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Abstract

Interactive error correcting codes are codes that encode a two party communication

protocol to an error-resilient protocol that succeeds even if a constant fraction of

the communicated symbols are adversarially corrupted, at the cost of increasing the

communication by a constant factor. What is the largest fraction of corruptions that

such codes can protect against?

If the error-resilient protocol is allowed to communicate large (constant sized)

symbols, Braverman and Rao (STOC, 2011) show that the maximum rate of

corruptions that can be tolerated is 1/4. They also give a binary interactive error

correcting protocol that only communicates bits and is resilient to 1/8 fraction of errors,

but leave the optimality of this scheme as an open problem.

We answer this question in the negative, breaking the 1/8 barrier. Specifically, we

give a binary interactive error correcting scheme that is resilient to 5/39 > 1/8 fraction of

adversarial errors. Our scheme builds upon a novel construction of binary list-decodable

interactive codes with small list size.

∗klimefrem@gmail.com. Supported by the Israel Science Foundation (ISF) through grant No. 1456/18.
†gillat.kol@gmail.com. Supported by an Alfred P. Sloan Fellowship, the National Science Foundation

CAREER award CCF-1750443, and by the E. Lawrence Keyes Jr. / Emerson Electric Co. Award.
‡rrsaxena@princeton.edu. Supported by the National Science Foundation CAREER award CCF-1750443.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 51 (2021)

mailto:klimefrem@gmail.com
mailto:gillat.kol@gmail.com
mailto:rrsaxena@princeton.edu


1 Introduction

We study the error resilience of binary interactive coding schemes [Sch96]. A binary

interactive coding scheme with error resilience θ solves the following problem: Let Π be

a two party protocol over the noiseless binary channel. Construct a protocol Π′ that can

simulate Π even when a θ fraction of the bits sent during Π′ are adversarially corrupted.

What is the largest1 θ > 0 for which there exist binary interactive coding schemes with error

resilience θ?

For a related problem where the protocols are allowed to communicate symbols from a

large constant sized alphabet (rather than bits), Braverman and Rao [BR11], building on

the groundbreaking work of [Sch96], construct a beautiful interactive coding scheme with

error resilience 1
4

and prove its optimality. They also show how to derive from it a binary

interactive coding scheme that is resilient to 1
8

fraction of errors. Since their work, it is open

if there exists a binary interactive coding scheme with error resilience larger than 1
8
. In this

work, we construct the first such scheme, answering this question from nearly a decade ago.

We note that constructing optimal binary codes is often a much more challenging task

than constructing codes over large alphabets. This holds even in the non-interactive setting

of error correcting codes where optimal rate vs. resilience trade-offs are known for codes

with large alphabets (e.g., the singleton bound). However, proving such trade-offs for the

binary case has been a major open problem in coding theory for over half a century.

The 1
8

error resilience barrier. Not only are we lacking simulations for general binary

protocols with error resilience larger than 1
8
, but we also do not know any such simulation

for the simplest interactive task of message exchange, where parties wish to exchange their

inputs. This is despite the fact that, for message exchange, a binary protocol with error

resilience 1
8

is almost obvious. Namely, both the parties simply encode their inputs with a

binary error correcting code of distance 1
2
, and exchange these encodings2.

In Section 2, we explain why 1
8

is a natural barrier for the error resilience of binary

protocols, even when restricted to the message exchange task. We argue that 1
8

comes from

three separate 1
2

factors, each stemming from a different property that we require. The first
1
2

factor comes from the fact that we want a binary protocol (classical binary error correcting

codes have distance approaching 1
2
, whereas codes over a large alphabet can have distance

approaching 1 – the same factor 1
2

separation is also present in the interactive regime). The

second 1
2

factor comes from the requirement of unique decoding (classical unique decoding

can only be performed when the fraction of corruptions is less than 1
2
, whereas the analogous

threshold for list decoding is 1 – the same factor 1
2

separation is also present in the interactive

regime). The last 1
2

factor comes from the fact that the message exchange task, like all

1Actually, supremum.
2A distance of 1

2 is the best one can get from binary error correcting codes with positive rate. This
contrasts with the large alphabet case where we know error correcting codes with distance approaching 1.
Correspondingly, for this case, the natural protocol for message exchange has error resilience 1

4 .
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interactive tasks, is ‘two-sided’, and in order to fail the task, the adversary only needs to

corrupt the ‘weaker’ one of the two parties (i.e., the one who transmits less), which needs

at most 1
2

the corruptions.

We show, perhaps surprisingly, that while a protocol for message exchange with any two

out of the three requirements above (i.e., a non-binary unique decodable interactive scheme

or a binary list-decodable interactive scheme or a binary unique decodable classical scheme)

can have error resilience at most (1
2
)2 = 1

4
, there is a protocol satisfying all three requirements

with error resilience strictly larger than (1
2
)3 = 1

8
. After a lot more effort, we are also able

to extend our scheme from message exchange to all interactive tasks.

1.1 Our Result

In this work, we show a binary interactive coding scheme with error resilience strictly greater

than 1
8
. The following is an informal statement of our main result, a formal statement is

given in Theorem 6.1.

Theorem 1.1 (Informal). Let Π be a two-party binary communication protocol3. For every

θ < 5
39

, there exists a binary protocol Π′ that simulates Π and is resilient to θ-fraction of

adversarial errors. Moreover, the length of Π′ is linear in the length of Π.

Our result solves a long-standing open problem, stated explicitly in [BR11] (Open

Problem 3), in [Gel17] (see Version 1.3, Remark 2.1), in [BE17] (Open Problem 2), and

in [EGH16]. We also note that the best known upper bound on the error resilience of binary

interactive coding schemes is 1
6

[EGH16]. Pinning down the optimal constant inside the

range [ 5
39
, 1

6
] is an extremely intriguing question.

Prior to our work, it was not even known if the 1
8

barrier can be crossed with a protocol Π′

of arbitrary length. When waiving the constraint on the encoding length, the problem of

finding the maximal error resilience of interactive coding schemes reduces to finding the

maximal error resilience of the message exchange problem, as any communication task can

be accomplished if the parties exchange their entire (possibly huge) inputs.

Binary interactive list-decodable codes. A key ingredient in the construction of our

coding scheme is a novel construction of a binary interactive list-decodable code with small

list size. Our list-decodable scheme is resilient to 5
32

fraction of errors and outputs a list of

size (only) 3. We stress that our scheme in Theorem 1.1 crucially relies on the list being that

small, and that even a list of size 5 would not have sufficed for our result (see Section 2). An

imprecise statement of this result is given in Theorem 1.2, a formal statement can be found

in Theorem 5.1.

3We assume, without loss of generality, that Π is deterministic, as every randomized protocol is a
distribution over deterministic protocols.
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Theorem 1.2 (Informal). Let Π be a two-party deterministic binary communication protocol

and let θ < 5
32

. Then, there exists a binary protocol Π′ such that, upon its termination, on

every pair of inputs x, y for the players in Π, the first party obtains a list LAx,y and the second

party obtains a list LBx,y with |LAx,y|, |LBx,y| ≤ 3. The lists have the property that whenever

at most θ fraction of the communication is adversarially corrupted, Π(x, y) ∈ LAx,y ∩ LBx,y,
where Π(x, y) is the (noiseless) transcript of the execution of Π on inputs x, y. Moreover,

the length of Π′ is linear in the length of Π.

We note that (in an informal sense) the parameters obtained by our interactive list-

decoding scheme correspond to the best possible parameters of a (non-interactive) list-

decoding scheme: There exist (non-interactive) binary codes that are list decodable with

lists of size 3 from up to a 5
16

-fraction of errors but no more [Bli86] (also see [ABP18]). An

extra multiplicative factor of 1
2

in the error resilience is incurred as our protocol is two-way

and therefore both parties need to list-decode.

1.2 Related Work

Since the study of coding for interactive communication was initiated by Schulman

[Sch92, Sch93, Sch96], numerous works have been published in this area [GMS11, BR11,

Bra12, KR13, BE17, BKN14, GMS14, GHK+18, EGH16, BGMO17, e.g.]. Out of these

works, the one most related to our paper is the [BR11] paper discussed above. For a great

survey of this field, see [Gel17].

The maximum error resilience of interactive protocols. The question of the

maximum error resilience of interactive codes, which parallels the question of maximal

distance in the study of standard codes, has been one of the central topics studied by the

interactive coding literature and was considered for various interactive models.

Our work, like [BR11] and most other works in interactive coding, assumes the “standard”

(non-adaptive) model of interactive communication, where parties take turns communicating

and cannot both send bits in the same round. There are models in the literature that give

the parties more power and therefore have a higher resilience.

For example, the maximal error resilience question was also considered over the adaptive

channel, where parties may collide (communicate in the same round) [GHS14, AGS16,

EGH16, EKS20a, EKS20b]. Over large alphabets, the error resilience of the adaptive channel

was shown to be strictly higher than 1
4
, which is the error resilience of the non-adaptive

channel [GHS14, EKS20a, EKS20b]. It may be possible to obtain binary adaptive protocols

with error resilience higher than 1
8

by using the ideas in these works and losing a factor of 1
2

from the result for large alphabets. However, our work is the first one to show that one does

not necessarily have to lose this factor of 1
2
. Consequently, we suspect that our techniques

in this paper, in combination with some of our tools in [EKS20a, EKS20b], can save us from

losing a factor of 1
2

in those models as well.
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Error resilience better than 1
8

for the binary case was proved for the channel with

noiseless feedback as well. The work of [EGH16] gives an interactive coding scheme over

the non-adaptive binary channel with feedback with error resilience 1
6
, and an interactive

coding scheme over the adaptive binary channel with feedback with error resilience 1
3
.

Both of these results are shown to be tight [EGH16]. The maximum interactive error

resilience of the erasure channel and the insertions and deletions channel was studied in

[EGH16, FGOS15, SW17, HSV18].

Interactive list-decoding. The notion of list-decodable codes was extended to the

interactive setting by [BE17, GHS14, GH14]. In [BE17], it is shown that for every ε > 0,

there exists an interactive list-decoding scheme over a large constant-sized alphabet with

a list of size poly(1
ε
) and error tolerance 1

2
− ε, that only blows-up the communication

linearly4. Computationally efficient interactive list-decoding schemes with similar guarantees

are constructed in [GHS14, GH14]5.

Open Problem 2 in [BE17] remarks that “one can modify all our protocols to work over

a binary channel with a loss of a factor of two in the error rates that one can handle”.

This modification seems to require non-trivial effort and would imply binary interactive

list-decodable codes with a list of size poly(1
ε
) and error tolerance 1

4
− ε. While the error

tolerance guarantee given by this modification is better than the error tolerance promised

in Theorem 1.2 (1
4

vs. 5
32

), it does not suffice for our purposes as the list size (while still

constant) is too big.

Shayevitz [Sha09] studied (standard) list-decodable codes in the presence of noiseless

feedback, showing that feedback can in fact improve the parameters of list-decodable codes.

The noiseless feedback model used in [Sha09] is incomparable to our interactive setting.

1.3 Techniques

Recall that the [BR11] protocol for the binary alphabet has error resilience 1
8
, and this

value stems from the fact that the optimal decoding radius (error resilience) of binary error

correcting codes is 1
4
. At a high level, our protocol gets higher error resilience by artificially

implementing binary codes with error resilience better than the optimal 1
4
. We next give a

very simplified description of our protocol.

At the beginning of the protocol, the parties use a binary interactive list-decodable code

with super small (size 3) lists that tolerates 5
16
> 1

4
fraction of errors, which we construct for

this purpose (see Subsection 1.1). After this phase, both parties have small lists of candidates

for the correct output, and Bob sends his list to Alice. Since Alice knows both her list and

4We note that the work of [BE17] actually gives much stronger statements: It shows that interactive
list-decoding with a list of size poly(1

ε ) is possible as long as α+ β < 1− ε, where α and β are the fractions
of the communication from Alice to Bob and from Bob to Alice (respectively) corrupted by the adversary.

5The list decoding scheme in [GH14] is of constant rate, improving over the polynomially-small rate
obtained by [GHS14].
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Bob’s list, she can output correctly. She then sends the index of the correct output in Bob’s

list to Bob. The reason Alice sends the index instead of sending the actual output itself is

that the index can only take one of 3 values. While no (asymptotic) binary error correcting

code has distance greater than 1
2
, binary codes with up to 4 codewords can have distance 2

3
.

We use such a code for the index and exploit its larger distance to get higher error resilience

overall.

To conclude, the saving in our protocol stems from a novel combination of two binary error

correcting codes with “better-than-optimal” error resilience, namely, a binary list-decodable

code with super short list size and a binary error correcting code with few codewords. A

more detailed overview, highlighting some of the challenges that the implementation of this

high-level idea entails, is found in Section 2. We believe that this high-level idea can guide

the design of additional interactive codes.

