
Encodings and the Tree Evaluation Problem

James Cook Ian Mertz
University of Toronto

April 14, 2021

Abstract

We show that the Tree Evaluation Problem with alphabet size k and
height h can be solved by branching programs of size kO(h/ log h) +
2O(h). This answers a longstanding challenge of Cook et al. (2009)
and gives the first general upper bound since the problem’s inception.

Acknowledgements The authors would like to thank Stephen Cook and
Toniann Pitassi for many helpful discussions leading up to this paper. The
second author was partially funded by NSERC.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 54 (2021)

1 Introduction

The Tree Evaluation Problem (TreeEval) was introduced as a candidate for
a problem that could separate L from P [BCM+09a]. For alphabet size
parameter k and height parameter h, the input to TreeEvalk,h is a full binary
tree of height h where every leaf is labeled with an element from [k] and
each internal node is labeled with a function from [k]× [k] to [k]; the output
is defined by evaluating the tree in a bottom-up fashion where each internal
node outputs the value of its function with inputs coming from its children.

While this can clearly be done in polynomial time by simply evaluating
each node in turn, a pebbling argument shows that this algorithm is required
to hold h values from [k] in memory. To this effect the original authors
conjectured that for alphabet size k and height h, any deterministic branching
program solving TreeEvalk,h requires Ω(kh) states [BCM+09b], which would
translate to a superlogarithmic space lower bound as long as k, h = ω(1).

Since then many such lower bounds have been proven for restricted models
of branching programs, including read-once and thrifty. On the upper bounds
side, the original authors proposed a challenge: give a deterministic branching
program that solves TreeEvalk,h with O(kh−ε) states for all superconstant
values of k and h [CBM+09]. This challenge has stood for over a decade.

In a previous paper [CM20], we showed the challenge can be met when
h ≥ k1/2+poly(ε). In this note we show that a small modification to that
algorithm fully answers the challenge and disproves the Ω(kh) conjecture.

Theorem 1. Let k, h ∈ N. Then TreeEvalk,h can be solved by a uniform
family of deterministic branching programs which have size kO(h/ log h) if
k ≥ h and 2O(h) if k ≤ h.

2 Preliminaries

Definition 1. Let k, h ∈ N. The tree evaluation problem of height h and
alphabet size k, denoted TreeEvalk,h, is defined as follows. The input is
a labeling of the full binary tree of height h, where every leaf is labeled
with an element in [k] and each internal node is labeled with a function in
[k]× [k]→ [k], encoded as an explicit k × k table. Based on this input, we
derive a value at each node in the tree in a bottom-up fashion: leaves take
their values directly from the input, and each internal node’s value is its
function applied to its children’s values. The output to the TreeEval instance
is the value at the root.

1

By convention, the input to TreeEvalk,h is treated as a sequence of symbols
in [k]. The input then has length (2h−1 − 1) · k2 + 2h−1 = 2h poly(k).1

We now introduce the computation models we will be using to compute
TreeEvalk,h. We use n to generically refer to the input size of our function
f , where for f = TreeEvalk,h we have n = 2h poly(k). Our first model is a
standard syntactic notion of space-bounded computation.

Definition 2 (Branching program [CMW+12]). Let f : [k]n → [k] be a
function. A branching program is a directed acyclic graph G with the
following properties:

• There is a single source node v and k sink nodes.

• Every non-sink node is labeled with an input variable xi for i ∈ [n]
and has k outgoing edges, one for each value in [k]

• For every j ∈ [k] there is one sink node labeled with j.

We say that G computes f if for every x ∈ [k]n, the path defined by starting
at the source and following the edge labeled by the value of the xi labeling
the current node ends at the sink labeled by f(x). The size of the branching
program is the number of nodes in G.

Our second model is less standard and comes from a line of work starting
with [BoC92], more recently fleshed out in [BCK+14].

