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Abstract

Three decades ago, Nisan constructed an explicit pseudorandom generator (PRG) that
fools width-n length-n read-once branching programs (ROBPs) with error ε and seed length
O(log2 n+ log n · log(1/ε)) [Nis92]. Nisan’s generator remains the best explicit PRG known for
this important model of computation. However, a recent line of work starting with Braverman,
Cohen, and Garg [BCG20; CL20; CDRSTS21; PV21] has shown how to construct weighted
pseudorandom generators (WPRGs, aka pseudorandom pseudodistribution generators) with
better seed lengths than Nisan’s generator when the error parameter ε is small.

In this work, we present an explicit WPRG for width-n length-n ROBPs with seed length
O(log2 n+ log(1/ε)). Our seed length eliminates log log factors from prior constructions, and
our generator completes this line of research in the sense that further improvements would
require beating Nisan’s generator in the standard constant-error regime. Our technique is a
variation of a recently-discovered reduction that converts moderate-error PRGs into low-error
WPRGs [CDRSTS21; PV21]. Our version of the reduction uses averaging samplers.

We also point out that as a consequence of the recent work on WPRGs, any randomized
space-S decision algorithm can be simulated deterministically in space O

(
S3/2/

√
logS

)
. This is

a slight improvement over Saks and Zhou’s celebrated O(S3/2) bound [SZ99]. For this application,
our improved WPRG is not necessary.

1 Introduction

1.1 Derandomization

Randomization is a versatile technique in algorithm design. However, random bits are not always
available. Therefore, we would like to deterministically simulate randomized algorithms as efficiently
as possible. In this paper, we focus on space efficiency. After fixing its input, the output of a
small-space algorithm as a function of its random bits can be computed by a read-once branching
program (ROBP).

Definition 1.1 (ROBP). A width-w length-n ROBP is a directed graph consisting of n+ 1 layers
of vertices V0, . . . , Vn with w vertices in each layer. For each i ∈ [n], each vertex in Vi−1 has
two outgoing edges labeled 0 and 1 leading to Vi. On input x ∈ {0, 1}n, the program starts at
a designated start vertex vstart ∈ V0, then reads the bits x1, . . . , xn in order and traverses the
corresponding edges. The program accepts or rejects depending on whether the final vertex in
this path is a designated accept vertex vacc ∈ Vn. In this way, the program computes a function
f : {0, 1}n → {0, 1}.
∗This paper is based on research conducted as part of the author’s graduate studies at the University of Texas at
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Arguably, the most important case is w = n, which captures (log n)-space randomized algorithms
that always halt. To derandomize such an algorithm, we would like to estimate the expectation of
the corresponding ROBP on a uniform random input.

1.2 Pseudorandom Generators

The traditional approach to derandomization is to design a pseudorandom generator (PRG).

Definition 1.2 (PRG). Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-PRG for F is a
function G : {0, 1}r → {0, 1}n such that for every f ∈ F ,∣∣∣∣ E

x∈{0,1}r
[f(G(x))]− E

x∈{0,1}n
[f(x)]

∣∣∣∣ ≤ ε.
Here r is the seed length of G.

By the probabilistic method, there exists a (nonexplicit) PRG for width-n length-n ROBPs
with seed length O(log(n/ε)). A corresponding explicit1 construction would imply a complete
derandomization of space-bounded computation (L = BPL), because we could deterministically
estimate the expectation of a given ROBP f by computing 2−r ·

∑
x∈{0,1}r f(G(x)). Babai, Nisan,

and Szegedy designed the first explicit PRG for width-n length-n ROBPs [BNS92], with seed length

2O(
√
logn) · log(1/ε).

In a subsequent breakthrough [Nis92], Nisan designed a PRG with a much better seed length of

O(log2 n+ log n · log(1/ε)).

1.3 Weighted PRGs

In the decades since Nisan’s work [Nis92], despite intense effort, the problem of designing PRGs for
width-n length-n ROBPs has stubbornly resisted further attacks. Nisan’s PRG [Nis92] remains the
best explicit PRG known for this model. However, PRGs are not the only possible approach to
derandomization. Braverman, Cohen, and Garg recently introduced an intriguing generalization of
PRGs called weighted pseudorandom generators (WPRGs), aka pseudorandom pseudodistribution
generators [BCG20].

Definition 1.3 (WPRG). Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-WPRG for F
is a pair of functions (G, ρ), where G : {0, 1}r → {0, 1}n and ρ : {0, 1}r → R, such that for every
f ∈ F , ∣∣∣∣ E

x∈{0,1}r
[ρ(x) · f(G(x))]− E

x∈{0,1}n
[f(x)]

∣∣∣∣ ≤ ε.
Here r is the seed length of (G, ρ). If ρ maps {0, 1}r → [−K,K], we say the WPRG is K-bounded.

A standard (“unweighted”) PRG is the case ρ(x) ≡ 1. Just like an unweighted PRG, a WPRG
for ROBPs can be used to estimate the expectation of a given ROBP f , because we can compute
2−r ·

∑
x∈{0,1}r ρ(x) · f(G(x)). As long as r is small and G and ρ are both efficiently computable,

this is still an efficient derandomization. Thus, optimal WPRGs for ROBPs would immediately
imply L = BPL. Furthermore, WPRGs imply hitting set generators (HSGs).

1We say that a function G : {0, 1}r → {0, 1}n is explicit if it can be computed in space O(r). More precisely, we
are considering a family of functions indexed by one or more parameters (e.g., n and ε). The algorithm for computing
G is given both the parameters and the input to G.
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Definition 1.4 (HSG). Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-HSG for F is a
function G : {0, 1}r → {0, 1}n such that for every f ∈ F ,

E
x∈{0,1}n

[f(x)] ≥ ε =⇒ ∃x ∈ {0, 1}r, f(G(x)) = 1.

If (G, ρ) is an ε-WPRG for F , then G is an ε′-HSG for F for any ε′ > ε [BCG20]. HSGs have
been studied since the 80s [AKS87], but prior to Braverman, Cohen, and Garg’s work [BCG20],
no explicit HSG for width-n length-n ROBPs was known that was any better than Nisan’s PRG
(except when ε is extremely small; see Table 1). For these reasons, it was exciting when Braverman,
Cohen, and Garg presented an explicit WPRG that fools width-n length-n ROBPs [BCG20] with
seed length

Õ(log2 n+ log(1/ε)),

which is better than Nisan’s PRG’s seed length when ε� 1/poly(n).
Admittedly, Braverman, Cohen, and Garg’s result [BCG20] did not yet imply an improved

derandomization of space-bounded computation, but still, their innovative and complex work provides
valuable insights. The additional flexibility in the definition of a WPRG means that WPRGs can
be easier to construct compared to unweighted PRGs. In fact, in one setting (unbounded-width
permutation ROBPs with a single accept vertex), Pyne and Vadhan recently showed that there is
an explicit WPRG [PV21] with a seed length that is provably impossible to attain by unweighted
PRGs [HPV21], a testament to the power of the WPRG approach to derandomization.

Subsequent to Braverman, Cohen, and Garg’s work [BCG20], Chattopadhyay and Liao gave a
simpler WPRG construction [CL20] that fools width-n length-n ROBPs with the improved seed
length

Õ(log2 n) +O(log(1/ε)). (1)

Very recently, Cohen, Doron, Renard, Sberlo, and Ta-Shma [CDRSTS21] and Pyne and Vadhan
[PV21] independently obtained an even simpler WPRG that fools width-n length-n ROBPs with
seed length

O(log2 n) + Õ(log(1/ε)). (2)

(These last two constructions and analyses are nearly identical [CDRSTS21; PV21].)

1.4 Main Result: An Improved WPRG

In this work, we present another WPRG for ROBPs with a better seed length.

