∂αs ∂
β
t g(s∗, t∗)|
α!β!

|s− a|α |t− b|β ,

where “|∂αs ∂
β
t g(s∗, t∗)|” is notation for the maximum magnitude of ∂αs ∂

β
t g on any point on the line

segment from (a, b) to (s, t). We need the following fact to bound the size of the derivatives of g,

Claim 5.4. Suppose σ is a smooth univariate function with uniform derivative bounds

‖σ(n)‖∞ ≤ nO(n).

The bivariate function
r(u, v) := σ(log(u)− log(v))

has derivatives bounded in size by∣∣∣∣ ∂n∂un ∂m

∂vm
r(u, v)

∣∣∣∣ ≤ nO(n)

|u|n
mO(m)

|v|m
.

This claim follows easily from the generalized chain rule (Faà di Bruno’s formula). As a result, we
get the derivative bounds ∣∣∣∂αs ∂βt g(s, t)

∣∣∣ ≤ |α|O(|α|)

|sα|
|β|O(|β|)

|tβ|
.

Using this, we bound the remainder

|h(s, t)| ≤
∑

α,β∈Nd
|α|+|β|=R

dO(R)

d∏
i=1

(
|1− si

ai
|

1− |1− si
ai
|

)αi ( |1− ti
bi
|

1− |1− ti
bi
|

)βi

.

Now, consider the event E (which depends on y) that

(1− δ)‖∇iφ(x)‖2 ≤ ‖∇ip(x+
√
λy)‖2 ≤ (1 + δ)‖∇iφ(x)‖2

holds for all i, where δ ≤ 1/2 is a parameter we will set shortly. In the case that this indeed holds,
we get

|h(s, t)| ≤ dO(R)O(δ)R.

We set δ just small enough to ensure

|h(s, t)| ≤ 2−R.
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Now, we express g (which we now think of as a function of the underlying variable y) as

g = g · 1E + g · 1Ē
= ` · 1E + h · 1E + g · 1Ē
= `− ` · 1Ē + h · 1E + g · 1Ē,

and we obtain the pointwise bound

|g − `| ≤ 2−R + 1Ē + |`| · 1Ē.

On average over Y , we get truncation error

E
Y

∣∣∣g(x+
√
λY )− `(Y )

∣∣∣ ≤ 2−R + E
Y
1Ē(Y ) +

√
E
Y
`2(Y )

√
E
Y
1Ē(Y )

≤ 2−R +O

(
d

δ

)R
·
(
λdR

ε2

)−Ω(R)

≤ 2−R + dO(1) ·
(
λdR

ε2

)−Ω(R)

where the second inequality here follows from the moment bounds in Lemma 5.3. As required
by the conditions of Lemma 5.2, we insist that λ is small enough that this error is at most 2−Ω(R).
Since this bound holds also for truly-random standard gaussian y, and EY `(Y ) = Ey `(y), we
obtain the desired bound

|E
Y
g(x+

√
λY )− E

y
g(x+

√
λy)| ≤ 2−Ω(R).

This finishes the proof in Case 2 and hence of Lemma 5.2.
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