2 Overview of Our Protocol

In this section, we gradually build various aspects of our simulation scheme, highlighting the

roles they play.

2.1 [BR11] And The Message Exchange Problem

The work most directly related to our work is by Braverman and Rao [BR11]. In this work,

the authors show that, for any θ < 1
4
, any noiseless two party communication protocol can

be simulated over a channel that can adversarially corrupt any θ fraction of the symbols

communicated over the channel. Moreover, the authors also show that the parameter 1
4

is

the largest possible for which such a claim holds, as long as the channel is non-adaptive,

thereby showing that the maximal error resilience of the non-adaptive channel is 1
4
.

[BR11] provides a simulation for arbitrary noiseless protocols over the noisy two party

channel. Nonetheless, it is worthwhile to consider this simulation for the basic message

exchange protocol, where both parties have a private input that they want to share with

each other. Considering only this simple task already provides a simulation scheme for all

tasks with an exponential blowup, as any communication task can be performed by the

parties simply exchanging their (potentially exponentially large) inputs. Thereafter, comes

the harder task of reducing the length of the simulation and making it linear in the length

of the original protocol.

We incorporate this high level blueprint into our sketch and first illustrate the subset of

ideas needed even if one only wants to simulate the message exchange task in Subsection 2.2

and Subsection 2.3, and then build on these ideas to get a simulation scheme for all noiseless

protocols (with a constant blowup) in Subsection 2.4.
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2.2 The 1
8 Barrier For Message Exchange

In the binary regime, the best known error resilience of an interactive coding scheme is 1
8

[BR11]. This even holds for the restricted task of message exchange. The value 1
8

seems to be

a natural barrier due to the following three reasons, each of which contributes a multiplicative

factor of 1
2
.

• Binary alphabet: It is well known that the maximum distance of binary error

correcting codes is 1
2
, whereas the maximum distance of general error correcting codes

(i.e., with a constant sized alphabet) can be arbitrarily close to 1. This factor of 1
2

separation is also found in the best known distance parameters for binary and general

tree codes (see for example the construction in [Sch96]).

As error correcting codes and tree codes are commonly used as ‘building blocks’ in

interactive coding schemes, a factor of 1
2

separation between binary and general coding

schemes is found in many works. Indeed, [BR11] is one such work.

• Unique decoding: Another factor of 1
2

in the error-resilience comes from the fact

that if the minimum distance between two codewords of an error correcting code is δ,

then the parties can decode to a unique codeword only if the number of errors is at

most δ
2
. Going beyond this threshold requires working in the list-decoding regime

where the parties output a small list of values that is guaranteed to contain the correct

codeword. In the list decoding regime, the fraction of errors that one can decode from

is double that in the unique decoding regime, and can be made arbitrarily close to 1

(using a constant sized alphabet).

• Two-way task: The last factor of 1
2

is due to the fact that the message exchange task

is successful only if both the parties output each others’ input. In other words, in order

to derail the message exchange task, the adversary only needs to make sure that one

of the parties outputs incorrectly. In particular, the adversary can invest all his errors

on the party that speaks less. Since this party talks in at most half the rounds, the

fraction of corruptions required to derail the protocol is lower by a factor of 1
2
.

The fact that we have three requirements, each of which hurt the error resilience by a

factor of 1
2
, is not strong reason to believe that the three requirements together imply an

error resilience of at most 1
8
. Indeed, it is possible that there are ways to combine these

requirements so that the resulting error resilience is higher. The reason 1
8

is a natural barrier

for the error resilience is that combining any two of the above requirements (and not the

third) implies an error resilience of at most 1
4
. Indeed, we have the following bounds:

• No binary alphabet: Suppose that one relaxes the binary alphabet constraint but

still requires unique decoding and two-way message exchange. As mentioned above,

[BR11] show that the error resilience of their simulation is optimal in this case and no

protocol can get error resilience higher than 1
4
.
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• No unique decoding: Suppose now that one relaxes the unique decoding constraint

(and allows each party to output a small set of guesses for the input of the other party,

rather than a single value), but still requires binary alphabet and two-way message

exchange. For this setting, [BE17] give a protocol that has error resilience 1
4

6. It seems

to be folklore that one cannot have a protocol with higher error resilience, but as we

could not find a proof, we provide an informal proof of this fact in Appendix A.

• No two-way task: Finally, consider the setting where only one party is required to

send its input to the other party using a binary alphabet and the other party needs

to uniquely decode this input. This is the familiar setting of binary error-correcting

codes. It is well-known that in this setting, the maximum error resilience is 1
4

and is

achieved, for instance, by random codes.

Having shown the significance of the 1
8

barrier, we next describe our protocol and illustrate

how it surpasses this barrier.

2.3 Our Message Exchange Protocol

Our protocol for the message exchange problem will have 39N rounds and error resilience
5
39
> 1

8
(for an N linear in the size of the parties’ inputs). This means that the adversary

can corrupt less than 5
39
· 39N = 5N rounds.

Our protocol consists of three phases of different lengths. The first phase and the third

phase will have lengths 16N and 3N respectively and in these phases, Alice will be sending

messages to Bob. The second phase will have length 20N where Bob will be sending messages

to Alice. The protocol is given in Algorithm 1, illustrated in Figure 1, and described below.

The protocol follows the following high level scheme (see Figure 1): In phase 1, Alice will

send her input xA to Bob encoded using a list-decodable error correcting code. We choose

an error correcting code that can decode from up to a 5
16

fraction of corruptions using a list

of size 3. As the length of this phase is 16N and the number of corruptions is less than 5N ,

using such a code allows Bob to compute a set L of values, |L| ≤ 3, that is guaranteed to

have Alice’s input.

In phase 2, Bob will send his input xB to Alice along with the set L that he computed

in phase 1, encoded using a uniquely decodable error correcting code7. As the length of this

phase is 20N and the number of corruptions is less than 5N = 1
4
·20N , there exist codes that

allow Alice to decode xB and L uniquely from Bob’s message. Thus, after phase 2, Alice

knows both her output and the set L that Bob computed in phase 1.

In the third phase, Alice will help Bob identify xA inside the set L. As Alice knows both

xA and L, after phase 2, she can do this by simply sending the index of xA inside L in this

6More precisely, they give a protocol with error resilience 1
2 with a constant sized alphabet but remark

that their ideas can be extended to the binary regime at the cost of another 1
2 in the error resilience.

7Note that this is the only phase where Bob speaks in our protocol, and therefore Alice must unique
decode in this phase.
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16 16

20 20

3 3

Send ECC(xA).
List decode and
get L, |L| ≤ 3.

Decode and
get (xB, L).
Let p be the
index of xA

in L.

Send
ECC(xB, L).

Send C(p).
Unique decode
phase 1 and 3
to get xA.

ALICE BOB

0

16

36

39

Figure 1: The 3 stages in our 5
39

error resilient protocol (lengths not to scale). Here, ECC
is a binary error correcting code with distance 1

2
and list decodable from up to 5

16
-fraction

of errors with a list of size 3 and C is a binary error correcting code with only 3 codewords
and distance 2

3
. It is well known that such codes exist. In fact, codes with 4 codewords and

distance 2
3

also exist (see Lemma 4.2).
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phase (of course, encoded using an error correcting code). However, binary error correcting

codes have distance of at most 1
2
, implying that the distance obtained by Alice in phase 1

and phase 3 add up to 1
2
· (16N + 3N) = 9.5N . As 9.5N < 2 · 5N , an adversary that can

corrupt less than 5N messages can make Bob receive the same transcript for two different

inputs for Alice.

Thus, it seems that in order for Bob to decode Alice’s input, Alice somehow needs to

encode her message in phase 3 using a binary code of distance > 1
2

8. However, as stated in

Subsection 2.2, binary error correcting codes have distance at most 1
2
. How is it possible to

attain the unattainable?

Attaining the unattainable. It turns out that there is one setting where binary error

correcting codes can get distance strictly larger than 1
2
, and this is the setting of error

correcting codes with few codewords (as opposed to asymptotic codes that are being used

regularly). As an extreme example, consider the case where one wishes to have an error

correcting code with only two codewords. In this case, it is actually possible to get a code

with distance 1! Indeed, simply consider the code with the codewords 00 · · · 0 and 11 · · · 1.

In fact, binary codes with distance exceeding 1
2

are known to exist for any constant number

of codewords, with the distance approaching 1
2

as the number of codewords increases. As all

we need in phase 3 is a binary code with 3 codewords (recall that |L| ≤ 3 and Alice only

wants to encode an index ≤ |L|), codes with few codewords are the way to go! We next

employ the fact that there exists a code with 4 codewords that has distance 2
3

(see Lemma 4.2

for an explicit construction) to get that the combined distance obtained by Alice in phase 1

and phase 3 is 1
2
· 16N + 2

3
· 3N = 10N . As the budget of the adversary is less than 5N , this

ensures that Bob can always decode Alice’s input from the bits received by him.

Below, we present a slightly more formal description of our protocol and analysis. Before

the description however, we briefly state why our protocol does not run into the barriers

described in Subsection 2.2.

The first barrier described in Subsection 2.2 was that binary error correcting codes can

only offer a distance of 1
2
. We get around this barrier by using codes with few codewords

that offer better distance guarantees. We also note that, for larger alphabets, codes with

few codewords offer the same distance guarantees as asymptotic codes (both have distance

close to 1) and therefore, a similar trick cannot be used to improve the error resilience of,

say, [BR11].

The second barrier in Subsection 2.2 was that message exchange requires unique decoding

and unique decoding can only decode from half of the distance guaranteed by the code. We

get around this barrier by using list decoding to a super small (size 3) list in phase 1.

Although less powerful than full-fledged list-decoding (where lists of any constant size are

8We can also make phase 3 longer, but it is easily seen that the same arguments apply as long as phase 3 is
less than 4N rounds. If phase 3 has length at least 4N , then the error resilience is at most 5N

16N+20N+4N = 1
8

and does not give us our result.
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allowed), even size 3 list-decoding is powerful enough to get around the 1
2

barrier that unique

decoding runs into.

Finally, the last barrier in Subsection 2.2 was that two-way decoding should (roughly)

have half the error resilience of one-way decoding as maybe it can be split into two one-way

schemes (one for Alice and one for Bob). We do not run into this barrier as in our scheme,

Alice needs to know Bob’s list in order to send him the index. Since this is not possible

without Bob communicating, our scheme cannot be split into two one-way schemes, one for

each party.

As is evident from the discussion, all three barriers interact to allow the saving over 1/8.

Analyzing our message exchange protocol. We describe our message exchange

protocol more formally in Algorithm 1. Our protocol has a total of 39N rounds, where

N is chosen to be large enough so that all the codes mentioned in Algorithm 1 exist. It is

well known that this can be achieved by an N that is linear in the length of Alice’s and

Bob’s inputs.

Algorithm 1 Our 5
39

error resilient protocol simplified for the message exchange task.

Phase 1:

1: Alice sends ECC(xA) to Bob in the first 16N rounds. Here, ECC is a binary error
correcting code with distance 1

2
that is list-decodable from up to 5

16
fraction of errors

with a list of size 3.
2: Bob receives ρ ∈ {0, 1}16N from Alice and decodes ρ to get a list L of size at most 3.

Phase 2:

3: Bob sends ECC(xB, L) to Alice in the next 20N rounds. Recall that ECC is a binary error
correcting code with distance 1

2
and therefore uniquely decodable from up to 1

4
fraction

of errors.
4: Alice unique decodes Bob’s message to get xB and L. She outputs xB and sets p ∈ [3]

to be the index of xA in L.

Phase 3:

5: Alice sends C(p) to Bob in the final 3N rounds. Here, C is a binary error correcting code
with only 3 codewords and distance 2

3
. It is well known that such codes exist.

6: Bob receives τ ∈ {0, 1}3N and outputs Lq where q minimizes δ(q) = ∆ (ECC(Lq), ρ) +
∆ (C(q), τ). Here, ∆(·, ·) denotes the Hamming distance between strings and Lq is the
qth element in L.

We now argue why, at the end of Algorithm 1, if the number of corruptions is less than
5
39
· 39N = 5N , then both Alice and Bob can output each others’ inputs. The reason Alice

can output Bob’s input xB is because, in Line 3 of phase 2, Bob sends xB encoded using

an error correcting code that is uniquely decodable from up to 1
4

errors. As the length of

phase 2 is 20N rounds and the number of errors is < 1
4
· 20N = 5N , Alice will be able to

output xB (and recover L) correctly.
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As Alice can compute L correctly, the correctness of Bob’s output follows if we can show

that p = q. For this we first observe that δ(p) is at most the number of corruptions and is

therefore, strictly less than 5N . As q is chosen to the minimizer of δ(·), we also have that

δ(q) < 5N and δ(p) + δ(q) < 10N . Thus, in order to show that p = q, it is enough to show

that δ(p) + δ(p′) ≥ 10N for all p 6= p′. This follows simply using the triangle inequality and

the distance property of our codes as:

δ(p) + δ(p′) ≥ ∆ (ECC(Lp),ECC(Lp′)) + ∆ (C(p),C(p′)) ≥ 1

2
· 16N +

2

3
· 3N = 10N,

where the last inequality is because the distance of ECC is 1
2

and the distance of C is 2
3
.