Theorem 1.5. For any w, n ∈ N and ε > 0, there is an explicit ε-WPRG for width-w length-n
ROBPs with seed length O(log(wn) log n+ log(1/ε)). Furthermore, the WPRG is poly(1/ε)-bounded.

When w = n, our WPRG has seed length O(log2 n+ log(1/ε)), giving the “best of both worlds”
compared to Eqs. (1) and (2). Our WPRG is the first to achieve seed length O(log2 n) with error
n− logn. Furthermore, our WPRG represents the completion of the research project of designing
WPRGs for width-n length-n ROBPs while focusing on the seed length’s dependence on ε [BCG20;
CL20; CDRSTS21; PV21]. After all, even an HSG must have seed length at least Ω(log(1/ε)), so
obtaining a better WPRG for width-n length-n ROBPs requires beating Nisan’s generator in the
traditional, challenging constant-error regime. (That being said, see Section 6.)

Our WPRG generalizes some other recent work on the small-ε regime. Hoza and Zuckerman
constructed an explicit ε-HSG for width-n length-n ROBPs with seed length O(log2 n+ log(1/ε))
[HZ20], which follows also from our WPRG. Meanwhile, Cheng and Hoza gave a deterministic
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Seed length Type of generator Reference

Õ (
√
n) +O(log(1/ε)) HSG [AKS87]2

2O(
√
logn) · log(1/ε) PRG [BNS92]

O(log2 n+ log(1/ε) · log n) PRG [Nis92]

Õ(log2 n+ log(1/ε)) WPRG [BCG20]

O(log2 n+ log(1/ε)) HSG [HZ20]

Õ(log2 n) +O(log(1/ε)) WPRG [CL20]

O(log2 n) + Õ(log(1/ε)) WPRG [CDRSTS21; PV21]

O(log2 n+ log(1/ε)) WPRG This work

O(log n+ log(1/ε)) PRG Optimal (non-explicit)

Table 1: Known PRGs, WPRGs, and HSGs for width-n length-n ROBPs. As a reminder, PRG =⇒
WPRG =⇒ HSG.

algorithm for estimating E[f ]±ε in space O(log2 n+log(1/ε)) given query access to a constant-width
ROBP f [CH20]; Theorem 1.5 immediately implies such an algorithm for the more general case of
polynomial-width ROBPs.

1.5 Derandomization that Beats the Saks-Zhou Bound

Next we turn to the general problem of derandomizing space-S decision algorithms, whether by
PRGs, WPRGs, HSGs, or any other method. Early work [Sav70; Jun81; BCP83] showed that these
algorithms can be simulated deterministically in space O(S2) (in fact these early papers show how
to simulate more powerful models). Saks and Zhou gave an improved simulation that runs in space
O(S3/2) [SZ99], which has remained unbeaten for decades. We point out that as a consequence of
the recent progress on WPRGs, it is now possible to slightly improve the bound.

Theorem 1.6. For any function S(N) ≥ logN , we have

BPSPACE(S) ⊆ DSPACE

(
S3/2

√
logS

)
.

(We use N to denote the input length, reserving n to denote the length of an ROBP. Recall that
BPSPACE(S) is the class of languages that can be decided by randomized algorithms that run
in space O(S) and always halt.3) Admittedly, O(S3/2/

√
logS) is barely any better than Saks and

Zhou’s O(S3/2) bound [SZ99]. However, we hope that Theorem 1.6 might break a “psychological
barrier” by demonstrating that the Saks-Zhou algorithm [SZ99] has room for improvement.

2For any w ∈ N, Ajtai, Komlos, and Szemeredi designed an explicit (1/w)-HSG for width-w length-n ROBPs where
n = O(log2 w/ log logw) with optimal seed length O(logw) [AKS87]. Turning things around, for any n ∈ N and ε > 0,

we can let w = 2
√
n logn/ε and get an explicit ε-HSG for width-w length-n ROBPs (hence also for width-n length-n

ROBPs) with seed length O(
√
n logn + log(1/ε)).

3In the older literature, the notation “BPSPACE(S)” refers to a different model where the algorithm is not
required to always halt. The class that we study in this paper is sometimes denoted “BPHSPACE(S)” in older
papers.
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Our improved WPRG is not necessary for proving Theorem 1.6. Instead, Theorem 1.6 follows
by combining several prior works [SZ99; Arm98; KNW08; CL20; CDRSTS21; PV21].

1.6 Overview of Proofs

1.6.1 Overview of our Improved WPRG

The proof of Theorem 1.5 is similar to the recent WPRG constructions by Cohen et al. and Pyne and
Vadhan [CDRSTS21; PV21]. Say we would like to fool some width-n length-n ROBP f with low error
ε� 1/ poly(n). The starting point is a PRG G that fools ROBPs with moderate error 1/ poly(n).
Building on work by Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and Vadhan [AKMPSV20],
Cohen et al. and Pyne and Vadhan [CDRSTS21; PV21] showed a bound of the form∣∣∣∣∣E[f ]−

K∑
i=1

σi · E[f(Ai)]

∣∣∣∣∣ ≤ ε, (3)

where K = poly(1/ε), each σi = ±1, and each random variable Ai is a concatenation of O
(
log(1/ε)
logn

)
truncations of independent samples from G. From here, we could immediately obtain an ε-WPRG by
taking G to be Nisan’s generator [Nis92], but such a WPRG would have seed length Ω(log(1/ε)·log n)
due to the cost of sampling Ai via independent seeds to Nisan’s generator. To get a better seed
length, we would like to use correlated seeds to Nisan’s generator.

The approach of Cohen et al. and Pyne and Vadhan [CDRSTS21; PV21] is to use the Impagliazzo-
Nisan-Wigderson (INW) PRG [INW94] to generate a pseudorandom sequence of seeds to Nisan’s
generator. Because the INW generator is non-optimal, this approach leads to the seed length
O(log2 n+ log(1/ε) log logn(1/ε)).

Our approach is based on a simple observation. The proof of Eq. (3) does not actually require
that G fool all width-n length-n ROBPs. Indeed, Eq. (3) holds under the weaker assumption that
G fools all subprograms of the specific ROBP f that we are analyzing.

To exploit this observation, we apply a trick that uses an “averaging sampler” Samp. We start with
a PRG G0 for width-n length-n ROBPs with moderate error 1/ poly(n) and seed length O(log2 n),
such as Nisan’s generator [Nis92]. Our WPRG selects a string x of length O(log2 n + log(1/ε))
uniformly at random. The sampler condition implies that for any ROBP f , with high probability

over x, the PRG G(y)
def
= G0(Samp(x, y)) fools all subprograms of f with error 1/poly(n) and

optimal seed length O(log n). Our WPRG now applies Eq. (3) to G rather than G0. Because G
has such a short seed length, sampling Ai only costs us O(log(1/ε)) truly random bits now, which
we can afford. (Similar tricks have been used previously in space-bounded derandomization [Nis94;
Arm98; HZ20].)

In general, our reduction converts any PRG for width-w length-n ROBPs with error 1/ poly(wn)
and seed length r into a WPRG for width-w length-n ROBPs with any desired error ε and seed
length O(r + log(wn/ε)). Our reduction is incomparable with the prior reduction by Cohen, Doron,
Renard, Sberlo, and Ta-Shma and Pyne and Vadhan [CDRSTS21; PV21], because we get a better
seed length, but we require the initial PRG to have error 1/ poly(wn), whereas the prior reduction
merely requires the initial PRG to have error 1/ poly(n). (This is shown by Cohen et al. [CDRSTS21],
who give a slightly tighter analysis compared to Pyne and Vadhan [PV21].)