Definition 3 (Register program). A register program P over a ring R is
defined by a set of registers R1 . . . Rs, each storing a value in R, plus an
ordered list of t instructions where for every j ∈ [t] the jth instruction is
R` ← R` + pj(fj(xi), R1, . . . , R`−1, R`+1, . . . , Rs) for some i ∈ [n], ` ∈ [s],
function fj : [k] → R, and polynomial pj . The size of P is the number of
registers s and the time of P is the number of instructions t.

For technical reasons we leave aside the notion of what it means to
compute a function f : [k]n → [k] with a register program until Section 3.
For the rest of this paper, we’ll set R = F2 = {0, 1}, and all our constructions
will be uniform. Uniformity allows us to make the following connections
between register programs, branching programs, and space-bounded Turing
machines.

1Measured in bits, the input length is still 2h poly(k).

2

Observation 1. Let fn : [k]n → {0, 1}m(n) be a family of functions. Then
there exists a uniform family of branching programs of size 2s(n) computing
fn iff fn can be deterministically computed in space O(s(n)).

Observation 2. Let fn : [k]n → Rm(n) be a family of functions and let Pn
be a uniform family of register programs with size s(n) and time t(n) such
that when Pn is run on input x ∈ [k]n the final value in the registers is fn(x).
Then fn can be computed by a uniform family of branching programs of size
2s(n) · t(n).

There is a converse to Observation 2 for well-structured branching pro-
grams called commutative branching programs, but we will not use this
fact.

3 Main results

In this section, we present a new space-efficient TreeEval algorithm as a simple
but effective variation on a recently-discovered “catalytic” approach [CM20].

Any algorithm following this approach has two ingredients, described in
the following sections.

• Section 3.1 describes a way to encode each value in the TreeEval instance
as a bit vector, and under that encoding, how to compute each internal
node’s associated function as a polynomial with carefully-controlled
degree.

• In Section 3.2, we show how to build an algorithm for TreeEval based
on this encoding. This is a straightforward adaptation of previous work,
requiring only minor changes to work with a different encoding [CM20].
This will finish the proof of Theorem 1.

3.1 Encodings

The catalytic TreeEval approach begins with an encoding: a choice of vector
corresponding to every value in [k]. Our algorithm will represent values using
this encoding whenever possible.

Three encodings are defined below. We include the first two only for the
sake of comparison; in this work, only the d-hot encoding is relevant.

Definition 4 (Encodings). Let digit(b, x, i) denote the i-th digit of the base
b representation of x. For any x ∈ [k],

3

one-hot binary base 4 d-hot with d = 2, b = 4
0 0000000000000001 0000 00 0001 0001
1 0000000000000010 0001 01 0001 0010
5 0000000000100000 0101 11 0010 0010

15 1000000000000000 1111 33 1000 1000

Table 1: Example encodings with k = 16, written in reverse to match
the usual convention for writing numbers. The encodings are described in
Definition 4. The second-last column shows each number in base 4, for
comparison with the d-hot encoding.

• The one-hot encoding [CM20] of x is the vector #–p ∈ {0, 1}k where
px = 1 and px′ = 0 for all x′ 6= x. (k bits)

• The binary encoding [CM20] of x is just x written in base 2; that is, a
vector #–p ∈ {0, 1}dlog ke where pi = digit(2, x, i). (dlog ke bits)

• The d-hot encoding of x is parameterized by positive integers b, d where
bd ≥ k. We write x as d digits in base b, and encode each digit using a
one-hot encoding in {0, 1}b. In other words, the encoding is a vector
#–p ∈ {0, 1}d·b where for each i ∈ [d], pi,digit(b,x,i) = 1, and all other
coordinates are 0. (d · b ≥ d · dk1/de bits)

Examples of each of the encodings in Definition 4 are illustrated in Table 1.
The one-hot and binary encodings are natural and widely-used encodings,
and were the central focus of [CM20]. Our central contribution in this
paper is a definition and analysis of the d-hot encoding, which interpolates
between them.2 In particular, we can view each encoding as first writing
down our value in some base b ∈ [2 . . . k], and second writing each digit in the
resulting string using a string of length b with exactly one 1 in the position
corresponding to the value of the digit.3

First we should ask: why do we need to interpolate between the two en-
codings? The binary encoding is the most space-efficient, using the minimum
possible dlog ke bits. By contrast, the one-hot encoding is the most efficient
by a different measure: polynomial degree.