2.4 Extending to Interactive Coding

Building a protocol that solves the message exchange task with error resilience 5
39
> 1

8
is

only the first step in our general simulation. In fact, this first step was almost trivial in the

work of [BR11]. It remains to extend the simulation to cover all possible noiseless protocols.

This extension has several challenges that are outlined below.

Binary interactive list-decodable codes with a list of size 3. First and foremost

comes the challenge that the list-decodable codes used in phase 1 of our protocol for message

exchange have no analogue for general interactive tasks. In fact, the only list-decodable

interactive error correcting codes for general interactive tasks are the ones described in

[BE17, GH14]. These are too weak for us due to three reasons: (1) Firstly, both of the

works [BE17] and [GH14] work with a large constant sized alphabet and not the binary

alphabet that we work in. (2) Secondly, both of these works ignore constants in the list size

they obtain. For us, however, this constant is closely connected to the distance of the codes

we can use in phase 3 and therefore directly affects the maximum error resilience we can

obtain. (3) Lastly, both of these works do not give the distance properties we need from our

list-decodable code in phase 1. In other words, for these works, we do not have a guarantee

that any two ‘codewords’ have a distance of 1
2

as was needed in our analysis.

A lot of technical work goes into getting list-decodable interactive error correcting codes

with the properties listed above. We do this in Section 5 where we build upon the ideas in

[BE17] to get a list-decodable interactive code with the desired properties. An important

ingredient in this protocol is our notion of ‘boosted list-decodable tree codes’ that provide

stronger guarantees than standard list-decodable tree codes and will be crucial in ensuring

the above properties. We define and show the existence of these tree codes in Subsection 4.2

and Subsection 4.3.

We also mention that parameters of the list-decodable interactive codes we construct

“correspond” to the optimal parameters in the non-interactive setting in the following sense:

In the non-interactive setting, it is well known [Bli86] that it is not possible to decode from

more than 5
16

errors with a list of size 3. Our list decodable interactive codes decode from

11



up to 5
32

errors in using a list of size 3. This parameter corresponds to the one for classical

codes, up to a factor of 1
2

that we lose as in our case, both parties need to decode.

Adding a fourth codeword. Our task is not complete even after building the

aforementioned list-decodable interactive codes as they turn out to be incompatible with

Algorithm 1 in the following sense. Any interactive code that has a sub-exponential blowup

requires Alice and Bob to interact. To allow this interaction, we must have Bob send messages

to Alice in phase 1 of our scheme when they are running the list decodable interactive code.

Consequently, phase 1 of our protocol will be longer, which means that in order to not lose

too much in the error resilience, phase 2 of our protocol will have to be much shorter.

However, if phase 2 of our protocol is shorter, then Alice is not guaranteed to decode

Bob’s list L correctly, which means that the index p that Alice computes may not be the

index of the correct output in Bob’s actual list, and everything that Alice sends in phase 3

may be meaningless!

To fix this problem, we first observe that in case Alice does not decode L correctly in

phase 2, then there must have been many errors in phase 2. As the total number of errors

is limited, it means that there must have been relatively fewer errors in phase 1. We ensure

that this number is small enough so that the ‘most likely’ output in phase 1 is the correct

one. Additionally, we add an extra codeword to phase 2 that Alice sends when she thinks

that phase 2 had many corruptions.

If Bob decodes to this extra codeword in phase 3, then he understands this as being a

signal that there were many errors in phase 2 (or in phase 3) and he should simply output

the ‘most likely’ outcome in phase 1. Otherwise, Bob decodes as usual. Finally, as there

exists a binary code with 4 codewords and distance 2
3
, this does not affect the error resilience

of our protocol.

3 Preliminaries and Formal Problem Definition

Our proof uses the following version of the Chernoff bound.

Lemma 3.1 (Multiplicative Chernoff bound). Suppose X1, · · · , Xn are independent random

variables taking values in {0, 1}. Let X denote their sum and let µ = E[X] denote the sum’s

expected value. Then,

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ
3 , ∀0 < δ < 1,

Pr[X ≤ (1− δ)µ] ≤ e−
δ2µ
2 , ∀0 < δ < 1.

Throughout, we shall use ∆(·, ·) to denote Hamming distance. We also will need the

following definition of suffix distance.

12



Definition 3.2. Let n > 0 and s, t ∈ {0, 1}n. Define the suffix distance, δsuf(s, t), between s

and t as

δsuf(s, t) = max
i∈[n]

∆(s≥i, t≥i)

n− i+ 1
.

For r > 1, we extend the definition of suffix distance to strings s, t ∈ ({0, 1}r)n as

follows: If s = s1s2 · · · sn where si ∈ {0, 1}r for i ∈ [n], then, let s′ ∈ {0, 1}rn denote the

string s′ = s1‖s2‖ · · · ‖sn. Define t′ similarly. We define:

δsuf(s, t) = δsuf(s
′, t′).

3.1 The Binary Two Party Communication Model

We now formally define the binary two party communication model.

A (deterministic) protocol Π = {T, p,XC ,YC , fC , outC}C∈{A,B} in the binary two party

communication model is defined by a length parameter T , an order of turns given by a

sequence p ∈ {A,B}T , input sets XA and XB, output sets YA and YB, transmission functions

fA and fB, and output functions outA and outB. Here, for C ∈ {A,B}, the functions fC

and outC are of the types:

fC : XC × {0, 1}<T → {0, 1}, outC : XC × {0, 1}T → YC .

Such a protocol Π is executed is the presence of an adversary. We first define an adversary

Adv for Π and then define an execution of Π in the presence of Adv. An adversary Adv for

Π is defined by two functions AdvA and AdvB of the types:

AdvA,AdvB : XA ×XB → {0, 1}T .

An execution of Π in the presence of Adv proceeds as follows: At the beginning of the

execution, Alice and Bob start with inputs xA ∈ XA and xB ∈ XB respectively. The

execution consists of T rounds and before the ith rounds, for i ∈ [T ], Alice and Bob have

transcripts πA, πB ∈ {0, 1}i−1 respectively. In round i, if pi = A, then Alice transmits

the symbol fA(xA, πA) while Bob receives the symbol AdvBi (xA, xB). Both the parties add

these symbols to πA and πB respectively. Similarly, if pi = B, then Bob transmits the symbol

fB(xB, πB) while Alice receives the symbol AdvAi (xA, xB). Both the parties add these symbols

to πA and πB respectively. After T such rounds, Alice and Bob output outA(xA, πA) and

outB(xB, πB) respectively.

Observe that this execution, and therefore πA, πB are completely determined by xA, xB,

Π, and Adv. We shall often use outAΠ,Adv(x
A, xB) to denote outA(xA, πA) and outBΠ,Adv(x

A, xB)

to denote outB(xB, πB).
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Corruptions. Consider an execution of Π in the presence of the adversary Adv. For

R ⊆ [T ], we define the number of corruptions in the rounds in R to be

corrΠ,Adv,R(xA, xB) =
∑
i∈R

1
(
πAi 6= πBi

)
.

Recall that πA, πB are completely determined by xA, xB, Π, and Adv and

therefore corr is well defined. For i ∈ [T ], we use corrΠ,Adv,i(x
A, xB) to denote

corrΠ,Adv,{i}(x
A, xB), corrΠ,Adv,≤i(x

A, xB) to denote corrΠ,Adv,[i](x
A, xB), corrΠ,Adv,>i(x

A, xB) to

denote corrΠ,Adv,{i+1,i+2··· ,T}(x
A, xB), etc. Finally, we omit the subscript R when R = [T ].

Noiseless adversary. Observe that for any protocol Π, there is a unique adversary Adv

that satisfies corrΠ,Adv,≤T (xA, xB) = 0 for all xA ∈ XA and xB ∈ XB. We call this adversary

the noiseless adversary and denote it by Adv∗. It follows that when Π is executed in the

presence of Adv∗ and the inputs are xA and xB respectively, then we have πA = πB. We use

Π(xA, xB) to denote this common value.

4 Results From Coding Theory

4.1 Error Correcting Codes

We will need the following standard result concerning error correcting codes.

Lemma 4.1. For all ε > 0, there exists an integer n0 > 0 such that for all n ≥ n0, there

exists a function ECCn,ε : {0, 1}b ε
2·n
10
c → {0, 1}n such that for all s 6= t ∈ {0, 1}n, we have

∆ (ECCn,ε(s),ECCn,ε(t)) ≥
(

1

2
− ε
)
· n.

We also use the following well known lemma concerning codes with 4 codewords.

Lemma 4.2. For every n > 0, there exists a function Cn : {0, 1, 2, 3} → {0, 1}3n such that

for all i 6= i′ ∈ {0, 1, 2, 3}, we have

∆ (Cn(i),Cn(i′)) = 2n.

Proof. Let strz denote the string obtained by concatenating str to itself z times, e.g.,

(934)5 = 934934934934934. We define the function Cn as follows:

Cn(i) =


(000)n , i = 0

(011)n , i = 1

(101)n , i = 2

(110)n , i = 3

.

The lemma then follows straightforwardly.
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4.2 List-Decodable Tree Codes with Binary Alphabet

Throughout this section, we fix Σ be a non-empty finite set. Let S ⊆ Σ∗ be a set of strings

over Σ. We define pre(S) to be the set of all prefixes of all strings in S, i.e. the set

pre(S) =
⋃
i>0

prei(S) where prei(S) = {s≤i | s ∈ S, i ≤ |s|}.

For r > 0 and a function f : Σ∗ → {0, 1}r, we use f : Σ∗ → ({0, 1}r)∗ to denote the

function that takes s ∈ Σ∗ to an |s|-length string over {0, 1}r such that the ith coordinate of

f(s), for i ∈ [|s|], is f(s≤i). Next, if r, α > 0, f : Σ∗ → {0, 1}r is a function, and s̃ ∈ ({0, 1}r)∗

is a string, we define

nearfα(s̃) =
⋃
i∈[|s̃|]

nearfα,i(s̃) where nearfα,i(s̃) = {s ∈ Σi | δsuf(f(s), s̃≤i) < α}.

Also, define, for S ⊆ Σ∗, the value:

δfpre(S, s̃) =
∑
i∈[|s̃|]

∑
s∈prei(S)

∆(f(s), s̃i).

The following lemma captures what we need from these definitions.

Lemma 4.3. For all r, α > 0, s̃ ∈ ({0, 1}r)∗ and f : Σ∗ → {0, 1}r, we have that

δfpre(near
f
α(s̃), s̃) ≤ rα · |pre(nearfα(s̃))|.

Proof. Consider, for i > 0, the function gi : prei(near
f
α(s̃)) → nearfα(s̃) that takes s′ ∈

prei(near
f
α(s̃)) to the lexicographically smallest s ∈ nearfα(s̃) such that s′ is a prefix of s.

Owing to the definition of pre, at least one such s always exists and therefore gi is well-

defined. Furthermore, observe that gi is an injection. We get the following equalities:

δfpre(near
f
α(s̃), s̃) =

∑
i∈[|s̃|]

∑
s∈prei(near

f
α(s̃))

∆(f(s), s̃i) =
∑
i∈[|s̃|]

∑
s∈im(gi)

∆(f(s≤i), s̃i) (1)

|pre(nearfα(s̃))| =
∑
i∈[|s̃|]

|prei(nearfα(s̃))| =
∑
i∈[|s̃|]

|im(gi)| =
∑
i∈[|s̃|]

∑
s∈im(gi)

1. (2)

To proceed, we note from the definition of gi, that if s ∈ im(gi) for some i > 0, then

s ∈ im(gi′) for all i ≤ i′ ≤ |s|. Using i∗(s) to denote the smallest i such that s ∈ im(gi) and

defining i∗(s) = |s|+ 1 if no such i exists, we get:

δfpre(near
f
α(s̃), s̃) =

∑
i∈[|s̃|]

∑
s∈nearfα(s̃)

1 (s ∈ im(gi)) ·∆(f(s≤i), s̃i) (Equation 1)

=
∑

s∈nearfα(s̃)

∑
i∈[|s̃|]

1 (s ∈ im(gi)) ·∆(f(s≤i), s̃i)
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=
∑

s∈nearfα(s̃)

|s̃|∑
i=i∗(s)

∆(f(s≤i), s̃i)

≤
∑

s∈nearfα(s̃)

r · (|s|+ 1− i∗(s)) · δsuf
(
f(s), s̃≤|s|

)
≤

∑
s∈nearfα(s̃)

rα · (|s|+ 1− i∗(s)) (As s ∈ nearfα(s̃))

= rα ·
∑

s∈nearfα(s̃)

|s̃|∑
i=i∗(s)

1

= rα · |pre(nearfα(s̃))|. (Equation 2)

We are now ready to define list tree codes.