We also take this opportunity to give a slightly different perspective on the proof of Eq. (3), the
basis of both our reduction and the earlier reduction [CDRSTS21; PV21]. The original proof of
Eq. (3) is based on “preconditioned Richardson iteration,” a method for improving the accuracy of
an approximate matrix inverse [AKMPSV20; CDRSTS21; PV21]. Cohen et al. pointed out that the
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proof has a resemblance to the notion of local consistency errors introduced by Cheng and Hoza
[CH20]. We show how Eq. (3) can be understood in terms of local consistency without bringing
any matrices into the picture. As we explain in Appendix A, this is not a substantially different
proof, but rather a different way of thinking about the same proof. We hope that this alternative
perspective might yield new insights in the future.

1.6.2 Overview of our Improved Derandomization

The proof of Theorem 1.6 (simulating randomized space S in deterministic space o(S3/2)) builds on
Saks and Zhou’s algorithm [SZ99]. To derandomize space-(logw) algorithms, Saks and Zhou rely
heavily on Nisan’s PRG for width-w length-n ROBPs. Crucially, Saks and Zhou set n to be much
smaller than w. To fool such programs with error ε, Nisan’s PRG has seed length

O(log(wn/ε) log n),

so by choosing n = 2O(
√
logw) and ε = 1/poly(w), the seed length of Nisan’s PRG is only O(log3/2w).

The crux of Saks and Zhou’s work [SZ99] is a clever method of reusing a seed of this PRG many
times to derandomize a (logw)-space algorithm even though it might use up to w random bits.

Saks and Zhou’s work therefore provides extra motivation for studying width-w length-n ROBPs
when n� w. These programs correspond to algorithms that only use a small amount of randomness.
In this “low-randomness” regime, PRGs have long been known that are slightly better than Nisan’s
PRG. Most famously, Nisan and Zuckerman designed a PRG for the case n = polylogw with
error 2− log0.99 w and optimal seed length O(logw) [NZ96]. Later, Armoni designed a PRG that
interpolates between Nisan’s PRG [Nis92] and the Nisan-Zuckerman PRG [NZ96], suitable for the
regime polylogw � n � w [Arm98]. Using extractors that were not available to Armoni at the
time of his work [Arm98], Armoni’s PRG can be implemented [KNW08] to have seed length

O

(
log(wn/ε) log n

max{1, log logw − log log(n/ε)}

)
.

For n� w and ε = 1/ poly(n), this is better than Nisan’s PRG by a factor of Θ(log logw).
Furthermore, although Saks and Zhou [SZ99] relied on the specific structure of Nisan’s PRG

[Nis92], Armoni showed how to modify the Saks-Zhou algorithm to use any generic PRG for ROBPs
[Arm98]. It is therefore natural to try to improve the Saks-Zhou theorem by replacing Nisan’s PRG
with Armoni’s, and indeed, it has been suggested that Theorem 1.6 follows already from Armoni’s
work.4

However, it seems that Theorem 1.6 does not follow directly from Armoni’s work. The trouble
is the error parameter. For the Saks-Zhou method to work, it seems to be necessary that the PRG
has error 1/ poly(w) rather than 1/ poly(n). When ε = 1/poly(w), Armoni’s PRG is no better than
Nisan’s PRG, so we get no improvement. Armoni himself understood this issue and did not claim
to beat the Saks-Zhou bound in the general case. Instead, he showed how to use his PRG to get an
improved derandomization of low-randomness algorithms [Arm98].

Today, however, we have new tools for fooling ROBPs with low error. In particular, we can use
the recent error reduction procedure due to Cohen et al. and Pyne and Vadhan [CDRSTS21; PV21].
Cohen et al. show how to convert a PRG for width-w length-n ROBPs with error 1/ poly(n) and
seed length r into a WPRG for width-w length-n ROBPs with any desired error ε and seed length

4I have heard a speaker make this claim during an oral presentation, but the speaker clarified that they were not
familiar with a careful proof and were merely communicating what someone else had said. I am also aware of an
instance in which this claim was made in typeset lecture notes, but the claim was removed after a revision.
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r + Õ(log(w/ε)) [CDRSTS21]. Applying this reduction to Armoni’s PRG with n = 2
√
logw·log logw

(slightly larger than the choice in Saks and Zhou’s original work [SZ99]), we obtain a WPRG for
width-w length-n ROBPs with error 1/poly(w) and seed length

O

(
log3/2w√
log logw

)
+ Õ(logw) = O

(
log3/2w√
log logw

)
.

Meanwhile, Chattopadhyay and Liao showed [CL20] that WPRGs can be used in place of PRGs in
Saks and Zhou’s algorithm, provided the WPRG is poly(w)-bounded. The WPRG from Cohen et
al.’s reduction [CDRSTS21] is indeed poly(1/ε)-bounded, completing the proof of Theorem 1.6.

1.7 WPRGs vs. HSGs

We remark that the proof of Theorem 1.6 sheds light on the relative strengths of HSGs and
WPRGs. Cheng and Hoza recently showed that optimal HSGs would imply L = BPL [CH20],
which might cause one to question whether WPRGs have value above and beyond the value of HSGs.
Chattopadhyay and Liao addressed this concern by showing that WPRGs could hypothetically be
used in the Saks-Zhou algorithm to prove a new and improved derandomization of space-bounded
computation [CL20], whereas it is still not known how to use HSGs in the Saks-Zhou algorithm.
Theorem 1.6 makes the hypothetical possibility envisioned by Chattopadhyay and Liao a reality5

and thereby demonstrates the strength of the WPRG approach to derandomization.

2 Preliminaries

2.1 Pseudodistributions

For most of our analysis, we will work with pseudodistributions rather than the WPRG formalism.
For our purposes, a pseudodistribution is a generalization of a probability distribution in which
probabilities are replaced with “pseudoprobabilities,” which are arbitrary real numbers that do not
necessarily sum to one.

Definition 2.1 (Pseudodistribution). A pseudodistribution over {0, 1}n is a formal real linear
combination of n-bit strings,6 i.e., a sum of the form

A =
R∑
i=1

ai · x(i),

where ai ∈ R and x(i) ∈ {0, 1}n. A probability distribution over {0, 1}n is the special case that
ai ≥ 0 and

∑R
i=1 ai = 1. We define Un to be the uniform distribution over {0, 1}n, i.e.,

Un =
∑

x∈{0,1}n
2−n · x.

5To be clear, we only achieve derandomization in space O(S3/2/
√

logS), whereas Chattopadhyay and Liao proposed
a route toward the much better bound O(S4/3) [CL20], developing an earlier proposal by Braverman, Cohen, and
Garg [BCG20].

6Equivalently, A is a vector in the n-fold tensor product space R2 ⊗ · · · ⊗ R2 ∼= R2n . The reader might find it
helpful to make an analogy with quantum computing; recall that a pure state of an n-qubit system is a vector in
the n-fold tensor product space C2 ⊗ · · · ⊗ C2 ∼= C2n . We could even have used ket notation for pseudodistributions:
A =

∑R
i=1 ai · |x(i)〉.
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We often identify a function f on {0, 1}n with the induced probability distribution f(Un). We define
the pseudoexpectation of a function f : {0, 1}n → R under the pseudodistribution A by

Ẽ[f(A)] =
R∑
i=1

ai · f(x(i)).

We say that A fools f with error ε if ∣∣∣E[f ]− Ẽ[f(A)]
∣∣∣ ≤ ε.

Definition 2.2 (Operations on Pseudodistributions). Linear combinations of pseudodistributions
over {0, 1}n are defined in the natural way. The tensor product of two pseudodistributions is given
by (

R∑
i=1

ai · x(i)
)
⊗

 R′∑
j=1

bj · y(j)
 =

R∑
i=1

R′∑
j=1

aibj · (x(i) ◦ y(j)),

where ◦ denotes concatenation. Thus if A is a pseudodistribution over {0, 1}n and B is a pseudodis-
tribution over {0, 1}n′ , then A⊗B is a pseudodistribution over {0, 1}n+n′ .