2A different hybrid encoding appeared in [CM20], but it fell short of meeting the
challenge of [CBM+09].

3The binary encoding can be written in this way by doubling the size of the encoding
to write 0 as 01 and 1 as 10. For example 5 would be written as 01 10 01 10 instead of
0101 as before.

4

Recall that a TreeEvalk,h input includes a function fv : [k] × [k] → [k]
at each internal node v. For each encoding, we show how to convert this
function into a polynomial.

Definition 5 (Polynomial representation of a function). Fix a number k ∈ N,
an encoding E for values in [k] as s-bit strings (as in Definition 4), and any
function f : [k]× [k]→ [k].

A polynomial representation of f with respect to E is a tuple of s
polynomials # –

Qf = (Qf,1, . . . , Qf,s) over R = F2 which together compute
f in the following sense. For any x`, xr ∈ [k], let #–p`,

#–pr ∈ {0, 1}s be their
encodings. Then (Qf,i(#–p`,

#–pr))i∈[s] is the encoding of f(x`, xr).
We associate a polynomial representation with each of the encodings

from Definition 4.

• One-hot encoding [CM20]: for w ∈ [k],

Qf,w(#–p`,
#–pr) =

∑
(y,z)

[f(y, z) = w]p`,ypr,z

(degree 2).

• Binary encoding [CM20]: for i ∈ dlog ke,

Qf,i(#–p`,
#–pr) =

∑
(w,y,z)∈[k]3

[digit(2, w, i) = 1][f(y, z) = w]·

∏
i′∈[dlog ke]

(p`,i′ + digit(2, y, i′) + 1)(pr,i′ + digit(2, z, i′) + 1)

(degree 2dlog ke).

• d-hot encoding: for (i, a) ∈ [d]× [b],

Qf,i,a(#–p`,
#–pr) =

∑
(w,y,z)∈[k]3

[digit(b, w, i) = a][f(y, z) = w]·

∏
i′∈[d]

p`,i′,digit(b,y,i′)pr,i′,digit(b,z,i′)

(degree 2d).

3.2 Products and Clean Computation

Here, we show how to build an algorithm for TreeEval using the encoding
from the previous section. The methods introduced in this part are a
straightforward adaptation of past work [CM20].

5

In this section we show how to do efficient space-bounded computation
with polynomials, using a protocol called clean computation [BCK+14]. In
the setting of clean computation, we imagine memory starts out filled with
some initial values that are beyond our control. Where an ordinary algorithm
computing a function f would be expected to overwrite certain registers with
f(x), at the end of a clean computation we must have added f(x) to the
values of the output registers (over R), and restored all other registers to
their initial states.

Definition 6 (Clean computation). Let R be a ring, f : [k]n → Rm a
function and S ⊆ [m] a set of output indices. Let P be a register program
over R with s registers, s ≥ m. Let τi ∈ R denote the initial value of register
Ri. We say P cleanly computes bits S of f if for all inputs #–x and initial
register values #–τ , the final values after running P are

Ri = τi + f(#–x)i ∀i ∈ S

and
Rj = τj ∀j ∈ [s] \ S

Using a clean computation as a subroutine lets us save space: rather
than allocating new registers for the subroutine’s scratch work, we can re-use
registers the parent computation is already using. The following two lemmas
show that this can be used to solve TreeEval recursively.

First, we can cleanly compute the value at any leaf.

Lemma 2. Fix a height h and alphabet size k, and numbers b, d ∈ N such
that bd ≥ k. Let v be a leaf node in the height-h complete binary tree. For
some TreeEvalk,h input, let #–pv ∈ F2

d·b denote the d-hot encoding of the value
at node v.