Definition 4.4 (List-Decodable Tree Codes with Binary Alphabet). Let r, L, α > 0 and

f : Σ∗ → {0, 1}r be a function. We say that f is an (r, L, α)-list tree code if for all

s̃ ∈ ({0, 1}r)∗, we have:

|pre(nearfα(s̃))| < L · |s̃|.

4.3 Boosted List Tree Codes

It turns out that the above notion of list tree codes will not be sufficient for our needs and

we need to boost it to get stronger guarantees. We next define these boosted tree codes.

Define the separation function sep : {0, 1, 2, 3, 4} → R as follows:

sep(i) =


0 , i ∈ {0, 1}
i
4

, i ∈ {2, 3}
5
4

, i = 4

.

The function sep(i) captures the following intuition: Suppose that i bit strings are drawn

at random, and consider the bit string formed by taking the coordinate-wise majority. Then,

sep(i) is simply the expected sum of the fractional Hamming distances from the majority

string to all the i original strings. We also extend the definition of pre(·) to sets S ⊆ Σ∗×N
as follows :

pre(S) =
⋃
i>0

prei(S) where prei(S) = {s≤i | (s, l) ∈ S, l < i ≤ |s|}.

We are now ready to define boosted list tree codes and show that they exist.

Definition 4.5. Let r, L, α > 0 and f : Σ∗ → {0, 1}r be a function. We say that f is an

(r, L, α)-boosted list tree code if:
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• f is an (r, L, α)-list tree code.

• For all k > 0 and all S ⊆ Σ≤k ×N such that |S| ≤ 4 and |pre(S)| ≥ k(1 + ε), we have:∑
i∈[k]

min
t∈{0,1}r

∑
s∈prei(S)

∆(f(s), t) ≥ r(1− ε) ·
∑
i∈[k]

sep(|prei(S)|).

Theorem 4.6. Let ε > 0 be fixed. For all r ≥ 100·log2(|Σ|+1)
ε3

, L ≥ 100
ε2

, there exists an(
r, L, 1

2
− ε
)
-boosted list tree code.

Proof. Define α = 1
2
− ε. Let r ≥ 100·log2(|Σ|+1)

ε3
and L ≥ 100

ε2
be fixed. Let f : Σ∗ → {0, 1}r be

a random function and consider the following events defined over the randomness in f

E1 ≡ ∃s̃ ∈ ({0, 1}r)∗ : |pre(nearfα(s̃))| ≥ L · |s̃|.
E2 ≡ ∃k > 0, S ⊆ Σ≤k × N : |S| ≤ 4 ∧ |pre(S)| ≥ k(1 + ε)

∧
∑
i∈[k]

min
t∈{0,1}r

∑
s∈prei(S)

∆(f(s), t) < r(1− ε) ·
∑
i∈[k]

sep(|prei(S)|).

To show the theorem, we simply show that

Claim 4.7. Pr(E1) ≤ 4 · 2−ε2rL.

Claim 4.8. Pr(E2) ≤ 2 · 2− rε
3

100 .

The theorem then follows as Pr(E1)+Pr(E2) < 1. We now show Claim 4.7 and Claim 4.8.

Proof of Claim 4.7. We have by the union bound:

Pr(E1) ≤
∑
k>0

∑
s̃∈({0,1}r)k

Pr
(
|pre(nearfα(s̃))| ≥ Lk

)
≤
∑
k>0

∑
s̃∈({0,1}r)k

Pr
(
∃S ⊆ Σ∗, |pre(S)| ≥ Lk : δfpre(S, s̃) ≤ rα · |pre(S)|

)
(Lemma 4.3)

≤
∑
k>0

∑
s̃∈({0,1}r)k

∑
k′≥Lk

∑
S⊆Σ∗

|pre(S)|=k′

Pr
(
δfpre(S, s̃) ≤ rαk′

)

≤
∑
k>0

∑
s̃∈({0,1}r)k

∑
k′≥Lk

∑
S⊆Σ∗

|pre(S)|=k′

1

2rk′

rαk′∑
z=0

(
rk′

z

)

≤
∑
k>0

∑
s̃∈({0,1}r)k

∑
k′≥Lk

∑
S⊆Σ∗

|pre(S)|=k′

2rk
′·(H(α)−1),

using the well known identity
∑m

i=0

(
n
m

)
≤ 2nH(m/n) when 0 ≤ m ≤ n/2 < n and H(·) is the

binary entropy function, i.e., H(x) = −x log2(x) − (1 − x) log2(1 − x) for all x ∈ (0, 1). in

order to continue, we note that
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Claim 4.9. For k′ > 0, we have

|{S ⊆ Σ∗ | |pre(S)| = k′}| ≤ (|Σ|+ 1)2k′ · 2k′ ≤ (|Σ|+ 1)3k′

Proof. Let S ⊆ S be such that |pre(S)| = k′. To start, observe that we can view pre(S) as a

tree with k′ edges as follows: The root of this tree (depth 0) is the empty string ε, and the

vertices at depth i are the elements of prei(S). There is an edge between a vertex at depth

i− 1 and a vertex at depth i if and only if the former is a prefix of the latter.

Next, we note that tree above determines a superset of S of size k′. Indeed, all the

elements of S correspond to one of the k′+1 vertices in the tree (and no element corresponds

to the root). Furthermore, the tree can be described by a string in (Σ ∪ {↑})2k′ using a

standard depth-first traversal (we assume without loss of generality that ↑/∈ Σ). The lemma

follows.

Using this bound and the fact that 1−H(α) ≥ 2ε2, we get:

Pr(E1) ≤
∑
k>0

∑
s̃∈({0,1}r)k

∑
k′≥Lk

(|Σ|+ 1)3k′ · 2−2ε2rk′

≤
∑
k>0

∑
s̃∈({0,1}r)k

∑
k′≥Lk

2−1.5·ε2rk′ (Choice of r)

≤ 2 ·
∑
k>0

∑
s̃∈({0,1}r)k

2−1.5·ε2rLk

≤ 2 ·
∑
k>0

2−ε
2rLk (Choice of L)

≤ 4 · 2−ε2rL.

Proof of Claim 4.8. We have by the union bound:

Pr(E2) ≤
∑
k>0

∑
S⊆Σ≤k×N
|S|≤4

|pre(S)|≥k(1+ε)

Pr

(∑
i∈[k]

min
t∈{0,1}r

∑
s∈prei(S)

∆(f(s), t) < r(1− ε) ·
∑
i∈[k]

sep(|prei(S)|)

)

≤
∑
k>0

∑
S⊆Σ≤k×N
|S|≤4

|pre(S)|≥k(1+ε)

Pr

(∑
i∈[k]

∑
i′∈[r]

min
b∈{0,1}

∑
s∈prei(S)

∆(fi′(s), b) < r(1− ε) ·
∑
i∈[k]

sep(|prei(S)|)

)
.

We now upper bound each term in the summand above. Fix k > 0 and S ⊆ Σ≤k ×N be

prefix free such that |S| ≤ 4. For i ∈ [k] and i′ ∈ [r], we define the random variable

Xi,i′ = min
b∈{0,1}

∑
s∈prei(S)

∆(fi′(s), b).
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We claim that

Claim 4.10. For all i ∈ [k], i′ ∈ [r], we have E[Xi,i′ ] = sep(|prei(S)|).

Proof. We show this by a case analysis on |prei(S)|. When |prei(S)| ∈ {0, 1}, there is nothing

to show as both sides are 0 deterministically. In all other cases, we use the fact that f is a

random function to conclude that fi′(s) are chosen uniformly and independently chosen bits

for all s ∈ prei(S). When |prei(S)| = 2, we have

E[Xi,i′ ] =
1

4
· 0 +

2

4
· 1 +

1

4
· 0 =

1

2
= sep(2).

When |prei(S)| = 3, we have

E[Xi,i′ ] =
1

8
· 0 +

3

8
· 1 +

3

8
· 1 +

1

8
· 0 =

3

4
= sep(3).

Finally, when |prei(S)| = 4, we have

E[Xi,i′ ] =
1

16
· 0 +

4

16
· 1 +

6

16
· 2 +

4

16
· 1 +

1

16
· 0 =

5

4
= sep(4).

As Xi,i′ are independent random variables for all i, i′, we have, using this bound and

Lemma 3.1, that:

Pr(E2) ≤
∑
k>0

∑
S⊆Σ≤k×N
|S|≤4

|pre(S)|≥k(1+ε)

Pr

(∑
i∈[k]

∑
i′∈[r]

Xi,i′ < (1− ε) ·
∑
i∈[k]

∑
i′∈[r]

E[Xi,i′ ]

)

≤
∑
k>0

∑
S⊆Σ≤k×N
|S|≤4

|pre(S)|≥k(1+ε)

exp

(
−
rε2 ·

∑
i∈[k] sep(|prei(S)|)

2

)
.

To continue, we use the fact that |pre(S)| ≥ k(1 + ε) =⇒
∑

i∈[k] sep(|prei(S)|) ≥ εk
4

to

get:

Pr(E2) ≤
∑
k>0

(|Σ|+ 1)10k · exp

(
−rε

3k

20

)
≤
∑
k>0

2−
rε3k
100 (Choice of r)

≤ 2 · 2−
rε3

100 .
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5 Binary List-Decodable Interactive Codes With Small

Lists

The goal of this section is to show:

Theorem 5.1. Let 0 < ε < 1
20

be a parameter and Π = {T, p,XC ,YC , fC , outC}C∈{A,B} be

a protocol in the binary two party communication model as in Subsection 3.1. There is a

protocol Π′ = {T ′, p′,X ′C ,Y ′C , f ′C , out′C}C∈{A,B} such that:

1. We have T ′ = 1010 · T
ε60

, X ′C = XC for all C ∈ {A,B}, and Y ′A = Y ′B = 2
{0,1}T ×{d |

d : {0, 1}T → N}.

2. For all xA ∈ XA, xB ∈ XB, and all adversaries Adv′ for Π′, if (LC , dC) =

out′CΠ′,Adv′(x
A, xB) for all C ∈ {A,B}, then

(a) For all C ∈ {A,B}, we have |LC | ≤ 3 and for all s 6= s′ ∈ LC, we have

dC(s) + dC(s′) ≥
(

1

4
− ε

2

)
· T ′.

(b) If corrΠ′,Adv′(x
A, xB) ≤

(
5
32
− ε
)
· T ′, then LA ∩ LB = {Π(xA, xB)} and for all

C ∈ {A,B}, we have:

dC(Π(xA, xB)) ≤ corrΠ′,Adv′(x
A, xB) +

εT ′

2
.

For the rest of the section, we fix a parameter 0 < ε < 1
20

and a protocol Π =

{T, p,XC ,YC , fC , outC}C∈{A,B} in the binary two party communication model. At the cost

of blowing up the number of rounds in Π by a factor of 2, we can assume that Π is an

alternating binary protocol, i.e., Alice transmits in the odd rounds of Π and Bob transmits

in the even rounds of Π. Thus, henceforth, we assume Π has 2T rounds and p2i−1 = A and

p2i = B for all i ∈ [T ]. Let Σ be an alphabet satisfying log2 (|Σ|+ 1) = 1
ε50

. We shall need

the following definitions based on ε:

N =
32T

ε
, r =

T ′

2N
, α =

1

2
− ε

10
,

L =
104

ε2
, K =

100L

ε
, θ =

5

32
− ε.

(3)

Observe that our choice of parameters in Equation 3 implies by Theorem 4.6 that an

(r, L, α)-boosted list tree code over the alphabet Σ exists. We shall use TC to denote this

tree code. Let Γ denote the set N×{0, 1}× {0, 1}≤2. For z = (a, b, c) ∈ Γ, we define z1 = a,

z2 = b, and z3 = c. In our simulation, we also use the function Enc : Γ∗ → Σ∗ guaranteed by

the following fact (this follows from simple Huffman Coding):

Fact 5.2. There exists a function Enc : Γ∗ → Σ∗ satisfying:
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1. For all Z ∈ Γ∗, we have that

|Enc(Z)| ≤ 1 +

 10

log2(|Σ|)
·
∑
i∈[|Z|]

log2(Zi,1 + 1)

 .
2. For all Z1 6= Z2 ∈ Γ∗, we have Enc(Z1) 6� Enc(Z2). In particular, this means that

Enc(Z) 6= ε for any Z ∈ Γ∗ and that the function Enc is invertible. We use Dec to

denote the function that, for all s ∈ Σ∗, either outputs the (unique) Z ∈ Γ∗ such that

s = Enc(Z), or outputs ‘not decodable’, in case no such Z exists.