The following facts are easy to verify.

Proposition 2.3. Let A and B be pseudodistributions over {0, 1}n, let c ∈ R, and let f : {0, 1}n → R.
Then

Ẽ[f(A+ cB)] = Ẽ[f(A)] + c · Ẽ[f(B)].

Proposition 2.4. For b ∈ {0, 1}, let nb ∈ N, let Ab be a pseudodistribution over {0, 1}nb, and let
fb : {0, 1}nb → R. Let f(x, y) = f0(x) · f1(y). Then

Ẽ[f(A0 ⊗A1)] = Ẽ[f0(A0)] · Ẽ[f1(A1)].

2.2 Weighted PRGs

As discussed in Section 1, a WPRG is a pair (G, ρ), where G : {0, 1}r → {0, 1}n and ρ : {0, 1}r → R.
Each WPRG has a corresponding pseudodistribution, just as a PRG has a corresponding distribution.

Definition 2.5 (Pseudodistribution Sampled by a WPRG). If (G, ρ) is a WPRG with seed length
r, the pseudodistribution sampled by (G, ρ) is

A =
∑

x∈{0,1}r
2−r · ρ(x) ·G(x).

Note that (G, ρ) is an ε-WPRG for f if and only if A fools f with error ε.

WPRGs can be combined in the same ways as pseudodistributions. Consideration of these
operations will help us verify the seed length, boundedness, and efficiency of our WPRG.

Definition 2.6 (Operations on WPRGs). Suppose we have two WPRGs (G0, ρ0) and (G1, ρ1),
where Gb : {0, 1}rb → {0, 1}nb and ρb : {0, 1}rb → R. We define the tensor product (G0, ρ0)⊗ (G1, ρ1)
to be a WPRG (G, ρ) with seed length r0 + r1 given by

G(x, y) = G0(x) ◦G1(y)

ρ(x, y) = ρ0(x) · ρ1(y).

8



If n0 = n1, we define the sum (G0, ρ0) + (G1, ρ1) to be a WPRG (G, ρ) with seed length r + 1 given
by

G(x, b) = Gb(x)

ρ(x, b) = 2 · ρb(x).

(There is a factor of 2 because in the definition of WPRGs, we look at an expectation over seeds
rather than a sum.) For a WPRG (G, ρ) and a real number c, we define c · (G, ρ) = (G, ρ′), where

ρ′(x) = c · ρ(x).

Under these definitions, if (Gb, ρb) samples from the pseudodistribution Ab over {0, 1}nb , then
(G0, ρ0)⊗ (G1, ρ1) samples from A0 ⊗A1, and if n0 = n1, then (G0, ρ0) + c · (G1, ρ1) samples from
A0 + cA1. Furthermore, if (Gb, ρb) is Kb-bounded, then (G0, ρ0)⊗ (G1, ρ1) is (K0K1)-bounded; if
(G0, ρ0) and (G1, ρ1) are both K-bounded, then (G0, ρ0) + (G1, ρ1) is (2K)-bounded; if (G, ρ) is
K-bounded, then c · (G, ρ) is (cK)-bounded.

2.3 Applying Pseudodistributions to ROBPs

Let f be an ROBP with layers V0, . . . , Vn. Let u ∈ Vi and v ∈ Vj . When j ≥ i, we define the
subprogram fu→v : {0, 1}j−i → {0, 1} to be the length-(j − i) ROBP obtained from f by setting u
to be the start vertex and v to be the accept vertex. For convenience, we extend fu→v to a function
fu→v : {0, 1}≥j−i → {0, 1} that ignores all but the first j − i bits of its input.

If A is a pseudodistribution over {0, 1}d with i + d ≥ j, we define A[u → v] to be the
pseudoprobability of reaching v from u using A, i.e.,

A[u→ v] = Ẽ[fu→v(A)].

We extend the definition by defining A[u→ v] = 0 when i > j.

2.4 Local Consistency

As mentioned in Section 1.6.1, we will present a WPRG analysis based on the notion of local
consistency introduced by Cheng and Hoza [CH20]. The idea behind local consistency is that we
measure the quality of a pseudodistribution by using it to estimate E[fu→v] in two different ways
and comparing the results.

Definition 2.7 (Local Consistency Error). Let f be an ROBP with layers V0, . . . , Vn. Let u ∈ Vi
and v ∈ Vj with i < j, and let A be a pseudodistribution over {0, 1}d with i + d ≥ j. The local
consistency error LCErru→v(A) is defined by

LCErru→v(A) =

 ∑
t∈Vj−1

A[u→ t] · U1[t→ v]

−A[u→ v].

We extend the definition by setting LCErru→v(A) = 0 when j ≤ i. We say that A is α-locally
consistent with respect to f if for every u, v we have |LCErru→v(A)| ≤ α.

Note that Un is 0-locally consistent. As we explain in Appendix A, local consistency is closely
connected to approximating the inverse of the random walk Laplacian matrix of f . Cheng and
Hoza’s work [CH20] shows that local consistency and fooling are equivalent, up to some loss in the
error parameter [CH20]. We repeat the argument here for clarity.
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Lemma 2.8. Let A be a pseudodistribution over {0, 1}n and let f be a width-w length-n ROBP.

1. If A fools every subprogram fu→v of f with error α, then A is (2wα)-locally consistent with
respect to f .

2. If A is ε-locally consistent with respect to f , then A fools every subprogram fu→v of f with
error wnε.

Proof. First, suppose A fools every subprogram fu→v with error α. Then if u ∈ Vi and v ∈ Vj with
i < j, we have

|LCErru→v(A)| =

∣∣∣∣∣∣A[u→ v]−
∑

t∈Vj−1

A[u→ t] · U1[t→ v]

∣∣∣∣∣∣
≤ |A[u→ v]− Un[u→ v]|+

∣∣∣∣∣∣Un[u→ v]−
∑

t∈Vj−1

A[u→ t] · U1[t→ v]

∣∣∣∣∣∣
≤ α+

∑
t∈Vj−1

|Un[u→ t]−A[u→ t]| · U1[t→ v]

≤ (w + 1)α ≤ 2wα.

Conversely, suppose A is ε-locally consistent with respect to f . Then for any u ∈ Vi and any j > i,

∑
v∈Vj

|A[u→ v]− Un[u→ v]| ≤
∑
v∈Vj

∣∣∣∣∣∣
∑

t∈Vj−1

A[u→ t]U1[t→ v]− Un[u→ v]

∣∣∣∣∣∣+ ε


≤ wε+

∑
v∈Vj

∑
t∈Vj−1

|A[u→ t]− Un[u→ t]| · U1[t→ v]

= wε+
∑

t∈Vj−1

|A[u→ t]− Un[u→ t]| ·
∑
v∈Vj

U1[t→ v]

= wε+
∑

t∈Vj−1

|A[u→ t]− Un[u→ t]|.

By induction on j − i, it follows that∑
v∈Vj

|A[u→ v]− Un[u→ v]| ≤ wnε,

and hence A fools every subprogram with error wnε.

We remark that there is a version of Lemma 2.8 that eliminates both factors of w. To obtain
such bounds, one can consider the sum over all v ∈ Vj of each type of error u → v. We have no
need of this more refined analysis, so we omit the details.

3 Amplifying Local Consistency

Let G be a given pseudodistribution over {0, 1}n. (Ultimately we will take G to be a probability
distribution, but this stage of the construction makes sense in the more general setting of pseudodis-
tributions.) We will show how to combine multiple samples from G to improve its local consistency.
Throughout this section, fix a length-n ROBP f with layers V = V0 ∪ · · · ∪ Vn, and for convenience,
define Vi = ∅ when i > n.