Then for every subset T ⊆ [d · b], there is a register program Pv(T) which
cleanly computes bits T of #–pv in space d · b and time at most d · b.

Proof. For each (i, a) ∈ [d]× [b], define the function gi,a : [k]→ {0, 1} so that
gi,a(x) is the (i, a)-th coordinate of the d-hot encoding of x (Definition 4).

The value at leaf v is directly encoded as a single input variable xv
Therefore, the (i, a)-th coordinate of #–pv can be computed as pv,i,a = gi,a(xv).
Our program is as follows:

1: for (i, a) ∈ T do
2: Ri,a ← Ri,a + gi,a(xv)
3: end for

6

Note that Ri,a ← Ri,a + gi,a(xv) is an allowed register program instruction:
gi,a takes the role of the function fj in Definition 3, and the single input xv
takes the role of xi.

There is one register for each index (i, a) ∈ [d]× [b] of the d-hot encoding,
so this program has space d · b. The number of instructions is |T | ≤ d · b.

Remark 3.1. The careful reader might notice an inefficiency in the algorithm
that appears in Lemma 2. In the end, our goal is to produce a branching
program. Under Observation 2, the above register program will become a
sequence of |T | layers of a branching program, each of which queries the
same input xv. This is wasteful because one layer of a branching program
can compute an arbitrary function as long as it depends on only one input
index. However, the factor of |T | is insignificant; we gladly pay it to keep
our presentation simpler by sticking with the register program point of view.

Continuing our construction of a recursive algorithm, the next lemma
shows that we can cleanly compute the value at any internal node v using
subroutines that cleanly compute the values at v’s children.

Lemma 3. Fix a height h and alphabet size k, and numbers b, d ∈ N such
that bd ≥ k. Let v be an internal node in the height-h complete binary tree,
and ` and r the children of v. For some TreeEvalk,h input, let #–pv,

#–p`,
#–pr ∈ F2

d·b

denote the d-hot encodings of the values at nodes v, ` and r respectively.
Suppose that for all subsets S, S′ ⊆ [d] · [b], there exist register programs

P`(S) and Pr(S′) which cleanly compute bits S of #–p` and bits S′ of #–pr,
respectively, in space s and time t.

Then for every subset T ⊆ [d · b], there is a register program Pv(T) which
cleanly computes bits T of #–pv in space max(s, 3db) and time 22d(2t+ dbk2).

Proof. We will show how to use the polynomial representation of the function
fv at node v to compute #–pv using the subroutines P`(S) and Pr(S′). The
proof is similar to the proofs of Lemmas 8 and 9 in [CM20].

Warm-up. As a warm-up, consider the following problem. There are d
functions f1, . . . , fd, and on input x our goal is to cleanly compute ∏i∈[d] fi(x)
into register Rout.4 In order to access the functions fi(x), for every subset
S ⊆ [d], we have a program P in(S) which cleanly computes bits S of
(f1(x), . . . , fd(x)) into registers (Rin1 , . . . , Rind).

Define S∆S′ to be the symmetric set difference (S \ S′) ∪ (S′ \ S). We
claim the following program P out cleanly computes ∏i∈[d] fi(x) into Rout:

4In the notation of Definition 6, m = 1 and S = [m].

7

1: Initialize Sold = ∅
2: for S ⊆ [d] do
3: Execute P in(S∆Sold) on

–

Rin

4: Rout ← Rout + (−1)d−|S| ·∏i∈[d]R
in
i

5: Sold ← S
6: end for

The for loop can be executed in any order as long as each subset S ⊆ [d] is
considered once. The factors (−1)d−|S| are moot in our chosen ring F2, but
are included so that the algorithm works over any ring.