We define the function Enc∗ : (Γ∗)∗ → Σ∗ to be such that, if Z =
(
Z1,Z2, · · · ,Z|Z|

)
∈

(Γ∗)∗, we have

Enc∗(Z) = Enc(Z1)‖Enc(Z2)‖ · · · ‖Enc(Z|Z|).

We define Enc∗(ε) = ε for convenience. Due to item 2 of Fact 5.2 above, we may define a

function Dec∗ such that, for s ∈ Σ∗, we have Dec∗(s) = Z ′, where Z ′ is the longest such that

Enc∗(Z ′) � s. Note that Dec∗(s) is well defined as at least one such Z ′, namely Z ′ = ε, the

empty string, always exists, and Dec∗(Enc∗(Z)) = Z for all Z ∈ (Γ∗)∗. Finally, we assume

for C ∈ {A,B} that fC(xC , ψ) = 0 for all ψ ∈ {0, 1}∗ such that |ψ| ≥ 2T . Accordingly, we

will also assume Π(xA, xB)l = 0 for all l > 2T .

We are now ready to present our simulation protocol Π′ that proves Theorem 5.1. We

only describe Alice’s side of the protocol, i.e., the functions f ′A and out′A. Bob’s side of the

protocol is symmetric.

5.1 Proof of Theorem 5.1

We now present our proof of Theorem 5.1. We note that item 1 of Theorem 5.1 follows

straightforwardly from the definition of the protocol Π′ in Algorithm 2. It remains to show

item 2. To this end, we fix inputs xA ∈ XA, xB ∈ XB, and an adversary Adv′ for Π′. As the

protocol Π′ is deterministic, fixing xA, xB, and Adv′ completely determines the execution

of Π′. In particular, it fixes the value of all variables in Algorithm 2 at all points in its

execution.

For a variable var in Algorithm 2, we shall use varA to denote Alice’s value of the variable

var after Algorithm 2 has finished execution when the inputs are xA, xB and the adversary is

Adv′. Observe that with this notation, we have (LC , dC) = out′CΠ′,Adv′(x
A, xB) for C ∈ {A,B},

and item 2 of Theorem 5.1 follows from the following theorem.

Theorem 5.3. For all C ∈ {A,B}, it holds that:

1. |LC | ≤ 3 and for all s 6= s′ ∈ LC, we have

dC(s) + dC(s′) ≥
(

1

4
− ε

2

)
· T ′.
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Algorithm 2 Alice’s side of the simulation protocol

Input: An input xA ∈ XA.
Output: A list L ⊆ {0, 1}2T and a function d : {0, 1}2T → N.

7: ∀s ∈ Σ∗ : sent(s)← ⊥ and ∀ψ ∈ {0, 1}2T : d(ψ)←∞.
8: σ, τ ← ε.

Communication Phase:

9: for i ∈ [N ] do
10: if |σ| < i then
11: if i = 1 then
12: sent(ε)← fA(xA, ε) and E ← [(1, 0, fA(xA, ε))] and E ← FIND (E).
13: else if |nearTCα,i−1(τ)| ≤ K then
14: E ← ε.
15: for s ∈ nearTCα,i−1(τ) do

16: Let s′ be the largest prefix of s such that sent(s′) 6= ⊥. As sent(ε) 6= ⊥, s′

is well-defined. Define B(b) = b‖fA(xA, sent(s′)‖b) for b ∈ {0, 1}.
17: Ẽ ← FIND (Dec∗(s)).
18: if ∃ unique b ∈ {0, 1} : ∃p̃ : Ẽ [p̃] = sent(s′)‖b then
19: sent(s)← sent(s′)‖B(b).
20: p← max {p′ ∈ [|E|] | Ep′ ∈ {sent(s′), sent(s′)‖B(0), sent(s′)‖B(1)}}.
21: E ← E‖ (|E|+ 1− p,1(Ep 6= sent(s′)), B(b)).
22: E ← FIND (Dec∗(σ)‖E).
23: end if
24: end for
25: end if
26: σ ← σ‖Enc(E).
27: end if
28: Send TC(σ≤i) to Bob.
29: Receive message m ∈ {0, 1}r from Bob. Set τ ← τ‖m.
30: end for

Output Phase:

31: Ψ←
{
ψ ∈ {0, 1}2T | ∀i ∈ [T ] : ψ2i−1 = fA(xA, ψ≤2(i−1))

}
.

32: for ψ ∈ Ψ do
33: S ← {s ∈ nearTCα (τ) | ∃ unique ψ ∈ Ψ : ∃p : FIND (Dec∗(s))p = ψ}.
34: ∀s ∈ S : I(s)←

{
i ∈ [|s|] | ∃p : FIND (Dec∗(s≤i))p = ψ

}
.

35: d(ψ)← mins∈S mini∈I(s) rα · (i+N − |s|) +
∑|s|

i′=i+1 ∆ (TC(s≤i′), τi′).
36: end for
37: Output L =

{
ψ ∈ Ψ | d(ψ) <

(
θ + ε

2

)
T ′
}

and d.
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Algorithm 3 The function FIND(Z).

Input: Z =
(
Z1,Z2, · · · ,Z|Z|

)
∈ (Γ∗)∗.

Output: E ∈ ({0, 1}∗)∗.
38: Z ← Z1‖Z2‖ · · · ‖Z|Z|, E ← ε.
39: for i ∈ [|Z|] do
40: if Zi,1 > i then
41: return ε, the empty list.
42: else if Zi,1 = i then
43: E ← E‖Zi,3.
44: else if Zi,2 = 0 then
45: E ← E‖

(
Ei−Zi,1‖Zi,3

)
.

46: else
47: E ← E‖

(
Ei−Zi,1,≤|Ei−Zi,1 |−2‖Zi,3

)
.

48: end if
49: end for

2. If corrΠ′,Adv′(x
A, xB) < θT ′, then Π(xA, xB) ∈ LC and

dC(Π(xA, xB)) ≤ corrΠ′,Adv′(x
A, xB) +

εT ′

2
.

Proof of item 2 of Theorem 5.1 assuming Theorem 5.3. All claims in item 2 of Theorem 5.1

follow directly except that

corrΠ′,Adv′(x
A, xB) < θT ′ =⇒ LA ∩ LB ⊆ {Π(xA, xB)}.

Even this claim holds (in fact, without corrΠ′,Adv′(x
A, xB) < θT ′ assumption) due to the

following reasoning: As LA ⊆ ΨA and LB ⊆ ΨB, we have LA ∩ LB ⊆ ΨA ∩ ΨB. Also, we

have ΨA ∩ΨB = {Π(xA, xB)} by definition of Π(xA, xB) finishing the proof.

Henceforth, we focus on showing Theorem 5.3. We only show Theorem 5.3 for C = A as

the proof for C = B is analogous. As we only deal with the C = A, we omit A from our

notation for variables for convenience, i.e., var would denote varA for all variables var in

Algorithm 2. We prove item 1 of Theorem 5.3 in the rest of this subsection and devote the

following subsections to the proof item 2 of Theorem 5.3. We note that the proof of item 1

is the only place where we use our boosted notion of list tree codes (Definition 4.5). The

proof of item 2 only uses Definition 4.4 and would work for all list tree codes.

5.1.1 Proof of item 1 of Theorem 5.3

We show Lemma 5.5 and item 1 of Theorem 5.3 follows as a corollary. We start with the

following simple observation.

Observation 5.4. For all Z � Z ′, we have FIND(Z) � FIND(Z ′).
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Lemma 5.5. If L′ ⊆ L such that |L′| ≤ 4, we have∑
ψ∈L′

d(ψ) ≥ rN ·
(

1− ε

2

)
· sep(|L′|).

Proof. When |L′| < 2, there is nothing to show as sep(|L′|) = 0. Suppose for the sake of

contradiction that there exists L′ ⊆ LC , 2 ≤ |L′| ≤ 4 such that∑
ψ∈L′

d(ψ) < rN ·
(

1− ε

2

)
· sep(|L′|). (4)

This means that, for all ψ ∈ L′, the value of d(ψ) was set in Line 35 and there

exist s(ψ) and i(ψ) such that i(ψ) ≤ |s(ψ)| and ψ ∈ Ψ is unique such that ∃p :

FIND
(
Dec∗(s(ψ)≤i(ψ))

)
p

= ψ (see Observation 5.4) and

d(ψ) = rα · (i(ψ) +N − |s(ψ)|) +

|s(ψ)|∑
i′=i(ψ)+1

∆ (TC(s(ψ)≤i′), τi′) . (5)

Next, we claim that

Claim 5.6. For ψ 6= ψ′ ∈ L′ and i(ψ), i(ψ′) ≤ l ≤ |s(ψ)|, |s(ψ′)|, we have s(ψ)≤l 6= s(ψ′)≤l.

Proof. Proof by contradiction. Suppose there exist ψ 6= ψ′ ∈ L′ and i(ψ), i(ψ′) ≤ l ≤
|s(ψ)|, |s(ψ′)| such that s(ψ)≤l = s(ψ′)≤l. We assume that i(ψ) ≤ i(ψ′) without loss

of generality. Observe that s(ψ)≤l = s(ψ′)≤l implies that s(ψ)≤i(ψ′) = s(ψ′)≤i(ψ′) By

Observation 5.4 and our choice of i(·), we have that

∃p : FIND
(
Dec∗(s(ψ)≤i(ψ′))

)
p

= ψ and ∃p : FIND
(
Dec∗(s(ψ′)≤i(ψ′))

)
p

= ψ′,

contradicting the fact that ψ′ ∈ Ψ is unique such that ∃p : FIND
(
Dec∗(s(ψ′)≤i(ψ′))

)
p

= ψ′.

Define the set S ′ = {(s(ψ), i(ψ)) | ψ ∈ L′}. It follows from Claim 5.6 that |S ′| = |L′|.
Using the definition of pre(·), we derive:

|pre(S ′)| =
∑
ψ∈L′
|s(ψ)| − i(ψ) (Claim 5.6)

≥
∑
ψ∈L′

N − 1

rα
· d(ψ) (Equation 5)

> N · |L′| −N ·
(
1− ε

2

)
· sep(|L′|)
α

(Equation 4)

≥ N
(

1 +
ε

8

)
. (2 ≤ |L′| ≤ 4)

This allow us to use Definition 4.5 to get:∑
i′∈[N ]

∑
s′∈prei′ (S′)

∆(TC(s′), τi′) ≥ r ·
(

1− ε

10

)
·
∑
i′∈[N ]

sep(|prei′(S ′)|). (6)

24



This allows us to derive a contradiction as follows. We have

rN ·
(

1− ε

2

)
· sep(|S ′|) = rN ·

(
1− ε

2

)
· sep(|L′|) (|S ′| = |L′|)

>
∑
ψ∈L′

d(ψ) (Equation 4)

≥
∑
ψ∈L′

rα · (i(ψ) +N − |s(ψ)|) +
∑
ψ∈L′

|s(ψ)|∑
i′=i(ψ)+1

∆ (TC(s(ψ)≤i′), τi′)

(Equation 5)

≥ rα ·
∑
i′∈[N ]

|S ′| − |prei′(S ′)|+
∑
i′∈[N ]

∑
s′∈prei′ (S′)

∆(TC(s′), τi′)

(Claim 5.6 and |L′| = |S ′|)

≥ rα ·
∑
i′∈[N ]

|S ′| − |prei′(S ′)|+ r ·
(

1− ε

10

)
·
∑
i′∈[N ]

sep(|prei′(S ′)|)

(Equation 6)

≥ r ·
(

1− ε

2

)
·

∑
i′∈[N ]

1

2
· (|S ′| − |prei′(S ′)|) + sep(|prei′(S ′)|)


(Equation 3)

≥ rN ·
(

1− ε

2

)
· sep(|S ′|), (2 ≤ |L′| = |S ′| ≤ 4)

a contradiction.

Proof of item 1 of Theorem 5.3. Note that |L| ≤ 3 as otherwise, there exists a subset L′ ⊆ L

such that |L′| = 4. Applying Lemma 5.5 on L′, we get

rN ·
(

1− ε

2

)
· 5

4
≤
∑
ψ∈L′

d(ψ) < 4
(
θ +

ε

2

)
T ′,

contradiction due to Equation 3. Also, for s 6= s′ ∈ L, by applying Lemma 5.5 on the set

{s, s′} and using Equation 3, we get

d(s) + d(s′) ≥
(

1

4
− ε

8

)
· T ′.