10



3.1 Construction

For each d ≤ n, define Gd to be the pseudodistribution obtained by drawing a sample from G and
truncating to the first d bits. That is, if G =

∑R
i=1 ai · x(i), then

Gd =
R∑
i=1

ai · x(i)1...d. (4)

For d ∈ [n], define a pseudodistribution ∆d over {0, 1}d by

∆d = Gd−1 ⊗ U1 −Gd.

The definition of ∆d should remind the reader of local consistency errors. (See Lemma 3.2.) Now
we define a “multi-hop” generalization of ∆d. For d ∈ [n] and m ∈ [d], define a pseudodistribution

∆
(m)
d over {0, 1}d by

∆
(m)
d =

∑
d1+···+dm=d

∆d1 ⊗ · · · ⊗∆dm ,

where the sum is over all m-tuples of positive integers (d1, . . . , dm) that sum to d. Next, for each
m ≥ 1, define a pseudodistribution T (m) over {0, 1}n by

T (m) =

n∑
d=m

∆
(m)
d ⊗Gn−d,

and finally, for each m ≥ 0, define a pseudodistribution G(m) over {0, 1}n by

G(m) = G+
m∑
i=1

T (i) = G+
m∑
i=1

n∑
d=m

∆
(i)
d ⊗Gn−d.

We will show that as m gets large, G(m) becomes increasingly locally consistent.

3.2 Analysis

For m ≥ 1, define a “multi-hop” generalization of local consistency errors by

LCErr(m)
u→v(G) =

∑
u=u0,u1,...,um=v

m∏
j=1

LCErruj−1→uj (G),

where the sum is over all sequences of m+ 1 vertices starting with u and ending with v. Our goal
in this section is to prove the following exact formula for the local consistency errors of G(m) in
terms of the local consistency errors of G.

Lemma 3.1. For any two vertices u, v and any m ≥ 0, we have LCErru→v(G(m)) = LCErr
(m+1)
u→v (G).

Let us briefly pause to marvel at this phenomenon. In most settings, when several imperfect
ingredients are combined, we expect that the errors will compound on each other, so the combination
has more error than any individual ingredient. We typically consider ourselves lucky if we can prove
that the errors compund mildly. The remarkable feature of Lemma 3.1 is that it involves products
of errors, i.e., the local consistency errors of G are actually combining in our favor !

Toward proving Lemma 3.1, we begin by analyzing ∆d. It is immediate from the definitions
that if u ∈ Vi and v ∈ Vi+d, then ∆d[u→ v] = LCErru→v(G). More generally, we have the following
formula.
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Lemma 3.2. Let d ∈ [n] and i, j ≤ n. Let u ∈ Vi and v ∈ Vj and let A be a pseudodistribution over
{0, 1}n−d. Then

(∆d ⊗A)[u→ v] =
∑

t∈Vi+d

LCErru→t(G) ·A[t→ v]. (5)

Proof. For the first case, suppose i + d ≤ j. Then for any x ∈ {0, 1}d and any y ∈ {0, 1}n−d, we
have fu→v(x, y) =

∑
t∈Vi+d

fu→t(x) · ft→v(y). Therefore, for any pseudodistribution B over {0, 1}d
whatsoever, we have

(B ⊗A)[u→ v] =
∑

t∈Vi+d

B[u→ t] ·A[t→ v].

Since ∆d[u→ t] = LCErru→t(G), we are done in this case.
For the second case, suppose i + d > j. Then either i > j, or else the pseudodistributions

Gd−1 ⊗ U1 ⊗ A and Gd ⊗ A agree on their first j − i bits.7 Either way, (∆d ⊗ A)[u → v] = 0.
Meanwhile, for each t ∈ Vi+d, trivially A[t → v] = 0, so both sides of Eq. (5) are zero in this
case.

More generally, we have the following relationship between ∆
(m)
d and LCErr(m).

Lemma 3.3. Let d ∈ [n], m ∈ [d], and i, j ≤ n and m ≥ 0. Let u ∈ Vi and v ∈ Vj and let A be a
pseudodistribution over {0, 1}n−d. Then

(∆
(m)
d ⊗A)[u→ v] =

∑
t∈Vi+d

LCErr
(m)
u→t(G) ·A[t→ v].

Proof. The base case m = 1 was proven in Lemma 3.2. For the inductive step, note that

∆
(m+1)
d =

d−1∑
k=m

∆
(m)
k ⊗∆d−k,

so

(∆
(m+1)
d ⊗A)[u→ v] =

d−1∑
k=m

(∆
(m)
k ⊗∆d−k ⊗A)[u→ v] (Linearity)

=
d−1∑
k=m

∑
s∈Vi+k

LCErr(m)
u→s(G) · (∆d−k ⊗A)[s→ v] (Induction)

=
d−1∑
k=m

∑
s∈Vi+k

∑
t∈Vi+d

LCErr(m)
u→s(G) · LCErrs→t(G) ·A[t→ v] (Lemma 3.2)

=
∑

t∈Vi+d

LCErr
(m+1)
u→t (G) ·A[t→ v].

Proof of Lemma 3.1. For any u ∈ Vj and v ∈ Vk, by Lemma 3.3,

T (m)[u→ v] =

n∑
d=m

∑
t∈Vj+d

LCErr
(m)
u→t(G) ·G[t→ v] =

∑
t∈V

LCErr
(m)
u→t(G) ·G[t→ v].

7I.e., the induced pseudodistributions on the first j − i bits (see Eq. (4)) are identical.
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Therefore, if u ∈ Vj and v ∈ Vk with j < k, then

LCErru→v(T (m)) =

 ∑
s∈Vk−1

T (m)[u→ s] · U1[s→ v]

− T (m)[u→ v]

=

 ∑
s∈Vk−1

∑
t∈V

LCErr
(m)
u→t(G) ·G[t→ s] · U1[s→ v]

−∑
t∈V

LCErr
(m)
u→t(G) ·G[t→ v]

=
∑
t∈V

LCErr
(m)
u→t(G) ·

 ∑
s∈Vk−1

G[t→ s] · U1[s→ v]

−G[t→ v]


︸ ︷︷ ︸

(∗)

.

Quantity (∗) is exactly the local consistency error LCErrt→v(G), except in one edge case: when
t = v, LCErrt→t(G) = 0, whereas (∗) = −1. Therefore,

LCErru→v(T (m)) =

(∑
t∈V

LCErr
(m)
u→t(G) · LCErrt→v(G)

)
− LCErr(m)

u→v(G)

= LCErr(m+1)
u→v (G)− LCErr(m)

u→v(G).

Thus, we get a telescoping sum:

LCErru→v(G(m)) = LCErru→v(G) +

m∑
i=1

LCErru→v(T (i))

= LCErru→v(G) +

m∑
i=1

(
LCErr(i+1)

u→v (G)− LCErr(i)u→v(G)
)

= LCErr(m+1)
u→v (G).

(If j ≥ k, then LCErru→v(G(m)) = LCErr
(m+1)
u→v (G) = 0, so the lemma holds trivially in this case.)

The following corollary corresponds to Eq. (3).

Corollary 3.4. If G fools every subprogram fu→v with error α, then for every m ≥ 0, G(m) fools f
with error wn · (2w2nα)m+1.

Proof. For any u and v, by Lemma 3.1,

|LCErru→v(G(m))| = |LCErr(m+1)
u→v (G)|

≤
∑

u=u0,u1,...,um+1=v

m+1∏
j=1

|LCErrui−1→ui(G)|

≤ (wn)m · (2wα)m+1 (Lemma 2.8)

≤ (2w2nα)m+1.

The corollary follows by Lemma 2.8.