To understand how it works, first note that the call to P in(S∆Sold)
ensures that for each i ∈ [d], register Rini holds its original value τi if i 6∈ S
and τi + fi(x) otherwise. Consider first the iteration where S = [d]. We add∏
i∈[d](τ ini + fi(x)) to Rout, which gives us the term ∏

i∈[d] fi(x) plus a sum
of junk terms ∑S′ 6=∅(

∏
i∈S′ τ ini

∏
i/∈S′ fi(x)). The remaining iterations cancel

these terms out, in a way reminicscent of the inclusion-exclusion principle
for counting:

Rout =τ out +
∑
S⊆[d]

(−1)d−|S|
∏
i∈[d]

(τ ini + [i ∈ S]fi(x))

=τ out +
∑
S⊆[d]

(−1)d−|S|
∑
U⊆S

(∏
i∈U

fi(x)
) ∏

i∈[d]\U
τ ini

=τ0 +
∑
U⊆[d]

∑
S⊆[d]
U⊆S

(−1)d−|S|

(∏
i∈U

fi(x)
) ∏

i∈[d]\U
τ ini

=τ0 +

∏
i∈[d]

fi(x)

where the last equality follows from the fact that ∑S⊆[d]
U⊆S

(−1)d−|S| is zero

except when U = [d]. P out uses d+1 registers Rout, Rin1 , . . . , Rind not counting
those used by P in. Because P in is a clean computation, it is free to re-use
P out’s working memory (Rout in this case), and so our total space usage is
max(s, d+ 1). P out runs in time 2d(t+ 1) where t is the runtime of P in(S)
(assuming for simplicity it does not depend on S).

Real implementation. Now we consider the general problem. Let # –

Qfv

be the polynomial representation (Definition 5) of fv. (Recall that the value
at node v is fv applied to the values at nodes ` and r.) Let

–

Rout,
–

R`,
–

Rr be

8

vectors of d · b registers holding values in F2 (for a total of 3db registers), and
recall that P`(S) is a register program which cleanly computes p`,i,a into R`i,a
for all (i, a) ∈ S (and likewise for Pr(S′)). We will give a program P out(T)
which cleanly computes pv,i,a = Qfv ,i,a(#–p`,

#–pr) into Routi,a for all (i, a) ∈ T .
Our program differs from the warm-up in three ways:

1. Instead of a single product, we compute the whole polynomial Qfv ,i,a

from Definition 5. To do this, we compute all its monomials in parallel,
using the following trick. Partition the [d]× [b] coordinates of #–p` into
d sets {1} × [b], {2} × [b], . . . , {d} × [b], and partition the coordinates
of #–pr similarly. Note that each monomial in Qfv ,i,a includes exactly
one variable from each of these 2d sets. Therefore, if we replace the
main loop in our warm-up with a loop over all V, V ′ ⊆ [d], and in each
case set S = V × [b], S′ = V ′ × [b], then from the point of view of any
particular monomial m our program will act exactly like the warmup.
To parallelize across all monomials at once, we simply add the entire
polynomial Qv,i,a(

–

R`,
–

Rr) to Routi,a .

2. Our inputs come from two different programs P`(S) and Pr(S′). Thus
if we range over all pairs (V, V ′), our runtime for the recursive calls
will be (2d)2 · 2t.

3. We need to cleanly compute Qv,i,a into Routi,a for every (i, a) ∈ T , not
just a single one. Again we can simply do each in parallel inside the
loop, and the analysis for each (i, a) will be separate.

Concretely, our program P out works as follows:
1: Initialize Sold = ∅, S′old = ∅.
2: for V, V ′ ⊆ [d] do
3: S ← V × [b], S′ ← V ′ × [b]
4: Execute P`(S∆Sold) with output to

–

R`.
5: Execute Pr(S′∆S′old) with output to # –

Rr.
6: for (i, a) ∈ T do
7: Rout

i,a ← Rout
i,a + (−1)2d−|V |−|V ′|Qfv ,i,a(

–

R`,
–

Rr)
8: end for
9: Sold ← S

10: S′old ← S′

11: end for
Line 7 cannot be executed as a single register program instruction, because
the polynomial Qfv ,i,a depends on several values of the function fv. (Recall

9

that in a TreeEval input, the function fv is encoded as a table of k2 separate
values.) Instead, the line can be executed by k2 register program instructions,
by grouping the terms [f(y, z) = w] according to the pair (y, z).