5.2 Proof of item 2 of Theorem 5.3

We now turn our attention to proving item 2 of Theorem 5.3. We will need some additional

notation for this part of the proof. Observe that Algorithm 2 loops over i ∈ [N ]. For i ∈ [N ],

we define mA,(i) to be the number of times Alice executes the loop in Line 15 in iteration i.

For i ∈ [N ], i′ ∈ [mA,(i)], and a variable var, we shall use varA,(i,i
′) to denote the value of the
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variable var after i′ iterations of Line 15 in iteration i of Alice’s execution and varA,(i,0) to

denote the value of var before Line 15 in iteration i of Alice’s execution.

Similarly, we define varA,(i) to denote the value of the variable var after iteration i of

Alice’s execution and varA,(0) to denote the value of var at the beginning of Alice’s execution.

We define varA = varA,(N) as in the foregoing section. We also define mA,(1) = 1, sA,(1,1) = ε,

varA,(1,0) = varA,(0), and varA,(1,1) = varA,(1) for all variables var for convenience.

We define the set T As to be the set of all pairs (i, i′) such that i ∈ [N ], i′ ∈ [mA,(i)], and

Line 19 is executed by Alice in the iteration (i, i′). We shall assume for convenience that

(1, 1) ∈ T As . We define analogous notation for Bob by replacing the superscript A with B

everywhere. As in the previous section, we sometimes omit the superscript when it is A.

Finally, throughout this proof, we make implicit use of the following observation.

Observation 5.7. For all i ∈ [N ] and i′ ∈ [m(i)], if t = s(i,i′) or |t| < i − 1, we have

sent(i,i
′)(t) = sent(t).

5.2.1 Analyzing Algorithm 3

Observation 5.8 (Generalization of Observation 5.4). Let i1, i2 ∈ [N ], i′1 ∈ [m(i1)], and

i′2 ∈ [m(i2)] be given. If (i1, i
′
1) ≤ (i2, i

′
2), it holds that E (i1,i′1) � E (i2,i′2).

Lemma 5.9. For all (i, i′) ∈ Ts, we have E (i,i′)

|E(i,i′)| = sent(s(i,i′)). Furthermore, if (i, i′) 6= (1, 1),

there exists p′ > 0 such that E (i,i′)
p′ = sent(s(i,i′))≤|sent(s(i,i′))|−2.

Proof. Proof by induction on i. The base case (i, i′) = (1, 1) is trivial. We show that the

statement holds for (i, i′) 6= (1, 1) by assuming it holds for smaller values. We first show the

following claim that implies the furthermore part due to Observation 5.8 and Line 19.

Claim 5.10. There exists p′ > 0 such that E (i,i′−1)
p′ = sent(s′(i,i

′)).

Proof. This is because, by definition, we have sent(s′(i,i
′)) 6= ⊥, and therefore, by Line 12

and Line 19, we have (i1, i
′
1) < (i, i′) such that s′(i,i

′) = s(i1,i′1). By the induction hypothesis

and Observation 5.8, it follows that E (i,i′−1)

|E(i1,i
′
1)|

= sent(s′(i,i
′)), as required.

To continue, we observe that

E(i,i′) = E(i,i′−1)‖
(
|E (i,i′)| − p(i,i′),1

(
E (i,i′−1)

p(i,i
′) 6= sent(s′(i,i

′))
)
, B(i,i′)(b(i,i′))

)
,

implying, due to Algorithm 3 and Claim 5.10 (that implies p(i,i′) > 0) that:

E (i,i′) = E (i,i′−1)‖
(
E (i,i′−1)

p(i,i
′)

[
1 :
∣∣∣E (i,i′−1)

p(i,i
′)

∣∣∣− 2 · 1
(
E (i,i′−1)

p(i,i
′) 6= sent(s′(i,i

′))
)]
‖B(i,i′)(b(i,i′))

)
= E (i,i′−1)‖

(
sent(s′(i,i

′))‖B(i,i′)(b(i,i′))
)

= E (i,i′−1)‖sent(s(i,i′)),

and the lemma follows.
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Corollary 5.11. For all p ∈ [|E|] and all j ∈ [|Ep|] such that |Ep| − j is even, we have that

Ep,j = fA
(
xA, Ep,<j

)
.

Proof. We first show the claim for all p ∈ [|E|] and j = |Ep|. Fix p ∈ [|E|]. As |E| increases

by at most 1 in any iteration (i, i′), we have that there exists (i, i′) such that p = |E (i,i′)|. By

Observation 5.8 and Lemma 5.9, we get that

Ep = E (i,i′)
p = E (i,i′)

|E(i,i′)| = sent(s(i,i′)).

The claim now follows from Line 12 and Line 19. To show the claim for other values

of j, we argue that for all p ∈ [|E|] and all j < |Ep| such that |Ep| − j is even, we have

p′ ∈ [|E|] satisfying Ep′ = Ep,≤j and the result follows. Suppose not and let (p, j) be the

lexicographically smallest such that the statement is not true. By our choice of j, we have

p′′ ∈ [|E|] satisfying Ep′′ = Ep,≤j+2.

As |E| increases by at most 1 in any iteration (i, i′), we have that there exists (i1, i
′
1) such

that p′′ = |E (i1,i′1)|. By Observation 5.8 and the furthermore part of Lemma 5.9, we get p′

such that

Ep′ = E (i1,i′1)

p′ = E (i1,i′1)

p′′,≤
∣∣∣∣E(i1,i′1)p′′

∣∣∣∣−2
= Ep′′,≤|Ep′′ |−2 = Ep,≤j,

a contradiction.

5.2.2 Some Helper Lemmas Concerning Algorithm 2

Lemma 5.12. For all i ∈ {0} ∪ [N ], we have i ≤ |σ(i)|.

Proof. Proof by induction on i. The base case i = 0 is trivial. For i > 0, we either

have i − 1 < |σ(i−1)| in which case the lemma follows because |σ(i−1)| ≤ |σ(i)|, or we have

i−1 = |σ(i−1)| < i by the induction hypothesis. When this happens, then Line 26 is executed

in iteration i and we get

i = i− 1 + 1 ≤ |σ(i−1)|+ |Enc(E(i))| = |σ(i)|,

where the inequality follows from item 2 of Fact 5.2.

Lemma 5.13. Let t′ � t ∈ Σ∗ be such that sent(t), sent(t′) 6= ⊥. We have

1. sent(t′) � sent(t) with equality only if t = t′.

2. There exists p such that FIND(Dec∗(t))p = sent(t)<|sent(t)|.

3. If t � σB, then sent(t) � Π(xA, xB).
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Proof. Proof by induction on |t|. The statement clearly holds when t = ε. For l > 0, we

show the claim assuming that |t| = l given it holds when |t| < l. Without loss of generality,

we can assume that t′ 6= t. As sent(t) 6= ⊥, we have by Line 19 that there exists (i, i′) ∈ Ts
such that t = s(i,i′). We have

sent(t) = sent(s′(i,i
′))‖B(i,i′)(b(i,i′)) = sent(s′(i,i

′))‖b(i,i′)‖fA(xA, sent(s′(i,i
′))‖b(i,i′)). (7)

We now show each part in turn:

1. For the first part, we note that our assumption that t 6= t′ and our choice of s′(i,i
′)

implies that t′ � s′(i,i
′) whence we can use our induction hypothesis and Equation 7 to

get

sent(t′) � sent(s′(i,i
′)) ≺ sent(t).

2. Straightforward by definition of b(i,i′) in Line 18.

3. For this part, we observe that t � σB implies s′(i,i
′) � σB by our choice of s′(i,i

′).

It follows that sent(s′(i,i
′)) � Π(xA, xB). Now, by the induction hypothesis and

Equation 7, it is sufficient to show that b(i,i′) = fB(xB, sent(s′(i,i
′))) in order to finish

the proof.

Using Bob’s version of Corollary 5.11, it is sufficient to show that there exists p ∈ [|EB|]
such that EBp = sent(s′(i,i

′))‖b(i,i′). In fact, by our choice of b(i,i′) in Line 18, it is

sufficient to show that Ẽ (i,i′) � EB. This follows because, by definition of Dec∗ and

Observation 5.4, we have

Ẽ (i,i′) = FIND
(
Dec∗(s(i,i′))

)
= FIND (Dec∗ (t)) � FIND

(
Dec∗

(
σB
))

= EB.

Lemma 5.14. It holds that ∑
(i,i′)∈Ts

|E (i,i′)| − p(i,i′) ≤ 3NLK.

Proof. For i ∈ [N ] and i′ ∈ [m(i)], define the set

Ss,≤(i,i′) = {s(i1,i′1) | (i1, i′1) ∈ Ts, (i1, i′1) ≤ (i, i′)}.

We claim that:

Claim 5.15. For all (i, i′) 6= (1, 1) ∈ Ts, we have

|E (i,i′)| − p(i,i′) ≤ 2K ·
(∣∣pre (Ss,≤(i,i′)

)∣∣− ∣∣pre (Ss,≤(i,i′−1)

)∣∣) .
Proof. We stat by observing that, by definition of pre(·), we have that∣∣pre (Ss,≤(i,i′)

)∣∣− ∣∣pre (Ss,≤(i,i′−1)

)∣∣ = |s(i,i′)| − k, (8)
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where k is the largest (possibly 0) such that there exists s′′ ∈ Ss,≤(i,i′−1) such that s
(i,i′)
≤k = s′′≤k.

As (i, i′) 6= (1, 1), we have that s′(i,i
′) is well defined and sent(s′(i,i

′)) 6= ⊥ implying by

Line 12 and Line 19 that there exists (i1, i
′
1) < (i, i′) such that s(i1,i′1) = s′(i,i

′) implying that

s′(i,i
′) ∈ Ss,≤(i,i′−1). It follows that |s′(i,i′)| ≤ k.

Next, we observe that either |s′(i,i′)| = k or, by our choice of s′(i,i
′), there exists

(i2, i
′
2) ≤ (i, i′ − 1) such that

k ≤ |s(i2,i′2)| and s′(i,i
′) ≺ s(i2,i′2) 6� s(i,i′).

We let (i2, i
′
2) be the smallest such pair. By our choice of (i2, i

′
2), we get that s′(i,i

′) = s′(i2,i
′
2).

Therefore, in either case, there exists (i∗, i
′
∗) ≤ (i, i′ − 1) such that k ≤ |s(i∗,i′∗)| and

s′(i,i
′) ∈ {s′(i∗,i′∗), s(i∗,i′∗)} implying that

sent
(
s(i∗,i′∗)

)
∈
{
sent

(
s′(i,i

′)
)
, sent

(
s′(i,i

′)
)
‖B(i,i′)(0), sent

(
s′(i,i

′)
)
‖B(i,i′)(1)

}
.

We derive:

|E (i,i′)| − p(i,i′) ≤ |E (i,i′)| − |E (i∗,i′∗)| (Observation 5.8 and Lemma 5.9)

≤ K +K · (i− i∗) (Line 13)

≤ K +K ·
(
|s(i,i′)| − |s(i∗,i′∗)|

)
≤ K +K ·

(
|s(i,i′)| − k

)
(k ≤ |s(i∗,i′∗)|)

≤ K +K ·
(∣∣pre (Ss,≤(i,i′)

)∣∣− ∣∣pre (Ss,≤(i,i′−1)

)∣∣) (Equation 8)

≤ 2K ·
(∣∣pre (Ss,≤(i,i′)

)∣∣− ∣∣pre (Ss,≤(i,i′−1)

)∣∣) .
It follows that:∑

(i,i′)∈Ts

|E (i,i′)| − p(i,i′) ≤ 1 +
∑

(i,i′)6=(1,1)∈Ts

2K ·
(∣∣pre (Ss,≤(i,i′)

)∣∣− ∣∣pre (Ss,≤(i,i′−1)

)∣∣)
≤ 1 + 2K ·

∣∣pre (nearTCα (τ)
)∣∣

≤ 3NLK. (Definition 4.4)

5.2.3 Analyzing Algorithm 2

In order to continue our analysis of Algorithm 2, we need to consider both Alice’s and Bob’s

version of Algorithm 2. Define the sets:

A = {i ∈ [N − 1] | max
(
|σA,(i−1)|, |σB,(i−1)|

)
< i ∧max

(
|σA,(i)|, |σB,(i)|

)
< i+ 1}.

B = {i ∈ [N ] | |nearTCα,i(τA)| ≤ K ∧ |nearTCα,i(τB)| ≤ K}.
C = {i ∈ [N ] | σA≤i ∈ nearTCα,i(τ

B) ∧ σB≤i ∈ nearTCα,i(τ
A)} ∪ {0}.

C∗ = A ∩ B ∩ C.
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We first show that all of these sets are large.

Lemma 5.16. |A| ≥ N ·
(
1− ε

5

)
.