We reiterate that Corollary 3.4 follows already from the work of Cohen et al. and Pyne and
Vadhan [CDRSTS21; PV21], and indeed the proof we have given is not substantially different (see
Appendix A). In keeping with our remark after Lemma 2.8, we also remark that there is a version of
Corollary 3.4 that eliminates the factors of w by assuming that for each layer j, the sum of errors
|G[u→ v]− Un[u→ v]| over all v ∈ Vj is at most α. We omit the details.
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4 Our Improved WPRG for ROBPs

In this section, we will show how to convert a moderate-error PRG for width-w length-n ROBPs into
a low-error WPRG for width-w length-n ROBPs. If the given PRG has error 1/ poly(wn) and seed
length r, then for any ε > 0, we will obtain a WPRG with error ε and seed length O(r+ log(wn/ε)).

4.1 Construction

Recall the standard notion of an averaging sampler, which is essentially equivalent to a seeded
randomness extractor [Zuc97].

Definition 4.1 (Sampler). A function Samp : {0, 1}` × {0, 1}q → {0, 1}r is an (α, γ)-sampler if for
every function f : {0, 1}r → [0, 1],

Pr
x∈{0,1}`

∣∣∣∣∣∣E[f ]− 2−q
∑

y∈{0,1}q
f(Samp(x, y))

∣∣∣∣∣∣ ≤ α
 ≥ 1− γ.

Let α = 1
4w3n2 and let G : {0, 1}r → {0, 1}n be a given α-PRG for width-w length-n ROBPs.

Define

m =

⌈
log(wn/ε)

log(wn)

⌉
and γ =

ε

2w2n2 · ((8n)m+1 + 1)
=
( ε

wn

)O(1)
,

and let Samp : {0, 1}` × {0, 1}q → {0, 1}r be an (α, γ)-sampler. For each x ∈ {0, 1}`, let Gx be the

distribution G(Samp(x, Uq)), and let G
(m)
x be the corresponding pseudodistribution with amplified

local consistency as defined in Section 3.1. Our final pseudodistribution G′ is G
(m)
x for a uniform

random x, i.e.,

G′ =
∑

x∈{0,1}`
2−` ·G(m)

x .

4.2 Correctness

Claim 4.2. If f is a width-w length-n ROBP, then G′ fools f with error ε.

Proof. For each pair of vertices u, v, since G is an α-PRG for width-w ROBPs, G fools fu→v with
error α. Therefore, by the sampler condition, with probability 1− γ over a uniform random choice
of x, Gx fools fu→v with error 2α. Let BAD be the set of x such that there exist vertices u, v such
that Gx does not (2α)-fool fu→v. By the union bound,

|BAD| ≤ γ · w2n2 · 2` =
ε

2 · ((8n)m+1 + 1)
· 2`.

For any x, unpacking the definitions, we see that G
(m)
x has the form

∑K
i=1±Ai, where

K ≤ (m+ 1) · (n+ 1) · (n+ 1)m · 2m ≤ (8n)m+1

and each Ai is a tensor product of probability distributions. Therefore, for x ∈ BAD (indeed for all

x), we have
∣∣∣Ẽ[f(G

(m)
x )]

∣∣∣ ≤ (8n)m+1. Meanwhile, for x 6∈ BAD, by Corollary 3.4,

∣∣∣Ẽ[f(G(m)
x )]− E[f ]

∣∣∣ ≤ wn · (4w2nα)m+1 = wn ·
(

1

wn

)m+1

<
ε

2
.
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Therefore, overall,

∣∣∣Ẽ[f(G′)]− E[f ]
∣∣∣ =

∣∣∣∣∣∣
∑

x∈BAD
2−` · (Ẽ[f(G(m)

x )]− E[f ]) +
∑

x 6∈BAD
2−` · (Ẽ[f(G(m)

x )]− E[f ])

∣∣∣∣∣∣
≤

∑
x∈BAD

2−`
(∣∣∣Ẽ[f(G(m)

x )]
∣∣∣+ 1

)
+
∑

x 6∈BAD
2−` ·

∣∣∣Ẽ[f(G(m)
x )]− E[f ]

∣∣∣
≤ 2−` · |BAD| · ((8n)m+1 + 1) +

ε

2
≤ ε.

4.3 Explicitness and Seed Length

We will instantiate Samp using the following explicit sampler.

Theorem 4.3 ([CL20, Appendix B]). For every r ∈ N and every α, γ > 0, there exists an
(α, γ)-sampler Samp : {0, 1}` × {0, 1}q → {0, 1}r with ` = r + O(log(1/γ) + log(1/α)) and q =
O(log(1/α) + log log(1/γ)), such that given r, α, γ, x, and y, the value Samp(x, y) can be computed
in space O(r + log(1/α) + log(1/γ)).

Proof of Theorem 1.5. Taking Samp to be the sampler of Theorem 4.3, we get ` = O(r+log(1/γ)) =
O(r + log(wn/ε)) and q = O(log(wn) + log log(1/ε)). For a fixed x ∈ {0, 1}`, as mentioned in the

proof of Claim 4.2, G
(m)
x has the form

∑K
i=1±Ai, where

K ≤ (8n)m+1 ≤ poly(n/ε),

and each Ai is a tensor product of at most 2m+ 1 terms, each of which is either (Gx)d for some

value of d or else U1. Using the constructions of Definition 2.6, we can sample G
(m)
x by a WPRG

with seed length O(logK +mq), and we can sample G′ by a WPRG with seed length

`+O(logK +mq) = O

(
r + log(wn/ε) ·

(
1 +

log log(1/ε)

log(wn)

))
= O(r + log(wn/ε)),

where the last equality holds without loss of generality, because either ε > 2−n, in which case
log log(1/ε) < log(wn), or else ε ≤ 2−n, in which case we can achieve seed length O(r + log(wn/ε))
by simply sampling a truly random n-bit string. Furthermore, as discussed in Definition 2.6,
our WPRG is (2K)-bounded,8 and we can assume without loss of generality that ε < 1/n (since
otherwise G itself would be a suitable WPRG), so our WPRG is indeed poly(1/ε)-bounded.

Finally, pick G to be Nisan’s generator [Nis92]. Then

r = O(log(wn/α) log n) = O(log(wn) log n),

so our WPRG has seed length O(log(wn) log n+ log(1/ε)) as claimed. Explicitness is clear.

We remark that because of the specific structure of Nisan’s generator [Nis92], the sampler is
actually not necessary. Instead, we can let x be the description of the hash functions in Nisan’s
generator and let y be the input to the hash functions.

8The factor of 2 is because the number of terms in the sum might not be a power of two, so we might need to pad
with dummy terms.
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5 Derandomization Beyond Saks-Zhou

In this section, we show that randomized space-S decision algorithms can be simulated determinis-
tically in space O(S3/2/

√
logS) (Theorem 1.6). As outlined in Section 1.6.2, the proof does not

involve any significant new ideas, but rather amounts to combining several previous works and
choosing parameters. For that reason, we will refrain from fully describing the Saks-Zhou method.
Instead, we will focus on assisting readers who are already familiar with Saks and Zhou’s work
[SZ99] (but who are not necessarily comfortable with WPRGs) in verifying Theorem 1.6. Readers
who are not familiar with Saks and Zhou’s work are encouraged to read Chattopadhyay and Liao’s
discussion of the Saks-Zhou method in the context of WPRGs [CL20] or Saks and Zhou’s original
paper [SZ99].

Let G denote Nisan’s PRG [Nis92]. Recall that Saks and Zhou [SZ99] exploited the fact that the
seed of Nisan’s PRG can be split into two parts (x, y), where x = O(logw log n) and y = O(logw);
for a fixed ROBP f , if we pick x at random, then with high probability, E[f ] ≈ 2−r ·

∑
y f(G(x, y)).

This method of estimating E[f ] has a key technical feature, which is that each time we read a bit of
the input of f , we only need to be using O(logw) bits of work space (not counting the string x,
which we think of as being on a read-only random tape). This feature is beneficial, because in the
context of the Saks-Zhou algorithm [SZ99], the program f is computed recursively, so we would like
to use as little space as possible while the recursive computation is taking place. (See the work of
Hoza and Umans for further discussion [HU21].)