We now analyze the values of the output registers once the algorithm
finishes, by a close examination of the effect of line 7 using the definition of
Qfv ,i,a from Definition 5. For any (i, a) ∈ T ,

Rout
i,a =τout

i,b +
∑

V,V ′⊆[d]
(−1)2d−|V |−|V ′| ·

∑
(w,y,z)∈[k]3

[digit(b, w, i) = a][fv(y, z) = w]·

 ∏
i′∈[d]

(τ `i′,digit(b,y,i′) + [i′ ∈ V]p`,i′,digit(b,y,i′))

 ·
 ∏
i′∈[d]

(τ ri′,digit(b,z,i′) + [i′ ∈ V ′]pr,i′,digit(b,z,i′))

=τout
i,a +

∑
U,U ′⊆[d]

 ∑
V,V ′⊆[d]

U⊆V,U ′⊆V ′

(−1)2d−|V |−|V ′|

 ·
∑

(w,y,z)∈[k]3
[digit(b, w, i) = a][fv(y, z) = w]·

∏
i′∈U

p`,i′,digit(b,y,i′)

 ∏
i′∈[d]\U

τ `i′,digit(b,y,i′)

 ·
∏
i′∈U

pr,i′,digit(b,z,i′)

 ∏
i′∈[d]\U

τ ri′,digit(b,z,i′)

=τout

i,a +
∑

(w,y,z)∈[k]3
[digit(b, w, i) = a][fv(y, z) = w]·

 ∏
i′∈[d]

p`,i′,digit(b,y,i′)

 ∏
i′∈[d]

pr,i′,digit(b,z,i′)

=τout

i,a +Qfv ,i,a(#–p`,
#–pr)

The algorithm uses 2 · 22d calls to P` and Pr and an additional 22ddbk2

basic instructions (line 7). Our algorithm uses the 3db registers #–pv,
#–p`,

#–pr,
not counting the space required to compute P` and Pr. However, since P`
and Pr are promised to be clean computations, our algorithm can lend all

10

3db registers to whichever program is currently being executed, and so each
call to P` or Pr needs no more than s registers including the 3db already
defined.

From this we can recursively compute TreeEval, which will give our main
result when applied to the d-hot encoding.

Theorem 4 (TreeEval algorithm). For any subset T ⊆ [d · b] there is a
register program with 3db registers and length O(2(2d+1)(h−1)dbk2) that cleanly
computes bits T of the d-hot encoding of TreeEvalk,h. (That is, given an input
to TreeEvalk,h, the program cleanly computes the encoding of the output.)

Proof. We will prove by induction on the height h that the program has
length at most 2(2d+1)h−1

22d+1−1 22ddbk2 = O(2(2d+1)(h−1)dbk2). Lemma 2 solves the
base case h = 1 using space db ≤ 3db and at most db ≤ 2(2d+1)0−1

22d+1−1 22ddbk2

instructions. Now, assume for some height h that for every subset S ⊂ [s],
bits S of the encoding of TreeEvalk,h can be cleanly computed for some
h ≥ 0. Given an instance of TreeEvalk,h+1, Let v be the root and let ` and
r be the children. Under the induction hypothesis, there exist programs
P` and Pr which can cleanly compute the d-hot encoding of f` and fr in
space 3db and time 2(2d+1)h−1

22d+1−1 22ddbk2. By Lemma 3 we can use P` and Pr to
compute the d-hot encoding of fv—and thus the output for the TreeEvalk,h+1

instance—in space 3db and time at most 22d
(
22(2d+1)h−1

22d+1−1 22ddbk2 + dbk2
)

=
2(2d+1)(h+1)−1

22d+1−1 22ddbk2 as desired.

The principle difference between Theorem 4 and previous algorithms
that using the “catalytic” approach [CM20, Theorems 1–3] is the choice
of encoding. Table 2 summarizes the trade-off between time and space for
different encodings.