Proof. For C ∈ {A,B}, define the set A′C = {i ∈ [N ] | |σC,(i−1)| < i}. We show that

|A′C | ≥ N ·
(
1− ε

20

)
for all C ∈ {A,B} and the lemma follows. We restrict ourselves to

C = A as the case case C = B is similar. We have:

N ≤ |σ| (Lemma 5.12)

≤
∑
i∈A′A
|Enc(E(i))| (Line 26)

≤ |A′A|+
∑
i∈A′A

 10

log2(|Σ|)
·
∑

j∈[|E(i)|]

log2(E
(i)
j,1 + 1)

 . (Fact 5.2, item 1)

To continue, we observe from Equation 3 that, either log2(|Σ|) > 10 ·
∑

j∈[|E(i)|] log2(E
(i)
j,1 +

1) or
∑

j∈[|E(i)|] E
(i)
j,1 + 1 ≥ 1

ε31
=⇒

∑
i′:(i,i′)∈Ts|E

(i,i′)| − p(i,i′) > 1
ε30

. Let I ⊆ [N ] be the set

of all i for which the latter holds. Also, recall the identity log2(x)
log2(y)

≤ 1 + x
y

for all y ≥ 5 and

x > 09. We get:

N ≤ |A′A|+
∑

i∈A′A∩I

10

log2(|Σ|)
·
∑

j∈[|E(i)|]

log2(E
(i)
j,1 + 1)

≤ |A′A|+
∑

i∈A′A∩I

10K + 10 ·
∑

j∈[|E(i)|]

E
(i)
j,1 + 1

|Σ|

≤ |A′A|+ 10K · |I|+ 10 ·
∑
i∈A′A

∑
i′:(i,i′)∈Ts

1 + |E (i,i′)| − p(i,i′)

|Σ|

≤ |A′A|+ 10K ·
∑

(i,i′)∈Ts

ε30 ·
(
|E (i,i′)| − p(i,i′)

)
+

10NK

|Σ|
+ 10 ·

∑
(i,i′)∈Ts

|E (i,i′)| − p(i,i′)

|Σ|

(Definition of I and Markov)

≤ |A′A|+ ε30 · 50NLK2 +
50NLK

|Σ|
(Lemma 5.14)

≤ |A′A|+ εN

20
. (Equation 3)

Lemma 5.17. |B| ≥ N ·
(
1− ε

10

)
.

Proof. For C ∈ {A,B}, define the set B′C = {i ∈ [N ] | |nearTCα,i(τC)| ≤ K}. We show that

9To see this indentity, note that if y ≥ 5, x, then log2(x)
log2(y)

≤ 1 < 1 + x
y and if x > y ≥ 5, then

log2(x)
x ≤ log2(y)

y =⇒ log2(x)
log2(y)

≤ x
y < 1 + x

y .
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|B′C | ≥ N ·
(
1− ε

20

)
for all C ∈ {A,B} and the lemma follows. We restrict ourselves to

C = A as the case C = B is similar.

Proof by contradiction. If |B′A| < N(1− ε) , we get:

εNK

20
<
∑
i∈[N ]

|nearTCα,i(τA)| ≤ |nearTCα (τA)| ≤ |pre(nearTCα (τA))| ≤ NL ≤ εNK

100
,

by Definition 4.4 and Equation 3. This is a clear contradiction.

Lemma 5.18. For all 0 ≤ i1 ≤ i2, if i1 ∈ C, it holds that

rα · |(i1, i2] \ C| ≤ corrΠ′,Adv′,(2ri1:2ri2](x
A, xB)

Proof. Proof by induction on i2 − i1. The base case i1 = i2 is trivial. For l > 0, we prove

the claim for i1 < i2 = i1 + l assuming that it is true for all 0 ≤ i1 ≤ i2 such that i2− i1 < l.

If i2 ∈ C, we have:

rα · |(i1, i2] \ C| = rα · |(i1, i2) \ C| ≤ corrΠ′,Adv′,(2ri1:2ri2)(x
A, xB) ≤ corrΠ′,Adv′,(2ri1:2ri2](x

A, xB).

We now assume that i2 /∈ C. By definition of C, this means that either σA≤i2 ∈ nearTCα,i2(τ
B) or

σB≤i2 ∈ nearTCα,i2(τ
A). Without loss of generality, we assume the former. Using the definition

of near, we get that

δsuf(TC(σA≤i2), τ
B
≤i2) ≥ α.

This implies, using Definition 3.2, that there is an i3 < i2 such that

corrΠ′,Adv′,(2ri3:2ri2](x
A, xB) ≥ rα · (i2 − i3). We let i3 denote the largest such value. We

claim that i1 ≤ i3. Suppose not. Then, we have

corrΠ′,Adv′,(2ri3:2ri2](x
A, xB) = corrΠ′,Adv′,(2ri3:2ri1](x

A, xB) + corrΠ′,Adv′,(2ri1:2ri2](x
A, xB)

< corrΠ′,Adv′,(2ri3:2ri1](x
A, xB) + rα · (i2 − i1) (Choice of i3)

≤ δsuf(TC(σA≤i1), τ
B
≤i1) · r · (i1 − i3) + rα · (i2 − i1)

≤ rα · (i1 − i3) + rα · (i2 − i1) (i1 ∈ C)
≤ rα · (i2 − i3),

a contradiction. Using the induction hypothesis, we get:

rα · |(i1, i2] \ C| ≤ rα · |(i1, i3] \ C|+ rα · (i2 − i3)

≤ corrΠ′,Adv′,(2ri1,2ri3](x
A, xB) + corrΠ′,Adv′,(2ri3:2ri2](x

A, xB)

≤ corrΠ′,Adv′,(2ri1,2ri2](x
A, xB).

Lemma 5.19. If corrΠ′,Adv′(x
A, xB) < θT ′, then |C∗| ≥ N ·

(
3
8
− 7ε

)
> T .

Proof. We show this by upper bounding |C∗|. We have:

|C∗| ≤ |A|+ |B|+ |C|
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≤ 7εN + |C| (Lemma 5.16, Lemma 5.17)

≤ 7εN +
1

rα
· corrΠ′,Adv′(xA, xB) (Lemma 5.18)

< 7εN +
2θN

α
≤ 7εN +

5

8
N. (Equation 3)

This yields |C∗| > N ·
(

3
8
− 7ε

)
> T by Equation 3.

5.2.4 Finishing the Proof of item 2 of Theorem 5.3

Proof of item 2 of Theorem 5.3. We simply show that d(Π(xA, xB)) ≤ corrΠ′,Adv′(x
A, xB) +

εT ′

2
and lemma follows by our definition of L. To see why d(Π(xA, xB)) ≤ corrΠ′,Adv′(x

A, xB)+
εT ′

2
, define i1 = max(C∗) to be the largest element in C∗ and i2 to be the unique element in

C∗ such that |[i2] ∩ C∗| = T . Note that i2 is well defined due Lemma 5.19 and i2 ≤ i1.

As i1 ∈ C∗, we have that σB≤i1 ∈ nearTCα,i1(τ
A). We claim that Π(xA, xB) ∈ Ψ is unique

such that ∃p : FIND
(
Dec∗(σB≤i2)

)
p

= Π(xA, xB). We show this claim later but assuming it

for now we get that

d(Π(xA, xB)) ≤ rα · (i2 +N − i1) +

i1∑
i′=i2+1

∆
(
TC(σB≤i′), τ

A
i′

)
≤ rα · (|(0 : i2] \ C∗|+ T + |(i1 : N ] \ C∗|) + corrΠ′,Adv′,(2ri2:2ri1](x

A, xB)

(Definition of i1, i2, corr)

≤ εT ′

2
+ rα · (|(0 : i2] \ C|+ |(i1 : N ] \ C|) + corrΠ′,Adv′,(2ri2:2ri1](x

A, xB)

(Equation 3, Lemma 5.16, Lemma 5.17)

≤ εT ′

2
+ corrΠ′,Adv′(x

A, xB). (Lemma 5.18)

It remains to show the claim. We first show that if any ψ ∈ Ψ is such that

∃p : FIND
(
Dec∗(σB≤i2)

)
p

= ψ, then ψ = Π(xA, xB) and then show that indeed ∃p :

FIND
(
Dec∗(σB≤i2)

)
p

= Π(xA, xB). For the first part, observe by definition of Dec∗ and

Observation 5.4, we have that if ∃p : FIND
(
Dec∗(σB≤i2)

)
p

= ψ, then, ∃p : EBp = ψ. Now, using

Corollary 5.11, we get that ψ ∈ ΨB. However, if ψ ∈ ΨA and ψ ∈ ΨB, then ψ = Π(xA, xB)

and we are done.

We now show that ∃p : FIND
(
Dec∗(σB≤i2)

)
p

= Π(xA, xB) by showing ∃j ≤ i2 : sent(σB≤j) =

Π(xA, xB)≤2T+1 and applying Lemma 5.13 and Observation 5.4. We show this inductively in

the following lemma.

Lemma 5.20. For all i ∈ {0} ∪ C∗, there exists 0 ≤ jA, jB ≤ i such that

|sentA(σB≤jA)| = 2 · |[i] ∩ C∗|+ 1,
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|sentB(σA≤jB)| = 2 · |[i] ∩ C∗|.

Proof. Proof by induction on i. The base case i = 0 is trivial. We prove the claim for

i > 0 assuming that it is true for values smaller than i. Let i1 < i be the largest such that

i1 ∈ {0} ∪ C∗. We apply the induction hypothesis on i1 to get 0 ≤ jA1 , j
B
1 ≤ i1 such that

|sentA(σB≤jA1
)| = 2 · |[i] ∩ C∗| − 1,

|sentB(σA≤jB1
)| = 2 · |[i] ∩ C∗| − 2.

by our choice of i1. By Lemma 5.13, we get:

sentA(σB≤jA1
) = Π(xA, xB)≤2·|[i]∩C∗|−1,

sentB(σA≤jB1
) = Π(xA, xB)≤2·|[i]∩C∗|−2.

(9)

Let us now consider iteration i. As i > 0, we have i ∈ C∗ = A ∩ B ∩ C. By definition of B,

we have |nearTCα,i(τA)| ≤ K and |nearTCα,i(τB)| ≤ K, which together with the fact that i ∈ A
imply that mA,(i+1),mB,(i) > 0. Now, we use the definition of C to get i′A ∈ [mA,(i+1)] and

i′B ∈ [mB,(i)] such that

sA,(i+1,i′A) = σB≤i and sB,(i,i
′B) = σA≤i. (10)

We show each of the claims in the lemma in turn:

• Showing that ∃0 ≤ jB ≤ i : |sentB(σA
≤jB)| = 2 · |[i] ∩ C∗|: We show this by

contradiction. Assume that

@0 ≤ jB ≤ i : |sentB(σA≤jB)| = 2 · |[i] ∩ C∗|. (11)

From Equation 9, we know that sentA(σB≤jA1
) = Π(xA, xB)≤2·|[i]∩C∗|−1. Next, we invoke

Lemma 5.9 to get that there exists p such that EA,(i1+1)
p = Π(xA, xB)≤2·|[i]∩C∗|−1 or

equivalently that FIND
(
Dec∗(σA,(i1+1))

)
p

= Π(xA, xB)≤2·|[i]∩C∗|−1. As i ∈ A, we have by

Lemma 5.12, that

FIND
(
Dec∗(σA≤i)

)
p

= Π(xA, xB)≤2·|[i]∩C∗|−1. (12)

Let us now consider iteration (i, i′B) for Bob. We know by Equation 10 that

sB,(i,i
′B) = σA≤i. Also, it follows from Equation 9, Equation 11, and Lemma 5.13, that

s′B,(i,i
′B) = σA≤jB1

. Now, for Equation 11 to hold for jB = i, the condition in Line 18

must evaluate to false in iteration (i, i′B). However, this contradicts Equation 12 and

Corollary 5.11.

• Showing that ∃0 ≤ jA ≤ i : |sentA(σB
≤jA)| = 2 · |[i] ∩ C∗|+ 1:

We show this by contradiction. Assume that

@0 ≤ jA ≤ i : |sentA(σB≤jA)| = 2 · |[i] ∩ C∗|+ 1. (13)
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From the previous part and Lemma 5.13, we know that there exists 0 ≤ jB ≤
i such that sentB(σA≤jB) = Π(xA, xB)≤2·|[i]∩C∗|. Next, we invoke Lemma 5.9 to

get that there exists p such that EB,(i)p = Π(xA, xB)≤2·|[i]∩C∗| or equivalently that

FIND
(
Dec∗(σB,(i))

)
p

= Π(xA, xB)≤2·|[i]∩C∗|. As i ∈ A, we get by Lemma 5.12 that

FIND
(
Dec∗(σB≤i)

)
p

= Π(xA, xB)≤2·|[i]∩C∗|. (14)

Let us now consider iteration (i + 1, i′A) for Alice. We know by Equation 10 that

sA,(i+1,i′A) = σB≤i. Also, it follows from Equation 9, Equation 13, and Lemma 5.13, that

s′A,(i+1,i′A) = σB≤jA1
. Now, for Equation 13 to holds for jA = i, the condition in Line 18

must evaluate to false in iteration (i + 1, i′A). However, this contradicts Equation 14

and Corollary 5.11.