Armoni generalized Saks and Zhou’s methods by showing that any explicit PRG for ROBPs
implies a method of estimating E[f ] with the same key feature [Arm98]. Later, Chattopadhyay
and Liao generalized further by showing that the same holds for any polynomially-bounded explicit
WPRG [CL20]. For clarity, we repeat the argument here (in a slightly different form). It is convenient
to generalize the definition of ROBPs to allow a large alphabet.

Definition 5.1 (ROBP over a large alphabet). A width-w length-n ROBP over the alphabet Σ is
defined as in Definition 1.1, except that each vertex in Vi−1 has |Σ| outgoing edges leading to Vi,
labeled with the symbols in Σ. The program computes a function f : Σn → {0, 1} in the natural
way.

Lemma 5.2 ([CL20]). Let n = n(w), K = K(w), r = r(w), a = a(w), and ε = ε(w) be functions,
each of which can be constructed in space O(r). Suppose that for every w ∈ N, there is a K-bounded
ε-WPRG (G, ρ) for width-w length-n ROBPs over the alphabet {0, 1}a with seed length r that can
be computed in space O(r). Then there is an algorithm for estimating the expectation of a given
width-w length-n ROBP f over the alphabet {0, 1}a with the following properties.

1. The algorithm uses r +O(log(Kw/ε)) random bits from a read-only two-way9 random tape,
and with probability 1− ε/w2 it outputs a value that is within ±2ε of E[f ].

2. The algorithm uses O(r + a+ log(Kwn/ε)) bits of work space. Furthermore, whenever the
algorithm reads a bit of the description of f , it first deletes all but O(a+ log(Kwn/ε)) bits of
its work space.

Proof. Let Samp : {0, 1}` × {0, 1}q → {0, 1}r be the (ε/(2K), ε/w2)-sampler of Theorem 4.3. To
estimate E[f ], we pick x ∈ {0, 1}` uniformly at random, and then we output

2−q ·
∑

y∈{0,1}q
ρ(Samp(x, y)) · f(G(Samp(x, y))).

9I.e., the algorithm is allowed to go back and re-read random bits as many times as it likes, unlike the standard
model of randomized space-bounded computation in which the random tape must be read a single time from left to
right.
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To prove that this works, define g : {0, 1}r → [−K,K] by g(z) = ρ(z) · f(G(z)). The sampler
condition implies that with probability 1− ε/w2 over the choice of x, we have∣∣∣∣∣∣E[g]− 2−q

∑
y∈{0,1}q

g(Samp(x, y))

∣∣∣∣∣∣ ≤ ε.
Meanwhile, the WPRG condition implies that |E[g]− E[f ]| ≤ ε. Thus, with probability 1− ε/w2,
our algorithm outputs E[f ]± 2ε.

Now let us analyze the efficiency of the algorithm. The number of random bits we use is
clearly ` = r + O(log(Kw/ε)). The total space used is O(r) bits to compute G and ρ, plus
O(r log(Kw/ε)) bits to compute Samp, plus O(log(wn)) bits to keep track of our simulation of f , plus
O(q) = O(log(K/ε)+log logw) bits for summing over all y, which is a total of O(r+a+log(Kwn/ε))
bits. Prior to reading a bit of the description of f , we only need to be storing the O(log(wn)) bits
that keep track of our simulation of f , plus the O(q) = O(log(K/ε) + log logw) bits for summing
over all y, plus a single a-bit symbol of the string G(Samp(x, y)) (namely, the single symbol that we
are currently feeding into our simulation of f), which is a total of O(a+ log(wnK/ε)) bits.

Having established Lemma 5.2, we can now compute the space complexity of the derandomization
obtained by plugging any efficient WPRG into the Saks-Zhou framework.

Theorem 5.3 ([SZ99; CL20]). Let n = n(w), K = K(w), and r = r(w) be monotone increasing
functions, each of which can be constructed in space O(r), with n ≤ w. Define ε = w−8 and
a = d4 logwe. Suppose that for every w ∈ N, there exists a K-bounded ε-WPRG for width-(w + 1)
length-n ROBPs over the alphabet {0, 1}a with seed length r that can be computed in space O(r).
Then

BPL ⊆
⋃
c∈N

DSPACE

(
r(N c) +

log(N ·K(N c)) · logN

log(n(N c))

)
,

where N denotes the input length.

Proof outline. Suppose we are interested in computing the n-th power of a given substochastic
matrix M ∈ Rw×w, where each entry has a bits of precision. We can easily construct a width-(w+ 1)
length-n ROBP f over the alphabet {0, 1}a such that for each i, j ∈ [w], if we let ui be the i-th vertex
in the first layer of f and we let vj be the j-th vertex in the final layer of f , then E[fui→vj ] = (Mn)i,j .
Using Lemma 5.2, we can compute each such value E[fui→vj ] to within ±2ε with failure probability
ε/w2. In this way, we compute a matrix P ∈ Rw×w such that ‖P −Mn‖max ≤ 2ε. We can reuse the
same random bits for each entry of the matrix, so our algorithm uses r +O(log(Kw/ε)) random
bits from a read-only two-way random tape and succeeds with probability 1 − ε. Furthermore,
this algorithm uses O(r + a+ log(Kwn/ε)) bits of work space, and whenever it reads a bit of the
description of M , it first deletes all but O(a+ log(Kwn/ε)) bits of its workspace.

Now, consider some randomized log-space algorithm that we wish to derandomize. There is a
constant c such that the acceptance probability of the BPL algorithm on an input of length N is
an entry in Mw, where w = N c and M ∈ {0, 12 , 1}

w×w is an easily-computable stochastic matrix.
We have discussed a randomized algorithm for approximating Mn. The technique of Saks and
Zhou [SZ99] implies [CL20] an algorithm for computing Mw. As a reminder, the approach is to
repeatedly take approximate n-th powers, reusing the same random bits each time and randomly
rounding each entry of the matrix to a bits of precision after each iteration to resolve dependency
issues. The number of iterations is logw

logn . The algorithm can be implemented to have failure
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probability O(w3 · (2aε+ 2−a)) and approximation error O(w22−a), using

O

(
r + log(Kw/ε) + a · logw

log n

)
random bits and

O

(
r + (a+ log(Kwn/ε)) · logw

log n

)
bits of space [CL20, Lemma 43]. By our choices ε = w−8 and a = d4 logwe, the failure probability is

O(1/w), the approximation error is O(1/w2), the number of random bits is O(r+ log(Kw) + log2 w
logn ),

and the space complexity is O(r+ log(Kw) logw
logn ). Trying all possibilities for the random tape completes

the proof.

Next, we identify the WPRG family that we will plug into Theorem 5.3.

Theorem 5.4 ([Arm98; KNW08; CDRSTS21]). For every w ∈ N, there exists a K-bounded ε-
WPRG for width-(w+ 1) length-n ROBPs over the alphabet {0, 1}d4 logwe with seed length r that can
be computed in space O(r), where

n = exp
(⌈√

logw · log logw
⌉)
, ε = w−8,

r ≤ O

(
log3/2w√
log logw

)
, K ≤ poly(w).

Proof. For any w, n, a, α, Armoni designed an α-PRG for width-(w + 1) length-n ROBPs over the
alphabet {0, 1}a [Arm98]; with an optimization due to Kane, Nelson, and Woodruff [KNW08], this
PRG has seed length

r = O

(
a+

log(wn/α) log n

max{1, log logw − log log(n/α)}

)
and can be computed in space O(r). For n = exp

(⌈√
logw · log logw

⌉)
, α = 1/poly(n), and

a = O(logw), this seed length becomes

r = O

(
log3/2w√
log logw

)
.