Proof of Theorem 1. Set d = dlog k/ log he and b = h; note that bd ≥ k. If we
apply Theorem 4 for T = [d · b] and for a set of registers initialized to 0, then
we get a register program computing the d-hot encoding of TreeEvalk,h into
some registers while returning all other registers to 0. The register program
uses 3dh registers and has length O(2(2d+1)(h−1)dhk2) ≤ 2O(dh), and so it can
be transformed into a branching program of size 2O(dh) (see Observation 2).
Note that each reachable output state corresponds to a different possible
value of the d-hot encoding of TreeEvalk,h in the output registers plus 0 in
all other registers. Since there are only k such values—one for each value in
[k]—we relabel the k output nodes with the value their output register value
corresponds to. Clearly this branching program computes TreeEvalk,h.

11

encoding one-hot binary d-hot
encoding bits
(Def. 4)

k dlog ke db(≥ ddk1/de)

total space 3k 3dlog ke 3db
degree (Def. 5) 2 dlog ke d
time for leaf
node (Lem. 2)

3k 3dlog ke 3db

time for rec.
step (Lem. 3)

4(t+ k3) k2(2t+ k2dlog ke) 22d(2t+ dbk2)

total time Θ(4h−1k3) Θ((2k2)h−1k4dlog ke) Θ(2(2d+1)hdbk2)

Table 2: Trade-offs in Theorem 4 if different encodings had been used. The
number of registers depends on the encoding (Definition 4). The total number
of instructions depends on the number of recursive calls in Lemma 3, which
in turn depends on the polynomial degree (Definition 5).

When k ≥ h we have d = O(log k/ log h), and so the size is 2O(h log k/ log h)

= kO(h/ log h). When k ≤ h, we have d = 1, so the size is 2O(h).

References

[BCK+14] Harry Buhrman, Richard Cleve, Michal Kouckỳ, Bruno Loff,
and Florian Speelman. Computing with a full memory: catalytic
space. In Proceedings of the forty-sixth annual ACM symposium
on Theory of computing, pages 857–866. ACM, 2014.

[BCM+09a] Mark Braverman, Stephen Cook, Pierre McKenzie, Rahul San-
thanam, and Dustin Wehr. Branching programs for tree evalua-
tion. In International Symposium on Mathematical Foundations
of Computer Science, pages 175–186. Springer, 2009.

[BCM+09b] Mark Braverman, Stephen Cook, Pierre McKenzie, Rahul San-
thanam, and Dustin Wehr. Fractional pebbling and thrifty
branching programs. In IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2009.

[BoC92] Michael Ben-or and Richard Cleve. Computing algebraic for-
mulas using a constant number of registers. SIAM J. Comput.,
21(1):54–58, February 1992.

12

[CBM+09] Stephen Cook, Mark Braverman, Pierre McKenzie, Rahul San-
thanam, and Dustin Wehr. Branching programs: Avoiding
barriers. Talk at Barriers Workshop at Princeton, August 2009.
URL: https://www.cs.toronto.edu/∼sacook/barriers.ps.

[CM20] James Cook and Ian Mertz. Catalytic approaches to the tree
evaluation problem. In Proceedings of the 52nd annual ACM
symposium on Theory of computing. ACM, 2020.

[CMW+12] Stephen Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman,
and Rahul Santhanam. Pebbles and branching programs for
tree evaluation. ACM Trans. Comput. Theory, 3(2):4:1–4:43,
January 2012. arXiv version freely available at http://arxiv.org/
abs/1005.2642. URL: http://doi.acm.org/10.1145/2077336.2077337,
doi:10.1145/2077336.2077337.

13

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://www.cs.toronto.edu/~sacook/barriers.ps
http://arxiv.org/abs/1005.2642
http://arxiv.org/abs/1005.2642
http://doi.acm.org/10.1145/2077336.2077337
https://doi.org/10.1145/2077336.2077337