6 Our Simulation Procedure

We are now ready to state and prove our main result, Theorem 6.1, which is a formalization

of Theorem 1.1.

Theorem 6.1. Let 0 < ε < 1
20

be a parameter and Π = {T, p,XC ,YC , fC , outC}C∈{A,B} be

a protocol in the binary two party communication model as in Subsection 3.1. There is a

protocol Π̂ = {T̂ , p̂, X̂C , ŶC , f̂C , ôutC}C∈{A,B} such that:

1. We have T̂ = 39
32
· n0(ε/10) · 1070 · T

ε60
where n0(·) is as promised by Lemma 4.1. We

also have X̂C = XC for all C ∈ {A,B}, and ŶA = ŶB = {0, 1}T .

2. For all xA ∈ XA, xB ∈ XB, and all adversaries ˆAdv for Π̂, we have for all C ∈ {A,B}
that

corrΠ̂, ˆAdv(x
A, xB) ≤

(
5

39
− ε
)
· T̂ =⇒ ôut

C

Π̂, ˆAdv(x
A, xB) = Π(xA, xB).

The rest of this paper has our proof of Theorem 6.1. Fix a parameter 0 < ε < 1
20

and a protocol Π = {T, p,XC ,YC , fC , outC}C∈{A,B} in the binary two party communication

model. At the cost of blowing up the number of rounds in Π by a factor of 2, we can assume

that Π is an alternating binary protocol, i.e., Alice transmits in the odd rounds of Π and

Bob transmits in the even rounds of Π. Thus, henceforth, we assume Π has 2T rounds

and p2i−1 = A and p2i = B for all i ∈ [T ]. We let ΠList denote the protocol promised by

Theorem 5.1 with the parameters ε/10 and Π and define N̂ = T̂
39

for convenience. Observe

that ΠList has 32N̂ rounds.

We shall use ECC to denote the functions ECC4N̂,ε/10 promised by Lemma 4.1 and Cn will

denote the function promised by Lemma 4.2. The protocol Π̂ that proves Theorem 6.1 is

described in Algorithm 4 (Alice’s side) and Algorithm 5 (Bob’s side).
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Algorithm 4 Alice’s side of the simulation protocol

Input: An input xA ∈ XA.
Output: A transcript π ∈ {0, 1}2T .

Phase 1:

50: Run ΠList with input xA and get output (L, d). Interpret L as a list by ordering the
elements in some canonical way.

Phase 2:

51: Listen for the next 4N̂ rounds. Let σ ∈ {0, 1}4N̂ be the symbols received.

Compute Output:

52: For l ∈ L, set e(l)← minL′:|L′|≤3 and L∩L′={l}∆ (ECC(L′), σ) and let E(l) be the minimizer.
53: π ← arg minl∈L d(l) + e(l).
54: Set p ∈ [3] to be the position of π in E(π).

Phase 3:

55: For the next 3N̂ − 3
2
· e(π) rounds, transmit C

N̂− e(π)
2

(p).

56: For the remaining 3
2
· e(π) rounds, transmit C e(π)

2

(0).

Algorithm 5 Bob’s side of the simulation protocol

Input: An input xB ∈ XB.
Output: A transcript π ∈ {0, 1}2T .

Phase 1:

57: Run ΠList with input xB and get output (L, d). Interpret L as a list by ordering the
elements in some canonical way.

Phase 2:

58: For the next 4N̂ rounds, transmit ECC(L) ∈ {0, 1}4N̂ , symbol by symbol.

Phase 3:

59: Listen in the remaining 3N̂ rounds. Let τ ∈ {0, 1}3N̂ be the symbol received.

Compute Output:

60: For p̃ ∈ {0, 1, 2, 3}, set e(p̃)← ∆ (CN̂(p̃), τ).

61: q← arg minj∈[3]

(
d(Lj) + min

(
e(j), e(0) + 3N̂ · 1

(
j 6= arg minj′∈[3] d(Lj′)

)))
.

62: π ← Lq.
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6.1 Proof of Theorem 6.1

We now prove Theorem 6.1.

Proof of Theorem 6.1. Observe that item 1 of Theorem 6.1 follows straightforwardly from

our definition of Π̂ in Algorithm 4 and Algorithm 5.

For item 2 of Theorem 6.1, we fix inputs xA and xB for Alice and Bob respectively and

an adversary ˆAdv for the protocol Π̂. As our protocol is deterministic, fixing xA, xB, and
ˆAdv fixes the values of all the variables in Algorithm 4 and Algorithm 5. In our analysis,

we shall use varA (respectively, varB) to denote the value of variable var in Algorithm 4

(resp. Algorithm 5). We shall drop the superscript if the variable appears in only one of

Algorithm 4 and Algorithm 5. Observe that, with this notation, we have for all C ∈ {A,B}
that ôut

C

Π̂, ˆAdv(x
A, xB) = πC and in order to show item 2 of Theorem 6.1, we have to show for

all C ∈ {A,B} that

corrΠ̂, ˆAdv(x
A, xB) ≤

(
5

39
− ε
)
· T̂ =⇒ πC = Π(xA, xB).

To start with, we use item 2 of Theorem 5.1 to get that corrΠ̂, ˆAdv(x
A, xB) ≤

(
5
39
− ε
)
· T̂

implies LA ∩ LB = {Π(xA, xB)} and for all C ∈ {A,B} and s, s′ ∈ LC , we have:

dC(Π(xA, xB)) ≤ corrΠ̂, ˆAdv,[32N̂ ](x
A, xB) + 2εN̂ . (15)

dC(s) + dC(s′) ≥
(

1

4
− ε

20

)
· 32N̂ . (16)

We divide the rest of this proof into two parts and use the fact that LA∩LB = {Π(xA, xB)}
implicitly throughout.

• Showing πA = Π(xA, xB): To start, observe that eA(Π(xA, xB)) ≤
corrΠ′,Adv′,(32N̂,39N̂ ](x

A, xB). Now, if πA 6= Π(xA, xB), using the fact that πA ∈ LA

by definition, we get:

2 ·
(
dA(Π(xA, xB)) + eA(Π(xA, xB))

)
≤ 2 · corrΠ̂, ˆAdv(x

A, xB) (Equation 15)

< (10− 5ε)N̂

≤ dA(Π(xA, xB)) + dA(πA) + ∆
(
ECC(E(Π(xA, xB))),ECC(E(πA))

)
(Equation 16 and Lemma 4.1)

≤ dA(Π(xA, xB)) + dA(πA) + eA(Π(xA, xB)) + eA(πA),

(Triangle inequality)

a contradiction to the choice of πA.

• Showing πB = Π(xA, xB):

We further break this part of the proof into two cases:
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– When E(πA) = LB: In this case, we get that LBp = πA = Π(xA, xB). Now, if

πB 6= Π(xA, xB) then q 6= p and we get:

2 ·
(
dB(LBp ) + eB(p)

)
≤ 2 ·

(
corrΠ̂, ˆAdv,[32N̂ ](x

A, xB) + eB(p)
)

≤ 2 ·
(
corrΠ̂, ˆAdv,[32N̂ ](x

A, xB) + ∆ (CN̂(p), τ)
)

(Definition of eB(·))

≤ 2 ·
(
corrΠ̂, ˆAdv,[32N̂ ](x

A, xB)

+ corrΠ̂, ˆAdv,(36N̂ :39N̂ ](x
A, xB) + eA(Π(xA, xB))

)
(Line 55 and Line 56)

< (10− 5ε)N̂

(eA(Π(xA, xB)) ≤ corrΠ̂, ˆAdv,(32N̂ :36N̂ ](x
A, xB))

≤ dB(LBp ) + dB(LBq )

+ min (∆ (CN̂(p),CN̂(q)) ,∆ (CN̂(p),CN̂(0)))

(Equation 16 and Lemma 4.2)

≤ dB(LBp ) + dB(LBq ) + eA(p) + min
(
eB(q), eB(0)

)
,

(Triangle inequality)

a contradiction to the choice of q.

– When E(πA) 6= LB: In this case, we first show that corrΠ̂, ˆAdv,(32N̂ :36N̂ ](x
A, xB) ≥

(1− ε)N̂ . We have:

corrΠ̂, ˆAdv,(32N̂ :36N̂ ](x
A, xB) ≥ ∆

(
ECC(LB), σ

)
≥ max

(
∆
(
ECC(E(πA), σ

)
, (2− ε)N̂ −∆

(
ECC(E(πA), σ

))
(Definition of E and Lemma 4.1)

≥ (1− ε)N̂ .

Therefore, we have corrΠ̂, ˆAdv,[32N̂ ](x
A, xB) < (4 − ε)N̂ . This implies that

Π(xA, xB) = LBq∗ where q∗ = arg minj′∈[3] d
B(Lj′). If not, then, as Π(xA, xB) ∈ LB,

we have by Theorem 5.1,

2 · dB(Π(xA, xB)) ≤ 2 · corrΠ̂, ˆAdv,[32N̂ ](x
A, xB)

< (8− 2ε)N̂

≤ dB(Π(xA, xB)) + dB(LBq∗), (Equation 16)

a contradiction to the choice of q∗. Now that we have Π(xA, xB) = LBq∗ , if

πB 6= Π(xA, xB), then q 6= q∗ and we have

2 ·
(
dB(LBq∗) + eB(0)

)
≤ 2 ·

(
corrΠ′,Adv′,[32N̂ ](x

A, xB) + eB(0)
)
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≤ 2 ·
(
corrΠ̂, ˆAdv,[32N̂ ](x

A, xB) + ∆ (CN̂(0), τ)
)

(Definition of eB(·))

≤ 2 ·
(
corrΠ̂, ˆAdv,[32N̂ ](x

A, xB) + corrΠ̂, ˆAdv,(36N̂ :39N̂ ](x
A, xB)

+ 2N̂ − eA(Π(xA, xB))
)

(Line 55 and Line 56)

≤ 2 ·
(
corrΠ̂, ˆAdv,[32N̂ ](x

A, xB) + corrΠ̂, ˆAdv,(36N̂ :39N̂ ](x
A, xB)

+ ∆
(
ECC(LB), σ

)
+ 2εN̂

)
(E(πA) 6= LB)

< (10− 5ε)N̂

(eA(Π(xA, xB)) ≤ corrΠ̂, ˆAdv,(32N̂ :36N̂ ](x
A, xB))

≤ dB(LBq∗) + dB(LBq ) + ∆ (CN̂(q),CN̂(0))

(Equation 16 and Lemma 4.2)

≤ dB(LBq∗) + dB(LBq ) + eB(0) + eB(q),

(Triangle inequality)

a contradiction to the choice of q.
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A Binary List Decoding Protocols With 1
4 Errors

Needs Exponential List Size

We now sketch the proof of a claim made in Subsection 2.2 that a list decodable protocol

with a binary alphabet for the message exchange task requires exponential sized lists if the

fraction of errors is larger than 1
4
.

Proof sketch. Let ε > 0 be fixed and let Π be a non-adaptive list decodable protocol for

the message exchange task that is resilient to 1
4

+ ε fraction of errors. Without loss of

generality, let Alice be the party that speaks less in Π and note that this is well defined as

Π is non-adaptive.

Fix Bob’s input xB arbitrarily. For every input xA for Alice, define the set S(xA) of

Bob’s transcripts as follows: We say that a transcript π ∈ S(xA) iff there exists an adversary

Adv for Π that corrupts at most 1
4

+ ε fraction of messages and ensures that the transcript

received by Bob is π when Alice and Bob have inputs xA and xB respectively.

Also define, for a transcript π received by Bob, the list L(π) to be the list output by Bob

when he receives this transcript and his input is xB. Observe that, for all π ∈ S(xA), we

must have xA ∈ L(π). We get that∑
xA

|S(xA)| ≤
∑
π

|L(π)| ≤ |ΠB| ·max
π
|L(π)|,

where ΠB is the set of all transcript that Bob can potentially receive. Next, we observe that,

for all xA, a random transcript π ∈ S(xA) with probability at least 1
2
. If XA denote the set

of all Alice’s inputs, we get that:

1

2
· |ΠB| · |XA| ≤ |ΠB| ·max

π
|L(π)| =⇒ max

π
|L(π)| ≥ 1

2
· |XA|.

The proof is done with the observation that maxπ|L(π)| is the list size of the protocol.
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