Now we apply an error reduction procedure that converts this moderate-error PRG into a low-
error WPRG. Specifically, we will use the reduction due to Cohen, Doron, Renard, Sberlo, and
Ta-Shma [CDRSTS21]. Given a PRG for width-w length-n ROBPs over the alphabet {0, 1}a with
error 1/(10n2) and seed length r, they show [CDRSTS21, Corollary 15] how to construct a WPRG
for width-w length-n ROBPs over the alphabet {0, 1}a with any desired error ε and seed length
r + O(log(w/ε) log logn(1/ε)). Furthermore, if the PRG can be computed in space O(r), then
the WPRG can be computed in space O(r + log logn(1/ε) · (log log(w/ε))2). Cohen et al. did not
explicitly mention it, but by inspection it is easy to see that their WPRG is poly(1/ε)-bounded for
the same reason that our main WPRG (Theorem 1.5) is poly(1/ε)-bounded. Since ε = 1/ poly(w),
the seed length is r + Õ(logw) = O(r), the space complexity is O(r + poly(log logw)) = O(r), and
the WPRG is poly(w)-bounded.

Corollary 5.5. BPL ⊆ DSPACE
(

log3/2N/
√

log logN
)

, where N denotes the input length.
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Proof. Plugging the WPRG of Theorem 5.4 into Theorem 5.3, we get a space bound of

O

(
log3/2(N c)√
log log(N c)

+
log(N ·NO(c)) · logN√

log(N c) · log log(N c)

)
,

which simplifies to O
(

log3/2N/
√

log logN
)

.

Now we generalize Corollary 5.5 to the case of BPSPACE(S). When S is space-constructible,
the generalization is a standard padding argument. We now show that BPSPACE(S) is contained
in DSPACE

(
S3/2/

√
logS

)
for any S(N) ≥ logN , whether space-constructible or not.

Proof of Theorem 1.6. Observe that the proof of Corollary 5.5 extends to promise problems. In
particular, for any constants 0 ≤ a < b ≤ 1, there is a deterministic algorithm Da,b such that if f is
a width-w length-w ROBP over the binary alphabet, then

E[f ] ≤ a =⇒ Da,b(f) = 0,

E[f ] ≥ b =⇒ Da,b(f) = 1,

and Da,b(f) runs in space O
(

log3/2w/
√

log logw
)

.

Let A be a Turing machine witnessing membership of a language in BPSPACE(S). For N ∈ N,
y ∈ {0, 1}N , and s ∈ N, there exists a width-w length-w ROBP Ey,s, where w = O(N · 2s), such
that Ey,s(x) = 1 if and only if the computation A(y, x) ever touches more than s cells of the work
tape. Furthermore, for the same value of w, there exists a width-w length-w ROBP fy,s such that if
Ey,s(x) = 0, then fy,s(x) = A(y, x) ∈ {0, 1}. Given y and s, these two ROBPs can be constructed
deterministically in space O(s+ logN).

On input y, our deterministic algorithm tries each s = 1, 2, 3, . . . until it finds the first s
such that D0,0.01(Ey,s) = 0. Then, our deterministic algorithm outputs D0.4,0.6(fy,s). This works,
because if D0,0.01(Ey,s) = 0, then E[Ey,s] < 0.01, so E[fy,s] is within ±0.01 of the acceptance
probability of A(y). Furthermore, our algorithm will find a suitable s satisfying s ≤ S(N), because
E[Ey,S(N)] = 0. Therefore, the space complexity of our algorithm is at most O(log3/2w/

√
log logw),

where w = O(N · 2S(N)) = 2O(S(N)). This space bound is O
(
S(N)3/2/

√
logS(N)

)
as desired.

6 Directions for Further Research

As we mentioned in Section 1.4, getting a better WPRG for width-n length-n ROBPs requires
beating Nisan’s PRG in the standard constant-error regime. However, there are cases where focusing
on error dependence might still be fruitful:

• Recall that Nisan and Zuckerman designed a PRG for width-w length-n ROBPs when
n = polylogw with optimal seed length O(logw) [NZ96] but non-optimal error 2− log0.99 w.
There are known ε-HSGs for this setting with seed length O(logw) even when ε = 1/ poly(w)
[AKS87; HZ20]; can we match that seed length by a WPRG? The WPRG construction
presented in this paper does not seem to work, because if G has seed length o(logw), then it
seems to have too much error for the local consistency amplification procedure G(m) to work,
whereas if G has seed length Ω(logw), then we cannot afford to sample multiple independent
seeds.
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• Currently, the best explicit PRGs for width-3 ROBPs and constant-width regular ROBPs
have seed length Õ(log n · log(1/ε)) [MRT19; De11; BRRY14]. In a similar spirit as Pyne and
Vadhan’s recent work on permutation ROBPs [PV21], can we design WPRGs for these models
with error 1/poly(n) and seed length o(log2 n)?

We also wonder whether there are other applications of recent WPRG constructions. For example,
recall that Nisan showed BPL ⊆ DTISP(poly(n), log2 n) [Nis94]. Can we somehow use WPRGs
to simulate BPL by a deterministic algorithm that simultaneously uses poly(n) time and o(log2 n)
space?
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A Local Consistency vs. Approximate Inverse Laplacian

Cohen et al. noted that their WPRG construction is reminiscent of local consistency errors
[CDRSTS21]. We now briefly elaborate on the connection, for the sake of readers who are familiar
with how prior work used preconditioned Richardson iteration to decrease error in space-bounded
derandomization [AKMPSV20; CDRSTS21; PV21].

Prior works [AKMPSV20; CDRSTS21; PV21] looked at the transition probability matrix W
associated with a width-w length-n ROBP f , considered as a directed graph on (n+ 1) · w vertices.
This matrix W is an (n+ 1)w × (n+ 1)w block matrix of the form

W =


0 M1 0 · · · 0
0 0 M2 · · · 0
...

. . .
...

0 0 0
. . . Mn

0 0 0 · · · 0

 ,

where Mi ∈ {0, 12 , 1}
w×w is the transition probability matrix for Vi−1 × Vi. Let L = I −W (the

Laplacian matrix). Then L is invertible with inverse

L−1 =


M0...0 M0...1 M0...2 · · · M0...n

0 M1...1 M1...2 · · · M1...n
...

. . .
...

0 0 0
. . . Mn−1...n

0 0 0 · · · Mn...n

 ,

where Mi...j = Mi ·Mi+1 · · ·Mj , i.e., Mi...j is the stochastic matrix containing the probabilities

Un[u→ v] for u ∈ Vi and v ∈ Vj . We are interested in obtaining an approximation L̂−1 to L, say

L̂−1 =



M̂0...0 M̂0...1 M̂0...2 · · · M̂0...n

0 M̂1...1 M̂1...2 · · · M̂1...n
...

. . .
...

0 0 0
. . . M̂n−1...n

0 0 0 · · · M̂n...n


,

where each M̂i...j is a matrix of estimates for the probabilities Un[u→ v] with u ∈ Vi and v ∈ Vj . The
approach taken by prior work [AKMPSV20; CDRSTS21; PV21] is to use preconditioned Richardson
iteration to convert a moderate-error approximation of L−1 into a low-error approximation of L−1.
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The crucial point is that in this analysis, the approximation quality is measured by comparing

L̂−1L to I rather than comparing L−1 and L̂−1 directly. The error matrix E
def
= I − L̂−1L is given

by

E =


0 E0...1 E0...2 · · · E0...n

0 0 E1...2 · · · E1...n
...

. . .
...

0 0 0
. . . En−1...n

0 0 0 · · · 0

 ,

where
Ei...j = M̂i...j−1Mj − M̂i...j .

Thus, E is precisely the matrix of local consistency errors. (This is also plain from one of Pyne and
Vadhan’s lemmas [PV21, Lemma 4.6].)
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